# UNIVERSITÉ PARIS XI

U.E.R. MATHÉMATIQUE
91405 ORSAY FRANCE



217

Suites d'interpolation harmoniques

Eric AMAR

Analyse Harmonique d'Orsay 1976



Suites d'interpolation harmoniques

Eric AMAR

Analyse Harmonique d'Orsay 1976

# SUITES D'INTERPOLATION HARMONIQUES

#### INTRODUCTION.

Soit  $\mathbb{R}^{m+1}_+$  le demi-espace,  $\mathbb{R}^{m+1}_+ = \left\{z = (x,y) \in \mathbb{R}^{m+1}, y \in \mathbb{R}, y > 0\right\}$ ; à chaque point z = (x,y) de  $\mathbb{R}^{m+1}_+$  on associe le noyau de Poisson  $\mathbb{P}_z(\xi) = \frac{1}{y^m} \, \mathbb{P}(\frac{\xi - x}{y})$ , cù  $\mathbb{P}(\xi) = \frac{c_m}{(|\xi|^2 + 1)^{\frac{m+1}{2}}} \, \left[1\right]$ .

On appelle  $\mathcal{E}^p$  l'espace des fonctions harmoniques dans  $\mathbb{R}^{m+1}_+$  et dont les valeurs au bord appartiennent à  $\mathbb{L}^p(\lambda)$ ,  $1 , où <math>\lambda$  est la mesure de Lebesgue sur  $\mathbb{R}^m$ .

Soit  $\sigma = \left\{ z_n \text{ , neN} \right\}$  une suite de points de  $\mathbb{R}^{m+1}_+$ ; on dit que  $\sigma$  est <u>d'interpolation</u>  $L^p$  si l'opérateur  $T_p$ ,  $1 , défini sur <math>\mathcal{E}^p$  par :

 $\forall \ u \in \mathcal{E}^p, \quad T_p u = \left\{ u(z_n) \ y_n^p \ , \ n \in \mathbb{N} \right\} \quad \text{est surjectif sur} \quad \ell^p(\mathbb{N}) \ ; \quad \text{on dit que} \quad \sigma \quad \text{est} \quad \underline{\text{fortement d'interpolation, si de plus,}} \quad T_p \quad \text{est continu de} \quad \mathcal{E}^p \quad \text{dans} \quad \ell^p(\mathbb{N}) \ ; \quad \text{on dit que} \quad \sigma \quad \text{possède la propriété d'extension linéaire bornée de} \quad \ell^p(\mathbb{N}) \quad \text{dans} \quad \mathcal{E}^p \quad \text{si} \quad \text{il existe un opérateur borné} \quad U_p \quad \text{de} \quad \ell^p(\mathbb{N}) \quad \text{dans} \quad \mathcal{E}^p \quad \text{tel que} \quad T_p U_p = \text{identité sur} \quad \ell^p(\mathbb{N}).$ 

Dans [2], L. Carleson et J. Garnett montrent qu'il y a deux conditions nécessaires pour que  $\sigma$  soit d'interpolation  $L^{\infty}$ ,

a) La suite σ doit être séparée, c'est-à-dire:

(S) 
$$\exists c > 0$$
,  $\forall k \in \mathbb{N}$ ,  $\forall \ell \in \mathbb{N}$ ,  $k \neq \ell \implies |z_k - z_{\ell}| \ge c y_{\ell}$ ;

b)  $\sigma$  doit être une suite de Carleson, c'est-à-dire qu'il existe C>0 tel que pour tout cube Q ayant une face sur l'hyperplan  $\left\{y=0\right\}$  et de côtés parallèles aux axes et d'arête s(Q) on a :

(C) 
$$\sum_{\mathbf{z}_n \in \mathbf{Q}} \mathbf{y}_n^{\mathbf{m}} \le \mathbf{C} \ \mathbf{s}(\mathbf{Q})^{\mathbf{m}}.$$

Réciproquement, ils montrent 2:

THEOREME [L. Carleson et J. Garnett]. Les conditions (S) et (C) sont vérifiées si et seulement si la suite  $\sigma$  est l'union d'un nombre fini de suites  $\sigma_i$ , i = 1, ..., n, telles que  $\sigma_i \cup \sigma_j$  soit d'interpolation  $L^{\infty}$ .

Utilisant d'une part les techniques introduites dans 2 et d'autre part les techniques de fonctions maximales 3, on montre le

THEOREME 1. Soit  $\sigma$  une suite vérifiant (S) et (C); alors, pour  $1 , <math>\sigma$  est l'union d'un nombre fini de suites  $\sigma_i$ ,  $i = 1, \ldots, n$ , telles que  $\sigma_i \cup \sigma_j$  est fortement d'interpolation  $L^p$ ; de plus,  $\sigma_i \cup \sigma_j$  possède la propriété d'extension linéaire bornée de  $\ell^p(\mathbb{N})$  dans  $\mathcal{E}^p$ .

Réciproquement, on a

THEOREME 2. Si la suite  $\sigma$  est telle que, pour un p,  $1 , <math>\sigma$  est l'union finie de suites  $\sigma_i$ ,  $i = 1, \ldots, n$ , telles que  $\sigma_i \cup \sigma_j$  est fortement d'interpolation  $L^p$  alors  $\sigma$  vérifie les conditions (S) et (C).

J. Garnett (communication privée) a montré le théorème suivant, meilleur que notre théorème 2, avec des arguments analogues à ceux de 2.

THEOREME [J. GARNETT]. Si la suite  $\sigma$  est telle que, pour un p,  $1 , <math>\sigma$  est l'union finie de suites  $\sigma_i$ ,  $i = 1, \ldots, n$ , telles que  $\sigma_i \cup \sigma_j$  est d'interpolation  $L^p$ , alors  $\sigma$  vérifie les conditions (S) et (C).

Les théorèmes 1 et 2 se généralisent dans le cadre abstrait défini par L. Hörmander

[3] et pour une classe de noyaux plus généraux que les noyaux de Poisson et qui vont être définis maintenant.

- 1. NOTATIONS ET PREMIERES PROPRIETES.
  - O. q sera l'exposant conjugué de p,  $\frac{1}{p} + \frac{1}{q} = 1$ .
- 1. On note,  $\forall x \in \mathbb{R}^m$  et  $\forall \rho > 0$ , le cube de  $\mathbb{R}^m$  de centre x, de côtés parallèles aux axes, et de côté  $s(Q) = \rho$ ; à chaque point z = (x,y) de  $\mathbb{R}^{m+1}_+$  et à chaque  $\alpha > 0$  on associe le cube  $B(z,\alpha) = Q(x,\alpha y)$ . On peut alors définir la fonction maximale ainsi 3:

 $\forall f \in L^1_{loc}(\lambda), \quad \forall z \in \mathbb{R}^{m+1}_+, \quad \forall \alpha > 0, \quad \text{on pose}$ 

$$M_{\alpha}f(z) = \sup_{Q(x',\rho)\supset B(z,\alpha)} \frac{1}{Q(x',\rho)} \int_{Q(x',\rho)} |f| d\lambda$$

où si E est mesurable dans  $\mathbb{R}^m$ , E désigne sa mesure de Lebesgue.

2. Soit  $\sigma = \left\{z_n, n \in \mathbb{N}\right\}$  une suite de points de  $\mathbb{R}_+^{m+1}$ . Il est facile de voir que la condition de Carleson est équivalente à la condition suivante, encore notée (C)  $\boxed{4}$ :  $\exists \ C \geqslant 0 \ t. \ q.$  pour toute suite finie  $\ J$  de  $\ N$ , on a :

(C) 
$$\sum_{n \in \mathcal{J}} |B(z_n, 1)| \le C |\bigcup_{n \in \mathcal{J}} B(z_n, 1)|.$$

On en déduit trivialement dès que  $\alpha \geq 1$ :  $\sum_{n \in \mathcal{J}} |B(z_n, \alpha)| \leq C\alpha^m |\bigcup_{n \in \mathcal{J}} B(z_n, \alpha)|$ . De plus, si (C) est vrai on a le théorème de Carleson-Hörmander 3:

$$\forall p, 1$$

la constante  $\mathbf{B}_p$  ne dépendant que de m et de p; le cas  $p=+\infty$  donne alors  $\sup_{n\in\mathbb{N}} \left. (\mathbf{M}_{\alpha}^f)(\mathbf{z}_n) \leq \left| \left|_f \right| \right|_{\infty}.$ 

On aura besoin de la variante suivante du théorème de Carleson-Hörmander, variante qui s'en déduit de suite : si  $C_1$  et  $C_2$  sont deux constantes et si,  $\forall \alpha > 0$ , on a  $C_1\alpha \leq \alpha(z_n) \leq C_2\alpha$   $\forall n \in \mathbb{N}$ , alors  $(1.1) \ \forall p, \ 1$ 

3. Soit  $\left\{k_{\mathbf{Z}}^{}$ ,  $\mathbf{z} \in \mathbb{R}^{m+1}_{+}\right\}$  une famille de fonctions normalisées dans  $L^{1}(\lambda)$ ; nous supposerons que les éléments de cette famille vérifient la condition suivante :

$$\begin{cases} \forall \ z = (x, y) \in \mathbb{R}_{+}^{m+1}, \quad \forall \ \alpha \geq 1, \quad \forall \ \xi \in \mathbb{R}^{m} \\ \left| k_{\mathbf{z}}(\xi) \right| \leq A \alpha^{m} \frac{1}{\left| B(z, \alpha) \right|} \chi_{B(z, \alpha)}(\xi) + \sum_{i=1}^{\infty} A_{i} \frac{1}{\left| Q(x, \rho_{i}) \right|} \chi_{Q(x, \rho_{i})}(\xi) \end{cases}$$

où  $\chi_E$  est la fonction indicatrice de l'ensemble  $E \subset \mathbb{R}^m$ , A est une constante ne dépendant que de m, les  $A_i$ ,  $i \in \mathbb{N}$ , ne dépendant que de m et  $\alpha$  et vérifiant  $\begin{pmatrix} \Sigma & A_i \end{pmatrix} \to 0$  quand  $\alpha \to +\infty$ , et enfin  $\forall \ i \in \mathbb{N}$ ,  $\mathbb{Q}(x, \rho_i) \supset \mathbb{B}(z, \alpha)$ .

Posons  $A' = A + \frac{1}{\alpha^m} \sum_{i=1}^{\infty} A_i$ , on voit que A' est borné indépendamment de  $\alpha$  et on a  $\forall f \in L^1(\lambda)$ ,  $\forall \alpha \geq 1$ ,  $\forall z \in \sigma$ ,

$$\int_{\mathbb{R}^{m}} |f| |k_{z}| d\lambda \leq A \alpha^{m} \frac{1}{|B(z,\alpha)|} \int_{B(z,\alpha)} |f| + \sum_{i=1}^{\infty} A_{i} \frac{1}{|Q(x,\rho_{i})|} \int_{Q(x,\rho_{i})} |f|$$

donc, par définition de Mat,

Si  $B^{C}(z,\alpha) = \mathbb{R}^{m} \setminus B(z,\alpha)$ , on voit que (N) entraîne :

$$\forall \eta \geqslant 0, \exists \alpha \geq 1, t.q. \forall z \in \sigma, z = (x,y), \forall \xi \in \mathbb{R}^m,$$

$$\left| k_{\mathbf{z}}(\xi) \right| \chi_{\mathbf{B}^{\mathbf{C}}(\mathbf{z}, \alpha)}(\xi) \leq \eta \left[ \frac{1}{\mathbf{B}(\mathbf{z}, \alpha)} \chi_{\mathbf{B}(\mathbf{z}, \alpha)}(\xi) + \sum_{i=1}^{\infty} \frac{A_{i}}{\eta} \frac{1}{\left| \mathbf{Q}(\mathbf{x}, \rho_{i}) \right|} \chi_{\mathbf{Q}(\mathbf{x}, \rho_{i})}(\xi) \right],$$

avec  $\sum_{i=1}^{\infty} \frac{A_i}{\eta} \le 1$ , d'où:

(1.3) 
$$\forall f \in L^{1}(\lambda) \qquad \left| \int_{B^{C}(z,\alpha)}^{p} k_{z}^{f} \right| \leq 2\eta(M_{\alpha}^{f})(z).$$

4. La relation (N) prouve, puisque  $k_z$  est borné dans  $L^1(\lambda)$  que :

(1.4) 
$$||_{\mathbf{k}_{\mathbf{Z}}}||_{\mathbf{p}} \leq A^{\frac{1}{q}} A^{\frac{1}{p}} y^{-\frac{m}{p}} ;$$

on fait l'hypothèse supplémentaire suivante :

$$E_{z,z'} = (B(z,\alpha) \setminus F_z) \cup (B(z',\alpha') \setminus F_{z'})$$
:

$$(1.5) \left| \int_{E_{\mathbf{Z},\mathbf{Z}'}}^{\mathbf{m}} (\lambda y^{\frac{\mathbf{m}}{q}} \mathbf{k}_{\mathbf{Z}} + \lambda' y'^{\frac{\mathbf{m}}{q}} \mathbf{k}_{\mathbf{Z}'}) (\bar{\mu} y^{\frac{\mathbf{m}}{p}} \bar{\mathbf{k}}_{\mathbf{Z}} + \bar{\mu}' y'^{\frac{\mathbf{m}}{p}} \bar{\mathbf{k}}_{\mathbf{Z}'}) \right| \ge \delta(|\lambda|^{p_{+}} |\lambda'|^{p})^{\frac{1}{p}} (|\mu|^{q_{+}} |\mu'|^{q})^{\frac{1}{q}}$$

où  $\lambda$ ,  $\lambda$ ',  $\mu$ ,  $\mu$ ' sont des nombres complexes et  $1 ; si <math>\lambda = \mu = 1$  et  $\lambda$ ' =  $\mu$ ' = 0, (1.5) se réduit à

(1.6) 
$$\int_{B(z,\alpha)\setminus F_z} y^m |k_z|^2 \ge \delta.$$



5. On suppose encore (uniquement dans le but de montrer le théorème 2) que :

$$\exists \gamma > 0, \quad \forall \alpha \ge 1, \quad \forall z \in \mathbb{R}_{+}^{m+1}, \quad \forall w \in \mathbb{R}_{+}^{m+1} \quad \text{t. q.} \quad B(z, \alpha) \supseteq B(w, \alpha) \quad \text{alors}$$

$$\left| \int_{B(z, \alpha)} k_{w} \bar{k}_{z} \right| \ge \gamma y^{-m}; \quad (z = (x, y))$$

6. On appelle  ${}^{c}_{c}{}^{p}$ ,  $1 , l'espace des intégrales de fonctions de <math>L^{p}(\lambda)$  contre la famille de noyaux  $k_{z}: u \in {}^{c}{}^{p}$  si il existe  $f \in L^{p}(\lambda)$  telle que,  $\forall z \in \mathbb{R}^{m+1}_{+}$ ,  $u(z) = \int f \, \bar{k}_{z}$ .

Compte tenu des propriétés de  $\left\{k_{\mathbf{z}}^{}$ ,  $\mathbf{z} \in \mathbb{R}^{m+1}_{+}\right\}$  on peut montrer, par une méthode standard  $\left[1\right]$ , que u possède des limites non tangentielles presque partout et que ces limites sont égales à f presque partout.

Si  $\sigma$  est une suite dans  $\mathbb{R}^{m+1}_+$  on définit enfin l'opérateur  $T_p$ ,  $1 , ainsi : <math>\forall \ u \in \mathcal{G}^p$ ,  $T_p u = \left\{ y^{\overline{p}} \ u(z), \ z \in \sigma \right\}$ .

7. Exemples. Soit  $k(\xi)$  une fonction radiale dans  $L^1(\lambda) \cap L^\infty(\lambda)$ ; pour  $z = (x,y) \in \mathbb{R}^{m+1}_+$  posons  $k_Z(\xi) = \frac{1}{y^m} \, k(\frac{\xi-x}{y})$ ; alors cette famille de noyaux vérifie toutes nos hypothèses.

Le cas le plus intéressant est celui où  $k(\xi) = \frac{c_m}{(1+\left|\xi\right|^2)^{\frac{m+1}{2}}}$ , car alors les intégra-

les contre ce noyau ne sont autres que les fonctions harmoniques dans  $\mathbb{R}^{m+1}_+$ 

## 2. DUALITE ET INTERPOLATION STRICTE.

Soit  $\sigma = \left\{z_n, n \in \mathbb{N}\right\}$  une suite dans  $\mathbb{R}^{m+1}_+$  on note  $\Sigma^{(p)} = \left\{y^{\overline{q}} k_z, z \in \sigma\right\}$  cette suite de noyaux presque normalisés et  $\mathcal{E}^p_\sigma$  le sous espace fermé dans  $L^p(\lambda)$  engendré par  $\Sigma^{(p)}$ .

On rappelle que  $\Sigma^{(p)}$  est une base de  $\mathcal{E}^p_\sigma$  équivalente à la base canonique de  $\ell^p(N)$  si on a la relation :

$$(2.1) \exists D > 0, \forall a = \left\{ a_n, n \in \mathbb{N} \right\} \in \ell^p(\mathbb{N}), \frac{1}{D} \|a\|_p \le \left\| \sum a_n y_n^{\frac{m}{q}} k_{z_n} \right\|_p \le D \|a\|_p.$$

On peut alors énoncer le lemme de dualité suivant.

LEMME 2.1. <u>La suite</u>  $\sigma$  <u>est fortement d'interpolation</u>  $L^p$ ,  $1 , <u>si</u> <u>et seulement si</u> <math>\Sigma^{(q)}$  <u>est une base de</u>  $\mathcal{E}^q_{\sigma}$  <u>équivalente à la base canonique de</u>  $\ell^q(\mathbb{N})$ .

Preuve. Supposons que  $\sigma$  soit fortement d'interpolation  $L^p$  et soit  $a = \left\{a_n, n \in \mathbb{N}\right\} \in \ell^p(\mathbb{N}), \quad f(\xi) = \sum_n a_n y_n^{\frac{m}{p}} k_{\mathbf{Z}_n}(\xi), \quad \text{on a:}$   $||f||_q = \sup_{g \in L^p(\lambda), ||g||_p = 1} \sum_n a_n y_n^{\frac{m}{p}} \int_{\mathbb{R}^2} k_{\mathbf{Z}_n} g|$   $||f||_q = \sup_{g \in L^p(\lambda), ||g||_p = 1} \sum_n a_n y_n^{\frac{m}{p}} \int_{\mathbb{R}^2} k_{\mathbf{Z}_n} g|$   $||f||_q \leq ||a||_q \sup_{g \in L^p(\lambda)} ||T_p g||_p \leq ||a||_q ||T_p||.$ 

Réciproquement, puisque  $T_p$  est surjectif et continu, il existe  $g \in L^p(\lambda)$  tel que  $T_pg = \left\{a_n \mid a_n \mid^{q-2}, \, n \in \mathbb{N}\right\}$  et  $\left\|g\right\|_p \leq D_1 \left\|a\right\|_q^{q-1}, \, D_1$  provenant du théorème de l'application ouverte et étant indépendante de a.

On a donc:

$$\begin{split} \left| \int_{\overline{f}} g \, d\lambda \right| & \leq \left| |f| \right|_{q} \left| |g| \right|_{p} \leq D_{1} \left| |a| |q^{-1}| \left| |f| \right|_{q} \\ \\ d'où \quad \left| |f| \right|_{q} & \geq \frac{1}{D_{1} ||a| |q^{-1}|} \left| \langle a , T_{p} g \rangle \right| \geq \frac{1}{D_{1}} ||a| |_{q}. \end{split}$$

Supposons maintenant que  $\Sigma^q$  soit une base de  $\mathfrak{F}^q_\sigma$  équivalente à la base canonique de  $\ell^q(\mathbb{N})$ , et soit g dans  $L^p(\lambda)$ ; on a :

$$\left\| T_{\mathbf{p}} \mathbf{g} \right\|_{\mathbf{p}} = \sup_{\mathbf{a} \in \mathcal{Q}^{\mathbf{q}}(\mathbf{N})} \left\| \sum_{\mathbf{n}} \mathbf{a}_{\mathbf{n}} \mathbf{y}_{\mathbf{n}}^{\mathbf{p}} \int \mathbf{g} \mathbf{k}_{\mathbf{z}_{\mathbf{n}}} d\lambda \right\| = \sup_{\mathbf{a} \in \mathcal{Q}^{\mathbf{q}}} \left\| \int \mathbf{f} \mathbf{g} d\lambda \right\|$$

$$\left\| \mathbf{a} \right\|_{\mathbf{q}} = 1$$

où l'on a posé  $f = \sum a_n y_n^{\frac{n}{p}} k_{z_n}$ , mais par hypothèse on a  $\|f\|_q \le D\|a\|_q$  donc  $\|T_pg\|_p \le D\|g\|_p$ .

Pour montrer que  $T_p$  est surjectif, il suffit de montrer que  $T_p^*$ , l'adjoint de  $T_p$ , vérifie une inégalité  $\|T_p^*a\|_q \geq \frac{1}{\bar{D}} \|a\|_q$ ; mais pour  $a = \left\{a_n, n \in \mathbb{N}\right\} \in \ell^q(N)$  on a  $(T_p^*a) = \sum_{n=1}^\infty a_n y_n^{\frac{m}{\bar{D}}} k_{\mathbf{Z}_n}$  et par hypothèse, on a bien  $\|T_p^*a\|_q \geq \frac{1}{\bar{D}} \|a\|_q$ .

On dira que  $\sigma$  est strictement d'interpolation  $L^p$  si  $\sigma$  est fortement d'interpolation  $L^p$  et si, de plus, le dual de  $\mathcal{E}^q_\sigma$  est isomorphe à  $\mathcal{E}^p_\sigma$ ; on a alors

LEMME 2.2. Si  $\sigma$  est strictement d'interpolation  $L^p$ ,  $1 , alors <math>\sigma$  possède la propriété d'extension linéaire bornée de  $\ell^p(N)$  dans  $\sigma^p$ .

Preuve. Puisque  $\sigma$  est fortement d'interpolation  $L^p$  alors  $\Sigma^q$  est une base de  $\mathcal{E}^q_\sigma$  équivalente à la base canonique de  $\ell^q(\mathbb{N})$  grâce au lemme 2.1, puisque  $\mathcal{E}^p_\sigma$  est isomorphe au dual de  $\mathcal{E}^q_\sigma$ , il existe une base, duale de  $\Sigma^q$ , dans  $\mathcal{E}^p_\sigma$ , c'est-à-dire une famille  $\Sigma^{rp} = \left\{ \rho_n \;,\; n \in \mathbb{N} \right\} \subset \mathcal{E}^p_\sigma$  telle que

(2.2) 
$$\forall$$
 n,n' $\in$ N,  $\langle \rho_n, y_n^m, k_{\mathbf{Z}_{n'}} \rangle = \delta_{n,n'}$  et il existe  $D_2 > 0$  t. q. 
$$\forall b = \{b_n, n \in \mathbb{N}\} \in \ell^p(\mathbb{N})$$

(2.3) 
$$\frac{1}{D_2} \|_{b}\|_{p} \leq \|_{\Sigma} b_{n} \rho_{n}\|_{p} \leq D_2 \|_{b}\|_{p}.$$

Soit encore  $b = \{b_n, n \in \mathbb{N}\} \in \ell^p(\mathbb{N})$  on pose  $U_p(b) = \sum_n b_n \rho_n$ ; grâce à (2.2)  $||U_p(b)||_p \le D_2 ||b||_p$  et grâce à (2.2) on a bien  $T_p U_p(b) = b$ .

### 3. LE THEOREME 2.

On va montrer le théorème suivant.

THEOREME. Soit  $\sigma$  une suite dans  $\mathbb{R}^{m+1}_+$  telle que pour  $1 , <math>\sigma$  soit l'union de suites  $\sigma_i$ ,  $i = 1, \ldots, n$  vérifiant  $\sigma_i \cup \sigma_j$  est fortement d'interpolation  $L^p$ , alors  $\sigma$  vérifie (S) et (C).

Que  $\sigma$  vérifie (S) est immédiat. Montrons que  $\sigma$  vérifie (C); il suffit de montrer que  $\sigma_i$  vérifie (C).

Or, puisque  $T_p$  est continu, on a, pour  $z \in \mathbb{R}^{m+1}_+$   $||_{T_p k_z}||_p^p \le ||_{T_p}||^p ||_{k_z}||_p^p ; \quad \text{mais grâce à (1.4) on a}$ 

(3.1) 
$$\sum_{n} |y_{m}^{\frac{m}{p}} \int k_{z} \bar{k}_{z_{n}}|^{p} \le ||T_{p}||^{p} C_{1}^{p} y^{-\frac{m}{q}p} \text{ avec } C_{1} = A^{\frac{1}{q}} A^{\frac{1}{p}}$$

mais 
$$\left| \int k_z \bar{k}_{z_n} \right| \ge \left| \int_{B(z,\alpha)} k_z \bar{k}_{z_n} \right| - \left| \int_{B^C(z,\alpha)} k_z \bar{k}_{z_n} \right|$$
 et utilisant

$$\text{(N) on a } \left| \int_{B^{C}(z,\alpha)} k_{z} \, \bar{k}_{z_{n}} \right| \leq \sum_{i} A_{i} \, \frac{1}{\mathbb{Q}(x,\rho_{i})} \, \int_{B^{C}(z,\alpha) \cap \mathbb{Q}(x,\rho_{i})} \left| \bar{k}_{z_{n}} \right|$$

mais  $Q(x, \rho_i) \ge B(z, \alpha)$  donc  $|Q(x, \rho_i)| \ge y^m$  dès que  $\alpha \ge 1$  et on a :

$$\left| \int_{B^{C}(z,\alpha)} k_{z} \, \bar{k}_{z_{n}} \right| \leq y^{-m} \left| \left| k_{z_{n}} \right| \left| \sum_{i=1}^{\infty} A_{i} \right| \leq y^{-m} \, A' \left( \sum_{i=1}^{\infty} A_{i} \right)$$

prenons  $\alpha \ge \alpha_0$  pour que  $(\sum_{i=1}^{\infty} A_i) \le \frac{\gamma}{2}$  et utilisons (1.7), il vient

$$\left| \int_{\mathbf{k}_{z}} \bar{\mathbf{k}}_{\mathbf{z}_{n}} \right| \ge \frac{\gamma}{2} \, \mathbf{y}^{-\mathbf{m}}$$

reportant dans (3.1)

$$\begin{aligned} & (\frac{\gamma}{2})^{p} \mathbf{y}^{-mp} & \sum_{\substack{(z_{n} \text{ t. q.} \\ B(z_{n}, \alpha) \subseteq B(z, \alpha)}} \mathbf{y}_{n}^{m} & \leq ||\mathbf{T}_{p}||^{p} \mathbf{C}_{1}^{p} \mathbf{y}^{-m(p-1)} & \text{d'où} \\ & \mathbf{B}(\mathbf{z}_{n}, \alpha) \subseteq \mathbf{B}(\mathbf{z}, \alpha) \\ & \sum_{\substack{(z_{n}, \alpha) \subseteq B(z_{n}, \alpha) \subseteq B(z, \alpha)}} |\mathbf{B}(\mathbf{z}_{n}, \alpha)| \leq ||\mathbf{T}_{p}||^{p} \mathbf{C}_{1}^{p} ||\mathbf{B}(\mathbf{z}, \alpha)|. \end{aligned}$$

Le  $\alpha_0$  ne dépendant pas de z, et z étant quelconque dans  $\mathbb{R}^{m+1}_+$ , on en déduit aisément le théorème 2.

## 4 REDUCTION DU PROBLEME.

Soit  $\sigma = \left\{ z_n \text{ , } n \in \mathbb{N} \right\}$  une suite de  $\mathbb{R}_+^{m+1}$  qui vérifie (S) et (C) et soit  $f \in L^p(\lambda)$ ; on a  $\left\| T_p f \right\|_p^p = \sum_n y_n^m \left\| \int_f \overline{k}_{z_n} \right\|^p$  donc, grâce à (1.2)  $\left\| T_p f \right\|_p^p \leq A' \sum_n \left| B(z_n, 1) \right| (M_1 f)^p (z_n) \text{ donc par (1.1), puisque } \sigma \text{ est de Carleson,}$  (4.1)  $\left\| T_p f \right\|_p \leq A'^{1/p} C^{1/p} B_p \|f\|_p$  et l'opérateur  $T_D$  est bien continu de  $L^p(\lambda)$  dans  $\ell^p(\mathbb{N})$ .

On va maintenant réduire le problème. Reprenant le découpage de  $\begin{bmatrix} 2 \end{bmatrix}$ , on constitue dans  $\mathbb{R}^{m+1}_{\perp}$  un réseau et puisque  $\sigma$  est séparée, on a :

il existe deux constantes  $C_1$  et  $C_2$  positives telles que, pour tout  $\alpha \ge 1$ , on peut diviser  $\sigma$  en une union finie  $\sigma_1, \ldots, \sigma_n$  telle que

 $\forall i \in [1, ..., n_0], \forall z \in \sigma_i, \exists \alpha(z) \text{ avec } C_1 \alpha \leq \alpha(z) \leq C_2 \alpha \text{ et } \forall z' \in \sigma_i, \text{ on a}:$ 

(4.2) 
$$\begin{cases} \text{ou bien } B(z, \alpha(z)) \cap B(z', \alpha(z')) = \emptyset \\ \text{ou bien } \begin{cases} \text{soit } B(z, \alpha(z)) \subset B(z', \alpha(z')) \\ \text{soit } B(z', \alpha(z')) \subset B(z, \alpha(z)). \end{cases} \end{cases}$$

Le nombre  $n_0$  ne dépend que de la constante de (S) et du nombre  $\alpha$ .

On va maintenant raisonner sur  $\sigma_i$ .

Construisons les générations au sens de Carleson-Garnett :  $\forall \ \mathbf{z}_{\nu} \in \sigma_{\mathbf{i}}$ , on pose

$$\begin{aligned} & \mathbf{G}_{1}(\mathbf{z}_{\nu}) = \left\{ \mathbf{z}_{\mu} \in \mathbf{\sigma}_{1}, \ \mathbf{B}(\mathbf{z}_{\mu}) \subset \mathbf{B}(\mathbf{z}_{\nu}) \quad \text{et} \quad \mathbf{B}(\mathbf{z}_{\mu}) \quad \text{maximal} \right\} \\ & \mathbf{G}_{2}(\mathbf{z}_{\nu}) = \left\{ \bigcup \mathbf{G}_{1}(\mathbf{z}_{\mu}), \ \mathbf{z}_{\mu} \in \mathbf{G}_{1}(\mathbf{z}_{\nu}) \right\}, \quad \text{etc...} \end{aligned}$$

où l'on note en abrégé :  $B(z) = B(z, \alpha(z))$ .

Puisque, a fortiori,  $\sigma_{i}$  est une suite de Carleson, (C) entraı̂ne

 $\sum_{\nu \in J} \left| B(z_{\nu}) \right| \leq C \left| C_3^m \alpha^m \right| \bigcup_{\nu \in J} \left| B(z_{\nu}) \right|, \quad \text{où } \quad J \quad \text{est une sous-suite finie de } \mathbb{N} \; ; \quad \text{posant}$ 

alors, comme dans 
$$[2]$$
,  $t_n = \sum_{z_{\mu} \in G_n(z_{\nu})} |B(z_{\mu})|$ , il vient

 $\sum_{n=1}^{\infty} t_n \le C C_2^m \alpha^m \left| B(z_{\nu}) \right|; \text{ pour tout } \beta \ge 0, \text{ il vient donc } q_0 \in \mathbb{N} \text{ avec}$ 

(4.3) 
$$\sum_{n \geq q_0} t_n < \beta |_{B(z_{\nu})}| ;$$

de plus cette relation est uniforme par rapport à  $\mathbf{z}_{\nu} \in \sigma_{i}$ .

On peut donc partager  $\sigma_i$  en une union finie  $\sigma_{i,j}$ ,  $j=1,\ldots,n_1$  telle que

a) si  $z_{\mu} \in G_q(z_{\nu})$ ,  $q < q_o$ , alors  $z_{\mu}$  et  $z_{\nu}$  sont dans des  $\sigma_{i,j}$  différents

b) Pour  $\mathbf{z}_{\nu} \in \sigma_{\mathbf{i}_1}$ , chaque  $\sigma_{\mathbf{i}_2,\mathbf{j}}$  contient au plus un point  $\mathbf{z}_{\mu}$  tel que

 $B(z_{\mu}, \alpha(z_{\mu})) \cap B(z_{\nu}, \alpha(z_{\nu})) = \emptyset$  et

 $\lfloor 2 \rfloor$ 

(4.4) 
$$\beta^{1/2} \leq \frac{\left| B(\mathbf{z}_{\nu}, \alpha(\mathbf{z}_{\nu})) \right|}{\left| B(\mathbf{z}_{\mu}, \alpha(\mathbf{z}_{\mu})) \right|} \leq \beta^{-1/2}.$$

Posons  $s = \sigma_{i,j} \cup \sigma_{i',j'}$  on a alors  $\forall z_{\mu} \in s$  il existe au plus un  $z_{\mu}$ , dans s tel que  $B(z_{\mu}) \cap B(z_{\mu}) \neq \emptyset$  et (4.4) vrai ; posons alors  $G_1'(z_{\mu})$  la première génération de  $\mathbf{z}_{\mu}$  relativement à  $\sigma_{\mathbf{i},\mathbf{j}}$  si  $\mathbf{z}_{\mu} \in \sigma_{\mathbf{i},\mathbf{j}}$  ou a  $\sigma_{\mathbf{i'},\mathbf{j'}}$  si  $\mathbf{z}_{\mu} \in \sigma_{\mathbf{i}',\mathbf{j}'}$  c'est-à-dire si  $\mathbf{z}_{\mu} \in \sigma_{\mathbf{i},\mathbf{j}}$ :

 $G'_{1}(\mathbf{z}_{\mu}) = \left\{ \mathbf{z}_{\nu} \in \sigma_{1,j} \quad \text{t. q.} \quad B(\mathbf{z}_{\nu}) \subset B(\mathbf{z}_{\mu}) \quad \text{et} \quad B(\mathbf{z}_{\nu}) \quad \text{maximal} \right\}$ 

de même si  $\mathbf{z}_{\mu} \in \sigma_{\mathbf{i}',\mathbf{i}'}$ . On définit  $G_{1}''(\mathbf{z}_{\mu})$  la première génération de  $\mathbf{z}_{\mu}$ suite où il n'est pas, en excluant  $z_{\mu}$ 

si 
$$\mathbf{z}_{\mu} \in \sigma_{\mathbf{i},\mathbf{j}}$$
,  $G_{\mathbf{i},\mathbf{j}}^{\mu}(\mathbf{z}_{\mu}) = \left\{ \mathbf{z}_{\nu} \in \sigma_{\mathbf{i},\mathbf{j}}, \ \mathbf{z}_{\nu} \neq \mathbf{z}_{\mu}, \ \mathbf{B}(\mathbf{z}_{\nu}) \cap \mathbf{B}(\mathbf{z}_{\mu}) \neq \emptyset \right\}$  et 
$$\mathbf{B}(\mathbf{z}_{\nu}) \cap \mathbf{B}(\mathbf{z}_{\mu}) \quad \text{maximal}.$$

On pose encore  $F(z_{\mu}) = \bigcup_{z_{\nu} \in G_{1}^{1}(z_{\mu}) \cup G_{1}^{"}(z_{\mu})} B(z_{\nu});$ grâce à (4.3) et (4.4), on a

$$|F(z_{\mu})| \leq \sum_{z_{\nu} \in G_{1}^{\prime}(z_{\mu}) \cup G_{1}^{\prime\prime}(z_{\mu})} |B(z_{\nu})| \leq 3 \beta^{1/2} |B(z_{\mu})|.$$

De la même manière, on définit  $G_1'(z_{\mu'})$ ,  $G_1''(z_{\mu'})$  et  $F(z_{\mu'})$  et on a :

$$|F(z_{\mu},)| \leq \sum_{z_{\nu} \in G_{1}^{1}(z_{\mu}) \cup G_{1}^{n}(z_{\mu})} |B(z_{\nu})| \leq 3 \beta^{1/2} |B(z_{\mu},)|.$$

# 5. LE THEOREME PRINCIPAL.

On va montrer que, pour 1 , on peut choisir convenablement les constantespour que s soit d'interpolation stricte L<sup>p</sup>.

Il suffit de montrer qu'il existe K > 0 telle que si  $\left\{a_k, k \in N\right\}$  est une suite de  $\ell^q(N)$ , alors il existe  $\left\{b_k, k \in N\right\} \in \ell^p(N)$  telle que, posant  $f = \sum_{\ell} b_{\ell} y_{\ell}^{\overline{q}} k_{\mathbf{Z}_{\ell}}$  et  $g = \sum_{\ell} a_{\ell} y_{\ell}^{\overline{p}} k_{\mathbf{Z}_{\ell}}$  on ait :

en effet, on sait déjà, en utilisant Hölder et la relation (4.1) que :

(5.2) 
$$||\mathbf{f}||_{\mathbf{p}} \le A^{\frac{1}{q}} C^{\frac{1}{q}} B_{\mathbf{q}} ||\mathbf{b}||_{\mathbf{p}}$$
 et  $||\mathbf{g}||_{\mathbf{q}} \le A^{\frac{1}{p}} C^{\frac{1}{p}} B_{\mathbf{p}} ||\mathbf{a}||_{\mathbf{q}}$ 

et donc (5.1) prouve alors que  $\left\{y_{\ell}^{\overline{p}} k_{z_{\ell}}, \ell \in \mathbb{N}\right\}$  est une base de  $\mathcal{E}_{s}^{q}$  équivalente à la base canonique de  $\ell^{q}(\mathbb{N})$  et prouve aussi que le dual de  $\mathcal{E}_{s}^{q}$  est  $\mathcal{E}_{s}^{p}$ .

Soit donc  $\mathbf{z}_u \in \mathbf{s}$ , et si il existe  $\mathbf{z}_{u'} \in \mathbf{s}$  tel que  $\mathbf{B}(\mathbf{z}_u) \cap \mathbf{B}(\mathbf{z}_{u'}) \neq \emptyset$  et (4.4) vrai, on pose

(5.3) 
$$E_{11} = (B(\mathbf{z}_{11}) \setminus F(\mathbf{z}_{11})) \cup (B(\mathbf{z}_{11}) \setminus F(\mathbf{z}_{11})).$$

Si  $\mathbf{z}_{11}$ , n'existe pas, on pose

(5.4) 
$$E_{II} = B(\mathbf{z}_{II}) \setminus F(\mathbf{z}_{II}).$$

Comme dans [2], les  $E_u$  sont disjoints sauf si  $E_u = E_v$  auquel cas, on a u = v où u' = v.

Soit  $\left\{ \mathbf{E}_{\nu} \text{ , } \nu \in \mathbb{N} \right\}$  une indexation sans répétitions des  $\mathbf{E}_{\mathbf{u}}$ ; on a alors, posant  $\mathbf{a}_{\nu}$ ,  $\mathbf{b}_{\nu}$ ,  $\mathbf{c}$  si  $\mathbf{z}_{\nu}$ , n'existe pas :

$$\begin{vmatrix} \langle f, g \rangle \end{vmatrix} = \begin{vmatrix} \sum_{\nu} \int_{E_{\nu}}^{\sigma} (a_{\nu} y_{\nu}^{\overline{p}} k_{z_{\nu}} + a_{\nu}, y_{\nu}^{\overline{p}}, k_{z_{\nu}}) \overline{f} \\ + \sum_{\nu} \int_{E_{\nu}^{C}}^{\sigma} (a_{\nu} y_{\nu}^{\overline{p}} k_{z_{\nu}} + a_{\nu}, y_{\nu}^{\overline{p}}, k_{z_{\nu}}) \overline{f} \end{vmatrix}$$

soit  $|\langle f,g \rangle| \ge |I_1| - |I_2|$ .

Voyons 
$$I_2$$
.  $I_2 = \sum_{\nu} \int_{E_{\nu}^{C}} (a_{\nu} y_{\nu}^{m} k_{z_{\nu}} + a_{\nu}, y_{\nu}^{m}, k_{z_{\nu}}) \bar{f}$ 

et 
$$E_{\nu}^{c} = (B(z_{\nu}) \setminus F(z_{\nu}))^{c} \cap (B(z_{\nu}) \setminus F(z_{\nu}))^{c}$$

donc 
$$|I_2| \le \sum_{\nu} \int_{(B(z_{\nu}) \setminus F(z_{\nu}))^c} |a_{\nu}| |y_{\nu}^{\frac{m}{p}} |k_{z_{\nu}}| |f| + \sum_{\nu} \int_{(B(z_{\nu}) \setminus F(z_{\nu}))^c} |a_{\nu}| |y_{\nu}^{\frac{m}{p}} |k_{z_{\nu}}| |f|$$

mais  $(B(z_{\nu}) \setminus F(z_{\nu}))^{c} = B^{c}(z_{\nu}) \cup F(z_{\nu})$  et  $(B(z_{\nu}) \setminus F(z_{\nu}))^{c} = B^{c}(z_{\nu}) \cup F(z_{\nu})$  cela induit une décomposition de  $|I_{2}|$ :

$$|I_2| \le I_3 + I_4 + I_5 + I_6.$$

grâce à (1.3), il vient alors

$$\left|I_{3}\right| \leq \left\|\left\{a_{\nu}\right\}\right\|_{q} 2\eta \left[\alpha^{-m} \sum_{\nu} \left|B(z_{\nu})\right| \left(M_{\alpha}f\right)^{p}(z_{\nu})\right]^{1/p} \quad \text{et}$$

utilisant (1.1)

(5.5) 
$$|I_3| \le 2\eta \, C^{\frac{1}{p}} B_p ||\{a_{\nu}\}||_q \, ||f||_p.$$

Voyons 
$$I_4$$
.  $I_4 = \sum_{\nu} \int_{B_{\nu}^c} |a_{\nu}| |y_{\nu}^{\frac{m}{\bar{p}}} |k_{z_{\nu}}| ||f|$ .

Le même raisonnement que pour  $I_3$  vaut et on a

(5.6) 
$$|I_4| \le 2\eta \, C^{1/p} \, B_p ||\{a_{\nu},\}||_q \, ||f||_p.$$

Voyons 
$$I_5$$
.  $I_5 = \sum_{\nu} \int_{F_{\nu}} |a_{\nu}| y_{\nu}^{\frac{m}{p}} |k_{z_{\nu}}| |f|$ 

$$\text{par H\"{o}lder, on a: } \left| I_{\underline{5}} \right| \leq \left\| \left\{ a_{\underline{\nu}} \right\} \right\|_{q} \left[ \sum_{\nu} y_{\nu}^{m} ( \int_{F_{1\nu}} \left| k_{Z_{1\nu}} \right| \left| f \right| )^{p} \right]^{1/p}$$

d'où

(5.7) 
$$|I_{5}| \le \|\{a_{\nu}\}\|_{q} \left[\alpha^{-m} C_{2}^{-m} \sum_{\nu} |B(z_{\nu})| \left(\int_{F_{\nu}} |k_{z_{\nu}}| |f| \right)^{p}\right]^{1/p}$$

mais, à cause de la définition de  $F_n$ , on a :

$$\begin{split} & \int_{F_{\nu}} |k_{z_{\nu}}||_{f} | \leq \sum_{z_{\mu} \in G_{1}^{\prime}(z_{\nu}) \cup G_{1}^{\prime\prime}(z_{\nu})} \int_{B(z_{\mu})} |k_{z_{\nu}}||_{f} | \\ & \int_{F_{\nu}} |k_{z_{\nu}}||_{f} | \leq \sum_{z_{\mu} \in G_{1}^{\prime}(z_{\nu}) \cup G_{1}^{\prime\prime}(z_{\nu})} C_{2}^{m} A \alpha^{m} \frac{1}{|B(z_{\nu})|} \int_{B(z_{\mu})} |f|. \end{split}$$

Posons  $U_{\nu}(f) = \sum_{z_{\mu} \in G_{1}^{1}(z_{\nu}) \cup G_{1}^{m}(z_{\nu})} \frac{1}{|B(z_{\nu})|} \int_{B(z_{\mu})} |f|, \text{ il vient, en remarquant que :}$   $\frac{1}{|B(z_{\nu})|} = \left(\frac{|B(z_{\mu})|}{|B(z_{\nu})|}\right)^{1/p} \left(\frac{|B(z_{\mu})|}{|B(z_{\nu})|}\right)^{1/q} \frac{1}{|B(z_{\nu})|}$ 

et en utilisant Hölder:

$$U_{\nu}(\mathbf{f}) \leq \left\{ \sum_{\mathbf{z}_{\mu} \in G_{1}^{1} \cup G_{1}^{n}} \frac{\left| \mathbf{B}(\mathbf{z}_{\mu}) \right|}{\left| \mathbf{B}(\mathbf{z}_{\nu}) \right|} \right\}^{\frac{1}{q}} \left\{ \sum_{\mathbf{z}_{\mu} \in G_{1}^{1} \cup G_{1}^{n}} \frac{\left| \mathbf{B}(\mathbf{z}_{\mu}) \right|}{\left| \mathbf{B}(\mathbf{z}_{\nu}) \right|} \int_{\mathbf{B}(\mathbf{z}_{\mu})} \left| \mathbf{f} \right|^{-p} \right\}^{\frac{1}{p}}$$

$$\max_{\mathbf{z}_{\mu} \in G_{1}^{1} \cup G_{1}^{n}} \frac{\left| \mathbf{B}(\mathbf{z}_{\mu}) \right|}{\left| \mathbf{B}(\mathbf{z}_{\nu}) \right|} \leq 3\beta^{1/2}$$

et 
$$\frac{1}{|B(z_{\mu})|} \int_{B(z_{\mu})} |f| \leq M_{\alpha} f(z_{\mu}) \quad donc$$

$$U_{\nu}(f) \leq 3^{\frac{1}{q}} B^{\frac{1}{2q}} \left\{ \sum_{z_{\mu} \in G_{1}^{\prime} \cup G_{1}^{\prime\prime}} \frac{|B(z_{\mu})|}{|B(z_{\nu})|} (M_{\alpha} f)^{p}(z_{\mu}) \right\}^{1/p}$$

reportant dans (5.7) il vient :

$$|_{I_{5}}| \leq 3^{\frac{1}{q}} A C_{2}^{m} C_{1}^{-\frac{m}{p}} \beta^{\frac{1}{2q}} \alpha^{m} ||_{\{a_{\nu}\}}||_{q} \{\alpha^{-m} \sum_{\nu} |_{B(z_{\nu})} |\sum_{z_{\mu} \in G_{1}^{+}(z_{\nu}) \cup G_{1}^{"}(z_{\nu})} \frac{|_{B(z_{\mu})}|}{|_{B(z_{\nu})}|} (M_{\alpha}^{f})^{p} (z_{\nu})^{\frac{1}{p}}$$

On remarque alors que  $\tilde{s} = \bigcup_{\nu} G_1^{\nu}(z_{\nu}) \cup G_1^{\nu}(z_{\nu})$  est une suite de points <u>distincts</u> de s et donc que  $\tilde{s}$  est de Carleson de constante C; (1.1) implique alors :

(5.8) 
$$|I_5| \le K \beta^{\frac{1}{2q}} \alpha^m ||\{a_{\nu}\}||_q ||f||_p$$

où K est une constante numérique.

Voyons 
$$I_6 = \sum_{\nu} \int_{F(z_{\nu,l})} |a_{\nu}| |y_{\nu}^{\frac{m}{p}} |k_{z_{\nu}}| |f|.$$

Comme pour I5, on obtient

(5.9) 
$$|I_{6}| \leq K \beta^{\frac{1}{2q}} \alpha^{m} ||\{a_{\nu},\}||_{q} ||f||_{p}.$$

De (5.5), (5.6), (5.8) et (5.9) on tire

$$|I_{2}| \leq ||f||_{p} \left[ 2\eta C^{1/p} \beta_{p} (||\{a_{\nu}\}||_{q} + ||\{a_{\nu},\}||_{q}) + K \beta^{\frac{1}{2q}} \alpha^{m} (||\{a_{\nu}\}||_{q} + ||\{a_{\nu},\}||_{q}) \right].$$

Soit

(5.10) 
$$|I_2| \le ||f||_p ||a||_q \left[ 2\eta \, C^{1/p} \, \beta_p + K \, \beta^{\frac{1}{2q}} \, \alpha^m \right].$$

$$\frac{Voyons I_{8}}{I_{8} = \sum_{\nu} \sum_{\mu \neq \nu} \int_{E_{\nu}} (a_{\nu} y_{\nu}^{\overline{p}} k_{z_{\nu}} + a_{\nu}, y_{\nu}^{\overline{p}}, k_{z_{\nu}}) (b_{\mu} y_{\mu}^{\overline{q}} \overline{k}_{z_{\mu}} + b_{\mu} y_{\mu}^{\overline{q}} \overline{k}_{z_{\mu}})$$

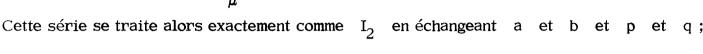
on majore  $I_{8}$  par les valeurs absolues dans les intégrales et on pose

$$\widetilde{g} = \sum_{\nu} \left| a_{\nu} y_{\nu}^{\overline{p}} k_{z_{\nu}} + a_{\nu} y_{\nu}^{\overline{p}} k_{z_{\nu}} \right| ;$$

remarquant que  $E_{\nu} \subset E_{\mu}^{c}$  pour  $\mu \neq \nu$  on a

il vient donc par (5.10)

$$|I_{8}| \leq \sum_{\mu} \int_{E_{\mu}^{C}} |b_{\mu}|^{\frac{m}{q}} k_{z_{\mu}} + b_{\mu}^{\frac{m}{q}}, k_{z_{\mu}} ||_{g}^{\infty}|.$$



$$|I_8| \le ||\tilde{g}||_{q} ||_{b}||_{p} \left[ 2\eta C^{1/q} B_q + K \beta^{\frac{1}{2p}} \alpha^m \right].$$

$$\frac{\text{Voyons enfin} \quad I_{7}}{I_{7} = \sum_{\nu} \left( a_{\nu} y_{\nu}^{\overline{p}} k_{z_{\nu}} + a_{\nu}, y_{\nu}^{\overline{p}}, k_{z_{\nu}} \right) \left( b_{\nu} y_{\nu}^{\overline{q}} \overline{k}_{z_{\nu}} + b_{\nu}, y_{\nu}^{\overline{q}}, \overline{k}_{z_{\nu}} \right)}$$

grâce à (1.5) on sait qu'il existe  $b = \{b_u, u \in \mathbb{N}\} \in \ell^p(\mathbb{N})$  tel que

$$|I_{7}| \geq \delta ||a||_{q} ||b||_{p}.$$

On a finalement :  $|\langle f, g \rangle| \ge |I_7| - |I_2| - |I_8|$ 

remarquant que  $\|\mathbf{g}\|_{\mathbf{q}} \leq \mathrm{K}^{\intercal} \|\mathbf{a}\|_{\mathbf{q}}$  grâce à (5.2) de même  $\|\mathbf{f}\|_{\mathbf{p}} \leq \mathrm{K}^{\intercal} \|\mathbf{b}\|_{\mathbf{p}}$ , on choisit d'abord  $\alpha$  assez grand pour que

(5.13) 
$$2\eta K' C^{1/p} B_p < \frac{\delta}{8}$$

et pour que

(5.14) 
$$2\eta K'' C^{1/q} B_q < \frac{\delta}{8}$$

ce qui est possible grâce à (1.3) ; ensuite on choisit  $\beta$  assez petit pour que

(5.15) 
$$KK'' \alpha^{m} \beta^{\frac{1}{2q}} < \frac{\delta}{8} \text{ et}$$

(5.16) 
$$KK'' \beta^{\frac{1}{2p}} \alpha^{m} < \frac{\delta}{8}.$$

Ce qui est possible grâce à (4.3); de (5.10), (5.11) et (5.12) on tire alors

$$\left|\left\langle f,g\right\rangle \right| \geq \frac{\delta}{2} \left|\left|a\right|\right|_{q} \left|\left|b\right|\right|_{p}$$

ce qui prouve (5.1) et achève la preuve du théorème.

REMARQUE. Les inégalités (5.15) et (5.16) ne peuvent être vraies simultanément que si  $\frac{1}{p}$  et  $\frac{1}{q}$  sont strictement positifs donc si  $1 ; toutefois, si <math>p = +\infty$ , on montre, en prenant g dans  $L^{\infty}(\lambda)$ , que :  $|\langle f,g \rangle| \ge \frac{\delta}{2} ||a||_1 ||g||_{\infty}$ ; on retrouve ainsi le résultat de L. Carleson et J. Garnett, mais comme on n'a pu choisir g dans  $G^{(\infty)}(x)$  on ne peut plus affirmer que x est strictement d'interpolation x et donc que x a la propriété d'extension linéaire bornée de x et x dans x dans x dans x dans x dans x de x

STEIN, E. and WEISS, G. Fourier analysis on Euclidean spaces. Princeton Univ. Press (1971).

<sup>[2]</sup> CARLESON, L. and GARNETT, J. Interpolating sequences and separation properties. J. Anal. Math. 28 (1975).

HORMANDER, L. L<sup>p</sup> estimates for (pluri-) subharmonic functions. Math. Scand. 20 (1967).

VAROPOULOS, N. Sur un problème d'interpolation. C. R. Acad. Sc. Paris 274 (1972).

