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Summary. We describe an algorithm to approximate the minimizer of an
elliptic functional in the form

∫
Ω j(x, u,∇u)on the setC of convexfunctions

u in an appropriate functional spaceX. Such problems arise for instance in
mathematical economics [4]. A special case gives the convex envelopeu∗∗

0
of a given functionu0. Let (Tn) be any quasiuniform sequence of meshes
whose diameter goes to zero, andIn the corresponding affine interpolation
operators. We prove that the minimizer overC is the limit of the sequence
(un), whereun minimizes the functional overIn(C). We give an imple-
mentable characterization ofIn(C). Then the finite dimensional problem
turns out to be a minimization problem with linear constraints.

Mathematics Subject Classification (1991):65K10

1 Introduction

LetΩ be some bounded open convex subset ofR
2, and

C := {u : Ω → R ; u is convex inΩ} .
We consider the variational problem subject to convexity constraint:

inf
u∈C∩K

J(u) with J(u) =
∫
Ω
j(x, u(x),∇u(x)) dx(1)

whereK is a closed convex subset of a given spaceX = H1(Ω) orX =
L2(Ω), andj is a quadratic function ofu and∇u. We assume thatC ∩K is
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non-empty. IfJ is lower semicontinuous coercive and strictly convex onK,
then existence and uniqueness of a minimizer of (1) directly follows from
standard arguments. Throughout this paper, we shall always assume thatJ
is such a functional.

A first example of such a functional is

Jf (u) =
∫
Ω

[
1
2
|∇u(x)|2 + f(x)u(x)

]
dx(2)

with f ∈ L2(Ω) given. ConsiderJ = Jf , andK = X = H1
0 (Ω), then (1)

is a classical projection problem inH1
0 . Indeed it is equivalent to find the

projection ofuf = ∆(−1)f ontoC (the resolvent of the Laplace operator is
intended inH1

0 , that is, with homogeneous Dirichlet boundary conditions),
as one can see from the identity

2Jf (u) = ‖∇(u− uf )‖2L2(Ω) − ‖∇uf‖2L2(Ω) .

Wecan generalize tof ∈ H−1(Ω), writing 〈f, u〉 instead of∫ f(x)u(x) dx.
Another example isX = L2(Ω),

Ju0(u) = ‖u− u0‖2L2(Ω)(3)

whereu0 ∈ L2(Ω) is given, and

Ku0 = {u ∈ L2(Ω) ; u ≤ u0 a.e.}(4)

Then the solution of (1) withJ = Ju0 andK = Ku0 is the convex enve-
lopeu∗∗

0 of u0, that is the largest convex function inKu0 [3], [5].
We will prove in Sect. 4 that the solutions of these two problems with

u0 ∈ H1
0 (Ω) andf = ∆u0 are, in general, different.

The aim of this paper is to give a numerical scheme to approximate
solutions of (1).

1.1 Notations

In all the following we will use classical notations and assumptions from
numerical analysis. Let(Tn)n∈N be a sequence of quasiuniform regular
triangulations of the domainΩ, Mn

i = (xni , y
n
i ) ∈ Ω, i = 1, . . . , kn, are

the nodes ofTn, andhn is the largest edge length of all triangles inTn. We
assume thathn → 0 asn→∞.

We will noteNn := {1, . . . , kn} and
∂Nn := {i ∈ Nn : Mn

i ∈ ∂Ω}, N̊n := Nn \ ∂Nn.
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Initial function About 10 iterations

About 30 iterations Final state

Fig. 1. Iterations of the algorithm.H1([0, 1]2) projection onC of−x(1−x)(2x−1)2 y(1−
y)(2y − 1)2

Then we define

En := {u ∈ C0(Ω) : u is affine on each triangle ofTn} = In(C0(Ω)),

and
Cn := In(C) and Kn := In(K),

whereIn is the affine Lagrange interpolate operator fromC0(Ω) to En.
One can easily show thatCn is a finite dimensional closed convex cone with
nonempty interior.

1.2 Approach

Our basic idea is to approximate problem (1) by:

min
u∈Cn∩Kn

J(u)(5)

and letn go to infinity.
This scheme is therefore based on external approximations of the cone

of convex functions. As noted by P. Choné [2], there is very little hope that
methodswhereC is internally approximatedbyC∩En should converge to the
solution of (1). Indeed the affine Lagrange interpolate of a convex function
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need not be convex and the coneCn is in some sense much bigger than
C∩En. This somehow surprising fact is enlighted by the following example:
considerΩ = (0, 1)2, with a mesh consisting of two triangles having their
common edge in{x1 = x2}. The functionu(x1, x2) = (x1+x2)2 is convex
whereas its interpolate is aconcavefunction.

More precisely, we have the proposition:

Proposition 1 Assume that there are 2 directionsh andk such that:

(ν · h).(ν · k) ≥ 0

for every vectorν which is normal to an edge of every triangle of the trian-
gulationTn, for all n. Then ifu is the limit inL∞

loc of a sequence(un), with
un ∈ C ∩En for all n, we have:

∂2u

∂h ∂k
≥ 0(6)

in the sense of Radon measures.

For instance, in a structured mesh of the form�� , the normal vectors
are v1 = (1, 0), ν2 = (0, 1) and ν3 = (1,−1). Hence, we can choose
h = (1, 0), k = (0,−1), and get

u = limun in L∞
loc, with un ∈ C ∩En =⇒ ∂2u

∂x ∂y
≤ 0

in the sense of measures. This inequality obviously does not hold for all
convex functions.

As a consequence, it appears that convex functions that do not satisfy the
constraints (6) cannot be approximated (even in the sense of distributions)
by convex functions ofEn. This is the very reason for which we chose an
external approximation scheme.

Proof. This result is proved in [2] but we recall it here for sake of complete-
ness. Letu be inEn, thenu ∈ C if and only if, for every pair of adjacent
triangles 1 and 2 ofTn, we have:

(q2 − q1) · ν12 ≥ 0,

whereqi is the value of∇u in trianglei = 1, 2, andν12 is the normal unit
vector pointing from 1 to 2.

Assume now thath andk satisfy the assumption of the previous propo-
sition and letϕ be some nonnegative smooth function with compact support
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in Ω. Summing up Green’s Formula in every triangle ofTn yields:

∂2u

∂h∂k
, ϕ > = −

∑
T∈Tn

〈
∂u

∂h
,
∂ϕ

∂k

〉

=
∑
e

((q2 − q1) · ν12)(ν12 · h)(ν12 · k)
∫
e
ϕ(s)ds ≥ 0

where the last summation is taken over all interior edgese of Tn. ��
A similar proposition can be given as a pointwise property:

Proposition 2 Let u ∈ C2(Ω) be a convex function which is limit, in
C0(Ω), of a sequence(un) ⊂ C ∩En.

Let(Mn
in

) be a convergent sequence of nodes of the triangulations, with
limit M ∈ Ω. Let, for all n, Mn

jn
be a node adjacent to(Mn

in
), andν a

cluster point of the sequence
Mn

in
−Mn

jn

|Mn
in

−Mn
jn | . Then

∂2u

∂ν ∂ν⊥ (M) ≥ 0

whereν⊥ is normal toν and(ν, ν⊥) is direct.

Proof. Sinceun converges tou uniformly on any compact subset ofΩ, and
all are convex functions,∇un converges to∇u a.e. inΩ.

The jump of∇un on the edge[Mn
in
,Mn

jn
] is nonnegative by convexity;

passing to the limit for a subsequence, the property follows immediately.��

2 Convergence

Let un (respectivelyu) denote the solution of (5) (respectively (1)). The
following convergence result holds:

Theorem 1 The sequence(un) converges tou strongly inX and uniformly
on all compact subsets ofΩ.

We will prove this theorem only in the case of the projection problem that
is, J = Jf andK = X = H1

0 (Ω). Other cases, withJ strictly convex and
coercive, are similar. (In particular, the proof is even simpler for the gradient
independent case since it does not require an estimate on the gradient.)

In order to prove this property, we first need the technical result:

Lemma 1 There existsC > 0 such that, for allv ∈W 1,∞(Ω) ∩ C:
∀n ∈ N, ‖∇In(v)‖L∞(Ω) ≤ C ‖∇v‖L∞(Ω) .(7)

and∇In(v)→ ∇v a.e. inΩ.
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Initial function About 10 iterations

About 30 iterations Final state

Fig. 2. Iterations of the algorithm.H1([0, 1]2) projection on C of −(4 + 5xy2)
e−30[(x− 1

2 )2+(y− 1
2 )2]

Proof.

Step 1. Let T be an element ofTn, with verticesA, B, C. Writing e1 =
(B −A)/ |B −A|, we have

∇In(v) · e1 =
v(B)− v(A)
|B −A| ≤ ‖∇v‖L∞ .

Asimilar relationholds fore2 := (C−A)/ |C −A|. Since the triangulations
are quasiuniform there existsC > 0 such that (7) is satisfied.
Step 2. LetD be the set of differentiability points ofv which do not belong
to any edge of the triangulations;D is clearly of full Lebesguemeasure inΩ.
For anyM ∈ D, let ([An, Bn, Cn])n∈N be the sequence of triangles ofTn
containingM and whose verticesAn, Bn, Cn converge toM . Define also
the unit vectors

en1 :=
Bn −An

|Bn −An| and en2 :=
Cn −An

|Cn −An| .

Let pn, qn, rn be some subgradients ofv respectively atAn, Bn, Cn. By
monotonicity we have, for alln:

pn · en1 ≤
v(Bn)− v(An)
|Bn −An| = ∇[In(v)](M) · en1 ≤ qn · en1

pn · en2 ≤
v(Cn)− v(An)
|Cn −An| = ∇[In(v)](M) · en2 ≤ rn · en2 .
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Sincev is differentiable atM , sequencespn, qn, rn all converge to∇v(M)
(cf. [5]), and we get:

(
∇[In(v)](M)−∇v(M)

)
· eni −→ 0, i = 1, 2.

Since the triangulations are quasiuniform, it follows that∇[In(v)(M)] con-
verges to∇v(M).

This ends the proof of the lemma. ��

Proof of Theorem 1.We recall thatun is the projection ofuf := ∆(−1)f
ontoCn so that:

∀n ∈ N, ‖∇un‖L2(Ω) ≤ ‖∇uf‖L2(Ω)(8)

Sinceun is a minimizer inCn, we have:
∀v ∈ C ∩H1

0 (Ω), J(un) ≤ J(In(v)).(9)

Hence for allε > 0, there existvε ∈W 1,∞
0 ∩ C such that:

J(vε) ≤ J(u) + ε.(10)

From Lemma 1, there existsC > 0 such that:

‖∇In(vε)‖L∞ ≤ C ‖∇vε‖L∞ and ∇In(vε)→ ∇vε a.e.
Hence, by Lebesgue’s Dominated Convergence Theorem, we get:

J(In(vε))→ J(vε).

Taking (9) and (10) into account, and sinceε is arbitrary, we deduce:

lim sup
n→∞

J(un) ≤ J(u).(11)

By (8), we may extract a subsequence, again labeledun and find some
u ∈ H1

0 such thatun converges tou a.e. and strongly inL2(Ω) and∇un
converges to∇u weakly inL2(Ω).

We will prove thatu is convex. By definition, for alln, un = In(vn), for
somevn ∈ C. Let us fix now some convex setω ⊂⊂ Ω.

Let us show first that(∇vn) is bounded inL∞(ω). If not, there would
existxn ∈ ω such that, up to a subsequence,|∇vn(xn)| → +∞.
Up to subsequences, we may also assume thatxn is converging and:

dn :=
∇vn(xn)
|∇vn(xn)| −→ d ∈ S1.
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Now, letx0 ∈ Ω be such that, forn large enough:

(x0 − xn) · dn ≥ 1
2
|x0 − xn|.

(Such a point exists since(xn) ⊂ ω ⊂⊂ Ω anddn converges.) Sincevn is
convex, we get:

|∇vn(x0)| ≥ 1
2
|∇vn(xn)| −→ +∞.

Let en := ∇vn(x0)/ |∇vn(x0)| and, extracting subsequences, assume
that it converges toe ∈ S1. Define

Σ :=
{
p ∈ S1 : p · e ≥ 2

3

}
and Q := (x0 + R+Σ) ∩Ω.

If n is large enough, then for allp ∈ Σ, p · en ≥ 1
2 . Then, for anyx ∈ Q

(with x = x0 + tp, t > 0, p ∈ Σ), the following holds:

|∇vn(x)| ≥ ∇vn(x) · p ≥ ∇vn(x0) · p ≥ 1
2
|∇vn(x0)| .

Since the rightmost member tends to infinity independently ofx ∈ Q, it
follows that‖∇vn‖L2(Q) → +∞.On theother hand, since the triangulations
are quasiuniform andvn is convex, this also implies‖∇un‖L2(Ω) → +∞
which yields a contradiction with (8).

Hence,(∇vn) is bounded inL∞(ω). Standard interpolate estimate yields
that there exists a constantCω such that:

‖un − vn‖L∞(ω) ≤ Cω hn ‖∇vn‖L∞(ω) −→ 0.(12)

This implies in particular thatvn converges tou inL2(ω); henceu is convex
in ω. Sinceω is arbitrary,u is convex inΩ.

From (11) and sinceu is convex, we deduce thatu = u. Since(un)
is bounded inH1

0 (Ω) andu is the only cluster point of(un) in the weak
topology ofH1

0 (Ω), we deduce that the whole sequence(un) converges
weakly tou. On the other hand, (11) yields:

‖∇un‖L2(Ω) −→ ‖∇u‖L2(Ω)

and then(un) converges strongly tou.
It remains to show thatun converges uniformly tou on compact subsets.

Let ω be any relatively compact open convex subset ofΩ. We have

‖un − u‖L∞(ω) ≤ ‖un − vn‖L∞(ω) + ‖vn − u‖L∞(ω) .

From (12), we just have to show thatvn converges tou in L∞(ω). Since
we know that the sequence(vn) is uniformly Lipschitz, this is a relatively
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Initial function About 10 iterations

About 30 iterations Final state

Fig. 3. Iterations of the algorithm.H1([0, 1]2) projection onC of −x(1 − x)(y − 1
2 )2

compact sequence inC0(ω) from Ascoli theorem. Sincevn has the same
L2 limit than un from (12), that isu, the whole sequence converges tou
in C0(ω).

This ends the proof of the theorem. ��

3 Characterization of conesCn and the finite dimensional problems

In order to construct a numerical scheme for (5), we have to characterize
more precisely the setCn. We aremainly interested in characterization in the
formof a finite number of affine constraints on the valueszi = u(Mn

i ), since
then the functional can be expressed as a quadratic form of the(zi), using
standard relations in numerical analysis. The minimization of a quadratic
functional in a set defined as the intersection of a finite number of hy-
perplanes is called ‘quadratic programming’, and is very classical in the
literature.

In the following, we will use some useful notations for points inR
2.

We note[A,B,C] := co{A,B,C} the closed triangle generated by three
points. We recall that the area of this triangle is half the absolute value of

[A : B : C] := (B −A) ∧ (C −A)
= (xB − xA)(yC − yA)− (xC − xA)(yB − yA).
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If this area is nonzero, we can define for allM ∈ [A,B,C] its barycentric
coordinates with respect to this triangle:

α(M) :=
∣∣∣∣ [M : B : C]
[A : B : C]

∣∣∣∣ , β(M) :=
∣∣∣∣ [M : C : A]
[A : B : C]

∣∣∣∣ ,
γ(M) :=

∣∣∣∣ [M : A : B]
[A : B : C]

∣∣∣∣ .
They sum to1 and

M = αA + βB + γC.(13)

If [A : B : C] = 0, that is for instanceB ∈ [A,C], we extend this
definition by setting for instanceβ = 0, α = AM/AC, γ = MC/AC, so
that (13) remains valid. (The barycentric coordinates are not unique in this
degenerate case.)

A first characterization of coneCn is given by:
Theorem 2 Letu ∈ En andzi = u(Mn

i ). Thenu ∈ Cn if and only if, for
all i, j, k, l ∈ (Nn)4 such thatMn

i ∈ [Mn
j ,M

n
k ,M

n
l ], we have

zi ≤ α(Mn
i )zj + β(Mn

i )zk + γ(Mn
i )zl(14)

whereα, β, γ are the barycentric coordinates in[Mn
j ,M

n
k ,M

n
l ].

Note that even if the barycentric coordinates are not unique (for instance
if k = l), they all give the same right member in (14).

Proof. If u = In(v), with v ∈ C, we havezi = v(Mn
i ). Sincev is convex,

(14) follows immediately.
Let us prove that (14) implies thatu ∈ Cn. ConsiderPi := (xni , y

n
i , zi) ∈

R
3,Q0 the convex hull of{Pi}i∈Nn in R

3 and

Q :=
⋃
t≥0

(Q0 + te3)

wheree3 := (0, 0, 1). It is easy to check thatQ is a closed convex unbounded
subset ofR3 whose extremal points are included in{Pi}i∈Nn and having
the graph property: there exists a functionv : R

2 → R ∪ {+∞} such that
Q =

{
(x, y, z) ∈ R

3 : z ≥ v(x, y)
}
.

Notice thatv is convex since its epigraphQ is convex. Moreover, ifD ⊂ Ω
is the projection ofQ0 ontoR

2, we see thatD is the union of all triangles
of Tn, and thatv(M) is finite if and only ifM ∈ D. The restriction ofv
toD can be written as the maximum of a finite number of affine functions
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(sinceQ0 is a polyhedron); hence, there exists a convex functionw ∈ C
such thatv ≡ w in D.

We claim thatPi ∈ ∂Q for all i. For if not, we can findi such thatPi is an
interior point ofQ, that iszi > v(xni , y

n
i ). Since thepoint(xni , y

n
i , v(x

n
i , y

n
i ))

is in ∂Q, it belongs to a two-dimensional face ofQ; from Caratheodory’s
theorem, it belongs to a triangle of extremal points[Pj , Pk, Pl]; in particular
by projection,Mn

i ∈ [Mn
j ,M

n
k ,M

n
l ]. Notice that we havev(xnj , y

n
j ) = zj

and similar relations hold fork, l, sincePj , Pk, Pl are extremal. Letα, β, γ
some barycentric coordinates forMn

i in [Mn
j ,M

n
k ,M

n
l ]; we then have:

αzj + βzk + γzl = v(xni , y
n
i ) < zi

and this contradicts (14).
Hencezi = v(Mn

i ) = w(Mn
i ) for all i. This implies thatu = In(w) ∈

Cn and the proof is complete. ��
As a consequence, problem (5) turns out to be finite dimensional quadra-

tic programming problem for which the set of linear constraints is given by
the previous proposition. Unfortunately, the number of constraints in (14)
is of orderO(k4

n), which is very large. But there are plenty of redundancies
in those relations:

Theorem 3 Under the same assumptions than in Theorem 2,u ∈ Cn if
and only if (14) is satisfied for all indices(i, j, k, l) such thatMn

i ∈
[Mn

j ,M
n
k ,M

n
l ] and

∀p /∈ {i, j, k, l}, Mn
p /∈ [Mn

j ,M
n
k ,M

n
l ].(15)

Moreover, this characterization is optimal in the following sense: if the
indices(i0, j0, k0, l0) satisfy (15), there existsu0 ∈ En such thatu0 /∈ Cn,
u0 satisfy (14) for all indices(i, j, k, l) �= (i0, j0, k0, l0) satisfying (15).

We will give the proof below, but let us first give some consequences.
We note that, ifMn

j ,M
n
k ,M

n
l are non aligned, the additional condition (15)

expresses thatMn
i is the only vertex ofTn in the non-extremal points of

the triangle. Up to permutations, the only other case isk = l, and then (15)
expresses thatMn

i is the only vertex in(Mn
j ,M

n
k ).

These conditions appear to be very simple for a structured mesh:

Corollary 4 Assume that for somen, Tn is a structured mesh, that is,
{Mn

i }i∈Nn = Ω ∩ Z
2 =: M. Let u ∈ En; we extend it toZ2, defining

u(α) = +∞ for all α ∈ Z
2 \ M. Thenu ∈ Cn if and only if, for all

α = (α1, α2) ∈M we have:

∀(σ1, σ2) ∈ {−1,+1}2,
u(α) ≤ 1

3 [u(α1 + σ1, α2) + u(α1, α2 + σ2) + u(α1 − σ1, α2 − σ2)]
(16)
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Fig. 4. Graph of the number of constraintsC with respect to the total number of pointsN
in the mesh, in log-log scale. A law in the formC � N1.8 appears

and

u(α) ≤ 1
2
[u(α + β) + u(α− β)](17)

for all β ∈ Z
2 such that eitherβ = (0, 1), or β = (1, 0), or β = (±k, l)

wherek ≥ 1, l ≥ 1 are integers satisfyingk ∧ l = 1.

This follows from Theorem 3 by observing that, if three points ofZ
2 are

aligned, but their segment does not contain any other point ofZ
2, then they

have the formα, α+ β, α− β with β as described in the corollary. And if a
triangle ofZ2 contains onlyα ∈ Z

2 in its interior or boundary (except for the
vertices), it has the form[(α1 +σ1, α2), (α1, α2 +σ2), (α1−σ1, α2−σ2)]
with (σ1, σ2) ∈ {−1,+1}2; in this case, the barycentric coordinates ofα
are equal.

Hence, for a structured mesh withkn vertices, the number of constraints
is of orderk1.8

n approximately (see Fig. 4).

Proof of Theorem 3.In this proof,n is constant; we drop upperscriptn for
simplicity. We note

G :=
{

(i, j, k, l) ∈ N4 : Mi ∈ [Mj ,Mk,Ml] \ {Mj ,Mk,Ml}
}
.

We assume that (14) is satisfied for all indices(i, j, k, l) ∈ G such
that (15) is satisfied. We would like to prove it for all other(i, j, k, l) ∈ G.
The casek = l (corresponding to one-dimensional simplexes) is easy: the
restriction of a convex function on a line has a monotone derivative, so the
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property (14) has just to be verified for three consecutive points on the same
line.

Hence we just have to consider two-dimensional simplexes. In order to
shorten notations, we will write

[i : j : k] := (Mj −Mi) ∧ (Mk −Mi).

Wenote for further reference the algebraic identity, valid for all(i, j, k, l, p):

[i : p : j] [i : k : l] + [i : j : k] [p : l : i] = [i : k : p] [i : l : j].(18)

LetG0 ⊂ G be the set of indices(i, j, k, l) satisfying (14). If we assume
thatG0 �= G, then we can find(i, j, k, l) ∈ G \G0 such that[Mj ,Mk,Ml]
has the smaller area. We then have (assuming that[Mj ,Mk,Ml] is direct):

[j : k : l]zi > [i : k : l]zj + [i : l : j]zk + [i : j : k]zl.(19)

By assumption, (15) is not satified for(i, j, k, l): hence, there exists
p /∈ {i, j, k, l} such thatMp ∈ [Mj ,Mk,Ml]. We can even assume that
Mp ∈ [Mi,Mk,Ml] for instance, up to a permutation of the indicesj, k, l.
Since the area of[Mi,Mk,Ml] is smaller than the area of[Mj ,Mk,Ml], we
have(p, i, k, l) ∈ G0:

[i : k : l]zp ≤ [p : k : l]zi + [p : l : i]zk + [p : i : k]zl.(20)

SinceMp ∈ [Mi,Mk,Ml], and

Mi ∈ [Mj ,Mk,Ml] = [Mp,Mk,Ml] ∪ [Mj ,Mp,Ml] ∪ [Mj ,Mk,Mp]

we must haveMi ∈ [Mj ,Mp,Ml] orMi ∈ [Mj ,Mk,Mp]. We assume the
latter, the other case is similar. We can assume that[i : k : p] �= 0 (in
that case it is positive), since ifMi,Mk,Mp are aligned, they must also
be aligned withMl. And then this reduces to the case of one-dimensional
simplexes.

Again, we must have(i, j, k, p) ∈ G0 since the area of[Mj ,Mk,Mp] is
smaller than the area of[Mj ,Mk,Ml]:

[p : j : k]zi ≤ [i : k : p]zj + [i : p : j]zk + [i : j : k]zp.(21)

Mutliplying this relation by[i : k : l] and using (20), we get

[i : k : l] [p : j : k]zi
≤ [i : k : l] [i : k : p]zj + [i : k : l] [i : p : j]zk +

+ [i : j : k]
(
[p : k : l]zi + [p : l : i]zk + [p : i : k]zl

)
≤ [i : k : l] [i : k : p]zj + [i : k : p] [i : l : j]zk +

+ [i : j : k] [i : k : p]zl + [i : j : k] [p : k : l]zi
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taking (18) into account.
Exchangingk andi in (18), we get:

[p : j : k] [i : k : l]− [i : j : k] [p : k : l] = [i : k : p] [j : k : l]

so that the preceding inequality can be rewritten:

[i : k : p] [j : k : l]zi ≤ [i : k : p]
(
[i : k : l]zj +[i : l : j]zk +[i : j : k]zl

)
.

This contradicts (19) since[i : k : p] > 0. Hence, we haveG0 = G and the
proof of the first part is complete.

We now prove our assertion on the optimality. If(i0, j0, k0, l0) ∈ G
satisfies (15), we can find a compact convex setK such that

K ∩ {Mi}i=1,...,kn = {Mi0 ,Mj0 ,Mk0 ,Ml0}
andMi0 is an interior point ofK. Let v be any convex function satisfying

v ≡ 0 inK and v > 0 in R
2 \K.

For instance the functionv(M) = dist(M,K) is convenient. Sincev is
continuous andK is compact,

min
p/∈{i0,j0,k0,l0}

v(Mp) > 0.

Hence there existsε > 0 such that for all indices(j, k, l) �= (j0, k0, l0) (up
to permutations) satisfying(i0, j, k, l) ∈ G, we have

ε ≤ αv(Mj) + βv(Mk) + γv(Ml)(22)

whereα, β, γ are the barycentric coordinates ofMi0 in [Mj ,Mk,Ml] (in-
deed,max(α, β, γ) is bounded from below as(j, k, l) changes, sinceMi0

is an interior point ofK).
Consider the functionu ∈ En satisfyingu(Mp) = v(Mp) for all p �= i0

andu(Mi0) = ε. If (i, j, k, l) ∈ G, with i �= i0, we have

u(Mi) = v(Mi) ≤ α(Mi)v(Mj) + β(Mi)v(Mk) + γ(Mi)v(Ml)
≤ α(Mi)u(Mj) + β(Mi)u(Mk) + γ(Mi)u(Ml)

using the convexity ofv andu ≥ v at every node. Henceu satisfies (14) for
these indices.

Also if (j, k, l) �= (j0, k0, l0) (up to permutations) satisfies(i0, j, k, l) ∈
G, thenu satisfies (14) from the definition ofε in (22).

We conclude thatu satisfies all constraints with indices(i, j, k, l) �=
(i0, j0, k0, l0), but it is not inCn since
u(Mi0) = ε > 0 = α(Mi0)v(Mj0) + β(Mi0)v(Mk0) + γ(Mi0)v(Ml0).

This ends the proof of the proposition. ��



A numerical approach to variational problems subject to convexity constraint 313

4 Convexification and projection

Letu0 be some function inH1
0 (Ω) andf = ∆u0. We will prove in this sec-

tion that the solutionΠC(u0) of the minimization problem inK = H1
0 (Ω)

with J = Jf (as defined in (2)) is, in general, different fromu∗∗
0 (which is

the minimizer ofJu0 defined in (3) onKu0).

Theorem 5 We haveu∗∗
0 = ΠC(u0) if and only if

〈∆u∗∗
0 , u0 − u∗∗

0 〉 = 0.(23)

As a consequence, in dimension 1, we always haveu∗∗
0 = ΠC(u0) since

(23) is always satisfied. However, this is not true in higher dimensions (see
remark hereafter).

Proof. Assume first thatu∗∗
0 is a minimizer ofJf in H1

0 (Ω). Then for all

convexv with v = 0 in ∂Ω,
〈
J ′
f (u

∗∗
0 ), v − u∗∗

0

〉
≥ 0. Takingv = 0 here

yields:

〈∆(u0 − u∗∗
0 ), u∗∗

0 〉 = 〈∆u∗∗
0 , u0 − u∗∗

0 〉 ≤ 0.

Sinceu0−u∗∗
0 ≥ 0 and∆u∗∗

0 is a nonnegativemeasure, we exactly get (23).
Conversely assume (23), then for allh ∈ H1

0 (Ω) such thatu∗∗
0 + h is

convex, the following holds:

Jf (u∗∗
0 + h)− Jf (u∗∗

0 ) ≥ 〈
J ′
f (u

∗∗
0 ), h

〉
=

∫
Ω
∇u∗∗

0 · ∇h + h∆u0

= 〈∆(u0 − u∗∗
0 ), h〉

writing h = v−u∗∗
0 with v ∈ H1

0 (Ω)∩C in the latter and using (23) yields:

Jf (v)− Jf (u∗∗
0 ) ≥ 〈∆(u0 − u∗∗

0 ), v〉 = 〈∆v, u0 − u∗∗
0 〉 ≥ 0

which proves thatu∗∗
0 minimizesJf overH1

0 (Ω) ∩ C. ��

Remark.Condition (23) indicates that for almost everyx ∈ Ω, we have
eitheru0(x) = u∗∗

0 (x) or ∇u∗∗
0 ≡ const. in a neighborhood ofx. For

instance, ifΩ is the unit ball ofR2, andu0(x) = |x|3 − |x|, we have
u∗∗

0 = min(− 2
3
√

3
, u0) and (23) is satisfied.

On the other hand, ifu0(x) =
√|x|− 1, thenu∗∗

0 (x) = |x|− 1 and (23)
is not satisfied.
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Initial function About 10 iterations

About 30 iterations Final state

Fig. 5. Iterations of the algorithm.H1([0, 1]2) projection onC of −x(1 − x) sin2(2πy)

Initial function About 10 iterations

About 30 iterations Final state

Fig. 6. Iterations of the algorithm.H1
0 ([0, 1]2) projection onC of the same function than in

Fig. 5
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5 Numerical solution

5.1 Algorithm

We consider a structured triangulation of the unit square[0, 1]× [0, 1] = Ω.
Any functionu ∈ Cn can be written

u =
kn∑
i=1

uiwi,

where(wi) is the standard basis ofEn (wi(Mj) = δij). In what follows,u
will represent both the function ofEn and the vector of its components in
this basis. The stiffness matrixA = (aij) is defined by

aij =
∫
Ω
∇wi · ∇wj .

Letmbe thenumberof constraints. Theset of feasible states (seecorollary 4)
can be written

Cn = {u ∈ En , Cu ≤ 0} ,(24)

whereC is am× kn matrix.
We finally end up with a classical quadratic programming problem:

Findu ∈ Cn such that
J(u) = 1

2(Au, u) + (b, u) = minv∈Cn J(v)(25)

We propose to solve this problem by a Uzawa-like algorithm [1]. The
initial problem is replaced by the following: Find a saddle point for the
Lagrangian defined for(u, λ) ∈ R

kn × R
m
+ by

L(v, λ) =
1
2
(Av, u) + (b, v) + (λ,Cv).(26)

We denote byΠ+ the projection ontoRm
+ .

λ = (λi)1≤i≤m ∈ R
m �−→ Π+λ = (max(λi, 0))1≤i≤m.

As detailed in [1], an iterate of the algorithm is

uk = A−1(b− CTλk)(27)

λk+1 = Π+
(
λk + ρCuk

)
= Π+

(
λk + ρCA−1(b− CTλk)

)
,(28)

whereρ > 0 is the step parameter (see next section).
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5.2 Numerical parameters

Weighting of the constraintsFrom a theorical point of view, the initial prob-
lem remains the same if any constraint (row ofC) is multiplied by any
positive number, whereas the behaviour of the algorithm is likely to vary.
Indeed, matrixC can be replaced byDC, whereD is a diagonalm ×m
matrix with positive elements. Note that, as problem (26) does not admit a
unique solution inλ sincem > kn, it may change completely the behaviour
of the sequence(λk).

The choice we propose here is based on the following heuristic: given a
field u ∈ En, we would like them-dimensional vectorDCu to be related
to the distance betweenu and the set of convex functions. Using notations
of corollary 4, we defineδαβ(u) for anyu ∈ En by

δαβ(u) =
2u(α)− u(α− β)− u(α + β)

2 |β|2 ,(29)

whereβ = (β1, β2) ∈ Z
2, |β|2 = β2

1 + β2
2 , and

∆ασ(u) =
3u(α)− u(α1 + σ1, α2)− u(α1, α2 + σ2)− u(α− σ)

4
,(30)

whereσ = (σ1, σ2) ∈ {−1,+1}2, and we introduce the number

η(u) = max(0,max
α,β

δαβ(u),max
α,σ

∆ασ(u)).(31)

We have the following proposition:

Proposition 3 A functionu ∈ En is in Cn if and only ifη(u) ≤ 0.
Furthermore, for any norm‖ ‖ onEn, there exists a constantK such that,

∀u ∈ En, dist(u, Cn) = inf
v∈Cn

‖u− v‖ ≤ Kknη(u).(32)

Proof. The first part is a direct consequence of corollary 4: all constraints
have been multiplied by a positive number.

Leth be themesh size, which verifiesh2 � 1/kn for n large. Let us now
defineΛ ∈ Cn as the interpolate of the quadratic function(x, y) �−→ x2+y2.
A straightforward calculation shows that

δαβ(u +
η

h2Λ) ≤ 0 ∀α, β,(33)

and

∆ασ(u +
η

h2Λ) ≤ 0 ∀α, σ,(34)
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so thatu + η
h2Λ ∈ Cn. (Actually η

h2 is the smallest numberτ such that
u + τΛ ∈ Cn.) Therefore,

dist(u, Cn) = inf
v∈Cn

‖u− v‖ ≤
∥∥∥u− (u +

η

h2Λ)
∥∥∥ =

η

h2 ‖Λ‖ ,(35)

which ends the proof, withK = ‖Λ‖. ��
ThematrixC weused in computations is the algebraic form of the scaled

constraintsδαβ(u) ≤ 0,∆ασ(u) ≤ 0, for all α, β, andσ.

Choice ofρ

Let α be the smallest eigenvalue ofA. It is shown in [1] that the algorithm
converges for anyρ ∈ (0, ρ0

c), with ρ0
c = 2α/‖C‖2. We propose a sharper

upperboundρ1
c ≥ ρ0

c ,

ρ1
c =

2
‖CA−1CT‖ ,(36)

for which convergence can be established as well. This critical valueρ1
c can

be estimated numerically, using the fact thatCA−1CT is symmetric, so that
the 2-norm is the spectral radius.

It turns out to be much larger thanρ0
c , leading to a faster converging

algorithm. Furthermore,ρ1
c appears to be close to optimal, as the algorithm

diverges as soon asρ ≥ 1.1× ρ1
c .

Remark.The inequalityρ1
c  ρ0

c is due to

‖CA−1CT‖ ! ‖C‖ ‖A−1‖ ‖CT‖,(37)

which is closely related to the nature of the problem we solve. More pre-
cisely, as the rows ofC correspond to second order derivatives,CTC is
spectrally close to the discrete bilaplacian operator, which is basicallyA2.
Let us denote by0 < α1 < . . . < αkn the eigenvalues ofA. The smallest
eigenvalue verifiesα1 ∼ 2π2h2, whereh is themesh size, andαkn is aO(1).
Considering the idealized situationCTC = A2, one can check easily that
the spectrum ofCA−1CT is the spectrum ofA plus the eigenvalue0 with
multiplicity m − kn, so that‖CA−1CT‖ is O(1). Besides the right-hand
side of (37) isα2

kn
/α1, which is aO(1/h2). We therefore have

ρ0
c = O(h2), ρ1

c = O(1).(38)

We checked numerically that these estimates hold for the actual matrices,
and not only in the simplified situationCTC = A2.

Some results of the computations are shown in Figs. 1–3, 5–6. For the
clearness of the pictures, thez-axis is directed downward in these figures.
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