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PREFACE

The aim of this work is to present recent developments in the theory of

the Riemann zete-function. Apart from the renowned classic of E.C. Titchmarsh [8],
there seems to exist only the book of H.M, Edwards (j] devoted solely to the topic
of the Riemann zeta~function, Despite the undisputable merite of these works, many
recent developments in zeta-function theory make it desirable to have a text which
contains a systematic account of recent developments in the theory. The genersl
high quality of Titchmarsh's book makes it unnecessary to repeat most of the mate-
rial presented there, and my purpose in writing this text was more to continue -
where Titchmarsh's work stopped, than to provide a compléte and systematic account
of the whole theory of the Riemann zeta-function., However efforts have been made
to make the text as self-contained as possible while keeping its length moderate,
so that it does not seem absolutely necessary for the reader to know Titchmarsh's
book in detail, although a standard knowledge ofvcomplex analysis and basic
zeta-function theory is required. In this way it seems that the text will be of
interest also to those who are not expertis in the field, but do wish to get acquain-
ted with recent developments of the subject.

The great abundance and depth of the existing material naturally set a
limitation to the size and scope of this text; hence the title "Topics in recent
zeta~-funetion theory", since the work does not pretend to cover all 'important
aspects of modern zeta-function theory. A word will be said now about what is and
what is not included in this text. As in Titchmarsh's book [ﬁ], no prime number
theory istouched, although this topic is intimately connected with the zeta-fun-
ction. The material concerning prime nﬁmbers (see for instance the standard work
of K, Prachar [1], which does not contain many new results which appeared sub-
sequtntly) is so vast that it certainly cannot be adequately covered today within
a single volume together with the zeta-function, and one certainly feels that it
ought to be treated separately. Another important topic closely related to the

zeta~-function which is also omitted both by Titchmarsh [8] and here is the theory
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of L-functions and related more general Dirichlet series. A great richness of ma-
terial also exists here, but there is another important reason which makes the
Riemann zeta-function worth being treated separately and gives it & unique posi-
tion among all L-functions. Naﬁely the absence of the analogue of Atkinson's
formula (see Chapter 11) for g |K(1/2+it)12dt for L-functions mekes a number

1]
of very important new results impossible to obtain at present for L-functions.

It has become fashionable during the last 10-15 years to treat the Riemann zeta~
function and L-functions often together (especially in gero-density estimates),
but recent results on C(s) make it doubtful whether such a unified approach is
worthwhile,

A word must be said now about two very famous classical conjectures of
zeta-function theory which are also not discussed systemetically in this text.
As the reader has probably guessed, the conjectures in question are LindelBf's
( L(1/2+it) = [t1®) and Riemann's (all non-trivial zeros of the zeta-function
have real parts equal to 1/2). An extensive discussion of these conjectures and
their consequences has been given in Chapters 1% and 14 of E.C. Titchmarsh [8],
which represent one of the high points of his book, As is well-known, both of
these conjectures (Riemann's implies Lindel3f's) are even today neither proved
nor disproved. Despite some important new results (like N. Levinson's paper {1]
that more than a third of zeros of [(s) lie on the line Res = 1/2) and impre-
ssive numerical evidence (R. Brent (1] stated that the first 75 000 001 zeros of
C(s) are simple and on the critical line), the Riemann hypothesis is in some ways

as remote as ever - witness the fact that one cannot prove yet the estimate
m

S\t(1/2+it)lkdt~<< 2t gor any k > 4, and this estimate would follow already
/]

from the Lindeldf hypothesis, Another interesting conjecture has been made fairly
recently by H.L. Montgomery [3] (see D,A. Goldston (1] for some applications),
and bears the name "the pair correlation conjecture'", However I have found it
preferable to deal in general only with unconditional results, leaving aside
conjectures like Lindeldf's or Riemann's of which personally I disbelieve the

latter one,
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The choice of topics which are covered in a work such as this one must
be highly selective, and at the end in some sense personal, It is to.Ee regretted
that all important recent results in zeta-function theory could not find their
place here: some because of the length of the proofs (like the aforementioned
result of N, Levinson [f]) and some for various other reasons. For example I have

felt that the proof of the best known zero-free region (see A. Walfisz Eﬂ),

namely & > 1 - Clog-Z/BItKloglog]tl)-1/3, does ﬁot necessarily deserve to be
given here, The result is not so new really, and besides its proof comes only

from a more careful application of I.M. Vinogradov's classical method of the
estimation of exponential sums than was done earlier., Some important results not
fully treated in the text are mentioned with due references in Notes at the end

of each chapter (except the first, which is of an introductory nature). These
Notes also contain historical discussion, elucidation of certain details in proofs,
etc,

After this apologyabout the topics that have been omitted it seems appro=~
priate to discuss briefly the material that has been given in the text. It might
be said that the general systematic approach is of the "Voronoi-Atkinson" type,
since it turns out that the formulas of Voronof (Chapter 3) and Atkinson (Chapter
11) play a prominent rolé in recent zeta-function-theory. Problems are often
reduced to an estimation of a finite exponential sum which often may be treated
either directly by (variants of) van der Corput's method or by Voronoi's summation
formulé, and the guality of the final result depends on our capability to esti-
mate the exponential sums in question., Pure zeta-function theory begins with
Chapter 4, which presents various approximate functional equations. The first
chapter contains loosely connected analytic results and formulas which are often
used in the sequel, while Chapter 2 coﬁtains a rather extensive treatment of
exponential sums and integrals, Van der Corput's theory cf exponent pairs (in a
simplified form) is fully.explained, and is used lgter on several occasions,

Chapter 3 is devoted to Voronoi's summation formula and related problems.
This topic reguires the knowledge of the theory of Bessel functions, and all the
facts about Bessel functions that are used in this text may be found in G.N.

Watson's standard treatise (ﬁl on the subject.
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Various approximate functional equations are discussed in Chapter 4,which.

contains the author's hitherto unpublished material on the approximate functional
equation for Ksz)Q Also given there is the approximate functional equation
based on the so-called "reflection principle”, which is very useful in zero-density
estimates,

Chapter 5 presents a proof of the fourth power moment for the zeta-function
Although the sharpest known result due to D,R. Heath-Brown [3] is not given,the
difficult classical asymptotic formula of A.E. Ingham [f] is proved in g relati-

vely simple way, using an approach due to K. Ramachandra [3],[5].
*+6

The estimates for S'IZG$+it)‘2dt, G = o(T) are discussed in Chapter 6,
-6 .
and these estimates form the basis of many results of later chapters. The proof

of the important Theorem 6.2, originally given by Heath-Brown (1] with the aid
of Atkinson's formula, is baged here on the use of Voronoi's formula. Order esti-
mates for Z(s) in the critical strip are also given, including G, Kolesnik's
estimate [6] that [(1/2 + it) << 135/216¢¢

One of the parts of this work which shows best how much zeta-function
theory has advanced since the days of Titchmarsh's classic (8] is Chapter 7, which
deals with estimates for power moments of the zeta~function higher than the

fourth. Based mainly on suthor's paper [2], this chapter gives among other things
l'!

the important estimate Slt(1/2+it)’12dt << Tzlog17T of D.R. Heath-Brown [1]. In
: \

spite of many recent results in this area of research one feels that still much
more can be done in the future.

Chapter 8 is concerned with estimates of Xh+1 - Xh, the difference of
ordinates of consecutive zeros of the zeta-function on the critical line, The

author's result yh+1 - yh << yz+e, u = 0.1559458... 1is presented as the limit

of a certain method based on the use of the theory of exponent pairs. This chapter
is virtually independent of other chapters, except Chapter 2,

Zero-density estimates are treated in Chapter 9, All the best-known
results for N(d,T) (except when d is very close to 1/2 or to 1) are given, and
the importance of power moments for the estimation of N(J,T) is steessed, The

modern flexible mebhods which use the Halész-Montgomery inequality have proved
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very effective in the range ¢ > 3/4, and variants of this approach are extensi-

vely discussed,

Chapter 10 is the analogue of Chapte: 12 of Titchmarsh [8], and is devoted
to divisor problems, I have shared Titchmarsh's viewpoint that divisor problems
should be included in a work on the zeta-function of Riemann, and recent inves-
tigatioms of M. Jutila [ﬁ},[B},[EJ certainly confirm the validity of this viewpoint,
It is now evident that a direct connection between /\(x) and £(1/2 + it) exists,
an analogy also suggested by Atkinson's formula., Thus it turns out that divisor
problems are an important and intrinsic part of zeta-function theory. Besides
achieving an almost overall improvement of results given in Chapter 12 of Titch-
marsh [8] (some hitherto unpublished material is included) the chapter contains
a discussion of the circle problem. I have tried to give a unified approach to
the three classical problems of'analytic number theory, namely the circle problem,
the ordinsry divisor problem, and the problem of the order of Z(1/2 + it). The
existence of a truncated Voronof-type formula in all three of these problems (for
the zeta-function this is Theorem 6.2 really) makes all three problems very simi-
lar as they can be reduced to the estimation of analogous exponential sums, Fur-
ther evidence for this viewpoint is contained in Chapter 11, where power moments
for E(x) are derived, which are the exact analogues of the corresponding esti-
mates for /\(x) and P(x) in Chapter 10,

The last chapter is Chapter 11,which is centered around the single deepest
result of this text - Atkinson's formula for E(T) - and some of its applications,
It is to be regretted that this beautiful formula has been neglected for a very
long time, until Heath-Brown [2] made the first important application to the
mean square of E(t) and in [1] to the $welfth power moment estimate, Several app-
lications of Atkinson's formula are considered iﬁ Chapter 11, and it is certain
that the possibilities of Atkinsont's formula are far from being exhausted,

Finally I wish to.thank all number-theorists who have read (parts of)
the manuscript and made valuable remarks, especially D.R. Heath-ﬁrown, M.N.

Huxley, M, Jutile and H,-E, Richert.

Belgrade,vNovember 1982, Katedra Matematike RGF-a
Universiteta u Beogradu,Djudina 7

11000 Beograd, Jugoslavija



NOTATION
AR

Owing to the nature of this text no absolute consistency in notation could have
been attained. Notation commonly used throughout the text is explained here, while
specific notation introduced in the proof of a theorem or lemma is given at the

proper place in the body of the text.

lF,m,n s natural numbers (positive integers).

S,Z,W 3 complex variables (Res and Ims denote the real and imaginary part

of 8 respectively; common notation & = Hes and t = Ims ).

Res F(s) s denotes the residue of the function F(s) at the point s = S, -

S=8
(o]

oD
£(s) : Riemann's zeta-function defined by {(s) = :Z:nfs for Res > 1 and
n=1

otherwise by analytic continuation. -

tZ-1

M(z) ¢+ the gamma-function is defined by ['(z) = S‘ ¢ tat for Rez > O,
0

otherwise by analytic continuation,

7z
expz = e ,

e(z) ¢+ = o2
ty X,y real variables.

¥ + Buler's constant, defined by ) = - ) e *logx-dx = 0.5772157... .

AL(s) ¢+ the function defined by [(s) = 7ﬁ(s)z(1-s), so that by the functional
equation for the zeta-function ix(s) = (2m)®%/(2r(s)cos (ws/2)).

A,C,C1,... : absolute positive constants (not necessarily the same at each

ocourrence in a proof).
@q s the greatest integer not exceeding the real rnumber x.

:Z:f(n) ¢ a sum taken over all natural numbers not exceeding x; the empty sum
n<x

is defined to be zero.
ZD 'f(n) :+ +the same as above, only ! denotes that when x is ar integer one
should teke the last term in the sum as %f(x) and not as f(x).
dk(n) : the number of ways n can be written-as a product of k > 2 fixed
factors; d,(n) = d(n) is the number of divisors of n.
r(n) ¢ the number of ways n can be written as a sum of two integer squares.
o0

/AOQ) : the MObius function, defined by 1/f(s) = M(n)n_s (Res > 1).
n=1
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- Res x° Z'k(s)s—1 for k = B,Az(x) = /\(x) in Chapter 10.
n<x s=1 :

P
Vo
X
H
™M
.
=)
R

>
X,
f

Z'd(n) - xlogx - (2J-1) - 1/4 (but see Chapter 1C¢ for a modified
N<xX

definition).

P(x) = Z'r(n) - stx - 1 (but see Chapter 10 for a modified definition).

n<x

Nxn) the von Mangolat function defined by /\(n) = logp if n = p" (p prime)
and zero otherwise.

JP (z),]K.p(z),Yp (z) s notation for the Bessel functions of index p defined in Chapter 3.

m
E(T) ¢+ = S\£(1/2 + it)|%at - Tlog(m/2m) - T(2)-1).
[
N(4,T) s denotes the number of zeros §= + 1y of f£(s) (r),b’ real) for
which B> & =0, -T< y <
ar sinhz s = log(z + ‘/22 + 1),
(pya) an exponent pair ( a certain pair of real numbers for which

O0<p=x 1/2 < q < 1; precise definition and properties are given in

Chapter 2).

..

Y(=)

x - (x] - 1/2 (but only in Chapter 3 ~(z) = ' (z)/I'(z), while in Notes
of Chapter 9 VY(x) = Z/\(n))
n<x
£(x) ~g(x) as x> x_ + means lim f(x)/j(x)
X%
£(x) = 0(g(x)) s means |f(x)| < Cg(x) for x> x_ and some gbsolute constant C > 0.
Here f(x) is a complex function of a real varibble and g(x) is a
positive function for x = x_.
f(x) << g(x) + means the same as f(x) = 0(g(x)).
f(x) 3 g(x) 1 means that both f(x) << g(x) and g(x) << f(x) hold.
(a,b) 3 means the interval a < x <b.
{a,b] s means the interval a <x <b.
S)g s an arbitrarily small positive number, not necessarily the same at each

occurrence in the proof of & theorem or lemma,

et [a,,b_l s the class of functions having a continuous r-th derivative in [a,b].
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f(x) = o(g(x)) s means that for eachg> ( there exists x_ such that [£(x)] < eg(x)
far x > x_, where g(x) is a positive function for x = X
f(x) = R+(g(x)) : means that there exists a suitable constant C > O such that

f(x) > Cg(x) hialds for a sequence x = x ~with lim x = ®.
n-y00

£(x) = 92_(g(x))

means that there exists a suitable constant C = 0 such that

f(x) <~Cg(x) holds for a sequence X = x with lim x = .
n-sm

means that both f(x) =S?+(g(x)) and f(x) =52 (g(x)) holds.

£ (x)

S?i(g(X))

-

[

£(x) = Se(e(x))

means that [f(x)\ =SB+(g(x)).

g8(e)+¢€

c(@) s for real o defined by [(0 + iT) =< T for any € = 0 and T > To(é.).
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CHAPTER 1 10

INTRODUCTORY RESULTS
_ IR

81, Introduction

Thisg chapter contains prelimginary results which will be repeatedly used
in later chapters., Most of the material consists of well-known analytic facts which
are given here as a reference for the sake of completeness of the exposition. This
seems preferable to. quoting these results from the literature each time the need
for such a result arises at a specific place in the body of the text, The material
presented in this chapter is only lcosely connected, and the choice for its inclu-
sion is solely motivated by needs of later chapters. For this reason detailed proofs
are not given, and sometimes only a reference to a standard text is offered, where
proofs and a more detailed account may be found. It is clear that the criteria for
deciding what is well-known and what is not are highly personal, so that it may
oceur to the reader that some additional material should have been included here,
while some could have been omitted.

As in the whole text, standard notation is being used, albeit absolute
consistency in notation can hardly be ever achieved. Whenever possible the notation
of E.C. Titchmarsh's book [é] on the zeta-function is used, and although it is not
absolutely necessary it will help the reader if he is familiar with the contents
of Titchmarsh's book. One of the results whi€h certainly belongs here in Chapter 1
is VoronoI's summation formula, but due to its complexity and importance this
formula will be treated separately in Chapter 3. As Chapter 2 is devoted to expo-
nential sums and integrals, it may be Jjustly said that pure zeta-function theory

begins with Chapter 4.

§2. Mellin transfprms

4-1 i
Let £{x)x belong to L(C,) and let f(x) have bounded variation in every

finite x-interval, Then
o0

(1.1) F(s) = SXS—1f(x)dx, s =4+ it (3,t real)
[«

is defined as the Mellin transform of f(X), From (1.1) we can recover f(x) by Mel-

lint's inversion formula
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a+im
(1.2) Jé-(f(x+0)+f(x-0)) = (2mi)'1lim SF(s)x-sds.
Témdm‘

In the case when f(x) is continuous (1.2) can be obtained without difficulty
from (1.1), while in the general case it seems more suitable to write (1.1) as a
Fourier transform by a change of variable and thento appeal to résults from the theo-
ry of Fourier transforms and integrals. A detailed account of (1,1) and (1,2) is to
be found in E.C. Titchmarsh's book [7] on Fourier integrals. Relations (1.1) and (1.2)

are inverse to one another, Namely if
3tioo

(1,3) @ - @’ { rees,
d-io0

where F(4 + iu) belongs to L(-® , o ) and is of bounded variation in the neighbor-
hood of the point u = t and (1.3) holds, then

(168)  3fF(3+ 1(2+0)) + F(& + 1(4-0))} = 1lim £ (x) T

a-2®0 ¢4

dx,

and in most applications (1.4) will reduce to (1.1).
An analogue of the well-known Parseval's identity for Fourier integrals holds
also for Mellin transforms; i.e. if f and F are connected by (1.1), then

(1.5) (2m)™" 5 I7(e + it)| %at = S £2(x)x* " ax.

- 00 o
As is the case with (1.2), this identity mey be derived from -Parseval's

identity for Fourier transforms, or one may argue directly by writing

d+ioo 0 &+io0

(2ﬂri)_15 F(s)F(s)ds = 5f(x)((29ri)_1 5 F(s)xa-it-1ds)dx =
8-ic0 ° feo

poy . +io0 : 00

S £(x) 23 (1) 5 F(s)x %ds)dx = j £2(x)x2 Tax,

] d-ioo ¥

where (1.1) and (1.,2) were used under the assumption that f is continuous, Setting
8 = 4+ it we obtain (1.5).

Formulas analogous to (1.5) hold also for two or more functions., As an
example, suppose that F(s) and G(8) are Mellin transforms of two continuous functions

f(x) and g(x) respectively. Then

dtioo dt+igo 00

(1.6) (zsri)"1 F(s)G(1-8)ds = (27:1)'1 G(1-s)(§f(x)x8_1dx)ds =

2-io00 3-ie0 o



‘3+wo <0 12

(29!i)~1 5 f(x)dx g G(1-s)xs-1ds = \g: f(x)g(x)dx.
0 2-ioo (4

Finally it may be mentioned that inversion of the gamma-integral (see §{6)
©

M) = Se-xxs-"dx, (Res > 0)

gives by (1.2) the useful relation
: : "o

1.7) e X = (27(:'.)"1 S MN(s)x %as. (c,x > 0)

C-imo

§3. Inversion formulas for Dirichlet series

, po
We shall consider Dirichlet series of the form A(s) = z,ann S which
n=1

have a finite abscissa of absolute convergence,and we shall set f(x) = :E}an. General
n<x

theory of Dirichlet series will not be discuésed here, since our main interest lies
in inversion formulas, which represent formulas expressing f(x) (or some similar
function involving the an's) by series and integrals containing A(s). Sometimes
these formulas go under the naﬁe of "Perron's formula", although this name is most

often used for one particular formula of this sort, namely
c+ioo
-1 s -1
(1.8) 2 ', = (ori) 5 A(s)x"s™ 'ds,
n=x c-ioo

where ¢ > O is such a number that A(s) is absolutely convergent for Res = c, Here

25' means that if x is an integer then %an comes instead of a into the sum. One

obtains (1.8) easily from

(1.9) (mi)'1 %5 las = 1/2 Y=1 , (c>0)
g-ico 1 Y>> 1

since in view of absolute convergence of A(s) one may integrate term by term the

right-hand side of (1.8) to obtain using (1.9)

cHino oo ctioo
=1 s =1, -1 s =1 ‘ .
(2g11) A(s)x"s 'ds = an(2ﬂ1) (x/n)"s” s = -
C-ino 1’l=1 ‘ ¢-igo nf.x "

To see that (1.9) holds one may evaluate the integral directly by the
residue theorem, or defining f£(x) = 0 for 0 < x < 1,f(1) = 1/2, £(x) = 1 for x > 1

one has the Mellin transform
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F(s) = §f(x)xs‘*ax s = -s"'  (Res<0)

° 4

and (1.9) follows from (1.2) on replacing x by Y and s by -s. Instead of (1.8) it
is often desirable to have & trurcated form of the inversion fofmula., namely a
formula where the integral is over a finite segment whose lengfh may be suitably
chosen. Such a formula may be obtained by considering the integral in (1.8) and
replacing it by an integral over a suitable finite contour plus an error term,

. t
Various hypotheses on A(s) make then a more explicit evaluation of Zan possible.
n<x

We quote now a standard result of this type, whose details of prwof may be found in
K. Prachar [1] s

o

Let A(s) = Z‘Jann”s converge absolutely for & = Res > 1 and letla | < cd(n),
n=1

where for x large ®(x) is a monotonically increasing function. Let further
o0
- .
Z la In ¢ « (¢ - 1)
n=1

as & -~ 140 for some « > ¢, If w = u + iv (u,v real) is arbitrary, b,T > 0,

u + b>1, then PRT
X - - - - -
(1.10) Z an Y o= (2mi) ! S A(s + w)x°s as + a(x"n 1(u-i-':)-‘l) 5
=X ¢-i7

v o plex)x og2x) + (b (2x)xY),

and the estimate is uniform in x,T,b,u provided that b and u are bounded.

Another inversion formula for Dirichlet series is

(1.11) Zann_wlogk.1(x/n) = (%ri)-1(k—1)! S A(s+w)xss-kds, (¢ = 0)
n<x /

where k > 2 is a fixed integer, w is an arbitrary complex number and ¢ + Rew
exceeds the abscissa of absolute convergence of A(s). This formula is obtained if

one integrates term by term the right-hand side of (1.11) with the use of
C+igd
g, 0<Y¥<i

(1.12) (2911)'1 *e ¥ = 1 (¢ > 0)

1 k- :
c-Too mlog Y, Yy > 1

where k > 9 is a fixed integer, To see that (1,12) holds one may start from



14

20
Se-sxxk-1dx = s_k(k—‘i)!, Res > 0
o

and make the change of wvariable e * = u to obtain

1
1 - -1 K= -k
=1 Su_s 1(-‘l)k 1ogl u.du = 8 k.
0

The inversion formula (1.2) gives then

C+igo -1 k=1

(1.1%) (29:-1)’1 T

c-ive
so that (1.12) follows with Y = a
Finally we present an inversion formula for a weighted sum which differs

from the one appearing in (1.11). We suppose that g > 0 is a fixed real number and

that A(s) converges absolutely for Res = ¢ > (. Then

C+ioo
1 ; a _ =1 T™(s)A(s) s+q
(1.12) 1) I;c an(x-n) = (2n1) S -f—‘%g-}ﬁéi%x ds,
- c-ioo

and in case when q = 0 (1.14) reduces to (1.8) in view of I(s+1) = sr(s). One may

obtain (1.14) by termwise integration of the right-hand side with the aid of

c+ino 1-u 9
-1 u °n(s Ma+1)’ Qs
(1.15) (2mi) S R;é_—f%ds = f(u) = (¢ = 0)
C-io0 0, u=> 1

‘when one replaces u by n/x. To see that (1.15) holds start from (1.29), namely

Ma)MNb .
B(a,b) = #EEE&% (Rea> O,Reb > C)

i

A
S xa-1 (1-x)b-1dx
°

to obtain

(1.16) F(s) =

o8

4
v s=l 1-x) 557" (q+1)1(s)
Elx)x ax - g‘mlﬁrd T e Dn(grs+i)”
o

which shows that €(s)f{q+s+1) is the Mellin transform of f£(x), and consequently

(1.15) follows from the inversion formula (1,2).
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§4. Partial summation formulas

Partial summation is a standard elementary technique for transforming sums
into more manageable sums or integrals, and some of these useful formulas are recor-
ded here as a reference.

a0 e ]

Let ¢a 3™ be a sequence of complex numbers and jb_3 a sequence of real

jelg T2 1l M4

numbers. If Db, = b, = ... 20 and W= 1 is an integer, then

(1.17) led\Tanbn < b, max \ Z \

=<n< M<m&n

while if 0 <b, <b, < ..., then

1 =72
(1.18) l Za b I < 2by max IM
M<n<N M<n<N <m<n

These simple inequalities show that monodonic sequences may be removed

from sums, and they are both proved analogously. To obtain (1.17) we define

4 = 2, a . Then

M<m<n
‘ Z &b n‘ = \M%(An - An—‘l)bnl =

M<n<

'M <N

{AN\bN + Mqéw_1lAn[(bn_bn“) < by mex |Al

To transform sums into integrals it is often convenient to write a sum as
a Stieltjes integral and then to integrate by parts. For example if {anS:is a
\3
1
sequence of real numbers, g(x) € C [11,:(], 11 < 22 < ... 1is a sequemce of real

numbers tending to infinity, then

(1.19) 11ﬁgﬁ,{fﬁmg(/\n) = A(x)g(x) - SA(’c)g‘(t)dt,
24

where

(1.20) A(t) = Z a .

M= M=t

Namely we can write

x+0
2 5s0) = | amam,
= 2-0
since A(t) has jumps of weight a, for t = ’)n and otherwise it is a constant fun-

ction, An integration by parts yields immedialtely (1.19), since
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g(t)Am[ - g@AG) - g(2,-0)AR=0) = s(x)A(x).
270

Similarly we can obtain

. Y
(1.21) Zf(n) = Sf(t)dt - YY) + YE)£E) + {‘\}'(t)f'(t)dt,
X<y %

X

where f(x) € ¢’ [X,Y] and  WY(t) =t - [t] - 1/2. This is a special case of

the so~-called BEuler-Maclaurin summgtion formula, and essentially only a variant of
(1.19)« The general Buler-Maclaurin formula is (for simplicity we shall assume here

that a and b are integers)

& ' n
) Lieta =B, (em=1) y _p(2m=1)
(1.22) a<zk,<bf(k) §f(t)dt + s(f(a)+f(p)) + mz1m(f o) -f (a))
&
+ S Pone] (5)£ 22+ (1) at, (n > 0)

Here f(x)e.02n+1[a,6], B, is the m-th Bernoulli number and P is the m-th
periodic Bernoulld function defined by Pm(x) = Bm(x‘- (x7, where Bm(x) is the

Bernoulli polynomial defined by

Xz
Ze

- 2B (05, ( |2\ < 2m)
m=0

ez-1

so that B = Bm(O), By(x) = x - 1/2, B,(x) = 2 - x4 1/6, etc. A proof of (1,22)
may be obtained as followss by the Stielkjes integral representation and integration

by parts we have

£+0 ya . £+0
Z (k) = S f(t)a(tl) = Sf(t)dt + S f(t)a( g ~-t+1/2) =
a<k<b a-v - : ao

& £+0
Sf(t)dt - S £(t)ap, (t)
[ 8

a-D

It

& 3
S f(t)dt + %(f(a)+f(b)) - S P{(t)f‘v(t)dt,

which is (1.21) for a = (?1 4+ 1,b = [f]. From the defining property of Bernoulli

polynomials (see T.M. 4postol (1], Cch. 12) Bﬁ+1(x) = (n+1)Bn(x}, so that one may

take ‘an(X)dX = (n+1)-1Pn+1(x), and repeated integration by parts of

£
S:P1(t)f'(t)dt leads to (1.22), since for any integer r we have Pm(r) = Bm(o} =B
2 T

and By .4 = O for m 2 4,
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$9. The Poisson summation formula

There exist several variasnts of this useful formula., We shall need the

following versions let a,b be integers and let f(x) be a function of a real variable

& o &
'
(1.23) :Z; f{n) = S f(x)jax + 2 :Z: gf(x)cos2wnx.dx.
a<n<b a n=1a

Here as usual 32! means that %f(a) and %f(b) are to be taken instead

of f(a) and f£(b) respectively. To derive (1.23) we use (1.21) in the form
&

Z f(n) = §f(x)dx + S"(’(x)f'(x)dx,
a<n=b - .
and thus we have to show that
<o &
(1.24) g“{(x)f'(x)dx = 2 :Z: gf(x)COSanx-dx.
o n=1 o

This is achieved by using the Fourier series expansion

(1.25) Y(x) = -~ —1:Z:n-1sin2ﬂnx,
n=1

which is valid if x is not an integer. The series in (1.25) is equal to zero if x
is an integer, and moTreover by partial summation it is seen that its partial sums are
uniformly bounded for any real x. Therefore using (1.25) in (1.24) and integrating
by parts we obtain the right-hand side of (1.24) since sin2ama = sinZsmb = O.

A more detailed account of Poisson's summatiorn formla may be found for
instance in Chapter 10 of M.¥. Huxley's book D}, where a good bound for the tails

of the series in (1.23%) is given.

&6, The gamma-function

Several standard properties of the gamma-function will be stated now
(some were already used in §3). Their proofs may be found in standard books in
analysis, and therefore no particular references will be given.

For hes = ¢ the gamma-function is defined as
20

(1.26) Nis) = S e—xxs-1dx,
[\]

and for other values of s by analytic continuation,. f’(s) i8 aun analytic function
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of s in the whole plane, except for points s = (0,-1,-2,...9~1, 000 which are poles-
of the first order with residues -)%n! (n =0,1,2,...). The gamma-function
satisfies the functional equation
(1.27) MNes + 1) = sM(s)

and the useful relations
(1.28) rE)N(1 - 8) =  afsinms, F(s)r(s + 1/2) = 2\ 2" 2°r(2s).

Another common property is

A
(1.29) B(a,b) = Sxa'1(1 )% lax = L 2 ‘: 2 . (Re a > 0,Re b'> 0)

°

We shall also make use of the relation
oD

S

by which the Euler constant ) is defined.
Finally from the theory of the aggmptotic approximations of the gamma-

function we shall need the so-called Stirling's formula in the form
. 1 -1
(1.31) logM(s+b) = (s + b - 1/2)logs - s + Flogam + o(ls|™),

-which is valid for b constant and [args| < #- § (8> 0), if s = O and neighbor-

hoods of poles of MM(s+b) are excluded. Also we have

é - - -
(1.52) Pl = (e V22200 o1, b2t
valid for ¢, < ¢ <C,, and the O-constant depending on C,,C,; and for § >0
fixed, |args| < v -§, |e\= § we have
(1.5%) M (s)/r(s) = loge - 1/(2s) + o(ls|™).

§7. An exponential integral

Very often we shall smoothen integrals by introducing a certain expo-

neptial weight which simplifies subsequent estimations. The integral that is needed

(1.34) gexpm - mt?)as = @/3) " 2exo(4%/43), (Re B > 0)

which in fact represents an analytic function of A and B provided that Re B > 0. By

analytic continuation it is sufficient to prove (1.34) for B real and positive, when
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. -1/2
the change of variable t = A/(2B) + xB gives

§°exp(At -Btz)dt = B—1/2exp(A2/4B)S e_xzdx = (w/B)1/2exp(A2/4B).

(8, The Haldsz-Montgomery inequalities

The inequalities in question are certain general inequalities for vectors
in inner-prbduct spaces which have found many applications recently in analytic
number theory. Their connection with large sieve dnequalities is very close, and
the whole subject is extensively treated by H.L. Montgomery @ﬂ,{S]J}]? whe:égée_
tailed references are given, To formulate the inequalities, suppose that g ,21,...,

PR are arbitrary vectors in an inner product vector space over C, where (a,b) will

be the notation for the inner product and Ha[\z = (a,a), Then

o—

(1.35) Sl = RENZ (ce.e))?
r<R r,s<i

, 2 2
(1.36) gﬂl(ﬁ,‘er)\ < Ikl mx gn [(e. e

Both of these inequalities are derived by judicious use of the Cauchy-

Schwarz inequality for vector spaces. To see this observe that from (a,b) = Eb,as
2oebe) - (B,25 €)
R r r SR T T

one has

I

for any scalars C.e Thus

(1.37) l;acr@"’r)lz < IEfF Y Z/REJ} 2 - IIEUZrZ o0 ().

sy S<R

If we take ¢ = exp(-iarg({,tr)),,then lcr\ = 1 and
écr(gy ‘Cr) = %\(E’Yr)‘s

so that (1.35) follows at once from (1.37). For (1.36) we use the elementary
inequality
F

- 1 2 1
legeg | = gleel™ + 2 leg

to obtain
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(138) D, So(av) = Ll el = 2l IPnex 20 I(e, 0,
r,s<R ! r<R s<R r<R r<R s<R

so that combining (1.37) and (1.38) we have (1.36) if we take ér = Zg,y;i.

® o0
If a = {égﬁn=1 and b = {b£§n=1 are two (vector) sequences of complex

numbers, then the standard inner product of a and b is defined as
00

(1.39) (a,0) = 2,8 .

n=1
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CHAPTER 2

EXPONENTIAL ZENTEGRALS AND EXPONENT PAIRS

§1. Exponential integrals

The topic of this chapter involves one of the very important and diffi-
cult parts of analytic number theory. Exponential integrals and exponential sums
oceur in a large number of problems whose solutions ultimately depend on asyh?Q
totic formulas or good O-bounds for these integrals or sums, A deep method for
dealing with exponential sums and integrals has been founded by J.G. van der
Corput ‘j], [?1 in the 1920's. This is the so-called "saddle point method"
or the "method of the stationary phase’, which has much advanced analytic number
theory and brought on remarkable improvements in many classical problems such as
divisor problems, circle problem, order of the zeta~function in the critical strip
etc, This method is systematized here in the theory of (one-dimensional) exponent
paits which will be presented here in a simplified form, due mostly to E, Phillips
[j]. Albeit the theory of expoment pairs is, in general, superseded by two-dimensi-
onal and multi-~dimensionsal methods, this theory is nevgrtheless fairly simple to
use in practice, Furthermore the best existing multi-dimensional theory of exponen-
tial integrals and sums, due to G. Kolesnik in his series of papers [1], (21, (31, [5]
and.§§}, is both very difficult and has not produced so far dramatic improvements
over results obtainable by the classical theoty of expopent pairs, Therefore we
shall restrict ourselves to the classical theory of exponent pairs, devpting this
section to the estimation of certain exponential integrals. The main results‘will

be stated as theorems, while other results will be given as lemmas, We begin with

Lemma 21. Let F(x) be a real differentiable function such that F!'(x)

is monotonic and F'(x) > m> 0 or F'(x) <+m <0 for a <x < b, Then

< 4m-1.

&
(241) l SeiF(x)dx

&
Proof of Lemma 2,1, Since the conjugate of SelF(x)dx is ge;iF(x)dx,
a o

this means that in most problems involving exponential sums and integrals we may
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F(x)

suppose thet F‘(x) > 0. Now e = cosF(x) + isinF(x), and by the second mean

value theorem for real integrals

2
., f(b)g &(x)ax, if £(x) 2 0, £'(x) 2 0,x€ [a,b]

(2.2) gf(x)g(x)dx = :
* f(a)§ g(x)dx, if £(x) 2 0, £'(x) 0 ¥€ [3,1]

where ¢ ig some number satisfying a < ¢ < b, Writing

2 &
ScosF(x).dx - g (P (x)) " 1a (sinF (x))

and using (2.2) it is seen that
&

-4

lgcosF(x)-dxl < 2m,
o

since (F'(x))"1 is monotonic in [a,b] because (1/F'(x))! = —F"(x)/(F'(x))2 and
F"(x) is of constant sign since F!(x) is monotonic in [a,b]. The same bound holds
also for the integral with sinF(x), hence (2,1), Using (2.2) and the same argument

it is also seen that
2

SG(x)eiF(x)dx < 6™,

o

(2.3)

where F is as in Lemma 21, and G(x) is a positive,monotonic function for a <x<b
such that |¢(x)| < @.

Lemma 2.2, Let F{x) be a twice differentiable function in [a.,b] such that
F'(x) > m> 0 or F"(x) < -m <O, Then

&
SeiF(x)dx < 8m-1/2.

o

(244)

Proof of Lemma 2,2, Assume .that F"(x) > 0, so that F'(x) is monotonically

increasing and has at most one zero ¢, i.e. F'(c) = O with a <c¢ <b. Write

Z C-Ah Ctw &

iF(x),
Se dx—-g+S+S=I1+I2+13,
o O C=AL (£ 278

say, where u > 0 will be suitably determined, Trivially Uzl <?2u, and foru<c ~ a

(&
and a <x<c=-u we have lF’(x) | - |S F"(t)dtl > um, so that Lemma 21. gives
X A
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(11 | < A,(um)-‘l and a similar estimate holds for I, if u<b - c, If u>c¢c - a or

3

u>b - c, or if F' has no zero in [a,b], the analysis is similar, and in all

cases leads to

R
lSelF(x)dx \ < s(um)-1 + 2u = 81!1-'1/'2
A
. -1/2
if we take u = 2m « Analogously to (2.3) one has
&
(245) l S o(x)e'F (Do ] < seV/?
J .

if F satisfies the hypothesis of Lemma 2,2, and G{x) is & positive,monotonic fun~-

ction for a < x < b such that |G{(x)|< G.

Lemmas 2,1 and 2,2 are very general, but they have the shortcomin‘g
that the estimates given for exponential integrals are only upper bounds which do
not explicitly depend on the length of the interval of integration. We present
now a'saddle point" theorem, which shows that the main contribution to the exponen-
tial integral comes from its saddle point (i.e, the point where the first deriva-

i (x) vanishes), provided that certain conditions are satisfied.

tive F'(x) in e
This is

THEOREM 2.1. Suppose that f(x) is a real-valued function such that

£(x) e ¢*(a,5], £"(x) <0 for xefa,b] and
m, > G (£P 0 < ay, 12D ) 1amy,
where m§ = mym,. Then if £'(c) = 0 for a < ¢ <b we have
(2.6) § e(£(x)ax = e(£(c)-1/8)|£"(x)| "2 + o(m;‘m‘?) +

+ O(min(n;/z, ‘f' (a)\-1)) + O(min(m"2'1/2-, (£ (b)[-1)).

If f"(x) > 0 in [a,b] and the other hypotheses hold, then the same

result is obtained with e(f(c) + 1/8) in place of e(f(c) - 1/8),

Proof of Theorem 2.1. The cases f" < 0 and f" > 0 are analogous, so

only the former is considered, Write

- CHin &
(2.7) - §e(f(x))dx = S e(f(x))dx + S e(f(x))dx + g e(f(x))dx = 11+12+15,

(V7Y <

say, where we suppose that u satisfies u < min(c - a,b - c¢) and will be vsuitably



25

determined later. By Lemma 2.1

AL

(111 << 1/|f*(c=u)| = 1/{§'f"(t)dt[ << (um2)’1,

and similarly the same bound helds alsc for IS'
Since f'(¢) = 0 we use Taylor's formula to obtain with some 6 for which

lof <1
2 3

I, = Se(f(x+c))dx = Se(f(c) + -125?1""(0) + -}.);(-!-f(a)(c) + %f(A) (c+6%))dx =

- -

AL

(2.8)  _ o(£(c)) § elen(o) + 3323 (e))+ (1 + 0(\x14m4))dx‘ -

M

- o(t(e)) { e@Per(0) + 333 (e))ax + 0(u’m,).
Abbreviating F = %ﬂif(B)(c), the last integral in (2,8) becomes

’y L2 ® _32r
(269) S e(%m2f"(c))exp(Fx3)dx = 2 Semlf (c)x (1 + ZE% F;r 7 )dx,
- 0 r=

since the integrals involving odd powers of r vanish identically, Making the change

of variable g([f"(c)lx2 = y in the integrals appearing on the right-hand side of

(2.9) we obtain

wishcilad d agala”
. 2r .
(2.10) (vien(c) 1)~ V2 S iy1/2, Zzg_ry' S =1V, 5T1/2 (o 0y )3T 1/ 24,
r=1 e

0

Applying Cauchy's integral theorem to the function exp(~izz)_and the

sector of the circle of radius k1/2, center at the origin and endpoints z, = x1/2,

z, = e(-1/8)x1/2, we obtain

w2
X
. . 2 .
S e“lyy“1/2dy = 2 S e % 4z = (K1/29-m1/4 + O(x~1/2),
0 °

xR
if we use S exp(-zz)dz = %49/2. Therefore the first term in (2,10) is
o

eCA/Be (T2 v o(ay™,

and the remaining terms are by (2.2)
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3,2r
:E: -3r-1/2( 2)30-1/2 -1 zi o
<< 7?;—, 5 r / m,u )”r / = (um2) ; Fgr < (um?) exp(cuzsm.{)
T= '

for some absolute ¢ > ¢, Therefore we obtain
ya
gy =1/2 -1 5
(2411) e(f(x))ax = e(f(c)-1/8) [£"(c)| + O(u m, ) +0(u m) o+

-1 -
+ 0(u ‘m, exp(cu3m3)),

and choosing u = (m )"1/6 =1/3 the error terms above are of the same

(m5)
order of magnitude, This proves then (2,6) if u <min(c - a,b - ¢)., If this con-
dition is not satisfied suppose first that b ~ u < ¢ < b, Proceeding as above it

is seen that there is an extra error term

I - e(f(c))ge(—x £(c) + 2o (o))ax -

A
(2,12) "
e(f(c))Se(—x £(c))dx + 21 = g e(3x°£"(c))x Tax
¢-c T=

to be dealt with, where as before F = -;-'Jtif(” (¢)e By (2.3) we have uniformly in r

A

(2.13) S e(-—x f"(c))x3rdx << uwt” 1m;1,
e
while Lemma 2.1 and Lemma 2,2 yield
126 . ' -1 —1/2
(2.14) e(zx"f (e))ax << min([f!(p)} ), ),

&-¢

since for F(x) = Tl:f"(c:)x2 and a <X <Db

(Fr(x)] = x|f"(c)| = (b--c)m2 > £ ()],

because by the mean value theorem for some ¢ < g< b we have

£r(b) = f£r(b) = frc) = (b=~c)f"(t) << (b~ c)m,.

Therefore (2.13) and (2.14) give for I, in (2.12)

4
3r

I/J, - min([f'(b)[“1,m£1/2) + 121(111112)"‘l Fl;! <<

<< min{ {f'(b)|" 1, '2'1/2) + (umz)'1exp(cu3m5),
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;1/3. Similarly O(min(!f'(a)\-1,m;1/2)) appears

and (2.,6) follows again with u = m
in (2.6) if ¢ - u < a, and (2.6) follows in all cases,

Theorem 2.1 is sharp when m, (i.e. the order of f") is sufficiently
large, and enough additional information about f(a) and f(4) is known. On the
weaker assumption that m, X f" (%), f(B)(x) << m, for a < x <b, we can obtain
by the method of proof of Theorem 2;1

¥4
(2415) S c(f)ax = e(2(e)-1/8) [£() "2 + o@;*%ul/%) +

£

+ o(min(\f-<a)\’1,m;‘/2)) ¥ O(min(lf'(b)l-1,m;1/2)),
where £'(¢) = 0 and f" <0, and if f" > 0 then e(f(c)-1/8) is to be replaced by
e(f(c)+1/8). The proof of (2,15) (where no information about f(4) is needed) is
easier than the proof of (2.6), since for (2.15) only the first three terms in
Taylor's formula for 12 are taken, while for (2.6) we needed the first four terms
in Taydtor's formula.

Next we shall formulate and prove another result which is similér
to Theorem 2,1, The main difference will be that instead of f(x) we consider f(z),
where z is a complex variable lying in a suitable domain, and suppose that f(z) is
real when z is real and lies in [a,E]. The main term will turn out to be essentia-
1lly the same one as in (2.6), but the error terms will be different and in certain
applications sharper than those in (2.6). The result is

THEOREM 2.2. Let f(z), ¥(z) be two functions of the complex variable

z and [9,53 a real interval such that
i) for a < x < b the function f(x) is real and f"(x) > 0;
ii) for a certain positive differentiable function Jk(x), defined on
a<x<b, £(z) and ¢ (z) are analytic for a < x <b,|lz -~ x| < n(x);
iii) +there exist positive funofions F(x), d(x) defined on [?,b] such that
for a<x<b, |z ~-x|< p(x) we have

(z) < b(x), £(z) < FEW (0, (@7 < L@F (%),

and the <<-constants are absolute,
Let k be any real number, and if f'(x) + k has a zero in [?,b] denote

it by x e Let the values of f(x), Y(x) etc., at a,x_yb be characterized by the
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suffixes a,0 and b respectively, Then

£
S P(x)e(f(x) + kx)dx = \eofo"-vze(fo + kx_ + 1/8) +

o
&

B (x) xp (<C Ikl p(x)-CF (xD(axe [ap(x) 1))+ 0(& pE¥?) o

L

(2.16) - 0o(

2

O(dDa“fé + k| + f;~1/2)-1) + o(d>b([ft') + k\+fg1/2)-1).

If f'(x) + k has no zero for a < x <b, then the terms involving X,
are to be omitted.

Proof of Theorem 2.2, We shall consider only the more difficult case

when f'{x) + k has a zero in (a,b}, and we shall denote l(x) = «u(x) for a suitable
0 < X< 1/2 to be determined later. As in the proof of Theorem 2.1 we shall split
the integral on the left-hand side of (2.16) into several integrals. By Cauchy's
integral theorem we can replace the path of”integration by the contour joining the

points a,a - Xa(Hi),xo - ),0(1+i),xo + }\O(H-i),b + ).b(1+i),b. Denoting the corres-
ponding integrals by I1,...,15 respectively, we take I1,I3 and I5 along straight

p 8nd I, are to be taken along the loci of the points x + Alx) (1+1)

respectiwely.

lines, and I

Therefore for z = x + (1+i)y, - A(x) <y < A(x), a < x <b we have

f(z) + kz = £(x) + kx + (1+1)y(£1(x) + k) + iyzf"'(x) + 0(y),
where by Taylor's formula .

o (x) <<F(x)§_:3lz-xlnlf(n) ®1F )/t < F@)1y PR (),

since by iii) and Cauchy's formula for derivatives of analytic functions

f(n)(x) << F(x)}-n(x), nw= 2,3,604y
Hence by taking & sufficiently small we obtain |6(y)| <%y2f" (x),

which gives

(2.,17) Re (251 (£(2) + kz)) < =2my(f'(x) + k) = ory’£"(x),
Fen
(2.18) I, < S¢aexp(-2wy{fé+k(- Ayt ey << (£ + k| + f;V?)”,

0

and & similar bound holds for 15 with the suffix a replaced by b. By the same

argument
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(2.19) 1, < § ox)exn(-200(x) [£1 (x) 4k |- 2% () £ (x))(ax + [aa(x)]),

Now if |k| < 2|f'(x)|, then by iii)

A (£ (D)+k| << AX) £ (1) | < F(x), kpu(x) << £ (x)M(x) << F(x),
while for [k{> 2 |f'(x)|
AR @] =2 A (K= @) > |k|p(),
and since kz(x)f”(x) >> F(x) by iii), it is seen that in any event
~200(x) [ £ (x) + k| - ANP(X)E"(x) < -Clk|u(x) - CF(x).
This gives
(2420) I, << Scb(x)exP(-c\k\f(x) - eF(x)) (ax + Jap(x)l),

and a corr¢sponding bound for T 4°

From (2.18) and (2.20) it is seen that it remains yet to show

.(2.21) I3 N Pof;q/ze(fo + kxo +1/8) + O(¢oﬂoF;3/2)a

and then the proof will be finished. To accomplish this write

Roltti)
I3 = S ‘f(xo+y)e(f(xo+y) + kx_ + ky)dy =
~NglAri}
~wiAF) viart) Nolt*i)
= + + = I + I + I,y
1 2 '
=2t -v(ari) viAel) ’ ? 3
say, where we choose
(2,22) v o= V(1 + F1/3)-1.
0 o
The integrals 131 end 133 are estimated analogously and yield the

error term in (2.21), while the main term in 2,21) will come from I5pe By (2417)

and the change of variable ﬂyzf'o' = X we have

% -ﬂvzf "

®© 2
-y o -1, -1 -x -1
(2.23) I, < cboge W ley <« cbov £ S e Tdx << ¢o(vfg) e °.
v xu}_&‘u
Hence
e = A% e p V32 o (14§32
o o0 0 ) 0

by iii), and also

-1 -1 - /3
(ve)™ = (T = RN+ FO'/ )



Therefore for FO > 1 30

-2 1
I35 << CDO)BFO /sexp(—CFo/B),

while for F0 < 1

F--1
I35 << d)oyo o’

so that in any case

3/2

(2424) T+ Ig3 << QpF 7",
The estimation of 132 bears resemblance to the estimation of I, in (2.8).
In both cases Taylor's formula is used and the fact that the first derivative

vanishes at a certain point ("saddle point"), In 132 we write

S e(r) r
1 2 1
(2625) e(f(xo+y)+k(xo+y)) = e(fo+féy+ Ef;y + gféB)y3+;Z;£Q;?x— + kxo + ky).

Now by hypothesis f‘(xo) +k=1f! +k=0, and using f(r)(x) << JM‘r(x)F(x)

and e =1 + iu + O(uz) (u real), we see that the left-hand side of (2,25)

is equal to

6.2, -6

1.2 1. -
(2.26) e(fo + kx_ + 5y Yell + 3«1f§3)y3 + O(y L ) + 0(y4F0pb4)

Next by a change of variable y = (1+i)Y we have
Ar(adi)

v

U {i4i)

ar 2
20 -2 £
2k Ay L S.sze o(1+i)2k+1d¥ <<1(§8) k=1/2 <:<Foku1/2 §k+1
-

for k> 0 a fixed integer, so that the contribution of the error terms in (2.26)
to 132 will be (since the integrals with odd powers vanish)

_3/2
(2.427) < QpF 7,
As regards the terms that remain in (2.26) we have (in view of @' << dgﬂ;1)

. 1 2 -
Pran) (1 + w723) « e v yer s 2P0 s () 4 0% 1P

+ O(y4¢%Foﬁ;4).

Arguing as before it is seen that we are left with

«ruﬂ) ar{A+1)

miyfn

' 13.(3) 0 A
(2.28) S Y«xc+y)(1 + fo e dy = Yg-v“ﬁ) e dy +
~(a43) o0 (rsi) i
-3/2 -4.,~5/2y _ I 2o
+ O(%J’u‘oFo ) * O(cPoFo/uo f0 ) = ‘eo © dy +

=0 (A+i)
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dyD + 0 d’ofo . /2) . ‘f (f.. -1/2 471/4 N 0(¢OJHCF;3/2),

oo {4+i)

SRICAN

‘VM{-‘()

. 2
aiy £

since by (1.%34) and y = (1+i)Y

o0 (4+i)

S eﬁiy f“ - (1t S —”JT'Y f" ay - (1+1)(ﬂ/2ﬂf" 1/2 = f" "‘1/2 (1/8)9

— 06 {4+3)

and where as in (2.23)

DA+ )
iy f"
S e dy << ij 3/2
Ar(A+)

This completes the proof of (2.16) in case f'(x) + k vanishes in [a,bl.

In the other case we take the contour of integration as a,a + '/\a(1+i),b + ’xb(1+i),b

deperding on whether f'(x)+k>0or <O in {a,b], and then there is no term corres-
ponding to IS' Also similarly as in Theorem 2.1,if all the hypotheses of Thecorem

2,2 hold but £"(x) <0 in {a,b}, then the main term in (2.16) is
'S \f"l"1/2 e(f + kx_ - 1/8)
o'"o o ) *

Theorem 2.1 is essentially the same as Theorem 2.2 with f(x) instead
of f(x) + k, P(x) = 1 and different hypotheses on f which lead to different error
terms.

We end this section by presenting a lemma which involves doﬁble
exponential integrals with no saddle point, This is

Lemma 2,3, Let f(z) and g(z) be two functions of the complex variable

z such that
i) f£(x) is real for a < x < b;
ii) f(z) and g(z) are analytic for |z - x| < A for some x> 0O and some
X € [a,b-k 3 ‘
iii) g(z) << G, \f'(z)\,&( M for |z - x{< p .
Let 0 < U <-;—(b -~ a). Then for some absolute 4> 0

U bea
(2.29) U“1S( S g(x)e(f(x))ax)du << Ge‘ArM(b -a+ M) 4+ a2 T,
O aam

Proof of Lemma 2,3, By iii) and continuity f'(x) is of the same sign,

say positive, in [a,b]. Let C(u) denote the contour of segments joining the points
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a +u,a+u+idm, b -u+idu,b ~u, where 0 <+ < 1/2 is & number which will be
specified in a moment. By iii) and Cauchy's formula for derivatives of analytic
functions we have >f(n) (z) < M}(1-n for n > 2, and hence by Taylor's formula

for z = x + iy € C(u)

£(z) = £(x) + 178" (x) + 8(x,3)5 6(x,¥) << z‘z x1™ 16 (x)| /n1 << P!

n=2
and so
(2430) Im f(x + iy) > My, (x + iyec(u))
. \EM
if ol 1is chosen sufficiently small, since ‘y] < oLJ,( for z € C(u). ( &%\
By Cauchy's integral theorem "vm "
v fen » v
(2.31) U-1S S g(x)e(f(x))dxdu = U-15( S g(z)e(f(z))dz)du.
0 otu 6 c(u)

In view of (2.30) the integral over the horizontal side of C(u) is
b-nsicdp
g(z)e(f(z))dz << (b - a)ge ¥
Atatyidp

uniformly in u, with some absolute A > O, For the vertical side joining a + u and

a+u+ ia&Jv. we have

U atusizpn o 4*0*‘3 ‘

@ v ¢ g e@etenama] - [v7" § S 8(z)e(2(2))az)ay
0 atu . asi
d

if we write z = x + iy = a + u + iy,dz = idy, 0 <y < &&un and invert the order
of integration. An application of Cauchy's integral theorem to the rectangle with
vertices a + iy,a + idp ,8 + U+ 14 ,a + U + iy g'ives in view of iii) and

(2430) that

A{'UH? L4

3 g(z)e(f(z))dz << G( S e-AMvdv + Ue-AfM) << G(M-1e'AMy + Ue-A’M),
ﬁﬁ'a g
and therefore the left-hand side of (2,32) is
chp
«< v SG(M-1e-AMy + U ¥ay <« o 4 gue™ N,
0

A similar estimate can be obtained for the vertical side joining b-utidp
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and b - u, and the case f'(x) < 0 is dealt with analogously by taking the contour

in the lower half-plane, This proves (2.29).

§2. Exponential sums

By exponential sums we shall mean here sums of the type Z e(f(n)),
a<n<bd

where f(x) is real for a <x<b and f is (suffiviently many times) differentiable,
We begin with a result which transforms an exponential sum into a sum of exponential
integrals, which are easier to estimate in view of the results of the precediﬁé
section. This is

Lemma 2.4. Let.f(x) be a real function for a < 1; < b such that
£ (x) ec? (a,b) and £"(x) <0 in fa,vb] and let f'(v) = &,f'(a) = /3, Then for

0 < 'vJ < 1 arbitrary we have

&
(2.33) T et - 2, Se<f<x> - mx)dx + 0(log( -+ 2)).
a<n<b =<t o

Proof of Lemma 2,4, By the Euler-Maclaurin summation formula (1,21)

y L
(230) 7, e(t() = (e(e(x)ax + zmj V£ (xa(e(x)ax + 0(1),
a<n<bd ¥ P4

where v (x) = x - (x] - 1/2, Without loss of generality we may suppose
N-1<d=<n (so that m > 0), for if k is an integer such that M-1<awk< s
then (2.33) becomes with h(x) = f(x) - kx

(2.35) D e(t(m)) = 2, el(a(n)) = 2 gem(x) - (mk)x)dx +

a<n<d a<n<b « ) <w-k< B+

+ 0(log(n' - &' + 2)),

where o' =o=~ k, A' =43~ k, so that (2.35) implies (2,33), and m - k > O by the
choice of k. Using the Fourier expansion (1.25) for '\y(x) it is seen that the

second integral in (2.34) is equal to

& o0 &

i) Sm'1sin27!mx°e(f(x))f'(x)dx-= an‘S(e(-mx)-ecmx))e@(x))f'(x)dx .

m=1 o m=1 o



p z 34
?(271 ) S (e(f(x)-mx) - Z(Z’ﬂlm) S ——-Z-;(J:I;uge(f(xﬁmx)).

By hypothesis f'(x) is monotonically decreasing for a < x < b, and so is
thenalso f'(x)/(f'(x)+m). An application of (2,2) to the second integral above

shows that it is << r¥(A+m) uniformly in m, sc that the whole sum is

N0
<< Z/}m-1(!5+m)'1 << Z Z/}m << 1 + log(B+2).
m=1 m<fy

Similarly it is seen that

s
z n S ff'xx—m (e(f(x)-mx)) << Z m'1(m-/s)-1rj <<

= fs5+n) &« T2

Z (m-—/‘:)_‘l + 2/3111-2 «< 1 + log({+2).
Aty m=20

It remains yet to estimate

L y
(29rim)- S L x) (e (fx)-mx)) = Z n S £1(x)e(f(x)-mx)dx =

Tsm<ntm 1<m<sn)
ety Z m"‘Sd(e(f(x)m)) + &(f(x)-mx)dx =
sty X Tm<aim )

¥
0(log(n + 13)) + 2 ge(f(x)-mx)dx.

1<t m X

Taking into account the first integral on the right-hand side of (2,34) we

finally obtain

P
Z e(f(n)) = Z ge(f(x)—mx)dx + O(log(vf3+ 2)),.
a5 O<rytny &

which by the discussion made concerring (2.35) proves (2.33).
Lemma 2,5, bet f(x) be a real differentiable function of x for a < x < b

such that f'(x) is monotonic and [f'(x)| <9 < 1. Then

&
(2.36) 2 o) = (etrtex + o(n).
a<n<b a

Proof of Lemma 2,5. Taking M = 1 - 6 in Lemma 2.4 it is seen that the

sum on the right-hand side of (2.%%) recduces to the term m = O, or it is empty
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in case f'(x) = m or f'(x)<-,-'j,when

L
Se(f(x))dx «< 1

A

by Lemma 2,1, and (2.3%6) follows.

Lemma 2,6. Let f(x) be a real function for a < x <b and let H> 0, Then

a5 1/2
(b - a1 ) ’ > e(f(n+h)-f(n))|f

h=1 a<ndd-h

(2.57) D e(f(n) << (b - a)i /2 4 H

a<n<b

Proof of Lemma 2,6. We may suppose that a and b are integers and

2 <H<b - a, since tnvially z e(f(n)) <<b ~a and b - a << (b - a)I-Im1/2
a<n<b

for H < 2, while for H> b - a the left-hand side of (2.37) is trivially majorized
by H. Also we may suppose that H is an integer, since the right-hand side of (2.37)
remains unchanged in magnitude if H is replced by the integer nearest to it. The-

refore the proof reduces to showing that

(b - a)H'1Z | Z e(f(.n+h)-f(n))l1/2,

h=1 " a<n<b~h

(2.38) ), e(f(n) < (b - )i /2 4

a<n<b

where H is an integer > 2, a < b are integers and H <b - a,

Cbserve that

H b-~m
(2.39) H ), e(f(n) = 2 X e(t(mm),
a<n<d m=1 n=a-m+1

and define f(k) = O if k is an integer such that k < a or k > b. Then writing

S = Z e(f(n)) and inverting the order of summation in (2.3%9) we obtain
a<n<b

b-1 H

(2,40) HS = > 2] e(f(mn)),

n=g+1-H m=1
so that n takes at most b - a + H < 2(b =~ a) values, Applying the Cauchy-Schwarz

inequality we have

(2.44)  B%% < 2(b - a) Z IZ ()]

n=a+i-H m=1

Squaring out the modulus in (2.41) we obtain
b-1
-1

(2.42) >, |2 (£ (m+n) ) [ <22 5 et (n+s)-£(ner))] .

n=g+1-H m=1 n—a+1-H l<r<s<H

—
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In the last sum above for a fixed kyh such that 1 <h <H - 1,

a <k <b - h we have f(n+s) - f(n+r) = f(k+h) - f(k) exactly H - h times: for
r = 1,2,..0,H=h,s=r+h,n=k-r, and so the modulus of the double sum in (2.42) does

not exceed

H-1 H-4
(eu13) | L) D elrtom)-200)| < 1) | 2, elmm)-tm)],
h=1 ha=

a<k<b-h a<n<b-h

and thus (2,38) follows easily from (2,40)-(2.43).

Finally we need a lemma which transforms an exponential sum into another
exponential sum (plus error terms), and this new exponential sum is in many cases
easier to estimate. This is

Lemma 2,7. Suppose that f(x) € c# {a,b],f'(x) is monotonically decreasing
in [a,b],f'(b) =«,f'(a) =A.If x, is defined by f'(xy) =V, (X< V < /3 and v is

an integer) and

m, < £ ()1, f(3)(x) << mg, f(4)(x) <<my, (m§ = m2m4),
then
(2.40) 7 e(£(m) = e(-=1/8) p, len(x)] TV 2e(2(x,) - viy) + 0@/

a<n<d A<V< /3

V3
+ 0((b - a)m3 )+ O(log((b—a)m2 + 2)).

Proof of Lemmg 2.7 We use Lemma 2,4, noting that by the mean value
theorem
(2.45) B~ << (b~ a)m,.

By Lemma 2,2 the limits of summation coming from Lemma 2.4 may be re-
placed by o+ 1 and A- 1 with an error << m-; 2. An application of Theorem 2,1

gives then

L
Z S e(f(x)-vx)dx = e(-1/8) Z lf"(xy)f-1/2e(f(x,)- vx,) +

d+i<yv<i-1 & d+1<vV <=1

vol 25w v o D, (9T s eenT).

oA+l y <31 d+l< V-1

In view of (2.45) the first O-term above is 0((b - a)m;/s), and the
second is 0(log(A~-o+ 2)) = 0(log((b - a)m2 + 2), which ends the proof of (2.44),

since again by Lemma 2,2 the limits of summation @&t 1,74~ 1) may be changed to
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(K,8) with an error << m;1/2. It may be remarked that if we use (2.15) instead of
(2.6) (with the appropriate hypotheses on f,of course) then we obtain (2,44) with
the error term O((b-a)m;/3) replaced by O((b-a)m;/Sm;/s). Also if f' is monoto-

nically increasing in [},b] and the other hypotheses of Lemma 2,1 are the same,

but f'(a) = «,f'(b) = /A, then (2.44) remains true with e(-1/8) replaced by e(1/8).

§3. The theory of exponent pairs

We have now at our disposal two results, namely Lemma 2,6 and
Lemma 2,7, which enable us to transform a given exponential sum into other expo-
nential sums plus some (usually manageable) error terms. Lemma 2.6 requires pragti-
cally no conditions on f, while Lemma 2,7 is much more restrictive and contains
error: terms, However the conditions imposed on the derivatives of f in Lemma 2,7
allow us for a large class of functions f (which occur in many important appli-
cations) to combine Lemma 2,6 and Lemma 2,7 successfully several times and to

obtain good upper bounds for the modulus of

> e(£(m)), (B>1, 0 <h < B)

B<n<B+h

(2.46) S

provided that f satisfied'certain conditions. The results of {2 suggest that the
estimation of the exponential sum S certainly depends on the number of éummands,
which is‘s B, and on the size of the first dérivative of f. Therefore we shall
suppose that
(2.47) A < |f'(x)] << 4, (4> 1/2)
when B < x < 2B, and seek an upper bound for }S( of the form
(2,48) s << APBY,

The pair of non-negative real numbers (p,q) will be called an

exponent pair if (2.47),(2.48) hold and

(2.49) 0 = p < 12 =q 5 1

Two remarks may be immediately made here: firstly that (p,q) = (0,1)
is trivially an exponent pair, and secondly that exponent pairs obviously form a
convex set., This is to be understood in the following senses if (p1,q1) énd (p2,q2)

are arbitrary exponent pairs and 0 < t <{is arbitrary, then
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_ p.t+(1-t)p, a.t+(1-t)q
(2.50) s = s%™t < 4! 2g ! 2

9
which implies that
(2.57) (pyt + (1=t)pyrast + (1=t)a,), (0 <t < 1)

is also an exponent pair. The above definition of exponent pairs is too general,
and to obtain exponent pairs of practical value (via Lemma 2,7) we shall suppose
that besides (2.47) f(x) € Cr[5,2Bl’for some r > 5, and moreover that the
derivatives of f for B < x < 2B satisfy

(2.52) 37T« lf(r)(x)l << AB1-r, (r = 1,254¢00)

wherethe <<-constants in (2.52) depend on r alone.

We may consider only the case f'(x) > O for B < x < 2B, since other-
wise we may consider S instead of S with the effect that f is replaced by =f and
the sign of f' is thus changed., To obtain the first non-trivial exponent pair we
apply Lemma 2,4 to 8, éstimating each integral as << m;1/2 << (A/B)_1/2 by
Lemma 2,2, This yielcs

‘(2.53) S «< (B- d)A-1/ZB1/2 + A-1/ZB1/2 + log(2 + 4) < (AB)1/2,

since - o« = f'(a) - £'(b) << A and A>> 1, Therefore it follows that (pyq) =
(1/2,1/2) is an exponent pair, where (2.52) was used with r = 1 and r = 2 only,
Thus we have so far (0,1),(1/2,1/2) as exponent pairs, plus exponent pairs which
may be formed from these two and convexity (in the sense of (2.51)), Denote this
set of exponent pairs by E1. New exponent pairs which dc not belong to E1 ‘may be
obtained by using exponent pairs from E1, convexity and the following

Lemma 2,8. If (p,q) ia an exponent pair, then so is also
(kal) = (P/(2P+2)11/2 + Q/<2P+2))°

Proof of Lemma 2.8, First note that 0 <k <1/2 <1 <1, since

0<p< 1/2 < q <1 by hypothesis, An application of Lemma 2.6 gives
H-1

(2.54) 5% << B '+ E 4 BH“1Z,( Z e(f(n+j)-f(n))\,
34=1 B<p<B+h=j

where H > 0 will be suitably chosen. For a fixed j write
(2.55) g(n) = £(n+j) - £(n),

and note that g(r> (x) = f(r) (x+3) - f<r) (x) = jf(r+1)(x+ 83), (\le < 1)
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- (r) =T .
(2.56) 3aBTT << \e* )| =< JERTTL (ro= 1,5,004)
2 1/2
Kow we may suppose that 4 > B1/c, since feor A_S.B / we use the fact

that q > 1/2 and (1/2,1/2} is an exponent pair to cbtain

/(o -5 2) -2q)/(2p+2)_1 k. 1
5 << 4/251/2 o JV/251/240/ (2042) -/ (2042} (p-2a)/(2p42) 1 __ k)

where (k,1) is as in the formulation of the lemwa,

1/2 . .. .
The ccndition A > B / is needed in the case when for some ¢ > 0 we have

-2 >
j < cB/4, sc that by (2.,56) lg'] <1/2, g" X JAB << 1. Then by (2,3%6) and
Lexma 2,2
- -1 - ~1/2 2 -1
BH Z lZg(n)‘<<BH1A1/QB Z’J /2 B'H o,
j<cB/A m j<cB/A

. 2
since A > B / . For the remaining j's in (2,54) we use the already existing (p,q)
and (2.56) to obtain
Z e(f(n+j)-f(n)) << (ja”")PpY,
B<n<B+h~j
Hence by (2.54)

(2.57) s° <« B%~' 4 4Ppl-Pragp + B

’

. 1 140wqg = )
and the choice HPY' - B *P A,7P finally reduces (2.57) to
(2.58) 52 << P/ (#P)3(4p+a)/(14p) | p2(1+p=0)/(1+p) -2/ (14p)

Since 0 < p < 1/2 < g < 1 we have

(T+p+q)/(V+p) =1 +q/(p+1)=12/3>
2(1 - a/(1 +p)) = 2(1 +p - q)/(1 + p),

so that in view of 4> 1/2 the second term in (2,58) dces not exceed the first

and Lemma 2,8 follows,

Now we derote by E2 the set of exponent pairs obtainable from E1, con-

vexity and repeated application of Lemma ?.8, which always produces a new expaent

pair from a given (p,q). The proof of Lemma 2.8 shows that for the corstruction of

E2 we needed (2,52) with r <3, The set E2 dces not exhaust our possibilities for

constructing expaent pairs, and for what follows it will be useful to ncte that for

(pya) € E, we have
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(2.59) p + 2q = 3/2.

This is trivial if (p,q)e E1, and moreover convexity obviously preserves
(2¢59). With k = p/(2p + 2), 1 = 1/2 + q/(2p + 2) it is hcwever readily checked
that k + 21 > 3/2 since q > 1/2.

Finally the last possibility for éonstructing exponent pairs is furnished_
by

Lemma 2,9. If (p,q) is an exponent pair for which (2,59) holds, then
(k,1) = (q - 1/2,p + 1/2) is also an exponent pair.

Proof of Lemma 2,9. The condition 0 <k < 1/2 <1 < 1 is trivial in view

of (2.49)- We shall apply Lemma 2,7 with a = B,b =B + h, m, = AB‘1, m3 = AB’Z,

m4 = AB-'3 so that m§ = m2m4

f"(x) > 0 is discussed at the end of Lemma 2.7 and will lead to the same final

holds, and we may suppose that f"(x) < 0; the case

estimate. We have then

(2,60) S = e(~1/8) {f"(x,,)i—1/2e(f()‘v)-vxv) + o(A'1/2B1/2) + 0(log(a+2)) +
A<V <1 ' _ 1/3
+0((aB) /),
and the main task is to estimate
(2.61) 5, = 0, ()T 2e(e)),e() = £(x,) - v,
A<V LN

If we set f'(x) = y and derote its inverse function by x = h{y), then

g(y) = £(u(y))

g' (y)

yh(y) , which gives

f'(h(y))h'(y) = h(y) - yh'(y) = £'(x)h'(y) - h(y) - ya'(y) = -h(y),

it

it

~n'(y) = - 1/£"(x) = =¥ (a(y))

g"(y)

if one uses f'(h(y)) = y, and
e - P aen e weN?,
and in general g(r)(y) is found from gf(y)f"(h(y)) = =1 by applying Leibniv, 's

rule for the r-th derivative of a product. We have h(y) X B and therefore

(2.62) BT o« || < ', <)

and by induction it may be seen that the upper bound in (2.62) holds also for r > 4.
Removing f" by partial summation it further follows that S1 in (2.61) is of the

same type as S5, only A and B are interchanged. Hence
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(2.63) 5, << NV
(2.64) 5 << a%B' 4 (AB)1/3, k=gq - 1/2,1 = p + 1/2,

] ,
and the proof will be finished if it can be shown that (AB) /3 < 2%, since 1 > 1/2

this is obvious if k > 1/3, If k < 1/3, ther for B> A<1‘3k)/(31'1) we have

(AB)1/3 . aKp1/3,1/3-k 5 Ag1/35(31-1)/3 _ k1

For B < A(1'3k)/(?1“1) we have 2k + 1 > 1 from p + 2q > 3/2, which
gives

S<B - slpt-1 L g1, (1-3k) (1-1)/(31-1) < 55!,
ending the proof of Lemma 2.9, where (2.52) was needed for r < 3 and the upper
bound of (2,52) for r = 4.

In view of the preceding discussion we formalize now the concept of
exponent pairs even more by introducing E, the set of exponent pairs,as the set
obtainable from E2, convexity and Lemma 2,9 applied a finite number of times, Nearly
sixty years of research have not been able to produce any other exponent pairs,i.e.
any besides those 6f E, where f is a real-valued function satisfying conditions
(similar to) (2.47) and (2.52). Though in the formulation of Lemma 2,8 and Lemma
2,9 it was tacitly assumed that (p,q) belongs to E1 and E2 respectively, this is
not necessarily true, as the proof of these lemmas clearly shows. It seems appro-
priate now to introduce three processes which will be denoted by 4,B,C(t) (the
letters A and B have no relation to (2.48) in this context), and which correspond
to Lemma 2,8, Lemma 2.9 and convexity respectively. Therefore if (p,q) and (p*,qi)
are exponent pairs, let

A(pya) = (p/(2p+2),1/2 + o/ (2p+2)),

B(pya) = (a - 1/2,p + 1/2),

c(t)(pya)(pyraq) = (Pt + py(1-t),at + ¢, (1-%)). (0 <t < 1)

Now we can reinterpret the theory of exporent pairs and state the
following

Proposition. Let E denote the set of pairs of real numbers (p,q) such
that 0 <p < 1/2 <qg<1and (pyq) is obtained by a finite number of applications

of the processes A,B and C(t) defined above to (0,1), which is to be considered as



42
an element of E., Then E is the set of exponent pairs in the sense that (2.48) holds,

provided that (2.52) holds with r = 4.

We end this chapter by giving several of the most commonly used exponent
pairs: (1/2,1/2) = B(0,1),(1/6,2/3) = 4(1/2,1/2),(2/7,4/7) = BA(3/6,2/3),(4/18,11/18)=
BA(2/7,4/7), (11/30,16/30) = BA®(1/6,2/3), (13/40,22/40) = BA(2/7,4/7),(97/251,132/251)
= BA®(13/40,22/40), (13/31,16/31) =BAB(11/30,16/30), (5/24,15/24) =C(1/4) (1/6,2/3)
(4/18,11/18), (4/11,6/11) = ¢(12/33)(1/2,1/2)(2/7,4/7).

It may be remarked that in actual problems where the theory of exponent

|

pairs is applied it often seems unclear how to choose(p,q) in an optimal way,i.e. fo
minimize a certain function F(p,q). In the case of the general F this problem is
difficult and to this day unsolved, but for F(x,y) = x + y it has been solved by
R;A. Rankin {1], who showed that if o = 0.329021358..., then (p,q)=(0/2+¢,1/2+%/2+¢)
is an exponent pair for which (up to £) p + q is minimal for all (p,q) belonging

to E. Graphically the exponent pairs just discussed may be arranged in a table as

follows:

plo|1/2)1/62/7 |4/18 [11/30 | 13/40 [13/31 | 4/11 | 5/24 |97/251 | of2 +¢

a1 11/212/314/7 | 11/18]16/30 | 22/40 [16/31 | 6/11 | 15/24 | 132/257 | 1/2+4/2+¢

NOTES

The results pressited in this chapter have their counterparts in Chapter
4 and Chapter 5 of Titchmarsh E§}, but the material given here is more extensive
and the results sharper, In particular, Titchmarsh does not present the theory of
exponent pairs, but stops at what is essentially.Lemma 2.8 applied several times
to the exponent pair (1/2,1/2); this is Titchmarsh's fTheorem5,13,

The theory of exponent pairs,exponential sums and integrals has been
founded by J.G. van der Corput [f}, (2} in the 1920's as one of the deepest theories
of analytic number theory ever made. Van der Corput (2} contains the estimate
A=) < 1(33/1004"E (where /\(x) is the error term in the clasical divisor problem
for which the reader is referred to Chapter 10), which was a very important impro-
vement of the previous expormt 1/3, due to G.F. VoronoT [1)\. The exponent 1/3

appeared also in the circle problem (i.e. determéning © such that 2241 - X << x9+e.

?
memtex
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see also Chapter 10 for a more extemsive discussion of the circle problem), and
until van der Corput's results appeared many competent mathematicians believed that
the exponent 1/3 was the natural limit of the existing methods,if not nearly the

true order of magnitude., Van der Corput's research opened a path in analytic number
theory which leads to good bounds in many important problems, and forms the bésis
for more advanced methods,

The original form of van der Corput'!s theory was rather complicated, and

his definition of exponent pairs involves a condition comparable to (2.52): (p,q)
is an exponent pair if (2,49) holds and if, corresponding to every . s > 0, there
exist: two numbers r and ¢ depending only on s (r = 4 is an integer and 0 <c < 1/2)

such that

(2.65) Y, e(f(n)) << zPal
a<n<b

holds with the <<~constant depending only on s and u, where u> 0,1 <a <b < au,
y>0, z =ya °> 1, £(n) is any real function with differentiable coefficients
in the interval a <n <b (a,b integers) of the first r orders and for a <n < b,
0<j<r1

(2.66) lf(j+1kn) = (‘1)jys(s+1)o--(S+3“1)n~s-jl-< cys(s+1)...(s+j-1)j-s-j.

It may be noted that z is effectively f!(a), so that (2.65) is in fact
the same as (2.48), and the only difference is betweeﬁ (2.52) and (2.66) which
express the same type of inequalities for derivatives of f, only (2,52) is simpler
to verify and thus the definition of the exponent pair made in the text is more
practical, though in most common applications (e.g. the divisor problem,the order
of 111/2+it) etc,) the function f is easily seen to satisfy both definitions of
exponent pairs,

Lemmas 2.1,2,2,2.4 and 2.5 are to be found also in Chapter 5 of Titchmarsh
[él, and also a variant of Lemma 2.6 is given by Titchmarsh [8] as well as the
proof of (2.15). Lemma 2.4, and its Corollary Lemma 2,5, may be viewed as a con-
sequence of the Poisson summation formula (1.23).

Great simplifications in van der Corput's theory were introduced by
E. Phillips (}}, whose proofs of Lemma 2,8 and Lemma 2,9 are essentially given here,

and the theory of exponent pairs was brought to a readily applicable form in
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the Proposition at the end of the chapter, where several commonly used exponent
pairs were constructed.

Theorem 2,1 is also due to E. Phillips [ﬁ}, while Theorem 2.2 is due to
¥.V, Atkinson [}3 and will be used in Chapter 4 and Chapter 6 for transformations
of certain Dirichlet polynomials (finite Dirichlet series) via the Voronof summa-
tion formula (see Chapter 3) andAfinally Theorem 2,2 will be uséd in Chapter 11
for the derivation of Atkinson's formula [}1 for E(T).

Lemma 2,3,concerning integralé with no saddle points,is due to M, Jutila
[ﬁl. This result will serve as a useful device in Chapter 6 for the truncation
of series when Voronoli's summation formula is applied,

The main step in the proof of Lemma 2.6 is the inequality (2.38), due
originally to H. Weyl. This inequality is of a general nature and rests on a
Judicious use of the Cauchy-Schwarz inequality. In fact the sum appearing ohvthe
left-hand side of (2.43) is a double exponential sum (since H - h can be removed
by partial summation), so that Lemma 2.6 in fact transforms an (ordinary) expo-
nential sum into a double exponential sum with the flexibility that H may be
chosen suitably to minimize the estimates., Thus in (2.43) one may see the‘genesis
of two- and multi-dimensional methods in the estimatibn of exponential sums. The
method of two-dimensional sums was developed in the 1930's by E.C. Titchmarsh (1],
(21,(3], (6] where he obtained several improvements of exponents in the classical
problems such as the order of C(1/2+it) and the circle problem, One of his early
results, which may be regarded as the two-dimensional analogue of Lemma 2], is
as follows: Let D be a finite region bounded by 0(1) continuous monotonip arcs
which is included in the square |{x| <R, [yl <R for some R = 2, Let further
fxx(x,y) > O,fyy(x,y) <0 (or fox < O,fyy > 0) and fxy(x,y) > b > 0 throughout D.
Then

SS e(f(x,y))dxdy =< b'1(logR + |logbl).
D

Later refinements of two-dimensional methods were effected by many
mathematicians, including S.-H, Min [1),H.-E. Richert [1) and W. Haneke {1). The
best methods at present are those of G, Kolesnik le - {6], as already mentioned

in §1. These advanced techniques,which do not seem to have appeared in bock form
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yet, are very ccmplicated aré are based on works of previous authors, so that
enyore who wants to get acquainted with them wust kncow some ¢f the theory already.
An attempt to create the thecry of n-dimensional exponent pairs has been made

by B.R. Srinivasan[jj,[23,[3]. As is the case with the theory of exponent pairs
which is presented here, Srinivasan's theory is readily applicable too,but in each
gpecific problem the more advanceé methoda of the aforementioned papers of G,
Kolesnik will lead to a bettur result: witness the recent improvement of 105/407 =
0e257985... in the protlem of non-isomorphic abelian groups {(Sririvasan [?]) to
97/381 = 0.25459%... by G, Kolesnik {7}. As ﬁentioned at the beginning of this
chapter,all existing multi-dimensional methods do¢ not improve very muck the results
obtainable by the method of exponent pairs. 4 discussion.of the results obtainable
by the methcd of expoment pairs was made by R,A. Rankin [jx,where he showed that
the best exponent (up to t) that this method (at present) allows in the divisor
problem is 0,%290213568...,while the best known exponent (due to G. Kolesnik {6])
is 35/108 = (0,32407407407... « This is one of the reasons why our discussion of
exponential sums was limited to the method of exponent pairs, which though nét

optimal is sufficiently good for many applications.
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CHAPTER 3

THE YVOROCWNOQT SUMMWATTON FORMIT LA

§1. Introduction

At the beginning of this century G.,F. Voronol [ﬂl proved two remarkable
formulas concerning the error term in the divisor problem., Besides giving an‘expli-
cit expression for the error1erm Zﬁ(x), Voronol derived a general summation fornula
for sums involving the divisor function d(n). The formulas of Voronoi express f£i-

nite arithmetical sums by infinite series containing the Bessel functions, and they

are
(3.1) A - ;'f(“) - x(logx + 2f - 1) = 1/4 =

P Qéd(n)n”/ 2(K1 (47 \/nx +'%Y1 (47 ¥nx)),
and . . A
(3.2) asnsz'd(n)f(n) - 5(1ogx+ 2)f(x)ax + ;d(n)'ig £ (x)o(nx) dx,
where
(3.3) oL(x) = ‘4Ko(4nx1/ 2y - 27{Yo(491’x1/ 2y,

2
Here 0 <a <b <o, f(x)€C [a,b-l,z:' means that if a or b are integers

1 1 .
then Bf(a) or Ef(b) 1S to be counted instead of f(a) and f(b) respectively in
(3.2). The series in (3.1) and (3.2) are boundedly convergent when x or & and b lie
in a fixed closed subinterval of (0y00). The functions KO,K1,Y0,Y1 are the fami-

lier Bessel functions with power series expansions

2 A 6
(3.4) X (2) = -(loge/+ )1 (z) + i;-z- * '22 5(1 + 1/2) + —55—5(1 + 1/2 + 1/3)+...
4 2°4°6
v 2 - \ 2 zz z4 26
(3.5) Y (z) = Z(logle/2)+ y)J (2} + 5‘-(-2-2- ;5;2(1 +4/2) + ;—5/-2—%-2-(1 + 1/2 4+ 1/3) -...

where
00

o
I (2) = 2 (/2% @12, 5 () = 2 (-1)"(2/2) %% (a1)?,

m=i) M=)
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=4 oy 2mt 1 ) 1 1
(3.6) K1(z) - ggéiﬁé%&:Tyr(logb/Z)- §w<m + 1) - Ew(m + 2)),

61 @ v () YT o/ Y 1) - Y+ 2)),

m=0

where Y is Euler's constant and in thie chapter only
(3.8) v(z) = ' (a)/r(a).

From *(1+z) = zM(z) and (1) = -} (see (1.30)) it is seen that for
n > 2 we have
v(n) = 1+1/2+ ...+ 1/(n-1) - § .
The above functions are usually called the modified Bessel functions,

arising from

(=1)5(5/2)PH2K B oy S p+2k
G.9) 9, - Z w(p+k+1>  1y(a) = o(-2/4)3,(32) - kZO G

where the parameter p is & fixed real number. In fact for any integer n one may

define

Gio) g - S T T e e
and then from (3.9) deduce (3.4)-(3.7) and also

(3.11) S (2) = -k (1), v, () = 2 (x).

The practical value of the formulas (3.1) and (3.2) lies in the fact that
the Bessel functions appearing in them admit sharp asymptotic aepproximations invol-
ving elementary functions, which are valid for |z| large and largz| < Sf; Defining
for p > C real and m > 0 an integer

(p,m) = M p+m+1/2) (4p2-12)(4p2 - 32). .
P Wi {(p-ar1/2) Za ’

we have for |z| lerge and largz\-< T

(3.12) K (a) ~ (722) "2 =3 oy Y (e2) ™",

m=0
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\ ‘1/2 1 2 m -2m
(%.13) ¥ (a) ~ (2/ma) /*Jein(omcmp- D)2 (=) (py2m) (22)
“ mm()

&5 -2m-1
+ cos(z - Jop - §)2(~1)m(p,zw)(zz) 1,
2 m=0

(3.14) Jp(z) ~ (2/1’2)1/22008(2:‘- %er - %’)i (-1)*(p,2m) (22)-2111 -
m=0

- sin(z - 4mp - %)2}(—1)m(p,2m1)(2z)-2m-1i .
M=

The symbol ~J means here that in (3.12)-(3.14) equality holds if in the
sums over m we stop &t any finite term and multiply it by 1 + O({z['1), With the

sbove formulas we obtain from (3.3)
(3.15) oA(nx) = -21/2x-1/4n-1/4 sin(4or\/nx=-7/4) - (32«)-1(nx)-1/2cos(4m\/5§;m/4) +

+ O(n-5/4x-5/4)é,

which is sufficiently sharp for most applications of the summation formula (3.2).

§2, The truncated Voronoi formula

There are no simple proofs of (3¢1) and (3.2), where delicate questions
of convergence are involved, The most difficult case in (3.1) is when x is an in-
teger, but in most applications the distinction whéther x is an integer or not is
not important, since d(n) << n* for any ¢ > 0. In practice it is useful . to have
a truncated form of (3.1), and Chapter 12 of Titchmarsh's book [8] contains a

proof of

(336) Al = =207 %2 T a2 (0, (aaVim) Ty, (amVim) + 0G8) + o,

=y

which in view of (3.12) and (3.1%) may be replaced by the simpler expression

(3.17.). A(x) - (mﬁ)-1x1/4zd(n)n-3/4003(M\/ITJE—-?T/A,) + O(xi) + 0(x1/2+tN-1/2).

n<i

Here X is a (sufficiently large) paremeter which may be suitably chosens the

1/3 1/3+¢

choice N = x / implies immediately ‘Zx(x) << X , while letting N —% o in

(3.16) we obtain (3.1) in a weaker form with the error term 0(x%*) present, The



50
proof of (3.16), as presented by Titchmarsh [E?r}, gtartz from Perrunts inversion

formula (1,10) which gives

e
' - - -2 ) -
Z d(n) = (2omi) 15 tz(s)xss 1ds + O(xc‘i‘(c-1) ?) + U(x“t’l‘ 1),
ﬁ:‘:'x CaiT :

where ¢ = 1 + 1/logx, TZ/(MFZJ() = N+ 1/2, and ¥ is an integer, Here N is the same
parameter which appears in (3.16) end (3.17), since in those formulas it is irre-
levant whether N is an integer or not if N <« xA for some fixed A > O, which we
nenceforth assume. The contour in the abcve integral is replaced by the contour
joining the points ¢ + iT, -a + iT (a > 0). Allowing for the polesat s = 0 and s = 1,

we obtain by the residue thecrem

—adiT

(3.18)  A\(z) = (emi)” Zd(n) S ’)( 5-11{83-1& + 0(x") + 0(-523 /a)+0( 1+¢ 1)’

-a-iT
where the functional equation (4.3) was used, and K2(1-s) was replaced by the
absolutely convergent series which may be integrated term by term, so that (3,18)
follows on estimating the integrals over the horizontal segpents. Using Lemma 2,1

and the asymptotic formula (4.4) for “X(s) it is seen that the contribution of

Z ir. (3.18) is contained in the error terms, and writing

bomJ\ .
_aéiT ‘o0 ioo - -a-iT it
—a-iT ~io0 T -iso -t -ae?

we obtain, after estimating the integrals imn the bracket above either trivially or

by Lemma 2,1,

(3.19) AR = (2¢JTi)-1Z‘d(n)no‘l S 228552523 03 as/2.n (1-—s)(nx) s las +
n<i -i00
v 0(xf) + o(x/ P12y

where & = 1 << ¥ << ;(A, arnd where the expression (4.3) for "X (s) was used.
The abouve transformations of A X) were necess sary, since the change of varigble
8 =1 ~-win (3.19) shows that (3.16) follows from

A+ico
2 \-1 22 g
- (7 n) S cos :nw,f 2er(w)rWw=-4) (23 }/nx) -

4~i00

g 1 Fi ") 7!' -
-4i (x/n) /2(};1\43; vx) + =0, (4x)nx),
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or by writing 2xynx = X we have to show

Adin0
(3.20)  (2i)”" S cos w2+ P(n) Plw- ) X2 Paw = (i, (2%) + Zx, (20)).

A-io0

To see that (3.20) holds note that

(3.21)  f£(x) = x-1Y1 (x), F(s) = -zs‘?vr"r(-g)r(-,‘;— - 1)cos,r(§ -1, (2<4d<5/2)

(3.22) £(x) = x-1K1 (x), F(s) = 28'3r(%)r(-;- - 1) (8 > 2)

are respective Mellin transforms in the sense of (1.1) and (1.3), and thus by (1.3)

Atieo
%x”y x) + X-1K1 (X) = (271)"" S 25"3r(%)r‘(-§ - 1) (cos®Z + 1)x °ds =
. A~i00
Adioo Atien
2(21ri)-1 g 22W'3r(w)r(w-1)(cosxw + 1)x’2"’dw = (2::1)"15 22w-1cos2xw/2-r(w)[’(v-4)x.zwdur,
4-ico tivo
Replacing X by 2X we obtain
Adiad
%X-1Y1(2X) + x‘1K1(2x) - (exi)”" S cos Znw/2r () r(w=-1)X""aw,

4-:”
and finally multiplication by szroves (3.20) and therefore (3.16) toc. A similar

formula may be derived by this method for Z&k(x), the error term in the asymptotic

forgula for :Z;dk(n) (see Chapter 10), and for k> 2 fixed one obtains
n<x

(3.25) A0 << x5/ T wyn B/ (ean) V)| 4 xt 4 1l i1/
n<N

§3. The weighted Voronoi formula

An effective way to prove both (3.1) and (3.2) is to consider the weighted

sum

(3.24) D, () = Ay (1 - n/0 7 atw), (a2 1)

ngx

and find an asymptotic expansion of this sum (q is a fixed number, not necessarily

an integer) in terms of some "generalized Besscel functions", This line of approach
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has been succeassfully ussd by several authors, and we chall follow here the work

of A.L. Dixon " and %.L. Ferrar [fl. By the inversion formmla (1.14} we have
28ica s+g-~1
N . "'1 2/ x\) r—‘/
D X = 2011 f g )—
B
2-ia0

which is the starting peint for the evaluation of Dq“1(x). For 9 > 2 and
0 <c <mnin(1/2,q/2-1) it is seen by Stirling's foraula (1,32) that the line of
integration in the above integral may be replaced by the line ke s = -c, ard hence

by the residue theorem

“(#ico
Sra- 1(‘ 3 g-1 q
(x) = g X % — W
(3.25) Dq_1 VK) ( ) St ( )ﬁ—dﬂ + /_'].r‘(Q_) + P(q+1)<b' + lObX ’\Y(‘!+q,‘,.
~(~iod

since the integrand has u simple pole at & = 0 and a double pole at s = 1, As in the

proof of (3.16) we use now the functional equation for the zeta-function and replace

t2(1—s) by the absovlutely convergent series which may be integrated termwise to give

- - Ctig
+q-1 v L o0 i | evot
(2‘31'1) S t2( \ r\ s+q§1 S\ S = (4%1’2(1 2) 1Zd.(n)n q(2"1) -4 (45{2.‘,1}{
n=1 F(S\r‘(b-{-qj co‘> J /2
~C~im0 !

since by Stirling's formula the integrand on the left-hand side above is ebsolutely
convergent., For n and x fixed the second integral above is equal to minus 271 times
the sum of residues at its double poles s = 2m+1 (m = 0,1,2,...). To calculate these

residues observe that cosz is an even function of z and for z = s - (2m+1)

coszms/Z = cos (mz/2 + (2m+1)£3 = sinzmz/Q = (1 + o{1))ﬂ222
A ’

while the linear part of the expansioh of

(¢”2nx)s+q-1 - s
M (s,M(s+q) g(s)

at 3 = 2m+1 is equal by Taylor's formula to

£ '
Q— -

y )

£t
(E)

ft
oy |+

oy b

s=2m+1 gaZm+l

2m+g
(Aﬂznx) : 2 . . .
e T Py (Lfarnx) = ¥(2m1) - ¥(2oeieq)).
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g-1 q o : :
X X _ _ q ‘
(3.26) Doy (x) = 3y * FhTTW + loex - W(as1)) + 2nx ;d(n)nq(m/“)nx ,

where

Lo 4m » .
(3.27) aq(z) - -3—%2; P(2£i4§3,(2m+1+q~)(2log(z/2) - V(2m+1) -V (2m+1+q))

is the'generalized Bessel function”, To see that this terminology is justified, note

that from (3.6) and (3.7) it follows that

= 4 .
K, (2z) + %Y.‘ (2z) = Zmzo(2m§!?2m+1)!<21°gz - "{'(2m~f-‘!) - Y(2m+2)),

80 that a comparison with (3.27) shows that
(3.28) A yE) = % 2(n)" V2, (4mfam) + Ty, (411/m)
. 1 1 271\ .

Therefore the main effort must be directed towards showing that (3,26)
holds not only for q > 2, but for q> 1, since for q = 1 (3.26) reduces to (3.1) in
view of (3.28), proving VoronoiI's formula (3.1) for /\(x) when x is not an integer.

The definition of ')q as an integral shows that

(3.29)  Ed(z) = (2)”

C~i00

(z/2) Zs-st
M(s)M(s+q) coszn/z

for Re ¢ > 0, -1 <c <1, Re q + 2¢ > 2, Using .a technique similar to the one used
in the préof of (3.16) it is seen that the integral in (3.29) may be asymptotically

evaluated to yield, for -2/2 <« argz < 3%/2,

o0
. -q 2 qmi 2 MN(er Ar
(:30) Agl®) ~ (/27 @) + 3ok G - 22, s/,
Hence by the asymptotic formulas (3.12) and {3.13)

G.31) A, (4V/nx) = (n) "9/ 2-1/4 [4in(4mVox - a/4- wq/2) + qu"”’ “"} +
+ 0((nx)_Q/2-5/4) + O((nx)-2),

where Aq and Bq are uniformly bounded. Therefore the series in (3.26) converges
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absulutely for Req > 3/2, and this estubliches the validity of (%.26) in the range

q = 3/2. To investigate (3.26) for q < 3/2 one needs to know the b@haviour of the

partial sums of the series in (3.26). Letting
ro(x) = Do(x) - x(} + logx - W(2))-1/4,
%

) = (et - T Gen)a(r) -y + losx -w(3)) - /4,
Ak

[

we obtein for a,b > 0, f(x)e 02 (a,b}

(2y + logt)£(t)dt,

r

& . £
Z f(n)d(n) = Sf(’c)dDo(t) = Sf(t)dro(t)+

a<n<b

and integrating twice by parts we obtain

v ¥ 4
(3.32) z:ébf(n)d(n) = (ro(t)f(t) - r1(t)f'(t)) +’Sr1(t)f"(t)dt + S(2r+logt)f(ﬁﬂt

From (3.26) and (3.31) it is seen that r1(x)-<< 13/4, while trivially one
has r (x) << x1/2. To establish the convergence of (3,26) for 1 < gq < 3/2 we
use (3.32) with £(t) = 1q(4ﬂ\/xt) and note that from the series expansion (3.27) we

obtain for integral q

(3.33) LA (avED) = T (i),
which is analogous to {3.11). By some calculations it follows that

£1(t) A ax Y225 A ST an /250 /0) + o(x BT,

3/4

and using again ro(x) << x1/2, r1(x) << X it ié cseen from (3.32) that the series
in (3.26) converges for q > 1, and moreover when x is not an integer the convergence
ie uniform for x lying in any closed interval free of integers for g > 1/2. A more
careful analysis, based on imvestigation of the function f(t) =’)1(4ﬂv§¥)-71(4m/£§),
m = (x], settles the case q = 1, x is an integer, The deteils may be found in the
work of Dixon and ¥errar ﬁ].

Finally it remsins to discuss the proof of the summation formula (3.2). Note

first that using (3.1) and (3,11) one obtains formally

% & &
Z f(n)a(n) = Sf(x)dD(x) = S(logx-k?’)f()i)dx + gf(x)dA(x) -

&«nsb b
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S(logx + 2x)f(x§dx + :Z;d(n)g f (%) (nx)dx,

i.e, one obtains formally (3.2) from (3.1) by differentiating /\(x) term by term,
but this. procedure is hard to justify. A rigorous proof may be based on (3.26) and

the summation formula (3.32), when we substitute

r,(t) = 20t Zd(n)kz(m\/ﬁw?) .

n=1

Since f*(t) is bounded and the series for r1(t) is absolutely and uni-
formly convergent the order of summation and integration may be inverted, and the

first integral in (3.32) becomes

0o I3
25r2d(n) S t222(43r\/rﬁ)f" (t)at,
n=l o

Integrating twice by parts and using (3.33) we have
d b
(3.34) (v e = (P Um/D () - O VD) 4
a
- 3

&
+ S)owr\/'ﬁ)f(t)dt-

o~

From (3.4),(3.5) and (3.27) it is seen that

292, (4r\/nx) = 41{0(43\/}&' - zatyo(.q.m/ﬁ),

and using (3.26) with g = 1 and g = 2 we have (in view of (3.1) and (3.24))
o o0
1 2 —
r (t) = z4(t) + zmnz;a(n)a1 (AT V) ,z, (1) = 2n ;d@mz(uvm),

where we set d(t) = 0 if t is not an integer. Therefore if we multiply (3.34) by

27d(n) and sum over n we obtain (3,2) from (3,32).

§4. Other formulas of the VoronoI type

There exists a lerge literature concerning various generalizations of
Voronol's formulas (3.1) and (3.2) to other arithimetical functions, whose genera-
ting functions satisfy functional equations simi}ar to the functional equation for

the zeta-function of Riemann, This possibility of generalizations is one of the most
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important aspects of the research initiated by VoronoY, but sipce our méin purpcee is
the investigation concerning the zeta~function, we shall mention only one result
explicitly which is similar to Voronof's formulas, This concerns the classical
lattice~-point problem known as the circle problem, which is similer to the divisor
problem (see Chapter 10) and consists of. estimating the fﬁncfion'
(3.35) P(x) = R(x) =ax « 1 = ;Z:'r(n) - orx -1,

n=x
where r(n) is the number of ways n may be written as a sum of two integer squares,

In 1916 G.H. Hardy ES} proved the asymptotic expansion

' - 3 4a-t - .
638 py L (o0 =) - gy - F e T q"w;“ EORCTD

for q > 1 (here b3 means that only for q = 1 and n = x one should take r(n)/2

- t
instead of r(n)). From Hardy s formula one may derive a summation formula for

:E: 'f(n)r(n) analogous to (3.2). The expression on the right-hand side of (%.36)
an<d

is simpler than the corresponding one in (3,26), and (3.36) may be deduced more
simply than (3.26), since the generating series of r(n) has a simple pole at s = 1,

while t2(s) (which is the generating function of d(n)) has a second order pole

at 8 = 1,
NOT®ES

GoF. Voronol proved by a complicated method the formulas (3.1) and (3.2) in
(jl, and a little later in [23 he succeeded in generalizing his method to certain
other functions which are the number of representations of n by cértain positive-
definite quadratic forma. The methods introduced by Voronof were deep and inspired
much subsequent research, of which one exémple was mentioned in §4. Modern develop-
ments of this theory may be found in the works of K, Chandrasekharan and R. Nara-
simhan (1), [2], B.C. Bernat [11, (2], 3], (4] and J.L. Hafner (2}.

The notation used in this chapter differs a little fromithe nobhition used
in other chapters in two instances, but this will cause hopefully no confusion, Fir:
stly the error term.[S(x) - ZSQ(X) is defined somewhat differently than in Chapter

10, and segondly following traditional notation we have defined in (3.8)
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~{z) = ' (z)/r(z), while in the rest of this text we use ~l(x) = x - (¥} - 1/2;

the furction ay(x) (see ¥otes in Chepter 9) is alsc used as Y(x) = EZJW\(n) in
n<x ’

prime rnuwter theory.
When p ig an integer in (3.9) I{p+k+1) is undefined when p + k + 1 is
a non-positive integer, bat for integer values of p it is clear that one should

define

S LD /2P P
NORIDES e L OO N CORROE

and similarly for Ip(z) when p ie. an integer,
There is a possibility of obtaining an explicit expression forAAX(x) which

is completely different from (3.1). Namely starting from the elementary expression

Taw - 22 21 - ']

= n<yx m<x/n

ané defining ZX(x) as ir (3.1), a simple calculation gives at once

AR = 20, ¥ix/n) + o), ¥ = x - [ - 1/
n<V/x

This is a useful formula, but for most purposes (3.1) and the flexible
(3.17) are better.

A1) the facts used here about the Bessel functions may be found in the
standerd work of G.H. Watson D]. Curiously encugh, Watson mentions VoronoI's for-
mula only once on p. 200, where he writes rather disparaginghf4 s+ "A novel applica-
tion of these asymptotic expansions has been discovered in recent yearsts they are of
some importence in the analytic theory of the divisors of numbers", In view ofmany
important applications of (3.1) and (%.2) and allthe . research Voronoil's work has
inspired, this remark seems a little unjust - VoronoI's formulas deserve more than
g casual mention,

Ti tchmarsh's proof of (3.16) is giver in Chapter 12 of &ﬂ and some details
of the proof are for this reason suppressed here, However his remark on p. 268,
which amounts tc saying that (3,20) helds, is rather casual, The reference to
(7T+9+8) &and (7.9.11) in Lis book {?} on Fourier integrale does not seem adequate,

»

and it is desiruble to have a more vetailed account of (3,20). To see that (3.21)
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and (%.22) hold, note that f(x) = & (0 <a<1) and F_(x) = Ve/al(a)x *cosma/2

are cosine transforms,i.e.

Fc(x) = Vo/n S f(t)cosxt.-dt.

By the definition of Jp(x)

(. 2.p-1/2 —1) %" 1/2 20
(s> Y 200syay - i—g—;—% -y

b4 n=0

_Z( 1) r‘(p+1/2 r‘(n+1/2) - 2P‘1/2 Wz—r‘(p+1/2)x-PJ (X) ]
Y

n-O (2n 'r\p+n+1)

where we used (1.29) and [(n+1/2) = 2 n9‘r1/2(2n--1)... Thus

—£2yp-1/2 x
A A " F_(x) = 2"'1/2F‘(p+1/2)x"’Jp(x)

0] ’ x> 1

are also cosine transforms. Analogously to (1.6) one obtains

SFc(x)Gc(x)dx = gf(x)g(x)c}x, SFc(x)g(x)dx= S(}c(x)f(x)dx

for two pairs f(x),Fc(x) and g(x),Gc(x) of cosine trahsforms, which gives

7 A
(3.37) SJ (x)xa-p_1dx Ve/m__ I (a)cosna/2 2, p-*& ~a
o 22~/ 20(p41/2) g( X

"(a)cosna/2 Llp+1/2)r(1/2-a/2) _ 23"P'1r\(a/2)
2P \/& P(p+1/2) 2M(p-a/2+1) r(p-a/2+1) *

where we used (1.28). Taking a = s to be complex in (3.37) it is seen that (3.37)

holds for 0 < 4 <p + 3/2 in view of (3.14), and we have the Mellin transforms

- 23'P“1»r‘ 8/2
(3‘38) x pJp(x), r‘(p-s/Q-«(»’}{ )

Finally using the relations

J_(x) - J_ (%)
Yp(x) . co::zﬂp =D , k (x) = Pﬂi/Z(T ( )

+ 1Y (x))
p( JJ

one obtainsg (3.21) and (3.22) easily from (3.28).
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Both the proof of (%a1) end (3,1€6) utilize the familiar functional cqua-
{Liun for the zeta-turction, which belungs to elementary zetw-function theory and is
supposed itu be known to tne recvder, However for the sake of completeness a proof of
the functional enuation will be presented irn {1 of Chapter 4.

The method of copsidering the weighted divisor sum Dq_1(x) is due to
Dixon and Ferror (ﬂ}, while their paper [?} containg an interesting investigaetion of
a reciprocity relation cornected with the Voronof formula, which is m5tivated by the
reciprocity relation for Fourier transforms., The exposition presented in §3 corcerning
the proof of (%.1) and (%,2) follows Dixon and Ferrar {j], where additional details
(like ths proof of (3.30), and especially the proof of (3.1) when x is  an . integer)
may be found. The main idea in the proof of Dixon and Ferrar is to prove (3.26) for
some g (specificully for g > 3/2), and then to feed back (3.26) to itself again
(ir. a certuin sense) via the summation formula (3.32) to obtain (3.26) for values of g
less than 3/2 also. The crucial point in their proof of (3.,2) is the fact that the
sxpression for r1(t) allows one to invert the order of summation and integration -
the rest is simply integration by parts. The paper of Dixon and Férrar [{3 gives
also an analysis of (3.2) when a = O and b = 00, in which case there are some addi-
tional difficulties. A proof of (3.2) when & = 0, b = 0o has been given recently by
D, Hejhsal [j} who used a two-dimensional Poisscn summation formula.

A nice generalization of the truncated formula (3.17) for /\(x) to the

! oL .
error term in the zsymptotic formula for ji f(n){x - n) , %> ¢ has been made by
n<x

H.-k. Richert [é]. Here f(n) is an arithmetical funcdior. generated by a Dirichlet
series which satisfies & certain type of functional equation involving gamma factors,
which is similer to the ordinary functicnal equation for the‘Riemann zeta-function,
4dpplications of Richert's results to the circle problem will be discussed in Chapter

10,
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Aleksandar Ivid

TOPICS IN RECENT ZETA-FUNCTION THEORY

CHAPTER 4

THE APPROXIMATE FUNCTIONAL. EQUATIONS

§1. The classical functional equation
§2. Approximate functional equations for [(s) and Kz(s)
§3. The approximate functional equation for higher powers

§4. The reflection principle
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CHAPTER

THE APPROXIMATE FUNCTIONAL EQUATIONS

§1. The classical functional equation

The classical functional equation for the Riemann zeta-function is

(4.1) % siicis) = =182 (1isyr2)g(1-8),

and was originally discovered and proved by B. Riemann in his epoch-making memoir [1].

Using (1.28) one may write (4.1) as

(4.2) T(s)r(s) = (2r)%C(1-s)/(2cosns/2),
or simply as
(4.3) - T(s) = x(s)T(1 - s8), x(s) = (2x)%/(2r(s)cosns/2).

The functional equation holds for all complex s, and represents one of the funda-
mental tools of zeta-function theory. Following traditional notation which originated
with Riemann we shall write s = ¢ + it, o and t real, and so using (1.32) it follows

immediately that

o+it-1/2ei(t+n/4) -1

(1 + oOft

(4.4) x(s) = (2x/t) )), t > to’

which is for most purposes a sufficiently sharp approximation. Though there exist many
well-known ways in which (4.1) or one of its equivalents may be proved, a proof of the
functional equation will be given now for the sake of completeness of the exposition.

The proof has the advantage of being almost elementary, and starts from the identity

-x2™" -x27K -x
(1 - e 1T (1 + e ) = 1 - e ",

Therefore by logarithmic differentiation we obtain, for x > 0,

-k -n
E _2-ke-x2, i e-x ) .2-ne-x2
k=1 -x27¥ 1 -eX -x2™1
1+ e 1 - e
or
) R N S (x > 0)
Ks -k - ox° ~n X . X



Letting n » o we obtain the identity

ad -k
1 1
(4.5) 2. —2 — 1. 1 x>0

k=1 ex? 1 e -1

which is the starting point for our proof of the functional equation. Ccnsider now

for 0 < é < 1

R R L
e - 1 k=1 n=1
s-1
r(s) Zz R ksZ(-ﬂ“n'S - r<s>-1-2—§:1—<2"s - DE() = T()Eds).

Here (4.5) was used, the elementary representation

%% - )EGs) - Z(-n (0 <4 <1)

n:

and the fact that the order of summation and integration may te inverted by absolute

convergence. Change of variable [/27Ty = x gives now for 0 < d < 1

(4.6) F(s) = Z(s)f‘(s)(%)-s/z = S £(x)x> ax,
where ’
(4.7) £f(x) = (e Vorx 1)"1 - (VZx)©~.

If we now use the fact that f(x) is self-reciprocal with respect to sine

transforms, i.e.

(4.8) f(t) = (2/9r)1/2 S f(x)sinxt.dx,

then the proof of (4.2) easily follows from (4.6), which shows that F(s) is the
Mellin transform of f(x). Namely with (4.6) we have
o0 - o0
F(s) = S f(x)xs_-1dx = (2/7!')1/23 £ (y) (st-1sinxy-dy)dx =
(4.9) ) w ° °
(2/5!)1/2r‘(s)sinﬁs/2—8f(y)y-sdy = (/1) ’r(s)F(1-8)sinms/2 = ¥(s),
0

and the last equality also holds by analytic continuation outside the strip O <:a€:1.

Using the first identity in (1,28) we obtain finally from (4.9)



f(1-s) (2m)®/2 3
2cos(as/2) ?

C(S)P(B) (29()-5/2 = (2/9")1/zsin(9rs/2)r'(s)t(1os) (2’) (8-1)/2 -

which is exactly (4.2).

§2, Approximate functional equations for €(s) and 52(3)

There exists a large number of the so-called "approximate functional
equations' for Kk(s), which expreés tk1s) by one or more finite sums whose
lengths depend on |t]. In this section we shall examine the simplest cases when
k = 1 and k = 2, The classical results on this subject are due to G. H. Hardy

and J,E. Littlewood [2],{3], A.E. Ingham (1] and E.C. Titchmarsh ([5]. These are

(4.10) L) - Zn-s + X(S)Zns-1 £ 0%+ O(t1/2-6yd-1),
nsy

nx

which is wvalid for 0 < d < 1; 2Wxy = t; X,y,t > C > O and
2 - 2 s-1 1/2-4
(411 E2e) = Doamn™ + X3(e) D amn®t + o= 10at),
n<x n<y

which is valid for 0 <d <« 13 ¢W2xy = t2; X,¥,%t > C > 0. Because of symmetry a cor-
responding result holds also if t < O with t replaced by [tl in the error terms and
in 2rxy = t for (4.10). The approximate functional equations (4.10) and (4,11)

possess a symmetric property if s = 1/2 + it. Namely from (4.3) it is seen that

A(1/2 + it) = 1'1(1/2 - it), so that £(1/2 + it)X-1/2(1/2 + it) is real, and the-
refore (4,10) and (4.,11) with x = y = (t/2%)1/2 and x = y = t/20 respectively
yield

(4.12) §(1/2+it)1‘1/2(1/2+it) = 2Re ’X1/2(1/Z+it) Z n_1/2+it}+ o(t“1/4),
n<(t/2m) /2

(4.13) |e(/2 + i0)|® = BE(/2 + 17 (1/2 + 1t) =
2Re{1(1/2 + it) d(n)n‘1/2+it} + 0(logt),

n<t/2w
since 11(1/2 + it)) = 1,
The proof of the well-known relation (4.10) may be carried out via the

Poisson summation formula (1,23), but rather than to do this here we shall present

now a proof of the more difficult (4,11) by using the Voronol summationvformula.

(in fact it will be technically simpler in (4.15) to use (3.1) instead of (3.2)),
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which may be in a certain sense considered as a two-dimensional Poisson summation

formula, The proof of (4.11) will be given now for é > 1/2, x 2  y > t*, and rather
than to try to adapt the proof to cover the range 0 < é< 1/2, in §3

the classical method of Hardy ard Littlewood [3] will be presented in conjuction
with the approximate functional aquation for fk(s),.which enables one to obtain

a complete and different proof of (4.11),

With D(x) = Zd(n) = x(logx + 2y - 1) + A(x),8 > 1, we have

n<x
fz(s) - Zd(n)n-s + Sx-sdD(x) = Zd(n)n-'s +S(logx+2x)x-sdx +Sx-sdA(x).
n<lN Vo n<N N N

As discussed in §2 of Chapter 3, a trivial consequence of the Voronof
formula (3.17) is the order estimate A(x) << x1/3+e. Thus an integration by
parts gives

(4.14) tz(S) = Z/Nd(n)n—s + (8-1)‘1N1-s(logN + 23) + (s-1)—2N1~s + 0(N£+1/3-&) +

0

+ 8 Sx-s"lA(x)dx.

N

The integral in (4.14) is therefore seen to be absolutely convergent for
3> 1/3 (and using Theorem 10.5 it is seen that the integral in question is actually
absolutely convergent in a wider semi~-plane 3 > 1/4), so that (4.14) furnishes an
analytic continuation of C,z(s) for & > 1/3. Our choice for N will be N - tc;; where
¢ > 0 is fixed but sufficiently large., We use (3.,4) and split the series involving

d(n) at (1+¢)y, where xy = (t/Zﬂr)z. Integration by parts gives

N
(4.15) 2 d(n)n”® = S(logu+ 2x)u_sdu + 0(x1/2-élogt) +
x<n<N %
N
22 an) § ok, Crory/am) -, (oA +
n<(1+¢)y X _

N
2 d(n)S (_gﬂ°1(u/n)1/2(K1 (4ory/m)+ Ty, (4orv/ma)))u™* au,

>(14+e)y x
Noting that
N

S(logu + QK)u-sdu = (s-1)-1x1-s(logx + 26) + (s-1)-2x1-s -

-
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~(s=1)""W'"% (10gN + 2p) - (s-1)7""S,

it follows on comparing (4.14) ard (4.15) that the only difficulty lies in the
estimation of the sums appearing on the right-hand sides of (4.15). Using (3.12)
and (3,13) it is seen that the second sum on the right-hand side of (4.15) is
equal to c4y8 times

(4.16) Z d(n)

w>(1+6)y

N N
n-s/"'Sﬁ's—s/d’sin(Mr nu-3r/4)du + O S n~7/4u"&~7/46u) -

x

N
1(21)'1 2 ) d(n)n-B/Ag u-‘"s/d’exp(-itlogu_tzl.sr\/;ﬁ;}qr//l)du + 0(x—6-3/4y~5/410gt),
r>(1+ &)y x

1/2-8

and the error term above is << t'1x logt, The integrals are of the form

N
Su"&-'}/Ae(F(u))du, Flu) = - Iz-flogu + 2\/mu,

so that F is monotonic and |F'(u)|] > (n/x)1/2 for x <u < N in view of n> (1+¢)y.

Using (2.3) it is then seen that the total contribution of the sum with ny(1+¢)y is

<< x1/2-3logt + t Z d(n)n"3/4n~1/2xus‘1/4 <<
‘ >(1+¢)y

x1/2-dlogt + ty'1/4x"3_1/4logt << x1/2-6logt

’

since t << x if x 2 y and xy = (t/2'3()2. Setting for brevity T = t/ZJI and using
again (3,12) and (3.13) it is seen that the first sum on the right-hand side of

(4.1%) is equal to

N
-21/2 Z d(n)n-1/4gu-é'1/4exp(—itlogu)sin(4gr nu-a/4)du  +

n<(1+¢)y
+ 0( Z (i(n)rl-';/'/‘1 S u~3"3/4du)
n_<__(1+g>y x

N
3;2"1/21"1 Z d(n)n_1/4 Su"8'1/de(-Tlogu_t2 muzl1/8)du + 0(3’1/4*1/4-&10815)»
n<(1+¢)y X

4 e i
and clearly y1/4x /4 8 << x1/2 8. The integral with e(—Tlogu-Q\/nu+1/8) is as

in the previous case estimated by (2.3), the total contribution of these integrals
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being now

<< Z d(n)n_3/4x1/4-3 << y1/4x1/4-elogt << x1/2-alogt.
n<(1+¢)y

Therefore we are left with

(4.17) o 1/2 Z d(n)n"1/41n, I, = Su_a"“/de(fn(u))du,

n<(1+¢€)y

fn(u) = =Tlogu + 2ymu = 1/8.

Thus we have

30 = 7 ), sy - mt - BVAT,

implying fg(u) >0 forus<u = 4T2n_1, But for u > (1-€)uo we see that

f;l(u) >> (n/u) 1/2, and so using (2.3)

Z d(n)n-1/4 S u-&_1/4e (fn(u))du << Z d(n)n-1/4u;/4-en-1/2

n<(1+¢)y ey n<(1+¢)y

<< Z 1:1/2“23d(n)n6"1 << t1/2~2yalogt << xi/ztélogt,
n<(1+¢)y

if ¢ > 0 is a sufficiently small fixed number, For the integrals in the remaining

sum Yo,
..2-'1/21-‘l Z d(n)n_1/4 S uﬂs_‘]/de(f (u))du
n<(1+€)y x n

we shall use Theorem 2.2 with a = x, b = (1—£)u0, ¢(u) = u~3‘1/4, flu) = fn(u),
k=0, F =j4.= t, and the conditions of the theorem are readily checked, All the

1/2-2

error terms in Theorem 2.2 are easily seen to contribute & total << x logt,

except the error term O((ba( \fé + k| + f; 1/2)"1), which will be discussed now,

Observe that for a given n we have fr'l(x) =0 if n=Tx =y and y is an integer,

Therefore making the substitution n = [y} + m, \m\ < ¢y we have
’ _1
t - t s .~
fn(x)_ fn(x) fa'r(x) X |m it

by the mean value theorem, so that
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xt-1/2 for |ml < sz-z

(4.18) (\fx'l(x)l+(fl";(x))1/2)-1 << [ml-1t for t°x % «< [m| < ey/2

max( (n/x)-1/2,x/t) for |ml > &y/2.
In view of T2x-2 << 1 the first estimate in (4.18) can hold for at most

0(1) values of m, and the total contribution of the error term

o(, (Ify + kl + £ 1/?‘)'1)

is then

22 _zt‘y‘1/4xt"1/2x"”1/4 + Z tn|™'d ([yI+m) ([y1+m)'1/4x"'1/4
ml <<t “x 1<<im\<uy/2

(4.19) + Z/ /24 ((y1em) (e m) Y AV
ty/ 2<m<y ©

+ Z xt-1d([y]+m) (Cy]+m)-1/4x-g-1/4 << t1/2+€x-a + x1/2-&logt,
ty/2<\m| sy

and where in the second sum in (4.19) we used the triviel d(n) < n®, Here the

1/2+€_=g 1/2=3 1+2¢

error term t does not exceed x logt if x> ¢ s but it has been

kindly pointed out to me by M. Jutila that by a more elaborate consideration of

)-'1 in Atkinson's Theorem 2,2 one can obtain

) 1/2
the error term Cba( lféL + ki + £

that the contribution of the sums in (4.,19) is indeed << 11/ 24

logt for the whole
range x >> t,
Pinally it remains to deal with the main terms, i,e, the saddle point

terms coming from Theorem 2.2 and then to use (4.,4). The only root of fl'q(u) = 0

for a fixed n is x = T2n'1, and x> x precisely if n <y = T2x-1. Now
1,.-% 2
n -
fn(xo) '§T no
2 -1
£ (x) = =Tlog(T’n ) + 2T - 1/8,

so that we have

-2'1/21'1d(n)n~1/4?(Xc)f£(xo)-1/2ex9(szn(xo) +oi/a) -
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-2'1/21'1d(n)n‘1/ 4(T2n-1)-3-1/421/2'1’3/211-1exp(Zitlog(aar/t)+itlogn+2it+mi/2)exp(-ari/Z)-

= amu® "N 4 it) + o)’ TNy,

Therefore

VY a1 = D amné Y20 s ) s

n<(1+e€)y iy

+ O(t°2&:§i,d(n)n&”1) + O(x1/2-&logt)
n<2y

x2(e) 2oamn®" & o(x/F10g),
iy

and in view of (4.17) this means that we have proved the approximate functional

equation (4,11).

§2. The approximate functional equation for higher powers

We pass now to the analogues of (4,10) and (4.11) for ﬁk(s), where k > 3
is a fixed integer. The approach that will be used is that of R. Wiebelitz [fl, and
is based on Hardy and Littlewood's proof [3| of the approximate functional equation
for fz(s), so that this method yields an alternative proof of (4.11) for 0 <& < 13
4ﬂ2xy = t2; X,y,t> C> 0, but it seemed interesting to treat the important case
k = 2 by Voronof's formula also. The proof will use a certain“Tauberiaﬂ'argument

(essentially recovering :Z:dk(n)n-s from the weighted sum :E:dk(n)n-s(logx/n)k"1)
n<x n<x

and estimates for power moments of the zeta-function, which will be extensively
discussed in later chapters (and which do not depend on results of this section),
New estimates for power moments of the zeta~function om the critical line lead to
overall improvements of Wiebelitzls resﬁlts, but as k grows the order of the error
terms in the approximate functional equation becomes rather large, which is to

be only expected, and thhs.for practical reasons the detailed analysis is carried
out only for k < 12,

For simplicity of writing we shall use the notation

(320)  X(s) = %(s), togr = - Elp2edd) (Y e 18,
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and furthermore as in the proof of (4.11) we shall suppose that t > C. By (4.1)
we have

— o

1
- 5 F(s),

so that for s = 1/2 + it the above equation shows that T, as defined by (4.20), is

real and moreover using (1.33%) we have

_x(1/2 + it)

-2
(172 + it) ~ -log2n + logt + O(t 7),

and this gives

(4221) T o= (/) + ot ).

k»ﬂ<é<h
Further we suppose xy = (t/Zﬂ) . and define

(r22) B () -E), D e

V=0 p=v+l "f’k f’”

Vow
(1 - s)1+ flogvx,

where B ¢ is the coefficient of (s ~ 1)j in the Laurent expansion oi‘gkfs) at s = 1
3
and jem=1
-1 i k+i-1 k-1
= 1 -
r o = (@) ;(n( TG .

Therefore in general we have

(4,23) Rx(s) + XF(S)Ry(1’S) << x1/2-&t~1(x + y)1/210gk_1t,

while for k = 3 we may write for some absolute D

1=s
s(%iogzx + 3ylogx + D) + O(x1-&t~210gt).

(4.24) B (s) =

We shall now give a proof of the approximate functional equation for
ﬁk(s) for 3 < k < 12, though it has been already remarked that the method may be
used both when k = 2 and when k > 12, but in the latter case the error terms tend
to be large and then the improvements of Wibelitz's results (see Notes) are small,
The improvements for 3 < k < 12 are however substantial, owing to a large extent
to new power moments for the zeta-function on the critical line, The functional

equation that will be proved is

(4.25)  £5) = 24 (n)n” £ X5 24, (m)n! - R (s) - X ()R (1-8) + A, (1,3,
n<x n<y
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where xy = (t/2ar)k;‘r,x,y,t >> 1 and Ak(x,y) may be conSidered as the error term

which depends on k,x and y, We shall prove that uniformly in o

(4.26) A3(x,b') < 11/2-3*21/8*6, A4(X,y) << x1/2'6t13/48*€,

(4-27) Ak(x,y) << te{x1/2-3min(x1/2,y1/2)t"2 + (x+y) 1/2](1/2-3 t‘-15+ x1/2... 3t61k_52)/216_}

for 5 <k < 12, where A = (31k = 52)/(27k - 108).

In case k = 3 or k = 4 one may obtain special results from (4.25) and

(4.26) analogous to (4.12) and (4.13). These are

(4.28) L3 (1/20100 732 (1/2010) = 2mefU3/2(1/2011) dem /2 o (11/84e,
n<(t/2A%

(4.29) [£(1/2 + it)|* = 2Re{’)£2(1/2 . it) 2 2d4(n)n-1/2+it}+ o(v13/48%¢y
n<(t/27m)

which follows with s = 1/2 + 1%, x = y = (t/21)/2, as the terms with R, and R

are by (4.23) absorbed into the O-terms of (4.28) and (4.29) respectively,

Now we begin the proof of (4.,25) by remarking that: for technical reasons
(as was done also by Hardy-Littlewood and Wiebeldtz) the condition xy = (1:/25#)k is
replaced by xy = T (see (4.20)). The error that is made in this processs is then
<< 11/2-6nin(x1/2,y1/2)t£_2, which is negligible in (4.26) and present in (4,27).
We shall begin the proof of the general (4,25), but at a suitable point we shall
distinguish the cases k =3, k = 4 and k> 4, For -1/2 <d < 3/2 we follow Wiebelitz

[11 and introduée

?

4 = 2@ ™x(w) - x(s)
(4.30) ¢4 (w) - )2 Y

8o that for Re u< 1/2 and also for Reu < min(d,1) the function ¢1 (u) is seen to be

regular and moreover uniformly in s for Re u= 1/2 we have

(4.31) d)(u) <«< tk/e-kamin(1,t-1ls-ulz).

In the course of the proof we shall need the power moment estimates
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T+6

(4432) S \E(1/2 + it){¥at << GT(k‘4)°+‘, G > T2/3, k> 4,
T-6

where [(1/2 + it) < ;O+* (so that in view of Corollary 6.1 one may take c = -2-%%)

and

m
(4.33) g (E(1/2 + it)Jkdt — T1+(k-4)/8+s, 4 <k <12,

The estimate (4.32) is a trivial consequence of a result of H, Iwaniec
[2] (see §6 of Chapter 6), while (4.33) is contained in Theorem T.2.

The first step in the proof is to use the inversion formula (1.11) to
obtain 24700

I-= (2.7I'i)-1 Zk(s+w)xww-kdw = -&-3-1-7? de(n)n-slogk_1x/n = 8.

2-1% =
~ The line of integration is moved to Rew= -y , where 0 <y< 3/4,

-1 <y,y P2 Y # & - 1/2, There are poles of the integrand at w = O and

w=1«g5 with respective residues

k=t k ] (m) ke1wm
I e A

and
{ws k-l m N Teme-1
x )" (ke m o D lo x
Qx = k m gor,k (zem=1)1 *
(k=1) (1~8)" m=0 m}(1=8) r=m+1 ~?
Hence by the residue theorem
.y-h‘oo
=1 X w_-k
(4.34) J, = (201i) g L(s+w)x w dw = I - F .- =S -F -Q.
-§-iso

Setting 8 + w = z, substituting x by T/y and using the functional

equation (4.3) we obtain

d-Yy+ico

(4.35) I, = x(s)(2:7ri)-1 S Kk(%-z)ys_z(z-s)-kdz +
: 3-;-«‘«:
3-Y+iv0
+ (2ﬂzi.)"l S tk(1-—z)¢(z)ysbz(z-s)—kdz = X(S)J1 + T,
Z-J~ioo

say. For é < ) we have by (1.11)
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k
el -1 -
(4436) Jy = -s-k—:.llr,- Edk(n)ns (logx/n)k‘I - Sy’
nsy

Mmﬂwﬂ%
to the notation already introduced in evaluating the integral I, For 3 > Yy vwve

must take into account the pole z = 0O, where the integrand has a residue

k s < n x r-n-1
Gy NV EEI T 1o .
- i 14
Yy Sk(k~1)! m=0 mlsm remt+1 r,k (r m-1)1

80 that altogether
J, = S =
1 y oy

wheree=0if&<x and 53{"1ifd>X'

¥
The line of integration in J2 is moved to Rez = 1/4, and for ¢ < y the
pole z = 0 of the integrand is passed. In calculating the residue note that

(k-

X(0) = X'(0) = o0 =X 1)(o) = 0, since in X(u) and its first k-1 derivatives

the factor sin(mu/2) comes in. This leads to

Aiu+ico

(4.37) 3, = (m1)”" S £ (1-2)6(2) (2-8) "0z - (1 - )x()a, =

AYy-ino
I, - (1 = %)X(S)Qy.
Inserting the expressions (4.36) and (4.37) in (4.35) we obtain

(4e38) F =S +Q = -X(s)J, -~ J, = -x(s)(sy - Qy) -

At this stage of the proof a Tauberian argument comes into play, The under-
lying idea is that (4,38) remains true if x and y are replxed by xe’? ana xe~ B
respectively, where 0 <h <1 and ¥ is an integer for which ¥ < k-1, and moreover
h will be suitably chosen later. Now we shall sum (4,%38) with weight (-1)v (k'y'1)

for 0 < vy < k-1 to recover the approximate functional equation by means of the

elementary identity

. 0 p<m
(4.39) (=1 (I = ,
y =0 m} P=am
and the estimate
w1
(4.40) e® = Zzn/nl + O(‘z\m), m>2, a <Rez <b,

n=0
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To distinguish better the sums which will arise in this process we intro-

duce left indexes to obtain then from (4.38)

k=1 v ke
1;)(-1) (V)(va - Syt 9 ¢ X(s&)vSy - X(s)vQy + ,J3).= 0,

y
or abbreviating,

(4.41) fx - Ex + Ex + X(s)§y - 'X(s)‘c-zx + -J-y = 0,

Each term in (4.41) will be evaluated now separately. We have

-

where we have set

k1
e
i(x) = VZ(-n 351 (ogx + yn)<12,
Using (4.39) it follows that

k-1

k=1
Am(X) - };‘)(k-;-m)hrlogk-1-m-rxzo(_1)V (k;1)yr - hk-1 (k-1)1
= V =

when m = O and Am(x) = 0 when m > 0O, so that we have

=)

(4.42) s = hkdﬁk(s) ,

and this is exactly what is needed for the approximate functional equation that
k-1

will eventually follow on dividing (4.41) by h with & suitably chosen h, Con-
gider next
5, - Za (n) “SZ( )(-1)” h + logx/n)<™! 4

“n<.‘x

(4043)

k-1
zﬁﬁio O H ) a0+ los/m) ! = T+ 22 :

x<n<xe

say. Analogously to the evaluation of Fx it follows on using (4.39) again

(4.44) 2, - wY 4, (n)n",
n<x

and we estimate Z trivially (using dk(n) < nf ) as
2



Z,| < k}.Z( ") om) <5 2 4 (n) << b

2 COB (k=1)h
(4445)

k-1 -8 i(1

+ x(e
Estimating analogouely E& we obtain

- _.3- .t
k 1tex1/2 y 1/2) k,e_1/2=2 1/2

(4.46) -X(s)g& = hk-yxk(s)251dk(n)ns-1 + 0(h + 0t x y '),
n<y
Next we have

k-1 k a
— 1-s 1 -1} “psk
) X (=1)" (ktm=1) 1 B

OeITCR LY S arreos O RE SN

where k-1

>y @070 g 4 10gm)3 T,
VY =0

Using (4.39) and (4,40) with m = k it follows

By (k=1) 157" Z (08) ™" (1-8) 1057 B (0 47T) 4 0 (04K 1085 1)

n+m=k~1
odm <y-m-4

If we set ¥V = gfﬁ-1-m, change the order of summation and ccllect the
cons tants we obtain

(4.47) -Q-x 1-8(1_ )‘-1 kw1 Z th,l gy\ '-'S) -V-flog x + O(hk 148 3 ) _

Y =0 f.\h}‘i

k-1

h Rx(s) + O(hk e~ é)

The same argument applies to 5& and yields

(4.18) 5& _ —hk“1ny(1-s) N O(hk 1/2+e~a 1/2

Therefore we are left with the evaluation of

3, - <zn)"‘§ L1209 (27" (2-9) K2 (1)) o,
- m=0 :

Qbserving that (i(z) has a double . zero at z = s and that
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k-1
ZO/(“1)m(k;1)e-hm(s“Z) = (1 - e—hs+hz)k_1

has a zero of order k~1 at 8 = s, we can move the line of integration in Fy to

Re z= 1/2 to obtain with w = u + iv (u,v real)

“ytioo k-1
(4.49) T, = (2m)™" ) L5(1-w)b(w) (r-0)5" () 05 e
1g=i0 m=0
(2:7(1)"1( S 0eoedW + .osdW + S 0eodW) = ,j1 + 3'2 + j3’
v-t{<G (v-t{>G, |v|<2t? [v|>2t?

say, Here A (= 1) is the number appearing in (4.27), and t* <G < t2/3 is a para=-
meter that will be suitably chosen. We distinguish now the cases 3 <k < 4 and

k> 4, and treat first the latter case, For j1' we use (4.31) in the form

b)) = tk/2-k&-1ls_w(2’
k=1

and majorize the sum Z in (4.49) by O(hk-1|s-w|kﬁ1), which follows when we
=0

combine (4.39) and (4.40). Therefore we have

t+6
(4.50)  §y =< hk—1y6-1/2tk(1/2-&)_1<} 5 1E£(1/2 + iv)| ¥av <<
£-6
tet?3
hk-1x1/2-th"1 5 [E(1/2+iv) ]kdv << hk-1x1/2- 6(}1;(1{“4)CM-“/B,
t-t |

where (4.32) was used, To estimate j, we use cﬁ(w) << tk/Z—kd and the same majo-

k-1
rization for a a8 above to obtain
M

k=11 /238

(4.31) j, =< h
[v=-ti>G, ngta

|E(1/2 + iv) ]klv-t]ddv.

The integral in (4.51) is split into subintegrals 321,322,3’25,324,;)25

over the intervals [-21:6,-21:], [-—21;,1;/2], [t/Q,t - G], [t + G,2t] ’ [2t,2t6] respec~

tively. Using (4.33) it follows at once that

. (k=4)/8+¢
Jop =< t ’

apd the otherintegrals are integrated by parts and then estimated., For example for
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323 we have with +-6
H(v) = = Sl{(1/2 + ix)]kdx
and (4.33) that
+-6 76
(4.52) Joz = H(v) (t-v)'-1 - S H(v) (t-v)-zdv <<
t/2 <

s(=8) /B4 ~1 14 (k-4) /B4 G—1t1+(k-4)/8+e’

<<

since G < t2/3, and the same bound similarly holds for j24. Using again (4.33)

we have
Sy ¥ s << $2(0e0)/Er)
and so
(4.53) g+ 3, << s @S/ 2 gy (k) e-1/3 | hk~1x1/2-écf1t1+(k-4)/a .

- -3 -
o pk=1,1/2=8,8(k=0) /8y
We choose now G in such a way that the first two terms on the right-
hgnd side of (4,53) are equal. Thus with ¢ = 35/216 we let
¢ = 2/3+(k-4)(1/8=c)/2

This choice of G obviously satisfies the condition t <@ < t2/3, and

then we obtain
k=1 1/2 8 (31k=52) /216 (k1) /8 |

(4.54) jg + §, < th <
t&hk~1x1/2~&t(31k-52)/216,
if as in (4.27) we take
(4.55) A= (31k - 52)/(27k - 108) > 1.
Integration by parts and (4.33) give
o0
(4456) g << x1/2-6 lE(1/2 + iv)\kv"kd,v << x1/2_8t6(4-7k*5)/8,
21®
k-1
where we used @¢(w) << tk/z'ké and Z << 1 for the sum appearing in (4,49),
m=0

e-hm(s-w) - e-hm(&-1/2)

since << 1, Finally combining all the estimates (4.41)

(4.56) we obtain
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RNE ) - 2 e mn -2 6) Y a4 R (8) + X5(e)R (1-8)) <<
(8.57) = =

ti(hk(x+y)1/2x1/2~3 . hk~1x1/2-&t(31k-52)/216 . x1/2-—3tr3(4—7k)/8).

Choosing h = t-ﬁ, where A is already defined by (4.55), it is seen thé,t the
last two terms in (4.57) are equal, and the approximate functional equation follows
from (4.57) on dividing by hk-1, if we recall that the error made by replacing the
condition xy = (t/ZOT)k by xy = T is << x1/2“3min(x1/2,y1/2)t‘ -2,

This settles the case k > 4, and we have still to comsider the cases k = 3
and k = 4, The only changes in the proof will be in the estimation of the integrals
j1,jz,33 appearing in (4.49), where sharper estimates than those used for the ge-
neral case k> 4 are a*}ailable.

For k = 3 we choose G = 2t1/2 in (4.49) to obtain with the third moment

estimate (6,75)
™

Jy =< h211/2- 6’0_1/2 S l£(1/2 + iv)ladv << h2x1/2-8t1/8+t.

€-2¢"

For j,s we use (6.75) agein to obtain

-2t
Jpy < h2x1/2'6S E(1/2 + iv)\s(t-v)'1dv <<
€2

OW™)  f-2mt¥t

hzx1/2'?’z S (1 /2 + iv)\s(t-v)-1dv <<

nﬂ“ 'e'z(mbi)t‘“’

ou™ t-2ut™t
nZxV/ 2"’21;"1/ 2,1 _S (£(1/2 + iv) [Pav <<
n=1 £-2atro 2"t
0" ,
h2x1/2'3t‘“1/22n"1(t1/2 N ts/s)‘ « n2M/2-e1/8re
n=1

T
At last using Su:’(1/2+it)[3dt < 1"t ue obtain
o

Jpt g+ s < t“x1/2"3 (h2t1/8 + t"%).
Thus for k =3 we obtain (4.57) where the right-hand side will be

<<t (x + y) Vo emd 20/ x1/2-3t'26) .



78

- z
Now we set ro= 11/8, h=t h. Then from x + y << t~ we infer that
hs(x N y)1/2x1/2-& - h2x1/2-xt1/8,

and dividing (4.57) by h? we obtain the desired approximate functional equation
3(a) = -5 43 g=1 _ _3 } 1/2-3 3+
(4.58)  t3(s) = éds(n)n .Y (s)r;yds(n)n R (5) = ()R (1-8) + o(x'/274¢*™,

It remains to consider yet the case k = 4, where the estimation is iden-

tical with the general case up to (4.51), only now for H(v) we shall use

T
S\f(1/2+it)§4dt - TZ alog ~Jp 4 0(T7/8+e)’

J=0

which is a result of D.R. Heath~Brown [j] (see Notes of Chapter 5). Therefore for

323 in (4.51) with k = 4 we have
4-G
oz <<% (1+ S (t-v-G+t7/8)(t-v) av) << G t7/8”
L

which means that we have saved a factor t1/8 from the general estimate used in

(4.51). We have then

3.1/2-2,:3/3 , | 3.1/2-4-1,7/8 3 1/2-6, 13/48+ ¢

j1+32<<t(h ) << h'x

1/2-8{5(@-3)

for G = 9/d’8< t /3. Since 33 << X we obtain (4,57) where the

right-hand side will be
-2 -2 -t -
<« t‘mt(x + y)1/2x1/2 » 3512783/ 1/ .

The result given by (4.26) follows form= 2, h = t on dividing (4.57)

by h3, since
h(x+y)1/2x1/2-z - t.-2(#1)1/2}(1/2-‘; _x1/2-3°

§4. The reflection principle

The approximate functional equations discussed in §2 and {3 have a sym-~
metric property if x = y, especially whend = 1/2, which allows one to obtain useful
expressions like (4.12),(4.13),(4.28) and (4.29). However, when one seeks estimates
for averages of powers of moduli of the zeta-function in the critical strip, it
turns out that the approximate functional equations of the type just considered

have two shortcomings, Firstly the lengths of the sums over n depend on t, and
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secondly the error terms for k> 3 and 4= 1/2 already are not small (i.e. they
are not << te). We shall proceed now to derive another type of approximate funw
ctional equation, which though lacking symmetry is in many problems concerning
averages of  the zeta-function quite adequate, The idea, which permeates the whole

theory since the pioneering days of Riemann, is to use the functional equation

in the form ﬁk(w) = xk(w)tk(%w) for some w with Rew< O, to split the

o0
series Ek(1-w) = de(n)nw"" at some suitable M and estimate the terms with
n=1

n>M trivially. This approach is very flexible, and the error terms that will
arise will be small, The starting point is the Mellin integral (1,7) where we set

X = Yh, s = w/h and suppose Y,h > 0. In view of M(z+1) = zI(z) we obtain by moving

the line of integration 2+ia0
(4.59) e"Yh = (zm)"1 S Y e (1 + w/h)w"1aw.
T A~ied

Py .
Replacing now Y by n/Y and using Z dk(m)n"z = Ek(z) (Re z> 1) it fol-
nm=1

lows when 8 > 0 and k> 1 is an integer that

2+100
5 h
(4.60) Ze'<n/¥) 4, (n)n™° = (2m1)~" S £¥(s + W)YT (1 + w/n)w 'aw.
2-ie0

Now we suppose s = & + it, 0 <d <1, p2 <t <T, h = long,1 ‘<<Y «<T°
for some fixed ¢ > 0, and we move the line of integration in (4,60) to Re(s+w) = -1/2,
Using Stirling's formula (1.32) it is seen that the residue coming from the pole
w=1=8 is 0(1), while the residue at the pole w = 0 is Ck(s). Using the

functional equation (4.3) we have then
ot h
- (n/1)" - K
(4.61) ;dk(n)e (n/)ns = £7(8) + o(1) + I, + I,

say, where for some 1 << M << ¢

(4462) 1, = (21:1)'15 Xk(s+w)%dk(n)nw+8-1er‘(1 + w/h)w law,

2:(9«') P

(4.63) I, = (2.'Ili)-'1 S Xk(s+w)2dk(n)nw+s-1wa‘(1 +w/h)w-1dw.
Relotw)e -1y, =i
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In I, we move the line of integration to Re(s + w) = <h/2, noting that

_ 2
the integrand is regular for -h/2 < Re(s + w) < -1/2, and aiming to choose M in
such a way that I, = 0(1) as T—> 0. With w = u + iv (u,v real) we obtain using

Stirling's formula

I, << 5|x(32i+ iv + it)l%;Mdk(n)nq'h/zlf_h/z]r‘(1/2 - Ay %V)‘dv &
T ©0
(MY)“h/zlong S(t + v)k(“h)/zdv + Se-v/hdv <<
° T

o) 2moghT. (2n)E(WR)/2 L Sy L o)
if
(4464) ¥ > (n,

The flexibility of this method is best seen in various possibilities for
the estimation of I, in (4.62)., The line of integration in I1 may be moved to
Re(s + W) = o, 0 < o<1 fixed and < &, so that the su;n appearing in (4.62) will
be "reflected", hence the name "reflection principle". Letting S“- 1 if -O<> 3
and S‘- 0 if ¥< 3 we obtain by the residue theorem
(4.65) Iy =- S‘Xk(s)ZQk(n)ns-1 + (2uri)~1‘S ’Xk(s+w)de(n)nw+ﬂ-1er‘(1 + w/h)%l.

n<M Relrrdsa nM

The terms with n> 2Y in (4,61) are trivially o(1), and the part of the

integral in (4.65) with [|v| = |Imw| th is also o(1) by Stirling's formula, so

that combining (4.61)=(4.65) we have

h
E5@) = 2, @ g 2 S et -
(4.66) B B

- (2m)" S xk(s+w);£dk(n)n"*s"1y"r(1 +w/m)w law + o(1).

Relo+w)zet
limw] < &3

Therefore we have obtained the desired type of the (unsymmetrical) appro-
ximate functional equation, where the lengths of the sums do not depend on t, but
on T, and where the error term is o(1). another useful variant follows from (4.66)

with k = 1,0L-1/2 when we replace Y by 2Y and subtract the resulting expressions, or
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proceed directly and obsei[ye that there is now no pole at w= 0 because of the

zero w = 0 of (2Y)" - Y". We obtain then

o
(4.67) i(e"(’“/”)k1 - e'(n/Y)h)n‘S - 14 y/20 S lzn~1/2+it+iv o,
n=1 _pr n<d

which will be very useful later in Chapter 9 for zero-density estimates. In (4.67)

-4
we have 0 <é< 1, p2<t <7, T Y °, M>3TY ,h = logz’l’.

NOTES

B.Riemann's classical memoir {1], his only work from analytic number
theory, is extensively discussed by H.M. Edwards (1],
For many different and instructive proofs of the functional equation
(4.1) the reader should consult Chapter 2 of Titchmarsh [8]. The proof of the
functional equation presented in §1 is due to J. van de Lune [1].

One may prove (4.8) with f(x) given by (4.7) as follows, Substituting
o0
i N . 2 05212 . .
x =-3u in the identity sinx = x| |(1 - x /(57°k“)) one obtains by logarithmic
k=

differentiation 0o
2u .
555 (u f 2nmi)
k=1 4k“7° + u

I R
eu -1 u 2

With f(x) defined by (4.7) we have then

[ «0
S:f(x)sinxt-dx - S ({e Vamx 1)'1 - (\/ZNx)-1)sinxt'dx =
0 0
00 w 0
- (23‘1’)—1/2Sx-1sinxt-dx + Z S oKXV i nxteax =
0 k=1 [
o0
1 Z t 1 1 (-——-1-—-—-— -1
-~Z\/2ﬂ + — =7 2 + merl — o =(f2mt)T + 1/2) =
k=1 20rk™ + ¢ e -1
= Va/2e(t),
which gives then (4.8) and completes our discussion of the functional

equation,

As was also the case with Chapter 3, none of the results of this chap-

ter are explicitly formulated as theorems, This was done on purpose to emphasize

the flexibility of the approach, especially in our discussion of the reflection
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principle. Also some of the results, like (4.1),(4.10) and (4.11) should be already

known to the reader,

There is a proof given by Titchmarsh ‘b] of (4.10) by what amounts to the
use of & variant of Poisson's summation formula (Lemma 2.4), only the error term
O(x-dlogt) instead of O(x“é) is obtained., There is also a proof of (4.10) in full
strength given by Titchmarsh [5] by a contour integration method, while (4.11) is
stated at the end of Chapter 4 with the error term 0((x+y)1/2_slogt) without proof.
It has been kindly pointed out to me by M, Jutila that this error term must be

incorrect, since f(x) = :Z:d(n)n-s is discontinuous at integers with jumps d(x)x °,
n<x

accordingly the error term should be at least O(x-é). But if x is small and ¢ is
near unity, then (x + y)1/2"610gt is much smaller than x-a. The correct error term

in (4.11), which is O(x1/2-d

logt) is obtained by Titchmarsh [5]. His method of proof
there is an extension of the proof used by Hardy and Littlewood [5] in the proof of
the approximate functional equation (4,10) for {(s). The first step is to obtain an

exact formula for Zz(s), valid for é > -1/4, This is

tz(s) = Zd(n)n-s - x-sz d(n) + -.-—2—5-:—8-2—11-8 + —S-—x1-s(2x + logx) +

n<x a<x (s-1)° s-1
w o0
+ %x-s - ZASIZE-ZSZZ;d(n)nS_1 S (K, (v) + %ﬂY1(v))v—zsdv,

and then using the asymptotic expansions for the Bessel functions K1,Y1 (see Chapter
3) one is led to the estimation of certain exponential integrals which eventually
yield (4.11).

The derivation of the approximate functional equation (4,11) for fz(s) in
§2 is novel and illustrates well the power of the Voronol summation formula, Howe-
ver the possibility of such an approach has been mentioned by M. Jutila (6], whose
idea to exploit the VoronoiI summation formula is used here, In the proof of (4.11)
may be assumed without loss of generality that x > y, for on dividing by 7[2(s)
( = t1"26) and then changing s into 1 -« 8, one obtains the corresponding result
with x and y interchanged.

Note that the definition of /\(x) given in §2 slightly differs from the one

made in (3.1), but this can cause no confusion since the two expressions differ
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3 . s . 1/2-6
only by 0(x*), which is absorbed in (4.15) in the error term 0(x logt).
To investigate more precisely the absolute convergence of the integral in
(4.14) we proceed as follows. By Theorem 10.5 and the Cauchy-Schwarz inequality for

integrals we have

M 2M w™
Sx—s-1A(x)dx < (S x—%-zdx)vz( gAz(x)dx) /2 << (I\'I"1-2¢‘M3/2)1/2 «< M
™ ~ : &

for & > 1/4. Taking M = N,2N,2°

Nyoee etc. and adding up the estimates it is seen that
the integral in (4.14) is absolutely convergent for & > 1/4.

To See how the error term O(x1/2-610gt) appears in (4.15) we use (3,1) in
evaluating 3 u ®dA(u). Writing

’ A® = 2,

n<(1+ &)y n>(1+¢)y
the first sum in view of (3,1) and (3.11) gives the first sum with KO and Y on the

right-hand side of (4,15). Integration by parts gives

N N N
Su-sd( Z/ vee) = ( Z AU IRt B Z d(n)S(-Qor(u/n)1/2(K1(...))du,

> (1+e)y > (1+¢)y x >(1+¢)y

while (3,16) gives

x 8 Z, {—2(x/n)1/2(x1(4x\/§1§ + —29-‘-'Y1(4ar\/'51?)‘ <<

m>(1+¢)y

x-d(lA(x)‘ + (x/y)1/2xf') << x1/2“610gt,

since y =>> €.
The error termsin the approximate functional equation for {"(s) in §3
are due to the author, and this result has not appeared in print before. The method
of proof is based on R. Wiebelitz {1}, who was guided by the work of Hardy and |
Littlewood [3]. Estimates (6.74) and (6(?5) are used in the proof, as is also
Heath~Brown's fourth power moment estimate D] The proofs of these results fall
beyond the scope of this text, and the results of §3 are among ‘the few ones whose
proof is not self-contained. For comparison we present now Wiebelitz's approximate
functional equation for tk(s), so that improvements obtained in §3% may be seen,
Wiebelitz uses the estimate {(1/2+it) << £t ¢ = 15/92 (due to S.-H.
Min [ﬂ), which was the best result available at the time of his writing, énd
supposes k > 3 is a fixed integer, xy = ([t\/27r)k; X,y >> 1, =1/2 <48 < 75/2‘, Then

(4.25) holds uniformly in & with
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Ak(x,y) < (x +y) 1/23‘1/2-6“9\“61081(-1 [t] + 11/2"6(x + Y)zac(k-!j')/kﬂ +

. x1/2_é‘t‘(kf2)clog2ltl . x1/2-amin(x1/2’y1/2)|t[-2,

where A = 3/2 for k = 3 and A = 23k/(15k + 32) for k> 4, The terms of R and Ry

in (4.25) for 9 >B+vy may be incorporated in the above error terms, which was done

by Wiebelitz, Though Wiebelitz proves his result for -1/2;5 d < 3/2 (curiously, it

seems to be his only paper in number theory), the result is really of interest for

0 < 8 <1 (and especially for 4 > 1/2) in view of the functional equation (4.1).
When estimating 282 in (4.45) Wiebelitz uses the asymptotic formula for

de(n), which will be extensively discussed in Chapter 10. This enabled him to
n<x

1.-8 ,¢

k'-1::""’1031!'1 [t], while in (4.45) we had nk 18 , but introduces the error

have h
term A_k(x) in the general divisor problem, which ultimstely affects Wiebelitz's

estimate for Ak(x,y), as given above., Using the trivial estimate

:Z} dk(n) <« b*(1 +1b - aj

a<n<d
in (4.45) we managed to dispose of the error term Ak(x), and as the estimates for
power moments of the zeta-function that were used involve the factor t‘, we would
gain nothing by following Wiebelitz in the use of Ak(x) in (4.45). Estimates given
in §3 for Ak(x,y) are clearly superior to the corresponding ones given by Wiebelitz.
Cbncerning (4.30) observe that by Taylor's formula

-8

™ %% () = X(s) + (u-s)T u-8

(X1 (8) + X(s)1ogD) + 5(X"()T""® + L) (w=-s)y ..,
and since by (4.20) we have
Xt(1/2 + it) + X(1/2 + it)logT = O,

it is seen that <l?1(u) is regular for Reu= 1/2, when the double zeros u = g = % + it
of the numerator and denominator cancel each other, and the other ranges for u
are easy, This discussion also shows whi the definition of T in‘(4.20), which may
have looked & little mysterious, is a natural one to make,

To see that (4.31) holds observe that for Reu= 1/2 we have [x@)| = 1,
so thet by (4.4)

‘ \¢(u)l < ‘Tu-,-s\ + IX(S)\ << tk(1/2-6).

This proves the first estimate in (4.31), and for the second one note that
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if [s—u\2 < t, then Reu<t, and since we have Lz(logX(s)) << t-1, we may write
ds

$@ = T (1 - FEr

and use Taylor's formula and (4,20) with u = 1/2 + iv, v real, This gives

1 = %ﬁ%,rs-u =1~ exp(-k(s-u)%(1/2+it)+k10g}((6+it)-klogX(1/2+iv)) =

1 - exp(—k(s-u){-%‘(‘l/%it) - %(1/2+iv)g + 0(|s-u|2t-1))

1 - exp(k(d + it - iv - 1/2)20(’0'1)) «< |s - u'2t-1,
and then (4.,31) follows,.

To prove (4.39) one may start from

m m my_2 m
(1+0" = @ + Dx + GO+ o+ O
and differentiate, taking eventually x = -1, In the first step we have
p(1+ 0% = @ 4 2@x 4 e+ a(®E,

and the proof is finished if P = 1 by teking x = -1, If P/ 1, then the above equa-
tion is multiplied by x and differentiated again and the process is repeated suffi-

ciently many times, Finally for p = m we obtain
o v
mn, P
2,(=1) GV = nmt,
V=l

since we arrive at an expression whose left side is m! plus a.polynomial in x + 1,
end taking x = ~1 we have the above identity,

In (4.35) one uses T °X(u) = X(s) + $(u), which is the main reason why
$(u) was introduced by (4.30).

The discussion of the reflection principle in §4 is based mostly on M,
Jutila (21. This simple and powerful mefhod was used in a similar form before
Jutila's work by M.,N. Huxley [ﬂ and K, Ramachandra {1]. A general principle in
analytic number theory is tb express & sum (or series) by a contour integral in
the complex plane, and to attain flexibility by moving the contour of integration

(eqrotion .

and applying the residue theorem. When coupled with the use of the functionall(4,1),

this idea leads to the reflection principle,
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THE FOURTEH POWER MOMENT

§1. Introduction
§2. The mean value theorem for Dirichlet polynomials

§3. Proof of the fourth power moment estimate
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"CHAPTER P

THE FOURTH POWER MOMEDNT
P

§1. Introduction

m
Estimates of integrals of the type S ‘Z(L/2+it)[kdt play a prominent

: °
role in many parts of the zeta-function theory, and applications of these estimates

to zero-density theorems will be given in Chapter 9. The important cace when k = 2
is one of the main topics of this text, and will be extensively treated in Chapter
11, 4 detailed account of Atkinson's formula for E(T) and some of its applications
will be presented there, while power moment estimates for k > 4 will be treated in
Chepter 7. This chapter is devoted to the case k = 4, and we shall'prove,the'following

THEOREM 5.1.

(5.1) S lt(1/2 + 16)l%at = (2) 'rwog’r + o(11087T).

This is a c¢lassical result of zeta-function fheory, proved first by

A.E. Ingham [ﬁ] by a difficult method, and the asymptotic formula (5.1) remzined tis
best known mean value estimate of the zeta-function for a very long time, though for
L -

the somewhat easier problem of estimating 'S e-Stlﬁ(1/2+it)l4dt (§ = 0+) a sharp

agymptotic formula has been obtained by F.V. Atkinson [?]. Recently,D.R. Heath~Brown

[}] improved substantially (5.1) by showing that

™
G (2ol < 3ot 4 oal/o),
k=0
°

-1
where c, = (2m2) » and the other c, 's are computable constants. As is to be expectec

k
the proof of (5,2) is long and difficult and will not be given here, but the proof
of the classical result (5.1) may be given now in a relatively simple way by com-

bininé the reflection principle of Chapter 4 with the mean value theorem for Diri-
éhigt polyromials, The mean vulue theorem for Dirichlet polynomials-is.a very use-

ful result, which has two forms, discrete and integral. The intexral variant of the

theorem may be formulated as



THECOREM 5,2, Let Beyeeeyd be arbitrary complex numbers, Then

N

Zannitlzdt } TZI%‘Z N U(Zn[an\2)’

n=<N n<i ni<Jy

(5.%) g
0

and the above formula remains also valid if ¥ = o, provided that tie series on the

right-hand side of (5.3) converge.

In §2 a proof of Theorem 5.2 and its discrete variant, Theorem 5.3, will be

given, while in 43 a proof of (5.1) is presented,

§2. The mean value theorem for Dirichlet polynomials

We begin now the proof of Theorem 5.2. Squaring and integrating it is seen

that the left-hand side of (5.3) equals
i7
2 - {m/n) 7= 1
(5.4) v 2 (a,1* - e 5, Sl =t
<l n nnel: m n logm-logn

so that (5.3) is a consequence of

a8 Z 5
———— nia
v(5~§) ;Z;%N logm - logn = | n] ’

applied once directly and once with amvreplaced by ammlT.

To obtain (5.5) we shall first prove

(5.6) \Zi“i\ < T e’

m}énm-n

which is known in literature as Hilbert's inequality, and then deduce (5.5) from
(5.6), In (5.6) the a's are arbitrary complex numbers, and m,n run over the same
(possibly infinite) subset of the integers, subject only to the cordition m # n.

To see that (5.6) hulds let

am aI 1
E = —i
me-n'
mgn

Then obviovusly E = -E, which means that E is purely imaginary, hence B/i is

real, Reczlling that for integer k we have

A

4
(5.7) S e(ikx)dx = S eQ”ikxdx =
0

1 K = O

0 k §0
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it follows that

4 1 ,
0 < gglz‘ane(nx)\zdxdy - g §( Z [anlz + n;lam;;né((m—n)x))dxdy -

(5.8)

%Zlﬂnl?"fS;am%f(éii’éii’if’ 10 1? - w/(em).

From (5.8) it follows that (5.6) holds if E/i = 0, and if E/i < O then the

result follows if we repeat the above reasoning with lZane(-nx)l in place of

\2 ane(nx)lz. The proof actually shows that we obtain

(5.9) \m . ;}"E—n—qn-\ < WZlanlz

@ _
if iq Xn 1 is any sequence of integers such that qm;é a, ifm ,é n. Moreover one

has also
ab
(5.10) \; ;—“‘i-_l‘-q—;\,s 33( 2 1a0 2 o, 22,

which follows from

(2.1ri)-1 8 bn - S §nge(qu)23ne(.qﬁg)dxdy + %Zanbn

me1 °

if one uses the Cauchy-Schwarz ineguality, (5.8) and (5.9), since

|§§ ame(qu)ZFnegqnx)dxdylz <

o ¢
|

§§|Zaeqnx>l dxw-SSle ta@|fexty < Ble) Ty, I,

[ ] o

For simplicity of writing let now Ln = logn and

so that G is purely imaginary and as in the proof of (5.6) it will be sufficioent

to assume that G/i = 0., From
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¢ A
' = (L -L)y) = 1.
0 < gg lzane(Lnx)lzdxdy = %Zlanl2 + S ;aman e(.ALm—-Lm)'Y) iy
m=n

3 : 211-1(1,m - Ln)

we obtain then

e e = 32wtk | 2 Qg ST

ky I>1 (m,n)eIkxIl,c m

where the range of summation 1 <n <N in (5.5) has been divided into intervals

Ij = (Nz-J’Nz‘]-J], qj = 1’.2’.-o [ Since
4
’ Selxtdx! _
°

we have for |k = 1| = 2 in (5.11)

eiJG - 1l

- 2|tl“1, (0 # t € Re)

A

Z S a_a e((Lm-Ln)y)d <<

— Y
(m,n)eIkxII° mn Ly Lp

- L )-2 <<

max (L
n n

lamanl(m,n)ﬁk&Il

(myn)eI xIy

-0 2 e VA 2 BV

m,n)eI, xI, (m,n) €I xI,

(k_l)-zNZ-(ku)/z(m?I ‘am‘2>1/2(2 o | 2)1/2 - (k_l)-z(sksl)j/z,
) |

neIl

where
2
S‘_j = 2 n\an\ .
nel.
J
Here we used the Cauchy-Schwarz inequality and
-1 1=k 1
ALm - Ln\ > log(N2 ") = 19g(h2 ) = log2(k = 1 = 1) = z(k - 1),
since k - 1 > 2, and the case 1 - k > 2 is analogous, Using again the Cauchy-Schwar:

inequality we have
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- -2, 1 - 2 2
2, (1)) < (2580207 /2%31@{-1) )12 Zoteat®

lk-1{>2

since z:(k---l)m2 converges, 80 that the contribution of 2 to (5.11) is
KAl lk-1=>2

of the desired order of magnitude, The terms in (5.711) for which |k-1| <! may be

written as
A

mn —
° (m,n)eIkxIl L, - Ly

mfn nfn

A
D N A D <

6=k

where a! = ame(Lmy), M= N2~ ", and it will be sufficient to majorize the last sum.

The reason for introducing M is that if |k - 1} < 1, then for m> n and (m,n)eIkxIl

bo ] - B ] = M@ -1) - 2=ulog(t+ =) -2 =
25" Ky(m - n)/(3-2°7%N) - 2 - 13§(m “n) = 2 > m-n,

sincem - n> 1, ¢ < (m = n)/n <3 and log(1 + x) > x/3 for 0 < x < 3. Therafore

we have for |k - 1| <1

ala! ala! e a |

m mn Z mn )

(5.13) M » ——— = TRt oM 2,
(m,n)eIkxI:L ML ML (m,n)eIkxI_l[Ml’m-l MLr:l (m,n)cIkXIl (m-n)

mgn mgn mgn

and the O-term above is easily seen to be << (sksl) 1/2. The other term on the
right-hand side of (5.13) is estimated by (5.10) with q, = [MLm'l, and the resulting

estimate is multiplied by M to yield also << (Sksl) 1/2. Using once-again the

Cauchy-Schwarz inequality and |k = 1| < 1 we obtain (5.5) and consequently (5.3),
If N = oothe reasoning is the same, only we define Ij = (Zj_1,2'j_] this time.,

We pass now to the discrete form of the mean value theorem for Dirichlet
polynomials, which turns out to be more usefui in certain applications than the
integral furm of the theorem. This may be formulated as

THEOREM D.3. Let 1 <t <... < tp =T be real numbers such that

‘tr - ts\ > 1 forr ;4 8 <R ard let Beyeeeyly be arbitrary' complex numbers, Then
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(5.14) z ,Zann-itrlz << (7 2 lanlz + Zn[anlz)logN.
n<N i

r<H n<N n<N

1 ! .
Proof of Theorem 5.3. If 0 <x <1 and £(x)eC (U, 7] ,then an integratior

by parts shows that
4

. X
f(x) = Sf(t)dt + gtf'(t)dt + S(t-‘l)f'(t)dt,
° ]

X

hence

(5.15) le(/2)| < §(lf(X)l +%lf'(x)l)dx.

H
Taking £(x) = F(x - 1/2 + tr) we have from (5.15)

4t Yt
(5.16) \F(tr)_\ < S [F(t)]at + % S |F' (4)] at.
4,10 4~

Now we use (5.16) with F(t) = (Zann-lt)z. By the s§pacing condition
n<il

imposed on the t 's it is seen that the intervals (tr-1/2,tr+1/2) (r <R) are

disjoint, hence the left-hand side of (5.14) is

T m
(5.17) << SlF(t)[dt + %g(F'(t)\dt.
] o

The first integral in (5.17) is estimated directly by Theorem 5.2 and

makes a contribution << T 2 12 + Z \an\zn. For the other integrsl in (5.17)
n<N n<l

note that

Frt) = -ZZann_l?Zanlogn-n-lt,

n< n<lv

hence by the Cauchy-Schwarz inequality and Theorem 5.2 we obtain

m L ™
i, pit125411/2 a logn-nt®|2at)V/2
(5.18) 3 g[F (t)[dt < ( S léqan \ dt) <§lr%I Jlog l a) /2

(‘I‘Zd: [an\2 + Z n lanlz) 1/2(’1’§ |an‘210g2n + Z n l?n\ 2logzn) 1/2 <<
n<i n<i

n<N n<l{

—

2 2\,
(T éﬁ\an\ . %In[an[ )Log,
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This completes the proof of Theorem %.%, but it may be remarked that in the

case N = « the above proof gives

oo o0
-1t .
(5.19) :EL 'ZZ:a.n << Tjillan\2log2(n+1) + :Z:n|an|21og2(n+1),
r<R n=1 n=1 n=1

provided that the series on the right-hand side converge.

Another remark is that from 1an| = \ann y T an arbitrary, fixed real

T TotT

number, it follows that Theorem 5.2 remains valid if S is replaced by S sand
[
‘po

similarly in Theorem 5.3 we may suppose that T + T<t,<... <tp = T, + T,

§%Proof of the fourth power moment estimate

As an application of Theorem 5.2 we shall present now a proof of Theorem 5.1
by using a variant of the reflection principle, which was discussed in Chapter 4.
With w = u + iv, 8 =4 + it, u and v real, 0 <38 < %, T/2_5 t < T, we obtain from

(1.7) on epplying the residue theorem

i{ld(n)e"n/q,n""3 = (2«1)'15 CQ(S + W) aw =

u=2

Cz(s) + 0(T7%) + (Zﬂi)-1 S ‘xz(s + w)C2(1 -s - wMw)TMaw =

u=-3/4

(5.20) L2(s) + 0(T7°) + o S s + W)Z a(n)n"** pw) e -

V=3 4

Cz(s) + O(T-c) + (2xi)” S X. s + w):zld(n) ws-1 riw)o -

uz—

—X,z(s)z,rd(n)ns-1 + (oay)™ S 2(s + w)zd(n) w1 n(w) 1w,

u=1/4

Here we used the functional equation (4,3) and Stirling's formula (1,32)
to obtain the error term O(T °) (here ¢ > O is arbitrary, but fixed) which majo-
rizes the residue of Cz(s+w)\"(w)Tw at the double pole w = 1 - s, Now we set

8 = 1/2 + it and use again Stirling's formula together with

C2(1/2 + it)x_1(1/2 +it) = |2j(1/2 + it)\2

to deduce from (5.20)
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6
(5.21) (/2 + 1t)])? - quJk(s) + (1%

for any fixed ¢ > 0, where J_ = Jk(s), and for s = 1/2 + it

J

[

, = T, = A(1/2+ 16) 34 (n)n” /24T,
n<T

ey
]

3 x- (1/2 + it)z,d(n)e'n/Tn-1/2-it,
>T

[
[

L =Xz 93, 4(x) (/T - 4y~ 1/2-1t,

Jg = -(2x1) Y (1/2448) S Y2(1/ 241 t4w) D, d(m)n™ V2R ¥y
u2-3/4, \Vlﬁlcng >T
7 = -(ex) % (1/2418) 5 1.2(1/2+it+w)zd(n)nw-1/2+itr‘(w)dew.
6 u=1/4, [v| <log®T 0=t
Theorem 5.1 will follow thenfrom
T
(5.22) S [E(1/2 + it)[*at = (4r”) Tri0g?t + 0(T10g7T),
T2

when one replaces T by T/2,'1‘/22, .s» €tc, and adds all the results, Observe that

trivially J, << T1/2logT for each k. Therefore squ‘aring and integrating (5.21)

k
we have n Ly T
l£(1/2 + it)l4as = 25 IJ1|2dt + S(J‘12 + Jg)dt +
(5.23) Ths /2 72
6 T 6 T
+ 0(2, S \Jklzdt) + 0(2 l S(J’1 + J2)Jkdt]) + 0(1),
k=3 ofg k=3 "

and the main contribution in (5.22) will come from the first integral on the
right-hand side of (5.23). To see this note that from the Dirichlet series

representations

2d2<n>n-s=z:4<s>/c<zs>, 2, fa)a*® = 1/E(zs)

which are valid for Res> 1 and Res > 1/2 respectively, one obtains by an easy

convolution argument

(5.24) Zdz(n) = W-leogﬁx + O(xlogzx),



and hence by partial summation 95

3

c(a)x1+alog‘x + O(x1+alog2x) a £ -1,

(5.25) Zdtz(n)nEI - ,
=

(152) 10g’x + 0(10g7x) a = -1,

Now we shall apply Theorem 5.2 and (5.25), obtaining first
T

(5.26) 2 S la,1%at = 1) &) + o(z a2(n)) = (47%) 'mlogtT + 0(Tlog’T),
Tl n<T n<T

since |X(1/2+it)| = 1+ Therefore (5.26) does contribute the main term in (5.22),
and in fact the main idea of the proof is to apply Theorem 5.2 to the remaining

integrals in (5.23) using (5.25) with a ¥ -1. Thus we have
o

SIJ \2dt << T.Z-,(12(11)e_2n/'11n'1 + z,dz(n)e_2n/T << Te,
3
T2 >T >T
m

S \J4\2dt << TZd2(n) (e-'n/T--1)2n_1 + ZdZ(n)(e-n/T - 1)2 <<
n<{ n<T

T/
T-1Zd2(n)n + T-22d2(n)n2 << Tlog3T,
n<T n<

-X
where we used e © - 1 < x for x> O,

i ;
S \Js\zdt << T5/22d2 (1&)1’1"'5/2 + T5/22d2 (n)nm3/2 << TlogsT,
Th =>T >T
T .
S \J612dt << T1/ZZ dz(n)n—1/2 + T’1/2Zd2(n)n1/2 << Tlog’T.
i3 n<l n<T
Next we write o AT

(5.27) i S det = S Jf(s)ds

T Yritlz
and consider the last integral as an integral of the complex variable s. To avoid

(5.25) with a = -1 we replace by the residue theorem the segment of integration
in (5.27) by segments joining the points 1/2 + iT/2,1/4 + i7/2,1/4 + iT,1/2 + iT,

-d
Using Y(s) X T1/2 it is seen that the integrals over horizontal segments

are << Tlogz‘l‘, while

ApgsiT T™ »
J?(s)ds <<‘T-1/2S l d(n)n_1/4+lt|2dt << TlogBT
g it az <l

on using Theorem 5.2 and (5.25). The same procedure may be applied to the integral

of Jg to yield o
2 2 3
(5428) (35 + Jy)dt << Tlog’l.

T/



The remaining integrals in (5.23) are written as
a 4T

i 5 (3,(s) + 3,(s))3,(s)ds, (k = 3,4,506)

‘4 iT/2

and are treated similarly, In integrals with J1(s) the segment [}/2+iT/2,1/2+if&

3

is being replaced by the segment [3/3+iT/2,3/8+iT] with an error << Tlog’T, while

in integrals containing Jz(s) it is replaced by the segment [5/8+1T/2,5/8+1T]

3

with an error << Tlog'T also. Applying the Cauchy-Schwarz inequality, Theorem 5,2

and collecting all the estimates we obtain then as asserted
™

(5.29) g lL(1/2 + 1) %at = (47°) 'miog™ + o(Tlog’T),
T/2

so that (5.1) follows from (5.29) on replacing T by T/2,T/22,... etc, and adding

all the results,

NOTES

m
Various mean value estimates for S (E(s + it)lkdt are discussed in Chapter 7
1

of Titchmarsh [5], but (5.1) is not proved there, only the weaker formula

m

(5.30) S [£(1/2 + it)14dt = (1 + o(1))(2ﬂ2)'1mog"'m.

0

This follows from investigation of the integrals
™ o0

I(1) = S]l‘;(s +it) e, 3(5) - Sllj(& + 1t)| e~ by,

0 [

where k > 1 is a fixed integer, T -» co and S - 0+, 1/2 <8 <1 is fixed, A simple

Tauberian argument shows that,for ¢ >0, I(T) ~ CTlogDT is equivalent with

J(§) ~ CS-1(logS‘1)D (D> 0), and Titchmarsh then deduces (5.30) from

S\tm/z cit)]4e ey - (1 4+ 0(1) (@) 757 (1ogd™ N2, § - 0s.

As mentioned in §1, a sharper result has been obtained by F.V, Atkinson [Q],

who proved
o0

: 4
(5.31) Smm/a + it){%'“dt = ZA15'1(1ogg-1)4--—i . 0((%’1)15/14“),
i=0

]
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where A, = (2ﬂr2)-1 and the other constants are computable. A method is also
indicated in Atkinson's paper by which the exponent 13/14 may be reduced to 8/9.
However (5,31) does not seem to imply (5.1), but only the weaker (5.30). Similarly

it may be mentioned that one has (Theorem 7.15 (A) of Titchmarsh [8]),as §- 0+,
00 N
con[2.-258% Y. - log(4x:$) 2‘ n N+1
S\C(1/2 + 1t)l e dt = TTEYS + c & + o($ ),

n=0

for any fixed integer N{:‘1, but this sharp result does not seem to imply anything
)
like Atkinson's formula for S[t(1/2 + it)\zdt, which will be extensively dis-

[+]
cussed in Chapter 11,

Heath-Brown's proof of (5.2) in [3] is based on several ideas. The first

is the use of an approximate functional equation which may be writien as

(5.32) |f(1/2 + it)| %" = Zkdk<m>ak<n>(mn)"/2<m/n)“x<mn,t) + o(r7%).

mn<cT

Here k > 1 is a fixed integer, ¢ > 1 is a constant depending on k,

T <t < 2T,

A4ico 2 1 v
(5.33) K(x,t) = ()" S % (2m) % T (1 4 21 2 at(u, )z 2" g,
4-i00

where o (u,v) is a constant and U an integer depending on k, while 2;' denotes

summation for max(1,u/3) <v < U,

This result may be compared with (4.25), the approximate functional equa-
tion for Ck(s) of Chapter 4, The main terms in (5.32) are much more complicated
than the main terms in (4,25), but in contrast with (4.,26) and (4.27) the orfor
term O(T~2) given here by Heath-Brown is very sharp., This enabled him to integrate
(%32) with k = 2 termwise, but there were difficulties whichl arose from the

dependence of K(x,t) on t, A further feature of the proof of (5,2) is the use of

g
an exponential averaging technique, which permits one to evaluate SlC(1/2+it)\4dt
51 am

using the weighted integral S w(tﬂﬁ(1/2+it)|4dt, where the function w(t) is pre-
R T

cisely defined in §3 of Heath-Brown [3]. The proof in its last stage requires an

asymptotic formula for the divisor sum
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D(x,r) = Zd(n)d(nﬂ') = m(x,r) + E(x,r),
n=x
where r may be increasing with x, Here m(x,r) is the main term of the form
: j
n(x,r) = JZ,:{) ¢ (r)xlog’x,

and the exponent 7/8 in (5.2) is mostly limited by the mean value estimate

2X
Ez(x,r)dx << X5/2+E,
X

which holds uniformly in r for r < X

3/4

The proof of Theorem 5.2 is based on K, Ramachandra [5], and the cru-

cial estimate (5.5) is a special case of a more general inequality due to H,L,

Montgomery and R.C. Vaughan [1}:»'- suppose that R > 2 and 31’)2”"’)11 are distinct

real numbers such that 0 < Sn = m}iénlln - )m[. Ir 31’32""-’311 are arbitrary
m#EN

complex numbers, then
Z&Q&-%W‘52“2Hw%ﬁ-

This inequality is closely connected with large sieve type inequalities

(5.34)

for which the reader may consult the expository paper of H.L, Montgomery [5].

In presenting the proof of Theorem 5.1 we have followed the work of
K, Ramachandra [3] Ramachandra's method does not seem to extend to give anything
sharper than (5.1), yet it is incomparably simpler than the method used by A,.E.
Ingham [1] in proving (5.1).

For other mean value thevorems for Dirichlet polynomials the reader

may consult H,L, Montgomery {2], Chapters 6 and 7,
In estimating the first sum on the right-hand side of (5.13) by

k

otherwise, Then the sum in question is

< w2 15V 1o, H)? <
llleIk ne,I:L

= f
(5.10) we take & =al for mel N

and zero otherwise, bn = a:.z'1 for neI. and zero
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1
« (T aw AV2( 2, na A2 - (5,502
m n k1l
mel nel
k 1
as asserted,
Concerning the convolution argument that leads to (5+.24), observe that
from the Dirichlet series representation (or dircctly) one has

L@ - 2, a,0p),

k12=n

hence

zdz(n) = Z a,(kpu(1) = z (UZ a,(x) =
= klz_sx4 4 1__41/2j( J.:_<_xl"2 ¢

21/2)«(1) G 08 (a™?) + o(xP06%)) -
l<x

3

’JTuleogx + O(xlogzx).

‘Here we used

i‘}k(n)n_z - 1/L(2) = 631""2,

and the weak asymptotic formula

3

Zd4(n) w%xlogx + O(xlogzx).
R<X
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CHAPTER 6

ME AN | VALUE KESTIMATES OVER SHORT TINTERVALS

§1. Introduction

The proof of the fourth power moment estimate (5.1) depended on an
approximate functional equation for fz(s) (see (4.66)), and even Heath-Brown's
.approximate.
proof [3] of the much stronger result (5.2) also depended on another functional

equation, namely (5.32) and (5.33). Thus the natural line of approach in estimating

Ly

S\C(‘Hit)(kdt (8 = 1/2,k > 4) would be to use an approximate functional eguation
]
for Ck(s) and then to integrate it termwise., However to this day no satisfactory

result based on this idea has been obtained, and in this chapter we focus our
b d )

attention on integrals of the type S ‘C(&-*it)ledt, where 1/2 <8 <1 is fixed. The
e

interval of integration is "short" in the sense that we shall always suppose
G = o(T) as T-a 00, and the purpose of estimating this type of integrals will be

seen in Chapter 7, where they will be used for estimates of S[E(&+1t)] it (k> 4).

This idea was first used by D.R. Heath-Brown (1] in his proof of the twelfth power
moment estimate (7.15). His proof of the crucial estimate (this is essentially

T
our Theorem 6,2) depended on the deep formula of F,V. Atkinson (3] forgm(1/2+it)|?d‘

o

which will be discussed in Chapter 11, The proof of Theorem 6.2 that will be given
here is new and dispenses completely with Atkinson's formula, Besides the appro-
ximate functional equation for Zz(s) it uses VoronoI's summation formula and
Atkinson's saddle point result (Theorem 2,2), This line of attack on power moments
for the zeta~-function is motivated by M. Jutila's paper{S], and it shows that
power moment estimates for the zeta-function for k > 4 may be made independent of

Atkinson's formula [3}.

§2. An suxiliary estimate

To facilitate subsequent espimates we shall start with a technical lemma

which is a straightforward generalization of a lemma due to Heath-Brown (1]. Its
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significance lies in the fact that it estimates the moduli of the zeta-function by

an integral of nearly the same function., This is

Lemma 6,1, Let k > 1 be a fixed integer and T/2 < t <2, Then for

1/2 < 3 < 1 fixed we have uniformly in t

¢
(6.1) h:@-+ it)[k << 1 + logT ﬁ? lczé - 1A10gT)+ it + iv)[k e-lv,dv,
-b;"'l"
and
204"
(602) 1£(1/2 + 18)|* << logT(1 + 3 [E(1/2 + 1t + iv)] e ' av)
-Owr

Proof of Lemma 6.1, Let first 1/2 < d <1 be fixed, ¢ = 1/logT,

s' =3 + ¢ + it. From (1,7) we obtain by termwise integration
4+io0 ) 00
- ——
(6.3) (2ori) ! 5 Kk(s' + w)l(w)dw = de(n)e WY« 1,
4;ieo : n=1

Moving the line of integration in (6.3) to Rew = -c we encounter poles
at w = 4 - 8 (of order k) and w = O with residues 0(1) (in view of (1.32)) and
Ck(s') respectively. Since s = O is a simple pole of N(s) then also in view of (1,32)

we have then for any real v
(6.4) N(xe + iv) << e—'lv‘ (e + ]vl)'1,

so that (6.3) yields for T/3 <t < 3T

o0
k - -
(6.5) Ck(s') << 1 + SlC(d + it + iv)] e vt (¢ + Iv]) Tav.
-0
To obtain (6.1) from (6.5) we only have to note that ¢! - logT and that
for any fixed A> 0
)
200 , 4
S }C(d + it + iv)lke‘ ‘vl(c + lvl)-1dv << S e~v/2dv << T-A,
:Ellél"f‘ ?3"'7"
and finally we have to replace & by d = ¢ in (6.5).

Now we suppose that ¢ = 1/2 and note that by the functional equation

[E(1/2 - ¢+ it)| << [£(1/2 + ¢+ it)|1° << JE(1/2+c + i)},

so that (6.5) remains true if J = 1/2, s! = 1/2 = ¢ + it, On the other hamd by the
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residue theorem we have for s = 1/2 4 it
k =1 k
(6.6) : £ (8) = (2x1) 5[_‘: (s + z)r(z)az,
D

where o -is the rectangle with vertices +c + ilogZT. Using Stirling's formula
(1.32) it is seen that the integrals over the horizontal sides if o are o(1),

and using (6.5) with & = 1/2, 8! = 1/2 +c +i(t+u), lu| < log2T, we obtain

X o0 .
(6.7) Ck(s) <«< 1 + e lul(1 + S]K(1/2+it+iu+iv)lk(c+ lvl)"1e- “’hv) (c+ (u\)‘1du.
=k - |
To estimate the above expression first note that trivially
Loy
S e” We 4 \u‘)ﬂdu < ¢! = logT,
-yt

and in the remaining integral we make the substitution v = x - u and invert the

order of integration., This gives

(648) Ck(1/2+it) << logT +5 lC(1/2+it+ix)\k(S o~ ful= lx"‘“(c+ 111_\)-1(04- \x—ul)"1du)dx,

and the proof of (642) will be finished if we can show

o0

(609) S e imix=ul (o | lu\)—"(c + 1x - u\)-1du « o e~ ixl,

- Q0

This is obvious when x = O, and as the cases x> 0 and x < 0 are treated

analogously, we shall consider x > O only. Write

20 . . v
S e~lu\- myul(c+lul)-1(c+lx-ul)_1du - S + g + S - 11 + 12 + 13’
J) 0 X

- Q0

say. Then -
°0 ¢ ol
I, = Se-x(c+v)—1(c+x+v)-1dv << e“x(gcuzdv + g v‘zdv) << e-xcﬂ,
] 0 c

x %2
I, = S e"x(c+u)m1 (c+x-u)-1du << e—xs (c+u)-2du «< &%,
[+ o

since c+u=c¢c+x-u foru= x/2, and finally
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3

-4 o
I, = Se-2u+x(c+u)-1(c+u-x)-1du 5%e-xg{(c+u)-2 + (c+u-x)'2§du << c—1e-x.
X x

$3. The mean square when & is in the critical strip

We cénsider now the integral

T+

S [L(s + it)]%at, G = o(T), 1/2 <d <1,
6

where 4 is fixed, leaving aside the most important case ¢ = 1/2 for the next section,
We need the following lemma, whose proof is typical of several proofs in the

sequel and uses the exponential integral (1.34) to "shorten" exponential sums under
consideration,

Lemma 6.2, For N < N' < 2N << TA, A> 0 fixed, logl < G < T,we have

unisormly ¢n G 746

(6.10) S ! Z n~it)2

t
ol N

dt <<

NGlogT + G Z max I Z exp(iT log(1 + r/n))]|.

r<NG 1logT N<n<N"<N'!'=r N<n<i"

Proof of Lemmsa 6.2,

T™+G Gley T

(6411) S‘NQKN' -it}2 5 )Z oo it-iT

N<n<N!
TG ‘thm

exp(-tzG—z)dt <<

+ o(1),

NGlogT + ‘ Z (m/n)_iTSexp(-it(lagm/n)-t2(}~2)dt
N<mgn<N'

-0

since

exp(-tz(}'—z)dt << exp(»%long) « 7°°

i@iba'p
for any fixed C > O, and N is bounded by a fixed power of T. Because of symmetry
we may suppose that m > n in the last sum in (6.,11) and use (1.,34) to obtain

-
(6.12) Z (m/n)-iT 5 exp(-it(logm/n)-t2(}-2)dt =

qun_SN ' -—0
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’3T1/2G 2 exp(-iT(logm/n))exp(-%Gzlogzm/n) =
Nen<m<l" ‘

m1/2G Z Z exp (- 1Tlog(1+r/n))e7p(-—G log (1+r/n)) + o(1),

r<NG log‘l’ N<n<N!~r
since writing m = n + r we see that for r > NG-1logT

exp (- % G log m/n) < exp(wG /16N ) < exp(- 1og T) < T ~C

for T sufficiently large and any fixed C > 0, because log(1+x) = x/2 for 0 <x <1,

The lemma now follows easily from (6,11),(6.12) and partial summation; if the sums

on the right-~hand side of (6.10) are empty they shall be of course counted as zero,
We proceed now with the main result of this section, whose proof

will follow easily from Lemma 6.1 with the use of the approximate functional

equation,

THEOREM 6.1. Let (p,q) be an exponent pair and 1/2 <& < 1 fixed, Then
for T(p+q+1-2é)/2(p+1)(log‘1‘) (2+p)/ (p+1) <G<Ty 1+ q-=-p=> 23, we have uniuraly in G
;)

T+6

(6.13) S £ + i) %4t << G.

T-6

Proof of Theorem 6,1. From the approximate functional equation (4,10)

(6.14) La+it) << 1 +l Z go-it T1/2-él Z na-1-it',

ns(1/2m) /2 ns(1/2m) /2

we have with x = y = (t/25r)1/2

1
where the error made by replacing (t/2mx) 1/2 by (T/20r) /2 in the range of summation

is clearly 0(1) if T - G <t<T+ Gand G < T(“J)/Q. For the less interesting

(1+2)/2

range T < G < T the theorem follows from the approximate functional equa-
tion (4.66) (where the lengths of the sums involved do not depend on t) and the

mean value theorem (5.2) for Dirichlet polynomials, The intervals of summation in

(6.14) are split into 0(logT) subintervals of the form (N,2N], N = [(T/2JT)1/2]2‘3,

J = 1,25440y and thus by partial summation (equation (1.17))
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T+6 T+o

(6.15) S[tj(&+it)lzdt << G + Z mex N2 S )Z n‘itlzdt,
T

o2 N N<N'<2N Yo N

since 8 > 1/2, N << '1‘1/2. For N < T* we use again the mean value theorem for

Dirichlet polynomials, and for N> T' we use Lemma 6,2, which leads to the esti=

(6.,16) S = Z exp (iTlog(1 + r/n)) Z exp(if(n)),

N<n<l* N

mation of the exponential sum

L]

where for r,T fixed f£(x) = Tlog(1 + r/x), N < x < 2N, The condition ¥ << ‘I'1/2

ensures that f!'(x) > 1 for N < x < 2N, and in the same range we have also

£ () = 1er ¥ k- 1,2,...,
so that we may use the theory of exponent pairs, as presented in §3 of Chapter 2,
to estimate S, We obtain

(6.,17) S << max ]:t"(x)l]pNq << TP PNI2P
N<x<ZN

for any exponent pair (p,q). Therefore combining (6,14)=(6.17) and Lemma 6,2, we

obtain in view of T' < N << T1/2, 14+q-p> 23,

™6 .
(6.18) S [P(a+ 1t)|%at << G + GT‘(1"2‘)1ogT + GZ Z_ pPrPya=2P=2¢ _
T-6 N r<NG logT
1+qu~2p—26 -

< G + GZTP(NG’1logT)
N

1+q-p=2¢

G + logT°maxG-prN log1+p‘1‘ << G,

N

for G = T(p+q+1-23)/2(p+1) (log‘l‘) (2+p)/(1+p), proving Theorem 6.1,

From the approximate functional equation one obtains the well-known

relation (see also Titchmarsh (8], Chapter 7)
™

S\Z(z + it)\zdt = ([(2&) + o(M))T, (1/2 <8< 1)

[+]

which shows that the bound in (6.13) is of the expected order of magnitude, and
a sharper asymptotic formula than the one above is given by (7.99).

Following the proof of Theorem 6.1 in case when & = 1/2 we arrive at
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T™HG

(6.19) S; |£(1/2+it) | Pat << slogr, p(p+a)/2(041) (1 gy (042)/ (04 1)_ g o,
TG

but in the next section we shall obtain an estimate which improves (6.19).

§4. The mean sguare when & = 1/2

The theorem which will be stated and proved in this section is one
of the fundamental results of this text,sinceit serves as a basis for the derivation
of higher power moments of the zeta-function and provides a technically simple way
of estimating [(1/2 + iT). The result is due to D,R. Heath-Brown (1], who used the
averaging integral (1.34) and the deep formuls of F.V, Atkinson [3]. As mentioned
in §1, the proof that will be presented here is new and self-contained in the
sense that it does not in any way depend on Atkinson's result, but is based on the
approximate functional equation for Cz(s) and Voronoi's formula, as suggested by
M. Jutila's work (6],

THEOREM 6,2, For T <G<x< T“/z’E uniformly in G

™6 K
(6.20)  § 1E(1/2ni)] %at << crogr + 62 (10" A(Us 01+ kY s am)e W2,
o K 5
where
(6.21) s(x) = s(xKT) = :Z; (-1)"a(n)exp(if(T,n)),
Ken<K+x
(6.22) f(r,n) = 27ar sinh((n/2r)V2) + (Pn2 4+ 2mn) /2,

and summation is over K = 2k such that ’1‘1/3 < K < N, where for § > 0 fixed

(6023) ¥ - 8%/(1/2a - B), B - (2m) 105 D/ 20,

Proof of Theorem 6.,2. From (6.23) we have K << TG-dlog“sT, and the

1/3

interesting range for K is K 3_ T , since the trivial bound S(x) << Klogl gives

Z 2 1/3@-‘1'«’)'1/4((8(@1 21 se0fane YT «

2™ = k< '/ 5

- i/
Z z 1/zlog'l‘.'l' 1//’lK?s/de & K/T << logT,

2™ In= =K<
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and thus it is seen that the relevant range for G is G.51T1/3103T, since

/3 < K << 76 210g'*?

T. Another remark is that in view of the exponential factor
exp(~G2K/T)'the proof that will be given actually shows that uniformly for
T/2 < +<T and T"’S G5T1/2-Q we obtain

T+ 6

(6+24) S )z(1/2+it)lzdt << GlogT + GZ (TK)'V"(\S(K)\J, g~ \s(x)[dx)e-GZK/@T),
K

-6 °

where S(x) = S(x,K,7) is given by (6.21), '1‘1/3 <K= ok <N, and N is given by
(6.23), This form of the mean value estimate will be particularly useful for higher
power moment estimates in Chapter 7.

Since ar sinhx = (1 + o(1))x as x>0, it is seen that (620) will follow

readily by partial summation from
T+6

(6425) ge \}f(1/2+it)(2dt << GlogT +

+ 6| %(-n%(n)n”/ ?(1/ a1/ 2am) ™"/ e (- (oazesmn  (rn/2m) /%)) Py exp (a2

and so we set out to prove (6,25). To facilitate the notation we introduce the
abbreviations TG

(6.26) T = 7/(2M, L = logl, I = Slf(1/2+it)(2dt.
T-6

The first step is similar to the one made in the proof of Theorem 6,1,
and consists in majorizing I by a "short" exponential sum (of length <k:TL/G). We

start from the approximate functional equation (4,13), which gives

6L GL
(6s27) I << S|2:(1/2+it+iT)|2exp(-t2c"2)dt << GL + 5(51 + 's'1)exp(-t2<;"2)dt,
~GL -6l
where
(6.28) 8, = L(1/2+it+iT) :Z: d(n)n_1/2+it+iT = 0(L) + :E: d(n)n-1/2dg(T+t>,
n<(T+t)/2n n<T!
(6429) q(x) = xlog(2mn/x) + x + T/4,

if we utilize the asymptotic formula (4.4). For -GL < t < GL we have by Taylor's

formula
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(6.30) a(T+t) = q(T) + tlog(2rn/T) -~ t2/(2T) + o(G3L3T'2),

8o that from (6.27)=(6.30) we obtain

(6.31) I < GL + I, + T,

where
GL

(6.32) I, = S Zd(n)n‘1/2+i‘1(T)exp(it(1ogn/T')-it2/(2fr)-t2<;"2)dt +
-oL n<T"

+ o(G4L5T“3/2) = Z d(n)n'1/2"i‘1(T)Sexp(it(logn/w')-itz/(zw)-tzc'z)dt + o(eL),

n<T ~s0
ta0
. 1/2-¢ -c . .
gince G <T and << T for any fixed ¢ > 0. The last integral
above is evaluated using (1.34), which gives with Y =-(2iT)  + G

(6033) I << GL + l;'d(n)n"1/2+iQ(T)Y“1/2exp(_ (logn/T')2/4Y) l <

. 2
<< GL + GIZZ: d(n)n-1/2+lq(T)exp(~E-(1ogn/T')2)l.
n<T! 4
The presence of the negative exponential factor in (6.33) will make the
contribution of many summands negligible, To see this'iet n = frfl -m and
suppose m > T'G-1L(1+S)/2, where $ > 0 is arbitrary small, but fixed, Por these

m we have

6% (logn/T)° > %m2/(11)% s Al
a . 1+§ “C2 .
nd since exp(-c,L ") <T for any fixed cy,c, > 0, we have
(6.34) I << GL + Glsl,

where S is the "short" exponential sum

. 2
(6.35) 5 - 2 a(m)n™ /2 axp (- (10gn/11) %)
praprg” L (82

From now on the idea of the proof is to apply Voronoi's summation formula

(3.2) to S in (&35), obtaining eventually (6.25). Since the summation formula (3,2)
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involves an infinite series whose tails are not easy to estimate, we shall use

Lemma 2.3 and instead of (6.3%5) it will be more suitable to corsider the avera-
> /7

ged sum v
. 2
(6.36) S' = U'th(u)du,S(u) = _ d(n)n_1/2_1Texp(2win~%—(logn/T')2).
° TP enet ! -y
2%in / . . .
The factor e = e{(n) = 1 thaet is introduced here dces not affect the

value of the sum, but is inserted to regulate the distribution of saddle points
of exponential integrals which arise after VorcncY®'s formula is épplied. We

shall choose

(6037) U = G1/23

-1/2+¢

and then trivially S -« $' << UT . Now we apply (3.2) to S(u) in (6.36), setting

. . -1_(1+8)/2
for convenience of notation My, = T' = T'G¢ L TEM, = T = T/(2%). Then (3.2)

2
gives My-u
(6.38) S(u) = S (logx+2x)x~1/2-iTexp(2mix —-%i(logx/T')z)dx + 0(1) +
e
) M-
+ :Z;d(n) S x"1/2-iTexp(2mix - %;(logx/T')z)d(nx)dx,
n= M i

where o(x) is defined by (3.3). We recall the asymptotic formula (3.15), which

we write here again as

(6.39) d(nx) = -21/2x-1/4n_1/4 sin(4mw\/nx-7/4) - (32mﬁ-1(nx)_1/2cos(4m' nx-0'4); +

+ o(n™3/475/4y,

noting first that the contribution of the O~term above to the sum in (6.%8) is
certainly << 1, The first integral in (6.,%8) is estimated by (2.,5) as
- ~2,=1/2
<< M11/2L max (Tx 2) /2 << L,
M1§¥5M2
and therefore its contribution to S' in (6.3%6) is agsin << L and so << GL in (6.31).
To treat the terms containing sines and cosines in (6.39) let N be defined by

(6.23) and write the series in (6,38) as
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M?."“’

(6.40) Zd(n) S eosX(nx)dx = R, + R, + o(1),

n= Mt A
where My
(6.41) R, . 2l/2 Z d(n)n"1/45 x"5/4"iT sin{4qVnx -7/4)

n<(1+¢)N P as

2
- (321" (x0) " %08 (am/mx ~1/1)] exp(2mix - E(108%/11)P)ax,

(6.42) R, = -2"/2 2, (a4 g

> (1+¢)N Myt M

where in (6.42) ... stands for the same terms as in (6.41). The sum R, will be
estimated as << L, and this can be at once seen for terms coming from cos (MT\/nx—?ﬁ,).
Namely using (2.5) with f(z) = z - T'logz + 2Vnz we have

MM
+  ~Sh-T - - . -
S ep(~$ (og</T))x ! e(x~T'logx+2\/nx)dx << M15/4 max |[£'(x)] L M15/4(M1/h) 1/2,

L M»‘g.g&g

since for M; < x <M, and n> (1+¢)N we have |f'(x)| > (n/x) 1/2, and therefore
the cosine terms in (6.42) contribute a total of

2, an a3/t o oy,

> (14+¢)N

To estimate the contribution of sine terms in (6.42) we s8hall make use
of S', as defined by (6.36). By the properties of the function o (nx) we may

integrate termwise, and we are left with the estimation of

U Mp-a
. 2 ._
(6443) d(n)n-1/4‘U—1S S x-B/A‘lTexp(Zﬂix,-%-(logx/‘l")2_4_»_41ri v/rx) dx it/ ’
m>(1+¢)N b M .

which will be carried out with the use of Lemma 2.3, where we take

2
£(2) = z + 2z - T'logz, &(z) - 27 Fexp(-& (Logz/1)?),

a = M1,b = MZ’ G = M;B/d',/m = M1, M= (n/M1)1/2. This is the only point in the
proof where the parameter U = G1/2 is needed, and we can easily verify that the

hypotheses of Lemma 2,3 are fulfilled. Taking into account that TG N

we therefore obtain that the expression given by (6.43) is
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<« M;WZa(n) (n"1/4M1exp(—A(nT)1/ 2y 4 n-5/4M1U—1) <«
>N

Ml/AU-1N.1/4L « ¢/ - 1.

We have therefcre terminated the estimation of R, in (6.42) and now we

2

turn to R1 in (6.41). First we observe that the contribution of terms with

cos (4mM/nx ~ T/4) is trivially

My
<< Z d(n)n'3/4S x"S/A’dx << N1/A’L'1‘"1//1 << L.
n<(1+e)N ,

Since U is needed not anymore in (6.41) we replace the limits of integration

in (6.41) by M, and M, respectively, making an error which is

<< n n'1/4 I¢ + t < n n—1/4 -3/4
ot b 2 e

<< N3/ 4LUT'3/ 4 < UG"3/ °L = 1.

Thus we have yet to consider

(6.15) 27V2 D a4,
n<(1+¢)N n
where m, .
x -3/4 ¢ 2
(6.46) I = x exp(~zj(logx/T') Jexp(2mix - iTlogx + i(4o7\/nx - ar/4))dx,
Ma

which means that in I; the + sign is to be taken in exp(2mix - ...), while in I;
the minus sign is to be taken,

F
To estimate In we shall apply Theorem 2,2 with a = M,,b = M2, k=1,

1’

2
f£(z) = fi(z) = ~T'logz 3.2(nz)1/2,‘f(z) = z-3/4exp(~%f(logz/T')2),<b(x) = x~3/4,

F(x) T,Ju(x) = T. The conditions of Theorem 2,2 are readily verified, e.g.

it

N << TG-210g1+8T implies jf;(z)"l“1 << JRQ(X)F-1(X). The saddle points are the
roots of the equation f;(x)' =-1, which is

(6.47) 1 - e 2 /2 < o,

and these roots must lie in [M1,M2] for the main terms in Theorem 2,2 to exist.

0f the two roots of the equation (6.47) only
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(6.48) x. = 1/(2m) + nf2 - 2/a + nr/am)’/?

need be considered, since the other root always exceeds M,, and X, corresponds to

2’

the integral I;. Trivially x, < M2 = T! = T/(Zgr), and X,z M, holds for n < n s

1

where
T 4+ no/2 - (n§/4 + nOTi)1/2 = T' - B, B = Tlg'1L(1+S)/2,

hence
2 1/2
—noT'/(no/Z + (no/A + noT') / ) = =B,

Solving for n, we obtain

n = N = Bz/(T' - B),

where N is given by (6.23).
The error terms arising from I; and I; after Theorem 2.2 is applied are

t&.g_’)
treated analogously, and thus only.error terms coming from I; will be considered

(no main terms come from I;). Alternatively, one can estimate the sum with I; by
applying (2,3). To calculate the main terms coming from the saddle points of I;
note that

£1(z) = £17(z) = -1'/z + /)2,

£1(z) = 1572 11/2,-3/2 _ z-3/2(T,z-1/2 _ %n1/2),

-7

and in view of (n/xo)1/2 = T'/xO -4 it follows that

£(x) - x;3/2(1")[;1/2 _ %n1/2),
I T/ ) o Gy Y S N

since rationalizing the right-hand side of (6.48) we obtain

T'z/(nxo) = T'/n + 1/2 + (/4 + T'/n)1/2.
Hence '

)2 o VA oy VA,

and likewise

R R I N 7L, DR (2 DR AN O LS
which gives

log(r'/x,) = 2log((n/a1) /2 (1 + n/a)/?) < 2ar sima((a/az1)"/?).
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Therefore

‘P(xo)f;(xo)_1/ze(f(xo) +kx_+1/8) =

n.1/4(1/4 + T'/n)_1/4exp(—((}ar sinh((n/zl'l")1/2))2)9(--2["logx0 + 2(nxo)1/2 +x o+ 1/8),
and since e(-n/2) = R (=1)® it is seen using (6.48) and (nxo)1/2 = T! - x, that

lZ,Nd(n)n-‘l/d"?-(xo)f;(xo)-1/ze(f(xo) +x o+ 1/8)‘ <

| %(-w%(n)n”/ 2(1/4 + 11 /n)" Y Aexp (1£(1,n) Jexp (- (car simn((n/211)"/?))?)),

where f(T,n) is given by (6.22), and the last sum is exactly the one that appears
in (6425).

Thus it remains to show that the contribution of error terms of I; to
the sum in (6.45) is << L. This is analogous to the corresponding proof of the
approximate functional equation (4.11) by the use of VoronoI's formula, and the
only terms which are non-trivial to estimate are

Z a4 4 e el /2T ((f;l(uz)ﬂlw”/z)“},

n<(1+€)N

since f;(x)%"l‘—1 for My, < x <M,. Next f;l(Mz) + 1= (n/T')1/2, and this gives

Z, d(n)n-1/4’l‘-3/4(]f' (3112)+‘l(+1‘m1/2)-1 << T-3/4 Z d(n)n-3/4T1/2 << L,
n<(1+€)N 1 n<@N

The equation 1 + f;l(M1) = 0 has only one solution in n, namely n = N, so

it is convenient to write n = [N]+ k. Then

Vagi0n) = 2 On) - 200 = kY2002
N+k

1 1 - »

since (N+k) /2 N /2.\’lkiN 1/2 for |k| < N/2. Also for ¢ > O fixed and sufficiently
PR : o =1 (148)/2

small for ki > 2N in fn(M1) + 1 either the term 1 = T'/M1 < G L or the term

(n/M )"'1/2 dominates, and in either case we have
1
T1/2’ k| <T1/2G-1L(1+s)/2

(1£2 (e )+10+ /2y 1k\'1TG“1L(1+S>/2',T1/2G~1L(1+8)/2 < ki <$w.

max(G,T1/2rI1/2), ki > -%N
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Therefore finally

34 D amyn~ V4 i£2.00,) + 11+ V2

n<(1+€)N

7=1/4 Z A+ K)(0 + k)" VA o pl/aregiyl/a
lk\_<_1‘1/2G-1L(1+s)/2

t=1/4 Z a (N+k) (1\1+k)"3/4 « gr3/4 a (k) (N+k)'1/4 << L,
EN<iki<eN Fi< ki<eN
which completes the proof of Theorem 6,2,

In concluding this section let it be recalled that the proof of Theorem 6,2
depended on the use of the approximate functional equation (4.13) for]C(1/2+it)]2,
whose proof is not easy; Instead of (4.13) one may use the reflection principle,
which is simpler tham the approximate functional equation for Cz(s), and obtain a
result of the same stmngth as Theorem 6,2 (the unimportant exponential factors which
will appear in the course of the proof may be easily removed by partial summation).
Namely from (4.66) with h = log T, k = 2, T = GL <t <T + GL, 8 = 1/2 + it,

M= 4T2/Y, w=1u+iv, & = 1/2 + ¢ we have

(2(1/2+it) . z d(n)e-(n/Y)hn—1/2-it | 'X— (1/24i1) Z -1/2+it N
n<2Y n<AT2 Y |
+ 0(1) - (2mi)” S 7( (1/2+1t4+w) Z ya~ /2 w/n) ¥,
u-a,iVl<h n<AT /Y ‘

Here we choose Y = 2T to equalize the length of the sums and multiply by
')L"1(1/2+it) to obtain
L (/24002 (1/2408) = |E(1/24it)| 2
From this point on the proof would be quite similar to the one given already
for Theorem 6,2. The reflected sum (with -1/2 + it + w) will give the same upper

bound as the other two, namely (6.20).
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§5. The order of the zeta-function in the critical strip

The problem of finding the order of |£(@+it)| in the'critical strip"
0 <d <1 is one of the deepest problems of analytic number theory, with many
different applications, The present state of knowledge is far from satisfactory,
unless one accepts the truth of unproved conjectures like Lindel8f's or Riemann's.
Lemme 6,1 and Theorem 6,1 provide at once the means for the estimation of[Z(é+it)],

1/2 <6 <1 fixed. By (6.1) and (6.13) we have

T+ €y T
‘K(d + iT)‘2 ‘<< 1 + logT. S [£(8 = 1/10gT + iv)‘lzdv <<
T 1.9"'1‘
T+6
1 + logT. 5 (£(& ~ 1/10gT + iv)[zdv << GlogT
T-G

for

¢ > -T(P+q+1-28)/(2p+2)(logT) (2+P)/(1+P), if 1+ g - p> 23,

where (p,q) is an exponent pair ., This gives

if 1+ q = p=> 23, and for & = 1/2 we obtain
(6050) C(1/2 + iT) << T(p+Q)/(4P+4) (log‘l‘) (4+5p)/(2p+2).

If we define for any real 6 the function ¢(8) in such a way that

(6.51) £l +ir) << po(8)+e

for any ¢ > 0 and T > TO (¢), then finding the order of the zeta-function means in
fact findixig upper bounds for c(e). The bound furnished by (6.49) provides fairly
good estimates with an adequate choice of (p,q), while (6,50) yields with

(p,a) = (11/30,16/30) the bound c(1/2) < 27/164 = 0.164634...,‘ which was proved in
E.C, Titchmarsh's book [8]. With the theory of exponent pairs good upper bounds
for c¢(6) may be derived from the approximate functional equation (4.10) for [(s).

Namely choosing x = y = (t/2m)1/2 in (4410) we have by partial summation

(6.52) PG+ it) <<1 + ZN“% max ] Z nit‘ +

N  NN'<®N N<n<N'
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+ ;N‘-1t1/2-6 max l Z nitl )

N<N'<2N ' N<n<l'

where N takes 0(logT) values of the form (t/2¢r)1/22'3, J=1,2,0.. . Since N < t1/2

we may use the theory of exponent pairs (see §3 of Chapter 2) to estimate

(6.53) S(N,t) = Z ot . Z exp(iF(n)), F(x) = tlogx.

N<n<N! N<n<i'

Here F'(x) = t/x>> 1 for N <x < 2N, and also F(k) (x) =< t8°¥ for k = 1,2,

ess o Therefore we obtain

-1
(6.54) S(N,t) << (¢ )Pn,
and from (6.,51) and (6.54) we infer that

(6.55) (¢ +it) < 1 + ;(tPNQ“P" + t1/2"3+PNQ"P+&~1).

If further we have

(6056) 3 ?_1/29 qQ=-pP=23d
then (6.55) gives

£@+it) <1+ (tp+(q-p'&)/2 + t1/2-3+p+(q-p+8-1)/2)108,1;,

or

(6.57) (e + it) = t(q"P"‘)/zlogt, @ -p=3,s=1/2.

In case 3 = 1/2 (when q - p > 1/2 has to be observed) we get a small
improvement of c(1/2) < 27/164, viz.
(6458) c(1/2) < 0.164510678...,
by taking the exponent pair (p,q) = (/2 + €,1/2 + &2 + €)= 0.3290213568,.. ,
and this seems to be the present limit obtainé.ble by the method of exponent pairs
in the one-dimensional case. The class.ical estimates of van der Corput and

Hardy-Littlewood (see Titchmarsh EB], Chapter 5) state that for L =21_1, 1=>73

one has
(6+59) c(®0) < 1/(2L - 2) for @ =1 - 1/(2L - 2),
(6.60) c(e) < 1/L(1 + 1) for @ = 1 - 1/L.

Starting from the exppnent pair (p,q) = (1/6,2/3) and using Lemma 2.8

(A-process) it is seen by induction on 1 that (p,q) = (1/(2L-2),(2L=1-1)/(2L~2)) is
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also an exponent pair, so that (6.59) follows from (6,57) and similarly one arrives

at (6,60).

From the functional eguatior {A.3) it follows at once that c(8) = 1/2 - 9
for & < 0,¢(6) = O for 8 > 1, Since ¢(8) is a non-increasing,convex furctior of @
it is seen that upper bound for c(e¢) may be obtaired in a satisfactory way from
(6,57)=(6.6C),convexity, and the functional equation for the zeta-function.

As mentioned at the end of Chapter 2, E.C, Titchmarsh developed in the
1930's a powerful twe-dimersional methcd for the estimation of exponential sums,

He considered sums of the type ZZJ e(f(x,y)), where (x,y) is a point whose
(X9y)eD

ccordinates are integers, and which lies in s two-dimensional domain D, while f

is & function of two variables possessing at least the partial derivatives of

the second order, Several variants of the two-dimensional method have appeared

in the past fifty years, and at present the best results seem to be those coming
from the method of G, Kolesnik [5},[51,[6]. In some problems, like in the esti-
mation of c(1/2), it is not easy to transform a one~dimensional exponential sum
into a two-dimensional sum, although =z general procedure is being offered by
Lemma 2.6, especially by (2.38), However Theorem 6,2 and Lemma 6,1 provide us with
the means of applying two-dimensional teckniques at once, since (6.21) contains

the diviscr function d(n), and therefore S(x) is really a two-dimensional sum,
T+6

Before obtaining estimates of ¢(1/2) and S lﬁ(1/2+it)(2dt we shall quote the
T-6
following result of G. Kolesrik [6].

Lemma 6.3. Let D be the domain X < x <X, <2X, Y <y <Y, <2Y, XY = N,

where x and y are positive integers. Then
(6.61) zz; e(f(x,y)) << 1\1’1ogN(Néll/BaF_1 + N.SS/SBF)1/8,
(x,y)éD

1

where f(x,y) << F, £, ,(x,5) = C_ 1f(x,y)x'ky“ + 0(spx8y"hy for (x,y) €D,
Xy i

1/_‘5 ok cqnations
S$<<N /7, X=Y, and a certain system involving partial derivatives of f(x,y)

must be satisfied.
This last condition mentioned above, involving a certain system of egua-

tions, is rather technical and lengthy, and therefore is not stated in detail for
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brevity's sake. For the details of the difficult proof of (6.61) the reader is

referred to Kolesnik [6], since a complete proof of this result falls beyond the
scope of this text., Having at disposal an estimate such as (6,61) is, one can

improve a little (6,19) and alsc (6.58) by proving

THEOREM 6.3. For G = 35/108 a1 =T,
T+6
(6.62) S |£(1/2 + i%) |2dt <« Glog°T.
-6
In view of Lemma 6.1, the above estimate yields for G = T35/108
eyt
. 2 . - {ul . . 2
\£(1/2 + iT7)|“ << logTl + logT e [2(1/2 + i1 + iw){"aw <<
T
T+0
(1 + Su:(1/2 + it)[zdt)log‘l‘ << T35/10810g3‘]?,
T-6
giving at once
Corollary 6,1, For T > To
(6.63) Z(1/2 + iT) << T35/21610g3/2T.

This improves (6.58) since 35/216 = 0.,162037037... « The estimate (6.63)
is the best of its kind at the moment of writing this text. G. Kolesnik's proof [61
of (6.63) had the weaker T° instead of loga/ZT.

Proof of Yheorem 6,3. The interesting range in (6.62) is G < T1/5, since

the larger values of G are covered by the proof of Theorem 6,1, We use Theorem 6,2

with § = 1, which leads to the estimation of the sum

(6.68) S(okT) = 2 (<1)la(n)exp(i£(T,n)),

K<n<K+x
where £(T,n) is given by (6.22). The factor (-1)", which is present in (6.64), is
harmless, Indeed, if n,k,k1,m,m1 are positive integers, 0 <a < b, and g(n) is any

arithmetical function, then

S el = Dy 0 sy = ), slekm)
a<b a<km<b a/2<k m<b/2

+ Z g(2km1) - Z g(4k1m1) - Z g((2kj+1)(2m1+1))‘

a/2<km1_<_b/2 a/4<k1m1§>/4 a<(2k,+1) (2m +1)<b
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But the last sum above is equal to

J st - T sk - D g(2m,) s D, slagny),

a/2<k1m5p/2 ‘a/2<km1§$/2 a/4<k1m15$/4

which shows that the estimation of (6.64) reduces to the estimation of several

sums of the type

6.6 X, K, = exp (i ,Cmn) ),
(6:69) (05 K/ C<mn<(K+x)/C p(1£(%Can))

where C = 1,2 or 4. All these sums are estimated analogously, and thus henceforth
we shall assume that C = 1, Writing
g(z) = ar sinhz + z(z2 + 1)1/2

it is seen that g'(z) = 2(22 + 1)1/2, hence for 2z < 1

[ead
2m-1 2 . 1/2
(6.66) s(z) = 2oz, a =2l 1),

=1 m  2m=1
and thus a, = 2 and |am|;5 1/(2m+1), for m > 2, Therefore with some suitable

constants b1,b2,... we may write

fecd o0
(6.67) f(TQu) = ZbJT3/2-JuJ_1/2 - F(T’u) + ijT3/2"3u3-1/2,
J=1 j=3

(6,68) F(T,u) = b1T1/2u1/2 + sz'1/2u3/2,

and the function F will be easier to estimate by Kolesnik's Lemma 6,3 than f
itself, If we suppose that G > T1/4, then for § <1 in Theorem 6.2 we have that

K < 76™%10g°T, and hence

(6.69) 2: (exp(if(Tymn)) - exp(iF(T,mn))) << zi, d(n)|£(T,n) - F(T,n)|

K<mn<K+x K<n<K+x
<< 1K max {£(T,n) - F(T,n)| << T‘K7/2T'3/2 << TEK1/2.
K<n<K+x

1
Therefore for G=> T /4 in Theorem 6,2 we have reduced the problem to the

estimation of the sum

(6.70) Sz(x,K,T)z Z exp (iF(T,mn)), F(T,u) = bT1/2 1/2 b2T-1/2u3/2.
K<mn<K+x '

To estimate Sz(x,K,T) we apply Lemma 6,3, taking f(x,y) = F(x,y) (here F



121
refers to (6.68)), F = (TK)1/2, N = K, and dividing the domain X <mn < K + x into

0(logT) subdomains of the form X <x <X, <2X, Y<y <Y, <2Y, X= Y. It may be

1

readily verified that the conditions of Lemm& 6.3 hold, and we obtain

(6.71) S,(x,K,1) << long(K173/152T‘1/16 + K119/152T1/16).

Further observe that for any fixed C > O we have

(6.72) Z Kcexp(-GzK/T) = Z + Z << (TG-Z)C.

Km2 <06 210g°T ’ k=2 <™ K=2%1¢™2

35/108

Therefore for G=> T it follows from Theorem 6,2 and thie above

estimates that

™6
S 1L(/2 + it)]%a <
-6
2
Clog?r(1 + Z (K135/152T-5/16 N K81/152T-3/16 . K1/4Te-1/4)e-c K/T)

K=25<16"%10g°T

2

<« Glog?r(1 4 1175/304,=540/304 _ ,105/304 ~324/304 ¢ 2) o glog T,

which completes the proof of Theorem 6,3,

§5. Third and fourth power moments in short intervals

Having developed a method based on the use of Fourier coefficients of
cusp forms and Kloosterman sums, H. Iwaniec (:2] recently obtained a deep estimate
for the fourth power moment in short intervals, His Theorem 4 states the following:

Ifr> 2, T1/2<G5T and T <t, <%, <.ea <t

R SZT, tr+1 - trz G’ fOI‘ r = 1,.-.,R,
then t+6
(6.73) Z S IE(1/2 + it)] %ot << T(Re + 31/2G"1/2T).
r<k ¢,

The proof of this result is too complex to be included here, and (6,73)
is used in this text only fot the derivation of the approximate functional equation

for ck(s) (k > 2) in Chapter 4, where the special case
T46
(6.74) g |):(1/2 + it)[”'dt <« 1, G3T2/3
T-6
of (6.73) is needed. It was mentioned by Iwaniec [2] that (6.73) may be used for the
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proof of the twelfth power moment estimate (7.15) of Heath~Brown [ﬁ], which will
be proved here with the aid of Theorem 6.2.‘It may be also remarked that in the
case of the twelfth power moment Iwaniec's method yields 7% instead of 10g17T in
(7415)« As an. application of (6.73) for R = 1 note that for G > T1/2 we have by

Theorem 6.2 and the Cauchy-Schwarz inequality

T4G TG T+6
(6.75) S iC(1/2+it)l3dt < ( S ]C(1/2+it)l2dt)1/2( S lt(1/2+it)l4dt)1/2 <<
-G -6 6

Ticve(c + TG"1/2)1/2 «< 7¢@ + T1/2G1/4), G> T1/2,

which is used in Chapter 4 in the proof of the approximate functional equation
for KB(s) (with ¢ = 2T1/2).
Other interesting mean values involving the zeta-function were investi-
gated by H, Iwaniec’[i] and Deshouillers-Iwaniec [1). A natural way to attack the
kA

sixth power moment for the zeta-function ( S (C(1/2+it)[6dt <K:T1+‘) is to try to

0
prove

T
(6476). S |£(1/2+1%) |4lZann“it]2dt «< ) la_[°
: e B

for N <k:T1/2, where 84500092, 8TE arbitrary complex numbera, since by the appro-

N
ximate functional equation (4.10) {(or the reflectionvprinciple) it is seen that
t(1/2+it) may be majorized by two Dirichlet polynomials of length << T1/2. Proving
(6.76) for the range N<<<‘P1/2 seems to be out of reach at present, but using
intricate techniques involving Eloosterman sums, H, Iwaniec [17 odmined (6,76)

for the range N < T1/10, while J,-M, Deshouillers and H, Iwaniec [1) improved

this to N < T1/5. They also mention that under the truth of a certain conjecture

involving the lower bound of eigenvalues of the non-euclidean Laplacian of Hecke

congruence subgroups, their method would give N < ’I’1/4.

NOTES

The proof of Theorem 6.1 is due to the author and has not appeared in

print before. An interesting problem seems to be the estimation of R(k,e;T),where
m

(6.77) Slf(o’+it)(2kdt - 12 n® v Rr(k,e;1),
n=1

1
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k> 1 is a fixed integer, 1/2 <68 <1 1is fixed, This problem will be investi-
gated in more detail in §4 of Chapter 7, while the analogue of (6.77) when k = 1,
S = 1/2 is one of the main topics of this text and will be extensively treated
in Chapter 11,

In [9] D.R. Heath-Brown uses an inequality due to P.X. Gallagher (Lemma
1.10 of H.L. Montgomery [2]) to obfain an estimate very similar to Lemma 6.2 and
proves (6,19) for the range G > T1/3.

The proof of Theorem 6.2 is new, and is based on M, Jutila's paper [6]
and the exponential averaging technique which gives (6.35). Indeed it would have
been shorter to apply Jutila's Theorem 1 of [6] to (4.13) and then to integrate
the resulting expression, but the proof given here is self-contained. Also several
details in the proof are simpler than the corresponding ones in Jutila's proof,
since we are dealing here with a special Dirichlet polynomial, while Jutila con-

siders the general case of transforming S1(M1,M2;t) = :E: d(n)n-1/2—lt by
M,<n<M,

Voronoi's summation formula., This approach, based on the use of Voronoi's formula,
seems very natural and the aforementioned paper of Jutila contains generalizations
to other Dirichlet polynomials'(e.g. whose coefficients are generated by certain
cusp forms).

Theorem 6.3 and its Corollary are given in the author's paper [?]. The
final version of Kolesnik's estimate (6.61), as published‘in his paper [5], had

N1+£(N61/38F-1 61/38F~1

+ eee instead of NlogN(N + +.0 5 but the slightly
sharper version used in the text may be obtained by refining his argument a little,
Theorem 6.3 provides the best-known order estimate for |{(1/2+iT)|, while
Theorem 6,2 serves as a basis for higher power moments which will be discussed in
Chapter 7. It is seen from the proof of Theorem 6.2 that in fact one essentially
obtains (6.25) without the absolute value sign and (as remarked in detail in
Notes of Chapter 11) it is thus unnecessary to use the Haldsz~Montgomery inequality
in TheramT7.1. Instead one may proceed directly with the Cauchy-S#warz inequality,
simplifying the proof of TheirexT.1.
Let ¢ = ¢(1/2) be the constant for which £(1/2+it) << [t,°+a. The esti-

mates of ¢ have slowly evolved from the first significant exponent 1/6 to today's



124

sharpest 35/216, and though the gain over all these years is just 1/216, never-
theless the improvements of the value of c¢ reflect in a certain sense the constant
development of modern analytic number theory. Various values of ¢ are given below
with a due references

c=1/6 = 0.168,.. G.H, Hardy and J,E. Littlewood (2], 1921

c = 163/988 = 0.1649797... 4. Walfisz (17, 1924

¢ = 27/164 = 0.1646341...  E.C. Titchmarsh (1], 1931

¢ = 229/1392 = 0,1645114... E. Phillips (1], 1933

¢ = 19/116 = 0.,1637931... E.C. Titchmarsh (6], 1942

¢ = 15/92 = 0.1630434... S.H. Min {1}, 1949

¢ = 6/37 = 0.1621621.., W, Haneke [1], 1963 and Chen Jing-run [1],1965

c = 173/1067 = 0.1621368... G. Kolesnik (3], 1973

¢ = 35/216 = 0.162037037... G. Kolesnik [6}, 1982.

Order results for C(s) given in this chapter involve upper bounds, Con-
cerning results about lower bounds one may mention the result of R, Balasubramanian

and K. Ramachandra (see Ramachandra (6]) that

1 . 3 LlogH 1/2y 0.001
T;;]I‘[+H 1£(1/2 + 36)| > exp(F(E5 8oz /%)y 10 < (logD) <H<T,

while for 1/2 <4 < 1 fixed H.L. Montgomery [4] showed that

log |£@ + it)| = Sz+(log1-dt(loglogt)-d)
holds for t > 0. Also M, Jutila has kindly informed me that in a yet unpublished
manuscript he has proved that there exist positive constants 8198, ahd 33 such
that for T > 10

exp(a1(loglogT)1/2).5 !C<1/2.+ it)| < exp(az(loglogT)1/2)

on a subset of measure at least a3T of the interval [Q,Tﬂ.

To assess the strength of lwaniec's estimate (6.74), note that by Lemms

6.1 with k = 4 o6
iE(1/2 + in|4 <« logT(1 + Slt(1/2 + it)]%at) << ot
-6
for G > TQ/B, hence for G = '1‘2/3 one obtains 6(1/2 + iT) << T1/6+£, which is

the classical result of Hardy and Littlewood[2].
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CHAPT® R 1

HIGHER POWER MOMENTS

§1. Introduction

In this chapter we focus our attention on higher power moments (i.e. higher
than the fourth,which was discussed in Chapter 5) for 1/2_§ 3 <1 fixed., As was
the case with mean value estimates in Chapter 6, we shall distinguish between the
cases ¢ = 1/2 and 1/2 < 3 < 1,and since our main concern will be upper bounds,
it seems appropriate to define M(A) (A > 1) for any fixed A > 4 as the number for
which n |
(7.1) S [E(1/2 + it) |2t << pM(4)+e

4

for any € > 0, Similarly for 1/2 < é < 1 fixed we define m(d) as the number for
which

o
(7.2) S (L@ + it)lm(d)dt « pi

for any ¢ > 0, and naturally we seek upper bounds for M(4) and lower bounds for
m(¢). This difference Between the definitions of M(A) and m(d) seems in place, since
M(A) = 1 is not known to hold for any Af? 4 at the moment of writing of this
text, while for any fixed 1/2 <d <1 it is possible to find a number m(3) > 4

such that (7.2) holds (see E.C, Titchmarsh [6], Chapter 7). Results given by
Chapter 7 of Titchmarsh [ﬁ] will be however substantially improved here, and the
results of this chapter will be used for zero-density theorems of Chapter 9 and

for divisor problems in Chapter 10. One of the main instruments in our study of
(7.1) and (7.2) will be Theorem 6.2, and moreover in view of Lemma 641 the esti-
mation of the integrals appearing in (7.1) and (7.2) is essentially equivalent to

the estimation of discrete sums of the type
(7.3) 2, 186G + 1t )18, 1/2 <8 <1,
r<R

where B =~ A or B = m(3) and t1,...,t are well-spaced real numbers in th: sense

R
that {t | <T and (t -t | =1forr{#s <R,
Finally we turn our attention in {4 to asymptutic formulas for

n .
S\C03+it)\ékdt (k a fixed integer), and not only to upper bounds of the type (7.2),
4
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§2. Power moments for 8 = 1/2

In this section we shall suppose that t1”"’tR form a irgxeasin se-~

quence of real numbers which satisfy

(7.4) It | <T for r = 1,2,0..,R; [t - t ] =1 for 1<r#s <R
and
(7+5) [E(1/2 + it )= v >0, (r= 1,2,4045R).

Our aim is to derive upper bounds for R = R(V), which will eventually
lead to estimates of the type (7.1). As an auxiliary reault which is analogous

to the fourth power moment, it may be noted that

(7+6) R << ™ Hog’T,

and this will turn out to be the best available bound for R when V is small, as will
be precisely seen by compafing (7.6) with later results of this chapter. To see that
(7.6) holds it is sufficient to suppose that /2 < t.<T and then to replace T

by T/2,T/22 etc, and to sum all the results., From the reflection principle esti-

mate (4.66) with k = 2, h = 1og2T, Y=M=2T, s=1/2 + it ,«= 3/4 we obtain

A 1 ] e_(n/z,r)hn-1/2-itr 2
(7.7) RV’ =< 1%{[2:’(1/&» t )| <1§z lng‘frd( ) l +
-1/2-it_y 2
+ Z ‘Zd(n)n r‘ + R +
I<R n2T
-1/2 -1/4-it -iv(2 £ ~tvin~] 1.2
e V2 nax 2, |2 aGon (e 11/4 + ivl™"av),
|V\5?12 r<R n<2T e

where the Cauchy-Schwarz inequality was used, (1.32) and (4.4). The integral above
is clearly

A?.
<< 1 + S v lav << loglogl.
L]

The sums over r <R are estimated by the mean value Theorem 5,3, where

one uses (5.26). We obtain

rvH << TlogST + R + T-1/2(loglogT)2(T za dz(n)n-1/2 + :z:,dz(n)n1/2)1ogT
n<2T n<2T

p)

<< Tlog”T,
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if V> logT, and (7.6) follows, For V < logT (7.6) follows again from the trivial

estimate R < T.
We pass now to the main result of this section, which is
THEOREM 7.1. Let (p,q) be any exponent pair with p > 0, and let

t) < ... <ty satisfy (7.4) and (7.5). Then

(7.8) R << T 6108 + p®ra)/py-2(1420+20)/p g gy (3+6p+4a)/p

For special choices of the exponent pair (p,q) we obtain from (7.8)

Corollary 7.1. Under the hypotheses of Theorem 7.1 we have

(7.9) R <= TV S10gPr + 129/13y=118/13),,235/13,
(7.10) R << W-élogsT + T5/2v-31/2log81/4T’
(7.11) R << T 0Pr + 13w 1910449/ 2r,

(7.12) R << 'I‘V-610g8T + T4V-128/510g162/51‘,

(71.13) R << TV 6101 + 115/4y=241,,61/2p,

The exponent pair (p,q) = (1/2,1/2) in Theorem 7.1 leads to an important
result, proved first by D.R. Heath~Brown D]. This is

Corollary 7.2. Under the hypothesesof Theorem 7.1 we have

(7.18) R << T 210g100,
From this result it follows that M(12) < 2, or more precisely
T
(7.15) S [£(1/2 + 1%) l12dt << T210g17T.

1
Before the proof of Theorem 7.1 we shall give a lemma providing estimates

for moduli of S(x,K,tr) over well-spaced points t_, where S(x,K,T) is défined by
(6.21), The result is contained in

Lemma 7.1, Let A be a set of real numbers tr such that T/2 < tr <T and
longp <G< \tr -t | <J forr £ s. If [A| denotes the cardinality of A, then
for K < T/logT, T> TO and any exponent pair (p,q) we have
(7.16) Z IS(x,k, )1 << g(K+K3/4T1/4G-1/210g1/2‘1‘) a2

treA

o gP/ 20 p/4 g (ampe2) /2, 3/2

log
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Proof of Lemma 7.,1. We start from (1.35), and choose E= {Eng with

n=
o)
E) = (-1)"d(n) for K <n < K + x and zero otherwise, ¥ = {‘P } , with
n - = r r,nd
‘(r n = exp(if(tr,n)) for K < n < 2K and zero otherwise, where f(tr,n) is defined
b

by (6.22), Then by (1.39) we have uniformly for x <X

"E"z - Z d°(n) << Klog'T,

K<n<K+x

1/2

(717) [s(x,k, tr)l << K1/2log3/2T

tré A

Z exp(if(tr,n)-if(ts,n) ) l

t_,t €A K@K
r’ s -

The inner sum on the right-hand side of (7.17) is 0(K) if r = s, and if

r # s we shall use the theory of exponent pairs (§3 of Chapter 2) to estimate

(7.18) 5 = 2, em(if(n)), £(u) = £(t_yu) - £(t_,u), r 5.
K<n<2K

Defining g(z) = ar sinhz + z(22 + 1)1/2 we recall that (6.66) holds

and since
1/2 1/2

p@) - 2t g(Ew/ee)?) - 2ve(Ew/zn) P, 1 s,
it is sem therefore for r,s fixed that for K <u <?2K and j = 1,2,...

f(J)(u) X s, - tS{K1/2’3T’1/2,
where we used (6.66), the mean value theorem and the condition K < T/logT. This
o , , -1/2_~1/2 ,
implies that if.F = ltr - tle T >> 1 we may use the theory of exponent

pairs to estimate (7.18), and if this condition is not satisfied we use Lemma 2,1

and Lemma 2,% to obtain in any case

(7.19) S = Z exp(if(n)) << FPRY +  max ‘t"(u)l“1 <<
K<n<2K K<u<2K

PP/2a-p/2 (KT)1/2\tr - tS\"1.

The spacing comdition imposed on the tr's gives

E / \tr - ts\"1 < g IA\Z 2!« G'1(A\1ogfr,
t_ st Eh,Ths n< A :

and thus substituting (7.18) and (7.19) in (7.17) we obtain (7.16).
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Proof of Theorem 7.1. Having at our disposal Theorem 6.2 and Lemma 71

it will be a fairly simple matter to derive Theorem 7.1, Let first A. denote a

3
set of points t  satisfying the spacing condition (7.4) but with 2T/3 < t. < 5T/6.

We shall divide the interval [2'1’/5,5‘13/6_] into N subintervals of length at most

J = T/(6X), and we shall denote by A (k = 1,4444N) the set of points in the

1,k

k-th of these intervals. Then the points of each A Kk lie in an interval [TO,TO +J-1

1,

for some 'I‘o which satisfies 2T/3 < TO < 5T/6 - J. We shall estimate first A,] K by
b4

taking
(7.20) BGlong - v°
for some suitable B > 0O and defining
M= AL - A.]’kﬂ [7- e/2, 7 + /2]

for T71/12 < ¢ < 117/12, By (6.63) the relevant range for V in Theorem 7,1 is

V << T35/21616g3/2’1‘, hence G < T1/3, which will enable us to use Theorem 6,2, where

one requires T% < ¢ < T1/2-E. By Lemma 6.1

E(1/2 + it) << 1og1/2T

or 25)1€y
(1.21)  |E(1/2 + itr)]2 << logT- g " ME(1/2 + 1u + it_) |2au.
-QDJ‘.'&'

We may suppose that V> T!, for otherwise the trivial R < T is better

than the second term in (7.8) for ¢ < 1/12, and henceforth we suppose that (7+21)

holds, Summation of (7.21) over t, € A} x  &lves for some absolute ¢, >0
b4 .
TG
2 2 z - ‘t~tr‘
(7.22) lay , IV® < c,logT- 1E(1/2 + 1t)] e dt,
’ t
T-G tr€A1,k

provided that

[tr - 1og2tr, tr + log2tr ] - [:T' - G, T+ G]

for tr 3 {‘J’- G/2, T+ G/2], which is certainly satisfied for V = Tt. The spacing
condition ltr - ts\ > 1 (r # s) implies that the sum in (7.22) is bounded, and
for the integral in (7.22) we use Theorem 6.2 with § = 1, recalling that for our

range of 7 we may use (6.24), which gives
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2 2
]A.",leGlogT < CyGlog™T +

(7.23)

C,GlogT Z (TK)"1/4e'G2K/(2T) ¢

-1

(|s(x,k,7)| +¥ S(s(x K,7) |dx)

-2 \ LI ] g Do .
1Y% g 2¥ a6 %106%T

[
Choosing B = 202 the above formula simplifies to

K

S Is (x,K,7) lax ).

]

2
(7.24) 185 | << log-1TZ(TK)-1/4e—G B/ (2T) (|5(x,x,5)| + K
’ %

Let now A2 X denote the set of numbers ¥ = To + G/2 + nG such that
?

A} k(fr) # # and n is such an integer for which T < g <T_ +J + ¢/2. If 7. and
?

T, are two different elements of A2 L« Ve have G < I'J'r' - T

, | <J, and we may

apply Lemma 7.1 to obtain
2
(7+25) Z lay (M < 1og1/2TZ,(TK)‘1/4e-G k/(21)
' K

G’éAz’k

(K+K3/4T1/4G"1/2mg T) |A2f(2

o (o |2/ 2g(2ape2) /4 $ .
2,k

Using (6.72), the obvious inequalities

(7.26) |49 | = 2 By @ 8y | < 2. lag @l

ﬂ'€A2’k 0’€A2,k

and summing over K = 2X it follows that

JEA

Z: 2 2

Z |41 | =< T-1/2108’1' KB/ze-G K/T + G-1log2T2 ke~ ¢ K/T +

2,k 1ok K =
’

(7.27) JP/ZT'(pH)/ﬁogVZT.]AQ k\ZK(Zq-p+1)/4e-G2K/(2T) -
K

76 10g°T + (4, klJP/QG(P“1“2‘1)/2T(q'P)/zloszT.
’

Therefore using (7.26) we obtain

:reAz’k

provided that for some suitable C3 > 0 we have
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(7.29) 7 < CSG(2q-p+1)/pT(p-q)/plog—VPT.

Now we choose N in such a way that

(7.30) J = T/(6N) < 031!(P'Q)/PG(QQ'P”)/Plog'1/PT < T/(6N - 6).
This gives

(7.31) N < 1 + TQ/PG~(2q-p+J)/plog1/pT

and

(7.32) A; = ZIA1 kl- << NIGT
kN

logZT <<

v 610e%r + m(PrQ)/py=2(1420+20)/p 4 gy (3+6p*4a)/p

if G < J. This condition is certainly satisfied for
(7.33) ¢ < CAT.(q-p)/pG@q“p”)/plog-1/PT
or in view of (7.20) for

(7.38) vV > 1, = c5T<q‘P)/(2+4q‘4P) (1ogr) (3-4p+4)/ (2+4a-4p)

where C,,Cy > O. Summing over intervals of the form [T(5/4)"3'1,T(5/4)'j] it
is seen from (7.32) that Theorem 7.1 follows if (7.34) is satisfied. If (7.34)

does not hold, then (7.8) follows from (7.6), since

R << TV o0gd1 << 1(P*0)/Py=2(1+20+20) /D (1, .y (3+6p+40)/p

o/ (2+4q), %6
for V<T log T = T2. But for T1 given by (7.34) we have T1‘< T2 for any

fixed C6t> O,p> 0 and T sufficiently large, which completes the proof of Theorem
Tele

Corollary 7.1 follows from Theorem 7.1 with exponent pairs (13/31,16/31),
(4/11,6/11),(2/7,4/7),(5/24,15/24), (4/18,11/18) respectively while Corollary 7,2
follows with the exponent pair (1/2,1/2). If we choose (p,q) = (1/6,2/3) in (7.8)

then we obtain

(7.35) R << T5v"3210g4fr, vV < T2/131og16/13T,
thereby improving the range for which the corresponding estimate (8) of Theorem 2
‘of Heath-Brown (1] holds. Moreover (7.13) gives

mv~610g°T v > 111/ 12105/4g,

(7.36) R << _
T15/4v‘2410g6‘/21~ V< T11/7210g5/4T,
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where 11/72 = 0,1527..., and threfore the first estimate in (7.36) improves (9) of

i)
72

Heath-Brown [j}, where one had the range V'Z_T2/1310g6/5T, and 2/13 = 0,153846 >
Thus the sixth power estiimate R << TVnélogBT holds for relatively large values of
V, and from (7.8) one may crudely say that in a certain sense either M(4) = 1 or
M((2+4p+4q)/p) < (p+q)/p holds, which will be used in Chapter 9 for zero-density
estimates.

Theorem 7.1 provides the means for obtaining power moment estimates

whend = 1/2, and we shall prove

THEOREM 7.2, If M(A) is defined by (7.1), then

1+ (4~ 4)/8, 4 < A < 12,
(7.37) M(a) < 2+ 3(a - 12)/22, 12 < A < 178/13 = 13,6923076...
1+ 35(a - 6)/216, A > 178/13,

Here A is a fixed number which does not have to be an integer, The first
of the estimates in (7.37) is implicit in Heath-Brown [1}, while the last one is

an improvement of his estimate
m

S\K(Vz + it)|¥at << T1+173(k'6>/1067log2kT, k> 15,
A

Proof of Theorem 7.2. As remarked in §1 it will be sufficient to prove

the discrete estimate

(7.38) :E: \5(1/2 + itr)lA << TM(A>+£’

T

where the t!s satisfy (7T«4). To see this define t. by

(7.39) (/2 + 3t )l - mex  |L(1/2 + it),

r<t<r+1-

where r is an integer and the maximum exists by continuity of |£(1/2 * it)| as a

function of the real wvariagtle t. Then we have
il A A
(7.40) I = S([(1/2 +it)| 4t << Z [E¢/2 + it ),
1 =

and to obtain the condition \tr - ts\ > 1 forr # s, we consider separately t2m

and t , so that I in (7.40) is majorized by two sums of the form {7.3) with

2m+1



134

r = 1,2,...,R, R < T, and the tls satisfy (7.4). Each [&(1/2 + itr)| satisfies then
(7.41) Vo< |f0/z s at)] < 2w

35/?16

for some 0 <V = 2 << T %/2T, and we define R_ as the number of tés appe-

Vv
aring in (7.4G) which satisfy (7.4) and (7.41).

Suppose now that 4 < A < 12, Then by (7.6) and (7.14) we may use

1/8 -12. 16 1/8

R << TV_410g5T for V < T1/810g1 / T and R << T V lecg T for V=T 11/8

lg
Therefore

IZS:% [5(1/2 + itr)lA << Z BVVA + Z-/l /s RVV <<

V=255$1/810g11/8T V=2¥>T og T

T1+(A-/.1)/8 (114+4)/8 . glt (a-12)/8 (114+4)/8

(LogT) (logT).

<<

T1+(A—A)/8(1ogT)(11A+/1)/8’

which gives
m

(7.42) S lc(,]/z + it)lAdt - T1+(A"/1.>/8(1OgT)(11A+4)/8, A < A< 12,
4

and the same may be obtained (with an even slightly better log-factor) directly
from (5.1),(7.15) by using HSlder's inequality for irtegrals,
For the range 12 < A < 178/1% in Theorem 7.2 we use (7.14) to estimate

z
3/22 and (7.9) for V> T’/22, obtaining similarty as in the previous

RV when V < T-
case the estimate M(4) < 2 + 3(A-12)/22, Finally the third estimate in (7.37) will

follow from a more general result, viz,

(7.13) 5 = 2, 10/ 2 v 18 )|d << ntUTETIE s a78/13, o > a/0s,
- r<R

C+e€

where the t!s satisfy (7.4) ana {(1/2 + it) << |t|7", so that by (6.63) the

value ¢ = 35/216 leads to M(A) <1 + 35(4 - 6)/216. To see that (7.43) holds

write S = S1 + 82, where in S{ we consider the t!s for which (7.41) holds with
V'Z.T4/25, and in S2 the t;s for which (7.41) holds with V <.TA/25. For Sd we have

€ -
RV << T1+ v 6 y (7.36), sco that summing over O(logT) values of V we obtain
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(7.44) 5, < EELA/25RVVA << T1+£ V(A’6) - Tc(A-6)+1+e.
V=2 zl =2t/ 25

In 82 we have RV << T29/13+€V-178/13 by (7.9), and thus

=2/ 25 vk /25

<« p(a-178/13)c429/134e  __ pe(a-6)+1+e

provided that ¢ > 4/25. Combining (7.44) and (7.45) we obtain (7.43), which comple-

tes the proof of Theorem T7.2.

§3. Power moments for 1/2:< ¢ < 1.

We suppose throughout this section that 1/2 <d <1 is fixed, and
consider power moments of the type (7.2), which will follow from discrete estimates

of the type

(7.46) > e+ itr)lm(é) «< ',
i

For technical reasons the following conditions will be imposed on the

real numbers tﬂ’tz""’tn‘
(7+47) 1og2T < |t,| =T for r <R, (t, - t .l = log4T for r # s <R.

We seek an upper bound for R when

(7.48) (L@ + it ) =v > ¢ for r <R,

and similarly as in the case 4 = 1/2 an upper bound for R will lead to estimates
of the type (7.46) by collecting 0(logT) subsums where

X ov< L@+l <2< o'/6,

If we choose the t;s such that

lf(é + itr)\ = max lC(d +it)], r=1,2,...
rlogmﬁsﬁs(r+1)logAT

and then consider separately t n and t2m+1, it is seen that the spacing condition

2

required by (7.47) does hold, so that (7.46) leads to (7.2), namely



m
S \£(2 ~ 1)) “‘é’”t « 77

which is the desired estimate with a large number ¢f applications, some of which
will be given in Chapter 9 and Chanter Tu.

Uur starting point is the relation

oo 2ti00
WAL , s 1 ar i
., - Nt (T -S PO Vet W |28 L 5
(7.49) z,dk(n;e /7 = (2a1) ‘S Y'r(w)e (s + w)dw,
n=1 2-i00

which is just (4.60) with h = 1, We shall need (7.49) with k = 1 or k = 2, and Y =
¥(r) will be a real number (to be suitably chosen) which satisfies 1 << ¥ << 7°,
For s we take s =d+ it , where t_ satisfies (7.47) and (7.48). Moving the line of
integration in (7.49) to Rew = 1/2 -3 we encounter a pole of order k at w = 1 - &
with residue 0{1) in view of (1,32), and a simple pole at w = C with residue C (s).
Therefcre
n/Y k " N ' k oW

(7.50) 2,4, (n)e” - LR o+ o(1) o+ (omi) CX (s+)(w) " aw.

n<yY Rew=1/2-4

The portion of the integral in (7.5C) for which \Imw\;: 1og2T is o(1)

by (1.32), and so for each s =d + itr under consideraticn we have

a
-3-it
(7.51) EX(e + 1t) << 1+ \z%d (n)e™™® r| S\K(1/2+itr+iV)lkYVZ'ae"‘”dm

49?

Taking into account (7.48) this implies either

(7.52) v «< l:i:d (n,ean/Y Ty l << logT. max l ZEL d.k(n)e‘n'/Y R \
n<Y M<Y/2 | M<n<2M

or

(7.53) Vo Y2 p (/2w )|

where

(7451) lE (/2 + i)l - max | £0/z « it + ).

< &<
~log T<v<log T

This discussion shows that the estimation of (7.2) may be reduced to a
large values estimate for Diricalet polynomials which saiisfy {7.52), ard a large

values estimate for (7.53), which is in fact furnished by Theorem 7.1 and its
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corcllaries, Therefore boefore we formulate our results concerning bounds for m{e)},
it will be useful to derive & large values estimate for Dirichlet polynomials
capable of desling with the t;s satisfying (7.52). This estimate is contained in
Lemma 7.2. Let t,...,t, be real numbers which satisfy {(1.47),1/2 <8 <1

fixed, and let for r <R

¢ ' —8-it
(1.55) 2% < v = | 2, a(wn .
TVIQ‘1<21‘Jr

g c -
where a(n) << ¥ , 1 <<« M << T, C > Ua. Then

(7.56) R << TE(MZ-'Q&V_Z + Tv’f(e)),
where

£(8) = 2/(3 - 42) for 1/2 <4 < 2/3,

£(8) = 10/(7 - 88) for 2/% < 3 < 11/14,
(7.57) £(8) = 34/(15 - 168) for 11/14 < 8 < 13/15,

£(3) = 98/(31 - 32¢) for 13/15 < & < 57/¢62,

£(8) = 5/(1 ~¢) for 57/62 < 3 <1 - €.

Proof of Lemma 7.2, The expected bound in (7. 56) is R << T M2 23V-2,
and TV-f(a) is the extra term which may be thought of as an error term. We start
from the irequality (1.35), taking E = ££n3;11,where En = a(n)‘b-vz(n)n“d

o ~-it
for M < n < 2M and zero otherwise, and %; = {%;,ggna1 where ?E,n = b ’ (n)n r,

h h "
b(n) = e“<n/2M) - e'(n/M) and h = log”T. Then (*er,\es) = H(itr - i.ts), where

by (1°39) 0o 2+i00
(7.58) H(it) = Zl,b(n)n_it = (Zﬂi)-15 Ew + i)P(1 + %)((ZM)W - 1 )w Vaw,
n= 2~i00

which follows from (4.6C) with Y = 24 and Y = M respectively on subtracting. Note

that for M < n < 2il we have 1 << b(n) << 1, H(0) << M “E,]z < 7' ié, and the

integrand in (7.58) is regular for Rew> -h, except for a simple pole at w = 1 - it

with residue O (T ) for any fixed ¢ > 0 if [|t| => 1og3T Recalling that c{&) is

V(d/+8

the function defined by (6.51) to satisfy (6 + it) <<t , it is seen that

using properties of c(8) discussed in {§ of Chapter 6 we have
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c(e) = 1/2 - ¢ for € <0,

c(e) = (3 - 40)/6 for 0 <o <1/2,
(7.59) c(e) = (7 - 89)/18 for 1/2 <& <5/7,

c(e) = (15 - 166)/50 for 5/7 <@ <5/6,

c(@) = (1 -8)/5 for 5/6 <6 <1,

where we used (6.59) with 1 = 4 and 1 = 5,

To estimate H(it) in (7.58) we move the line of integration to Rew = @,

where
6 = (3¢ - 2)/(28 - 1) for 1/2 < ¢ < ¢ <2/3,
= (9 - 6)/(48 - 1) for 2/3 < ¢ < 11/14,
(7.60) o = (25¢ - 16)/(88 + 1) for 11/14 < ¢ < 13/15,
@ = (658 - 40)/(168 + 9) for 13/15 < 4 < 57/62,
6 = (12¢ - 7)/(2¢ + 3) for 57/62 <3 <1 - €,

so that the values of ¢ lie in the ranges ¢ <0, 0 <0 < 1/2, 1/2 <6 < 5/7,
5/7 <6 <5/6, 5/6 <6 < 1 respectively and so (7.59) may be used. Using (1.32) we
obtain for r # s
&‘L
(7.61) H(it - it ) << TES [E(e+iv+it _~it_)[e” ‘v'/hmgdv + 0o(1) <« Tc(g)“‘mg + o(1)
r s e r s
Therefore (1.35) gives

- 3
RV << M (mu o+ %\H(itr - 1t )1),
r#Ss

and (7.60) leads to

2-28 -2 9+1-23Tc(e) € 2-2av-2,

(7.62) R << T (M RM V-2) << TM

provided that
(7.63) T=T = v (2-9/c(e)(26-1-8)/c(8)

since V> T* by hypothesis. If (7.62) is not satisfied it may be observed that if

in (7.55) t, is replaced by t + T  for any fixed T _, then a(h) is replaced by

~iT
€
ao(n) =a(@m)n °, and lao(n)l = la(n)\ << WM. Hence if the tls lie in an interval
€ 2w=2d =
of length not exceeding To, then R << T M2 2 v 2, and dividing T into subintervals

of length at most T (where T, is given by (7.63)) we obtain

(7.64) R << TEM2“26V-2(1 + T/TO) <<



Te(M2-2dv--2 . TM(2C(Q)ﬂ+G—23(1+c(9))/C(Q)V—2(1+c(9))/c(9)).

With c(8) and @ given by (7.59) and (7.60) it is readily checked that
2¢(8) + 1+ 6 = 2(1 + c(8))8 =0, 2(1 + c(8))/c(8) = £(8),
where f(¢) is given by (7.57), and thus (7.56) follows.
Having Theorem 7.1 and Lemma 7.2 at cur dispcsal we are ready now to
gtate and prove the main result of this section, which is

THEOREM 7.3. Let m(d) be defined for each fixed 1/2 < d <1 by (7,2), Then

n(3) = 4/(3 - 48) for 1/2 < 8 <5/8,
m(3) = (488 ~ €)/(7 - 88) (48 = 1) for 5/8 < 4 <5/7,
(7.65) m(a) > (2088 - 70)/(15 - 168) (48 - 1) for 5/7 < 4 <5/6,
m(s) = (288 - 13)/(43 - 1)(1 = &) for 5/6 < ¢ <13/15,
n(3) > 98/(31 - 328) for 13/15 < d < 0.91557 .44,
m(3) = (248 - 9)/(48 - 1) (1 - &) for 0,9159%... <d < 1 - €.

In addition we have m(35/54) = 9, m(41/60) = 10, m(7/10) = 11,n(5/7) = 12,

n(2/3) > 9.618T..., m(3/4) = 528/37 = 14.,270270...,m(5/6) = 188/7, m(7/8) = 36.8 .

Proof of Theorem 7.3. We begin the proof by ccnsidering first the range

1/2 <4 < 5/8 and proving m(d) = 4/(3 - 48) (this holds also ford= 1/2 by (5.1)).
In view of the discussion made at the beginning of this section it will be sufifi-
cient to prove

(766) R o« 7Ey4/(3-18)

forfthe number of points twhich satisfy (7.A47) and (7.48). To simplify writing we
shall omit in the rest of this proof factors like T‘logcT on right-hand sides of
inequalities implied by << . To obtain (7. 66) we consider separately subsets A and

B of §t3 such that t_ € A if V in (7.8) satisfies V < p(3-43)/8 g t_ € B if

v p(3-48)/8 Lo R, = |Al, R, = |Bl, then R = R, + R, and

2 1

(7.67) Ry << Yf"?'dlv-'1 + TV"4/(3'43) + Y:'/Q'%.Y"“JGZ;JA \& (/2 +1+')\2

which follows from (7.52) and (7.53) with k = 2 when ore applies Lemma 7.2, Here
M <Y/2 =Y,/2 is chosen in such a way that >> 1/logl numbers t € 4 satisfy
(7.52) with that particular M, Using M(4) = 1 and the Cauchy-Schwarz inequality

we have
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2-238_~/ ~4/(3=48) -1,
(7.68) R, << Y; 2yt /(3-28) + TV Y: 23,
. (3~42)/8 . i
and in view of V < TV "7 the choice Y, = T gives
‘ -1/ (3-28) 2mD3_~, -4/ (3~1
(7.69) R, <= 1TV 1/ (3-48) o 0Ty oy 4/ 3 a>.

To bound R, we reason analogously, only now we use M{(12) < 2 and H45lder's

inequality to cbtain

-28 - - - -8 5/6 -2
R, << Y. X774 o1y 4/(3-43) Y;/z (D IEO/2 + it;)l12)1/6,

t &B
r
- - A/ (Fe s Z.64 -
(7.70) R? << Yg 26? 4 TV 4/‘3 1¢) + Yé 6 T2V 12.

- - -1)
Choosing Y, = TZ/(46 1)V 8/ (1 V> 1 we have

(7.71) R, << oyt (3-48) | 1 (4-48)/(re-1) -12/ (28=1)

The second term on the right-hand side of (7.71) does not exceed the
first if
p(5-88)/(43-1) _ 8(5-82)/(42-1) (3-42)
e b4

and this condition is satisfied since 1/2 <3 < 5/8 and V> T « Thus from

(3-48)/8
(7.69) and (7.71) we obtain
(7‘72) R = R,] + R2 << TV-4/(3-43)’

implying m(3) = 4/(3 - 43) for 1/2 < 3 < 5/8 as asserted.
" We consider now the range 5/8_5 3 < 2/3, and let this time A and B

denote subsets of {t;ﬁ (see (7.53) and (7.54)) such that in (7.8)

(7.7%) R o<« v O

and

(7.74) R << p(®+a)/py=2(1+2p+2q)/p

hold respectively for & = Ry = |A] and R = R, = |Bl. In applying (7.73) ard (7.74)
(28-1)/2

we have to replace V by VY in view of (7.5%) with X = 2, Therefore we have

1]

- - -A -3) Zuf3) -
R, =< Y8y oo 4/ (318} Yg 68) -6

-2)2/(1+2a)

where Lemma 7.2 was used agzin. With the choice Y1 = (TV >> 1 the above

estimate becomes
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(775) R, << A (3-48) , pA(1-8)/(1+28) =12/ (1+22)

Analogously using (7.74) it follows that

(1.76)  , < 1By, oyt (3-48) T(p+q)/pv-2(1+2p+2q)/pY§1/2-8)(1+2p+2q)/p,

and we shall choose Y2 to satisfy

- 12 (p+a)/ ((2+4)8=1+2p-2q) -4 (1+20)/ ((2+49)2 ~1+2p-2q)
2 ’

so that the first and the third term on the right?hand side of (7.76) are equal.
Since by (7.59) we have c(e) «4/8 for 6 = 5/8 and 2(p+q)/4(1+2q) > 1/8 the con-

dition Y, > 1 will be satisfied, and hence from (7.75) and (7.76)

4-48 =12 4(1-8) (p+tq) _-4(1+2p+2q)
(1.77) R << Tv-4/(3~4d) . T1+28V1+26 . T(2+4q)3-1+2p~2qv(2+4q)6-1+2p-2q'

The exponent of T of the last term above equals unity for

(7.78) d = (1+2p+ 6q)/(2+ 4p + 8q),
giving
(7.79) R o« Ty -48) o (4-48)/(1423) 12/ (1+29) .

F o= 2(1+2p+29)(1+2p+ 4q)/(p + q + 4pq + 2p° + 2¢°).
In (7.79) the term T is the largest, which will be shown now ford = 2/3,
In that case (7.78) reduces to g = p = 1/2, and thus with the exponent pair

(p,a) = (&2 + €,4/2 + 1/2 + &), k= 0.329021%568,.. one obtains
(7.80) R o< Tv 618720 (94T

and one has (TV_9)4/7 < T ¥ for
(7.81) vV o< 73/ (1%-36)

since by (7.59) one has c¢(2/3) < 5/54, it is seen that (7.81) is certainly
satisfied for 5/54 < 3/(7x - 36), or x < 342/35 = 9.7714... . This proves
m(2/3) > 9.61872..., which is actuall& the optimal bound thié method allows. With
(pya) = (2/7,4/7) in (7.78) we obtain & = 35/54 = 0,6481481... , and a calculation
similar to the one above gives m(35/54) > 9. The above procedure may be alsc used
when 3 > 2/5, only in view of Lemma 7.2 the first term in (7.77) is to be replaced

y=2f(3)

by T si.e. we have

A=13 =12 (4-13) (p+q)  __=4(1+2p+2q)
-2 (3) L it 128 T(2+4q)8-1+2p-—2qv(2+4q)6-1+2p-2q1

(7.82) R << TV
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Calculations for 8 = 2/3 are carried out in the manner described above; the

~2£(8) is always the smallest one, and the second and third term in (7.82)

term TV
do not exceed TV * and TV Y respectively for values of x and y which will depend
on c(@), where for c(6) we use the bounds furnished by (7.59). With (p,q) =

B(2/7,4/7) = (1/14,11/14) (here B denotes the operator defined by Lemma 2,9) the

last term in (7.82) is TV '©

for & = 41/60 = 0.68333,.., and since then the other

(2/7,4/7)

and ¢ = 7/10,8 = 5/7 we obtain likewise m(7/10) > 11 and m(5/7) > 12 respectively.

two terms in (7.82) are smaller, we obtain m(41/60) > 10. Using (p,q)

il

For 6 > 3/A we have from (7.82) that the first and the third term are << TV * for

(7.83) x < 8(3+ 6p+2q)/(1 + 4p + 2q),
where we used c(3/4) < 1/16. The choice (p,q) = (5/24,15/24) gives x < 528/37 =

14.270270... 5 so that m(3/4) = 528/37, since the middle term in (7.82) turns out

to be 12/5y=24/5 L0y gor y <72/5 = 14.4. Similarly one obtains m(5/6) > 188/7 =
26.857142... for (pyq) = (2/7,4/7) and likewise m(7/8) = 36.8.

To finish the proof of Theorem 7,3 it remains to prove the general
estimate for m(d) when & > 5/8, as given by (7.65). For 5/8 < & < 13/15 we use

Lemma 7.2 and M(12) <2 to obtain as before
(7.88) R << m2E(@) | 228y (3682012

w py-2EQ) g (4-48)/(48-1)-12/(48-1)

~for Y = T2/(48-1)V-8/(43-1). Using estimates for c(6) furnished by (7.59) when
5/8 <6 < 13/15 it is seem that the last term in (7.84) is << TV_# for x = m(3)
given by (7.65), while ’I'V—Qf(d) < TV-m(é).

To obtain general estimates for m(8) when 8 > 13/15 we shall use (7.51)
with k = 1, since for that range the values of f(4) given by Lemma 7.2 are large

~£(3) suffices, whereas for smaller

enough for our purposes and the estimate TV
values of & it was necessary to use k = 2 in (7.51), with the effect that V in
Lemma 7.2 is replaced by v2. To avoid tedious calculations we choose (pyq) = (%,5,;'-)

in (7.74) and let similarly as before A and B denote subsets of {tl'j for which

R << TV and & << 7710 respectively hold with Ri= [Al and R,= |B|. Applying

then Lemma 7.2 we obtain
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2-28y=2  _ ¢3=68n,=6 | Tv-f(s)’

R1 << Y1 v Y, TV
R, << Y§'2‘v'2 19(1/2-9) + o),

If we choose Y, = -V (48-1) 4 ana Y, - (031 (348-15) 4 then

(7.85) R, << p(2-28)/(18-1) =6/ (48-1) =1 (3)

(7.86) R, p(12-128)/(348-15)~38/ (343-15) o-£(3)

With ¢(0) < (1 - @)/5 for © = 5/6 we obtain R, + R, << TV * for

(7.87) x - mn(EE) T Ty G s )

where f(3) = 98/(31 - 328) for 13/15 < 38 < 57/62 = 0,91935.. and £(8) = 5/(1 -~ 2)
for 57/62 <3 <1 - ¢, Now for 13/15 <3 < 1 we have (248 - 9)/(48 - 1) <5 and
also the second term in (7.87) does not exceed the third, For 57/62 >3=> 0,91591..,
we have (248 - 9)/(43 - 1) (1 - 38) <98/(31 - 323) = £(3), hence the last part of
the theorem. In particular we have

(7.88) m(3) = 4.873/(1 - 3), 0.91591... <3 <1 - &,

$4. Asymptotic formulas for power moments when 1/2 < 4 <1

We conclude this chapter by considering the asymptotic formula
T R
2 -
(7.89) S{C(d + it)Idet = Tde(n)n S R(k,o;T),
4 n=1

where k > 1 is a fixed integer, 1/2 < & <1 is fixed and R(k,4;T) is supposed to
be an error term,i.e. R(k,d;T) = o(T) as T ~> oo. This may be compared with our
approach in 5%, where only upper bounds of the form (7.2) were investigated and

Theorem 7.2, was derived, However results of the type (7.89) may be obtained

exactly with the use of Theorem 7.3, and we tegin by proving
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Lemma 7,3. For k > 1 a fixed integer let 1/2 < &’; < 1 denote such a number

for which
S |6@E + it)| ¥at << 77*E
A
holds, Then the asymptotic formula (7.89) holds for <& - 61";.

Proof of Lemma 7.3. We shall prove the lemma and obtain an explicit

0- estimate for R(k,d;T) We have with s = é+ i
(7.90) SIC(S kg4 SlZd (n)n” s’ at + O S ltzk(s) - (%dk(n)n-s)zldt),

and using Theorem 5,2 it follows that

(7.91) S[Zd(n)n at TZ (2 . o(};mai(n)nhze) )

o0
) mn ™ + o(r*®Y,
n=1

so that the main contribution in (7.89) comes from the first term on the right-hand

side of {7.90). Let now

F(s) = £°(s) - (%akmn‘s)?.

Since k is an integer, F(s) is regular for Res > 1/2, Ims> 1 and thus for

1/2 < < d'< /A we may use the well-known convexity estimate

T -
- (7.92) S[F(é + it)|dt << ( S | P + 1t)]dt) S F(A+ it)|at)?~".

We shall take o(=8§+ $,RB3=1+ 8§, whereO<6’<1/2 is a fixed con-

stant which may be chosen arbitrarily small. Since k is fixed we have then

B-& 1+§-2¢ 1 -4 1/2
(7-93) = T’ < - + S ’
- 1 -4y 1-3§
* . é_é*
(7.94) d-x_ d-%-5  _ 2%
R - 1‘3* 1 . &%
. k

Using Theorem 5,2 and the definition of &* we have
N ™ | -&Fosoit 2
SlF(oL-o- it) (dt < S'ft("fc* S+ it){2kdt + S[Zd (m)n © ( dt <<

4 A + n<T

2-28%+¢
<< T1+s + T k << T1+$.
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To estimate the second integral on the right-hand side of (7.92) recall

that

ab=n
hence

0o
F(A+ it) = zz;dhk(n)n—1_s—lt - (:Z:dk<n)n-1~5_lt)2 = :Z:gk(n)n‘1—s-lt,
n=1 " n<l

w>7

where [gk(n}{_5 d2y(n} << n®., Therefore with Theorem 5.2 again and the Cauchy-

Schwarz ineguality it is seen that
n T
S[F(/s v 1t)|at < 1V/2( S ’Z;gk(n)n”'s"ltlzdt)vz « 12,
4 ) 4 >

Taking into account (7.93%) and (7.94) we obtain from (7.92)

m
(7.95) Sl*ﬁ‘(dyr it)[at =< 7,
4 d- &* 2 -8 - é*
(1.96) & = (14 =8 4 /2 T k, 4
. 1_@1!; 2-2&’1'; 2—26’;

for any ¢ = 0 if § = §(€) is sufficiently small, As
2 - @ ~¢¥
2 - 248 <._.._.__._.._._k'.<1’
. = ogk
2 ng

this means that we have proved «

¢ N il Rl NP
(7.97) SIC(é v 1t)] Fat = Tzdi(n)n—zd v o(p2%K ),
1 n=1

so that (7.89) hclds with

R(k,83T) << T(z-e-af)/(z-zst)u - o(T)

for a’l“( < & < 1 fixed,
Recalling that by the definition of &} and Thecrem 7.3 we may take
o”‘z‘ = 1/2, d’_‘; = 7/12, GZ = 5/8, 6’; = 11/60, o’z = 5/7, we obtain special estimates

from (7.97), which we formulate as
THEOREM 7.4.
m
S [E@ + it)|%at
4

]

20
Tng(n)n“z‘ + O(T,%/z_uz)’ 1/2 <« 3 <1,
n=1 )

|23 + 1t)(%at

It

P |

Roacd
- -128)/
Tde‘s(n)n 2, o(17-128)/10+¢y 7/12 < @ < 1,
n=1 -~
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m

gma +1t)Bat - TZaj(n>n‘2“ o oo(o(M8)/EEy o e o,

4 =17

m o .

Slﬁ’(a + it)]Vay - T,ng(n){?‘ o o(n(79-60)/38%y s g <y,
A n=1

|£@ + it)| %at v oMYy e g <y,

]
+3
ron

N\ N
—
=
N’
jad
&

"3

Naturally explicit bounds for R(k,d;T) in (7.89) when k > 6 may be also
obtained by this method, but a general formula would be rather complicated in |
view of Theorem 7.3, and therefore it seems reasonable to consider (7.89) expli-
citly for small values of k only.

Finally it may be mentioned that one can also investigate power moments

of |£@+it)l™ when m = 1 or m = 2 by the above method and obtain
T

(7.98) S[z:(& + it)|at

4

’I‘de/z(n)n’zg + O(T5/4-8/2+£), 1/2 < @ <1,
n=1 '

Z(za.)'r + o(TQ‘Q“), 1/2 <3 <1,

(]

(7.99) S\L"(a + it)] %at

where d1/2(n) is the special case of the generalized divisor function d (n),

which is defined by

Zz(s) = Z‘].dz(n)n-s, Res > 1,

For the proof of (7.98) and (7.99) we shall use the simplest form of the

approximate functional equation, namely

(7.100)  fL(s) = Zn’s + x1-s/(s-1) + O(x-a), x> t/n > t,0<d <1,
n<x

To obtain (7.98) and (7.99) it will be sufficient to obtain the copres-

ponding formula for the interval [‘1’/2,'1‘]. We take in (7.100) x = T, obtaining
(7.101) [(e) = 2ou™° + o(T7%),
n<r

where s = ¢ + it, T/2 <t <T,1/2 <3 < 1. To obtain (7.98) we write

= (2 /2a1/2<n)n‘8>2 o2 s
n<t

n T/2<ngl‘

where clearly \g(n)l < 1. Then we have
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T ki T
(7.102) f |z(s)]dt = J | ¥ g, ,(n)n” | dt + O J | ¥ gmn™S[dt) + o(r'%).
T2 T2 n<T T2 T <n<T

Using the Cauchy-Schwarz inequaiity and the same argument as in the proof of
Lemma 7.3 (only with @ = 1/2 + 8) we obtain that the first O-term on the right-hand side

-0= .
of (7.102) is << TS/Ll 2+e and (7.98) follows on applying Theorem 5.2 to the first

term on the right-hand side of (7.102).

The proof of (7.99) is even easier. Namely from (7.101) we have at once

® ™ ™
f lz(s) |Pat = f | Tn7%|%at + o(r™° I | Tn"Sath + o(r'™29).
/2 a1 ST wp2 05T

Theorem 5.2 and the Cauchy-Schwarz inequality give

m
j I ) n-slzdt = —T Y n + 0( Y n 1- 20 = %C(ZG)T + O(TZ-ZO),
T2 n<T n<T _ n<T

m m

J | Tn™®at < 173 f | T n7%%a0)"2 « 1,

w2 T w2 "<t

80 that we obtain

2=-20

J (o + it)[%at = %g(Zo)T + 0(T°79%),

T/2
hence (7.99).

NOTE S

The main results of this chapter involve upper bounds for power moments of
the form (7.1) or (7.2). However when one asks for lower bounds in the same problem
the situation is different. Already in Chapter 7 of Titchmarsh [8] one can find the
bound (k > 1 is a fixed integer)

" .
f |z (s + 1t)|2k “Tae > T(logT)kZ,

o

whence
I g + it)|2kdt = 2(T(logD®).
°
A substantial advance has been made recently by K. Ramachandra [4],[5], who
proved
T+H
(7.103) f lzes + it)|%at > CkH(logH)kZ/M

T-H
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$or k= 1 a fixed integer, Ck > 0 a constant depending on k only, T > TO, E> logtT.
In fact Ramachandra deduced (7.10%) from a general estimate which also gives good
bounds when { is replaced by ﬁ(m) in (7.403). The bound (7.403) with k = 1 will
be used in the next chapter, where a simple proof of a weaker résult than (7.103)
will be given. Ramachandra has also proved
T+H
S |£(1/2 + it) et < Hlog1/4ﬁ, T  <H<T,
T4

and on the other hand it may ®eem plausible to conjecture
m

S (E(1/2 + it)|%Xat = (o, + 0 (1))T(1ogT)®

°

2

for k> 3 and some Dk?> 0. However it is hard even t@ give a heuristic value of
the constant Dk'

Following an approach that uses convexity arguments of R.M. Gabriel [fl,
D,R. Heath=-Brown [j] succeeded to obtain results in a manner that is simpler than
Ramachandra's [4), [5] , and in some cases his results are also sharper, Thus for
H = T Heath-Brown proved unconditionally that (7.103) hdlds for all rational k> 0
and for all real k> 0 if the Riemann hypothesis is true.

This discussion shows that the gap between the best upper and lower bounds
for power moments higher than the fourth is still very large, and the (expected)
result M(6) = 1 would be a big advance in zeta-function theory.

An alternative approach to (7.6) is via the approximate functional equa-
tion (4.11), where we let T/2 <t <T, s = 1/2 + it, T/#% < x < T/2%, We have then

\£(1/2+18) | < ]r;td(n)n-1/2-it\2 + ]M%xzxd(n)n”/ A

and multiplying by dx/x and integrating from T/4ﬂ to T/2w we obtain

T/ Kotk o :
L (1/2+41t)| 4 =< 5 'Z:<1(n)n"1/2'j‘tl2 > 5 [ Z, d(n):n"1/2"it \2 & | 10g°r,
' n<x x 2 12 x
T/vr wpe n<t™/Ar"x

and the change of variable y = tz/dxzx in the second integral above leads to
Tiw

‘t(1/2 +.it)\4 << S lzzld(n)n—1/2-it12 %f + 1og2T_
n<x

T/8w
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In this expression the length of the sum does not depend on t, so that
summing over t = t_ and using the mean value theorem (5.4) we obtain (7.6) as
before, However for k > é the lengths of the Dirichlet polynomials are too large

for (any known form of) the approximate functional eguation to produce a good
T

upper bound for S ]f(1/2+it)\Kdt,.and here we use a new method, based on the mean

]

value estimate for integrals over short intervals (Theorem €.2), which was intro-
duced by D.R., Heath-Brown [1].

All the results of {2 and {3 are to be found in the author's paper (2],
which generalizes and sharpens the results of Heath-Brown's paper [11 where the
first proof of the important result (7.15) is given (as mentioned in Chapter 6, a
different proof has been given recently by H., Iwaniec [2] ),but where power moments
for ¢ > 1/2 are not treated, The use of the theory of exponent pairs, as embodied
in the estimate of Lemma 7.1, makes it possible to obtain satisfactory results
both for d = 1/2 and 1/2 <d <1, In the latter case a novel feature is Lemma 7.2,
which enables one to deal effectively with large values of the Dirichlet polymno-
mials appearing in (7.52). Bounds given here for power moments are the Sharpest
ones hitherto, and improve much on estimates of Chapter 7 of Titchmarsh (b].

It may be remarked that the range V'z_T11/7210g5/4T for which the bound

R << TV

logsT holds in (7.36) is very close to the optimal result the method
gives, Namely (7.8) yields R <<:TV-6log8T for V> T° and any ¢ > ¢/(2 - 2p + 4q).
As mentioned several times in this text, a general method for finding the minimal
value of f(p,q) (where (p,q) is an exponent pair and f is a "nice" function, say

rational) has not been found yet. Thus each problem has to be tackled separately,

and H.,~E, Richert has kindly informed me that he has calculated

min q/(2 = 2p + 49) = 0.15274776...,
(pyq) ;

whereas 11/72 = 0,1527%, go that this value is very close to the optimal one,

The useful technique of dividing T into subintervals of length 5:TO and
multiplying by 1 + T/TO, used in the proof of Lemma 7.2, seems to have been intro-
duced by M,N, Huxley ﬁ], p. 117, and will be repeatedly used in Chapter 9.

Concerning Theorem 7.3 it should be remarked that the bounds given for
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specific values of & in the range 5/8 <d 5;7/8 are much better than the ones that
follow from the general (7.65) (and even one has m(d) > (28~ 13)/(48 - 1)(1 - &)
for 5/6 <& <1 - £, which is superseded by m(d) = 98/(31-328) for 8 = 0.91143... >
> 13/15), The results are the sharpest ones yet, but the estimate m(5/8) > 8
(follows from the first bound in (7.65)) has been obtained first by D.R. Heath-
Brown [§] by a somewhat different épproach. No effort has been made (except when
é = 2/3) to obtain the best possible estimates for m(4) that this method allows,
as this would involve tedious computations with exponent pairs, and the possible
improvements would be rather small, Also it may be mentioned that one could replace

C

€ in (7.2) by log’T, C = C(d) = O using the same analysis more carefully, It

T
is only when & — 1 that the bounds of Theorem 7.3 are superseded by the estimate
n(8) > (1 - a)"3/2, which follows from I.,M, Vinogradov's method (see H.-Es Ri-
chert [4] for the estimation of the zeta-function near the line ¢ = 1),

For an application of Theorem 7.3 to the asymptotic formula for powerful
numbers (i.e. the numbers n with the property if a prime p divides n, then pk
for a fixed k> 2 also divides n) the reader may consult the author's paper [5].
Various other divisor problems which involve powers of the zeta-function in the
corresponding generating Dirichlet series admit an approach via Theorem 7.3 too,

The results of §4 are new and hitherto unpublished, improving Satz 2.
of R, Wiebelitz [1). The idea to use a convexity argument in Lemma 7.3 may be also
found in R.T., Turganaliev [j], who used it in a somewhat different context. Turga-
naliev namely investigated the asymptotic formula

m o
(7.104) S\Z(s + it) 12234 = TZdz(n)n-zd + o(T“‘*e),

o n=1
where £ > 0 is arbitrary, 0 <A <2, s =8 + it, 1/2 <d < 1, He proved that
(7.104) holds with some 2¢= H(3,1) > 0, where it is understood that A does
not have to be an integer, Under the simplifying assumption that the Riemann

hypothesis holds it is seen that the function
22 -9\ 2
P(s) = £°%s) - (2,3x(n)n™)
n<T

has an analytic continuation for Res> 1/2, 80 that the convexity argument used
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in the proof of Lemma 7.3 may be applied with o = 1/2 + §, giving (7.104) with

% =48 - 1/2 (it has been stated without proof by feath-Brown [8] that Lemma 7.3
holds for allvalues of k= 1, integral or not). However Turganaliev succeeds in
proving (7.104) unconditionally, where X = X(3,2) > O is not explicitly eva-
luated, but depends among other things on the quality of estimates for the zero
density function N(3,T) (see Chapter 9). The proof in the unconditional case is
rather involved, where instead of using directly the estimate (7.92) (see p. 126
‘of Titchmarsh [5]) Turganaliev makes a careful division of points of the segment
Eg + iT/2,38 + iT] and makes use of Hadamard's three circles theorem and other
devices to obtain (7.104) with some X = 3€(3,1) > 0. The range 0 <A< 2 to
which Turganaliev restricts himself is motivated by the fact that the proof uses
M(4) = 1, and as we have seen an analogous estimate of this type for A > 4 is
still not known to hold, The method of Turganaliev can be presumably adapted to
yield analogues of Theorem 7.4 when k is not an integer, with error terms as in
(7,104), or perhaps only o(T).

The proof of the well-known (7.100) may be found in E.C. Titchmarsh [8].

It follows from the elementary relation
0

C(s) = Zn-s + N1-s/(s-1) - —;-N_s - sS‘\]/(u)u-S-1du

n<N
- N

on letting N — oo, when one uses partial summation and Lemmsa 2,5 to obtain

-it -1t Tt Tt
2, w7 = (e« o) - EgmE— v o,
X<n<u 2

which is used in estimating

2, ) i

x<n<N x<n<N

The asymptotic forgula (7.98) is due to Turganaliev (1], while (7.59)
must be known already, although I have not been able to find a reference in the

literature.
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Finally we shall discuss the following interesting mean value problem, where we

shall suppose that 1/2 < g < 1 and h > 0 are fixed. Is it true that

(7.105) 1im N Y zto + irM|? = z(ee)?
N-e r<N

This is a special case of a problem posed recently by A. Reich [2], where rh
is replaced by tr for a certain natural sequence {tp} such as primes, square-free
numbers etc. We shall sketch the proof here that (7.105) holds for ¢ > 1 -~ g(h),where
g(h) satisfies 0 < g(h) < 1/2., It will be sufficient to prove

a(o))

(7.106) S, = I lz(o+ ir™|? = 22N + o , 0 <a(o) < 1.

N N/2<r<N

Using the simple approximate functional equation (7.100) with x = Nh we obtain

. h2 .. h
S - z | 2 n—O’—lr‘ | + 0( z I z n—(‘)’—lr’ 'N-ho) . O(N1—2h0) .
N/2<r<N anh N/2<r<N nENh

Since the first O-term above can be treated by the Cauchy-Schwarz inequality and

-o-irh 2 1 -20 -0 irh
¥ | §In = 5N Y n + Y (mn) Y (m/n) z
N/2<r<N anh anh mfniNh N/2<r<N
(7.107)
1+h-2h - .. h e
%C(ZG)N + o't %y + of } (mn) °|, Y exp(ir logm/n)|), ﬁégujﬁé
1<n<m<N” N/2<r<N oy,
. a Ay, :
the problem reduces to obtaining a non-trivial bound for éh%ums A
* *
SN = SN(m,n) = X exp(irhlogm/n).
N/2<r <N

The case 0<h < 1. This case is relatively simple. Let f(x) = xhlogm/n.

Then for h > 0 we have

(7.108) Nh_1logm/n << ’f'(x)| = hxh-1logm/n << heNh_1logN,
and hZNh-1logN = 0(1) as N> o if 0 < h < 1. By Lemma 2.1 and Lemma 2.1 we have
N
* ) 1 -1 1-h -1
(7.109) Sy = exp(if(x))dx + 0(1) << max |f'(x)] << N “(logm/n) .
N/o ) N/2<x<N

Using this estimate we obtain



- * - ~-1.1-h
y (mn ) 0ISN(m,n)I < ) (mn)~(logm/n)~'N <<
1§p<m§Nh 1§p<m§Nh
y (k+n) ™0 max (1,nk~ N << N 2h(1-0)+1-h
1<k ,n<N"

But for 1/2 < 0 < 1 one has 1 - h + 2h(1 - o) < 1, which means that for 0<h < 1,
1/2 < o < 1 (7.105) does indeed hold. A variation of the above argument shows that
this is also true for h = 1, a fact which also follows from Satz 2.3 of A. Reich [1].

The case h > 1. Suppose first that h is not an integer. Considering the range

' *

m > 2n in SN we may in view of (7.108) use the theory of exponent pairs and deduce that
* -

(7.110) SN(m,n) << Np(h.1)+qlogN, (m > 2n)

: *
for any exponent pair (p,q). For n <m < 2n we estimate SN either by (7.110) if

' x) > 1 or by (7.109) otherwise, which again easily leads to (7.105). Then
from (7.107) and (7.110) it is seen that (7.105) follows if

(7.111) p(h - 1) + q <1
is satisfied. Recalling that for L = 27! 1> 3
(7.12) (p,q) = (1/(2L - 2), (2L - 1 - 1)/(2L - 2))

is an exponent pair (see the discussion after (6.60)), we choose in (7.12) 1 = [h]l + 1.
Then (7.111) holds and (7.105) follows for ¢ > 1 - g(h), 0 < g(h) < 1/2, as asserted.
One may evaluate g(h) explicitly, e.g. for h =‘3/2 with (p,q) = (2/7,4/7) we obtain
that (7.105) holds for ¢ > 19/21. Since the theory of exponent pairs can be in fact
built from the knowledge of the first four derivatives of the function in question,

the above discussion covers all the cases except h = 2 and h = 3. For h = 2 we square

*
out directly IS 2, grouping together suitable terms and using rational approximations

ul
to n—1logm/n. For h = 3 one may use Lemma 2.7 to transform SE into an exponential sum
of the same type (plus manageable error terms), corresponding essentially to the
original sum for h = 3/2, and the latter sum can be dealt with by using the theory
of exponent pairs.

Various generalizations of (7.105) are possible. For instance, one may pose the
corresponding problem when the square of the modulus is replaced by an arbitrary,fixed

even power etc.
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CHAPTER 8

CONSECUTIVE ZFROS ON THE CRITICAL LINE

§1. Introduction

(%) o5
This chapter is &evoted to the study of consecutive zeros of;tﬂe form

1/2 + it, where t is real and positive, A classical result of A, Selberg states
that there are >> TlogT of these zeros for 0 <t < T, and quite a few have been
calculated numerically. In view of Riemann's hypothesis it is only natural that
zeros on the critical line 1/2 + it have always attracted much attention, If 9

is the imaginary part of the n-th zero of the zeta-function on  the line 1/2 + it,
then one of the most interesting and yet unsettled problems cohcerning these zeros
is the estimation of the gap between consecutive zeros, i.e. inequalities of the
type

(8.1) Xh+1 - Yh o= Y§1°gdln

with some 0 <c¢c <1 and d > O. The first result in this direction is the classical
theorem of G,H, Hardy and 3.E. Littlewood [ﬁ] that (8.1) holds with ¢ = 1/4 + ¢,
Their investigations were based on the properties of the function

(8.2) z2(t) = 1'1/2(1/2 + 1it)f(1/2 + it),

where o is the function defined by the functional equation (4.3). The result of
Hardy and Littlewocod remained the best.one for an exceptionally long time, until
independently J. Moser [1], [2] and R. Balasubramanisn . [1] proved that (8.1) holds
with ¢ = 1/6, d =5+ ¢ and ¢ = 1/6 + € respectively. Their methods of proof wers
different, and Moser's method forms part of his extensive study of properties of
the function Z(t); he also obtained in [2:} the conditional résult c¢ = 1/8 e
in (8.1) if the LindelSf hypothesis that [(1/2 * it) << [t|* is true. Balasutra-

manian's approach stems from his work [11 on the mean square of the zeta-function
TtH

on the critical line and necessitates a lower bound for S ‘C(1/2 + it)[dt. As
' T-H

mentioned in Notes of Chapter 7, K, Ramachandra (47, (5] obtained genersl lower
bounds of integrals of certain Dirichlet series, and in particular he showed that

for k> 1 a fixed integer
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(8.3) S |&1/2 + it)[kdt > H(logT)k2/4, ™ <H<T,

T-H

where the <<~constants depend on k only.

By any of the methods used in the above mentioned works it is seen that
the problem of obtaining (8.1) reduces to the estimation of a "short" exponential
sum after some averaging process, Following Moser's method of approach and taking
into account the particular structure of the exponential sum in question, A.A;
Karacuba [4] recently obtained (8.1) with c = 5/32, & = 2. The exponent 5/32 is
interesting, since it is smaller than the best known exponent 35/216 of G. Kolesnik
(see (6.63)) for the order of [(1/2 + it). Our purpose in this chapter is to prove
the following

THEOREM 8,1. For any ¢ => O and n > nO(E),
€
(8.4) Yne1 = Yo << n o @ = 0.1559456... .

This clearly improves the exponent 5/32 of Karacuba, since 5/32 = 0,15625,
Instead of using what R. Balasubramanian [ﬂ} has called "the multiple integration
process", we shall reduce fhe problem to the estimation of a short exponential sum
by smoothing with the exponential integral'(1;34). Further, instead of using the
sharp bound (8.3) with k = 1, whose proof is rather involved, for our purposes it
will be sufficient to use the weaker

Lemma 8.1, For any k> 1 a fixed integer, p® <H < T, we have uniformly
in H oy

(8.5) S [Zf(1/2+ 1t)‘kdt > H(lo g'r)'1/2'

Y
Lemma 8.1 will be proved in §2 very simply by using also the exponential

integral (1.34), while a discussion of estimates (8.1) and a proof of (8.4) will

be given in §3.

§2, Proof of Lemma 8,1

Let ¢ = H(logn)™ 2% ana
¢ pk . -4%g72
(8.6) I - ISC (1/2 + it + i1)e dt’ < S|£(1/2+1t+1T)[k -+%672
| R _
THH

< S l(:(1/2 + it)]kdt.

T~H



Then by Caucny's integral theorem we have
ii(»i (1+1t)

5 Ck(s>e(s—1/ 2-1T)2G'2ds \ )

%-ncT-H)

—
I

2+:('r-n()

N2 =2
S Ck(s)e(s~1/2~1'1‘) G _dS,’
24iCT-R)

1/2~¢

0

o(1) +l

since the choice G = H(logT)~ makes the integrals over the segments

6 + i(T+H), 1/2 <4 <2 equal to o(1), because trivially L + it) << t1/6 for

~C
é 2:1/2 and exp(~C1H2G-2) << T 2 for any fixed C1,C2‘> 0. The same argument

shows that the integral over [2 + i(T+H),2 + io ) is o(1),s0 that using (1.34)

we have w© 20
I, =\ géjk(z s it am)e /2N TE T Loy -
= .- 2y 2

(8.7) \de(n)n-Z—lTS n-lte(9/4+31t-t )G dt\ v o(1) =
n=1 -

o
1 - -] -
W1/2G + ﬂ'/zGexpC%G 2)§Z:dk(n)n 2 lTexp(-—-—;-Gz(BG 2. logn)z) + o(1) =
n=2
9(1/2G + o(1) = @,
since the seriee for &k(2 + it + iT) converges absolutely and may be integrated
termwise, and for any n> 2, any fixed C > 0 and T sufficiently large

exp (- %G2(3G-2 - 1ogn)2) < exp(-(%log?'6)2) << T_C.
Lemma 8.1 follows therefore from (8,6) and (8.7).

§3, Proof of Theorem 8.1.

As stated in §1 we shall smoothen exponantial sums that appear in
the corse of the proof with the aid of (1.%34). This is considerably simpler than
averaging with multi-dimensional processes, and when combined with (8.3) (k = 1)
produces a better log-factor in (8.1) than does Balasubramanian's or Moser's
method if one uses the same van der Corput estimates for exponential sums,However
this in itself is not sufficient to reduce the exponent ¢ = 5/32 in (8.1) to the

one given by (8.4), and to obtain this improvement we shall employ the same idea
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as was done by A.A. Karacuba in Bﬂ,only the short exponential sum to which the

prbblem.reduces will be estimated more carefully with the theory of exponent
pairs. By using properties of expoment. pairs developed in §3 of Chapter 2,it will
be seen that the value of u in (8.4) is in fact the best one this method allows.
For possible slight sharpénings of Theorem 8.1 one would thus have to turn to

two- and multi-dimensional methodé of estimating exponential sums,

The idea of proof of Theorem 8.1, which may be traced to Hardy's classic
proof that there are infinitely many zeros of the zeta-function on the critieal
line, is to suppose that Z(t) (given by (8.2)) does not change sign in [?-U,T+U1
and to éhow that this is impossible with a suitably chosen U = U(T) = o(T). Thus we

suppose that |I,| = I,, where
™MV

(8.8) I, S exp(-(T-u)zU-zL) -Z(u)du,
T-v
TH

(8.9) I, S exp(-(T-u)zU—zL) “12(w)|du,

LAV
where for convenience we shall use the notation L = (1ogT)1+£. Then by Lemma 8,1

i

with k = 1 and U > L,

37 Nt
(8,10) I, = S exp(-(T—u)zU-zL)\KU/Z + iu)|du =
UL
Pro e
?_e’1 S [£(1/2 + iu)ldu = U(logfr)'1“.
Py

We want to majorize I1 in (8.8), and the simplest way to do this seems
to be the use of the approximate functional equation (4.12), which gives with

the abbreviation @ = ('1’/25!(')1/2

v
1, = S exp(-uzU;2L)’)L-1/2(1/2 + 4T + iw)f(1/2 + iT + iu)du =
(8,11) d |
's'1 + S, + O(UQ’I‘-1/4),
where v
(8.12) 5, = ,ZQH-1/2+1T S 11/2(1/2 + 47 + 1u)n Yexp(-u2U~%L) du.
< -U

Now we recall the asymptotic formula (4.4) for 7ﬁ(s) and abbreviate
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9

f(x) = ~%log(2ﬂ/x) + -% + xlogn +

@

Using Taylor's formula and Iexp(ix) - exp(iy)l.5 |x - y| (x,y real)

we obtain
2

w .
(8413) Sy = r;qn'1/2exp'(if('l‘) )Sexp(iulog(n/Q)-j-‘Z—T- -uzU-ZL)du + O(U4T-7/4) +
- - + o(ur /4y,
to0

since 5 << exp(-L/2) << T°° for any fixed ¢ > 0. At this point we restrict
+V

U to the range T® < U < T1/3, and setting X = (4'13/1)"1 + UL we obtain

X" 2exp ) 106? (0/0)) = 117 Zexp (-2 (41) 1062 (/@) + 0(Tr7).
Therefore using (1.34) it follows from (8,13) that

(8.12) 51 = 772002 0 2exp (12 (1) )exp (<02 (41) 1062 (/@) + 0@V,
n<

Although the sum that appears in (8.14) has many terms, the presence
of the second expaential factor will make the contribution of many of these terms
negligible. To see this we let P = [Q] = [(T/Z‘If') 1/2], n=P~m where m is an
integer satisfying _
o> qu L™t . [_(21')-1/21‘111-1(logT)(1+£)2.

But we have

UZL-1log2 (n/Q) = el

log(1 - (m + 0(1))Q"’§2 = S,

and the second exponential factor in (8.14) makes the contribution of these n to

8, negligible. For the remaining n in (8.,14) we obtain by partial summation

(8.15) I, < UZT‘1/4 + UT"1/4L"1/QZmax ‘ Z, exp(iTlog(P - m))l,
M M' NM<m<i'<2M |

vyhere P = E(T/Zar) 1/2], the maximum is taken over M' satisfying M < M' < 2M, and

-1,1
1L +£

Zdenotes summation over 0(logT) values M = 2-JQU y J = 1,2,...y s0 that the
M

exponential sums in (8.15) are short in the sense that M # o(P), To see first
how one obtains the valué ¢ = 1/6 in (8.1) of Balasubramanian and Moser, we use

the classical van der Corput estimate

(8.16) Z eif(n) << (b - a)il;/6 + (b - a)1/22;1/6,

a<n£?
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where f(x) is real, b - a> 1, 23 = lf(s) (x)l for a < x < b, Applying (8.16)

with M = a, M' = b, f(x) = Tlog(P - x), 23 = T-1/2 and summing over M we obtain

on comparing (8.15) with (8.10)

U(losT)-1-! <I, =1l «< U2T-1/4 + .T1/6(log’l‘)1/2+€ '+U1/2T1/1210g£'1‘,

2
provided that Tt.s U< T1/3, and this is impossible with U = T1/610g2+eT. There-
fore Z(t), and consequently -5(1/2 + it) must have a zero in [T - U,T + U] with

this choice of U. Setting y =T - Uwe have y . €[T - U,T + U], hence (8.1)

with ¢ = 1/6, d = 2 + ¢, Using the stronger (8.3) instead of (8.5) we would only
gain on the quality of the log-factor and obtéin (841) with ¢ = 1/6, d& = 3/4 + ¢,
However (8.3) is much more difficult to prove than (8.5), and the latter estimate
is sufficient for (8.4) which contains ¢ in the exponent.

Therefore to obtain the exponent given by Theorem 8,1 we have to estimate

more carefully the sum

(8.17) S = S(M,M',T) = Z exp(iTlog(P =+ m)), P = ((T/?ar)vz], M << 1V/2f e
MM <2M .

From the definition of P we have T = 24(P + 9)2 for some 0 <0 <1, and

therefore

. OO
Tlog(P - m) - TlogP = -T:E:(m/P)kk-1' =
k=1

-2xPm - 2 (2P0 + c;z)mp‘1 - orm® - 27 (2P + c;z)mz(mvz)'1 -

T/ (3P0) + ot/ (aPh) + ..L).

Taking into account that exp(2rir) = 1 for any integer r we consider

2 .
separately even and odd m (to get rid of orm”) to obtain

(st < Is'l .+ [s"|,

where S' comes from even m and equals

(8.18) St = Z exp(2AiF(m)), M << M, <<M,

M, <n<M!<2M,

(8419)  F(x) = ex+ ext + v(am) (200370397 + 20t/ 0PY) + .0,

Pt oo oY,

¢y, = 2(20P + 02)P-1 = 0(1), c, = ¢,
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The expression for S" (coming from odd m) is similar and hence it will

' 1
be sufficient to estimate S' in (8.18). For M>> T /1 and M, < x < 2M, we have
|[Ft(x)] >> 1 and

109 (ol = w12,z [0 (| s 12 B /2, o,

where the X-constants depend only on k., This means that we may estimate S' by the

theory of exponent pairs of Chapter 2 as

(8.20) . st << APM%,

where (p,q) is any exponent pair and

(8.'21) A = max [Fr(x)] < M2T'1/2.
My =M,

Thus for M >> T1/4 we use (8.20) and (8.21), and for M <:<"I‘1/4 we use

(8.16) to estimate S'. Then we obtain

(8.22) s <« u2PropP/2 . g5/24
Summing over various M and keeping in mind that M << ’I'_1/2U-'1L“'H
obtain from (8.15)

(8.23) I, << w24 gV 20 o g (Pra)/2-1/2g- (2p+q) (1ogr)2Pra-1/2+e

Comparing this estimate with (8,10) as before we obtain a contradiction
of |1,| =1, if ™ <U < T1/4log"1f.r and

(8.24) U = T(2p+2q"1)/4(zp+q)(logT)(4p+2q,+1+€,)/2(2p+q)’

and if we used (8.3) with k = 1 instead of (8.5) we would obtain the slightly
better exponent (8p + Aq = 1 +6/4(2p + q) of logl in (8.24), but as already
mentioned this is of no importance for the proof of (8.4). Now we use Lemma 2.8
to deduce that if (p,q) is an exponent pair then (p/(2p+2),1/2 + q/(2pf2)) is
also an exponent pair, and further an application of Lemma 2,9 shows that

(a/(2p+2), (2p+1)/(2p+2)) is an exponent pair too, Replacing (p,q) by this last

exponent pair in (8,24) we obtain the condition
(8.25) v - o(era)/2(2pe2ae1) () 0y (3p+2a+2+€)/ (2p+2a41)

for which lI1| - 12 is falsified, and this choice of U trivially satisfies
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Ta‘s U < T1/410g-1T.'The purpose of this transformation is that now the exponent of

T in (8,25) is an increasing function of p + q, which means that the best result
will be obtained if we take for (p,q) the exponent pair for which p + q ic & mi-
nimum. In accordance with the discussion made at the end of Chupter 2 we take

(pyq) = (4/2 + €,1/2 + &/2 + @), % = 0,3290213568,.., which is then precisely the

exponent pair for which p + q is minimal, and then

(p + a)/2(2p + 29 + 1) = 0.15594583...,
which proves (8.4). It may be noted that the trivial exponent pair (p,q) = (0,1)
in (8,25) leads to ¢ = 1/6 in (8.1), while Karacuba's value ¢ = 5/32 follows from

the standard exponent pair (p,q) = (1/6,2/3).

NOTES

A, Selberg's classical result that

(8.26) NO(T) > CTl;gI

for some absolute,unspecified C > 0 is given in Chapter 10 of Titchmarsh [8]. Here
NO(T) denotes the number of zeros of [[(s) of the forms = 1/2 + it, 0 <t < T, If
N(T) denotes the number of zeros of the zeta-function in the rectangle'o_s é <1,
0 <t <T, then the classical formula of Riemann-von Mangoldt states that (chapter

9 of Titchmarsh [8])

(8.27) N(T) (2x)’1T10gT - (1 + (2x)'1)T + 0(logT),

which implies that up to the value of C the estimate (8.26) of Selberg is best
possible, N, Levinson [1) obtained C > 1/3 in (8.26), which is a remarkablé
achievement, and his result has been recently improved byShi-Tuo Lou (jl to

C > 0.35 by an.elaboration of Levinsén's method. Also by addpting Levinson's method
D.R, Heath-Erown [ﬁl proved that more than one third of zeros of t(s) are simple
and cn the critical line, but in spite of the quality of this type of results it

is rather improbable that Levinson's method will ever give NO(T) ~ N(7) aé’P—)cn.

The Riemann hypothesis and (8,27) trivially imply

¥h+1 - Xn << 108’%’
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but it would be interesting to investigate whether anything can be deduced from
inequalities of the type (8.1) about the horizontal distribution of zeros of the
zeta function.

As mentioned in the preface, Theorem 8.1 is due to the author and is
hitherto unpublished.

With the advent of refined computational technigques calculations concerning
zeros on the critical line have been carried out to a remarkable extent, A detailed
account of these techniques may be found in the book of H.,M. Edwards [1] and in
the paper by J.,B. Rosser et al. [1], where additional references may be found.
The best result at the time of writing of this text seems to be that of R.P. Brent
@], who obtained by calculations that the first 75 000 001 zeros of the zeta-
functién which are complex are simple and lie on the critical line (the imaginary
parts of the first six zeros are 14,13, 21,02, 25,01, 30,42, 32,93%, 37.58 appro-
ximately), No doubt numerical data will continue to acerue rapidly.

A proof of Lemma 8,1 with the right-hand side of (8.5)vrep1aced by H
follows from Theorem 3 of R, Balasubramanian (1], The proof given there is due
to K. Ramachandra, who has also sharper and more extensive results on this subject
of which some wére discussed ih the Notes of Chapter 7.

The discrete method of E.C, Titchmarsh in zeta-function theory (see Chap-

ter 2 of Titchmarsh [8] for outlines of the method) deals with sums involving the

sequence {QS:4, where t, is the unique real root of
iV
W(t) = oy (v E 0), z(t) = e (t)Z’(1/2 + it),
and Z(t) is defined by (8.2). Therefore

() = - Jé-tlog'ﬂ' + Im 1ogP(711- + %it) = Jz-tlog(t/zsr) - % - % + 0(1/%),

(1) = Slog(t/2m) + 0(1/4).

E.C., Titchmarsh {41 proved
N

(8.28) Z Z(t,)Z(tyH) ~ -2(Y+1)N,

v =M+1

where M > 0 is fixed and sufficiently large, and he conjectured
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(8.29) 2, 22(5,)2%(s,,,) = o(moghy)
v =N+1

for some A > 0. It may be noted that if for some t} we have Z(tf)z(t:+1) < 0,
then there is a zero 1/2 + it of the zeta-function satisfying te [tt,tf+1], 80

that from (8.28) one immediately has as a corollary Hardy's classical result that
there are infinitely many zeros on the critical line. This fact shows the connec-
tion between the sequence %%yz‘and zeros on the critical line,

In a series of papers (some of which are [1},[2],[3],{41) Je. Moser ob-
tained several interesting results concerning Titchmarsh's discrete methoa, and
in particular in (4] he provéd Titchmarsh's conjecture (8.29) with A = 4, From
the Cauchy-Schwarz inequality and [(1/2 + it) << t1/6 it is seen that (8.29)"
will follow from |

N
(3430) Z z4(t‘,) << NlogA'N.

y =M+1
Taking into account that lt(1/2 + it)] = |z(t)| it is clear that (8.30)

is a consequence of the discrete fourth power momént estimate
' kY14 > * *
(8.31) ;R 12(1/2 + 1tr)\ << Tlog’T, |t¥{<T, |t% - tS[31 for r # s <R,

which follows from (7.6). Namely

-1
t - tvNZOl'(logtv) ,

v+1
so that each intefval [t,t + 1] contains << logt numbers t, , and then we may

define t’; by

\£(1/2 + 1¢%)] = max l2(t)]s r = 1,2,0.0
r<t, <r+1
. . * * R s
Considering separately t2m, and t2m+1 we have thg spacing condition

\t: - t:\31 for r # s, and since XN ~(29r)-1T10gT if V<Nand t, <T, then
collecting 0(logl) estimates of the type (8.31) we obtain (8,30) with A = 5, and
consequently (8.29) too. This is poorer by a’log—factor than Moser's result, but
the derivation sketched here is much simpler. Higher power moments of Chapter 7

allow one to estimate in & similar way sums of the type
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2k 2k
2, 27, L),
v=M+1
where k > 1 is a fixed integer.
The estimate (8,16) of van der Corput is standard and was not proved
in Chapter 2, since it was not needed before and besides it is glven as Theorem

5,11 of Titchmarsh (8|. Its proof follows from (2,38), when each sum

2. _e(£(n+h)-£(n))

a<n<b-h
is estimated by

(8.52) T o) = (r-0AY2 ;Y2

X<n<Y

where |F"(x)| = A, for X <x <Y, end H is then chosen optimally, The estimate
(8.32) is an easy consequence of Lemma 2.2 and Lemma 2.4, since e(F(n)) = e(F(n)-kn)

for any integer k, Thus one may split the sum in (8.32) into not more than
[F(Y) ~Fr@X)| +1 < (T-X1, + 1

subsums, and to each of these Lemma 2,5 is applied and the inftegral estimated by
(2,2) to produce (8.32). |

A.A. Karacuba's paper [4] contains also a result on zeros of Z

in short intervals. If k> 1 is a fixed integer, T > To,

H o> T1/(6k+6)(logT)2/(k+1),

then Karacuba proves that every interval (T,T +_H] contains a zero of Z(k) (t)
of 0dd order., The main tool in the proof of this result is an approximate
functional equation for Z(k) (t), similar to the aﬁproximate functionﬁl equation
(4.12), where the length of the Dirichlet polynomials approximating Z(k) (t) is

(t/2x) 1/2 and the error term is O(t-1/410gkt).
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CHAPTER 9

ZERO-DENSITY ESTIMATES

§1, Introduction

Zero-density estimates involve upper bounds for the function N(¢,T), which
represents the number of zeros f:= B+ iy ('5’X real) of the zeta-function for
which 4 > & > 0, where d is fixed and -T < Y < T. Estimates for N(é,T) may be

written in the form

(9.1) N(4,T) <<l TA(‘) (1*‘)1ogCT
where C > 0, or
(9.2) N(d,T) << TA(“)(1f‘)+e,

where we shall always suppose that the <<~constant is uniform in & and T, but
‘depends only on €. In view of the Riemann-von Mangoldt formula (8.27) one has
trivially A(8)(1 = 8) =1, C = 1 in (9.1) for 0 < & < 1/2, while for d > 1/2
obviously A(d)(1 - d) <1 and A(d)(1 - &) is non-increasing. Zero-densi%y estimates
have a large number of applications in many branches of analytié number theory,
and it turns out that in some of these applications (like the problem of the
estimation of the difference between consecutive primes) results obtainable from
the Lindeld3f (or even Riemann) hypothesis follow in almost the same degree of
sharpness from a much weaker conjecture, hamely | |
(9.3) Ag) = 2,12 =4 =<1,

which (both in (9.1) and in (9.2)) is known as "the density hypothesis", As for
}many applications (9.1) does not have much advantage over the somewhat weaker
(9.2), we shall be concerned mostly with estimates of the type (9.2), formulating
our results for convenience as upper bounds for A(a) in (9.2) rather than for |
N(d,T) itself, In view of the preceding discussion and the well-known fact that
there are no zeros on the line 4 = 1,‘it is sufficient to consider the range
1/2 <4 <1 in (9.2). Except when & is very close to 1/2 or 1 we shall érove

in this chapter the sharpest known bounds for A(8), To accomplish this we shall

use & zero-detection method, which will ©bve fully explained in {2, and which
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offers great flexibility in the estimation of A(d). Among other tools we shall
use the higher power moment estimates of Chapter 7, and certain double zeta sums,

which will be considered in 36 and 8.

y2. The zero-detection method

We start from {1.7) with x = n/Y, namely
Zti00

(9.4). e—n/Y - (27{i)—1 S r‘(w)er;wdw,

2-i00

- . 2
and let M (s) = :Z:dy(n)n S, where s = d + it, log T <M| <T, ' <<X <Y <<:TC,
X n<X - - -

fqn) is the MSbius function and X = X(T), Y = Y(T') are parameters which will be

suitably chosen. In view of the elementary relation

1 n = 1
2R

din !

it is seen that each zero ¢ = A+ iy of ﬁ(s) counted by N(8,T) satisfies

650 o s Ta@a T o @) (g migts + mytman,
m>X 2- ie0
where
(5.6 alm) = 2, p@, [s@l = a@ < o,
din,d<X w
since the absolutelj convergent series KKY+ w) = zz,n-f~W and Mx(g + W) may
n=1

be multiplied and then integrated termwise using (9.4).

Now the line of integration in (9.,5) is moved to Rew= 1/2 - A, For
Wt = log2T the residue at the pole w = 1 - ‘y‘ of the integrand is 0(1) by
(1.32), and the pole w = 0 of ['(w) is cancelled by the zero w = O of C(? + w).

Also using (1.%2) one has 0
-1 %%"'lv
(9.7) =o(1) + (2r1)” "} L(1/2+iy +iv)i, (1/2+iy +1v)T(1/2-B+iv) Y dv,
Rew=1/ -3 'Q'a"f‘

and also one has trivially

(9.8) 2{: 5 a(n}n.’?e—n/Y = o(1)
nm>Ylog 1

as Y-> ® , But then exp(~1/Y)=> 1, so that each § =ty counted by N(d,T)

satisfies at least one of the following conditions:



159

(949) Z 2'8.(1'1)n-"?e"n/Y > 1,
' X<n<¥Ylog' Y
ﬂg"t‘
(9410) 5 1:(1/2+iy+iv)mx(1/2+ix+iv)r'(1/2-a+iv)y1/2'”+i"dv > 1,
—l.a“T‘
(9.11) ¥l = long.

The number of zeros % satisfying (9.11) is trivially vO(logBT),
since each strip T <t < T + 1 contains 0(logl) zeros by the Riemann-von Mangoldt .
formula (8.27). By the same argument we may choose R, zeros satisfying (9.9)
and R, zeros satisfying (9.10) so that the imaginary parts of these zeros differ

2
from each other by at least 21og4,T and therefore

(9.12) N(8,T) << (R1 + R, + 1)1og5'1'.
At this point we choose simply
(9.13) x = 1t
.so that trivially:
(9.14) Mx(1/2+i3’+iv) «< 7% for lv\slong.

- Next we regulate the length of the Dirichlet polynomial appearing in

(9.9) by observing that each P counted by R, satisfies

(9.15) Z a(n)n"’e‘“/'lr > 1/logY
N<n<@N

for at least one of 0(logY) values pt <VN-= 2-leog2Y, j = i,2,..., and we may
consider representative zeros of those counted by R1 which are >> R1/1ogY in
number and which satisfy (9.15) with a particular N. The exact éize of N is not
important, since we are going to raise (9.15) to the power k, where k is a
natural number depending on N such that Nk =M, (21\1)k =P < .TC, whence k << 1 and
Z b(n)n~f > 1/logkY
M<n<P
with Ab(n) << d2k(n) <<n® and P << M, We split this last sum into subsums of
length not exceeding M and choose k so that Nk < leogzr‘{ < Nk+1, k>r>2is-

satisfied, where r is a fixed integer, Then we have

2 2
(9.16) Y* /(r”)logz”./(r”)jz <« M << Y'log’Ty,
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and in view of existing power moments for the zeta-function it turns out that the

practical choice for r in (9.16) is r = 2, whch gives

(9.17) Y4/310g8/3Y «< M < Y210g4Y.

Therefore we have reduced the estimation of R1 to the estimation of the

number of representative zeros y =08+ ix,rs?_ é of R1 for which

(9.18) Z bn)n ™ o> 1/10g"T
M<n<@M :

for some 1 «<D << 1, b(n) <<n® and M satisfying (9.17), since by the partial
summation formula (1.17) we may replace n~f by 2" without affecting (9.17) and
the order of magnitude of the b(n)'s (in the sense that they remain << nt),

To estimate R2 we set for I = 1,...,R2

[£C/2 + 3y, + iv)] = max [L(1/2 + iy, + iv)l

-ldg2T5y§;og T
and
tr = Xf + v,
where J¥.,...,fp are ordinates of zeros satisfying (9.10), and then from (9,10)
2

we infer that

e _' .
(9.19) 1 < T Y1/2 8 l(_’(1/2 + itr)\, T = 1..0R,.
For r £ s obviously ]tr - ts‘ > log4T, and so raising (9.19) to the

power A > 4 we have

t - -
9.20) Ry << 1), |E(/2 4 11 )| AA(/279) o qM(a)reya(1/2-9)
r<Rk
=2
where M(A) is defined by (7.1). We may also utilize Theorem T.1 toestimate R,.

Defining H(T) = 79/ (1-20+40) 4o 0 een that (7.8) gives

1+£v-6

T , Vv > H(T)

(9.21) R <<
- -2(1
for any exponent pair (p,q) such that p > O, Raising (9.19) to powers 6 and

2(1 + 2p + 2q)/p respectively we obtain
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(9.22) R, < T Z/ y>-6¢ [&(1/2 + 1tr)|6 +

xR, [C] 21 (1)

+ Tt Z (12 + it )'2(1+2p+2q)/py(1+2§+2q) (1-2¢)/p -
rfﬂz"f( <H(T) r ,

« 7itey3-6¢ o (prardhy (1-2¢) (1+2p+2q)/p

Having thus prepared the ground for zero-density estimé.tes we shall
proceed to specific resvlts, with the: remark that the estimation of R1 is in
general more difficuit than the estimation of R2, for which good bounds (9.20)
and (9.22) exist. Several techniques for bounding R, will be presented, but it
turns out that for 1/2 < 4 < 3/4 the mean value theorem for Dirichlet polyno-
mials (Theorem 5.3) is the best available tool, while for & > 3/4 the best results
are obtained via the Haldsz-Montgomery inequality (1.35) or z1.36), which offers

a considerable flexibility of approach,

§3+ The Ingham-Huxley estimates

For the rest of this chapter we shall be proving bounds for A(d) of the

type (9+2). The aim of this section is to prove

THEOREM 9.1.

(9.23) A(G) < 3/(2-4), 1/2 < ¢ <3/a,
(9.24) A(B) < 3/(38 - 1), 3/4< & <1,
(9.25) A6) < 12/5, 1/2< ¢ <1.

The estimate (9.25) is a simple consequence of (9,23) (due to A.E.
Ingham [2]) and (9.24) (due to M,N, Huxley (2]), since for 1/2 <d < 3/4
the function 3/(2 - d) is increasing, while for 3/4 < J < 1 the function 3/(3d - 1)
is decreasing and their common value at d = 3/4 is 12/5, The point of (9.25) is
that it is the best known estimate of the type A(d) < C (C an absolute constant)
valid for the whole range 1/2 <4 < 1, and estimates of this sort are often

needed in applications,
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Proof of Theorem 9.1. To obtain (9.23) we use (9,17), (9.18) and the

mean value theorem for Dirichlet polynomials in the form (5.14). This gives

-8é-iy |2
 mE r ¢ 1-24
R, <<T_$_,lMZ,b(n)n l << T (T + M)M

r M<n<2M

« 4 TYA(1'2€)/3),

where Z denotes summation over representative zeros j - 34+ in of R1 which
T .

satisfy (9.18). Using (9.20) with M(4) = 1 it follows from (9,12) that

N@E,T) < Ti»(Y4"43 + TY4(1"23)/? £ 1) << T3(1-3)/(2-‘)+f_

fpr Y= TB/(8-23). It is perhaps surprising that (9.23) has been never improved
for more than forty years since Ingham's work [?1 (except when & is very close
to 1/2), and the main reason for this seems to be that M(A) = 1 is still known to
hold only for A < 4.,

The main difficulty in estimating R1 in general is the presence of the
coefficients b(n), which are non-monotonic and therefore cannot be removed by
partial summation techniques such as (1,17) or (1.18), An obvious way to.remove

the b(n)'s is the use of the Haldsz-Montgomery inequalities, and for the proof of
@
(9.24) we shall use (L35) with é = {En}n=1 and En = b(n)n-d for M<n <24

-it

o
. , r - .
and zero otherwise, Y; = {};’;Sn=1. and %;,n = n for M <n <2 and

zero otherwise, where we have denoted the ordinates of representative zeros of
Ry by t4yeeeyty. Then from (9.18) and (1.35) we infer that
-it_+it
' - -
Rf<<TR1MZN4-’1‘%1123 lZn ¥ sl.
rEgs<R M<n<@M
The effect of this procedure is that the inner sum above is an exponential

sum to which the techniques of Chapter 2 are applicable, Indeed we estimate this

sum &8s . /
. -1 1/2
«Mltr-tsl‘ + T

by the exponent pair (p,q) = (1/2,1/2) if ltr - tsl >> M and if this is not

satisfied then by Lemma 2,5 and Lemma 2,1. Therefore we have
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R << T8R,M%72% 4 797 28 [t -t |7t + %%/ 2129,
1 1 Ny R 8 1

4

But in view of lti - t,| = 1og'T we have

-1
r;;gnr - |7 << Rlogr,

and therefore we obtain

(9.26) R, << pty2-2d

if T << M%%°2, Thus we divide T into subintervals of length at most T, = né-2
so that if Ro denotes tﬁe number of representative zeros of R1 in each of these

intervals then (9.26) holds with R, in place of R,. Using (9.17) we have then

R

g <R (1+ T/To) << fI.'E(Mz"'Z"3 + TM4'6‘) << T‘(y’*““ + Ty(15-243)/§).

From (9.20) with M(12) < 2 we have finally
N(3,T) << T&HYI™4% . py(16-248)/3 r2y6-12y p3(1-3)/(38-1)+ ¢

with ¥ = TB/(126-4), which completes the proof of Theorem 9.1,

§4. Estimates for & near unity

In this section a different approach to the estimation of'R1 will be
presented, again via the Halész-Montgomery inequality (1.35). The méthod is
based on the use of higher power moment estimates of Chapter 7 and gives good
bounds for A(d) when & is close to unity., Only when @ is quite close to unity
the bounds connected with zéro-free regions for the zeta-function furnish a shar-
per result than ours, which is

THEQOREM 9.2,

(9.27) A(Q) < 4/(28 + 1), /18 < é <1,

(9.28) A(d) < 24/(30¢ - 11), 155/174 = 0.8908... < 4 < 17/18,

Proof of Theorem 9.2. As in the proof of (9.24) we shall utilize (1,35),
' ®

but the choice of £ and ¢ will be different. We shall take £ = §£ 3 .,

'En = b(n)(e-n/aM - e-n/M)-1/2n-‘ for M < n < 2M and zero otherwise, and

- - -1t
e - fe Zoo with ¢ = (e n/2M _ n/M)1/2n T, ne1,2,... . Writing
r r,n’n=1 Tyn :
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as before R for the number of representative zeros of R1 and t1,...,tR for their

respective ordinates, we obtain from (1.35) and (9.18)

(9.29) 'Rf «< 1t ®r, + M1'26; (it - 15)1),
<X

where for t real we have from (4.,60) with h = k = 1

. 2+i00
(9.30)  m(it) - p @3 - e/ Uypmit (em)”! S L (weit) ((20)"-1")1(w) v,
n=1 ' ~ie '
2
since 1 << e-n/ZM e-n/M << 1 for M < n< 2M and ”E" << T£M1-23, H(0) << M,

Moving the line of integration in (9.30) to Rew = 1/2 we encounter a simple pole

at w = 1 - it with residue << e ¥ by (1.32), so that
1ntiod
(9.31) H(it) = (2«1)'15 Ew + it)((2an)" - ¥ )P(w)dw + oe Yy,
A =100

Also in view of (1,32) the integral for |Imw|> long in (9.31) is o(1)
for M << Tc, which gives
-t -t

2y'T
{
(9.32) 2 '\H(itr-its)l <M e r’ 5 & o(R2) + M1/25 lC(1/2+itr-itS+iv)l4!’.

res<R T#s<R —og'T r#Es<R

The first sum on the right-hand side of (9.32) is << R, since by hy-

pofhesis the t;s are at least 1og4T apart, and for the second sum we fix each s

and set g = t_ = t, +v. Then!g| <37 for r = 1,...,R and "‘Tr1 - :rr2\ > loghr

for r, ¢ r,. We use HSlder's inequality and (9.21) with (p,q) = (2/7,4/7) to

obtain :
2 lea/z + 13| <28 2, 1L (1/2 + 17)15V6
=R i <R, |([ZH (3T) *
(9.33)  r(2Ipraa)/(2e4p+aa) 2, 1L (1/2 + if.yr)|(2+4p+4q)/p)p/ (2+4p+4q)

r<R,I{I<H(3T)
Te(R5/6T1/6 R 318/19'1'3/19).

Inserting (9.33) into (9.32) and using then (9.29) we obtain
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- - 3, 19(%=18)/
and to bound R, we use (9.22) also with (p,q) ='(2/7,4/7)’ so that
(9-35) R2 << TE(TY3‘68 + T3Y19(1/2-€)),

We now use first (9.%4) to estimate the number of points RO lying

23 ~57 L€ 2.2
in an interval of length not exceeding To = M(7<B 5'>/6. Then RO << T M é for

d < 11/12 and
(9.36) R, << R (1+1/1) < 1¢@*? . 7y (65-844)/6)

«< ¢8R TY2(65'8“)/9)

for & > 65/84. With Y = T6/(303-11> it follows from (9.35) and (9.36) that

N(d,T) << T (Y}4 . TY2(65-84&)/9+TY3-63+T3Y19(1/2_g)) -

w 724(1-8)/(302-11)+¢

for 155/174 < d = 11/12. For & = 11/12 we repeat the procedure choosing this time

€, 2-24

T, = M%7 in (9.34) to obtain R, <<TM and
(9.37) Ry <<R_(1+ /1) << 250°"% 4 mP 1) (¥4, 31y
<< T‘(Y4"4“3 + TYB-&).
Choosing Y = T1/(23+1) forg = 17/18 and Y = T6/(308~11) for %5 3 5%

respectively we complete the proof ofi comparing (9.35)and (9.37), and using

N(d,T) << Te(R1 + Ry + 1),

§5. Heflection principle estimates

All good known zero-density éstimates for é > 3/4 (but not when 4 is very
close to unity) involve the use of inequalities_of the Haldsz-¥ontgomery type, ard
here we shall follow M., Jutila [Q] and derive some estimates which follow from the
refiection principle inequality (4.67) with s = itr (where tr denotes ordinates
of representative zeros of R, satisfying (9.18)) and Y = M, Similarly to (9,29)

we obtain this time
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(9.38) Rf < THRMT y =28 ;E;Rlx(itr - 1t )
I#S

where R is the number of representative zeros of R1, and where with h = 10g2T

and t ¥ 0 real we have

‘l
h . s a
(95.39)  K(it) - 2{%( -(n/QM) -(n/M) )n—xt -4 MT/QS’ l :%;/M“-1/2+1t+lvldv
nN= - nﬁl T

by (4.67). Therefore from (9.38) and (9.39) we 1nfer that

2 -1/2+it_-it_+iv
(9.40) R; << Tt'(R,]M?-&3 + M1-ZBR$ (-‘S /13)/2’5 n r s ‘dv.

N NSS{ nﬁAT/M

As we are interested in the range & > 3/4 the term M1-23R$ may be dis-

carded in (9.40), and on applying ESlder's inequality with k> 1 an integer we have

X -1/2+it_-it_+iv |2k
R, << 0" 4 puF (37482 oy ¢ | 2, n T I V2 <<
[v(<h2 r#s<R n<AT/M
9.41)
-1/2+it =it _+iv 2
TQ(M2-28 N Mk(3-48)/2 nax max I 22 f(n)n ros ( )1/2)9

lvlfhz N5(4T/M)k r#s<R N<n<@N

where f(n) << n® and f is independent of t, and t_. The point of this approach
is that now the coefficients may be removed from the last double sum by appealing
to the following simple

Lemma 9,1, Let Bgseesydy be complex numbers such that [a1(.5 Ayossy
laN\ < A and let M > N, Then for any fixed 0 < é <1

-d-it.tit_ 2 -3-it_+it 2

(9.42) %an i RSN VO (.

r, s<ﬁ

rys<iR n<M

Proof of Lemma 9,1, The left-hand side of (9,42) is

Z &m_a:h(mn)“& Z (m/n)“:.LtrﬁbtS = Z amzn(mn)-‘lzn(m/n)itrkz <

m, n<l ‘rys<R m, n<lN

A2 2 (mn)"?lZ(m/n)itrlz i A2 Z l%n-‘-itr+its\2.
v 23

my ri<i r<k rys<R

Therefore applying Lemma .1 to the last sum in (9.41) with a = f(n)d+lv

’
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A= T, we cbtain
pegeyer- - -
(2443) Ry, << TH°° 4+ k192 L a2,
N<(aT/M) ¥
where we define /
~1/2-it_+it 2 -
(1.44) S{N) = Z ' Z n T Sl R ltr] <7, \tr-'tslz logA'T for rylsiﬁ,

r,s<R Nan<2N

and R < R1 is the representative set of zeros of R1. Therefore S(N) may be called a
fsum of v

"doutle zeta sum", since it is similar to aiDirichlet polynomials approximating
&Z(1/2 + it - its)] by the approximate functional equation (4,12). The estimation
of S(XN) represents the main step in obtaining density estimates from (9.43). The
results that will eventually follow then from (9.43) will provide good bounds for
A(3) in the range 3/4 < & <1, wheﬁ d is not close to 3/4 or 1, and in parti-
cular we shall show that A(@) < 2 ("density hypothesis") holds for & > 11/14 =

C.78571... . In the next section we shall deal with the sums S(X), while in §T we

shall obtain zero-density results from (9.,43) and estimates of S(N).

$8. Double zeta sums

There are several ways to treat the double zeta sums S(N) defined by
(9.44). First of all note that the terms with r = s in (9.44) contribute << RN,

and if the terms with r £ s were small one would expect

2

(9445) s(r) <« (RN + R°)
to hold, This bound is very strong and is, however, certainly well beyond reach
at present for all N. Although no restriction on N (with respect to T) has been
made in the definition of S(N), one may safely suppose that N <T, since for
N > T the sharp bound (9.45) does hold, This is not hard to see since using Lemma
9,1 for N> T
-it_+it ‘2

r s

-1
S(N) << RN + N l n
r#és<R N<n<@N

<<

2 - -
RN+R"+N1; Mlt -t ] << RN + R,
r 8
rés<i

. 1
where in view of N> T > 31tr - th( we were able to use Lemma 2,5 and then Lemma 2,1.
J) 3
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Thus in what follows we may always assume that N < T,

Next with c = e-n/(2N> - e-n/N we have 1 << c << 1 for N <n < 2N

and c, >0 for all n> 1, Observe that (9.42) remains true with [an( < Abn

and the inner sum on the right-hand side of (9.42) replaced by ann-"itr*its,

s0 that with M = cowe obtain

. -1/2-1 +1 2
(9.46) S(N) << Z ’ch /-1t *s - S*(N).

r,s<Rk n=1

The contribution of the terms r = s to S*(N) is << RN, To estimate the

contribution of the remaining terms note that for t real such that |[t| = long

we have 4¢t00
(9.47) Z,1c:nn"1/2'it = (omi)”" S Ew + 1/2 + 1)Nw) ((2M)7Y - ¥)aw =
(emi)” S L+ 1/2 + it (w) ((20)Y - N)aw + o(1),
~i00

since the integrand is regular at w = O (because of the zero of (2N)" - N") and
the residue at the pole w = 1/2 - itbing o(1) by Stirling's formula (1.32)). Likewise
the last integral in (9.47) may be broken at (Imw]| = 1og2'1‘ with an error << 1,

and we have

s*(v) << RN + r? 4 max Z [£(1/2 + it - it + iv)lz,

v Log’T rAs<R
so that (9.46) gives

(9.48) S(N) =< Rﬁ + R% 4 max Z [Z(1/2 + it - it + iv)\z.

v]<log’T rfs<h
Here we shall use Htlder's inequality and (9.21) as in the proof of

(9.22) to deduce (by fixing each s and summing over r similarly as in (9.33))

; 1EG/2 + 1t = 15 + 1v)|? (20 el /343
rrest lClE§I(3T)

e (2 it (2+4p+4a)/pyp/ (1+2p+2a) (2+2p+40)/ (1+2p+2q)
I 1< (31)

g5/3p1/3+e g (2+3p+aq)/(1+2p+20) ( (prare)/(1+2p+2q)

<<
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Ingserting this bound in (9.48) we obtuain

Lemma 9,2, For any exponent pair (p,q) with p > 0
: ' 2p+?

(9.49) s(n) << N + RY3p1/3+e | R(2*31>+4q)/(1+2p+?9)T(p+q+e)/(1+<-pf-q).

The particular choice (p,q) = (1/2,1/2) gives immediately

2y

(9.50) S(N) << RN + R11/6T1/”*£.

As was remarked already at the beginning of this section, the terms
T = s in S(N) make a contribution of order RN, and it seems natural to expect

that S(N) is in some sense an increasing function of N (for T fixed). A useful

result in this direction will be proved now, which is
Lemma 9.3. For U > NlogT

(9451) s(N) << Tbs(U).

Proof of Lemma 9.3%., Let us define for a fixed K> 1

6o () S - T Y 5, 5 (]2

r,s<R N<n<kN

4

with ltr\ <7, \tr - t,| = log’T forr # s <R, so that in this notation

s(N) = s(N,2). Consider

2 2 e @l T e @)

rys<R N<i<KN MM/ ™ Te®

H(e)

fl

#

2
| 2 a g, S(k)l ,
rys<R  MN<k<3iN/2 © 77

where
2, ;
a, = e, << d(k) <7,
=mn , M<m<3¥/ 2, N<n<kN
if we suppose that M << Tc, and the components ¢ of the vector e areeach +1,

. M/2
By summing H(e) over 250/] possible vectors e and using Lemma 9,1 we obtain

D) < 2 B/2] g (1w, 3%/2) .,

On the other hand

2611(0) = 2.\1 )2‘2 Z/ ] 28r,3(m1)l§r,SZm25 Eem e =

ryi <R n M<m1,m2§’;fn/ ' e 172
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o172} 7, lle > n = Q[M/Z]S(N,K),
r,s<R n  M<u<3M/2
so that
(9.52) S(N,K) << TES(MN,3K/2).

Here we used the relation

202 if m, = m,,
m., m

0 if m, f m,,

since if m, # m,, then ZGM/Z]- ! summands are +1 and the other ZEM/Q]_1 are -1,
cancelling each other, To obtain (9.51) from (9.52) we use first the Cauchy-Schwarz
inequality and ‘write

2
] .
(9.53)  s(W) << 2 S(N,,K), K=2 /3, N, = NKY,
J=0
and then apply (9.52) with M = My = 1+ (0/N], so that U <M,N, and for U/N

sufficiently large we have 3KMij/2 < 2U. Since U > NlogT by hypothesis we have

that U/N is large and therefore (9.52) and (9.53) give by the use of Lemma 9.1

S(N) << T‘i S(U,N,,3K/2) << T¢5(U).

3=0
Lemma 9.4.
(9.54) S(N) << TEERN + R® + S(Tlog’T/N)).

Proof of Lemma 9.4. As already noted, the result is non-trivial only

for N < T, Letting h = 10g2T we have by the proof of Lemma 9,1 (with M = )

S(N) << v :Z: [:E:(e-(n/QN)h - e‘(n/N)h)n-itr+its 2’

r¢s<R n

since the exponentia] term is positive for all n> 1 and it is = 1 for N<n < 2N,
Here we use once again the reflection principle estimate (4.67) and Lemma 9,1 to
obtain

-1/2-1tr+it* 2
n 8 <<

S(N) << RN + R® + 1t

r,s<R InfﬁT/N
olty™) '

RN + R° + TEZ.% s(21'3T/N) << RN + 32 + T‘s(mogz'r/n),
J= ‘
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where in the last step Lemma 9,% was uged, This proves Lemma 2.4,

The preceding lemmas enable us to deduce another explicit estimate for
S(N), which ig for some ranges of R and N gharper than thc bound provided by
Lemma 9,2, This is

Lemma 9.5,
(9.55) S(N) << TE(RN + R° + R5/4T1/2),
and for N> Tz/slogAT the term R5/4T1/2 may be omitted in (9.55).

Proof of Lemma 9.5. By using Lemma 9.1 and Lemma 9.3 we have with the

aid of the Cauchy-Schwarz inequality

-1/2-it +1i - 1/2
s < R( ), [ttty |41/

n ) "7 << r(s(2¥P10g)) V20",
r,s<R N<n<@N

Then using Lemma 9.4 and Lemma 9,3

-2

S(N) << T°RN + 7tR? 4 TiR(S(ZTzN log5T))1/2 << TE(RN + R + RS1/2(N))

for NWZ.T2/310g4T, and simplifying we obtain at once (9.55) without R5/4T1/2.
Therefore the range N > T for which the bound (9.45) holds may be extended to
N'21T2/310g4T, and any'further improvement would be very interesting,

To prove (9.55) we proceed similarly using (9.54) and setting

U = max(NlogT, R1/4T1/2logT).

Then

SO << T'5(U) << 74U + R® + S(Tlog°T/U)) <<

<T@ + 82 4+ r(s(r20"%10g%))"?),
and using (9.50) we have

s(V) << Ti(RU + R% + RB/QTU“1 + R23/12T1/6) <<

<< TE(RN + 3/ 41/2 R2§/12T1/6).
Repeating the same procedure but using the above estimate in pluce of
(9.50) we obtain
S(V) << Tt@®mE + RW/“TVm + R5/4T1/2 + R13/8T1/4).
T,
But it is easily seen that R13/8T1/4_5 R)/4T1/2 + Rz, 8o that the last

term in the above estimute may be discarded, and repeating the procedure k times
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we have

S(N) << TE(RN + 35/4T1/2 + R2-(6-2k)' T(3'2 )" ),

so that (9.55) follows on taking k sufficiently large,

§7. Zero-density theorems for 3/4 < d <1,

We now have at disposal good estimates for S(N) furnished by Lemmas of

36, and we shall use (9.43),(9.49),(9.55) to obtain for k = 2 an integer

R, << T‘{M2'2° + Mk(3'4°)/‘°‘n1 + Mk(1-2d)Tk/2R:/2 +

M“(3'4‘)/2min(33/%‘/4,3?/%1/6 . R1(2+3p+4q)/ (2+4p+4q) 5 (p+a)/ (2+4p+4q) )},

In view of ¢ > 3/4 the term Mk(g-ddh%§ may be omitted and after simpli-

fying the above estimate we obtain

(9.56) R1 << TC.A{MZ"Q& + Mk(2-48)Tk .

+ min(r?/ 1k (-46)/3 pyk(3-48) | 1 (p+a)/pyp £ (1+20+20) (3- 43){}

To make the first two terms on the right-hand side of (9.56) equal we

choose
_ ((4x=-2)8+2-2k) /x
(9.57) T = T M .
With this choice of To the remaining terms do not exceed M2-26 for
2
- - +
(9.58) ¢ > min{6k2 Skt2 o (9k 22 3k (1+2p+2q) (Ap+29)k#2p+2q
8k =Tk+2 12k%-6k+2 4k° (1+2p+2q) - (6p+4q) k+2p+2q
Thus we obtain, provided that (9.58) holds,
- - - e) /%
R, << 1522 +T/T) <1 B2 P2y (22 (2-46)9) /)y

peyh A, TY4(4k-2-(6k-2)d)/3k),

since 4k = 2-(6k - 2)¢ <O for d = 3/4 and k > 2, Using (9.20) with M(12) < 2
we have

(9.59)

N(d,T) << Ta(Y4-4d N TY4(4k—2—(6k—2)3)/3k . T2Y6-123) «<

<< T3k(1‘3)/((3k~2)3+2-k)+£

for Y = T}k/((12k—8)3+8-4k).
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Before we proceed to estimates arising from specific values of k it may be

noted that letting k - o ;all the expressions in (9.58) tend to 3/4 and (9.59)
gives then A(d) < 3/(38 - 1) when k is very large, which is just Huxley's estimate
(9.24). The functions appearing in (9.58) are decreasing functions of k, while
the function that appears in (9,59) in the estimate for N(8,T) is an increasing
function of k, co that there is no simple k which will furnish the sharpest bound
obtainable by this method in the whole range & = Jo > 3/4. Taking first k = 2
we see that 4(3) < %/(248) holds for

(9.60) 3 > min(xi/},maxl2 6 + 9p + 113))’

- 197 8 +11p + 13q

3821

and the choice (p,q) = (97/251,132/251) gives A(3) < 3/(23) for & > 4791

= 0.799624.
For k = 3 we have AQ) < 9/(7é - 1) for

: . 1 27 +5 0
6o ¢z el s S,

and therefore A(d) < 9/(78 - 1) holds for & = 41/53 = 0.773584... . Since

9/(718 - 1) <2 for 4 = 11/14 we obtain also

(9.62) A(@) < 2  for & = 11/14 = 0.785714...,

which is the best known range for which the density hypothesis holds. Finally we
shall also consider the case k ='4, when looking at the first expression on the
right-hand side of (9.58) we see that A(d) < 6/(58 - 1) holds for & > 13/17 =

0.764705... . The above estimates may be collected together to give

THEOREM 9.3.

(9.63) A@@) < 3/(28) for 3831/4791 = 0.799624... < & < 1,
(9.64) AQd) < 2 for  11/14 = 0,785714... < ¢ <1,
(9.65) A(8) =< 9/(1¢ - 1) for  41/53 = 0.773584... < & <1,
(9.66) A(2) = 6/(58 - 1) for 13/17 = 0.764705... < & < 1.

{8. Zero-density estimates for & close to 3/4

Although all estimates of the type (9.59) improve (9.24) for a fixed k,
none can be made yet to hold in the whole range é > 3/4. Therefore it seems of
interest to try to find an estimate which will impfove (9.24) for & > 3/4, This

may be done, and the result is
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THEOREM 9.4.

(9.67) A(3) 3/(18 - 4) for 3/4 < & < 10/13,
(9.68) A(8) = 9/(-2) for 10/13 <d< 1 .

IA

Note that both (9.67) and (9.24) give A(3/4) < 3/5, but Theorem 9.4 improve
(9.24) in the whole range ¢ > 3/4. Neverthelesss (9,66) is still sharper, so that
the importance of (9.67) lieé in the range 3/4 < 4 :513/17. The main idea of
proof is the use of a double zeta-function sum (different from (9.44)) at the line

é = 3/4. For a fixed 0 satisfying 1/2‘< 8 <1 let us define

(9.69) s1(9) = Z lg(e + it, - it  + iv')(z,

rys<R.

A

where the real numbers t,,...,t T for v £ s <R

R satisfy ltrl <T, ltr - tsl >2log
and v' is defined by

(¢.70)  E(e + it - at + ivt)] = max  [¥(e + it - it o+ iv)l.
-longfyfgong

Furthermore we define S1(1/2) analogously as s1(e), only for technical
reasons in the definition of v'!' the maximum of v is to be taken over the interval
[f21°g2T,210g2T]' The proof of Theorem 9,4 will require a good bound for S1(3/4),

which is furnished by

Lemma 9.6.

(9.71) 5,3/8) < 1% + ®'V/Or4),

Proof of Lemma 9,6, The most important step in the proof of (9.71)

consists in showing that

(9.72) 5,(3/4) << % 4 T‘R3/4(s1(1/2))1/2.

To obtain (9.72) we may start from (9.4) with s = 3/4 + it_ - it + iv'

(r #8), 1 <Y << TC, and move the line of integration to Rew = -1/4, We encounter

a pole at w = 1 = 8 with residue o(1) in view of (1.32) and a pole at w = O with

residue [(s). Therefore -

(9.73) 52(8) «< 1+ IZe-n/Yn-s'aﬁ- Y-1/2? e 11 |z (1/2+itr-it8+iv'+iy)|2dy,
n<y [}
— __e,afp

and summing over r,s <R it follows by the Cauchy-Schwarz inegquality

-3/4-it +it -ivt|2
(9.74)  5,(3/4) << 1*R° L IZ(; /Y, ’ + Y"1/281(1/2) <<
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,
5,(1/2),

T‘RZ . R( :Z: I:z: C(n)n—ﬂ/d -it +1t mivt(? 1/2 . 1 /

rys<R n<1

¢ R .
where c(n) << n®, To estimate the sum under the square root we use Lemma 9,1 and obe

tain, similarly as in (9 44),

Z lzh\ << logTs max Z l Z ‘ <<T max N‘ Z,le(itr - its)\z,

r,s<R M<X2 r,s<R M<n<ZM M<X2
where for t real .
o0 00
H(it) = Z(e'“/ZM - ey it (m)"‘S Plwrit) ((220) ¥ -M") (w) aw,
‘ n=1
2-i00

and therefore trivially H(Q) << M, For t = t, -t # O we move the line of integ-
ration in the above integral to Rew= 3/4, encountering a pole at w = 1 - itr + itB

with residue o(1) by (1.32), and we obtain

2, ‘ziZC(n)n_s/d-ltr+lt { <1 max, M 3/2(3M + '% 4 w2 5,(3/4)) <<
rys<f n<Y MY
« 1%@®Y + R® + 5,(3/8)).

Inserting this estimate in (9474) and simplifying, we obtain with
Y=R 3/2 s (1/2)

5,(3/4) << 18° + r4R¥/%1/2 Y"1/251'(1/2) << T'®% + R3/4(Si(1/2))1/2),
which is precisely (9.72).

To obtain finally (9.71) from (9,72) we need an adequate bound for S1(1/2).
From the reflection principle equation (4.66) we havé with s = 1/2 + itr -its + iv!
(r £8), h= log®r, o = 1/2 - ¢, M = 47/Y, k-4

(9075) K(S << 1 + lz (n/Y) +T€S

n<Y -gr

dy.

A-be+u‘
n<4T/Y
: 1/2

To make the lengths of the sums in (9.75) equal we chpose Y = 2T .
Squaring, summing over r,s < R, using Lemma 9.1 and Lemma 9,3 it follows that
(9.76) s1(1/2) << T‘(R2 + S(2T1/210g1‘)),,
where S(N) is defined by (9.44). If we use (9.55) to bound S(2T1/2logT),then
(y.71) follows at once from (9.,72) and (9.76).

Pront of Theorem 9,4. It remains yet to prove Theorem 9.4 with the aid
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of Lemma 9,6, We use (9.29), but now in (9.30) we move the line of integration

to Rew = 1/4 and employ the functional equation (4.1) for the zeta-function. Ing-

tead of (9.32) we obtain now with the aid of the Cauchy-Schwarz inequality
-1t -t

Ly
; lH(itr-its)\ << M e T + R4 (1\4’1‘)1/4) ; lC(%itr~its+iv)1dv
r#s<R s<k '

Ths<R ~ty*t T

<< RM + R° + T"+1/4M1/4R(S1(3/4))1/2'

Therefore if we use this estimate and Lemma 9.6 in (9.29), it follows

after some simplification
(9.77) R, << %, R1Tt+1/4M(5-86)/4 . Ta+6/5M(20-32&)/5'

oo~

For Ro points lying in arn interval of length T = To = we have

R, << 2 . TS/ 51(20-328)/5y q¥y2-28

for & < 10/13, and therefore for 3/4 < J < 10/13 with Y = TB/(283-16) we

obtain

R, << Ro(1 + T/TO) « Ttu?-28 (1 + T/To) <<

R TY(28-403)/3) - T3(1-a)/(74-4)+¢.

Using (9.20) with M(4) = 1 it is seen that for 3/4 < & < 11/14 one has
24 1v(28-408)/3 4 (9.67) follows. Analogously we obtain (9.68) if in

(9.77) we choose T, = M(11a‘5)/3.

NOTES

A classical application of zero-density estimates consists in bounding

P - P, from above, where P, is the n~th prime number, The main tool is the

n+1
well-known formula of E. Landau (K. Chandrasekharan[}l, Chapter 5)

(9.78)  ¥(x) = 2, A) - D, logp = x - Z e 4 ot og?x), T < x,
n=x p"<x i<t

where (“ < T denotes summation over all zeros §=n+ iy of the zeta-function
counted by N(d,T). If using (9.78) one can prove
(9.79)  Ylx+h) - Y(x) = (1+o()h h -, /250 <1,

then taking x = p_ one easily deduces from (9.79)



187

(9.80) P - P

<< ©
n Pp e

n+1
However if one forms -y(x+h) - y(x) with the aid of (9.,78), then one encoun-

ters the sum

(9.81) Z i_i__—_-__x_ Z g $2V47 << hz 2« logx- max n N(d,T),

5 =" % =t
where the maximum is over the interval
(9.82) 0 < 8 <1 - Clog-z/sx-(loglogx)-“/s, c> 0,

since for a> 1 - Clog’z/sqq(loglog|¥’)'1/3 there are no zeros of the zeta-function,
as shown by A. Walfisz {2] with the use of I.M, Vinogradov's method of estimating
exponential sums (for a somewhat weaker zero-free region one may consult E,C,
Titchmarsh [33 and K. Chandrasekharan [J], while for an elementary approach to

the zero-free region (9.82) the reader is referred to articles of Y, Motohashi
{f},[?]). Thus (9.81) shows how inequalities of the type (9.80) are connected with
zero-denéity estimates, and if A(d) <D for 1/2 <4 < 1 and some absolute D > 2,
then using (9;81) and (9.82) it follows that (9.80) holds with any 0 > 1 - 15"'1’.
Thus (9.25) gives 8 = 7/12 + €, the density hypothesis gives © = 1/2 + ¢, while
undei the Riemann hypothesis nothing more thén Prii -,Pn‘<< pl/zlogpn (proved

by H. Cramér E?X) is known, though Cramér himself already conjectured an incom-
parably sharper bound, namely Po1 - Py << log2pn, which seems altogether hopeless
for today's methods. For a long time the only approach to (9.80) was the one just
outlined, but recently H. Iwaniec and M. Jutila [ﬁ] have successfully combined

sieve and analytic techniques to obtain © = 13/23 in (9,80), and this approach

was further elaborated by D.R. Heath-Brown and H. Iwaniec [j}, where 6 = 11/20 + ¢

was obtained., In a preprint of the Math, Institute of the Hungarian Academy of

Sciences J. Pintz showed that the crucial Lemma 2 of Heath~Brown ~ Iwaniec Ef]

can be improved, which leads to 6 = 17/31 + €. Pintz also announces the value

0 = 23/42 + £ = 0.547619 ... + € which will appear in a joint paper with Iwaniec.
For a comprehensive study of works concerning zero-density estimates the

reader is referred to Chapter 12 of H.L, Montgomery [é], where a general form of

the zero-detection method is given (to include zero-density estimates for L func-

tions),as well as several sharp bounds for N{@,T) whend is close to 1, including
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3/2
16701-9) " 106" Tr, 1/2 <a <1,

(9.83) N(d,T) << T
which is connected with the zero-free region (9.82).
Concerning sharp bounds when & 1is close to 1/2 one should mention

the bound

1
1= —=(e-1/2)
4 logl, 1/2 < g < 1

(9.84) N(3,T) << T
of A, Selberg [ﬁ] . Recently M. Jutila C}] has improved (9.84) by replacing 1/4
by 1 - § for any fixed 0 < § < 1.

The useful procedure of estimatipg R1 by its representatives for which
(9.16) and (9.18) hold has been introduced by M, Jutila [1], while (as mentioned
in Chapter 7) the technique of dividing T into subitervals of length TO and then

multiplying the resulting estimate by 1 + T/'I‘0 is due to M.N, Huxley [1].

A.E. Ingham [2) proved N(d,T) << T5(1-d)/(2_3)10g5T by a method diffe-
rent from the one presented in {2, and which seems to be more complicated. Ingham's
result, with a slightly weaker log-factor, can be obtained from the zero-detection

~method of §2 when one‘does not choose X = 7" bub X = Ty Y = TB/(4-28) and uses
again the mean value theorem for Dirichlet polynomials and a discrete form of the
fourth power moment, The details may be found in Chapter 12 of Montgomery [?] or
in Chapter 23 of Huxley [ﬂl. A similar discussion holds in connection with Huxley's
bound (9.24), as he proved in [21 N(d,T) << T3(1~3)/(3&-1)10g44T.

As stated in the proof of Ingham's estimate (9.22), the main reason

. why this bound withstands improvement for more than forty years is the lack of
M(4A) = 1 for A> 4. This explains also the seemingly mysterious choice r = 2 in
(9.16) . Namely if in (9.16) we chooser =3 (P> 4 can be analyzed analogously),

then following the proof of Theorem 9.1 we have

R, <« T2 +m <« 18568, p2(1-29)/4y < g < 3/4,

1
R, << T‘(M?-ZA + TM4-&) << Tt(Ys-sa + TY9(2‘36)/2)' 3/ <4 < 1.
1 -/ - '
If we now use R, << T tey2-4d or R, << p2+ey6-12¢ (coming from

M(4) = 1 and M(12)‘5 2 respectively) we see that we get poorer estimates for
N(d,T) than the ones furnished by Theorem 9.1, However if M(6) = 1 were known to

hold, then from (9.20) and the above estimates we would obtain
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N, 1) << 1406 gy (1=2)/1 | qy3-6y B0/ 020y g oy,
with v = o8/ (15-68) s

N(3, 1) << 1E(r670 1y9(238)/2 | gy3-63y A (1-3)/(8-2)ve Ly oy

with Y = T2/(15a-6). This would improve Theorem L)l.‘l, giving also A(d) < 16/7 for
~ the whole range 1/2 <@ < 1, This is one more reason for the importance of the
sixth power moment estimate M(6) = 1,

The simplest way to obtain (9.22) is to note that from (9.19) one has

$-1/2

Z\’(1/2 + itr) s> 17ty for r = 1,...,R,, so that (7.8) can be applied directly

..c,Ya-1/2

with V = T y giving (9.22).

Theorem 9.2 is due to the author [2), and improves on A(3) < 4/(43-1),

25/18 < ¢ <1, which was obtained by D.R, Heath-Brown [4]. For

8= 1- (=% - 0.99993625...

the estimate (9.83) supersedes (9.27). The exponent pair (p,q) = (2/7,4/7) that
was used in the proof of Theorem 9,2 gives by no means the best result, but other

exponent pairs would lead to more complicated formulas and slight improvements

only.
If the Lincdelsf hypothesis that Z’(1/2 +it) << t' is true, then trivially
&4 £ . .
for Y>> T ' one has R, << T for 3 > 1/2, and by (9.32)
€
Z |H(it_ - it )| << BRM + R2M1/2T ,
r S
r,s<R

so that by (9.29) one has for ¢ > 3/4
-23" -
g << TSVIZ 2 << ‘I‘QY4 4&.

Choosing Y = ¢ one obtains

R

N(3,7) << T%, for 2> 3/1 +§,
where e= ¢(§) may be made arbitrarily small for any § > O, which is a result of
G. Halfg and P, Turdn (1], For a nice survey of Turén's conditional and uncondi-
5
tionalarzesults concerning density estimates the reader is referred to P. Turén [1].

§§ is based on M. Jutila's pe}pef [2], which amomg other things contains

the bound 4 > 11/14 for which dengity A(d) < 2 holds, and this is still the best
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known result ot this type. The history of bounds for dencity is also mentioned
in Jutila [2] and is as follows, Let a be such a constant for which the density
hypothesis A(3) < 2 holds for § > a, Then H,L, Montgomery [2] proved a < 3/10,
¥.N, Huxley [2) a < 5/6, K. Ramachandra[2] a < 21/26, F, Forti and C. Viola (1]
a < 0.8059..., M.N, Huxley [33 a < 4/5 and some intermediate results, M, Jutila
01 & < 43/54.

Lemma 9,2 is due to the author, while the remaining lemmas of {6 are due
to b,R. Heath-Brown [61. An alternative proof of Lemma 2.5 may be given with fhe
aid of (9.48). If we use (9.75), Lemma 9.3 and Lemma 9.4 we obtain

s1(1/2)‘<< 7€ (s(2YlogT) + s(2TY’1logT)) << TE(RY + R? + s(2TY’1log3T)).

But now by the Cauchy-Schwarz inequality we have

1

s(2TY” log T) << TeR(S(TzY-ZlogST))1/2 <<

« @Y%y 4 R? . 31/2(1/2)3),

where we used again Lemma 9,1, Lemma 9.3 and (9.48), and S, (1/2) is the double

zeta-sum that. appears in (9.48). From the last two bounds we have
5,(1/2) << 1°(RY + R 2y 4 32) «< 1t @Y 4V/2 4 23

with Y = R1/4T1/2, and Lemma 9,5 follows then at once from (9.48).

Ranges given for various estimates by Theorem ¢,3 are the best ones known,
(9.63) was proved by M.N. .Huxley to hold for & = 37/42 in [3],and by the author
E‘l] ford > 4/5, while the present range was gi;ren by the author in [:23. (9.65)
was proved Sy D.R. Heath-Brown £4'3 for 4 > 11/14 and by the author [13 for
é = 74/95. A proof of (9.66) for & = 67/é7 is also given in the author's paper
(1), where there are also given zero-density bounds coming from c(8) (defined by
(6.51)).

Lemma 9,6 and Theorem 9.4 are due to the author [4}. An argument si-
milar to the one used in the proof of Lemma 9.6 gives
E_2 €.30-3/2 2-2
s(6) << T'R? &+ 1%R39-¥2(5(1/2)) °,

where 5(8) is defined by (9.69), and the above estimate for 6 = 3/4 reducesto

(9.72).
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§5. Estimates of A,
§6. Mean square estimates of [Sk(x)

§7. Large values and power moments of‘lﬁk(x)
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CHAPTTER 10

DIVISOR PROBLEMS

§1. Introduction

In this chapter we shall investigate various problems involving_[&k(x),

the error term in the asymptotic formula for :Z}dk(n), where for k > 2 fixed
n<x

dk(n) is the number of ways n can be written as a product of k factors, For
Kk Lacd
Res > 1 we have therefore { (s) = zzgdk(n)n-s, which shows at once the intrinsic
Nm=

connection between Zsk(x) and the zeta-function, and thus it is natural to expéct
that properties of [}k(x) and Ek(s) are closely connected, This is even more

apparent as by the inversion formula (1.8) one has

24i00
(10.1) Z’dk(n) = (?.rni)"1 S Ck(s)xss‘1ds.
n<x 2-ie0

Moving the line of integration to some 1/2'< ¢ <1 (but sufficiertly close
to 1) it is seen that the integrand in (10.1) has only a pole of order k at

8 = 1, and so by the residue theorem

C+i0
(10.2) 2o (n) = xP,_4(logx) + (2:1)'15 Ck(s)xss-1ds,'1/2 <c<1,
n<x
-— C=i00

where Pk_1(t) is a polynomial of degree k - 1 in t. If we write

(10.3) A = 24k - xp_,(logx),

then coefficients of P, _, may be evaluated by using

(10.4) Pq(logs) - Res R ()87
8=

Namely starting from the Laurent expansion

. o0 G1f - k1 “%J
(10.5) Es) = 1/(s = 1) +y + Z;{IYK(S } ”k,Y!«"i—'.'&—)ao {éﬂﬁzgﬂ a N[

one may calculate explicitly the coefficients of Pk-1(t) as functions of the

st (X= Yo © Euler's constant = 0,5772157...), and for instance we have
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(10.6) P(t) = ¢t + (F-1),
(10.7) (1) = 3%+ (Gp-Dt o GfF - 3+ 3+ N,
(10.8) PB(t) a %t3 + (2y - 1/2)*(;2 + (6)'2 -4y + Ay, + 1t +

+ (-1 + 4(Y -y [2) - 6{2 + 4)'3 + 122()(1),
and in general the coefficients of Pk_1(t) may be found by formulas of A.F. Lavrik
et al. 0-1.
This chapter is the direct counterpart of Chapter 12 of E.C, Titchmarsht's
book [B], and the aim here is to give‘an overall improvement of results presented
by Titchmarsh. The notation is however the same, and in particular we define dk

and Gk as the infima of numbers a, and bk respectively for which

ak+e p o 1+2bk4€
(10.9) Ak(x) << X , SAk(y)dy << X .
4

One of our main topics will be the determination of upper bounds for
dk and ﬁk, but in later sections of this chapter we shall investigate some other
related problems involving.zxk(x). The chapter ends with a discussion of the
circle problem, whose close connection with the divisor problem for k = 2 is

exhibited,

§2. Estimates for sz(x) andlzxs(x)

The most convenient way of obtaining estimates for Z&Q(x) and ZEB(X)

seems to be the use of

(10.10) Z&k(x) << x(k-1)/2k‘zz d (n)n-(k+1)/2ke(k(nx)1/kﬂ + x(k-1+‘)//kN-1/k +x
n<N k ’

as given by (3.23). By writing

A - 2, 1

mMse. oM =N
the sum over n < N in (10.,10) is transformed then into a multiple exponential
sum, and the best results hitherto seem to be those obtainable by methods of
G. ¥olesnik [5},[6]. A closer look at Titchmarsh's proof of (10.10) in [8]

reveals that for k = 2 one has
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(10.11) [&Q(x) << x1/4] E:EN(mn)-3/4e(2(mn)1/2)_ + / /Zlog x + x%,

since in Titchmarsh's proof one may take a = ¢ and ¢ = 1 + 1/logx. Therefore an

application of Lemma 6.3 gives similarly as in the proof of Theorem 6.3%

(10.12) [xe(x) <« xt + logzx(max(xz/16 173/152- 3/4 5/16M119/152-3/4)+x1/2N-1/2)

MV

3/16,59/152 , 5/16,5/152 , V/2y=1/2y __ ,35/108, 2

<<< Xt + log x(x

for N = x19/54. Therefore we obtain

THEOREM 10.1,

(10.13) [xe(x) << x35/10810g21.

ﬁere the exponent 35/108 is exactly twice the exponent for the order of
K(L/2 + iT) in (6.63). This is no coincidence, since the exponential sums to
which both problems reduce are of a very similar nature. More light on the
intrinsic connection between /\,(x) = A(x) and [(1/2 + iT) will be shed in
the last chapter, -
(of _48,(x) .
The estimation¥is naturally more complicated than the estimation of

(x), and is carried out via (10.10) with k = 3, The best result yet is
2 ?

(10.14) [xa(x) << x43/96+£.
This is due to G, Kolesnik ES}, and the proof is long and complicated

and will not be presented here.

{3, Estimates of Zxk(x) by power moments of the zeta-function

From the Perron inversion formula (3.10) we have with ¢ = 1 +¢, T < x,

C+ip
(10.15) Sa () = (2m)"1$ tEs)x®s s + o(xtr7),
= cetip

since the contribution %dk(x) (if x is an integer) counted by ' in (1.10) is
absorbed in the error term O(x1+£T—1). For 1/2'5 d < 1 fixed we deform the path

of integration in the above integral to obtain by the residue theorem
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K -1 146 -1
(10.16) A, (x) = nz<xdk(n) - 1;::; E(e)x®s™ =1, + 1, 4 I+ 0(x regoTy

say, where

d)m m

(10.17) I, = (2xi)'15 Kk(s)xss-1ds «< x + x‘S [E(8 + it)[kt-1dt
dim 4

and at

(10.18) I, + Iy << ng e + i1)] ¥r™ a0 x 1 L ypke(d)-tee
d

where c(@) is defined by (6.51). From (10.17) it is immediately seen that estimates
for power moments of the zeta-function lead to estimates of Ak(x). Our result

will be the following

THEOREM 10.2. Let o(k be the infimum of numbers a.k such that

Ak(x) < x k** for every € > 0. Then
o = (3k - 4)/4k for 4 <k <8,
dg < 35/54, o4y = 4160, £, < 7/10,
£, < (k=2)/(x+ 2) for 12 < k < 25,
o, < (k- 1)/(k+4) for 26 <k < 50,
«, < (31 - 98)/32k for 51 <k < 57,
w, = (Tk - 34)/7x for k> 5.

Proof of Theorem 10.2. The proof is based on estimates of m(g), as

furnished by Theorem 7,3, For a fixed integer k we choose & in such a way that
m(g) = k, where for m(d) we take the estimates which are given by Theorem 7.3.
From bounds for c(®) given in Chapter 6 it is seen that m(d) < 1/c(d), so that

taking T = x"°% in (10.17) and (10,18) we obtain

Ak(x) << xe+".

In this fashion estimates for 9 <k < 11 given by Theorem 10,2 follow
at once, and for 4 <k <8 we use m(d) = 4/(3 - 43) (1/2 < é < 5/8), so that
k = 4/(3 - 43) gives 8 = (3k - 4)/Ak. For 4 <k < 8 this value of & satisfies
1/2< g <5/8 and ot < (3k - 4)/4k follows for 4 <k < 8. Next we take

d = 5/7 in (10.17) and (10.18), Wwith n(5/7) = 12, ¢(5/7) < 1/14 we have

I, << x5/7 + xS/YS [£(5/7 + it) |1ét-1“:(5/7 + it)‘k-mdt <<
4
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« I/ Tplk=124€)/14

for k > 12 and therefore

Ak(x) <« x e, x5/7'1‘(k-12+f)/14 << x(k-2)/(k+2)+5

for 12 <k <25 if T = x4/(k+2).

A similar argument gives oﬁ( < (k = 1)/(k + 4) for k> 26 by using
m(5/6) > 26, ¢(5/6) < 1/30. Also by Theorem 7.3 we have m(8) > 98/(31-328) = k
for 13/15 < ¢ = (31k ~ 98)/32k < 0.91591..., which is satisfied for 30 <k < 57.
By (7.88) we have m(d) = 34/(7 - 74) = k for & = (Tk - 34)/7k = 0.91591.., for
k > 57. On comparing then (k - 4)/(k + 4) with (3'1k - 98)/32k we obtain tne
full assertion of Theorem 10.2,

For each particular k > 13 the bounds of Theorem 10,2 can be slightly
improved by a more careful chcice of gxponent pairs in bounds furnished by (7.65),
and taking more care cne cuuld also derive bounds of the type Ak(x) << xdklongx
. for some Dkz 0. The bounds of Theorem 10.2 are thé sharpest ones known, except

when k is very large, when better bounds may be obtained by using the best known

zero-free region of the zeta-function, which will be the topic of the next section.

§4. Estimates of Ak(x) when k is very large

We shall end our order estimates of Ak(x) by proving

THEOREM 10.3. There is an absolute C > 0 such that for k = k_

(10.19) & < 1 - /3,

This estimate is clearly seen to improve on Theorem 10.2 for k > k1,
hence for "k very large". The value of the constant C which appears in (10.19)
depends on order estimates of the zeta-function near the line & = 1 and may be
explicitly evaluated with some effort, but it is much more difficult to determine
kO such that (10.19) holds for k > ko. The order result needed for the proof of
Theorem 10,3 is contained in

Lemma 10,1, There exists an absolute constant D > O such that

uniformly in 1/2 < 8 <1 we have for t > t_

p(1-4)%/2

(10.20) (8 + 1t) << logt.
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Proof of Lemma 10,1. The proof of Lemma 10.1 is based on the simple appro-

ximate functional equation

(10.21)  Keo) = 2n™ o+ x%/(a-1) 4 0(<T), xm ¢/ > 0, 0 <d <,

proved in Notes of Chapter 7, and the estimate

. 3
(10.22) :E: it o« Nexp(-Blgagg), N<t,

N<n<N,<2N logt
where B > O is some absolute constant, The estimate (10.22) is in fact

a consequence of I,M, Vinogradov's well-known method of estimating exponential
sums (see A.A. Karacuba [3], Ch. 5). We take x = t in (10.,21) and split the sum

over n < x into 0(logT) subsums of the type :Z:‘ n~%, Using partial summation
N<n<@N

and (10.22) we obtain

.(10.23) Z n~S << N1-dexp(-B-1—o-g-32—N) - tD(1'-d)3/2

N<n<2N log ™t
with D = 2/(3\/3B), since

3 3
N1-‘eXp(—B125§E) = exp((1-8)logN - Blgﬁgg),

logt log t

and the function f(x) = Bxalog-zt - (1-8)x (x> 0) attains a minimum at

x = 6—1(1 - d)logzt)1/2.
- 3B
The estimate (10.20) follows at once from (10,23).

Proof of Theorem 10,3, In {10.17) and (10.18) choose 4 = 1 - k-2/3,

£2/?
X

P = , where E > 0 will be suitably chosen in a moment. Then by (10,20)

T,

4

m
- P -
xdjlf,(d + it)]kt 1dt << x logT max 5 IC(d + it)!kt Tat <<
‘4 1§1—<.P Tq

3/2 | =2/3 -2/3 -2/3
d - - - .
TDk(1 d) k+1, 1=k +DEk k+1 _ L1-0e5k k+1

log™ & << log log  x
if B = 1/2D. Fram (10,18) ve have

_9)3/2 ~2/3 (™!
L +I, < mux xg'l‘D(‘l 0)7 "1 << x1+£+Ek (Dk"-1)

3 <<
¢ v
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1+e- -Fé"k-z/}
<< X

for k > 2D, hence Theorem 10,3 follows from the above estimates.

§5. Estimates of Ak

1+211(+€

X
We recall that <} is the infimum of b, for which SAi(y)dy << X
]

hclds for every € > 0, so that ﬂk may be thought of as the exponent of the
average crder of ‘Z&k(y)l. The classical elemcntary results concerning the estif
mation of ﬂk are embodied in the following two lemmas which may be found in
Chapter 12 of Titchmarsh [ﬁ}, but which will be given here for the sake of comple-
teness of the exposition,

Lemma 10,2, Let (k be the infimum of & > O for which

(-4

S ]C(d + it)[Zk(J +it] %t << 1.
~ o0
Then A, = [, and for & > /sk
00 ®
(10.24) (2m)"] 5 |C(s + 1t) | 2% [¢ + it|"%at - S Ai(x)x-26—1dx.
- 00 [
Proof of Lemma 10,2, From (10.2) we have
c+im
(10.25) Ak(x) = (2.9\'1)"‘l lim gtk(s)xss-1ds
T coc_'r

for some ¢ < 1 and close to 1, Since ]:’k(s)s-1 -5 0 uniformly in the strip as
t -5 +0, it is seen on integrating over the rectangle ¢' + iT, ¢ + iT,
xk <c¢!' <c <1 that (10,25) holds for any c¢ > xk' Replacing x by 1/x, taking

¢> Y, end using Parseval's identity (1.5) we have

(10,26) (297)"1 S \C(c + it)|2k|c+itl'2dt = SAiU/x)x?c;‘ldx =

§ Al (x)x"% Nax,

which gives for 'alk <c<1
oY N

2
SAi(x)x-zc-1dxiv<< 1, S Ak(y)dy << N2°+1,
N

N
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and thercfore
x
2 2¢c+1
SNy - 2, 2 §A<y>ay w 2,
k . k
o J=1 N=x2

hence B, =¢ B = Yo

The other inequality, namely /3k Xk’ may be obtained by observing

P
—

that from (10.25) and Mellin's formula (1.1) one has
0 ©
kK, \ -4 -1 - -5-1
(10.27) t (s)s = SAkU/x)xs dx = SAk(x)x dx.
° °

The integral in (10.27) is absolutely and uniformly convergent for

/3k < 8 <1, since by the Cauchy-Schwarz inequality

2N N
SIA( e ([ AZ e V222 Ve < K,
N N

and by adding integrals over various [§,2N} it is seen that the right-hand side
of (10.27) is regular for I3k <8 <1, so that (10.27) holds by analytic conti-
nuation in the strip Gk-< éd <1, By the same argument the right-hand side of
(10.25) is bounded for 8, <& <1, hence (10.25) holds in the same strip, giving
3y Z Yy Which combined with Ak < Y, Yields finally /Sk = a’k'
Lemma 10.3. For k = 2,3,...
oLy =z A = (k- 1)/2k

k

Proof of Lemma 10,3, The inequality <xk-2,nk is otvious, and for

the other inequality we start from

n T m
T << S 1B + it) [%at < (S 1£(a + 1)1 %ar) /¥ S at) -1k,
L2 T/ w/

where the lower bound for 1/2 < dé <1 follows easily by termwise integration
-5 -3 .
of C(b) = Zn + 0(¢ ), or directly Srom (1.99). ThereSore we obtain
n<t

m
(10.28) T << S [E(8 + it)lgkdt,

Tiv

where the <<-constant depends only on k., Using the functional equation we have

for 0 < d < 1/2

n
S L@ + 1»t)\2kl&+ 1t "%t > Slt(e + it)IZk[& +it|"%at -

T/,
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m ™
. T-?S (£ + it) ‘det - Tk(1'28)”2jlﬁ(1—x-it)l2kdt o Tk(‘i-?&)-‘l'
T/ T

where in the last step (10,28) was used, For d < (k - 1)/2k the last expression

remains unbounded, giving Y, = (x - 1)/2k, and the result follows from Gk = ¥

Lemma 10.4. For each integer k > 2 a necessary and sufficient condition

that 8, = (k - 1)/2k is that m((k+1)/2k) > 2k, where m(8) is defined by (7.2).

Proof of Lemma 1C.4. Suppose first that m((k+1)/2k) > 2k. Then for

d < (k - 1)/2k we have by the functional equation
- *
Y l1.02)
Sllf(& v it) | %at < Tk(1-23)5lf(1 ce-it)|Pay << pi(1-28)1ee
4 4

Therefore for (k - 1 - ¢)/2k < @ < (k + 1 + ¢)/2k by convexity of mean

values we have .
(lre + 101 Pay « glver(1/201/20 80k,
4

and the exponent of T is <2 for ¢ > (k - 1 + €)/2k, giving
n

S (£ + 16)[PX (e + 18] %0t << 7~

T

for some § = § (¢) > 0. Replacing T by T/2,T/22, etc, it follows that J > (k-1)/2k,
and so by Lemma 10.2 A, = (k-1)/2k also.

In the other direction, if A, = (k-1)/2k, then by (10.24)
m

Sl[.’(& + it) ledt Y G

4

for ¢ > (x-1)/2k, and using convexity of mean values and the functional equation
we obtain m((k+1)/2k) > 2k by following the argument just given.,

The lemmas that were just presented show how the estimation of /sk may
be reduced to obtaining sufficiently sharp estimates for m(d). We shall prove the
following

THEOREM 10.4. 73, = (k~1)/2x for k = 2,3,4 and 55‘5 119/260 = 0.457694..,

By <1/2, A, < 39/70 = 0.55T14... .

Proof of Theorem 10.4, By Theorem 10,2 we have m(d) = 4/(3 - 44) for

1/2 < & < 5/8, hence m(5/8) = 8 and so by Lemma 10,4 we obtain at once that
/?k = (k-1)/2kx for k = 2,3,4, which in view of Lemma 10,3 shows that this is best

possible, For other values of k the estimate /3k = (k—1)/2k seems to be beyond



201
reach at present, as is also the classical conjectlure dk = Gk = (k=1)/2k for
k = 2,3,0-. .

Consider now the case k = 5. By Lemma 10,2 it will suffice to show
T

S lZ(& + it)|10dt « 727}
o
for é > 119/260 and any fixed § > O, From the estimate m(41/60) = 10, furnished

by Theorem 7.3, and the functional equation for the zeta-function we have for

19/60 < ¢ < 1/2 .4
£+ i6)|at << 7(207-2604) /4+¢

\Tl
where we used convexity and the estimate M(10) < 7/4 of Theorem 7.2. Since

(207 - 2608)/44 < 2 for 4 > 119/26C we obtain 05<5 119/260 as asserted. Similarly
-2

from 1(12) <2 it follows at once that 3, < 1/2, while for /37 we use M(14) <=

(Theorem 7.2) ard m(3/4) > 14 (Theorem 7.3). This gives by convexity
27
“:(g N it)'mdt — T(132-1405)/27+a

C

—~1

»
for 1/2 < 4 < 3/4, and (132 - 1408)/27 < 2 for & > 39/70, proving the last part

of the theorem, Other values of ﬂk for k > 8 may be calculated analogously, btut
the present form of estimates for m(¢) and M{A) would render a general formula
for A3, (k = 8) too complicated, and for this reason only estimates for small

values of k are explicitly stated here.

§6. Mean square estimates of Z&k(x)

By definition estimates of ﬁ& are in fact mean square estimates of be(x}
However owing to the importance of the integrals in question it seems appropriate

to investigate them more closely, In particular it would be highly desirable to

m

obtain asymptotic formulas for S‘£&§(x)dx, and we begin the discussion of this
4

problem by proving

THEQOREY 10.5.
m

(10.29) S.ng(X)dx = (652)-1:Z:d2(n)n-1/2T3/2 + 0(T5/4+().

n=1

o0
/9
Proof of Theorem 10.5. The value of the constant :E:dz(n)n 3/2 is

Py |
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1,
K’(Z/Z)/t(ﬁ) = 14.8316... . It will be sufficient to prove the corresponding esti-
m '

mate for S and then to replace T by T/2,T/22, etc, and to add up all the
T

results, We start from the truncated VoronoI formula (%,17), where we take N = T,

Integrating term by term we obtain

an n
S‘ng(x)dx = (212)-1§ x1/2 ZZ;Td(m)d(n)(mn)—3/4cos(4x mx~/4) cos (43/nx-7/4)dx +
L] T m, NS .
(10.30) 2
+ O(T1/4+ES [;d(n)n-3/4cos (Ax\/nx - 9T/4)ldx) + 0(T1+!).
m n<l

In the first sum in (10.30) we distinguish the cases m = n and m # n, The

terms with m = n contribute

4k
(2'72)-1; S dz(n)n-3/2x1/2cosz(49r\/n_ - 1/8)ax =
N m
(10.31) (412)-1Zd2(n)n-3/25 x1/2(1 + cos(8x\/nx - &/2))dx =
n<T T

o ,
(622) "1 ((21)%/2 - T3/2)2d2(n)n‘3/2 + 0(Tlog’T).
n=1
In (10.31) we have used partial summation and (5.24) to obtain
zzldz(n)n'5/2 << T-1/210g3T,
n>T
‘and we have used (2,3) to estimate

am
Zdz (n)n-3/2g x1/2cos (8my/nx - F/2)dx << ‘I‘Z'clz(n)n"2 << T,
n<l m n<t

In view of 2cosXcosY = cos(X + Y) + cos(X - Y) it is seen that the terms in

(10.30) for which m # n are a multiple of

o
(10,32) :Z: d(m)d(n)(mn)‘a/4 S x1/gcos(4n\/ﬁ; - Am/nxjax +
mgn<l ™

an

;Z;Td(m)d(n)(mn)-B/4 x1/2$&n(4m\/5; + AT\Vnx)dx = Sy + S,

<

say. Estimating the integrals in 5, by (2.3) we have

(10.33) 5, << 72, a(@am) () V@2« a2 < e,

m<n<
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Analogously we obtain

(10.34) S, <<T :Z; d(m)d(n)(mn)-3/4(m1/2 - 1r11/"2)'1 = 7 :Z: + :z: ) -

n<m<{' ngm/Z >/ 2

say. We have

51 << Zd(m)m"1/4 Z dmn M - ) <<
n<l'

<< Zd(m)m-5/4m1/4log’1‘ << log3’l‘,
m<T

st << 2 a(mnT Y, a(n) (m-n)™ ! =< 1" ) a(mnT ! << T,
ot

m<T' m/ 2<n<m

Therefore the first sum in (10.3D) is by preceding estimates equal to

@) (e - /5 2y o™,
n=1

The first O-term is estimated in (10.30) by the Cauchy-Schwarz inequality

as

am
<< TB/A’H( S lZd(n)n-a/!lcos (4ar\/nx - Ul’/4)\2dx) 1/2 << 7o/ 4+€
o st

when we square out the modulus under the integral sign and treat the terms m = n
and m # n similarly as before.

This remark ends the proof of Theorem 10.5, but it should be observed
that the error term given in Theorem 10,5 is by no means the best possible one,
Analyz]ng more carefully the proof it may be seen that T in the error term in
(10,30) may be replaced by a suitable log-power, but this would be still much

weaker than the following result of K.-C. Tong [2] ¢
™ ‘

(10.35)  §AZGIax - (60?)™' Y, a2 (m)n V232 4 o(mieg®).
n=1

4

The proof of this formula is beyond the scope of the method used for
Theorem 10,5, and requires subtle averaging techniques involving certain expo-
nential integrals. It scems also natural to ask what is the best possible O-result

that may be obtained in (10.3%5). In this direction we shall prove the following
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THEOREM 10,6, The asymwptotic formula

T

(10.36) SAg(x)dx i (&2)-1;d2(n)n-3/2T3/2 . o(r/15

cannot hold for any § > O.

Proof of Theorem 10.6. From Theorem 10.5 it is seen that there exist

arbitrarily large x such that
(10.37) l[&e(x)l = l[Xfx)‘ > Cx1/4 = G

for some suitable C > O, and from the classical work of G.H, Hardy [2] it follows
that C may be taken arbitrary. Suppose now that |t - xl_s ex"t. Since d(n) <'.n£/3

for n > no(g) we have in view of (10.3)

(10.38)  [A®) - Al = | 5 d(n)l + (xP1 (logx) - tP, (1ogt)\ <o ¥?

tn=x

and then also

(10.39) fAawlz [lAml - 1A® - Al ze- a2 2 oo

Next by the Cauchy-Schwarz inequality and (10.39)

xt6x"E x46xE
(10.40) A< ) |Aw)|at < <2cx“>’/2(5 AZw)an /2
V x-6x*t X-6x°L
< (2Gx“)1/2(%D.2cx"o2x1/2 + max [R(t)[)1/2,
‘ [t-x(fpx-

where we have set

(1041 RGx) - § A2y - 02/2, 0 - (688)71Y, P2,
] n=1

If R(x) << x3/4-3 for some § > 0, then (10.40) yields

(10.42)  ¢*x"% < (1éD)1/2cx1/4" . 0(G1/2x-§/2x3/8-s/2).

Now if in (10.37) we choose C >-(12D)1/2 and take &€ = §/2, then for
x sufficiently large (10.42) gives a contradiction which proves the theorem, and
small improvements may be obtained by using sharper Sz-estimates for Z&(x) than
(10.37).

It seems natural to ask whether the same type of results such as thsse

furnished by Theorem 10,5 and 10,6 hold also for Z&k(x) when k > 3, In considering



205
this problem it ought to be mentioned that K.-C, Tong [?3 proved a general result
x

2
congerning asymptotic formulas for S [Xk(y)dy, which seems to be hitherto the

A

sharpest one, If in analogy with (10,41) we define

(10.43) R (x) = gAi(y)dy - ((Ak-Z)m2)°1Z:1di(n)n'(k”)/kx(Zk"”/k,

L]
then Tong's result may be formulated as

xlogsx, k=2

(10.48) B <<

where 8, is the infimum of d such that for every €& > 0

m
(10.45) 5[(“.'(3 v it)|Fat << 1,

and for (10,44) to hold one should have 4, < (x+1)/2k,
Suppose now that k = 3, Then by Theorem 7.3 we have m(7/12) > 6, which

in the notation of (10.45) implies 33;3 7/12, hence from (10.44) we infer
X _ . oo :

(10.46) SA';’(y)dy - (1w2)-1zd§(n)n-4/315/3 v o(xM/9,
14 n=1

This is substantially stronger than 433 = 13 only, as given by

Theorem 10,4, but with k = 3 (10.44) at present exhausts itself in the sense that

for k> 4 the best estimates for dk obtainable from Thecrem 7.3 are not sufficiently
sharp to ensure that the condition dk_s (k+1)/2k is satisfied, and in the case

k = 4 we have 54_5 5/8 which gives only R4(x)<<< x7/4+e, and this is equivalent

to 64 = 3/8, which was already established by Theorem 10,4, A result analogous

to Theorem 10,6 may be obtained in the general case by defining Qk

as the infimum

of 6 such that for every ¢ > 0

O+t

(10.47) Rk(x) < x ,0<2-1/k.

Arguing as in the case k = 2 it follows that 6, < (3k -~ 3)/2k cannot
hold, but I think that it is reasonable to conjecture that Ok = (3k - 3)/2k, This

conjecture, however, seems to be very strong as it implies at once the classical
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conjecture o = (k - 1)/2k by the following

THEOREM 10s7. Let @ be the infimum of numbers ¢ ( <2 - 1/k) such that

(10.47) holds for every € > 0, Then e(k 5—;-91(.

Proof of Theorem 10,7. The proof is analogous to the proof of Theorem

'S /2 for x> x, and some € > 0 and suppose that

10.6. Suppose that R, (x) << x

€

for some sufficiently large x and suitable C> 0

0, /3+¢
(10.48) ,Ak(x)l > -ka/+ - G.

Then for [t - x| =< ex" % we have as in (10.38) and (10.39) that .

A, = o/2,

and therefore using (10.43) and the Cauchy-Schwarz inequality

xeext

(ou9) A < eV § A2man 2 o

K-Gu"t

1/2

(2Gx-£ ) 1/2 (Eka— Zx(km‘] )/x +-0 (xgk+ C/2))

for some E . > 0, and we obtain from (10.49)

(10.50) 6Bt < (om) Vot (/2 o1/ S

However (10.50) is seen to be impossible for C > (2Ek)1/2 in (10.48)

because Gk > (3kx - 3)/2k. Therefore (10.48) cannot hold and we obtain °<k <%@k

as asserted,

From (10.35) and (10.46) we have 92 <1, 93 < 14/9., so that from Theorenm
10.7 we deduce o£2 < 1/3, &3 < 1/1/27, which is superse@ed by (10.13) and (10,11),

II:‘*f:lCt the estimates for '0‘-2 and 043 can be deduced direCtly from estimates of

o]
mSG Ak(y)dy. Using the mcthod of proof of Theorem 10.5 it is readily seen that

for T_i <G<T
Ti6

(10.51) S A;‘(t)dt < '1"(0'1‘1/2 + 7Y,
T-6

e .
(10,52) S A%(t)dt << T‘(GTQ/3 + ’1‘3/2),
0
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which gives ol2 < 1/3, d3 < 1/2 following the method of proof of Theorem 10,7,

§7. Large values and power moments of Zxk(x)

In view of Theorem 10,5 and (10.46) it is seen-that in mean square
[Xz(x) and Z&B(x) are of the order x1/4 and x1/3 respectively, which supports the

conjecture dz = 1/4, d3 = 1/%, An interesting problem is to generalize mean

square estimates to higher powers, and to consider integrals of the type
™

S IZ&k(x)lAdx, A > 2. As the starting point of these investigations one may take
‘ .
(3.23), namely

(10,53) A (%) << x(k_-1)/2k‘z<:Ndk(n)n-(k+1)/2ke(k(nx)1/k)\ o =140 /k=1/k iy

The sum over n < N for k = 2 is similar in nature to the sum occurring
in the investigation of large values of the zeta-function on the critical line in
Chaptef 7, and the methods that we shall apply to deal with the large values of
Z&k(x) will be similar., The main obstacle is the presence of the divisor function
dk(n) in (10,53), which will be eliminated by the use of the Haldsz-Montgomery
inequality, This will lead to a large values estimate for Z&k(x), and then (simi-

larly as was done for higher power moments of the zeta-function in Chapter 7) we
T :

shall estimate Slzxk(x)]Adx by majorizing the integral by discrete sums to which
4

our large values estimate may be apprlied to bound the number of summands. Although
our method will work for general [&k(x), the results.are sharp only when k = 2

and k = 3, and therefore we shall consider only these cases, The basic estimate is
the following

THEOREM 10,8. Let 1 <t, <t, < ..o <ty <Tand [t -t |= 7V for

R

r#s <R, If Az(tr) = V> T7/32*E for r <R, then

(10.54) R << TE(TV'3 + T15/4v"12).

If A3(tr) > Vo> ’1‘18/67+e for r <R, then

(10,55) R < rE(A4 4 051/134-132/13y
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Anocther proof of délf 1/3, dz_s 1/2 follows at once from Theorem 10,8 if
we take R = 1, tR = T = x, though the above estimates are naturally of greater
interest if R is aésumed to be large in some sense. Also we céuld have formulated
Theurem 10.8 with the spacing condition ltr - 1h[ =1 forr P s <R, and the
only change would be that the exponent of V in (10.54) and (10.55) would be in=
creased by unity. However the spacing condition ltr - ts[ >V (r£s ) imposed in
the theorem seems more appropriate, since by an argument analogous to (10.38) and

(10.739) we have A, (1) 2 v/2 it |A, (1)] 2 V ana {t' - | <ve™t,

Now we suppose that 4 is a fixed positive number (not necessarily an integer),
and we formulate our power moment results for.lxk(x) in the next two theorems,

THEQREM 10,9

M

(10.56) flA(1far < alartend/e) 05 4 = 35/4,
m

4~ :

(10.57) SlAg(t)lAdt < T(//A+38+i)/108’ A > 35/,

4
THEOREM 10.10.

s

(10.58) S[A3(t)lAdt < pl106a+253+¢) /279 2 <A <22357/607 = 3.685..
4
m .

(10.59) 5[A3(t)lAdt < pBmE3+9/96 A > 2237/607.
4

Theorem 10.9 shows that in a mean sense (Z&Q(t)l is. of the conjectured
1/4+¢

order t for much higher powers than only the second, which was previously
known only. The ranges for A in (10,56) and (10,58) both depend on the best known

values (10.13) and (10.14) for *, and o, respectively, and any improvement of

3
these bounds for d2 and d3 would result in a wider range for A, The limit that
(10.54) can theoretically give is
"‘
1 1
(10.60) S]Az(t)] dt < T 5/4"‘,

4

and this would in turn imply the (yet hypothetical) estimatevdé;s 5/16 which im-

proves on (10.13) and differs from the best possible value 42 = 1/4 vy 1/16. To

sec how &, < 5/16 follows from (10.60) suppose that for some £ > O we have
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‘A&(T)l = I[XE(T)|‘> T5/16*£ = G, IT lt - Tl.f a7~ (6 > 0), then as in (10.79)

we have ‘A(t)l > /2, and so by HSlder's inequality and (10,10) we obtain
oo

P W PO L=

T m-or
( S [A(t)!11dt)1/11(2GT-s)10/11 -« T(15/4+e_)/11G10/11T-1os/11,

078
and this is a contradiction 3f § is sufficiently small, in particular if
0 < § < 11€, This implies 0‘2 < 5/16, and the best unconditional estimate of 0‘2
which follows from (10.56) by this method of proof is only slightly weaker- than

(10.13).

Proof of Theorem 10.8. We start from (10.53) and use the Haldsz-Montgo~

mery inequality to remove dk(n) from the sum in (10.53) and investigate the

)
oceurrence of large values of Ak(x). We use -(1.36) and take E = {En-gn_,‘ with

En = dk(n)n-(k+1)/2k for M < n < 2M and zero otherwise, and we let Y. =
@ . 1/k :
) -S with € = e(k(ntr) ) for M <n < 2M and zero otherwise, where M
r,n n=l ! .

is fixed and its range will be specified in a moment, We may restrict ourselves
to the estimation of the number of points tr lying in @/2,'1‘] and we suppcse
that this interval is divided into subintervals of length not exceeding TO ==Y).
Denoting then by RO the number of t;s lying in an interval of length not exceeding

To we have

(10.62) R << 30(1 + T/To),

since for T > '1?0 we have R < Ro; The idea behind this procedure (used already in
Chapter 7 and Chapter 9) is that Itr - ts‘ < 'I‘o for each Ri pairs of points

(t.1t,), so that a suitable choice of T  will lead to (10.54) and (1C.55). Choosing

A‘u

in (10.53) N = 1K L6 obtain by (1.36)

(10.63) Rovz — T(k-1)/klugT e :ZL,' :EL dk.(n)n-(kn)/zke(k(nt )1/k)|2 -
M2 TR MM r

9

(TN) (k=1+¢)/k + T(k"”g)/k max max M l 2 e(kn1/k(t1/k_t1/k))l
MN/2 rR s ofT NN rooe
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. k=-1)/k. .
gince the contribution of the terms with r = g is cleu?&y <z N( )/r. The last

~sum sbove is an exporential sum of the form

(10.61) S = :Z: e(f(n)),f(x) = kx1/k(t;/k - t;/k), ries, M< x < 2,
M<n<2M

which is very similar to the sum (7.18) in Lemma 7.1, only (10.64) is somewhat
simpler. Since f'(x) is monotonic for M < x < 2M we may suppose that [f'(x)| <1

or lf'(x)l > 1 by splitting S into two subsums if necessary., If irr(x)| < 1 holas

‘S by -1 ,
we estimateVLemma 2.5 and Lemma 2.1 as S << max ‘f'(x)l to obtain
M<x<2M
M-1/k max :Zl sl < M1-2/k max :Z; (t;/k - t;/k[“1 <<
1'_<_Ro sgo,s%r I'SRO ssRo,s%r

(10.65)
N<k_2)/kT(k_1)/k max :§: [t -t \-1'<<:N(kfz)/kT(k—1)/kV-11°gT;
r<k s:ﬁo,s%r r °

since T/2 <t <T and ltr- ts(_>_V forr%sERo

If £'(x) >> 1 holds for M < x < 2M, then observing that

f(m)(x) = ltr - tslT(1—k)/kM(1-mk)/k, mn= 1

’2,."’

it follows that we may use the theory of>exponent pairs ({3 of Chapter 2). Thus i

F = max lf'(x)[ and (p,q) is an exponent pair we have
M2t

s «< i « TgT(p‘pk)/kM(qk+p'pk)/k.

Therefore the contribution of these S is

max M-1/k max Z (Sl <<

M<l/2 gfﬂo SSﬁo,s%r
(10.66)

R max i/ fqg(aktp-pk)/kpy (p-pk) /i __ o Py (P-2k) /Ky (qk+p-1-pk) /p
Cu<li/2 © °o° |

?
provided that
(10.67) ek = 1 + (k- 1)p.

If this condition is satisfied, then from (10.63), (10.65) und (10,66)

we obtain

(10.68) Rovz — (Th)(k—1+()/k . T(?k-2+c)/kN(k-2)/kV-1 N
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. RngT(k-“!)(1-1))/1'\“(%fp~1-pk)/k.

-1 - tte «2
New we consider the case k = 2 where we choose XN = ?k HV k. T V7, and

then the first two terms on the right-hand side of (10.68) are equal. We take
(pye) = (4/18,11/18) and note that with this exponent pair equality holds in
(10,67) for k = 2,hence

(10.69) R, << ey ROT§/9T7/1'8“V‘2.

Choosing T, = V9T-7/4-£ we have T >> Y for V> T7/32+(. and (10.69) gives

{10.70) R, << T1”v‘3,
hence (10,54) follows from (10.62) with T - V9T-7/4-t.

-] - - -k
If k = 3 we choose N = T *4™% . p2*¢y™% 004 in (10.68) we take (p,q) =

(13/40,22/40). With this exponent pair equality holds in (10.67) for k = 3, and
(10,.68) gives

(10.71) R, «< 1t ROT;3/4°T18/40+‘V'2.

= V80/13T-18/13-L we have T >> Y for V> T18/67+i hence

Choosing To
(10.71) gives R << T2+CY-4 and (10,55) follews again from (10.62). With a little
more care we could replace 7 in (10.54) and (10,55) by a suitable log-power, and
very small-improvéments in the second terms on the right-hand sides of (10.54) and

\10.55) could be obtained by a more elaborate choice of the exponent pair (pyq).

Fros (10.68) one obtains for general k the estimate R << ko 148y -k-1 for

\Ak(tr)[ >V = V(T,k), r <R, but in view of «, < 1/2 (Theorem 10.2) this is

weak already for k = 4,

Proof of Theorem 10,9 and Theorem 10.10, It is sufficient to prove our

‘estimates for integrals over [T/2,f1 and then to sum over intervals of the form
[2‘mT,21-mT-L m> 1, We denote by dr the point for which
|AL ()l -  max IA, 1, £ = 152,00,
t €[T/2+r-1,7/2+1]

‘and we consider first those 9; for which

VLY < A (T < ev.

35/108+¢

There are G(logl) choices for V (<< T by (10.13)), and by picking
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the maximal IZXQ(O;)\ in @-intervals of length V and by considering separately

points with even and odd indexes we may construct a system of points which we

shall label t,,% ,..0ytp) R = R(V) and which satisfy

(10.72) T1/452'“=v < 1A2(tr){<2v, (tr- tslzv forr £ 8 <R = R(V),

so that we may write
n

A
(10.13)  § (A (lfar < o0/, ?",ng) VAVICI] I
T2

Now we consider the range 2 < A < 11 and we use (10.54) to bound R = R(V),

35/108+¢

keeping in mind that (10.72) holds. Using V << T we obtain

(10.78) ¥ 2, A, )| < P LY T15/4'VA'11) <<

r R (V)

-« T1+35(A-2)/108+£ N T(A+4+t)/4.

Here the first term is larger than the second for 35/4 < A < 11, while
the second is larger for 2 S.A < 35/4, which in view of (10,73) proves (10.56)
for 2 < A < 35/4, while the estimate for 0 < A < 2 follows easily by HSlder's.
inequality for integrals and the estimate for A = 2, To obtain (10.57) for 4 > 11

we proceed analogously, only now we have

VMZ{V)IAZ(%)[A < rHavA 2, !5 Aatty

T1+35(A—2)/108+£ s T15/4+35(A-11)/108+t_ , p(a+a+e)/4 - T(35A+3a+£)/ms.

The proof of Theorem 10.10 is similar to the proof of Theorem 10,9 and
utilizes (10.55) and (10.14), but while the proof of Theorem 10.9 is independent

of {10.29), the proof of Theorem 10.10 will require a weak form of (10. 46), namely

S ZS%(t)dt << TS/3+ . This last bound may be obtained directly from (10.53) with
k = 3, N = T by squaring the modulus and integrating termwise., Instead of (10.”3)

we impose for the proof of Theorem 10,10 a similar condition, namely

T<2®-v< ‘AB(tr)l <2V, (t, -t (= Vforr/s<R=R{Y),

where the pdints tr are constructed analogously as in the previous case and the

106/279

optimal choice for U is U = T . For 2 < A <2237/607 = 3.6853... we huve then
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(10.75) S 1A, (0] e << AL D M) (A, )[A

T2 V>U rd V

DV LIS e PP Lt SE PR S I A
r<R(V

T(43A+63+t)/96 . T(106A+24O+£)/279 . T(1O6A+253+i)/279.

Here the third term is the largest one for 2 < A < 2237/607 and

(10.75) gives
m N
S l[_\_B(vt)[Adt e pO/34106(4-2)/279+¢ _ [ (106A+253+¢)/279  __

T/ _
(1064+352+¢) /279

<« T

This proves (10.58). For A > 2237/607 the analysis is analogous and

gives (10.59).

§8. The circle problem

This chapter is concluded by a discussion of the classical circle
problem, which has been mentioned in §4 of Chapter 3, The problem of the

estimation of

P(x) = R(x) - ox = Zr(n) -x

n=x
bears many resemblances to the estimation of [&(x) in the divisor problem, and we

recall G,H, Hardy's classical formula ((3.36) with q = 1)

(10.76) VZ'r(n) = qrx -1 + x1/2r§r(n)n'1/23‘1(2m’ mg),

n=x
or using the approximation
31(Y) = -(2/1"])1/2003(}:4.9;/4) + O(y.’3/2)
we may write

(10.77)  P(x) = o(x%) - W-1x1/42r(n)n'5/4cos(2or\/5'§;9r/4),

n=1
since in (10.76) we have to count r(x)/2 if n = x is an integer, and obviously
r(n) << n®, A trivial bound for P(x) is P(x) << x1/2, since P(x) is clearly
majorized by the circumference of a circle with radius i1/2. One would expect that
(10477) would provide the analogue of the truncated Vorono! formula (3.16) for |

A\ (x), and this would be
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(10.78) P{x) = il 1/A:E> n)n ’ cos(&#\/ﬁ; ra/4) + o(xf(1 + (x/N)1/2).
NN

A direct proof of (10,78) via (10,76 does not seem easy (as is also

the case in the analogous problem of the truncased formula for A (x)), but one

B o0
may use the method of Titchmarsh's proof of (3,16) by considering :Z;r(n)n’s
for Rec > 1 and using the truncated Perron formula (1.10) to estimatie :Z:r(n).
n<x

A gimilar approach has been adopted by H.,-E. Richert [?], where general estimates

®
for sums of the type :E)f(n)(x - n) are considered for certain classes of

arithmetical functions f, without developing the sums in gquestion into infinite
series containing (generalized) Bessel functions, but into explicit exponential
sums of length N plus error terms, and this is exactly what is needed for (10.78).
Therefore instead of trying to obtain a direct proof of (10.78),we shall briefly
state now Richert's discussion of the circle problem, and then obtain a result
(Lemma 10.,5) which is anaidgous to (1078) and may be used to obtain estimates of
power moments with P(x). Richert‘[zl transforms the circle problem.into a divisor

problem by noting that

(10.79) r(n) = 4 > (-1) (@=1/2,
d{n,d=1(mod2)

and writing

(10.,80) D(x5kqy1y0ky1,) = 1 =
nyny=Xyn, 1 (modk )

x(k k) 1og<x/k1k2> - <P (1,/k,) + —rvu [)) Gl x + Ak 514k 1,)
one has

(10081) R(X) = 4I3(X§4,'1y1,1) - 4D(X§4939_1’1> =xxX + AA(X;4,1.,1,1)'4A(X‘;4,3,1,1),

\)
when one recalls that %;(3/4) - ;:(1/4) =qr . Thus (10,81) shows that P(x) may
be considered as the difference of {wo divisor probiem error terms, and Richert [?1
obtained

(16,82)  Alxikyalyrkply) = (VAN (x/k kp) Y MRe o -1/0), Z (n1p2)'3/4e(p)

=4 2—

co() /5y b oy VY,
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where
(10,83) F = (4xn1n2/k1k2)1/2 - (14n,)/ky - (4,n,) /K,

Here for N < x3/7 we have x1/5N1/5 < x1/2N.1/2, go that for the range
x1/3;5 N < x3/7 the first error term in (10,82) may be discarded. Except for the
linear part -(11n1)/k1 - (12n2)/k2.the exponential term in (10.82) is (up to a
constant) the same as in the formula (3,17) for A(x). It is readily seen that the
linear part poses no problem in the application of Kolesnik's mcthod (Lemma 6.3),
as the linear terms are small when compared with (xn1n2 1/2, and moreover the
linear terms vanish already in the second partial derivatives of F = F(n1,n2) in
(10.82), As in the proof of Theorem 10,1 we have then

THEQREM 10,11,

(10.84) R(x) = Dor(n) =.orx + o(x3Y 1084y,

n<x

Next to obtain (10.78) note that using (10,82) in (10.81) we have

-:nin1/2

e y Ky =4k, =1, =1

2 1
e("(11n1)/k1-(12n2)/k2) = exp(-23fil1n1/k1) - in /2.
1
e , k

This shows that for 1:1/3 <N< x3/7 we have

(10.85)  P(x) = 4§/7m)" <x/4)Re{a< /) 3, (agng) A cessintagn/2) e (Vi }

nyn <N
1/2+€ ~1.1/4 _3/a,  ("1/2
+ 0((x/N) ) = -4 'x Re{e(1/8) (n1n2) (-1) e(\/xn1n2)} +
n.n <N
2=
n1EE 1(mod?2)

+ o((x/N)1/2+e) ) _:”--‘lx1/l1rz:r(n)n-'B/dcos(231—{;;;1 v a/8) + O((x/N)1/2+"),
n<N

where we used (10,79)., In view of the error term in (10.,82) the best that this

approach can give is P(x) << x2/7+£, which though better than Theorem 10.11 is
8till poorer than the conjectured estimate P(x) << x1/4+£. We would like to use

(10,78) to obtain a result analogous to Theorem 10,9 for power moments of P(x),

1
but as we have (10,78) for x /3 <N< x3/7 we would not obtain a result of the



same strength as Theorem 10,9, since we need (10.78) in the range’ ;)(1/.5 <N < 11/2
for that purpose, Therefore we turn back again to Hardy's formula (10.76) and use
-the technique of éx’ponential averaging, as introduced in Chapt_er 6, to obtain a

result similar to (10.78), but without the restriction N < x3/7. This is
Lemma 10,5. For T < x < 2T, .T1/4v5 G < T1/3 we have uniformly in x
(10.86) P(x) << fc «+ T-1/4[ 2 , r(n)n-3/4exp(27ri Ynx - %ﬂznczx-‘l)‘.
' nSIG-zlog T

Proof of Lemma 10,5. Let llx_ll denote the distance of x to the nearest

integer and let the hypotheses of the lemma hold, The first step in the proof

will be to show that

(10.87) x1/4z r(n)n'5/4e(V'ch') « 1%, it [x| = or3/4,
MZ
To see this write
11/42 r(n)n‘s/d'e(\/}'ﬁ) . x1/4 S t-3/4e(\/;i:-)dfl(t), -
Ma gvt
o0 _ o
'er1/4 5 t-3/4e( xt)dt + x1/4 5 t-3/4e(\/;1:-)dP(t)' =
T o | .,.; |
o(1) + x1/4 S t'3/4e(\/E)dP(t).
™ 1/2

Integrating by parts and using P(t) << t it is seen that.the last

expression above is

00
O,(x-1/4) - x‘l/4 P(t) (- %-7/4 + arix1/.2t-5/4)}e(\/xt>dt = O(x-1/4)-xix3/41,
where ™ ’ |
_ 0
(10.88) I - S p(6)t" 4o (VAR at,
1Y
Using (10.77) we obtain
00 -
I-= 0(’.[‘6-1/2) - 9r-1Zr(n)n-3/4 S t-1cos(2x\/nt + 7/4)e(\/xt)dt,
' n=1 3
T
The above integral is written as a sum of integrals of the type
M
5 g(x)eiF(x)dx << max [6(x)| max _|F (x)'\"‘|
¥ xe[M, 21} x 6[M, 2M

by Lemma 2,1, eq. (2,3) to give
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o0
I < -1/, 'I"‘lZ:r(n)n"s/d,nv"2 - x1/2[-1 <<
n=1

T"-1/_2 NSO DD 2, ) <

n<x/?2 x/2<n<2x m>2x
Te.1/2 . ¢! Z n-3/4,111/2‘“_){‘-1 -
x/2<352x

- €~ - t -1
7t 1/2 A .1/201 - 7 /2,
. L . 7 .
and this proves (10.87), since G = T /", This step in the proof was necessary,
since it reduces the series in (10,77) to a finite expression, and thus serves

as a basis for (10.86).

The next step is to derive a suitable averaged expression for P(x),

o0 .
using the elementary integral S exp(-xz)dx = ,ﬂ4/2. Abbreviating L = logT
-0
ve have Xe6L - x+6L
1/2 -1 (et } 2 -2
(10.89) gr/ P(X) -G S P(t)e (X t)G dt = O(1> + G 1S(P(x)-P(t))e-(X't) G at
k-ot x-6L
<< 1 + L max \P(x) - P(t)] < GTE,
{x~-t| <GL

since

lp(x) -~ p(4)| < 7Mlx - ¢ + [tz r(n)| + 0(1%) <@ + [x - t|)1°,
T<x

in view of r(n) << n%, To use (10.87) write

x46L - X+6L

2.-2 i
S P(t)e'(x-t) ¢ gt - 5 (P(t) + 3[..11:1/4221'(“)“-3/4005(231'\/1-'E+Jr/4))e"(x"t)2(} 2(it
n<T

X-6L

¥-GL
(10.90) x+6L
y ) 2,2
- 5 t1/dz r(n)n 3/'1‘cos(251'./11_‘c-+,1r/4)e (x-1)"¢ dt = I -:Jr-1I ,
k-6L 2 1 °
n<T '

say, The main contribution in (10.90) (and hence the main contribution to P(x) in

(10.89)) comes from 12, and to show this we shall prove

(10.91) I1 << G2T€.

To achieve this let
00

(10,92) Ay = U [x - GL,x + GL]n[n - GT'3/4,n + c'1"3/4] vA, -=[-GL,x+GL]\ Ay,

n=1

and gplit I1 into integrals over A4 and A, respcctively, For t€ A, we shall use

1
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the trivial

P(t) +.gr'1t1/4z r(n)n oo (Ve +a/a) << 1/1%E
ns?z
to obtain

S <« /Mot o gt
A4

Z/A+E

since obviously [A [ << G T s For the integral over A, we use (10,77) and

2
(10.87) to obtain at once S << G2T‘, hence (10,91).

Ay
Therefore we are left with the evaluation of

(10.93) I, = 5 (x + t) /4223 r(n)n 3 cos(Zﬂ\/an+t5 +-m/4)exp(-t2G-2)dt,

-G6L n<l
and we can replace (x+t) /4 by x1/~4 with an error which is <« G2T‘, so that
- combining previous estimates we have
(10,94) P(x) << GI + G 1'1‘1/412 r(n)n~3/* 5 exp (221 \/n(x*t) - t°¢"%)at|.

n<T

Using (1.34) and Taylor's formula we obtain

GL

S exp (281 \/n (78] ~+26"2)at = e(\/nx)§ exp(ﬂritx-1/2n1/2~ 25 ¥/ 2,1/2 2572y 4

-6L

+ 0(G4L4T"5/2n1/2) = (W/Y)1/2exp(2mi\/n - iﬂfan-1x-1') + o(G4L4T'5/2n1/2),
where we have set
Y = G'2 + iﬂix;3/2n1/2.

Therefore from (10.94) it follows that

(10.95) P(x) << o1* + G~ TWIYI"/Z[Z r(n)n™ dexp (2ms/mx - —3T2nY x )| i

Now for n > TG-zL and any fixed ¢ > 0

lexo(- 2Pnr x| = exp(- 20Pmx7'e?) < exp(oPi¥/) < 17°,

so that the contribution of the terms with n > TG-ZL2

in (10.95) is negligible
and moreover the last term in (10,95) may be discarded since 63T~3/4 < G, For

n < TG-2L2 one can replace Y by G-z with a total error << GT‘, hence (10,86)

follows from (10.95).

Lemma 10.5 is now completely analogous to the truncated Voronof
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formula (3.,17) (with G = (TN-1log2T)1/2), since the.exponential factor

exp(-ﬂ(znsz-1/4) which appears in (10.86) is < 1 and does not affect order results
obtainable from (10.86). Combining Theorem 10,11 with Lemma 10.5 one can obtain
easily the analogue of Theorem 10,9 virtually by repeating the same proof with

d(n) replaced by r(n), and the result will be

THEQREM 10.12,

—

l‘\
SlP(x)lAdx << T(A+4+£)/4, 0 < A < 35/4,

mn
SIP(X)lAdx -« T(_‘55A+38+e)/108, A > 35/4.
4

This is new for A > 2, while a sharp asymptotic formula for A = 2, com-
pletely analogous to (10.35),has been established by K.-C. Tong [é].The estimates
(10.85) and (10.86) show great similarities in the circle and divisor problem,and
naturally the analogue of (10.86) may be derived by the method of Lemma 10.5 from

the VoronoI series expression (3,1) for A(x).

NOTES

t
Strictly speaking (10.3) holds for x not an integer,since in :Z: dk(n)
n<x

the last term is to be counted as %dk(x) if x is an integer, but as already
remarked in Notes of Chapter 3 concerning /\(x) = ZSQ(x), for most purposes this
distinection is irrelevant,

An explicit formula for xk, the k~-th coefficient in the Laurent expansion
of C(s) at s = 1, is given by (10.5). A simple proof of this formula (obtained
already by Stieltjes in the 19th century) will be presented now. Let ky,r > 0 be

integers and let

-1 r
c. = - St log tedv(t), «y(t) = t - [] - /2.
4-0
By the Stieltjes integral representation we have
N N N
c. = -lim St-1logrt.d1(t) = lim (S1;Jlogrtod(f] - S t_1logrt-dt)
N->» @ ¢0 N>® 4-0 4-0
= lim ( EZ:n°1logrn - (r+1)-1logr+1N).

N> n<N



Let further Sr(x) = Zn-1logrx/n. Then 220

s_(x) = St-1logrx/t.d[t] = St“1logrx/t-dt - St log"x/t.aw(t) =

41-0 -0

A

o0’ a0
(r+1)_1logr+1x - St—1(logx - 1ogt)rd‘\|/(t) + St log x/t aw(t) =
4-0 X
*

(r+1)__1logr+1x + Z (=1) (k c log K 4 Rr(x),
say, Our aim is to prove {k = (-1)kck/k! for 0 <k <r, where for Res> 0
0 o
~5=-1 =1 k
(s +1) = Zn = 8 + Z(ks
n=1 k=0

To accomplish this, observe first that

o ‘ .4 [
-8 ~g=1 -1 -8
§t dSr(t) = r§t Sr_1(t)dt = =-rs §Sr_1(t)dt =
0 L Py
rs°1St-SdSr_1(t) = ... = r!s—rSt-stO(t) = r!s-rz,n-s"1 =
v q 4 n=1
—r— -
o T,
k=0
On the other hand, using the expression for Sr(x), it is seen that
L 1' [od '
-8 - - N k-1
§t dSr(t) = rls + kz,,{fks ,
where - 90
k-r k,.r -8 r-k k,r ~-g=1 r-k-1
a,s = S (-1) (k)ckt a(log " t) = (-1) (k)ck(r-k)gt log t-dt =

gXF (- 1) (k)c (r-k)g vk - sk_r(—‘l)kr!c [kt

Comparlng the two series expansions for St dS (t) we obtain the desired
identity ¥, = (- 1) c /k for 0 <k <r, and since r may be arbitrary (10.5)
follows,

The paper of A.F. Lavrik,M.I. Israilov and Z. Edgorov [1] which contains
the proof of (10.,7) and (10.8) also gives an explicit. evaluation of

SAk(u)u du for k <5 in terms of the Y/s as defined by (10.5); for instance

SAz(u)u- du = (Y- 1)2 + 2(1.

Explicit evaluation of coefficients of Pk_1(t) in (10.3) is also discussed
by A.F. Lavrik [1],

The history of the estimation of o(.k (and. in particular of 0‘2) is at

least as long and as rich as the history of estimates for K(1/2 + it), which

was given in the Notes of Chepter 6. This history goes deep into the 19th century
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to PaGoL. Dirichlet, who proved in an elcmentary way that dz < 1/2 and in
whose honour the problem is known as "the Dirichlet divisor problem'”, Further

estimates for o are as followss

2

°‘2 < 1/%2 = 0.333333,.., G,F, Vorcnofl [_1], 1904

ol2 < ’53/100 = 0,33 J.3. van der Corput [2], 1922
oL, < 27/82 = 0.329268..., J.G, van der Corput (3], 1928
%, < 15/46 = 0.3260864.., H.-E. Richert [1], 1953 and

Chih Tsung-tao [13, 1950

%, < 12/37 = 0.324324..., G. Xolesnik [2], 1969

%, < 346/1067 = 0.324273..., G. Kolesnik [31, 1973

%, < 35/108 = 0.324074..., G. Kolesnik [6], 1982,

Koleerik (6] obtains actually /\,(x) << 35/108+¢ (

so that (10.13) is
slightly sharper), but his argument clearly gives alsc (10.,13). Anyway the
log-factors are not so important as Kolesnik's method is not exhausted by the
value “2_5 35/108, and he has kindly informed me that the best it can give at
present is a value slightly less than 35/108,

The history of estimates for o, is as followss

cl3 < 1/2 = 0.5 ’ G.H.Hardy and J.E.Littlewood[ﬂ'%ZZ
oy < 43/8T = 0.494252,.., A. Walfisz (2}, 1925

% =< 37/75 = 0.493333..., ~ F,V, Atkinson (1}, 1941

A < 14/29 = 0.4827584.4, Yih Ming-i (1], 1958

dy < 8/17 = 0.470588,..., Yih Ming-i and VWu Fang (1], 1962
o < 5/11 = 0.454545.44, Chen Jing-run [2], 1965

oy < 43/96 = 0.447916..., 8., Xolesnik [53, 1981,

For several general estimates of o , all of which are poorer than

k
those given by Thecrem 10,2 when k > 5, the reader is referred to Chapter 12 of
E.C, Titchmarsh [8).

The estimate o =< (3% - 4)/4%, 4 <k <8 of Theorem 10,2 has been
Fiven by D;R. Heath-Rrown £§3’ who proved in (ﬁl also 4k_§ (x - 3)/k for k > 8,

but this ic superseded now by corresponding estimates of Theorem 10,2, which is

due to the author [2].
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The method of proof of Thecorem 10.2 is based on the use of Theorem 7.% and
shows that one can obtain OLK <1~ A/k for any fixed A > 0 and k > k(4), but
this is sﬁpersedeﬂby Theorem 10.% for sufficiently large k. Besides choosing more
carefully the exponent pairs in the proof of (7,65), there are other possibilities
of improving Theorem 10,2 for large k, namely the bcund o <1 - 24/(7k) for
k > 58, Instead of c{8) = (1 - ©)/5 (5/6 <© < 1) one may use sharper bounds for
c(8) in (7.57) and Lemma 7.2 for appropriate ranges of . Thus from (6.59) with
1 = 6 we obtain c(6) < (1 - 8©)/6 for 28/31 < © < 1 and this will lead to
m(s) = 5/(1 - &) for .51 <8 <1-¢, and consequently to o <1 - 5/k for k = 58.
Still a better result may be obtained if in bounding c(®) convexity is used for
two consecutive values of 1 in (6.99). This was the idea used by A, Fujii [ﬁ], who
obtained a bound for &, which does not depend explicitly on k, but on a parameter

k

b, so that additional calculations are necessary to evaluate °<k, and abgeneral

formule for o(k is difficult to obtain. A calculation shows that Fujiil's estimates
lead to better values than o(k <1 - 31/(7k) of Thecrem 10.2 for k > 109, but his
results are futher improvable if instead of Theorem 7.10 of Titchmarsh [8] one
uses sharper bounds for m(d) (when & is close to 1) obtainable by the method of

Theorem 7.3, as described above, Also a slight sharpening is posasible if instead

of (6.59) one uses the sharper bound

i 1 240Qq - 160 + 128 q-1 . q + 1
°(®) = T T3 3000~ d5e + 1287 =2 2= M, 8 =1 - o,

which was proved long ago by E. Phillips [1-].
Theorem 10,3 is due to H.,-E. Richert (3], and was rediscovered by A.A, Karacu-

ba [1], who in {23 proved a stronger result than Theorem 10.3%, namely

-2/3
Ak(x) « x 7Ok (Dlogx)k,

where C,D = 0 are absolute constants and the estimate is uniform in k.

A. Fujii [:11 showed that in Theorem 10.% one may take

o - 2-_’1/2(22,/2 _ 1)4/3(39)-2/3’

improving the value of C given by 4.A. Karacuba [2—), but the value Ko such that

L =2/% . o . C . . .
o(k <1 - Ck / for k > K, is not explicitly determined in either of these works.
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Lemma 10,1 is a weakened form of a result of H.-BE. Richert [4], who used
I.M. Vinogradov's estimates [11, [2] (see also A. Walfisz [3] for a good account

of Vinogradov's method) of exponential sums and gave an elegant proof of

o 3/2
E(d + it) << t100(1-&) / (logt)z/a, 1/2<d <1, t =2,

This result is significant when & is close to 1, when it improves results

obtainable by van der Corput's method,

Concerning Theorem 10,4 it may be mentioned that /52 = 1/4, 63 = 1/3
are classical ’results that may be found in Titchmarsh's book [8] , while /54 = 3/8
has been proved by Heath~Brown [8] and the femaining bounds of Theorem 1C.4 are
due to the author [3]. They improve on A < 1/2, a < 35/62, 8, < 11/18,

@8,5 149/230 of K.~C, Tong [:_1]; indeed his bound for 68 is poorer than our
bound for Q[

The form of Theorem 10.5 is due to H, Cramér [1], and curiously enough
no result of this type is to be found in Titchmarsh [81 The results of Theofem
10.6 and Theorem 10,7 are new and have not appeared in print yet, while the
theorems of §7 are proved by the author in ES}.

Theorem 10,5 and its analogue for the circle problem provide weak
omega results for /\(x) and P(x), namely A = SB(X1/4) and P(x) =52(x1/4).

Some better results are known, and in 1916 G.H. Hardy [‘I] ’ [2} proved
S?+ ((xlogx) 7/4loglogX)

(x) ,
A S (/4

#

@ _((xlogx) /%
R Y.

P(X) =

Hardy's 9_ estimate for /\(x) and S?* estimate for P(x) have been
improved a little by K.S. Gangadharan [1], and the best reaults in thiuv direction

seem tc be due to K. Corrddi and I. K{tai [1], who proved with some absolute
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C4+Cy > O that :

A(x) = SB_ (X1/4OXP(C1 (loglogx) 1/4 (108103108)()“3/4)) ,

P(x) = g2+(x1/49xP(C2(1°81°£§X) 1/4(10g10g10gx)—3/4)) .

Hardy's Sz+ estimate for /\(x) andgz_ estimate for P(x) withstood
improvement for a very long time., Only recently J.L, Hafner [ﬁ] succeeded in

proving with some absolute 03,0 > 0 that

4

AG) = R, ((x1050) /A (1oglogn) 31082 Ay (0, (10g10g1060) /3)),

P(x) = SZ_((xlogx)1/4(loglogx)(10g2)/4exp(-c4(1ogloglogx)1/2)).

Although the circle problem, discussed in {8, is certainly a digression
from the main topic which is the zeta-function, I have nevertheless felt it
appropriate to include this material (new and hitherto unpublished) for two
reasons, Firstly the results seem to be interesting, and secpndly they stress the
intrinsic connection between the divisor problem for [S(x) and the circle problem,
Most earlier authors have investigated the circle problem, divisor problem and
the problem of the order of ﬁ(1/2 + it) separately and by different methods, The
approach presented here shows é unified view of the circle and divisor ?roblem,
and the idea to use exponential averaging in the proof of Lemma 10.5 has been
kindly suggested by M. Jutila, whose works [4l and [?1 (parts of which will be
discussed in the next chapter) show the intrinsic connection between /\(x),
£(1/2 + it) and E(T) mainly in the light of Atkinson's formula., The problem of
the estimation of [11/2 + it) was already discussed in Chapter 6 in Theorem 6.3,
which bears a close rgsemblance to Theorem 10,1, It turns out at present tﬁat
all the best known exponents in the divisor problem,circle problem and the
problem of the order of E(T) are the same one, namely 35/108 + & by Kolezrik's
method, Whether the real order of the functions in question (for which one
naturélly conjectures the exponent 1/4 4 ¢) is fhe same (up to g's and log-
factors) is not possible to tell yet, though one expects the answer to be

affirmative,
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CHEAPTER 11

ATKINSCN'S TFORMULA TFOR THE MEAN  SGUARE

§1e Introduction

A classical problem in zeta-function theory is the investigation of the

asymptotic behaviour of the integral

m
(1) = S.\((1/2 + it)lzdt,'
0
and the first non-trivial result has been obtained by G,H, Hardy and J.-E, Littf
lewood [ﬁ], where they showed that
(11.1) I(T) = (1 + o(1))TlogT.
‘ A substantial advance in this problem has been made in 1922 by J.E.

Littlewood [’_1] who proved that

(11.2) E(T) <« /4%,
where
(11.3) E(T) = I1(7) - Tlog(T/2m) =~ T(2f - 1).

An explicit formula for E(T) was discovered by F.V, Atkinson.[?],
and this formula is the main topic of this chapter. This deep and important
result of Atkinson séems’to'have heen neglected for a long time, until first -
important applications have been made by D, R. Heath-Brown Cﬂ,[?], and it seems
certain that the possibilities of Atkinson's formula are far from being exhausted.
The depth and the scope of Atkinson's formula seem to provide an adequate ending
of this text, and the result will be formulated as

THEOREM 11,1, Let O < A < A' be any fixed constants such that

AT < N < A'T and let N' = N'(T) = T/2m + N/2 = (Nz/4 + m'/zm')j/z. Then

(11.4)  E(T) = 2-1/222%(-1)nd(n)n_1/2(arsinh(QWn/2T)1/274(T/2xn+1/45““*cos(f(ﬁyn»

- 2;'d(n)n-1/2(log’l‘/2nn)-1cos(T(log’l‘/me) - T +9q/4) + 0(log2T),

where

(11.5) f(T,n) = 2Tarsinh((1m/2'l‘)1/2) + (2va+’.Jr2n2)1/2 - 9!74.‘
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We may rewrite (11.4) in the form

(11.6) BD) = 21 + (1) + 0(log’m),

n

212 (0/2m) V" 5 (1) Pa(nyn~3 e (1, m) 005 (£(T,m))

n<N

(1.7) 2y (1)

where

it

(11.8)  e(Tyn)

(11.9) .2,(T)

(1 + 5rn/2T)-1/4{(2T/9rn)1/2arsinh((arn/2’l‘)1/2)}—1 =1+ o(nT'1),

.2%,d<n>n"/ ?(1081/20m) ™" cos (g(T,m)),

where
(11.10) g(Tyn) = Tlog(T/2an) - T + =/4.

Using the Taylor expamsion
(11.11) 2(rn) = A4+ a@r/en) /2 e 0¥ M) n - o),
it is seen that, apart from the osciilating factor (-1), the first o(T1/3) terms
in 231(T) are asymptoticallyrequal to the corresponding terms in the truncated
Voronoi formula for 28/\(T/27), as given by (3.17). This deep analogy between the .
divisor problem and the mean square of the zeta-function on the critical line has
been one of priﬁary motivations of Atkinson's work concerning Theorem 11,1. This
topic will be further pursued in §5.

There is another possibility of proving an explicit formula for E(T), This
has been found recently by R.'Balasubramanian [ﬁ] who used a complicated integ-
ration technique based on the classical Riemann-Siegel formula for the zeta-fun-

ction to prove

sin(Tlogn/m)
11,12 = 2
(1.12) e n?s% nfn<k (mn) "/ ?10gn/m

sin(26 - Tlogmn)
n<Kk mfn<X (mn) / “(20' - logmn)

+ 0 (1082T) ’

where

(11,13) o = o(T) =g-1og('r/2:x) -% - %8, K = [(T/éar)vzj.

Upper bounds for E(T) may be obtained from (11,12), but it seems
simpler to use Atkinson's formula and the averaging techniques similar to those

of Chapter 6. In this way it will be seen that
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(11.14) E(T) << 135/108+¢

which is completely analogous to corresponding estimates for A\ (x) and P(x)
furnished by Theorem 10,1 and Theorem 10,11 respectively, since the estimation
will be reduced to very similar exponential sums., We reserve §2 of this chapter
for the proof of the difficult Theorem 11.1, while some applications of Atkin-

son's formula will be presented in later sections,

82, Proof of Atkinson's formula

We start from the obvious identity, valid for Re u> 1, Re v> 1,

(11.15) EE(v) = i} °‘>1m.-u‘n"V = flutv) + £(u,v) + f(v,u),
where
(11.16) flu,v) = Z Zr-u(r-rs)-v.

r=1 g=1

We shall show first that f(u,v) is a meromorphic function of u and v
for Re(u + v) > 0. Taking Re ¥ > 1 and writing V() = x = (x] - 1/2, ¥, (x) =

X ‘
= S’Y(t)dt, it follows on integrating by parts that
4 00 -

i(r +8)77 = S(r +t)7aft] = v 5 ([« - r)x-v—1dx =

8=1 v

z“]'-v(v-1)-1 - %r-v - vS‘V(x)x-v_1dx = r1-v(v-1)-1- ’%'r-v - v(v+1) S Y, (x)x-v-zdx
v v

= r“-‘V(v - 1)-1 _ %r"v + O( lv'2r"'ReV-1),

since "K'(x) << 1 uniformly in x. Hence

[ °0 pos
f(u,v) = (V-1)-1Z;r1-u_v - _;_Z'r-u-v + O(lvl22r-ﬁeu-Rev-1),
= = Ir=

and therefore

flu,v) = (v-1)-15(u+v-1)+ %(u-t-v)

is analytic for Re(u + v) > O. Thus (11.15) holds by analytic continuation when
u and v both lie in the cfitical strip, apart from the poles at v = 1,u + v = 1,
u+vs=2,

We consider next the case Reu< 0, Re(u + v) > 2. Using the Poisson

summation formula (1.23) we obtain
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o0 L oo L4
(11.17) Z:J:"'u‘(rﬂs)"v = Sx-u(x+s)-vdx + 22 S x Y(x+s) " cos(2rmx)dx =
r=0 4 m=1 3
teuv, ( = 7
)Ty v 22, § ) oo (eruer)ay),
] m=1 o

aiter the change of variable x = sy. Summing over s and using (1.29) we have

glu,v) = f(u,v) - P(u+v-1)r‘(1-u)r‘-1(V)Z(u+v-1) =
(11.18)

o0 1 DO L
228 -u-vZ S v 2 (1+y) Veos (2rmsy)dy.
S=1 m=1 °

To investigate the convergence of the last expression we note that

for Reu< 1, Re(u + v) > 0, n> 1

2 5 ¥ (1+y) T cos (2any)dy = nu'15 ¥ (1 + y/n)7 (e(y) + e(-y))dy =

(11.19) -

np'15 7 21 + y/n)Ve(y)ay +

4 0

feo Reu-1

TN YO+ g/ Ve(-y)ay << T

uniformly for bounded u and v, which follows after integrating by parts. Thus
the double series in (11.18) is absolutely convergent for Reu < O,Rev > 1,

20 o0
Re(u + v) > 0, by comparison with >, st > lmu—1( , and represents an analytic
g=1 m=1

function of both variables in this region. Hence (11,18) holds throughout this

region and grouping terms with ms = n together we have
20 o v
(11.20)  glu,v) = 221 81y § 51+ 3) Veos (2amy)ay,
n= °
k . N
where 8k(n) = Zd is the sum of the k-th powers of divisors of n, so that
din

do(n) = d(n). Therefore if g(u,v) is the analytic continuation of the function

given by (11,18), then for 0 <Reu< 1, 0 <Rev< 1, u + v £ 1 we have

(1.21)  E@EE) = L) + Larv-D)r(are-1) (CERL + ) + g0,v) + g(v,w).

It is however the exceptional case u + v = 1, in which we are interested,
Here we may use the fact that g(u,v) is continuous and write u + v = 1 + 5,

0 < {%| <1/2, with the aim of letting & 0. Then the first terms on the
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right-hand side of (11.21) become

w9+ NG At Kt

La+9) + -9 (2m) (zoosry/2) (rilthy o Llazsdy

$=1 4 y (5-3,"1)(-;-+-25-1og2m)(1 - E;—,,f%;—‘j-}ss + 1_5:1111 )+ o(18]) =

1w | (a),
2V (1=u)  M(u)

+ 2y - log2dm + o(18!),

where we used Taylor's formula for the gamma-function terms, the functional equa-
tion for the zeta-function and

- -1

C(s) = (s =1+ y+ o(ls - 11).

Hence letting $-» 0 we have, for 0 <Reu < 1,

A (d-w) ! (u)
(11.22) C(u)C(1-u) = 2( X EE) + SI0) )+ 2y - log2r + gu,i-u) + g(1-u,u),
with a view to the eventual application u = 1/2 + it in mind. Reasoning as in

(11.,19) we have, for Reu< 0,

(11.23) s, 10) = 22,4 ¥+ 37 oon (2an)ay,
n= °

and so what we need is an analyticvcontinﬁation,of (11.23) valid when Reu = 1/2,

At this point of the proof the Voronoi formula for /\(x) comes into play, since

it is a powerful tool which will provide the desired analytic continuation and

enable us to'%ftegrate (11.22) over t when u = 1/2 + it (t real), thus giving the

expression 2i S lZ(1/2+it)12dt on the left-hand side of (11,22), Using the Voro-
v

noi formula (3.1) and the asymptotic formulas (3.12) and (3.13) we have, when x

is not an integer, :
(.20 A - @257 2, an/  eos (m/m-a/a) -3 (520/7) T n am- /1)) +

e o(x74,
and the series is boundedly convergent in any finite x-interval.

Let now N bea positive integer, and let
o
' : -u u=1 v
(1.:25)  nlax) = 2 50+ 9" oos (zra)ay.
0
Then we have with D(x) = zz;d\n)
n<x
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ZZ%g(n)h(u,n) = S h(u,x)dd(x) = S (logx + 2x)h(u,x)dx-+ 5 n(u,x)a/\(x) =
>

N+ 12 Naiz Nig,

- A(N+1/2)h(u,N+1/2) + S (logx+2r)h(u,x)dx - S A(X)J_’—ldahai Xl ax,

Nty N1

Hence (11.23) becomes -

g(u,1-u) = Z,Nh(u,n)d(n) = A(1/2)h (a,141/2) + 5 (logx + 2{)n(u,x)ax -

N ¢4/

(11.26)

o0
dh(u,x
§ AR - g ) - g, + ay0) - g,
ox 1 2 3 4
N4/,
say. Here g, (u) and g-2(u) are analytic functions of u in the region Re u <1, since

the right-hand side of (11.25) is analytic in this region. Consider next g4(u).

We have

ioo ~io0
- -1 - -1
h@®) = ) v 0  elar + [0 ey,
iw -0;@
?l’»%n_x). = 25:15 y1-u(1+y)u-1e(xy)dy - 2w S y1-u(1+y)u-1e(—xy)dy =
00 —ie0 °
e O e (R e L O R NI COL I
[ 14

1/3+€

for Reu< 1 and bounded u. Using only the estimate A(x) << X it is seen

that the integral defining g4(u) is an analytic function of u at any rate when
Reu < 2/ S

It remains to conmsider gB(u). Let for brevity X = N + 1/2. Then
0 100 -$00
-u u-1 - -1
(11.21) &5 = §ogerzp) ({3 () ey + § 5™ ()™ o l-m)an).
X ° [}
For Reu < 0 an integration by parts shows that the first two integrals in
(11.27) are equal to _
ie0 09 igo
=1 -u-1 u-1 -1 ~u-1 \u=1
-(2n1) (logX+2x) y (1+y) e(Xy)dy - (20i) dx \ y (x+y) e@ga)Agg
° X o
0 100
~(2ﬁ)‘1(1ogX+2x)g y U () e (ay)ay + ﬁzmix)”S y U x4 ) e (n)ay.
o 0
In the last integral above the line of integration may be taken as [O,cn)

and the variable y replaced by y = Xz. The other two integrals in (11.27) sare

treated similarly, and the results may be combined to produce
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(11,28) g = - 7" (LogX + 2) 5 y (1 + 9% lsin(emay)ay +

(gru)-1 S —us 1(1 + y)'sin(27Xy)dy.

Noting that the integrals in (11.28) are uniformly convergent when
Reu< 1 ~-¢, it follows that (11.28) provides us with an analytic continuation
which is valid when Reu = 1/2, and thus we may proceed to integrate (11.22)., When
u=-1/2* it we have f(u)f(1-u) = Uf(1/2 + i*t)[z, so that the integration of

(11.22) gives

Az +im A 4im
211(1) = 5 P)f(1-u)du = 3(-dlogn(1-u) + dlogn(u))|  + 24T(2y - logar)
4[;-]'11 4[24;'"
A1
m™1/2 i .
+ S (du,1-u) + g(1-u,u))du = 105,..\21;2 t igg + 21'1'(28 - log2y) +
Rt 1n+iM
+ 2 S g(u,1-u)du.
A -1

Using Stirling's formula in the form given by (1.31) this becomes

Al +i70

(11.29) 1I(T) = Tlog(T/2r) + (2f - )T - i S glu,1=u)du + 0(1) =

Al~T0

= Tlog(T/2m) + (2y - )T + I, = I, + I, - I+ 0(1),

1 2 3 4
where for n = 1,2,3,4
Ap+ih
(11.30) T = 71 5 g, (u)du,
A7
so that using (11.26) and (11.28) we have
(11.31) I, = 42(1(,1)5 sin Tlo ¥) cos2mmn
‘ (1 + Y) 1°g(1+Y)/y
o0
ain(T1 1 o .
(11.32) 12 = 4A(x) j 1/2( og( :J/r;/y)cos Xy iy,
y/°(1 +3)/“1og(1 + ¥)/y
o0
(11.33) I, = - Z(1ogxX + 21{)5 s;%’l‘ og( +:¥}éy)s1n2mcy dy +
y (1 +y) log(1+y)/y
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o0 Ypti®
+ (:rri).1 5 y-1sin(2zrrxy)dy S (1 +y-1)uu-1du,
° A~ i
and lastly 00 Pyt
(11.34) I4 = -iXS A(x)dxs a—l-}-(%f-‘ldu,
At T

where N is a positive integer, X = N + 1/2, and as in the formulation of the
theorem we shall restrict N to the range AT < N < A'T., A more explicit formula

for I, may be derived as follows. We have from (11.25)

4

A& T 00

S nu,x), 41_93;5 sinnglogU+y)/y)cos(2srxz_)_dy -

9x 7721 + )V 210801 + y)/y

An-

[

e Y] S sing'l'loggx+;2[ﬂcosfarzz ; iy | =
1/2 1/2
Ix J ¥ (x +y) ' “1og(x + y)/y

415 72 (xj;;;]zrlog(“y) /y{ch’s(Tlos(ﬁy)/y) - sin(Tlog(x+y)Ay) (% + 108'1—1?)} dy.

Hence replacing y by xy we obtain

”A(x) SR CO8ZAXYy 1+ L2 AYA -11
= —dx Tcos (Tlo ~ 8in(Tlo = + log — .
4§ T . /me)B Vo 8%1 {m (T10g—%) (Tlog=) (5 + log 7 )}dy

The main difficulty lies now in the evaluation of the integrals which
represent In‘ We shall need two lemmas which will follow from Theorem 2.2, These
are

Lemma 11,1, Let £, 3, Y s8yb,k,T be real numbers such that ot,n ,a’
are positive and bounded, ot £ 1, 0 <a < 1/2, a <T/(88k), b=>T, k>1, T> 1,
Then

d 1 1
(1.36)  § 3750 + )" %0gtE) Vexp (11106 + orkiy)ay -

a

(ka2 A 2w - 1/2)7 (0 4 1/2) e (Y + 2mia ik + T4
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—sm =1

+ 0@y + o ) + R(T,k)

uniformly for|« - 1|{> ¢ , where

U = (T/2ark+1/4)1/2, vV = 2arsinh((9rk/2‘1’)1/2),

R(T,k) << 10 -%2/2-1/4,-(r-4-0)/2-5/4 for 1 <k <T,
]
-1/2-o &=1
R(Tyk) << T E for k > T,

A similar result holds for the corresponding integral with -k in place
of k, except that in that case the explicit term on the right-hand side of (11.36)
is to be omitted.

Lemma 11.2. For AT1/2 <a <A'T1/2, O <A<A'ys>0,

<0
(11.37) S expifdrx\/n - 2Tarsinh(x \/Jr72'1‘) (20%°T+7° 4)1/2 + wrx23 .
a

x*arsinh(x |/r/2T) (1/2 + ('1‘/2er + 1/4)1/2)(1/4 + ‘1‘/2J‘rx2 78"
4mT’1n(“'1)/ 2(1ogfr/2m)“1(w/ar -n)3/ 2= o xpfi(T - Tlog(T/2nn)-2an + ¥/4)} +

+ O(T-“/zmin(hlZ n+a- (8.2+2T/n)1/2l-1)) + 0(n(‘_1)/2(‘1‘/24r-n)1-‘1’_3/2),

provided that n> 1, n < T/2x, (/2T - n)2 > na®. If the last two restrictions on

n are not satiefied, or if )/-rI is replsaced by -~ \/1_1, then the maim term and the
last error term on the right-hand side of (11.37) are to be omitted.

Proof of Lemma 11,1 and Lemma 11,2, To obtain Lemma 11,1 one may apply

Theorem 2,2 with

P(x) = x 1+ 07D, £(x) = (1/2m)1087E,

Cb(x) = x (1_‘_1)3' ’F(x) = T/(1+x),f¢(x)=x/2.

We have
T

1@ = - R

go that the saddle points of Theorem 2 are the roots of

xo(xo + 1) = 7/(2xk),

hence x = U - 1/2 in the notation of Lemma 11.1, Thus



T(2x_ + 1)
£ = = 5 = amelur
297x°(x° + 1)

(2T/ork + 1)1/2 + 1
(2T/0(k + 1)"/2

|
o DAL z::i:;liz et 0 gy

- 2 arsinh(ﬂfk/ZT)1/2.
Hence
£+ kx = ™w/(2r) + k(U - 1/2),
and the main term furnished by Theorem 2,2 is

Y:o(fg)”/ze(fo +kx +1/8) =

(U - 1/2)" (U +1/2)"% “"’(2k)'1(T/ar) 1/20"1/2exp{i('r\r + 27KU - Tk + 7/}
Consider now the error terms. If 1 <k < T, we have then
A_<_A(T/k)1/2 < x < A'(T/k)1/2, ¢ < x{)""“,

M, =< x, A(kT)1/2 < F < A'(kT)1/2,

and thus for 1 <k < T,
-3/2 1 -a=A)=1/4 - -a=7)/2-5/4

S pF ~< T k .

while in case k> T we obtain similarly

¢)4F'3/2 << T'“"1/2k°"1.
o/0
From f'(x) = - T/2nx(1+x) we have, for a < max(%,T/Ssrk),

f1(x) +k < -ame™",

which gives
Twd -1

& (a) (£ (a) + k)-1 << a T .
Likewige, if b> T,
SO ®) + k) <« K,

The error~term integral in Theorem 2,2 is
A

L
- o wAkY- - -AkX-
<< Sx eAkx Ade + er d-ae Akx AT/xdx

- 4

and for lo( -1 ] > € > 0 the contribution of the above terms clearly does not
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exceed the order of the error terms given by Lemma 11.1, This establishes Lemma
11,1 for k> 1, while for k < -1 the argument differs only in that the the terms
in X, do not occur, since then there are no saddle points in Theorem 2.2,

For the proof of Lemma 11,2 we apply Theorem 2,2 with a,b as limits of

integration, where v > T, and

?(.x) = x *(arsinh(x \/7(72T)')-1((T/2nx2 + 1/4)1/2+ 1/2)"1('1'/25::2 + 1/4)-1/4,

f(x) = %x2 - (Tx??ar + xlj'/4)1/2 - }arsinh(x\/ﬁ?l‘).

We have then

Pr(x) = x - (52 + 20/ V2, n(x) = 1 - x(x2 + /2m)" /2,

so that we may take j&(x) = x/2, ct;(x) = x-a_', F(x) = T. We dispose first of the
error terms in a and b, We have
-1/2, =1 -otf/2 2 2 \1/2|-1
cb(a)(lf;+2\/£‘+f; /) << T /mln(1,12\/;+a-(a +5T-T)/, )y
and
-1 -l —1 -u1
¢(b)(f;)+2\/5) < b (Yn +o0(Tb "))

which is 0o(1) for b - . The error-term integral of Theorem 2.2 gives here

-4 \/nT-AT
€ ’

<< Sxﬂ‘e-mt \/;-Ade <<

A
while

cboch;3/2 << ::(1)"0"1""3/2 << n(d-1>/2(T/21r - n)1-°‘T‘3/2,

as X is given by

f'(x:o) +2Vyn =0, x, = n-1/2(T/29T - n),

Here if yYn <=1, or n> T/290 or (T/25r - n) < ne’ there will be no
terms in X, and the lemma is proved. In other cases we find that

£y = 2n(T/20r + n)—1, arsinh(xo\/m') = %log(’f/&)rn)',

(v/20x2 + /)2 = /2 = n(z/er - w)T,

(/27 + 10"+ 1/2 - {1/ 2% - )7,
etc, and calculating the main term; which is

po(fg)”/zexp’(szo + mxo\/ﬁ + %m),

we obtain Lemma 11.2.\
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Having now at disposal Lemma 11,1 and Lemma 11,2 we proceed to evaluate
I, for n <4, as given by (11.31) - (11.34). We consider first I,, taking in
Lemma 11,1 0 < &¢ <1, &+ 8> ) , so that we may let a — 0,b 5 ®. Hence, if

1/2 <« « <3/4, 1 <k < AT we obtain

(11.38) 7 sin('l‘lj(1+y)/1)0032xkxd
S y*(1+3) V210g(1 + 3)/y

-1 1/2___sin(TV + 20KV - 7k + 7/4) =4/2, («=3)/2
ey (/) /2@ - 12 @+ /)2 o )

and since this result holds uniformly in o we may put o = 1/ 2. Taking into
account that sin(x - ak) = (-1)ksinx we obtain after substituting (11,38) into
(11,31),

(11.39) I, = 2-1/22 (-1)* d(n) sin(2Tersinh Yan/2T + y2rnT + o2l &+ 3/4)
1 n<N n'/2"" arsinh \/Faf2T - (1/2rn + 1/4)1 /2

+ O(T-1/4),
taking AT < N < A'T, Similarly, from (11,32),
(11.40) I, < [A(x)lx’VZ « 11/6
if we use A\ (X) << 11/5.
To deal with I, we write (11.33) in the form
2 =1
(11.41) IB -5(1ogx+ 2K)I31 + (ni) Iz
and consider first 131. We have
00 @X)! a0
S ein(Tlog(iey) [yletnonty o S . S « V2
¥/ S (1+y) / “log(1+y) /¥
] @)0'4

if the first integral is estimated by the second mean value theorem for integrals

£ |
sim(Tlo ) 1/2 1/2
[}
oxx§/2(1 + 2)1/2(“8‘“@)/6)‘1 S sin(Tlog(1+ ;-

y(1+y
1

211&1/2(1 + g)1/2(1og(1+§)/§)'1{T’1cos (T1og(1+y)/¥)}

<< T-1/2,

"
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o

where 0 < 7 < é < (2x)”7, and the integral S is estimated by Lemma 11,1
@™
by treating the main terms on the right~hand side of (11.36) as an error term.

Take next 1,,and write

32
00 Ap AT A o0
= =15 S PAL AN = T! "
132 yy sin(2sX¥)dy 8 u( " Y du = S oo dy + S oo o8y 132 + 132,
o "/L—'Q‘T‘ 0 4
say. In I%Q we have 0 <y < 1, hence by the residue theorem
Al i T —oB T A=
S (%l)uu”du = 2%i =( S + )(—1-51)“11‘1«111 = 201 + o(T'1y'1/2),
AT An+iT -0 ~iT
since -0 ¢+ [
5 (%I)uuqdu «< T-1S (%I)tdt << T'1y"1/2.
A an
Hence
1 4
-1 -1 -3/2
152 = 27 S y sin(2rXy)dy + of(T 5 | sin2aXy|y dy)
] .4 0

-

2rid 4+ o(x"1) +0(T"1S Xy'1/2dy) + O(T'1S y_3/2dy) =

2
-] x—a
ali s o(T'1/2).
Next, an integration by parts gives
oo Az i
1'3'2 = S y-1sin(2ﬁXy)dy S (l'-)-tl)uu-1du =
4 Ap- T
Aeip . . 0 1t
_ Los2xaXy 4+y\u -1 cos2nXy 1+y\u -1 -
[ DXy (y)u ’du 25rxy2 (y)p. du
YPET 1 T
@0 4+
_\cos2nXy 1+y\u-1 =2 -1
S Xy (y) y du << T logT,
1 Ap- T
since for y > 1
4/1,1':‘1‘ 4T
5 (l;-x-)uu-1du << S \u-1du! << logT,
A =T Alg-IP

80 that finally

I; = N o+ o(T'1/210gT).

It remains yet to evaluate I4, as given by (11.35), which will produce
the terms of 22(’.[‘) in (11.9) in the final result, We estimate first the inner

integrals in (11.,35), making a~>0, b—> @ in Lemma 11.1. We have then in the



in the notation of Lemma 11,1, for k = x > AT,

30 cos (Tlog(1+y)/y) cos (2axy) ay
1/2(1+y)3/210g(1+y)/y

(/J,x)‘1 (T/gr)1/ cos (TV + 2xxU - ax + 7/4) | O(T-1x'1/2),

v/ 4w = 1/2) V20 + 1/2)37/?

and similarly for r = 1,2

o

o

W
el

sin(Tlog(1+ sin(2mx - 1/2 » -1/2_ -1 -1.-1/2 -1/2
S 2 (o) o) T OB ) e 0T = 06,
Thus we have
T o Tcos(2Tars1nh\/—7T + (27xT + 9Tx )1/2 - X + a/4) -1/2{.
) : N,
g é Al V2xarsinh |/5x/2T « (T/20x + 1/4)1/2 %) (T/2nx + 1/4)174 "ok

Using A\ (x) << x“/3 and changing the variable x to x1/2 in the above

integral we obtain with the aid of (11.24)

oo o
(11.42) I, = ;I‘TZ (n)n-3/4§ cos{ 2Tarsinh (x |/5/2 )+(2.‘Jl'x T + 97-21(4)1 - :rx . a‘/4__

W X 3/2 arsinh (x }/F2T) ((T/2nx"+ 2 1 1/2 1)('1‘/2 ; 1/4

.{cos (Mx\/z - a7/4) - 3(32ax \/-1;)-1sin(4.7rx Vn - gr/4)3dx + O(T'1/6) -

= g%id(n)n-g/ﬁ"]n + o(T’1/6),
n=1

say.

Now it is transparent why a result like Lemma 11,2 was formulated and

proved; it is needed to estimate the integral Jn in (11.42). Indeed if

(T/27% - n)2 > nX, n < T/2%, that is to say if

(11.43) n o< (/21 + %/2) - (x3/a + xr/z) /2 - g,

then an application of Lemma 11.2 gives with o = 3/2, o = 5/2

14 = 22 d(n)n-1/2(log’1‘/2ﬁn)‘1cos(T(logT/Zyrn) - T +3/4) +
n<Z

v o(Tamn V3@ - zm) ™) + 0@ 25 am)n V2 - 2m)V/?)
n<Z n<z

+ o(T1/4§,d(n)n“3/4min(1,{2\/5+(/"-\/3(‘?2—1'737[‘1) + o V6 =
n=1

Ty + Ty + 1, ¢+ Ly + O07%),

44
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say, Now I,. contributes the main term in - ZZ(T) in (11,9), while the contri-

41
bution of the other terms (142 comes from applying Lemma 11,2 to estimate the

sine terms in (11.42) with o« = 5/2) is <« 1og2T. To see this observe that in view
of AT < X < A'T we have
Z2<<T, T/27r -2 > T,
Hence

-1 -1/2 -1/2
I <<T éd(n)n /2 < ¢ /log’l‘,

I << T‘1/2T‘1/22d(n)n"1/2 << T’1/2log'r,
43 =

and it remsins yet to deal with I,,, Since

43
1 L1 2 V 2
GVE+ /1 - 5V =x/2 « 1/2x = Vx°/a + x2/21 = 3,

I << T1/4id(n)n-3/4min(1,ln1/2 - z1/2r1)
n=1

we have

A4

2+ 2) =

+
PRALE - WAVLIP WAL S VI

T1/4( Z +

1/2 ¢
n<z/2 Z/2<n<Z-%

2

T1/4(S1 + 8, + 8 + 5, + 5),

3

say. Using partial summation and the crude estimate z d(n)~ xlogx, we obtain
n<x

8, = 2 cl(n)n"s/"'(z"/2 - 1f11/2)-1 << Z"‘/.2 ZJ <1(n)n'3/4 << T'1/4log'1‘,

' ong/e n<z/?

S, = Z 1/2ti(n)\n--5/d’(z1/2 - 1'11/2)"1 <<
Z

2 z/2an<z-

«zV4 3 17280 (2 - )™ < T-1/4z1/22 Z)cl([Zl-k)k'1 =<

2/ 2<n<z-7 <k<z/
Zlv
«1V 4(21082.2”" +S tlogt.t™2dt) << v/ f108°r,
v vl.l/v,
- -1/4
8, = Z d(n)n 3/4 << T /7logT
3 z-z1/2<15z+z1/2 ?

5, << 17"/ 4104%0

follows analogously as the estimste for 82’ and finally
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5, << 25 a@a Y42 - 2/ o 3 am)n ¥t < 17410,

Therefore we obtain
I, = 22d(n)n_1/2(log'r/2m1)—1cos(T(log’l‘/?_ﬂ‘n) - T +a/4) + 0(log2T),
n<z
and here the limit of summation Z may be replaced by
N o= N'(T) = T/2r + /2 - (82/4 + wr/2m) /2,
as in the formulation of Theorem 11,1, with a total error which is certainly
<< long. This proves then Theorem 11,1 if N is an integer, and if N is not an

integer then in (11.4) we replace N by (N| again with an error << long.

§3. Modified Atkinson's formula

Atkineen's formula for E(T), as given by (11.4), has the restriction that
N should satisfy AT < N < A'T, So far this restriction has not proved to be im-
‘one of)
portant in applications, of which the first was the mean value estimate for
™06

lr(1/2+it)(2dt (Theorem 6.2) which was made by D.R. Heath-Brown [1] and enabled
T-6 '

him to obtain the twelfth power moment estimate M(12);5 2. Ancther  application

of Atkinson's formula, due to Heath-Brown E?], involves an asymptotic formula

m

for S Ez(t)dt and will be presented in §4 of this chgpter. For both of these
appli;ations the range AT < N <A'T has proved to be quite sufficient, but it seems
desirablie 4o have a more flexible form of Atkinson's formula available. M, Jutila's
approach [Fi&of transforming Dirichiet polynomials with the divisor function by
the use of Voronofs formula (used also in our proof of Theorem 6,2) can be also
successfully applied here to give

THEOREM 11.2. Let T << N << T2 and N' and f(T,n) as in Theorem 11,1,
Then
(11.44) E(T) = 2’1/2Z}N(-Und(n)n”/"(arsinh Vin72E) " v/ 2mn + 1/8)"Y 4eoste(T,n))

n

- 2%‘d(n)n-1/2(log‘l‘/2mn)-1cos (T(LogT/2mn) - T + &/4) +
+ 0o((1 + T1/2N'1 + T1/4N-1/4)10g2T).

This formula differs from Atkinson's original formula (11-4) in the error

term, which is now a function of N also, but this is compensated by the wide
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range T << N << T2, where $§ > 0 is arbitrary. If AT < N < A'T, then the above
error terms reduce to O(long), i.e. one obtains exactly Atkinson's (11.4). A

proof of (11.44) is given by M. Jutila [}1, based on the method of his Theorem 1,

To prove (11.44) it suffices to show that if M N, <N, << T2, N, X N,, then
with L = logT we have
2 E , d(n)n_1/2(logT/an)—1cos(Tlog(T/Znn) -T +5/4) =
N (T,N, )N (T, N,)
(11.45)
PEEY @n%@n””@mmmgﬁﬁwaan+§”Mwﬂﬂmw)+
N,=n<N,

o(2"/2w;12) + o@Bmin((r/w) V2, (/) V4 + o)/ 2 /w0,

Here N!(T,N) = N' = T/20r + N/2 - (N2/4 + NT/23’\)1/2, and the idea is to
start from (11.4) with N X T and use the Voronof summation formula to shorten
one sum in (11.4) and to lengthen theother., The details of the proof are similar
to the proof of Theorem 6,2 and thus will be omitted, but some r emarks howver will
be offered. The case N, < No is considered first, Qhere Né is fixed and satisfies
/A < N (T,N) < 37/8%., As in the proof of Theorem 6.2 the summands are multi-
plied by e(n) = 1, which will regulate the distrubution of the saddle points

coming from the application of Theorem 2,2, After this, the sum is transformed by
' LTNG)

the Voronof formula (3.,2), and the integral S (logx + 2y)f(x)dx estimated by
NLT N

Lemma 2,2, Since exp(iT(logl/2rn)) = n"iTexp(iTlogTﬁwﬂ, the saddle points will be
the same as those given by (6.48), except now in the sum on the left-hand side of
(11.45) we shall have an extra factor (logT/Zmn)-1, and as in the proof of
Theorem 6,2 we see that
log(1/2%_) = 210g((rn/21) /2 & (1 + an/21)V?) - 2areinn((rm/2)/?).
Therefore calculating

5 e ) (x) V26 (2(x,) + kx, + 1/8)

by Theorem 2,2 we obtain-the right-hand side of (11.45). The error terms in (11,45)
are obtained by reasoning analogous to the one given in the proof of Theorem 6,2,

when one observes that

thr - () = (182, (og(r/2m)) ! << (a/m) /2
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for N'(T,Nz)‘s X < N'(T,N1). In the case when T << N, << 12 it seems easier to
transform the sum on the right-hand side of (11.45) by Voronofi 's formula, using

actually the averadged sum
J

(11.46) v S Z ...du

° Nj+tun<N,-u
similar to the one used in the proof of Theorem 6.2, but with the parameter
U = T1/2 + NAT-1. The terms arising from saddle points of the sum in (11.46) will
be exectly those on the left-hand side of (11.45), and the total contribution
of the error terms is given by (11,44)., This approach seems less difficult than
atteﬁpts to adapt Atkinson's original proof of Theorem 11,1, where one encounters
considerable difficulties when N = o(T). Furthermore the approach via Voronoi's
summation formula may be used to yield an explicit formula for {&(1/2+it)(2 itself,

which corresponds to a differentiated form of (11.4) in a certain sense, This

result is also given by M. Jutila [§], and it will be stated here as

THEOREM 11,3. Let t> t_, t* << N < t/4x, and let N' = N'(%,N) and

f(t,n) be as in Theorem 11,1, Then

(11an) (/2 + 1312 = 2V23 (@) Pa@)n™2(1/4 + t/20m) "V 4s1n(2 (6,n)) +
A

+ 2:zg'd(n)n-1/zcos(tlog(f/Zﬂn) -t - J/4) + O(N1/4t-1/4log2t) + 0(logt).

The equation (11.47) may be considered as an approximate functional
equation for [ﬁ(1/2+it)(2, different from the one that follows from (4.11) with
8 = 1/2 + it. However this difference is in some sense not essential, since (4.11)

may be used to prove (11.47), as will be explained now, First of all, note that

\Z(1/2 + it)\2 = Z?(1/2 + it)’)(,-1(1/2 +it),
where by (4.4) for t = t_ |
(11.48) Y(1/2 + it) = (2sr/t)iteit+i"/4(1 s o(t™),

so that (4.11) may be written in the form

(11.49)  |£(1/2+38)(® =7<'1(1/2+it)%jl(n)n"/z'it + A(1/2418) ) aln)a /24

n<N'!
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+ X(1/2 + it) :E: o, 5 d(n)n-1/2+it + 0(logt).

N'<n<t /A% N!

Now using (11.48) we have

L(1/24it) ), am)n /2 L V20000 Y a@nTV 2

n<N! n<i'

2Re{exp(itlog(t/Zﬁ)-it-tﬂ/4)2§ d(n)n-1/2_it§ + o(N“/zt'1logt) =
n<it

2:2: d(n)n-1/2cos(tlog(t/2wn)-t~ﬂ/4) + O(Nﬂ/zt-1logt).
n<h!

Here the error term is trivially dominated by the error termsin (11.47),
and so it is seen that (11.47) reduces to the proof of

(11.50) (n)n-1/2+it

N'SIstZ/MZN'd
-2" Zexp (1208 (t/2m) =115 4) 3 (-1)Pa(a)n” V2 (G + ¢/2m0) " Aasn (e (t,0)) +
. n<N

+ O(N1/4t-1/410g2t) + 0(logt).

This is again achieved via the Voronoi summation formula (3.2) and the
use of the proof of Theorem 6.,2. The terms of the sum on the left-hand side of
(11.50) are again multiplied by e(n) = 1, and an averaged form of the sum, as in
(11,46), is considered., The series which appears in Voronoi's formula is split
into two parte at N(14¢). The terms with n > N(1+¢) will have no saddle points
in view of the range of summation, which is N' < n < t2/¢n2N', while the terms
for n < N will give rise to saddle points x_ (given again by (6.48)), which will
contribute the main terms on the right-hand side of (11.50). The error terms
in (11.47) are small for N << T, and thus this formula can be also used for the
derivation of a variant of Theorem 6.2, and then also for higher power moments of
the zeta-function. The proof of (11,47) is notably simpler than the proof of
Atkinson's formula (11.4), and (11.47) can be also looked at from another view-
point in the light of Atkinson's formula, Namely starting from (11.22)‘we have
(11.51)  |E(1/2 + it)[® = 2Re g(u,1-u) + O(logt), u = 1/2 + it,

where g{u,1-u) is defined by (11.23). Using Voronoi's formula we have
e

(11.52) glu,1-u) = 2:§%d(n)g y (1 o+ y)u-1cos(2rny)dy +

[
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o0

+ S (logx + 2y)h(u,x)dx + :Z%d(n) S h(u,x)*(nx)dx,
N n=1 N

where o(nx) is given by (3.,15) and h(u,x) by (11.25). A direct application of

Theorem 2,2 gives for 1 << N << t2

(11.53) 4Re :Z:d(n)S v 21+ y)u—1cos(2mhy)dy -
n<N & v

-21/2,%@1)%(11){‘/ 2G t/2rn)"V4sin(2(t,m)) +

v o4 410gt) + o(N1/2t"1) + 0(logt),
8o that combining (11.,52) and (11.53) we obtain the main term on the right-hand side
of (11,47). However difficulties arise with this approach when one tiies to
estimate the series on the right~hand side of (11,52), and therefore the first

proof of (11.47) seems preferable.

§4. The mean square of E(t)

Let as before
n

E(?) = S [€1/2 + 1) %at - Tlog(T/2x) - (2f - 1)T.
°
Atkinson's formula (11.4) for E(T) provides the means for obtaining

a mean square estimate for E(t) which is analogous to Theorem 10,5. The method
of proof, due to D.,R. Heath-Brown [?], ig similar in nature to Cramér's proof
of (10.29) and the result is contained in

THEOREM 11,4,

T ]
(11.54) SEQ(t)dt .%(25:)“1/22d2(n)n’3/2.T3/2 + o1 *106D).
2 na1

Proof of Theorem 11.,4. It will be sufficient to prove

am 0
(s5) S5 = 2am V2 a2 (@2 - 13/« o1/ 106,
m n=1

and then to replace T by T/2,T/22, etc, and to sum all the results. We use Atkin-

son's formula in the form

(11.56) B() = Z,(1) + Z,(m) + R(1),
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where 21 (T) and 22(’1‘) are given by (1.7) and (1.9), and R(T) << long' Then

27 ! 2
arsn §ewar = (Z2wer+ 2§ 2,00 (2,0 + neme +
I P m

r
+ S( Z (1) + R(t))%at.
T

The main term on the right-hand side of (11.59) will come from the first
integral on the right-hand side of (11.57). We choose N = T in Atkinson's formula

and proceed to show that

(11,58) S zf(t)df, - g(mq/zzdz(n)n-3/2((2T)3/2 ) T3/2) v o(o™Ey.
o n=1

To demonstrate this we merely square out 21 (t) and integrate term by
term, estimating the non-diagonal terms (i.e. those for which m £ n) by the
following

Lemma 11,1. Let £; (t)y (1 <j <k) and £(t) be continuous, monotonic
real-valued functio.ns on [a,b-] and let f(t) have & continuous,monotonic derivative
on Ea,b]. If 183’ (t)] SMj, (1 <3 <x), [f'(t)l 2M;1 on [:a,b], then

&

k
(11.59) | § Og@emuena| < 2T,
j=0

3=

pe_—y

Proof of Lemma 11.1., The lemma is a straghtforward generalization of

Lemma 2.1, Recall that if F(x),G(x) are real-valued on Ea,b] and F(x) is monotonic,

then the second mean-value theorem for integrals states that
L

&
(11.60) SF(x)G(x)dx = F(a)g(}(x)dx + F(b)SG(x)dx
4

A o

for some a 5E < b, Applying (11.60) k times to the real and imaginary part of the

integral in (11.59) we obtain

£ «
e, (t)exp(if(t))at| <
’é j=1 7 ‘

k %, £y
ZkHM.( max 1 S cosf(t)-dt l + max ' Ssinf(t)odt] ) <
3=1 7 asa @ 2 &, a<a <0, D a,
3, n,
k+1 ke 3 5
2 nMj( max l S dsinf(t) | + max l S dcosf (t) l <277 u,.
J=0 Y ags <n<b 2, a< o, <n.d g, 3=0 Y
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Now we return +to the proof of Theorem 11,4, noting that the terms of

Zf(t) are of the form
1=1)™" 4 (n)a (m) (mn) "/ 26 (1) cost (1),
where with f£(T,n) given by (11.5) we have
f(t). = f(t,n) + £(t,m),
e(t) = g, (t)a,(t)e,lt)g, (1),
g,(t) = (t/27n + 1/4)’1/4, g5(t) = (t/2mm + 1/a)~ /4,

gs(t) = (arsinh\ﬂrn72t)_1, gA(t) = (arsinh\krn72t)-1.
The contribution of the terms with m % n is estimated by Lemma 11,1, where
<< (T/n)1/2, M

we take M, << (n/T)1/4, M, << (m/T)1/4, M << (T/m)1/2. Also,

3 A

since

f'(t,n) = 2arsinh |/an/2¢
we may take

M << T1/2ln1/2:m1/2r1.

Thus the contribution of the non-diagonal terms is

<< T ; d(m)d(n) (mn)-3/4[n1/2 1/2 + ‘I‘Z,d (n)n « 7*f
mFER<T

by repeating the estimate of (10.%4), where the second sum above comes from those
terms for which m = n but £(t) # 0.
The contribution of the diagonal terms m = n to the left-hsnd side of
(11,58) is -
%réudz(n)n-1,§ g(t)as,
where we recall that N = T, For |x] < 1 we have (ars:tnhx)-2 -x2 . 0(1), and
for n < N = T we thus have

g(t) = 23/2t1/2(mn)-1/2 + o(n1/2'r‘"1/2),

which gives
m

521(,6)“ 1,3/2 -1/22d (n)n 3/25 /24, o O(Zd (n)n -1/2 1/2) o(r'*)-

- (2m)~V2) dz(n)n-3/25t1/2dt . o('r3/22d2(n)n‘5/2) o™y -
=T

n=*1 T
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%—(2&)'1/22%d2(n)n-3/2((2T)3/2 - T3/2) + oY),

This proves (11.58), and now it remains to consider the mean value of
22(1:). We have

2
(11.61) Szg(t)dt << Tlog4T.
T

The method of proof will be similar to the proof of (11.58). The choice
N = T makes now

N o= N'(t) = t/2% + N/2 - (N°/4 + Nt/zar)1/2
dependent on t. However for T <t < 2T and n < N'(t) we have (logt/2srn)-1 << 1, so

that the logarithmic factor in 2‘42(1:) will cause no trouble. The terms of

Zg(t) are of the form

2d(m)d(n) (mn)d/zg(t) coa(tlog(t2/4;r2mn) - 2t +%/2) + cos (tlogm/n)} ,
where

g(t) = (logt/2m)-1(1ogt/'21rn)-1 <«< 1.

For each pair m,n we have to integrate over that subinterval of [11‘,2'1'-]

for which N'(t) > mex(m,n). Since

(t(logt2/4ﬁ2nn) - 2t + Jr/2)' > |logm/n|, (tlogm/n)' >> |logm/n|,

an application of Lemma 11,1 shows that the contribution of the terms m ;4 n is

<< ; d(m)d(n) (mn)_1/2‘logm/nr1 <<
ngm<T

- 11122141'@2(111)111"1 + dz(n)n-1)llogm/n(-1 <<

; a2 (rx)n-1 |logm/n \-1 <<

mEn<l

<< zrld'?(n)n"1 z [logm/nl"1 << Zdz(n)n'1(T+nlog‘1‘) << Tloghm,
n<T  m<T,mgn n<t

gince

2, \ogn/nl™' = T (teg/m)T! + T (logm/n)-1 -
nSmet

n<T,mfn m<n-1

S (e o+ 7 (dE)T «
r<n-1 n=r r<T=-n n

>, a4 S, (1 o+ nr-1) << T + nlogl.

r<n- 1 r<T-n



The terms m = n trivially contribute

A

«< 17,¢%mn"" <« T0gM,
2t

and therefore (11.61) follows.,
The proof of (11.54) is finally obtained by combining (11.57),(11.58),

(11.61) and using the Cauchy-Schwarz inequality, since
’ «n

(§ Ty (Zp) + 2())an)? < {Bwar (250 + B¥(0)as <
13/2(n10g? + Tlogh) < 192108,

l§ () + R A < 2 { (Z2(1) + B3 (1))at < miog™r.
-« T

This finishes the proof of Theorem 11,4, which gives immediately

Corollary 11.1.
Br) - QeVh.

This ie analogous to Z&(x) = 52(11/4) which follows from Theorem 10,5,

but the sharper G2 -results known to hold for /\(x) are not known yet to hold

for E(T). This should not be surprising, as Atkinson's formula for E(T) was deri=
ved with the aid of a formula for /\(x), embodied in VoronoI's formula, so that it
is natural to expect that problems involving E(T) will be at least as difficult

as those involving A (x), and more about the connection between E(T) and /\(x)
will be found in the next section, Going through the proof of Theorem 11,4 one
may observe that the proof enables one to estimate the integral of Ez(t) over a
short interval, and that the proof actually gives

Corollary 11,2, For T* << G€Muniformly in G we have

T4+ Q
5 B2 (t)dt << T“(GTVZ + 7).
™6

This estimate is analogous to (10.51) for /\(x), and the main interest

in estimates of this sort is that they provide us with a way of estimating

Vet e
E(1/2 + iT), and Corollary 11,2 leads to the classical estimate £(1/24iT) << T

To see this observe that with L = logT and the notation of (11.3) we have
™o GL

S lﬁ(1/2+it)[2dt << S exp(-tzG-2)dI(T+t) =
(11.62) exp (-£2G"2) (1og%*-s-tr- +2p)at + 0(1) + § E(T+t)t6 2exp(-t26¢"2)at <<
-6L

-6L
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« @ + o 'i( 5 52 (t)at) V2 S a2«

T-GL T-GL

« %@ + /% . G"1/2T1/2),

if we use Corollary 11.2 and the Cauchy-Schwarz inequality. In view of Lemma 6.1
Py o

(eq. (6.2) with k = 2) and S << S the estimate [(1/2+iT) <<T1/6+€
- -6 ,
follows from (11.,62) with the choice G = ‘1‘1/3. Therefore if we define F(T) by
m v o
(11.63) ( 2(tyar - §<2,—>-1/22 2mn %32,y
2 n=1
any order estimate F(T) << T°'°, 3/4 < c < 5/4 would give [(1/2+iT) << ‘1“3/6+e by

the above method, In analogy with Theorem 10,7 I conjecture that

(11.64) F(T) = S?(T3/4‘S)
for any $ >o0. By the method of proof of Theorem 10,7 this may be obtained if the

truth of the Lindeldf hypothesis is assumed, in which case trivially

\B(T,) - E(T,)| <
Ty

| § 12G/2n0l%ae ] + |2 Goary/2m) + 1y (5p-1) - 3,081, 2m) - y(3p-1)]
bt
«< rf1, - 1)

for T <T,,T, < 2T. Thus it is seen that the method of proof of Theorem 10,7 may

2
be applied and (11.64) follows, but it would be interesting to obtain an uncon-

ditional proof of (11,64).

§5. Connection between E(T) and /A (x)

As mentioned in §1, a comparison between (11.4) and (3.17) shows a
similarity between 21 (T) and %A(T/Zsi), since apart from the oscillating factor
(-1)n the first o(T1/3) terms are asymptotically equal to eacil other. The influ-
ence of 22(’1‘) in Atkinson's formula {11.4) may be usually made ama114 by some
averaging processs, so that there is in a certain sense also an analogy between
E(T) and 2x/\(T/2x), pointed out already by Atkinson Lﬂ.

Furthermore, if 0‘2 and 92 are the infima of constants a, and c, such



a +E C +t
that A(x) < x , B(T) << T for every & > 0, then one would expect

2 2
theorems the inequalities dé < 1/4 and ©

d, = @, = 1/4 in view of Theorem 10.5 and Theorem 11.4, and as shown by these
5 < 1/4 are impossible, Albeit the

equality d2 = 92' ig #till not known to hold, the best upper bounds dQ‘s 35/109
and 0, < 35/108 are indeed equal. The bound %, < 35/108 is Theorem 10,1, while
it was shown by R. Balasubramanien [1] from (11.12) that the estimation of E(T)
may be reduced to the estimation of exponential sums to which the methods of G.
Kolesnik used for (10.13) equally apply, and the bound 6, < 35/108 (given here
ag Corollary 11.4 by another approach) is a consequence, Following the method of
M. Jutila [4] it will be shown that E(T) may be majorized by an expression very
similar to the one which is given for 291 /\(1/271) by (3.17) with (=1)" factor,

so that the estimation is reduced to very simildr exponential sums,which prompts

one to expect that <12 = 92 doee hold, Purthermote by Lemma 6.1 it is seen that

@,+8)/2 O+ '
£(1/2 + i1) < T if E(T) < T , 80 that Atkinson's formula shows in

fact how the three problems of estimating the order of A\(x),E(T) and C(1/2+iT)
(and in view of §8 of Chapter 10 one might add P(x) also) may be unified in more
or less one problem, with very similar exponential sums appearing in each case,
Previously these problems have been treated separately and by different methods,
and though we repeat again that dQ = 02 still cannot be proved in general, it is
hard to imagine a method for the estimation of exponential sums in question which
would yield o, ¥ 6,.

Our first task will be technical and consists in introducing a new
function A\*(x), which will be similar to /\(x) but will contain the oscillating
factor (-1)", thus providing & more exact analogy between E(T) and the error
term in the divisor problem, Let us for this purpose consider the function
(11.65) P(x) = -D(x) + 2D(2x) - P(4x),
where

D(x) = j{;d(n) = xlogx 4 (2( - x + A,
n<x
so that we may write

(11.66) P*(x) = xlogx + (2f - )x + A*®x),
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4

(11,67) A*E) = A+ 2A(x) - FAMx).
Now it will turn out that ZmZXf(T/Zw) is the "right" analogue of 221(T)

in Atkinson's formula, since for N << x we have

(11.68)  A*x) = @v2) x4 (-1)%a(n)n" Y 4eos (sar\/ox - x/8) + o(x/2+ey 18,
2

To see that (11.68) holds use (3,17) with N << x, viz.

AR = (.'7(\/5)'1::1/42 d(n)n-3/4cos(49'l’\/nx -T/4) + 0(11/2+€N-1/2)
n<N
with x,2x,4x and N,N/2,N/4 respectively, From (11,67) we have then

(11.69) oy VAAR() - -%d(n)n’”‘*eos(m\/r'i‘—ﬁ/n +

v 22 27, a(x) (26) " Aeos (4T - 3/8) -

2k<N

- 2 a(m) (4m)"3 4cos (aor/Fax - 7/a) + o(xV/Aey /2y,

Am<N
The sums on the right-hand side of (11.,69) will give one sum

%f (r)r-3/4cos (4r\/rx - T/4)
r—

over natural numbers r, and it remeins to consider f(r). If r is odd, then
obviously f(r) = -d(r) = (-1)Td(r), since 2k and 4m are even, If r = 2s, but s
is-odd, then d(2s) = 2d(s) and so f(r) comes from the first two sums on the
right-hand side of (11.69) and eguals f(r) = -dfr) + 2dér) = (-1)¥a(r). Finally
if r = 4q, observe that from d(2%) = a + 1 we always have d(4q) = 2d(2q) - d(q),
so that in this case

£(r) = -a(40) + 2°4(20) - 24(q) = A(40) = (-DTa(x),
and thue (11.68) follows from (11.69).

Next we need an averaged expression for E(T). This will be accomplished
by integrating E(T) over very short intervals, the precise meaning of "very
short" being given below, Because of the square roots in the ekpression for
E(T) it will be technically more convenient to work with the function
(11.70) E(x) = EGO)

than with E(x) directly, and with thie in mind we define the averaged integral
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U1

-

-1 ‘ -u%e
(11.71) E1(x) = G SEo(x+u)e du.
H

a b

Here H = GL = Glogl, T ©° < G < T ° for some 1/2>a > b > 0. The

estimate that we need is contained in

Lemma 11,2, For %T1/2 < x < -%T1/2, M= G-2L2 we have

(11.72) E1(x) = (2mx2)1/422%(-1)nd(n)n—3/4e(xz,n)r(x,n)cos(f(x2,n)) + O(TE).

Here

(11473) r(xyn) = exp (—4@2 (xarsinh( \/grn72x_1))2) .

and the expressions for e and f are given by Atkinson's formula, i.e.

(11.74) e(xyn) = (1 + ﬂn/2x)-1/4(\/2x2ﬂnarsinhﬂﬁrn72x))'1= 1 - é%% + O(nzx-z),

2 1/2
(11,75) f(x,n) = 2xarsinh /FO/Z% + CN’nz + 29mx) / - a4 =

~T/4 + (8ﬂnx)1/2 + O(n3/2x-1/2),
where n << x in both (11.74) and (11.75).

Proof of Lemma 11.2. Take N = T in Atkinson's formula. By (11.6) we

have

2 1 ¢ 2, —u?g? 2
(179 5@ = X6 § 2+ )™ T v 12
J= -H

Consider here first the term with j = 1, By (11,7) this is

i
2.-2
(11.77)  (2/x) 1/4(}- 1§ (x+u) 1/22 ~1)"a (n)l-’%' e ((xr) 2,n) cos (£ (( x+u) 2,n) e G gy,
-H n<T
As in Chapter 6 and Chapter 8 we shall use the exponential integral

(1.34), namely
o0

Sexp(At - Bt9at = (’.J(/B)1/2exp(A2/4B), ReB > O.

-0
The choice H = GL in (11,71) makes it possible to replace the limits
of integration in (11.77) by (-, ) with a negligible error., However before
doing this we use Taylor's formula to replace (x + u)1/2 by x1/2 and likewise
e((x + u)2,n) by e(xz,n) with a total error which is << 1, Also by Taylor's

formula using f'(t,n) = 2arsinh\ﬂWn72t we have

(11.78) f((x+u)2,n) = f(xz,n) + 4xuarsinh(}krn;2x-1) + A(n,x)u2 + O(T-1/2G3L3),

Lo
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where A(n,x) = (n/T)3/2, since in view of

3 5 7
. 1 1. 1.3,
arginhz = 2z - _2""%_+ 2'3'2 - 2.2.2'%_"' cen 9 lZ\ < 1,

we have with F(x) = f(xz,n) that F"(x) < (n/m)3/2, Fm(x) << n5/2T'2 holds.

Now we substitute (11,78) into (11.77), using exp(iy) = 1 + 0(|yl) for real y,
8o that the error term in (11.78) makes & total contribution << et «< 1.
Then we use (1.34), noting that with the abbreviation B(n,x) = ¢? - A(n,x)i the

expression in (11.77) becomes

(11.79) (/) V42T () a(n)n Y 4e (x2,0) -
nt

. 2 ’ -
. Re elf(x »n) (W/B(n,x))1/29xp(-4(xarsinh(\- Tn/2x 1))2) + o0(1).

B(n,x)

Here the terms with n> M = G~2L2 make & negligible contribution

because of the presence of the exponential factor containing (xarsinh...)z, and
if we replace B(n,x) by 0_2 using Taylor's formula we make a total error which
1s < /4725 <1,

In this fashion the main term in (11.,72) is obtained, and to complete
the proof of Lemma 11,2 it remains to show that the term with j = 2 in (11.76)
is << T . Since N = T was fixed in the definition of 7_'}1 (T) in Atkinson's formula,
then N!' in the definition of EZ(T) in Atkinscn's formula will depend on (x+u)2.
However it is convenient to replace N! ((x+u)2,T) by N! (XQ,T). Recalling that

N = N'(x,7) = T/2r+ x/2 - (12/4 + x‘!/2ﬂ)1/2,
we have

W2, - 0 ()i <« 1%L,

2

X+
2 >> 1 and

2
1
For n < N'((x+u)”,T) we have log-5—

2 2
+u) 4\ -1 -1 -1/2
(10ZBL " L (10" + o /2.

Therefore by Atkinson's formula, for |u| <H,

2
(11.80) ZZ((x-l-u)z) - Z( 5 )d(n)n-1/2(log-25}‘;;)-1cos(g((x+n)2,n) + o(7q),
n<qN'(x ,T

where from (11.10) we obtain
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g((x+u)2,n) = g(xg,n) + 2xlog(x2/2ﬂn)-u + (log(x2/2xn) + 2)u2 + O(G3L3T_1/2),

We substitute the expression for g((x+u)2,n) in (11.80) and argue as in the
case j = 1, using the integral (1.34). The exponential factor, analogous to the

-C

one in (11.79) with (xarsinh...)z, will make each term in the sum << T ~ for

eny fixed ¢ > 0O, while the error term in (11.80) will make the contribution 0(T%)
in (11.72) so that Lemma 11.2 follows.

Having proved Lemma 11,2 we shall use it to obtain an expression for E(T)
analogous to the expression for 2%/\*(T/2r) which follows from (11.68), except
that cos(47T\/nx - 7/4) will be replaceﬁrby cos(f(T,n)). We suppose that

/2 <t, <T < t, <27, end with I(T) = S(Zf(1/2+it)l2dt we have triwially
-]

1
I(t) = I(T) =< I(t,).

This gives easily

(11.81) E(t,l) + 0((T - t,)logT) < E(T) < E(tz) + O((t2 - T)logT)

by (11.3), and the idea is to integrate (11,81) over a very short interval using
Lemma 11,2, We shall consider the first inequality in (11,81) only, since the
other one is treated in exactly the same way. Since the relevant range for the
order of E(T) is T1/4 <«< E(T) < T1/3, we suppose that Y is a parameter which
satisfies T1/4L-1 < Y < T1/3L'1 and let G = T"1/2YL'2, so that G clearly
satisfies the condition assumed in Lemma 11.2, Letting

t =T-Y+2(T-Y)1/2u+u2, [ul < GL,

1
-1/2,.=2
it is seen that with our choice G = T YL = we have t1;5 T as needed in (11.81),

and therefore oL integrating (11.81) we obtain

2. -2

¢ “au 4 0(YL) < yxE(T).

(11,82) ¢t S E(T - Y + 2(T - Y)1/2u + ud)e™®
- 6L

But the integral in (11.82) is just E1((T - Y)1/2) by (11.70), and
thus (11.81) gives in fact

£ (- 03 vom) swE® = B+ 0% + o).

The integrals E1((T'i Y)1/2) are evaluated by Lemma 11.2, and setting

X = YL it is seen that we obtain
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THEOREM 11,5, Let T <« 7 < 2T, '1‘1/4 <X < T1/3. Then uniformly in o

(11.83) E(5) < x+17/% sup | Z_z 8(-1)nd(n)n'5/4e(t,n)r(t1/2,n)cos(f(t,n)) )
[t-7| <X n<TX °L

2.2 6

The value TX LS appears because M = G ‘L° = i ik TX-2L8, and the
presence of the exponential factors in the proof of Lemma 11.2 which come from
the application of (11.34) make it possible to obtain the result for T < &5 2T,
Using partial summation we may remove the factors e(t,n) and r(t1/2,n) to obtain

the analogue of (11,68), which may be stated as

Qorollary 11.3., Let T1/4 <X< 'I“l/3 and M = ‘I'X.2L8. Then

(11.84) E(T) << X + T1/4 sup sup ‘ZZI(-1)nd(n)n-3/4cos(f(t,n))\.
[t-T{<X uM n<u

This is a restricted analogue of (11.68), with N corresponding to
M= TX-ZL8 here., Since for n<k t we have

£(t,n) = -4 + axme/em)/? 4+ o¥%V?),

it ie seen that (11.84) corresponds to 27/\*(T/2x), and so using Kolesnik's method
we obtain easily from (11.84) the analogue of Theorem 10,1, namely

Corollary 11.4,

(11.85) B(T) << p35/108+¢

The analogy between E(t) and 27/\*(t/27) can be pursued eveh further, From

Theorem 11,4 we have
m

(11.86) (e = (¢, + o)r¥?,
1
while squaring and integrating (11.68) in the way Theorem 10.5 was derived we

obtain -

(11.87) (A (ar = (o, + 0(1))2¥2,

2
which shows that the average order of both |E(t)| and [A*(t)| is << t1/4.

However if we define

(11,88) E¥(t) = E(t) - 2r/\*(t/2m),

then it can be shown that the average order of |E¥(t)| is << t1/61033/2t. This

follows from



THEQOREM 11,6.
b2

(11.89) Ce*%(t)at < 3108
2

3T.

Proof of Theorem 11.,6. The general idea of the proof is the same one

that was used in the proof of Theorem 10.5., It will be sufficient to prove (11,89)
for the integral over [?,ZT} and we apply Atkinson's formula with N = T in 2%(t),
The quality of the final result in (11.89) is determined by the size of the

1/3)

error term in the expansion for f(t,n) in (11,75), which is emall for n = o(t

Write

(11.90)  Z,(8) = 2y, (6,%) + Ly ,(t,X%),

where in 211 summation is over n < X, and in 212 over X <n < T, If we set

(11.91)  S(t,X) = 21/2(t/zar)‘/4z<,x(-1)nd(n)n‘3/4cos(f(t,n)),

then from (11.7) and (11.8) we infer
Z“(t,x) - S(t,X) < T"3/4Zd(n)n1/4 <« 173/45/ 41 0% << 10gr
n<X

with the choice
(11.92) x = /3,
We use now (11.68) with N=T, x = t/2x and decompose the sum gimi-
laity as the sum in (11.90):
(11.93) A*F(t/om) = AXG/emx) + AX(8/2x,0) + o(T).

Therefore we obtain

SE*Z(t)dt << S(s(t,x) - 2frA’:(t/2ar,x))2dt + S Zfz(t,x)dt +
z 2 T
m 2T
+ gz,z(t)dt + SA*2(t/2:r,x)dt s o D01+ o(@™),
m 2 T 2 j=1 4

say. By (11,61) we have I3 << Tlog4T, and likewise the non-diagonal terms (those

with m / n when the sum is squared) of I2 contribute << T1+£, while the diagonal

terms give trivially
«< 1'3/")2‘)312(11):;'5/2 « ™108%
>X

with the choice X = T1/3, and the same argument applies to I, as well, hence

4

A/3, .3
12 + I3 + I4 << T"7“log’T,



It remains to estimate I1. Using cosa - cosb = —ZSingghsinE%h and
defining
1 - 1/2
h—(tn)=5(£(t,n) ¥ (-7/4 + 2(2mmt) /%))
we have
S(t,X) - 2n/A¥(t/2m,%) = -z(zt/gr)‘/42(-1)“d(n)n'3/4sin(h_(t,n))sin<h+(t,n)).
n<X

Hence

2m
I, << T1/2 }E; d(m)d(n)(mn)-3/4‘ S sin(h_(t,m»sin(h_(t,n»sin(h+(t,m)ﬁinﬂaﬂtn»dt .
m, n<X T
As in the proof of Theorem 10,5 and Theorem 11,4 we may estimate the
non-diagonal terms m # n above by Lemma 2,1 to obtain a total contribution which
is <« T1+£. As for the diagonal terms, observe that by (11.75)
h_(t,n) << n3/2t-1/2 << n3/2T-1/2,

and thus using |sinx| < [xlfor x réal we get a contribution which is

m
<< T1/2Zd2(n)n-3/25 sinz(h_(t,n))dt << T1/2n§32(n)n3/2 <<
n<X m -

<< T1/2X5/2logax << T4/3log3T,

which completes the proof of Theorem 11,6,

§6. Large values and power moments of E(T)

Pursuing further the analogy between E(T) and the divisor problem we
present now estimates for power moments of E(T). These estimates are the analo-
gues of Theorem 10,9 and Theorem 10.12, and the result is contained in

THEOREM 11.7.
m

(11.94)  IB(e)(2at < nla+a+e)/4, for 0 < A < 35/4,

lE(t)lAdt < T(35A+38+e)/108,

(11.95) for A > 35/4.

pe_~yg M

The proof of Theorem 11,7 is completely analogous to the proof of
Theorem 10,9, using (11.85) instead of (10.13) and (11.83) as the analogue of
the truncated VoronoI formula (3.17) with Tx~°L° corresponding to N. A large

values estimate for E(T), namely
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(o]
Re]

(11.96) R o« 1H(IvE o+ 1'/A12y 0 VA oy o 23,

is deduced for E(T) in the same way as (10.54) was derived, and the restriction
T1/4 < V << ‘I‘1/3 is not essential, since V =>> T1/5 cannot hold because of
Corollary 11.4 and for V << T1/4 one will trivially obtain (11.94) for the corres-
ponding discrete sum., For (11.96) we suppose that T/2 < by <e.. <t <T are
points which satisfy (tr - ts['z CV (r # s <R) for some suitable ¢ > O,
T1/4 << V << T1/3 and E(tr) >> V forr = 1,...,R, Choosing X = CV we have
then from (11.83)
(11.97) R <<

1/2+¢ =2 n -3/4 1/2 . 2
<< T v max 2{} ‘ :ZL (-1)"d(n)n e(t;,n)r(t; ,n)exp(lf(t;,n)) ,

prTv'zLe r<R M<n<®M

where t; is the point for which the supremum in (11,83) is attained. Considering

separately t we may suppose that {t; - té[jz CV when r % 8.

z'im’tz'lm'*“I ’ tim"‘Z ’ td',m+3
From this point the proof of (11.96) is almost identical with the proof of \10,54),
since after the application of the Haldsz-Montgomery inequality (1.36) the
functions e and r which appear in (11.97) may be easily removed by partial summa-
tion keeping in mind that r(x,n) is monotonic and < 1 and that (11.74) holds.
Similarly one has \11,75) for f(t,n), and the theory of exponent pairs that was
used in the proof of (10.54) may be equally well applied here, producing (11.,96)
which yields then Theorem 11,7 with the aid of (11.85).

In analogy with (10,60) it may be noted that the theoretical limit

for power moments that (11.,96) can give is
m

§ le(e)|Mae < 215/47E,

t

which would give then
(11,98) L(1/2 +i1) << 15/32+¢

Namely using Lemma 6,1, HSlder's inequality and arguing as in (11,62)
we have with L = logT T+EL

[E(1/2 + iT)(2 «<oert(1 + szmg; [E(t)]dt) <<

o
orf(1 + @ glE(t){11dt)1/11c10/11) o pd/16+s

for G = T'SM6 .
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NOTES
J.E. Littlewood proved (11.3) in (1] by means of results connected
with the approximéte functional equation for the zeta-function. E,C. Titchmarsh's

1/2+e and a proof that E(T) << T5/12+€

book [8] contains a proof of E(T) << T
has been given by Titchmarsh Eﬁ}.

The Riemann-Siegel formuia used by R. Balasubramanian [1] in hie proof
of (11.12) is Theorem 4,16 of Titchmarsh [81 with N = 5, The idea of Balasubra-

manian's proof is to square the expression for eigt(1/2+it) and to estimate the

resulting integrals, some of which are technically rather complicated., His paper
1/6+¢

also contains the result Xn+1 - Yn << n

, which was discussed in Chapter 8,
plus some related results concerning Dirichlet series, Discussing estimates of
E(T), Balagsubramanian mentions Atkinson's formula (11.4) in his §1 by sayings
"In this connection, we can also mention thai our result seems to be more useful
than that of Atkinson", In view of (11,84) and other applications of Atkinson's
formula one could hardly agree with this statement.

In §2 we have followed closely Atkinson's original proof [}1 of (11.4),

where curiously in 1.3 on p. 375 he makes a mistake in sign, obtaining +2:E,d(n)...

n<N'
in place of -2:23 d(n)s.. o The corrected form of (11.4) was stated by M, Jutila
n<N'
[63 without comment, For technical reasons (to avoid the last term in J 'd(n)

n<x

in {3.1)) one takes X = N + 1/2,N an integer, from (11,27) onwards, and ;; is

easily seen that this restriction does not affeet the final result.
Heath-Brown's derivation [1] of Theorem 6.2 starts from (11.62) in the

form

e o 2 -2
(1/2 + it)[zdt << GL + E(T + £)t6" %" ¢ at
%
-6 '

-~ 6L

and uses Atkinson's formula, The contribution of }BZ(T + t) to the above integral
is small, and the main contribution arises from E%(T + t), producing a sum of

21032'1'. In analyzyng the differemce in the proofs of Theorem 6.2 it

length << TG
should be notes that in Heath-Brown's proof one uses first the Voronoi summation
formula, which is implicit in Atkihson's formula, and then exponential integrals

of the form f11.34), while in our proof one makes first an exponential averaging
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of the approximate functional equation for K2(1/2 + it) and then applies the
Voronol summation formula.

It should be perhaps stressed that one of the chief merits of Atkinson's
formula or one of its variants like Theorem 11,3 is that the explicit formula in
question contains a sum (and not a square or an absolute value etc.) which may be
directly integrated termwise as in Lemma 11,2 or in Heath-Brown's proof [ﬁ] of

Theorem 6,2, Take for example (11.47) and set

1/5+¢ T1/3

N=TG-2L2,L-logT,T/25tr=t5T,T <6< .

Results of §2 of Chapter 7 concerning power moments of the zeta-function
may be successfully oﬁtained then from (11.47), where for our range of G we may
replace (1/4 + 1:1_/."'_".|'n)“1/4 by (tr/2$m)-1/4 with an error which is << 1, Namely

the basic step in the proof of Theorem 7.1 consists in bounding the sum
++6

(11.99) Z S |L(1/2 + it)] %at

treA -6
over some suitable points t € A QET/Z,T], where }tr - ts( = G for t # t € A,
Averaging (11.47) with the usual exponential factor exp(-tQG-z) and using (1.34)

we infer that the expression in (11.99) is bounded by a constant times

6, 2y o) ()" 4sin(e (s_yn))exp(~ (Gareinh VFTFED)?) +

t GA n<l‘G L

+ |A|GlogT = GS + |[A[GlogT,
say. In Chapter 7 the Haldsz-Montgomery inequality (1.35) was used to bound in
Lemma 7.1 a sum very similar to S above, but the point here is that S can be esti-
meted directly from first principles with the same effect as if one used (;I.BS).
This is possible since there is no absolute value s8ign in S, and thus the order of
summation can be changed. Since exp(-(Garsinh W)Q) can be easily removed from
S by partial summation as in the proof of Theorem 6,2, it is seen that for

K 5%’1‘(}-21.2 the sum S is in fact majorized by the largest of sums of the type

‘ 2 z (-1)nd(n) (ntr)-1/4sin(f(tr,n)) ] <
T KK

(2, a3V T !Z Verp(iz (s ,m) [HV? <«

K<n_<_2K K<n<@K
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< Mo ( Y 2, () et m-it (s, 2 <«

K<n<Z2K t_,t €A
- r’’s

v VA 0¥ 2 (i 1 > exp(if(t_m)-if () ) V2,
t At es Ka=2K

This exactly corresponds to the use of Lemma 7.1, namely (7.17) in the

proof of Theorem 7.1, since

:Z; exp(if(ti,n)-if(ts,n))y t £t

K<n<2K s’
can be estimated either by Lemma 2.5 and Lemma 2,1 or by the theory of exponent
pairs as in the proof of Lemma 7.1, and the end result will be therefore the same.
The same observation may be made concerning (6.25), where following the proof one
obtains the sum on the right-hand side of (6.29) without the absolute value
signs with exp(if(T,n)) replaced by sin{f(T,n)). Thus the bounds for the sum in
(11.99) may be obtained without the use of (1.35).

The results of {3 are to be found in M. Jutila's work [6], where more
general applications of Voronof type summation formulas are considered.
Theorem 11,4 is due to D.R. Heath-Brown {2]. The result E(T) = SE(T1/4),

stated here as Corollary 11.2, was obtained a little before Heath-brown by A. Good

{j], who used a complicated technique which was not based cn Atkinsont's formula,

A plausible conjecture is that F(T) << 23/ inere F(T) is defined by (11.63),
: . . : : 1/8+¢ _

and this would lead to the hypothetical ﬁ(1/2 + iT) << T , a result out of

reach at present. The same would follow of course from the conjectural estimate

E(T) <<.T1/4+c, which in view of (11.84) seems to be of the same degree of diffi-

culty as the classical conjecture <X2 = 1/A in the divisor problem. There seems

to be no method available at present which would permit one to deduce from the
(global).estimate B(T) << Tc+t, 