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Abstract

We consider the Poisson equation with Dirichlet boundary conditions, in a domain
Ω \B, where Ω ⊂ IRn, and B is a collection of smooth open subsets (typically balls).
The objective is to split the initial problem into two parts : a problem set in the
whole domain Ω, for which fast solvers can be used, and local subproblems set in
narrow domains around the connected components of B, which can be solved in a fully
parallel way. We shall present here a method based on a multi-domain formulation
of the initial problem, which leads to a fixed point algorithm. The convergence of
the algorithm is established, under some conditions on a relaxation parameter θ. The
dependence of the convergence interval for θ upon the geometry is investigated. Some
2D computations based on a finite element discretization of both global and local
problems are presented.

1 Introduction

Our purpose is to solve the Poisson equation in a domain Ω \ B, where Ω ⊂ IRn, and B
is a collection of smooth subsets. We will consider the situation where Ω has a simple
shape, so that the Poisson problem in Ω is “easy” to solve. Those problems arise in
many modelling situations: thermal conductivity for composite materials, fluid flow in a
porous, non-homogeneous medium, time-discretized fluid-particle flow problems. In the
latter case, the “holes” are actually the moving particles, on which the velocity is known.
For such problems, the domain in which the PDE is set can usually not be meshed in a
structured way. Therefore standard fast solvers (based on a multilevel strategy, or FFT
algorithms) cannot be used straightforwardly to compute the solution.
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1.1 Existing methods

We first present different strategies which have been carried out to solve numerically such
problems. We shall consider here the homogeneous Dirichlet boundary conditions:

{
−4u = f in Ω \ B

u = 0 on ∂Ω ∪ ∂B.
(1)

1. Penalization. Let χB be the characteristic function of B, and ε > 0 a given (small)
number. The initial problem 1 is replaced by

{
1
εχBu−4u = f in Ω

u = 0 on ∂Ω.
(2)

This method is easy to implement, but it is quite inaccurate near the boundary of
B. Furthermore, the Laplace operator itself is highly modified, which prevents the
use of standard fast solvers.

2. Boundary fitted mesh. The approximate solution is computed on a conforming,
unstructured mesh, possibly refined in the neighbourhood of the holes. A detail of
such an unstructured mesh is presented in figure III.12.

Fig. III.12 : Unstructured mesh.

See [12] for an example of fluid-particle flow computations based on this approach.
This method makes it possible to compute accurately in the neighbourhood of B,
where usually high gradients of the solution can be expected, and less accurately far
away from B, where the solution is likely to be smooth. The main drawback is the
loss of cartesian structure, which makes it difficult to find good preconditioners or
to use fast solvers.

3. Fictitious domain method. The whole domain Ω is covered with a cartesian mesh,
conforming meshes of the holes are built, and the boundary condition is taken into
account by Lagrange multipliers which belong to a finite dimensional space associated
to hole-meshes (see figure III.13). This is the so-called fictitious domain approach
with distributed Lagrange multipliers (see for example [4], [5], or [1]). There exists
also a version of this approach where the Lagrange multipliers are defined on the
boundary of the hole (see [3]).
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Fig. III.13 : Fictitious domain approach with distributed Lagrange Multipliers.

Another version of the fictitious domain method is based on a locally fitted mesh
(see figure III.14). It gives a better approximation of the solution near the boundary.
See [7] or [8] for an application of this method to the 3D Helmoltz equation.

Fig. III.15 : Locally fitted mesh.

4. Potential theory approach. This last class of methods relies on integral expressions
of the solution rather than on direct discretization of the partial differential equa-
tion. Such methods have been made quite efficient in the recent years by combining
the Fast Multipole Method for computing boundary integrals, and fast algorithms
avoiding the use of any standard quadrature formula for computing volume integrals
(see [6] and references therein).

1.2 Fat boundary method

Our purpose is to keep capability to compute accurately in the neighbourhood of the holes,
but still to use a relative coarse cartesian mesh for computing the solution in the whole
domain.

The method we propose is based on a splitting of the initial problem into local subprob-
lems in the neighbourhood of B (in a crust-like zone around the holes, see figure III.15,
bottom) and global resolution on a cartesian mesh which covers the whole domain Ω. The
link between global and local problems is based on

1. Interpolation of a globally defined field on an artificial boundary which delimits the
local subdomain (like in the domain decomposition approach with full overlapping
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proposed by Letallec [10]).

2. Prescription of a jump in normal derivative across the the boundary of B. This
approach has been used in modelling immersed interfaces with finite differences on
a cartesian mesh (see [11] or [13]). See also [9], where a similar source term is used
to solve Neumann problems. This singular source term in the Poisson equation will
be handled here in the finite element framework.

The transition from the interpolated field to the normal derivative jump is based on
Steklov–Poincaré–like operators associated to the narrow domains around the holes.

Fig. III.15 : Fat boundary: global and local meshes

The paper is organized as follows. In section 2 we introduce the multidomain formu-
lation of the problem. In section 3 we deduce a fixed point formulation, and show the
convergence in the space-continuous case of a relaxed algorithm, under some conditions
on the relaxation parameter. In section 4 we give some results on the behaviour of the
constants involved in the sufficient condition of convergence. Finally, in section 5, we
present two examples of finite element computations.

2 Notations, multidomain formulation

We consider a Lipschitz bounded domain Ω ⊂ IRn and B ⊂ Ω a smooth subdomain.
Figure III.16 represents the case of a single hole in the domain, but the analysis is still valid
in the case of a multi-connected domain B. In the latter situation, we will simply assume
that the “crust–like” domains around the connected component of B do not overlap. The
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boundaries of Ω and B are denoted by Γ and γ, respectively. We shall use the functional
spaces

H1
0 (Ω) =

{
û ∈ H1(Ω), û|Γ = 0

}
, (3)

H1
0 (Ω \B) =

{
u ∈ H1(Ω \ B), u|Γ = 0

}
(4)

(note that functions in H1
0 (Ω \ B) do not necessarily vanish on γ). Let f ∈ L2(Ω \ B).

Our purpose is to solve the problem I : Find u ∈ H1
0 (Ω \ B), such that

I

{
−4u = f in Ω \ B

u|γ = 0
(5)

Bn

γ

γ ’

ω

n

ΓΩ

Fig. III.16 : Domains in the case n = 2.

We consider a proper superset of B, B? ⊃ B, completely contained in Ω, and we take
ω = B? \ B. The boundary of ω is ∂ω = γ ∪ γ ′ (see figure III.16). We introduce the new
functional space

H1
0 (ω) =

{
v ∈ H1(ω), v|γ = 0

}
. (6)

The spaces H1
0 (Ω), H1

0 (Ω \ B), H1
0 (ω) are endowed with the Hilbert norms

|û|2H1

0
(Ω) =

∫

Ω
|∇û|2 , |u|2

H1

0
(Ω\B)

=

∫

Ω\B
|∇u|2 , |v|2H1

0
(ω) =

∫

ω
|∇v|2. (7)

For a function f defined in Ω \ B, we denote by f its extension by 0 in B :

f |Ω\B = f|Ω\B , f |B = 0. (8)

The extension operator for functions defined in ω is defined in a similar manner. Our
purpose is to replace problem I by a couple of new ones, one of which is set in ω, and the
other one in the whole domain Ω: Find (û, v) ∈ H1

0 (Ω)×H1
0 (ω) such that

II





a :

{
−4v = f in ω

v|γ′ = û|γ′

b : −4û = f +
∂v

∂n

∣∣∣∣
γ

δγ in Ω

(9)
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In the previous equation,
∂v

∂n

∣∣∣∣
γ

δγ ∈ H−1(Ω) stands for the linear form

û ∈ H1
0 (Ω) 7−→

∫

γ

∂v

∂n
û, (10)

which is continuous since v belongs to H1
0 (ω) and 4v to L2(ω). Let us first establish the

link between the two problems:

Proposition 2.1 Problems I and II are equivalent, i.e.

i) If u ∈ H1
0 (Ω \B) is a solution of problem I, then the couple (u, u|ω) is a solution of

problem II.

ii) If (û, v) is a solution of problem II, then û|Ω\B is a solution of problem I.

Proof: i) Let u ∈ H1
0 (Ω \ B) be a solution of I. Then the function v = u|ω is clearly a

solution of II.a (as u|γ′ = u|γ′). The extension of u by 0, u, verifies

−4u = f in Ω \B

−4u = f in B.
(11)

For any test function w ∈ H1
0 (Ω), we multiply those equations by w|Ω\B and w|B, respec-

tively, integrate by parts, and sum up the obtained equations :

∫

Ω
∇u · ∇w +

∫

γ

∂u

∂n

∣∣∣∣
i

w −

∫

γ

∂u

∂n

∣∣∣∣
e

w =

∫

Ω
fw, (12)

(the letters i and e stand for interior and exterior, respectively) with ∂u/∂n|i = 0 and
∂u/∂n|e = ∂u/∂n, so that

∫

Ω
∇u · ∇w =

∫

Ω
fw +

∫

γ

∂u

∂n
w, (13)

which leads (by backward integration of the integral over Ω) to II.b :

−4u = f +
∂u

∂n
δγ = f +

∂v

∂n
δγ . (14)

ii) Let (û, v) ∈ H1
0 (Ω)×H1

0 (ω) be a solution of problem II. The very same approach as i)
ensures that v = û|B∪ω, so that û ≡ 0 in B, and consequently û|γ = 0. Therefore û|Ω\B is
a solution of problem I. �
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2.1 Non-homogeneous boundary conditions

The previous formulation can be extended to the case of non-homogeneous boundary
conditions on γ (the case of non-homogeneous boundary conditions on Γ is standard)





−4u = f in Ω \ B
u = 0 on Γ
u = g on γ

(15)

with g ∈ H1/2(γ). Let w be a harmonic extension of g in B. We have equivalence
between (15) and the multidomain formulation

II





a :





−4v = f in ω
v|γ′ = û|γ′

v|γ = g

b : −4û = f +

(
∂v

∂n
−

∂w

∂n

)∣∣∣∣
γ

δγ in Ω

(16)

where the normal derivative of w is taken inward with respect to B.

Remark 2.1 Another formulation, which can be useful when the harmonic extension can-
not be calculated analytically, consists in taking for w any extension of g in B. We assume
g to be H3/2(γ). Hence we can take w ∈ H2(B), so that 4w is in L2(B), and its extension
by 0 in Ω \B is well defined as an element of L2(Ω). The problem II.b is then written

−4û = f +

(
∂v

∂n
−

∂w

∂n

)∣∣∣∣
γ

δγ −4w in Ω. (17)

3 Solution method

3.1 Fixed point formulation

Our aim is to transform problem II into a fixed point problem. Let θ be a real parameter
in ]0, 1[ (relaxation parameter). The operator we will consider is

Tθ : (û, v) ∈ H1
0 (Ω)×H1

0 (ω) 7−→ (Û , V ), (18)

where V ∈ H1
0 (ω) and Û ∈ H1

0 (Ω) are solutions of
{
−4V = f in ω

V|γ′ = (θv + (1− θ)û)|γ′

(19)

and

−4Û = f +
∂V

∂n
δγ in Ω, (20)

respectively. By definition of Tθ, we have immediately the fixed point formulation, which
holds for any θ 6= 1,

(û, v) is a solution of II ⇐⇒ Tθ(û, v) = (û, v). (21)
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3.2 Iterative algorithm

Our purpose is now to prove the convergence of sequences in H 1
0 (Ω)×H1

0 (ω) obtained by
successive iterations of Tθ :

(ûm+1, vm+1) = Tθ(û
m, vm), (22)

to the exact solution of problem II, possibly under some restrictions on θ. We will consider
only the case f ≡ 0. Indeed, if (û0, v0) is the fixed point of Tθ, then by translating the
sequence

(ûm, vm) 7−→ (ûm − û0, v
m − v0), (23)

we recover the homogeneous case.

We introduce the linear operators D and N :

D : H1
0 (Ω) −→ H1

0 (ω) (24)

û 7−→ Dû = V, solution of II.a :

{
−4V = 0 in ω

V|γ′ = û|γ′

(25)

and

N : H1
0 (ω) −→ H1

0 (Ω) (26)

v 7−→ Nv = Û , solution of II.b : −4Û =
∂v

∂n

∣∣∣∣
γ

δγ in Ω (27)

In order to establish the main result, we will need the following lemma, related to the
restriction of ND to R(N), the range of N:

Lemma 3.1 The operator ND : H1
0 (Ω) −→ H1

0 (Ω) is continuous :

∃C > 0, |NDû| ≤ C|û|, (28)

and verifies
(NDû, û) ≤ 0 ∀û ∈ R(N). (29)

Proof: We introduce V = Dû and Û = NDû = NV . The continuity of ND comes from
the continuity of operators:

û ∈ H1
0 (Ω) 7−→ û|γ′ ∈ H1/2(γ′)

↓

V ∈ H1
0 (ω)

↓

∂V

∂n

∣∣∣∣
γ

∈ H−1/2(γ) 7−→ Û ∈ H1
0 (Ω),

(30)
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so that
∃C > 0 , |Û | ≤ C|û|. (31)

Let us now prove that (NDû, û) ≤ 0, i.e. (Û , û) ≤ 0. Firstly, we use the fact that
Û = NV , and we take û as a test function:

(NDû, û) =

∫

Ω
∇Û · ∇û =

∫

γ

∂V

∂n
û. (32)

As û ∈ R(N), it is solution of
−4û = g δγ , (33)

for a certain g ∈ H−1/2(γ). We multiply (33) by V , and integrate over ω using the fact
that V|γ = 0 : ∫

ω
∇û · ∇V −

∫

γ′

∂û

∂n
V = 0. (34)

Integrating again by parts, it comes

−

∫

ω
û4V +

∫

γ

∂V

∂n
û +

∫

γ′

∂V

∂n
û−

∫

γ′

∂û

∂n
V = 0, (35)

so that ∫

γ

∂V

∂n
û =

∫

γ′

∂û

∂n
V −

∫

γ′

∂V

∂n
û, (36)

which implies (V|γ′ = û|γ′)

(NDû, û) =

∫

γ

∂V

∂n
û =

∫

γ′

∂û

∂n
û−

∫

γ′

∂V

∂n
V. (37)

We now remark that {
−4û = 0 in Ω \ (B ∪ ω)

û|Γ = 0
(38)

which implies (with the normal derivative taken outward relatively to ω, as in (37))
∫

γ′

∂û

∂n
û = −

∫

Ω\(B∪ω)
|∇û|2 ≤ 0. (39)

Similarly, {
−4V = 0 in ω

V|γ = 0
(40)

implies ∫

γ′

∂V

∂n
V =

∫

ω
|∇V |2 ≥ 0. (41)

Finally, equation (37) and inequalities (39) and (41) yield
∫

γ

∂V

∂n
û ≤ 0, (42)

therefore

∫

Ω
∇Û · ∇û ≤ 0. �
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We may now establish the main property, which will ensure the conditional conver-
gence of the algorithm. The constant C denotes any upper bound of ‖ND‖L(H1

0
(Ω)) (see

equation (28)).

Proposition 3.1 For any θ ∈]1−2/(1+C)2, 1[, there exist constants k ∈]0, 1[ and CD > 0
such that, for any (û, v) ∈ R(Tθ),

|Û | ≤ k|û|, (43)

and
|V | ≤ θ|v|+ CD|û|, (44)

where (Û , V ) = Tθ(û, v). The optimal k is obtained for θ = θopt = 1− 1/(1 + C)2, and its
value is kopt =

√
θopt.

Proof: As V = θv + (1− θ)Dû, inequality (44) is a direct consequence of the continuity of
D : H1

0 (Ω) −→ H1
0 (ω) :

|Dû| ≤ CD|û|. (45)

Let us now prove the existence of k ∈]0, 1[ such that (43) is satisfied. As (û, v) is in R(Tθ),
û = Nv, so that

Û = NV (46)

= θNv + (1− θ)NDû (47)

= θû + (1 − θ)NDû (48)

= û− (1− θ)(û−NDû). (49)

We have
|Û |2 = |û|2 − 2(1 − θ)(û−NDû, û) + (1− θ)2|û−NDû|2. (50)

Using lemma 3.1, it comes

|Û |2 ≤ |û|2(1− 2(1− θ) + (1 + C)2(1− θ)2). (51)

Then, for any θ ∈]1−
2

(1 + C)2
, 1[,

k =
√

1− 2(1 − θ) + (1 + C)2(1− θ)2 < 1, (52)

which proves (43). The optimal k is simply obtained by minimization of (52), which gives
1− θ = 1/(1 + C)2 and consequently k = (1− 1/(1 + C)2)1/2. �

Remark 3.1 As we need inequality (45) only for û ∈ R(N), we can define CD as the
norm of D restricted to functions which are harmonic in B and in Ω \ B. Similarly,
we define CN as the norm of N restricted to functions which are harmonic in ω. The
constant C which determines the convergence interval can be taken equal to the product
CNCD. Note that it is in general strictly less than the norm of ND ∈ L(H 1

0 (Ω)).
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As a direct consequence of proposition 3.1, we have the

Corollary 3.1 We assume that θ ∈]1− 2/(1 + C)2, 1[. Then for any

(û0, v0) ∈ H1
0 (Ω)×H1

0 (ω), (53)

the sequence (ûm, vm) defined by

(ûm+1, vm+1) = Tθ(û
m, vm) (54)

converges to (0, 0).

Proof: Let the sequence (αm, βm)n≥1 ∈ IR2 be defined by

(
α1

β1

)
=

(
|û1|
|v1|

)
, (55)

(
αm+1

βm+1

)
=

(
k 0

CD θ

)(
αm

βm

)
= A

(
αm

βm

)
. (56)

As (ûm, vm) is in R(Tθ) as soon as m ≥ 1, it is clear from (43) and (44) that |ûm| ≤ αm

and |vm| ≤ βm, for all m ≥ 1. As the spectral radius ρ(A) = max(k, θ) is strictly less than
1, the sequence (αm, βm) converges to (0, 0), and so does (|ûm|, |vm|). �

4 Constant estimation

In this section, we investigate the dependence of C upon geometrical parameters. In order
to get an explicit expression of C, we shall restrict ourselves to a simplified situation : Γ,
γ, and γ′ are concentric spheres of IRn, and all functions are radial. It corresponds to the
case in which the data f ∈ L2(Ω \ B) is itself radial.

We denote by r the radius of γ, by ε the width of ω (so that r + ε is the radius of γ ′),
and by L the distance between Γ and γ, so that the radius of Γ is r + L. We introduce
the system of polar coordinates (ρ, σ) with respect to the common center of the spheres.
Following [2] p. 530, we denote by Σ the unit sphere of IRn, and by σ a point on it. The
polar definition of ω and Ω is

ωρ,σ =]r, r + ε[×Σ , Ωρ,σ =]r, r + L[×Σ. (57)

Proposition 4.1 Let r > 0 be given. We consider the situation

L −→ +∞ , ε −→ 0. (58)
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The behaviour of constant C is




C ∼
L

ε
in the case n = 1

C ∼
r

ε
lnL in the case n = 2

C ∼
r

ε
in the case n = 3

(59)

Proof: Following remark 3.1, we shall consider only harmonic functions to estimate C.
Note that in this simplified framework, H1

0 (ω) and H1
0 (Ω) are monodimensional.

Case n = 1 : All harmonic functions are affine, so that CD and CN can be explicitly
found.

Case n = 2 : a radial function of H1
0 (Ω), piecewise harmonic with respect to B and

Ω \ B, can be expressed w(ρ, σ) = w(ρ) = α ln(ρ/(r + L)) for ρ > r, and w(ρ, σ) =
α ln(r/(r + L)) for ρ ≤ B, so that ‖D‖ is given by

‖D‖2 =

∫

ω
|∇v|2

∫

Ω\B
|∇û|2

=

|Σ|

∫

]r,r+ε[
|∂rv|

2 ρ dρ

|Σ|

∫

]r,r+L[
|∂rû|

2 ρ dρ

, (60)

where

û = ln

(
ρ

r + L

)
, v = v(ρ, σ) =

ln

(
r + ε

r + L

)

ln

(
r + ε

r

) ln(ρ/r). (61)

It gives

CD ∼
(r

ε
lnL

)1/2
. (62)

To compute CN we perform the same approach with

v(ρ, σ) = v(ρ) = ln
(ρ

r

)
, û = Nv = ln

( ρ

L

)
, (63)

which gives

CN =

(
ln(1 + ε/r)

ln(1 + L/r)

)1/2

∼
(r

ε
lnL

)1/2
. (64)

We finally get C = CNCD ∼
r

ε
lnL.

Case n = 3 : a radial function of H1
0 (Ω), piecewise harmonic with respect to B and

Ω \ B, can be expressed w(ρ, σ) = w(ρ) = α(1 − (r + L)/ρ) for ρ > r, w(ρ, σ) = −αL/r
for ρ ≤ r. Straightforward calculations similar to the case n = 2 give

CD ∼
(r

ε

)1/2
, CN ∼

(r

ε

)1/2
, (65)

which leads to the third estimate. �

12



Remark 4.1 It is well-known that there is no non-zero radial harmonic function in the
unbounded domain IRn \ B, decreasing to 0 when |x| grows to +∞, unless n ≥ 3. This
property appears in the dependence upon L of C in the cases n = 1 and n = 2.

Remark 4.2 The estimation of CD in the radial case is closely related to the notion of
capacity of a compact set on a domain (see [2], p. 433). Indeed, if we denote by capO(K)
the capacity on a domain O of a compact K ⊂ O, one can check that

CD ∼

(
capΩ\B

(
Ω \ (B ∪ ω)

)

capΩ(B)

)1/2

. (66)

5 Numerical experiments

5.1 Space discretization. Algorithm

We introduce P 1 finite element approximation spaces

XΩ
h ⊂ H1

0 (Ω) , Xω
h ⊂ H1

0 (ω). (67)

The space XΩ
h is based on a structured mesh of Ω = [0, 1]× [0, 1], and Xω

h corresponds to
a mesh similar to the one represented in figure III.15. A step of the algorithm is:

1. Compute ûk−1
h |γ′

h
, the interpolation of ûk−1

h on γ′h, and set

αk
h = θαk−1

h + (1− θ)ûk−1
h |γ′

h
. (68)

The field αk
h is defined pointwise at the vertices of γ ′h. It is identified with the

corresponding piecewise P 1 function on γ ′h.

2. Compute vk
h ∈ Xω

h , the solution of




∫

ω
∇vk

h · ∇w =

∫

ω
fw ∀w ∈ Xω

h w|γ′

h
= 0

vk
h|γ′ = αk

h

(69)

3. Compute

ϕk
h =

∂vk
h

∂n

∣∣∣∣
γh

. (70)

Note that, as a trace of the gradient of a piecewise P 1 function, ϕk
h is piecewise

constant on γh.

4. Compute ûk
h ∈ XΩ

h , the solution of
∫

Ω
∇ûk

h · ∇w =

∫

ω
fw +

∫

γh

ϕk
hw ∀w ∈ XΩ

h . (71)
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5.2 Computational aspects

5.2.1 Matrices

The matrices associated to local and global problems are assembled, and Cholesky fac-
torizations are performed before the fixed point loop. Note that in the case of identical
holes, a single matrix has to be assembled and factorized for all the local problems.

5.2.2 Boundary integral

The boundary integral in the right-hand side of equation (71) is computed by a simple
quadrature formula. For any test function w, any segment S of γh, we use

∫

γh

ϕk
h ≈ ϕk

h|S w(xS) |S|, (72)

where xS is the center of S, and |S| its length.

5.3 Test cases

5.3.1 Many-holes computation

The first example illustrate the capability to deal with complex geometries. It corresponds
to the situation represented in figure III.17. The number of holes is 80 and their common
radius is 0.01. The value of the relaxation parameter θ is 0.97. We used a 160 × 160
cartesian mesh for Ω, and local 40 × 40 meshes around the holes. All those meshes are
the identical up to a translation. Note that the diameter of the holes is only 3 times the
global mesh step size. The problem we solve is

{
−4u = 1 in Ω \ B

u = 0 on Γ ∪ γ.
(73)

Figures III.18 represents the contours of the approximate solution.

5.3.2 Non constant boundary conditions

The second example shows how the use of a local fine mesh make it possible to capture
a local oscilating behaviour of the solution. We introduce the polar coordinate system
(ρ, σ) ∈ IR+ × [0, 2π[ centered at (0.5, 0.5). The domain B is the disk {ρ ≤ r}, and γ ′ is

14



the circle {ρ = r + ε}. The problem we solve is





−4u = 0 in Ω \B
u = g = sin(mσ) on γ

u =
(ρ

r

)m
sin(mσ) on Γ.

(74)

for which ue = (ρ/r)m sin(mσ) is an exact solution. The numerical values are

m = −8 , r = 0.15 , ε = 0.03 , θ = 0.8. (75)

As described in section 2.1, we need an extension ug of g in B. In the present case, we
have the analytic expression of a harmonic extension: ug = (ρ/r)|m| sin(mσ), with

∂ug

∂n

∣∣∣∣
γ

=
|m|

ρ

(ρ

r

)|m|−1
sin(mσ)|ρ=r =

|m|

r
sin(mσ). (76)

Figures III.19 and III.20 represent the computed solution on Ω and ω, respectively. For
the sake of clarity, we used a cartesian representation of the polar coordinate system in
ω. We used n×n meshes for both Ω and ω (so that the global mesh is much coarser than
the local one). Several computations were performed, for different values of n (n = 80 in
figures III.19 and III.20). Figure III.21 shows the dependence of the local error

e =

(∫

ω
|∇vh −∇ve|

2 dω

)1/2

(77)

upon the mesh step size h = 1/n. The field vh is the solution obtained after 20 iterations
of the fixed point algorithm, and ve is the restriction of the exact solution to ω. The
log–log plot indicates a first order convergence of error e to 0, when both mesh step sizes
decrease together to 0.
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Fig. III.17 : Geometry of the problem: Γ and γ.

Fig. III.18 : Contours of the approximate solution.
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Fig. III.19 : Approximate solution in Ω.

Angular coordinate

Radial coordinate-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. III.20 : Approximate solution in ω.
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Fig. III.21 : H1 error vs. 1/h in log-log scale.

6 Conclusion

We proposed a new method to solve elliptic problems in domains with holes. Its main
features are

• The computation on the whole domain is based on a cartesian mesh, and the dis-
cretized operator does not depend on the geometry (positions and sizes of the holes).
It makes it possible to use fast, easily parallelizable solvers for this part of the com-
putation.

• The local computations are performed on a mesh which only depends on the geome-
try of the body. If B is a collection of identical subdomains, then the local operators
are the same, and do not depend on the locations of the holes. Therefore the cor-
responding matrix has to be stored only once, and “off-line” precomputations (e.g.
Cholesky factorization) can be performed outside the fixed point loop. Furthermore,
those local computations are fully independent, and therefore they can be performed
on different processors.

• Although a proper convergence analysis of the space discretization has still to be
done, numerical experiments exhibit good results even when the diameter of the
holes are only a few times larger than the global mesh step size.

• This problem can be applied with no modification to interior problems, i.e. to solve
Poisson equation in a domain B when the shape of B prevents the use of fast solvers.
In this situation we can embed B in a larger domain Ω, simple shaped (e.g. a cube
of IRN ), where fast solvers can be used.
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