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Summary. We describe an algorithm to approximate the minimizer of an
elliptic functionalinthe formy/,, j(z, u, Vu) on the se€ of convexunctions

u in an appropriate functional spade Such problems arise for instance in
mathematical economics [4]. A special case gives the convex envegjope
of a given functionuy. Let (7},) be any quasiuniform sequence of meshes
whose diameter goes to zero, ahdthe corresponding affine interpolation
operators. We prove that the minimizer o¢eis the limit of the sequence
(un), Wherew,, minimizes the functional ovef,,(C). We give an imple-
mentable characterization @f,(C). Then the finite dimensional problem
turns out to be a minimization problem with linear constraints.

Mathematics Subject Classification (19965K10

1 Introduction

Let £2 be some bounded open convex subsé&gfand
C:={u: 2 — R;uisconvexinf2}.

We consider the variational problem subject to convexity constraint:

(1) uelgrEKJ(u) with J(u)—/gj(a:,u(a:),Vu(x))dm

whereK is a closed convex subset of a given space- H'({2) or X =
L%(£2), and; is a quadratic function af andVu. We assume that N K is

Correspondence td. Lachand-Robert



300 G. Carlier et al.

non-empty. IfJ is lower semicontinuous coercive and strictly convexn
then existence and uniqueness of a minimizer of (1) directly follows from
standard arguments. Throughout this paper, we shall always assurde that
is such a functional.

A first example of such a functional is

@ 50 = [ |5 19u@P + fu)] do

with f € L%(£2) given. Conside = J;, andK = X = H}(£2), then (1)

is a classical projection problem i¢. Indeed it is equivalent to find the
projection ofu; = AV f ontoC (the resolvent of the Laplace operator is
intended inf}, that is, with homogeneous Dirichlet boundary conditions),
as one can see from the identity

2Jf(u) = [|V(u— Uf)||i2(9) - ||V“f||i2(g)-

We can generalize th € H~1(2), writing (f, u) instead off f(z)u(x) dz.
Another example isX = L?(£2),

3) Tuo (1) = Ju — |72
whereug € L%(£2) is given, and
(4) Ky = {u € L*(2) ;u < ug a.e}

Then the solution of (1) wit/ = J,,, andK = K, is the convex enve-
lopeug* of ug, that is the largest convex function i, [3], [5].

We will prove in Sect. 4 that the solutions of these two problems with
ug € H(}(Q) and f = Aug are, in general, different.

The aim of this paper is to give a humerical scheme to approximate
solutions of (1).

1.1 Notations

In all the following we will use classical notations and assumptions from
numerical analysis. Let7},),cn be a sequence of quasiuniform regular
triangulations of the domaiw, M = (z',y!) € 2,i=1,... k,, are
the nodes off},, andh,, is the largest edge length of all trianglesiin. We
assume that,, — 0 asn — oc.

We will note N,, := {1, ..., k,} and

o

ON,, :={i € N,,: M* € 02}, Ny, := Ny, \ ON,,.
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Initial function

About 30 iterations Final state

Fig. 1. Iterations of the algorithmiZ* ([0, 1]?) projection orC of —x(1—z) (22 —1)% y(1—
y)(2y —1)°

Then we define
E, := {u € C°(R) : uis affine on each triangle &, } = 1,,(C°(2)),
and
Cn:=1,C) and K, :=I,(K),

where1, is the affine Lagrange interpolate operator fr6t(12) to E,,.
One can easily show théy, is a finite dimensional closed convex cone with
nonempty interior.

1.2 Approach

Our basic idea is to approximate problem (1) by:

®) i, J)
and letn go to infinity.

This scheme is therefore based on external approximations of the cone
of convex functions. As noted by P. ChofR], there is very little hope that
methods wheré€ is internally approximated hyn E,, should converge to the
solution of (1). Indeed the affine Lagrange interpolate of a convex function
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need not be convex and the cofig is in some sense much bigger than
CNE,. This somehow surprising fact is enlighted by the following example:
consider2 = (0, 1)?, with a mesh consisting of two triangles having their
common edge ifz; = z2}. The functionu(x1, z2) = (71 +x2)? is convex
whereas its interpolate is@ncaveunction.

More precisely, we have the proposition:

Proposition 1 Assume that there are 2 directiohsand k& such that:
(v-h).(v-k)>0

for every vector which is normal to an edge of every triangle of the trian-
gulationT;,, for all n. Then ifu is the limit in LS. of a sequencéu, ), with
u, € C N E, for all n, we have:

2
0“u >0

© Oh ok —

in the sense of Radon measures.

For instance, in a structured mesh of the .% , the normal vectors
arev; = (1,0), o, = (0,1) andvs = (1,—1). Hence, we can choose
h=(1,0),k = (0,—1), and get

d%u

w = limu, in L, withu, e CNE, — <
Oz Jy

loc?

in the sense of measures. This inequality obviously does not hold for all
convex functions.

As a consequence, it appears that convex functions that do not satisfy the
constraints (6) cannot be approximated (even in the sense of distributions)
by convex functions of,,. This is the very reason for which we chose an
external approximation scheme.

Proof. This resultis proved in [2] but we recall it here for sake of complete-
ness. Lets be in E,,, thenu € C if and only if, for every pair of adjacent
triangles 1 and 2 df,, we have:

(g2 — q1) - v1i2 > 0,

whereg; is the value ofVu in triangle: = 1,2, andwy4 is the normal unit
vector pointing from 1 to 2.

Assume now thak andk satisfy the assumption of the previous propo-
sition and letp be some nonnegative smooth function with compact support



A numerical approach to variational problems subject to convexity constraint 303

in £2. Summing up Green’s Formula in every trianglergfyields:
0%u ou Oy
anok ¥~ Z <8h’ ak>

= (g2 = @1) - v12) (12 - h) (w12 - k‘)/go(S)ds >0

e

where the last summation is taken over all interior edgefT,. a

A similar proposition can be given as a pointwise property:
Proposition 2 Let u € C?(£2) be a convex function which is limit, in
CY(£2), of a sequencéu,,) C C N E,.

Let (M) be a convergent sequence of nodes of the triangulations, with
limit M € (2. Let, for all n, M” be a node adjacent toM;" ), andv a

cluster point of the sequen%[—‘ Then

In
0%u
— (M) >0
ov ayi( )2
wherev is normal tov and (v, v*) is direct.
Proof. Sinceu,, converges ta uniformly on any compact subset 6f and
all are convex functionsyw,, converges t6/u a.e. in{2.

The jump ofVu,, on the edgg)l;” , M | is nonnegative by convexity;
passing to the limit for a subsequence, the property follows immediately.

2 Convergence
Let u,, (respectivelyz) denote the solution of (5) (respectively (1)). The
following convergence result holds:

Theorem 1 The sequencgu,,) converges ta strongly inX and uniformly
on all compact subsets ©1.

We will prove this theorem only in the case of the projection problem that

is,J = JrandK = X = H}(£2). Other cases, with strictly convex and

coercive, are similar. (In particular, the proof is even simpler for the gradient

independent case since it does not require an estimate on the gradient.)
In order to prove this property, we first need the technical result:

Lemma 1 There exist€' > 0 such that, for alb € W1H>°(£2) N C:
(7) Vn €N, IVIn ()| Lo () < C IVl Lo )
andVI,(v) — Vv a.e.inf2.
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Initial function About 10 iterations

About 30 iterations Final state

Fig. 2. lterations of the algorithm.H'([0,1]?) projection onC of —(4 + 5x4?)

o= 30l@—H2+w—1)?)

Proof.

Step 1. Let T be an element df,, with verticesA, B, C. Writing e; =
(B—A)/|B— A|, we have

v(B) — v(4)
|B — A

Asimilarrelation holds foe, := (C—A)/|C — A|. Since the triangulations
are quasiuniform there exist$ > 0 such that (7) is satisfied.

Step 2. LetD be the set of differentiability points efwhich do not belong
to any edge of the triangulation®;is clearly of full Lebesgue measurefih
ForanyM € D, let ([A,, B,, Cy])nen be the sequence of trianglesBf
containingM and whose verticed,,, B, C,, converge tal/. Define also
the unit vectors

VI,(v)-e = < ||Vl pee.

n

n._ Bn_An and L Cn_An
61 . 7"8” _An‘ 62 e 7‘6'” _An|

Let p,, gn, rn e some subgradients ofrespectively atd,,, B,,, C,,. By
monotonicity we have, for alb:

v(Bn) —v(A4n)
|Bn — Anl

v(Cn) —v(4n)
|Cn — An|

Pn-ef < = VI (0)](M) - ef < gn-ef

IN

Pn- €y = VILW)(M) -e5 <1 - e3.
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Sincew is differentiable at\/, sequences,, ¢, r, all converge tovv(M)
(cf.[5]), and we get:

(V[In(v)](M) - Vv(M)) 0, i=1,2.

Since the triangulations are quasiuniform, it follows tWaf,, (v) (/)] con-
verges tovVu(M).
This ends the proof of the lemma. a

Proof of Theorem 1We recall thatu,, is the projection ofi; := A1 f
onto(,, so that:

(8 VneN,  |[Vunllp2q) < [Vugll 2
Sinceu,, is a minimizer inC,,, we have:
(9) Yo € CNHY(R), J(uy) < J(I(v)).
Hence for alle > 0, there exisv. € W,"> N C such that:
(10) J(ve) < J(@) +e.
From Lemma 1, there exists > 0 such that:
IVIn(ve)|l 1o < C Ve oo and  VI,(v:) = V. a.e.
Hence, by Lebesgue’s Dominated Convergence Theorem, we get:
J(In(ve)) = J (ve).
Taking (9) and (10) into account, and sinces arbitrary, we deduce:

(12) limsup J(u,) < J(u).
n— oo

By (8), we may extract a subsequence, again labejednd find some
u € H} such that,, converges ta: a.e. and strongly ii?(£2) and Vu,,
converges t&/u weakly in L2 (£2).

We will prove thatu is convex. By definition, for ath, u,, = I,,(v,,), for
somev,, € C. Let us fix now some convex setC C (2.

Let us show first thatVv,,) is bounded inL*>°(w). If not, there would
existz,, € w such that, up to a subsequen®ey,, (z,)| — +oo.
Up to subsequences, we may also assumerthi converging and:

d. - Vo (zy)

= = s ge St
Vo, ()|
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Now, letxy € {2 be such that, fon large enough:
1
(xo — xp) - dp > 5\370 — Tp.

(Such a point exists sinde:,,) C w CC {2 andd,, converges.) Since, is
convex, we get:

1
|Vop(zo)| > 5 Vo (z,)| — +00.

Let e, := Vu,(x0)/ |Vu,(xo)| and, extracting subsequences, assume
that it converges te € S'. Define

2
Z::{peSlzp-ezg} and Q:=(xg+ Ry X)NNQ.

If nis large enough, thenforalle X, p-e, > % Then, for anyr € @
(with z = 2o + tp, t > 0, p € X)), the following holds:

1
|Vop(z)| > Vo (x) - p > Vuu(xg) -p > 3 |V (x0)] .

Since the rightmost member tends to infinity independently ef @), it
follows thatHanHLg(Q) — +00. Onthe other hand, since the triangulations
are quasiuniform and, is convex, this also implie§Vu,|| 2, — +o0
which yields a contradiction with (8).

Hence(Vw,,)is bounded ir.> (w). Standard interpolate estimate yields
that there exists a constaf, such that:

(12) l[tn — UnHLOO(w) < Cu hn HVUHHLOO(LU) — 0.

This implies in particular that, converges ta in L?(w); henceu is convex
in w. Sincew is arbitrary,u is convex inf2.

From (11) and sinces is convex, we deduce that = u. Since(uy,)
is bounded inH} (£2) andw is the only cluster point ofu,,) in the weak
topology of H}(£2), we deduce that the whole sequerfeg) converges
weakly tou. On the other hand, (11) yields:

IVl 20y — IVl 120

and then(u,,) converges strongly ta.
It remains to show that,, converges uniformly t@ on compact subsets.
Letw be any relatively compact open convex subse®ofVe have

[un — ﬂ”LOO(w) < lun — UnHLOO(w) + llon — ﬂ”LO@(w) :

From (12), we just have to show that converges ta: in L>°(w). Since
we know that the sequence,,) is uniformly Lipschitz, this is a relatively
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Initial function About 10 iterations

iV

About 30 iterations Final state

Fig. 3. lterations of the algorithmi* ([0, 1]?) projection orC of —z(1 — z)(y — &)?

compact sequence ifi° (@) from Ascoli theorem. Since,, has the same
L? limit than u,, from (12), that isz, the whole sequence convergesito
in C'(w).

This ends the proof of the theorem. a

3 Characterization of conesC,, and the finite dimensional problems

In order to construct a numerical scheme for (5), we have to characterize
more precisely the sét,. We are mainly interested in characterization in the
form of a finite number of affine constraints on the values: u (A1), since
then the functional can be expressed as a quadratic form @¢ttheusing
standard relations in numerical analysis. The minimization of a quadratic
functional in a set defined as the intersection of a finite number of hy-
perplanes is called ‘quadratic programming’, and is very classical in the
literature.

In the following, we will use some useful notations for pointsi.
We note[A, B, C| := co{A, B, C} the closed triangle generated by three
points. We recall that the area of this triangle is half the absolute value of

[A:B:Cl:=(B—-A)AN(C—-A)
= (B —wa)(yo —ya) — (vc —x4)(YB — Ya).
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If this area is nonzero, we can define for &ll € [A, B, C] its barycentric
coordinates with respect to this triangle:

[M:B:C] MO A
[A:B:C]  BM): ‘[A:B:C’]’
[M: A: B]
lABc!

They sum tal and
(13) M =aA+ BB +~C.

If [A: B : C] = 0, that is for instanceB € [A, C], we extend this
definition by setting for instancé = 0, « = AM/AC,~v = MC/AC, so
that (13) remains valid. (The barycentric coordinates are not unigue in this
degenerate case.)

A first characterization of cong, is given by:

Theorem 2 Letu € E,, andz; = u(M]). Thenu € C, if and only if, for
all 4,5, k,1 € (N,)* such thatM* € € [M}, M}?, M}'], we have

(14) zi < a(M;*)z; + BIM;" )z, + (M)
whereq, (3, v are the barycentric coordinates [erTL, M, M.

Note that even if the barycentric coordinates are not unique (for instance
if kK = 1), they all give the same right member in (14).

Proof. If u = I,,(v), withv € C, we havez; = v(M]"). Sincev is convex,
(14) follows immediately.

Letus prove that (14) implies thate C,,. ConsidetP; := (27, y!", z;) €
R3, Qo the convex hull of P, };c, in R? and

Q= (Qo+tes)

t>0

wherees := (0,0, 1). Itis easy to check th& is a closed convex unbounded
subset ofR3 whose extremal points are included{i#, },cn, and having
the graph property: there exists a functionR? — R U {400} such that

Q= {(a:,y,z) GRS:Z Z’U(.T,y)}

Notice thatv is convex since its epigragh is convex. Moreover, iD c 2

is the projection ofY, ontoR?, we see thaD is the union of all triangles

of T,,, and that (M) is finite if and only if A/ € D. The restriction ofv

to D can be written as the maximum of a finite number of affine functions
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(sincey is a polyhedron); hence, there exists a convex functioa C
such thaty = win D.

We claim thatP; € 9@ for all 7. For if not, we can find such thatP; is an
interior pointof@, thatisz; > v(z}, y!'). Since the pointz, y*, v(z}, y'))
is in 9Q, it belongs to a two-dimensional face @f from Caratheodory’s
theorem, it belongs to a triangle of extremal poiits P, P)]; in particular
by projection,M;* € [M, My, M;*]. Notice that we have(z7,y7) = z;
and similar relations hold fat, [, sinceP;, Py, P, are extremal. Let, 3,
some barycentric coordinates fbf]" in [Mj”, M, M}']; we then have:

azj + Bz + vz = v}, y)) < z

and this contradicts (14).
Hencez; = v(M]*) = w(M]") for all i. This implies that, = I,,(w) €
C,, and the proof is complete. a

As a consequence, problem (5) turns out to be finite dimensional quadra-
tic programming problem for which the set of linear constraints is given by
the previous proposition. Unfortunately, the number of constraints in (14)
is of orderO(k%), which is very large. But there are plenty of redundancies
in those relations:

Theorem 3 Under the same assumptions than in Theorem 2,C,, if
and only if (14) is satisfied for all indice§, j, k,1) such thatM e
(M, M}, M]'] and

(15) Vp & {i,j,k, 1}, My ¢ [MF, M, My"].

Moreover, this characterization is optimal in the following sense: if the
indices(io, jo, ko, lo) satisfy (15), there existgy € E,, such thatug ¢ C,,
ug satisfy (14) for all indicegi, j, k, 1) # (io, jo, ko, lo) Satisfying (15).

We will give the proof below, but let us first give some consequences.
We note that, ifM/*, M;!, M;* are non aligned, the additional condition (15)
expresses that/;* is the only vertex ofl}, in the non-extremal points of
the triangle. Up to permutations, the only other cage4s/, and then (15)
expresses that/;" is the only vertex i Mj', M?).

These conditions appear to be very simple for a structured mesh:

Corollary 4 Assume that for some, T, is a structured mesh, that is,
{M}ien, = 2NZ* = M. Letu € E,; we extend it tdZ?, defining
u(a) = +oo for all a € Z? \ M. Thenu € C, if and only if, for all
a = (a1, a2) € M we have:

01,02 E{ 1,+1}2
a1+01,a2)+u(a1,a2+02)+u(a1—al,ag—ag)]

(1§)
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Fig. 4. Graph of the number of constrainfswith respect to the total number of poiné
in the mesh, in log-log scale. A law in the forfi~ N*'-® appears

and
1
(17) u(a) < Slu(a+6) +ula - B)]
for all 3 € Z? such that eithep3 = (0,1), or 3 = (1,0), or 3 = (k1)
wherek > 1,1 > 1 are integers satisfying Al = 1.

This follows from Theorem 3 by observing that, if three pointgdfre
aligned, but their segment does not contain any other poi#t ghen they
have the formy, o + 3, o — 8 with 3 as described in the corollary. And if a
triangle ofZ? contains onlyy € Z? inits interior or boundary (except for the
vertices), it has the forff{a; + o1, a2), (a1, aa + 02), (1 — 01, 2 — 02)]
with (o1,02) € {—1,+1}?; in this case, the barycentric coordinateshof
are equal.

Hence, for a structured mesh wih vertices, the number of constraints
is of orderk.-® approximately (see Fig. 4).

Proof of Theorem 3in this proof,n is constant; we drop upperscriptfor
simplicity. We note

G = {(z’,j,k,l) e N*: M; € [Mj, My, Mj] \ {Mj,Mk,Ml}}.

We assume that (14) is satisfied for all indidgsj, k,l) € G such
that (15) is satisfied. We would like to prove it for all otherj, k,1) € G.
The case: = [ (corresponding to one-dimensional simplexes) is easy: the
restriction of a convex function on a line has a monotone derivative, so the
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property (14) has just to be verified for three consecutive points on the same
line.

Hence we just have to consider two-dimensional simplexes. In order to
shorten notations, we will write

[i /I ki] = (Mj — Ml) N (Mk — Mz)
We note for further reference the algebraic identity, valid fotal, &, I, p):
(18) [i:p:jllizk:l]+[i:j:k]l[p:l:i]l=[i:k:p][i:l:]].

Let Gy C G be the set of indiceg, j, k, 1) satisfying (14). If we assume
thatGy # G, then we can findi, j, k,1) € G\ G such tha{);, M, M;]
has the smaller area. We then have (assuming MatA/;,, M| is direct):

(19) Grk:llzp>[ick:lzj+[i:l:jla+[i:7: K]z

By assumption, (15) is not satified fdt, j, k,1): hence, there exists
p ¢ {i,7,k,1} such thatM, € [M;, My, M;]. We can even assume that
M, e [M;, M, M;] for instance, up to a permutation of the indiges, (.
Since the area qf\/;, My, M;] is smaller than the area g¥/;, Mj,, M;], we
have(p, i, k,1) € Go:

(20) [i:k:llzp<[p:k:lzi+[p:l:izx+[p:i:k]z.
SinceM,, € [M;, My, M;], and
M,; € [Mj,Mk,Ml] = [Mp,Mk,Ml] U [Mj,Mp,Ml] U [Mj,Mk,Mp}

we must have\l; € [M;, M, M;| or M; € [M;, My, M,]. We assume the
latter, the other case is similar. We can assume [thatk : p] # 0 (in
that case it is positive), since i¥/;, My, M, are aligned, they must also
be aligned withM;. And then this reduces to the case of one-dimensional
simplexes.

Again, we must havéi, j, k, p) € G since the area df\/;, My, M,)] is
smaller than the area @b/, Mj,, M;]:
(21) D:jklz <[i:k:plzy+lip:jlag+i:]:klzp.

Mutliplying this relation byl : & : [] and using (20), we get

[i:k:p:j:klz

S[ek:0f:k:plzj+li-k:1[i:p:jlar+
+[i:j:k]([p:k:l]zi—k[p:l:i]zk+[p:i:k]zl)

S[ek:l[ick:plzj+lick:plli:l:jlz,+
+[i:g:k|[i:k:plzag+i:j:klp:k:lz
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taking (18) into account.
Exchangingt andi in (18), we get:
poj:kllick:l)=li:j:klp:k:l]=[i:k:pllj:k:]
so that the preceding inequality can be rewritten:
[i:k:pllj:k:lz<[i:k:p] ([i:k::l]zj—I—[z':l:j]zk+[i:j:k]zl).
This contradicts (19) sindeé : & : p] > 0. Hence, we havé&/y, = G and the

proof of the first part is complete.

We now prove our assertion on the optimality.(if, jo, ko, lo) € G
satisfies (15), we can find a compact convexfsetuch that
KN {M;}iz1,. k, = {Mi,, Mj,, My, M, }
and);, is an interior point ofK". Let v be any convex function satisfying
v=0inK and v>0iNR*\K.

For instance the function(M) = dist(M, K) is convenient. Since is
continuous and< is compact,
min  v(M,) > 0.
pé¢{io,j0,ko,lo}
Hence there exists > 0 such that for all indice$j, k, 1) # (jo, ko, lo) (up
to permutations) satisfyingo, j, k, 1) € G, we have

(22) e < aw(Mj) + Bv(My) + yv(Mp)

whereq, 3,y are the barycentric coordinates &f;, in [A;, My, M) (in-
deed,max(a, 3, ) is bounded from below ag, k, [) changes, sincé/;,
is an interior point ofi).

Consider the function € E,, satisfyingu(M,) = v(M,) for all p # iy
andu(M,;,) = €. If (i,4,k,1) € G, with i # iy, we have

u(M;) = v(M;) < a(M;)v(Mj) + B(M;i)v(Mp) + v(M;)v(M;)

< a(M;)u(M;) + B(M;)u(Mg) + v(M;)u(M;)

using the convexity ob andu > v at every node. Hencesatisfies (14) for
these indices.

Alsoif (4,k,1) # (jo, ko, lo) (Up to permutations) satisfiég), j, k,1) €
G, thenu satisfies (14) from the definition afin (22).

We conclude that: satisfies all constraints with indicés, j, k,1) #
(40, jo, ko, lo), but it is not inC,, since

u(Mio) =e>0= a(Mio)v(Mjo) + B(Mio)l)(Mko) + V(Mio)U(Mlo)'

This ends the proof of the proposition. O
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4 Convexification and projection

Letuo be some function id} (2) andf = Awg. We will prove in this sec-
tion that the solutiorlZ¢(uo) of the minimization problem i = H{ (£2)
with J = J; (as defined in (2)) is, in general, different fragy* (which is
the minimizer ofJ,,, defined in (3) onk,,).

Theorem 5 We haveu§* = Il (uo) if and only if
(23) (Auy®, ug — up*) = 0.

As a consequence, in dimension 1, we always hgVe= II¢(ug) since
(23) is always satisfied. However, this is not true in higher dimensions (see
remark hereafter).

Proof. Assume first that.j* is a minimizer of.J; in H}(£2). Then for all
convexv with v = 0 in 042, <J}(u3*),v — u;§*> > 0. Takingv = 0 here
yields:

(Aluo —ug"), ug") = (Aug”, uo — ug”) < 0.
Sinceuy —uy* > 0 andAug* is a nonnegative measure, we exactly get (23).

Conversely assume (23), then for Alle H}(§2) such thatu}* + h is
convex, the following holds:

Tp(ug™ + ) = Jp(ug®) = (Jp(ug®), h)
/ Vuy" - Vh 4+ hAug
(Uo - uO )7 h>
writing h = v —ug* withv € HZ(£2)NC inthe latter and using (23) yields:
Jr(w) = Jp(ug”) = (Aluo — ug"),v) = (Av,ug —ug") 2 0

which proves that$* minimizes.J; over H} (£2) N C. O
Remark.Condition (23) indicates that for almost everyc (2, we have
eitherup(z) = uj*(x) or Vug* = const. in a neighborhood of:. For

instance, iff2 is the unit ball ofR2, andug(z) = |z|* — |z|, we have
ud* = min(— df,uo) and (23) is satisfied.

On the other hand, ify(z) = +/|z| — 1, thenu{*(z) = |z| — 1 and (23)
is not satisfied.
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About 30 iterations Final state

Fig. 5. Iterations of the algorithmi* ([0, 1]?) projection orC of —z(1 — ) sin®(27y)

About 30 iterations Final state

Fig. 6. Iterations of the algorithmiZ; ([0, 1]2) projection orC of the same function than in
Fig. 5
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5 Numerical solution

5.1 Algorithm

We consider a structured triangulation of the unit sqU@re] x [0, 1] = (2.
Any functionu € C,, can be written

kn
u = E U;W;,
=1

where(w;) is the standard basis &, (w;(M;) = ¢;;). In what follows,u
will represent both the function df,, and the vector of its components in
this basis. The stiffness matrik = (a;;) is defined by

aij :/ VIUZ . ij.
2

Letm be the number of constraints. The set of feasible states (see corollary 4)
can be written

(24) Ch={uekE,, Cu<0},

whereC'is am x k, matrix.
We finally end up with a classical quadratic programming problem:

Findu € C,, such that

(25) J(u) = 3(Au,u) + (b,u) = min,ee, J(v)

We propose to solve this problem by a Uzawa-like algorithm [1]. The
initial problem is replaced by the following: Find a saddle point for the
Lagrangian defined fofu, ) € Rk» x R™ by

(26) L(v,\) = %(Av,u) + (b,v) + (A, Cw).
We denote by7 " the projection ontd®’;".
A= (M\)1<icm € R™ — IITX = (max(Xi, 0))1 ;-
As detailed in [1], an iterate of the algorithm is

(27) uF=A71(b—-CTIF)
@8) A1 — 1+ (Ak + pC’uk> — It ()\’“ Y pCA~Y(h — CT)\’“)) :

wherep > 0 is the step parameter (see next section).
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5.2 Numerical parameters

Weighting of the constraint&rom a theorical point of view, the initial prob-
lem remains the same if any constraint (row@f is multiplied by any
positive number, whereas the behaviour of the algorithm is likely to vary.
Indeed, matrix_' can be replaced bipC', whereD is a diagonaln x m
matrix with positive elements. Note that, as problem (26) does not admit a
unigue solution im\ sincem > k,,, it may change completely the behaviour
of the sequence\*).

The choice we propose here is based on the following heuristic: given a
field v € E,,, we would like them-dimensional vectoDCu to be related
to the distance betweanand the set of convex functions. Using notations
of corollary 4, we definé,(u) for anyu € E,, by

@9) sapt) = PO

where = (31, 32) € Z2, |B° = 42 + 3, and

(30) Ao (1) — 20N = ler £ 00,09) = o, 00 - 0) — v~ )

whereo = (01, 02) € {—1,+1}?2, and we introduce the number

(31) n(u) = max(0, maﬁx dap(u), max Ane(u)).

We have the following proposition:

Proposition 3 A functionu € E,, is inC,, if and only ifp(u) < 0.
Furthermore, for any nornjj || on E,,, there exists a constai such that,

(32) VueE,, dist(u,C,) = ian |lu—v|| < Kkpn(u).
ve n

Proof. The first part is a direct consequence of corollary 4: all constraints
have been multiplied by a positive number.

Let 4 be the mesh size, which verifi@$ ~ 1/k, for n large. Let us now
defineA € C, asthe interpolate of the quadratic functiany) — 22+
A straightforward calculation shows that

(33) Sap(u + %A) <0 Va3,
and
(34) Awo(t+ LAY <0 Va, o,

h2
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so thatu + ;5 A € C,. (Actually ;% is the smallest number such that
u+ 7A € C,.) Therefore,

. : N n
= — < + =
(35) dist(u,Cp) ulé}zf;,, lu — v Hu (u hQA)H 02 Al

which ends the proof, witlk = || A]|. 0

The matrixC' we used in computations is the algebraic form of the scaled
constraintsi,g(u) < 0, Ay (u) <0, forall o, 5, ando.

Choice ofp

Let o be the smallest eigenvalue df It is shown in [1] that the algorithm
converges for any € (0, p2), with p = 2a/||C||*. We propose a sharper
upperboung} > p?,

2
(36) :

Pe = loa-ioT|

for which convergence can be established as well. This critical yalean
be estimated numerically, using the fact that—'C'" is symmetric, so that
the 2-norm is the spectral radius.

It turns out to be much larger thas}, leading to a faster converging
algorithm. Furthermorep! appears to be close to optimal, as the algorithm
diverges as soon s> 1.1 x pl.

RemarkThe inequalityp. > p? is due to
(37) lcAICT | < el A~ et

which is closely related to the nature of the problem we solve. More pre-
cisely, as the rows of’ correspond to second order derivatives,C is
spectrally close to the discrete bilaplacian operator, which is basidally
Let us denote by < a7 < ... < oy, the eigenvalues ofl. The smallest
eigenvalue verifies; ~ 2w2h?, whereh is the mesh size, ang,,, is aO(1).
Considering the idealized situati@gin’ C = A%, one can check easily that
the spectrum o€ A~'C™ is the spectrum ofi plus the eigenvalué with
multiplicity m — k,, so that|CA=1CT| is O(1). Besides the right-hand
side of (37) isaj, /a1, which is aO(1/h?). We therefore have

(38) pe=0(*),  pe=0(1).

We checked numerically that these estimates hold for the actual matrices,
and not only in the simplified situatiocf ™ C' = A2.

Some results of the computations are shown in Figs. 1-3, 5-6. For the
clearness of the pictures, theaxis is directed downward in these figures.
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