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Abstract. In [2], we presented direct numerical simulations of the motion of solid particles
in a viscous fluid. In such simulations, numerical problems are likely to occur
when particles get very close to each other: the mesh is to be refined in the gap
zone, which is computationally expensive. In order to overcome this problem,
we introduce here a lubrication model to handle those “near collisions”. The
objective is to couple this new approach with the global computation of the
flow. Nevertheless, we will concentrate in the present paper on the lubrication
model only. Indeed, the physical situation we will be dealing with is the motion
of a close–packed arrangement of particles in a fluid, such that the influence
of the fluid on the global behavior is restricted to lubrication forces.

Un modèle de lubrification pour un grand nombre de particules

Résumé. Dans une précédente note [2], nous avons présenté des simulations directes du
mouvement d’un ensemble de particules baignant dans un fluide visqueux. Le
problème majeur lié à ce type de simulation tient au fait que les particles peu-
vent être très proches les unes des autres : le maillage doit alors être raffiné,
ce qui peut augmenter considérablement le temps de calcul. Nous présentons
ici un modèle spécifique pour le traitement de ces interactions rapprochées
entre particules. Bien que le but final soit de coupler cette approche avec
le calcul de l’écoulement dans son ensemble, nous nous contenterons ici de
présenter uniquement le modèle de lubrification. La situation physique que
nous étudions correspond ainsi à une collection assez dense de particules pe-
santes baignant dans un fluide dont l’action sur les particules se limite aux
forces de lubrification.

Version française abrégée

On s’intéresse au mouvement d’un ensemble de particules pesantes dans une cavité,
sous l’action de la pesanteur et des forces d’interaction à courte distance, liées à la présence
d’un fluide visqueux dans les zones interstitielles. Le modèle utilisé est basé sur un
développement asymptotique de l’interaction entre deux sphères en mouvement relatif,
en fonction de ε, distance entre elles (voir [1]). Nous généralisons ce modèle au cas de N
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particules, ce qui conduit à un système de 3N équations différentielles non–linéaires. Nous
montrons que ce système peut être écrit de façon compacte (équation (9)) dans l’espace
de configuration associé au problème, espace de dimension 3N . De cette formulation
peut être déduit un système différentiel vérifié par les quantités sensibles: les distances
entre les particules, qui interviennent de façon singulière dans l’expression des forces de
lubrification. En explicitant certains termes dans chacune des équations composant ce
système, on se ramène à un ensemble d’équations différentielles toujours non linéaires,
mais indépendantes.

Le schema global proposé est basé sur un découplage du calcul des distances (estimées
par résolution des équations différentielles scalaires de type (14)), et la résolution du
mouvement des corps eux même (système linéaire symétrique (16)).

La stabilité et la précision de l’algorithme proposé tiennent aux deux points suivants :

1. Les distances, susceptibles de tendre vers 0, sont calculées à chaque itération par
résolution d’une équation différentielle qu’il est peu coûteux de résoudre avec une
grande précision, et tout en s’assurant que la distance reste strictement positive.

2. Lors du calcul des vitesses des particules (résolution du système (16)), les forces de
lubrification sont implicites en vitesse, de telle sorte que la vitesse relative de deux
particules proches sera fortement pénalisée.

A titre d’illustration, nous présentons la simulation numérique du mouvement de 4000
particules de formes et de tailles différentes s’écoulant entre deux parois sous l’action de
la pesanteur dans un domaine périodique dans la direction verticale.

1. Introduction, notations. We consider a set of 2D rigid bodies in a cavity. The
torque–force couple acting on each body is supposed to be restricted to the sum of a
prescribed body force, such as gravity, and the action exerted by the other particles and
the walls of the container.

The only interaction we will take into account corresponds to the lubrication phenomenon:
when two moving surfaces are close to each other, a Poiseuille-type flow develops in the
intersurface gap, leading to high local stress values. The action of the lubrication forces
is dissipative: the force opposes to the relative motion, and there is no force if the bodies
are steady. The model we will use is a extension of the following one: when two spheres
are approaching with a relative velocity u, distance d, the modulus of the force acting
normally on both surfaces can be estimated, when the inter–sphere distance d is small, by

|F| = µ
|u̇|

d
. (1)

The force F is directed along the line joining the two centers, and is opposed to the motion
of each surface. The same way, a shearing motion u⊥ induces a force of modulus

|F⊥| = µ⊥ |u̇| ln

(

do

d

)

(2)

which is orthogonal to F. The parameters µ , µ⊥ , and do depend on the viscosity of the
lubricating fluid, and on both radii of the spheres. As a matter of fact, a shearing motion

2



also creates a force along F, but this force, usually negligible compared to F, will not be
taken into account in our analysis. Since the lubrication forces depend in a singular way
on the distance between the surfaces, a numerical method based on a straightforward time
discretization is not suitable for two reasons:

• As two bodies get close to each other, the time step will have to be highly reduced,
even if the other parts of the system would not require such a time step reduction,

• The distance between two bodies appears to be a very sensitive parameter, because
of the stiffness of the lubrication forces with respect to it. Therefore, it must not be
numerically estimated as a difference between two finite quantities.

A set of N rigid bodies in the plane can be described by a 3N vector

X = (x1, θ1, . . . ,xN , θN ), (3)

where xi is the mass center of the body i, and θi a rotation angle. We denote by Ωi(xi, θi)
the moving ith body, and by Ωo the exterior domain delimiting the cavity (see figure 1).
For i, j in [0, N ], let us now introduce Dij(Ωi,Ωj) = Dij(xi, θi,xj , θj), the distance between

the two bodies. We denote by C
j
i (resp. Ci

j) the point of ∂Ωi (resp. ∂Ωj) at which the

distance is reached (see figure 1).
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Fig. IV.1 : Notations.

We introduce the family of constrained configuration spaces

Sε =
{

(xi, θi)1≤i≤N ∈ R
3N s. t. Dij > ε , ∀(i, j) ∈ [0, N ]2 , i 6= j

}

. (4)

The natural space for our problem is then So. The non–overlapping condition can be
expressed by X ∈ So.

Remark : In computations, bodies might overlap. It will be necessary to extend the
definition of Dij outside So. We will use the fact that there exists a smooth extension of
Dij in the neighborhood of the boundary of So, which takes negative values as soon as

bodies i and j overlap. The points C
j
i and Ci

j are still defined, and their dependance on

(xi, θi,xj , θj) is smooth.
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2. Lubrication model. In [1], Kim and Karrila give estimates for the forces induced
by the relative motion of two spheres in term of ε, the distance between them. Let us

consider two bodies Ωi and Ωj and their corresponding points C
j
i and Ci

j (see figure 1). A

natural way to generalize this lubrication model between two spheres is the following: Ċ
j
i

and Ċi
j being the velocities of the material points C

j
i and Ci

j, the lubrication phenomenon

leads to 2 opposite forces F
j
i and Fi

j acting on C
j
i and Ci

j, respectively. According to [1],
these forces can be estimated by

F
j
i = −Fi

j = −κ (Dij)
[

(Ċj
i − Ċi

j) · eij

]

eij − κ⊥ (Dij)
[

(Ċj
i − Ċi

j) · e
⊥
ij

]

e⊥ij , (5)

which can be written

F
j
i =

[

−κ (Dij) eij ⊗ eij − κ⊥ (Dij) e⊥ij ⊗ e⊥ij

]

· (Ċj
i − Ċi

j) . (6)

The vector eij is the unit vector along C
j
iC

i
j, and e⊥ij is orthogonal to eij . The functions

κ and κ⊥ take the following form

κ (d) = µ
1

d
, κ⊥ (d) = µ⊥ ln(do/d) , (7)

where µ and µ⊥ depend only on the geometry (local radii of curvature) and on the
viscosity of the lubricating fluid.

As a matter of fact, a shearing motion also creates a force along eij, so that the complete

model should also contain a term in eij ⊗ e⊥ij. As this force is usually negligible compared

to κ (Dij) eij ⊗ eij , it will not be taken into account in the approach presented here.

Furthermore, we will suppose that κ and κ⊥ are given functions which are asymptotically
equivalent to the expressions given by (7), and vanish when d is greater than a given
value do. In the numerical application, do will be taken equal to the characteristic size
of the bodies. For the sake of simplicity, as a first approximation of the behaviour of the
system, µ and µ⊥ will be taken constant. The underlying physical assumptions are that
the bodies have a similar shape, which is close to a circle, and that the viscosity of the
fluid is constant.

3. Global system. We denote by mi the mass of the body i, by Ii its moment of inertia,
and by Φi the body force acting on it. The components of the vector X = (xi, θi)1≤i≤N

verify the system of ordinary differential equations (with F
j
i given by (6)):

mi ẍi = Φi +
∑

j 6=i

F
j
i (Ċ

j
i , Ċ

i
j) , Ii θ̈i =

∑

j 6=i

xiC
j
i × F

j
i (Ċ

j
i , Ċ

i
j) . (8)

Let us now introduce a new function D⊥ij , defined in the neighborhood of X as the projec-

tion of C
j
iC

i
j onto e⊥ij , where e⊥ij is set to its value at X, and C

j
i and Ci

j are the material

points associated to C
j
i (X) and Ci

j(X). We denote the gradient of Dij by Gij , and the

gradient of D⊥ij by G⊥
ij . Both Dij and D⊥ij are considered functions of X, so that Gij and

G⊥
ij are 3N–vectors.

4



Proposition 1 The interaction forces can be expressed in terms of Dij, Gij, G⊥
ij, κ (Dij),

κ⊥ (Dij), and the velocity vector Ẋ. More precisely, the system (8) can be written in the
following form

M Ẍ = Φ−
1

2

∑

i6=j

[

κ (Dij) Gij ⊗Gij + κ⊥ (Dij) G⊥
ij ⊗G⊥

ij

]

· Ẋ , (9)

where M is the mass matrix: M = diag (m1,m1, I1, . . . . . . ,mN ,mN , IN ).

This is a straightforward calculation based on the exact expressions of Gij and G⊥
ij :

Gij = (. . . , 0 , −eij , −xiC
j
i × eij , 0 , . . . , 0 , eij , xjC

i
j × eij , 0 , . . .) ,

G⊥
ij = (. . . , 0 , −e⊥ij , −xiC

j
i × e⊥ij , 0 , . . . , 0 , e⊥ij , xjC

i
j × e⊥ij , 0 , . . .) .

(10)

Remark : The velocity V = Ẋ verifies the associated energy equation

d

dt

(

1

2
MV ·V

)

− Φ ·V + Ψ(V,V) = 0 , (11)

where Ψ is the diffusion symmetric non–negative bilinear form which appears in (9). The
quantity Ψ(V,V) is the rate of dissipated energy, MV ·V/2 the kinetic energy, and Φ ·V
the power of the body forces. If external forces Φ are limited to gravity, −Φ · V is the
derivative of the potential energy with respect to time. In the case where the “bounding
box” is the whole plane (Ωo = ∅), Ψ is never definite, even if the functions κ and κ⊥ are
supported by R

+, for any rigid motion of the whole set of bodies does not dissipate energy
(such a motion is orthogonal to both Gij and G⊥

ij).

4. Equation for Dpq. The basis of our approach is to work directly on the quantities
Dpq. To that purpose, an equation verified by each of the distances is established. One
has

Ḋpq = Gpq · Ẋ , D̈pq = Gpq · Ẍ + Ġpq · Ẋ , (12)

so that, using (9),

D̈pq = Gpq · M
−1Φ− µ

Ḋpq

Dpq

Gpq · M
−1Gpq

−
1

2

∑

i6=j

κ (Dij)(Gij ·V) (Gpq ·M
−1Gij)

−
1

2

∑

i6=j

κ⊥ (Dij)(G
⊥
ij ·V) (Gpq ·M

−1G⊥
ij) + Ġpq · Ẋ . (13)

5. Time discretization scheme. We denote the time step by k, its reciprocal by α.
The scheme that we propose to solve the original problem is based on a decoupling of
the locations of the particles and the distances between them. The non–linear system of
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ODE’s corresponding to equations (13) is transformed into a set of independent ODE’s
by expliciting V, the Gij ’s, and the Dij ’s for (i, j) 6= (p, q). The obtained equations have
the form

ä = ko − k1
ȧ

a
, a(0) = ao , ȧ(0) = a1 . (14)

We denote by K(ko, k1, ao, a1, t) an approximation of a(t), obtained by any numerical
method suitable for this kind of ODE. The global scheme is then:

Dm+1
pq = K(ko, k1, ao, a1, k) , (15)

(αM + Am)Vm+1 = αMVm + Φ , (16)

Xm+1 = Xm + kVm+1 , (17)

Gm+1
ij , G⊥m+1

ij estimated at Xm+1 according to (10) , 0 ≤ i < j ≤ N , (18)

where Am is the stiffness matrix

Am =
1

2

∑

i6=j

(

κ (Dm+1
ij )Gm

ij ⊗Gm
ij + κ⊥ (Dm+1

ij )G⊥m
ij ⊗G⊥m

ij

)

. (19)

and the symbols ko, k1, ao, and a1 are given explicitely by

ko = Gm
pq ·M

−1Φ−
1

2

∑

(i,j)6=(p,q)

κ (Dm
ij )(Gm

ij ·V
m) (Gm−1

pq ·M−1Gm
ij )

+α(Gm
pq −Gm−1

pq ) ·Vm −
1

2

∑

i6=j

κ⊥ (Dm
ij )(G⊥m

ij ·Vm) (Gm
pq ·M

−1G⊥m
ij ) , (20)

k1 = µGm
pq · M

−1Gm
pq , ao = Dm

pq , a1 = Gm
pq ·V

m . (21)

Remark : If the time step is too large, the computed X might exit

So = {X, Dij(X) > 0 , ∀i 6= j} (22)

which means that some particles overlap. Since the small quantities and the locations
of the particles are decoupled, such a behavior of the computation does not necessarily
prevent us from getting an accurate estimate of the inter–particle distances. Nevertheless,
in order to keep working on realistic configurations, close particles are artificially kept at
a fixed small distance ε. The last operation, which is performed at each time step of the
computation, can be seen as a projection onto Sε = {X , Dij(X) > ε , ∀i 6= j}. We are
not yet able to define properly this mapping as a projection, nor to estimate the possible
loss of accuracy caused by this operation.

6. Numerical solution, results. Equation (14), which corresponds to the step (15)
of the scheme, is integrated once with respect to time, and the obtained first order ODE
is solved by a 4th order Runge–Kutta scheme. The system (16) is solved by a conjugate
gradient preconditioned by the diagonal. Noteworthily, the s.p.d. matrix αM+Am presents
similarities with a discrete Laplace operator on a non–uniform mesh, the Dij distribution
playing the role of the local mesh step size. The step (18) is the most time–consuming.
We developed an algorithm to compute those gradients for the case of any convex shape.
It will be described in a next paper.
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Remark : The distance between two bodies does not have to be estimated with high accu-
racy. As soon as this distance drops below a certain value (size of the interval supporting
κ and κ⊥ ), the corresponding quantity Dij is activated, and its evolution is solved with
accuracy.

We present the simulation of 4000 particles of different sizes and shapes colliding in a
domain periodic in the vertical direction. The body forces are restricted to gravity. The
ratio horizontal dimension / average size of the bodies is about 35, and the solid fraction
is 0.4. Figures 2 and 3 represent the initial (random) configuration and the configuration
at time t = 1.6 (500 iterations), respectively. The latter presents cavitation zones which
developed during the computation. In figure 4, for each particle, we plotted its vertical
velocity versus the horizontal coordinate of its mass center. It gives an illustration of the
Laplace–type behavior of the operator we introduced.
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Fig. IV.2 : Initial configuration. Configuration initiale.

Fig. IV.3 : Configuration at time t = 1.6. Configuration au temps t = 1.6.
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Fig. IV. 4 : Vertical velocities at t = 1.6. Vitesses verticales à t = 1.6.
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