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Abstract Accounting for hard congestion in crowd motion mod-
eling leads to non-smooth evolution problems. At the microscopic
level (individuals are represented separately), these problems fit in
the framework of non smooth analysis in Hilbert spaces, and the
tools developed in the 70’s to handle the so-called sweeping pro-
cess are directly adaptable. At the macroscopic scale (the popu-
lation is represented by a density), a similar approach can be car-
ried out. This is done by identifying densities with measures in
the Wasserstein space, endowed with the distance based on optimal
transportation for the quadratic cost. These lecture notes provide
an introduction to the mathematical theory of these models, and
a description of numerical methods, in the microscopic (ODE) and
macroscopic (PDE) cases.

1 Introduction

Congestion is a crucial issue in crowd motion modeling. When people want
to evacuate a room they all head to the door, which tends to decrease
their mutual distance, thereby increasing the local density. Investigating a
bit further these considerations will shed light on the different aspects of
congestion, in the microscopic and in the macroscopic settings. As a first
step, consider people in a corridor, and assume that they all want to go to
the right direction. The situation is likely to become critical in terms of
density if the velocities decrease from left to right (i.e. the people in front
move slower than the people behind them), whereas increasing velocities will
tend to relax the situation (the density decreases). In the two-dimensional
setting, the notion of “increasing” velocity field has to be extended in some
way. Consider a velocity field U in the plane, and two individuals 1 and
2, identified to rigid discs centered at q1 and q2. Each individual qi is
assumed to move at velocity U(qi). Their distance increases whenever

(U(q2)−U(q1)) · (q2 − q1) ≥ 0. (1)
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A velocity field that verifies (1) is said to bemonotone (which actually means
increasing in a general, multidimensional sense). An archetypal monotone
field is x/ |x|. The velocity field corresponding to the evacuation of a room
(the desired velocity is directed to a single “point”, which is the door) is
roughly the opposite of this field: the evolution according to this field tends
to decrease all distances. Let us go a bit further in the classification between
relaxing and non relaxing fields. The monotony (1) condition above can be
written for q2 seen as a variation of q1, i.e. q2 = q1 + εh. Having ε go to
0, we obtain that

h · ∇U · h ≥ 0

for any direction h. Note that it can be expressed in terms of the sym-
metrized gradient of U, i.e. ∇U + t∇U, since the skew symmetric part
does not contribute. Now consider particles (or individuals) evolving ac-
cording to this velocity fields. The velocity of a point q + εh close to a
reference point q writes

U(q + εh) = U(q) + ε

(
∇U− t∇U

2

)

· h+ ε

(
∇U+ t∇U

2

)

· h+ o(ε),

which means that the local velocity around q is mainly a rigid motion
composed of a translation (velocity U(q)), a rotation (angular velocity
∂1u2 − ∂2u1), and a last component which corresponds to deformations.
The corresponding tensor (or matrix)

e =
∇U+ t∇U

2
(2)

is called the strain tensor. It is symmetric, thereby diagonalizable, with
real eigenvalues, the sign of which indicate the nature of the deformation:
a negative value correspond to compression in the corresponding direction,
whereas a positive one reflects expansion (i.e. distances increase). Condi-
tion (1) therefore expresses that all eigenvalues of e are nonnegative, which
means that the flow is expanding in all directions. Coming back to the
problem of congestion, it means that problems can be expected (i.e. some
distances between individuals may decrease down to physical contact) as
soon as the desired velocity field is not expanding in all directions. Ac-
tually, the “problems” we mentioned concern safety (i.e. jamming can be
expected upstream the exit, which may tend to increase the evacuation time
and induce casualties), but the fact that the field concentrates people makes
the problem easier from the mathematical standpoint, as far as the uncon-
tested situation is concerned. Indeed, if −U is monotone, as it is expected

2



for an evacuation through a small exit, then the evacuation process (without
congestion) can be written

dq

dt
−U ∋ 0,

and well-posedness (existence and uniqueness of a solution) can be estab-
lished without assuming that U is Lipschitz, as the standard theory of
Ordinary Differential Equations requires (see e.g. Bauschke and Combettes
(2011)).

Let us now point out a deep difference between the microscopic approach
that we followed previously and the macroscopic one. The latter consists
in representing the population by a density ρ(x, t). Still denoting by U
the underlying velocity field1, the “people conservation” in any domain ω
expresses the time derivative of the population in ω and the flux through
its boundary, and it writes

d

dt

∫

ω

ρ =

∫

ω

∂ρ

∂t
= −

∫

∂ω

ρU · n = −

∫

ω

∇ · (ρU).

Since conservation holds for any such subdomain, we have the transport
equation

∂ρ

∂t
+∇ · (ρU) = 0.

The derivative of ρ along a trajectory (total derivative) writes

∂ρ

∂t
+U · ∇ρ = −ρ∇ ·U,

which is nonpositive (i.e. the density relaxes toward a smaller value) as
soon as ∇ ·U ≥ 0. Note that the condition is weaker than the microscopic
one: preserving nondecreasing distance necessitates expansion in all direc-
tions (the eigenvalues of e are nonnegative), whereas here only the sign of
the trace (that is the divergence of U, and also the sum of eigenvalues of
the strain tensor e defined by (2)) is relevant. As we shall see in Section 2,
handling the constraints at the microscopic level consists in accounting for
the concentrating character of the velocity field, neither in all directions
(as in the first approach we presented), nor in a mean sense like in the
macroscopic setting, but rather in some particular directions that corre-
spond to the actual contacts between individuals. Those directions depend

1We shall make later on a difference between the desired velocity field and the actual

velocity field; the latter accounts for constraints.
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on the local structure of the contact network, and the native heterogeneity
of jammed population will induce numerical difficulties. The macroscopic
problem is easier from this standpoint, since the problem is homogeneous:
the constraint to remain below a prescribed value is the same over the whole
saturated zone. The difficulty here is rather due to the Eulerian character
of Partial Differential Equations, which rules out the possibility to directly
apply tools of convex analysis, at least in standard functional spaces. We
shall details in Section 3 how the Wasserstein Distance on measures will
make it possible to adapt some tools that have been developped in Hilbert
spaces.

2 Hard congestion in the microscopic setting

2.1 The model

We consider N individuals identified to rigid disks of radius r in a room
identified to a domain Ω. The positions are represented by a vector q of
R

2N :
q = (q1,q2, · · · ,qN ) ∈ R

2N .

The distance between two individuals i and j is denoted by

Dij = |qj − qi| − 2r.

The set of feasible configurations (contact is allowed, but no overlapping)
can be written

K =
{
q ∈ R

2N , Dij ≥ 0 ∀i 6= j
}
.

The distance Dij can be considered as a function of the configuration vector
q (although it depends on i and j only), and we denote by Gij ∈ R

2N its
gradient. Ruling out overlapping between two individual amounts to re-
quire that their instantaneous relative velocity is nonnegative in the normal
direction, as soon as there is contact. It leads to the following definition of
the set of feasible (or admissible) velocities2

CK(q) =
{
v ∈ R

2N , Dij(q) = 0 =⇒ Gij · v ≥ 0
}
. (3)

Now consider that a collection of desired velocities

U = (U1, . . . ,UN )

2In order to alleviate notations, we disregard here the constraints that are due to ob-

stacles (walls or piles), but they can be integrated in the set of feasible velocities like

inter individual non overlapping constraints.
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is given. Following Maury and Venel (2011), we assume that, at each instant,
the actual velocity field u is the closest (in the ℓ2 sense) to the desired
velocity field U, among all feasible fields, i.e.

u =
dq

dt
= PCK(q) (U) . (4)

The desired velocity Ui may depend on time, on the position of other indi-
viduals (if one aims at accounting for social effects). If one considers that
the desired velocity of an individual depends on its location only, and that
individual are interchangeable, Ui can be defined as U0(qi), where U0 is a
desired velocity field, the same for everybody. We consider here the general
case: the individual desired velocity depends on all the positions, and this
dependence may vary from an individual to the other. Thus, the desired
velocity is written U = U(q).

2.2 General setting, catching up approach

The basic tool to reformulate Model (4) is the decomposition of a Hilbert
space according to mutually polar cones, as proposed by Moreau (1962).
Consider a closed convex cone C pointed at the origin, in a Hilbert space
H , i.e.

C ⊂ H , R+C ⊂ C , λx+ (1− λ)y ∈ C ∀x, y ∈ C , λ ∈ [0, 1] , C = C.

The polar cone to C is defined as

C◦ = {y ∈ H , (y, x) ≤ 0 ∀x ∈ C} .

The decomposition of any Hilbert space as the direct sum of a closed vector
set and its orthogonal can be extended to cones (Moreau (1962)):

Id = PC + PC◦ ,

where Id is the identity, and PC (resp. PC◦) is the projection on C (resp.
C◦).

Eq. (4) can be rewritten

u =
dq

dt
= U− PC◦

K(q) (U) , (5)

which implies u−U ∈ −C◦
K(q). The latter inclusion is usually written

dq

dt
+NK(q) ∋ U(q), (6)

where NK = C◦
K(q) is the so-called outward normal cone to K at q. As

we shall see, this inclusion actually characterizes the evolution (i.e. no
information is lost by replacing the projection by a simple inclusion).
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Catching up algorithm in the convex case Now assume for a moment
that the set K of feasible configurations is convex3. By characterization of
the projection on a closed convex set, i.e.

q = PK q̃ ⇐⇒ (q̃− q, z − q) ≤ 0 ∀z ∈ K,

we obtain that the outward normal cone NK(q) = C◦
K(q) can be expressed

NK(q) = {q̃− q , q = PK q̃} . (7)

This suggests the following time discretization, which can be seen as a
semi-implicit Euler scheme applied to (5). This strategy was introduced
by Moreau (1977) as a catching-up approach to build solutions to similar
problems (sweeping process).

Considering a time step τ > 0, it consists in discretizing (5) as

qn+1 − qn

τ
−U(qn) ∈ −NK(qn+1), (8)

which can be written

qn + τU(qn)− qn+1 ∈ NK(qn+1).

By (7), it is equivalent to (Catching-up scheme)

qn+1 = PK (qn + τU(qn)) , (9)

so that the semi-implicit Euler scheme turns out to be explicit in this regard:
it reduces to a projection of a predicted position q̃n+1 = qn + τU(qn) on
K.

Theoretical issues (convex case) The catching-up algorithm can be
used to build a solution to our problem, more precisely its formulation (6).
We shall state it in an abstract form.

Proposition 2.1. Let H be a Hilbert space, K ⊂ H a closed convex set,

and

U : q ∈ H 7−→ U(q)

3This assumption is very strong, and rarely verified in realistic situations in the context

of crowd motions. It corresponds to the case of a single person in a convex room with

no door (!), or to the one-dimensional situation: N individual in a corridor, the size of

which is exactly the diameter of individuals.
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a Lipschitz function in H, bounded over H. Consider an initial condition

q0, T > 0 τ = T/M > 0 a time step, and

q0
τ , q

1
τ , . . . , q

M
τ ,

the elements obtained by application of the Catching-Up algorithm (9). De-

noting by qτ the corresponding continuous, piecewise affine trajectory, qτ
converges uniformly toward a solution t 7→ q(t) to (6), i.e.

dq

dt
+NK(q) ∋ U(q(t)), for almost every t ∈ (0, T ).

Proof. We shall simply give here the main arguments of the proof, and we
refer to Venel (2011) for further details. The main argument is a charac-
terization of the outward normal cone for a convex set K (see e.g. Venel
(2011)):

v ∈ NK(q) ⇐⇒ ∀ξ , 〈v , ξ〉 ≤ |v| dK(q + ξ) (10)

⇐⇒ ∃C > 0 , η > 0 , ∀ξ , |ξ| ≤ η , 〈v , ξ〉 ≤ CdK(q+ ξ),

where dK(·) denotes the distance to K.
The rest of the proof relies on compactness arguments. First of all (qτ )

is uniformly bounded in W 1,∞(0, T ), so that (up to the extraction of a
subsequence) (qτ )τ converges uniformly toward some trajectory q, and the
corresponding velocity uτ = dqτ/dt (which is piecewise constant) converges
toward some u in the L∞ weak-star topology.

It holds that
qn+1
τ = PK (qnτ + τU(qnτ )) ,

which implies
(qnτ + τU(qnτ ))− qn+1

τ ∈ NK(qn+1
τ ),

i.e.
dqτ
dt

−U(q̃τ ) ∈ −NK(qτ ), for a.e. t ∈ (0, T ),

where q̃τ and qτ are piecewise constant approximate solutions, with value
at the beginning and at the end of time intervals, respectively. Notice that
both sequences q̃τ and qτ uniformly converge to q. By (10), the previous
inclusion implies

−

〈
dqτ
dt

−U(q̃τ ) , ξ

〉

≤

∣
∣
∣
∣

dqτ
dt

−U(q̃τ )

∣
∣
∣
∣

︸ ︷︷ ︸

≤M

dK (q+ ξ) .
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Since uτ−U(q̃τ ) converges weakly-star to u−U(qτ ) (in L
∞), by Mazur’s

Lemma, a convex combination zτ of the sequence (uτ −U(q̃τ )) converges
strongly in L1 toward u−U(q). We therefore have point wise convergence
of zτ toward u−U(q) for almost every time t. Thus, for any time at which
pointwise convergence of zτ holds,

lim sup 〈zτ , ξ〉 ≤MdK (q+ ξ) .

so that. 〈
dq

dt
−U(q) , ξ

〉

≤MdK (q+ ξ) .

By using again (10) (second characterization) the other way around, we
obtain

dq

dt
−U(q) ∈ −NK(q) for a.e. t,

which ends the proof.

Crowd motion model: the non convex situation As for the crowd
motion model we introduced, the feasible set K is not convex as soon as
there are two individuals (i.e. rigid discs). Yet, as suggested by the previous
approach, similar results can be expected as soon as it is possible to project
the predicted configuration q̃n+1 = qn + τU(qn) on K. More precisely, if
qn is feasible (i.e. in K), if U is bounded, then a control on the time step
ensures that q̃n+1 is close to K. It is therefore enough to prescribe that
the projection is well-defined in the neighborhood of K. This leads to the
notion of prox-regular sets (Poliquin and Rockafellar (1996)). Let us first
extend the notion of outward normal cone to non convex sets (Clarke et al.
(1995)):

Definition 2.2. Let K ⊂ H be a closed set, and q ∈ K. The outward
normal cone to K at q is defined by

NK(q) = {v ∈ H , ∃α > 0 , q ∈ PK(q+ αv)} , (11)

where PK(q̃) denotes here the set of elements of H that realize the distance
between q̃ and K.

The prox-regularity is defined as follows:

Definition 2.3. Let K ⊂ H be a closed set, and η > 0. The set K is said
to be uniformly η prox-regular if, for any q ∈ ∂K, NK(q) is not reduced to
{0} and, for any v ∈ NK(q), with |v| = 1, we have

B(q + ηv, η) ∩K = ∅.
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A weakened form of the characterization (10) holds for prox-regular sets:

v ∈ NK(q) ⇐⇒

∃α > 0 , C > 0 , ∀ξ , |ξ| < α , 〈v , ξ〉 ≤ CdK(q+ ξ) +
|v|

2η
|ξ|2 , (12)

Thanks to this characterization, Prop. 2.1 can be extended to the prox regu-
lar case, which provides a framework for the crowd motion model, since the
feasible set K can be shown to be prox-regular (Maury and Venel (2011)).

Saddle point formulation The outward normal cone NK(q) = C◦
K(q)

can be parametrized thanks to Farkas’ Lemma (see e.g. Rockafellar (1970),
p. 200):

NK(q) =
{
v ∈ R

2N , Dij(q) = 0 =⇒ Gij · v ≥ 0
}◦

=






−
∑

i<j

λijGij , λij ≥ 0 , Dij > 0 ⇒ λij = 0






.

As a consequence, the projection of U on NK(q) can be formulated in a
saddle point manner. It amounts to find (λij)(i,j)∈Λ, where Λ is the set of
(i, j) such that the constraint is active (i.e. Dij(q) = 0), and u ∈ R

2N , such
that 





u+B⋆λ = U

Bu ≤ 0

λ ≥ 0

(Bu, λ) = 0.

(13)

where B is a matrix, each line of which corresponds to the constraint

−Gij · u ≤ 0, (i, j) ∈ Λ,

with

Gij = (0, . . . , 0,−eij , 0, . . . , 0, eij, 0, . . . , 0) , eij =
qj − qi
|qj − qi|

.

Thus, the projection takes the form of a (unilateral) discrete Darcy problem.
This analogy is not only formal. Consider for example the case of people in
a corridor (one-dimensional setting):
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The gradients are

G12 = (−1, 1, 0, . . . , 0) , G23 = (0,−1, 1, 0, . . . , 0) , etc.

so that the constraint matrix writes

B =








1 −1 0 . . . . . .
0 1 −1 . . . . . .

0 0
. . .

. . . . . .
0 0 . . . 1 −1








that is the discrete counterpart of −∂x (opposite of the divergence), and B⋆

corresponds to ∂x (gradient). Note that BB⋆ is the discrete counterpart of
the one-dimensional Laplacian −∂xx. This observation reveals the numeri-
cal underlying difficulties: at each time step, the computation of the actual
velocity can be expected to be, at least, as difficult as solving a discrete
Poisson problem with the same number of degrees of freedom. It also illus-
trates the non-local effect of the projection onto the set of feasible velocities:
all individuals gathered in a same cluster are likely to interact.

The projection (9) can also be formulated in a dual manner: since

qn+1 = PK (qn + τU(qn))

there exists a collection of Lagrange multipliers (λij)(i,j)∈Λ such that

qn + τU(qn) = qn+1 −
∑

i,j

λijGij(q
n+1),

which can be written

qn+1 − qn

τ
+B⋆λ = U(qn).

Yet, in spite of its formal simplicity, this formulation does not directly lead
to a tractable numerical scheme, since the matrix B (together with the set
Λ of active couples) depends on the unknown qn+1. It reflects the implicit
(and highly nonlinear) character of the scheme.

2.3 Numerical scheme

In order to obtain a tractable numerical scheme, we replace (as in Maury
(2006)) the set of feasible configurations by some kind of local inner ap-
proximation. More precisely, considering a given configuration q ∈ K, we
introduce (see Fig. 1)

10



boundary of K̃q

q

Dij < 0 (forbidden zone)

boundary of K

Figure 1. Inner approximation of the feasible set K.

K̃q = {q̃ , Dij(q) +Gij(q) · (q̃− q) ≥ 0 ∀i < j} .

Thanks to the convex character of the function Dij , it can be shown that

K̃q ⊂ K for any q ∈ K, and it is a convex polyhedron as intersection of
half spaces. The projection step (9) is replaced by

qn+1 = PK̃qn
(qn + τU(qn)) , (14)

which amounts to project a predicted position q̃n+1 = qn + τU(qn) on the
set K̃(q

n), which is an intersection of half spaces. The link with the initial
problem is more explicit if one expresses the scheme in terms of velocities.
The approximate set of feasible velocities is defined by

C̃τ (q) = {v , Dij(q) + τGij(q) · v ≥ 0 ∀i < j} .

Now setting un+1 = (qn+1 − qn)/τ , the scheme (14) can be expressed in
terms of velocities as

un+1 = PC̃τ (qn)U(qn), (15)
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which the discrete counterpart to (4). The problem can be put in a saddle-
point form:







u+B⋆λ = U

Bu ≤ D/τ

λ ≥ 0

(Bu−D/τ, λ) = 0.

(16)

whereD is the vector of distances at the current configuration, i.e. (Dij(q
n)).

Remark 2.4. In the present context, the number of rows of B is the number
of potential contacts, i.e. N(N − 1)/2), whereas the number of rows of B in
the continuous setting (13) was the number of actual contacts, which is of
the order of 3N . It is nevertheless possible to alleviate the computational
costs by ruling out a priori the constraints that are not likely to become
activated at the next step, which amounts to suppress the corresponding
lines of B, thereby reducing the computational costs.

As it appears in Fig. 1, K can hardly be seen as a global approximation
of K̃q. Yet, if the time step is small, the constraints will be activated

when q is closed to a forbidden zone, and in this case K̃q approximates K
locally, i.e. in the neighborhood of q. It can be proven that the scheme
converges (Venel, 2011).

Uzawa algorithm Solutions to Problem (16) can be approximated by the
Uzawa algorithm. Let λ0 be given (the choice λ = 0 can be made in case
no prior information on λ is available). Successive approximations (uk, λk)
are built as follows: once λk is determined, uk+1 and λk+1 are defined by

{
uk+1 +B⋆λk = U

λk+1 = Π+

(
λk + ν

(
Buk+1 −D/τ

)) (17)

where Π+ is the euclidean projection on the cone of vectors with nonnegative
components (a simple cut-off in practice), and ν > 0 is a fixed parameter.

Note that any fixed point of the algorithm is a solution to Problem (16).
Indeed, consider (u, λ) such a fixed point,. For any component of λ associ-
ated to a contact (i, j), stationarity implies the following alternative:

i) either λij = 0 and (Bu − D/τ)ij ≤ 0 (the constraint is satisfied,
possibly in a strict sense, and the Lagrange multiplier is inactive), or

ii) λij > 0 and (Bu − D/τ)ij = 0 (the constraint is saturated, and the
Lagrange multiplier is active).
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The algorithm can be shown to converge as soon as 0 < ν < 2/‖B‖2

(see Ciarlet (1989)). This algorithm is actually a fixed-step algorithm of
the projected gradient type, performed on the quadratic functional defined
on the set of Lagrange multipliers:

µ 7−→ Ψ(µ) =
1

2
(U−B⋆µ,U−B⋆µ) + (µ,D/τ) .

The quadratic part of the functional is the quadratic form associated to
the matrix BB⋆, that is the discrete Laplace-like operator on the network
already mentioned in the previous section. This very matrix will condi-
tion the numerical difficulty so numerically solve the system. Note that the
present matrix BB⋆ actually differs from the one described in the previous
section in that it pertains to all potential contacts, and not only actual ones
(see Remark 2.4). Yet, in actual computations, active contacts for the dis-
cretization scheme will correspond to couples of particles that are not far
away from each other, so that both matrices can be expected to share similar
properties. The next section is dedicated to further remarks on this under-
lying Laplace-like operator, which reflects the microscopic arrangements of
individuals.

2.4 Underlying Laplace-like operator

We investigate here the properties of the matrix BB⋆, which was iden-
tified as a kind of discrete Laplace operator. We shall see that this ma-
trix actually differs from the matrices that result from space discretization
of elliptic problems, or more generally from discrete Laplace operators for
electric networks.

Let us consider a configuration q ∈ K (like in Fig. 2), and the associated
matrix B, each line of which expresses the constraint

−Gij · u ≤ 0,

where Gij is the gradient of the distance Dij = |qj − qi| − ri − rj with
respect to the configuration vector q = (q1, . . . ,qN ). Let us start with
some comment on the operator B⋆. As we already pointed out, it can be
interpreted as a discrete gradient. Considering a set of Lagrange multipliers
λ (i.e. interaction pressures between particles in contacts), −B⋆ assembles
the corresponding force field acting on the particles. In case the configura-
tion is structured (e.g. orthogonal lattice of discs of the same size, or the
triangular lattice of Fig.. 3) then a constant pressure field induces no force
at all (expect for the boundary of the cluster). It is the discrete counter-
part of the standard property in the continuous setting that the gradient of
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i

j

k

Figure 2. Non structured stencil

a constant field is zero. Yet, in the general situation (when no structural
assumption is made on the local arrangements of discs), this property does
not hold. See e.g. the discs on Fig. 2: the vectors pointing inward each par-
ticle do not sum up to zero. Another feature is typical of the unstructured
discrete situation. Consider the cluster represented in Fig. 3. The number
of discs is 14, thus the number of degrees of freedom is 28, whereas the
number of contacts is 29. As a consequence, the kernel of B⋆ is not trivial:
there exists a non-zero pressure field (one pressure for each contact point)
such that the resulting force field is 0. A striking consequence of this fact
is the following: the associated Laplace-like operator BB⋆ does not satisfy
the Hopf maximum principle, since there exist pressure fields λ such that
BB⋆ ≥ 0, whereas some pressures are negative.

The matrix BB⋆ can be expressed as follows: considering a pressure
field λ = (λkℓ), where (k, ℓ) runs over the set of actual contacts, the vector
BB⋆λ is a pressure-like vector (one component for each contact), and the
value corresponding to the contact between discs i and j is

∑

(k,ℓ)∼(i,j)

λkℓGij ·Gkℓ.
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Figure 3. Hyperstatic situation

The discrete matrix operates on the network which is dual to the primary
network (i.e. the network made of the centers of discs, with a connection
between two vertices as soon as the discs are in contact). The vertices of
the dual network are the contact points, and two vertices are connected, or
equivalently the corresponding element of the matrix is non zero, as soon
as the contacts share a same particle. Both networks are represented in
Fig. 4. The corresponding stencil is represented in Fig. 2, around a vertex
that is the contact point between two particles. The non-verification of
the maximum principle is due to the fact that, when one considers three
particles i, j, and k, it may happen that

eij · ekj > 0,

where eij is the unit vector (qj − qi)/ |qj − qi|. Examples of such vectors
are represented in Fig. 2, in bold. This property is generic in jammed
collections of discs. As a consequence, some of the extra diagonal elements
of BB⋆ are positive, thus BB⋆ is not aM -matrix. If one aims at interpreting
the situation in terms of electric networks, in means that some resistances
are negative, and this situation is native for jammed population of individual
identified to rigid discs.

Condition number In terms of numerical computation, the inner diffi-
culty of the problem can be quantified by the condition number of BB⋆ (i.e.
the ratio between the largest and the smallest non zero eigenvalue of this
symmetric positive matrix). This number κ can be related in some way to
the lack of convexity of the feasible set K in the following sense: as detailed
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Figure 4. Primal (left) and dual (right) contact networks

in Maury and Venel (2011), it holds that

κ = cond2(BB
⋆) ≥

C

η2
,

where η is the prox-regularity constant of K, i.e. the largest constant that
can be chosen in Definition 2.3. This constant tends to zero very fast as the
number of discs grows (see again Maury and Venel (2011)).

3 Macroscopic setting

3.1 The macroscopic model

We aim now at describing the population at a macroscopic level, i.e. by
a density ρ(x, t). We consider a bidimensional domain Ω (the room), we
denote by U the desired velocity field (which is given), and by u the actual
velocity field (which is affected by congestion effects). The set of feasible
densities is defined as

K =
{
ρ ∈ L1(Ω) , 0 ≤ ρ(x) ≤ 1 a.e. in Ω

}
.

The density is transported by the actual velocity field4:

∂ρ

∂t
+∇ · (ρu) = 0, (18)

where u is defined as the L2 projection ofU on the cone of feasible velocities
CK(ρ). This model was proposed in Maury et al. (2010), and studied in the
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case where U is a gradient.
Unformally said, CK(ρ) contains velocity fields that do not increase the

density where the constraint is already saturated (i.e. wherever ρ = 1). It
can be defined in a dual way as

CK(ρ) =

{

v ∈ L2(Ω)2,

∫

Ω

v · ∇q ≤ 0 ∀q ∈ H1
+(Ω) ,

∫

Ω

q(1− ρ) = 0

}

,

with H1
+(Ω) = {q ∈ H1(Ω) , q ≥ 0 a.e. in Ω}. (19)

Note that the constraint on the integral of q(1 − ρ) imposes that q is 0 in
the zones where the constraint is not saturated (i.e. ρ < 1).

When a part Σ of the boundary of Ω is an open exit, a free outlet
condition can be prescribed by simply prescribing that the pressure is 0 on
Σ (since the pressure is in H1(Ω), its trace on Σ is indeed well-defined).

Saddle-point formulation The projection of the desired velocity on the
cone of feasible ones can be formulated in a dual manner, in the form of a
unilateral Darcy problem:

Find (u, p) ∈ L2(Ω)2 ×H1
ρ(Ω), where

H1
ρ+(Ω) =

{

q ∈ H1
+(Ω),

∫

Ω

q(1− ρ) = 0

}

,

such that 





u+∇p = U

−

∫

Ω

u · ∇q ≤ 0 for all q ∈ H1
ρ+(Ω),

(20)

with the complementarity condition:

−

∫

Ω

u · ∇p = 0 .

Toward a suitable framework The model can be written

∂ρ

∂t
+∇ · (ρu(ρ)) = 0,

4The transport equation is meant in a weak sense; we shall say that u transports ρ in
the time interval [0, T ], with initial condition ρ = ρ0, when

∫
T

0

∫
Ω

ρ∂tϕ+

∫
T

0

∫
Ω

ρu · ∇ϕ+

∫
Ω

ϕ(0, ·)ρ0 = 0 ∀ϕ ∈ C∞

c ([0, T )×Ω).
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where the mapping ρ 7→ u(ρ) corresponds to the projection of U on CK(ρ).
This mapping is nonlinear, nonlocal, the dependence upon ρ is not smooth;
it does not fit in the classical framework of conservation laws.

In the microscopic setting, the difference q̃ − q between the configura-
tions q and q̃ corresponds to a collection of individual displacements which
reflects the Lagrangian character of the description. In the standard frame-
work of Partial Differential Equations, the difference between entities (or,
more generally, functions) ρ̃− ρ is of different nature, because of the Eule-

rian character of the description. In order to extend the tools we used in
the microscopic context, we must adopt another standpoint. Let us show
that the Wasserstein distance, based on optimal transportation, provides
an adapted framework.

3.2 Optimal transportation and Wasserstein distance

We present here some basics on optimal transportation, and we refer
to Villani (1995) for a more detailed and more general presentation of those
concepts. We assume here that the domain Ω is convex. For any measurable
map t : Ω −→ Ω, and probability densities5 µ and ν supported in Ω, we
say that ν is the pushforward of µ by t whenever

∫

t−1(A)

µ(x) dx =

∫

A

ν(x) dx,

for any measurable set A ⊂ Ω. Considering that the cost of moving x to y
is |y − x|2 (quadratic cost), the cost of the transport map t is defined as

C(t) =

∫

Ω

|t(x) − x|2 dx.

The quadratic Wasserstein distance W2(µ, ν) is then defined by

W2(µ, ν)
2 = inf

t, t♯µ=ν
C(t) = inf

t, t♯µ=ν

∫

Ω

|t(x)− x|2 dx.

In the case we considered (in particular the first measure is absolutely
continuous), the minimizer is attained, and the minimization problem can
be formalized in a dual way: it holds that

1

2
W2(µ, ν)

2 =
1

2
min

t, t♯µ=ν

∫

Ω

|t(x) − x|2 dx (21)

5As detailed in Villani (1995), the approach generalizes to general measures, but we

assume here absolute continuity, which is the case in the situation we consider.
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= max
ϕ,ψ∈Cb(Ω)

{∫

Ω

ϕ(x)ρ(x) dx +

∫

Ω

ψ(y)ν(y) dy , ϕ(x) + ψ(y) ≤
1

2
|y − x|2

}

,

where Cb(Ω) is the space of all those functions that are bounded and con-
tinuous in Ω. The latter maximum is attained for a couple (ϕ, ϕc), where

ϕc(y) = inf
x

(
1

2
|x− y|2 − ϕ(x)

)

.

The function ϕ is called a Kantorovich potential for the transport problem
from µ to ν; it is related to the transport map t that realizes the Wasserstein
distance by

t = i−∇ϕ, (22)

where i is the identity. Let us consider a toy problem to illustrate the
considerations above. Let η be given in (0, 1/2), and let Iη be the interval
(−1/2 − η/2, 1/2 + η/2) ⊂ R, the length of which is 1 − η. We consider a
probability density

ρη =
1

1− η
1Iη ,

(characteristic function of Iη, normalized to recover a unit mass). The
density ρη violates the constraint and its projection on K is ρ0, the char-
acteristic function of the interval (−1/2, 1/2). The Kantorovich potentials
(from ρ0 to ρη) can be computed exactly as

ϕ(x) =
η

2
x2 , Ψ(y) = −

1

2

1

1− η
y2.

The transport map from ρ0 to ρη is indeed

x 7−→ (i−∇ϕ)x = (1 − η)x,

and its inverse (ρη to ρ0) is

y 7−→ (i−∇ψ) y = y +
η

1− η
y =

1

1− η
y.

3.3 Catching-up algorithm

Let τ > 0 be a time step. The catching-up algorithm consists in trans-
porting the current density by the desired velocity field, and then projecting
it on the set K of feasible densities:

ρ̃n+1 = (i+ τU)# ρ
n (prediction step), (23)
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ρn+1 = PK ρ̃
n+1 (correction step), (24)

where the projection is performed in the Wasserstein sense. This projection
can be shown to be well defined6 (Maury et al., 2011).

In the microscopic setting, the link between the catching-up algorithm
and the crowdmotion model was straightforward7. In the present situation,
the link is less straightforward, and the proof of convergence of the discrete
trajectories requires technical developments that we will not describe here
(see Maury et al. (2010, 2011)). We shall simply describe here the core of
the proof, which lies in the link between the catching up scheme and the
unilateral Darcy problem (20).

In the microscopic setting, the actual velocity at the discrete level was
written (qn+1 − qn)/τ (see e.g. (8)). This expression has to replaced by a
similar expression involving ρn and

ρn+1 = PK

(

(i+ τU)# ρ
n
)

,

which would be a Lagrangian version of “(ρn+1 − ρn)/τ”, so to say. The

tn+1 = (i+ τU)−1

rn+1

ρn

ρ̃n+1

ρn+1

K = [ρ ≤ 1]
τun+1

Figure 5. Definition of the discrete transport maps.

situation is represented in Fig. 5. The main idea consists in defining a

6This fact is somewhat striking since, in the microscopic setting, the set K can be shown

to be η-prox-regular with η going to 0 as the number of individuals goes to ∞, and

their size goes to 0. It means that the projection is defined in a neighborhood of ∂K

which shrinks down to ∂K itself as the population grows, which suggests a degenerated

behavior when it tends to the macroscopic situation. The very fact that it does not

degenerate in the macroscopic situation (the projection is well-defined, no matter what

the distance to K is) reflects the deep difference between the two approaches, as it was

already addressed at the end of Section 1.
7We refer the reader to the few lines between Eq. (8) (which is a discretization of (5))

and Eq. (9)
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discrete velocity un+1 such that τun+1 corresponds to the displacement
between ρn and ρn+1, and to show that this velocity solves (at least at the
first order in time) a Darcy problem like (20). It can be done as follows: we
define tn+1 as (i+ τU)−1, which is well defined as soon as U is regular and
τ is small enough, and rn+1 as the optimal map between ρn+1 and ρ̃n+1.
The discrete velocity is then defined as

un+1 =
i − tn+1 ◦ rn+1

τ
.

Notice that this velocity is defined in the target set: considering a element
of mass x of ρn, transported to y in ρn+1, it holds

y = x+ τun+1(y),

where the velocity is defined at y, and not at x.
Let us introduce

wn+1 =
i− rn+1

τ
⇐⇒ rn+1 = i− τwn+1.

As soon as U is assumed to be smooth (i.e. continuously differentiable),
tn+1 can be expanded at the first order as

tn+1 = (i+ τU)−1 = i− τU+ o(τ),

where the o(τ) if uniform with respect to the space variable x. We then
have

un+1 =
1

τ

(
i− (i− τU + o(τ)) ◦ (i − τwn+1)

)

= wn+1 +U+O(τ). (25)

To complete the identification with (20), we still have to establish that wn+1

is the gradient of a pressure p that is nonnegative, and that vanishes out-
side the saturated zone. To that purpose, we follow the strategy introduced
in Butazzo and Santambrogio (2005) and used in the context of crowd mo-
tion models of the gradient flow type in Maury et al. (2010). It consists in
proving that the Kantorovich potential associated to the transport problem
from ρn+1 to ρ̃n+1 (which corresponds to the displacement −τwn+1) can
be interpreted (up to multiplicative and additive constants) as a pressure
field in the saturated zone. We shall assume here that ρ̃n+1 is positive in Ω
(we refer to Maury et al. (2010) for an adaptation to the general case). The
proof is somewhat paradoxical, since it consists in considering eulerian vari-
ations around the minimizer, whereas the Wasserstein framework suggests
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to build variations by means of transport maps (i.e. horizontal variations).
Consider µ a density in K, and ε > 0. We define

ρε = ρn+1 + ε(µ− ρn+1) ∈ K,

and we denote by ϕε and ψε the Kantorovich potentials associated to the
transport problem from ρε to ρ̃n+1. By the Monge Kantorovich formula-
tion (21), it holds that

1

2
W2(ρε, ρ̃

n+1)2 =

∫

Ω

ϕερε +

∫

Ω

ψερ̃
n+1, (26)

and
1

2
W2(ρ

n+1, ρ̃n+1)2 =

max
ϕ,ψ∈Cb(Ω)

{∫

Ω

ϕρn+1 +

∫

Ω

ψρ̃n+1 , ϕ(x) + ψ(y) ≤
1

2
|y − x|2

}

,

≥

∫

Ω

ϕερ
n+1 +

∫

Ω

ψερ̃
n+1. (27)

Besides, since ρn+1 minimizes the Wassertein distance from ρ̃n+1 to K by
construction, and since ρε is in K, we have

1

2
W2(ρε, ρ̃

n+1)2 ≥
1

2
W2(ρ

n+1, ρ̃n+1)2,

which yields, thanks to (26) and (27),

∫

Ω

ϕε(ρε − ρn+1) ≥ 0 =⇒

∫

Ω

ϕερ
n+1 ≤

∫

Ω

ϕεµ ∀µ ∈ K. (28)

Now, prescribing a fixed value of the Kantorovich potentials at some point
x0 ∈ Ω, the Kantorovich potential is unique, and the sequence (ϕε) can be
shown (see Butazzo and Santambrogio (2005), Lemma 3.4) to converge to
the Kantorovich potential ϕ associated to the transport from ρn+1 to ρ̃n+1

(i.e. in the limit ε = 0). So finally ρn+1 minimizes a linear functional of the
type

ρ 7−→

∫

Ω

ϕρ,

over K which is the set of probability densities that are less that 1 almost
everywhere. If the upper bound constraint were not prescribed, ρ would
tend to concentrate on the minimizer(s) of ϕ. This concentration is ruled
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ω

ω̃ (where ρ̃n+1 > 1)

Saturated zone for ρn+1

Saturated zone for ρ̃n+1

pressure p

Figure 6. Projection of ρ̃ onto K
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out by the congestion constraint, and ρ saturates the zone in which ϕ is
minimal, so that it takes the following form

ρn+1

∣
∣
∣
∣
∣
∣

= 1 on [ϕ < ℓ]
≤ 1 on [ϕ = ℓ]
= 0 on [ϕ > ℓ]

where ℓ is a value which is adjusted to comply with the unit mass constraint.
In the previous expression, the way ρn+1 is distributed over [ϕ = ℓ] is
underdetermined, since it does not affect the value of the functional: the
solution of the previous minimization problem is not unique. It does not
matter here, since ρn+1 was already identified as the unique density that
realizes the distance to K. We then define the pressure field

p =
1

τ
(ℓ− ϕ)

+
.

By construction, p is nonnegative, it vanishes outside of the saturated zone
(i.e. where ρn+1 < 1), and ∇p = −∇ϕ/τ in the support of p. Now recall
that ϕ is a Kantorovich potential for rn+1, i.e.

rn+1 = i−∇ϕ = i+ τ∇p.

Finally, we have

wn+1 =
i− rn+1

τ
= −∇p,

so that, thanks to (25), we obtain the Darcy decomposition (at the first order
in time) of the desired velocity field U as the sum of the actual velocity and
the gradient of a pressure:

un+1 +∇p = U+O(τ).

Fig. 6 is an attempt to illustrate this construction: the zone in which the
constraint is violated (i.e. ρ̃n+1 > 1) is denoted by ω̃. The excess of mass
is spread out around this zone, and the obtained density saturates the con-
straint (ρn+1 ≡ 1) on ω. Note again that the displacement τun+1 which
pushes ρn onto ρn+1 is defined on the target set, which rules out a straight
use of this approach to design a tractable numerical procedure.

3.4 Numerical issues

Like in the microscopic setting, a direct use of the saddle point form of
the projection onto K is delicate, since the pressure field is defined on the
target set. We describe here a Monte Carlo algorithm based on a stochastic
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interpretation of the Poisson problem with Dirichlet boundary condition
(see Maury et al. (2011) for details). Let us make it clear that this approach
is not covered by a rigorous numerical analysis. We consider again the
situation represented in Fig. 5, and we drop the upperscripts n+1 to alleviate
notation. The predicted density ρ̃ violates the constraint in the domain ω̃,
and the excess mass is (ρ̃ − 1)+. Since this excess mass is due to the
transport of an admissible density by a contracting field (desired velocity
field U) during τ , it is of the order τ . Let us assume that it can be written
τν, where ν is a nonnegative density supported by the oversaturated zone8.
The density ρ̃ is 1 + τν in ω̃. Let ρ be the projection of ρ̃ on K. The

displacement from ρ to ρ̃ is of the form r = i+ τ∇p, where p is 0 outside ω
(see the previous section). Since ρ saturates the constraint9 in ω, we have
in ω

1

|i+ τ∇p|
(x) ≈ (1− τ∇ · ∇p) (x) = 1 + τν(r(x)),

so that, at the first order in τ ,

−∆p(x) = ν(r(x)),

with p = 0 on the boundary of ω. The unknown pressure field p and the
right-hand side are not defined on the same set, but r is close to the identity
i. Replacing ν(r(x)) by ν(x) is audacious, even in this informal approach,
since ν has no reason to be regular. Yet, ν and ν ◦ r are close (of the
order τ) in the Wasserstein sense by construction, therefore their distance
in the H−1 sense is of the same order (see Maury et al. (2010), Lemma 3.4).
Thus, the corresponding pressures are also close (at the first order in τ) in
the H1 norm. Using again the fact that ω is transported to ω̃ by r, which
is the identity at the first order in τ , and assuming sufficient regularity to
transport the elliptic problem back to ω̃ (up to first order terms), we end
up with a Poisson problem in ω̃

−∆p = ν in ω̃,

with homogeneous Dirichlet boundary conditions on ∂ω̃.
The velocity of the boundary is −∂p/∂n, which means that the quantity

of mass crossing an element dγ of the boundary during τ is −τ∂p/∂n dγ.
Now consider the stochastic interpretation of the Poisson problem (we as-
sume that ν has unit mass, which can be recovered by a straightforward

8Since ρ̃ comes from the transport of the previous density ρn by U, it holds approxi-

mately ρ̃ ≈ 1− τ∇ ·U+ o(τ).
9This property is straightforward: if it were not, it would obviously not be the density

closest to ρ̃ in K.
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renormalization): consider a brownian motion starting at an initial point
X , which is supposed to be itself a random position following the law of
density ν in ω̃, and consider the location at which this Brownian motion
crosses the boundary of ω̃. The law of the position of this first hit is known
to follow a law with density −∂p/∂n on ∂ω̃, where p is the solution to the
Poisson problem above. The algorithm we propose (see Maury et al. (2011))
is deduced from these consideration.

initial position

final position

excess of mass

Figure 7. Random walk algorithm

The space is discretized in a finite volume spirit by a cartesian mesh. The
densities are assumed to be constant on each cell of this mesh. We illustrate
in Fig. 7 the discretized counterpart of the situation represented in Fig. 6.
The zone delimited by the bold broken line corresponds to cells where the
constraint is violated. Considering one of those cells as a starting point,
with an excess of mass m, we run a random walk on the grid with balanced
transition probabilities. When the random walk reaches a cell which is not
saturated, the excess of mass is put in this cell, up to saturation. If there
is not enough empty space to get rid of the total excess m, the random
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walk continues according to the same principle, until there is no mass left.
Fig. 7 illustrates the process, starting from a cell inside the zone where the
constraint is violated.

A new random walk is then initiated from another cell where the con-
straint is saturated, and so on, until the constraint is satisfied everywhere.
We refer to Maury et al. (2011) for a more detailed description of the algo-
rithm, and for some illustrations of the behavior of the algorithm.
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