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SUR LA TOPOLOGIE DU COMPLEMENTAIRE D'UNE HYPERSURFACE DANS:Pn+1.

INTRODUCTION.
Soit f(zo,zl,_..,zn+1) un polyndme homogéne réduit et soit V 1'hy-
persurface dans E{n+1 définie par £ . Pour étudier 1'homotopie du complé-

mentaire de V dans :En+1’ nous considérons les deux fibrations
(i) La fibration de Milnor
n+2

£ . 2 £ 10y ——= ¥ |, 1a fibre £ 1(1) est notée F .

(ii) La fibration de Hopf.

P g2 f—l(O) -——€>IEH+J‘- V , la fibre est L¥
L'inclusion F — En+2 - f—l(O) et la projection ¢ induisent les
idomorphismes :
m (F) o nj(a:“+2 - £ o)) :ﬂj(IPn+l V), §32

Ce travail se divise en quatre chapitres. Les chapitres I et II sont con~

sacrés & l'étude du groupe fondamental du complémentaire d'une courbe dans

2

" . Dans le chapitre III nous étudions les groupes d'homotopie ﬂj(]Pn+1

- V)

@i V est une hypersurface dans Ep+l.

Le résultat principal du chapitre I est le Théoréme : Soit V une courbe

2 . . , - .
dans P~ . On suppose que les points singuliers de V sont des points doubles
ordinaires. Alors la monodromie de la fibration de Milnor agit trivialement sur

Hl(F ; Q)



Ce théoréme est motivé par la proposition :

s . 2 . .
Proposition : Soit V wune courbe dans TP . Alors les deux conditions sui-

vantes sont équivalentes,
. 2 s
(i) nl(ﬂ? - V) est abélien.

(ii) ﬂl(F) est abélien et la monodromie h : Hl(F ; Z) —> Hl(F s Z)

est 1l'identité.

Dans le chapitre II, nous considérons des courbes irréductibles

Vj s, 1 <j<r , en position générale dans 192 . Soit V = Vl U V2 U...u Vr

Théoréme : Le groupe fondamental 1-r1(1‘t"2 - V) est abélien si et seulement si

2

les groupes fondamentaux ﬂl(E’ - Vj) », 1<j<r , sont abéliens. En par-

ticulier on obtient le

Corollaire : Le groupe fondamental ﬂi(IPZ— V) est abélien, si 1'on suppose

que les courbes Vj » 1 <j<r , sont réguliéres,

Au chapitre III, nous étendons au cas des hypersurfaces, le résultat

suivant de A. Hattori. Théoréme (Hattori [7]) . Soient Lj(j =1,2,...,r)
n+1

des hyperplans dans TP en position générale et soit
L = L1 U L2 U...u Lr . Alors le groupe fondamental 11'1(]Pn+1 - L) est abélien
et le revétement universel de ]Pn+1 - L. est n-connexe,

Notre résultat est :
Théoréme : Soient Vj(j =1,2,...,r) des hypersurfaces réguliéres en posi-
tion générale dans iEn+1. Soit V' = V1 U VZU"'U Vr . Alors

n+1_

(i) Le groupe fondamental ﬂi(n? V ) est abélien.

(ii) Le revétement universel de ]Pn+1 - V est n-connexe.



(iii) Hj(F ; Z ) est isomorphe 2 z¥ o k = (rtl) et la monodromie h*

agit trivialement sur Hj(F ; Z) pour j < nm

Dans le chapitre IV, nous donnerons un example de la courbe .V dans

2 2

v tel que le groupe fondamental TTl(]P - V) est isomorphe 2 Zp * Zq

ot Z  est Z/nZ
C'est une extension du résultat de Zariski [19] .

Le chapitre I est publié dans Inventiones Math, 27, 1974. Le chapitre II
sera publié dans Journal of the London Math. Scociety. Les chapitres III et IV

sont soumi§ au journal Topology ef Math. Annalen respectivement.
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| C}LCLP tey 1  THE MONODROMY OF A CURVE WITH ORDINARY DOUBLE POINTS

§1. Introduction

let f(x,y,z)‘ be a square-free homogeneous polynomial of degree d
and let C be the projective curve in ]?2‘ which is defined by C = f-%(o)-.
We want to study W10P2~ C) . For this we consider the Milnor fibering of
f: f/qfl = arg(f)‘:‘85~ K- s\ where K = f~1(0) NS . The fibgr"F of
this fibering is naturally diffeomorphic to any affine hyperSurfacé 

3

X, = fl)yced (¢#0) . Let h: F>F be the monodromy map which is

_defined by

hix,y,z) = (x-gd,y'gd;z*gd)

where &, = exp ggi . The first monodromy hy : HL(F)'*,HX(F)‘ is deeply
related to ﬂIGPl- C) . In fact, we have that hy, 1is equal to the identity

map if ﬂlﬁP2~ C) is abelian (PrOposition 5).

The main purpose of this paper is to prove that hy, 1is equal to
I (identity map) modulo torsion if € admits only ordinaly double ﬁoints
as singularitieés (Theorem 1).
This is an important step to
‘Zariski's conjecture’that nIGPZ— C) should be abelian if C .admits on1y 

ordinaly double points as singularities (H{§], (D).

This result is also true if C admits only a certain type‘df

singularities (admissible singularities) (Theorenilz)»,in §4).

§2. Preliminaries,

Let arg(f) : SS~ K'-?'S1 be the Milnor fibering as above. There is

- A -



a cannonical Ezd-action on F by the monodromy map h which is compatible

with the natural Sl-action on SSQ K .
Proposition 1. We have the fdllowing exact sequences and commutative diagrams.

0
{

nl(Sl)

%
; 5 1 ,
. - -3

o- ﬂl(F) 7 “1'(5 K) 3 ”1(5 )0

\ W
k ﬂIGPz”\SiQ

i) Z
0 N

o_ d

Proof : The law sequence is obtained from the Milnor fibering and the column
is a result of the Hopf-bundle : SS-.K 91m2— C and of the fact that i is

injective.

Proposition 2. Imagz(j) 1is contained in the Center of ﬂ1(85~ K)

Proof : let a = (Xo’yo’zo) € F . be a fixed base point, Then the generator
of Image(j) can be represented by the orbit loop § : I - SS— K defined'by
s(t) = (xoexp 2mit,y exp 2mit, z _exp 2mit) . Let [w]kE ﬂI(SS— K;a) be any
element represented by a loop w . Then ShlmS is naturally homotopic to

w by ﬁulling back along the orbit of Sl-action. Therefore 'we have

[S]-lfm][s] = [w] . This completes the proof.

Let G be a group. By 2(G) and D(G) , we mean the center of G
and the commutator group of G respectively. Then the following proposition

‘is an immediate.corollary of Propositions 1 and 2.



Proposition 3. (1) D(ﬂi(SS- K)) 1is a normal subgroup of WI(F) and we
have D(m (5°- K)) = D(m @~ C))

(1) z(m @ ©)) = y(zm (- K) .

_ Now we consider the condition for nlﬁ?z- C) to be abelian. Let

4 : I>F be any fixed path from a to

2711 2?71)

h{a) = (xoexpggi, yoexp~a~, zoexpwa— . Then in the sequence of'Proposition‘l,

we can define a cross-section T of d by the following 1oop :

: 4Tiit 4riit 4Tt g e i
- < <
T(t) (x exp—73—, ¥y _exp—g—; Z_exp—g ) 0Ostsg3
L-l(Zt-l) = £(2-2t) F3st<1 .

Because ﬂi(F,a) 1s a normal subgroup of ﬂi(SS— K,a) , we can define an
automorphism Ty : ﬁl(F;é) - ﬂl(F;a) by T#({wj) = [T]—I[WJ'[T] for

[w] € ni(SS~K;a) . It is easy to see that T# is well-defined in |
Aut(ﬁl(F;a))//In;(r&(F;a)) where Aut ﬂl(F;a) is the group of auﬁoﬁorphisms
and Int(ﬂi(F,a)) is the group of inner-automorphisms. It is also easy to
see that T#([w]) is represented by L'h(w)-L“l where h(w) 1is ayloOp de-
fined by h(w)(t) = h(w(t)) . Since T, preserves D(ﬂl(F,a))‘ , it induces

an isomorphism h_ of Hl(F) . By the above consideration, we have

Proposition 4, hT -is equal to the monodromy
. -
hy : H,(F) = H,(F)
Now we can state a fundamental criterien for ﬂiGPz- C) to be abelian,

‘Proposition 5. The following three conditions are equivalent.



(1) WIGPze.C) is an abelian group.
(i1) nl(SS— K) 1is an abelian group.
(111)  m (F) 1is an abelian group and hy : H (F) = H,(F) is the identity

map

Proof : (1) ® (i1) 1is the result of Propositions 1,2 and 3. (11) ® (iii)

can be obtained from the fact that ﬂl(SS- K) is a semi-direct product of

"ri‘l(F) and Z° using’ the cross-section T

Pr0p6sition 6. Assume that the curve C 1is irreducible., Then we have :
1) p(m @ ©)) = m(®)
(ii) nlcpz— C) 1is abelian if and only if Trl(F) is trivial.
This is an immediate consequence of Propogition 1 and the féct'that

2 -
HI(IP -C) =Z,

§3. Main resulte about the monodromy.

et C = CIU c, U...Uc_ be a curve in ?2 which has only ordinary
double points as singularities. Then we will prove the following theorems
which are fundamental steps for nlﬂPz- C) to be abelian. We use the same

notations as before.

Theorem 1. (i) The first homology group BI(F;Q) is equal to kQ GBQVGB;. @ Q

((rél)-COpies)

(i1) The monodromy h, : Hl(F;Q)-+-Hi(F;Q) 1s equal to the identity map.



Proof of Theorem 1., Let f(x.y.z) be the fixed square-free homogeneoixs poly-

nomial defining C . We consider a homogeneous polynomial

glx.y.z,w) = £(x,y,z) + W@ and let V be the projective hypersurface of com-

plex dimension 2 defined by V = 3‘1(0) C]P3 . Then we can see easily that

vNiws= 0}=C and V. - C 1is isomorphic to F . Moreover we have that the
singuiar set LV of V 1is equal to the singular points Z C of C . There-
fore V has only isolated singularities. Now we want to compute HI(F) . By

the Lefschetz duality, HI(F) is isomorphic to H3(V,C) .

From the exact sequence
s 5 12w 2> w2e) » B3w,0) » 5w > 0
we have a short exact sequence

(A) 0 = Coker @ = 1{3(\7,0) - H3(V);'"> 0

First we assume the following lemmas.
Lemma 1. H3(V; Z) 1is a finite group.
‘Lemma 2. The rank of H3(V,C) is equal to or greater than r -1

Now by the sequence (A), we have that rank (Coker @) is less or
equal to r - 1 because Hz(C;Q) is Q®Q® ®Q (r-copies) and the
image of @ contains the Euler class T of the Hopf-bundle K= C and T

is non-zero. ([{f]). Therefore by Lemmas 1 and 2 we have that
B(0,0Q = Q@ - ®Q ((r - 1)-coples) .

Now we consider the Wang seqdence of the Milnor fibering of f

—



h,~I
AR HI(F;Q) — Hl(F;Q) -> Hl(Ss— K;iQ) > Q~ 0

We know that Hl(SS—‘K)éngB(K)~ by the Alexander duality and therefore we

have that H1(85~ K;Q) 1is isomorphic to Q® -+ &8Q (r - copies)

Thus we have that coker(h*—1)=;H1(F;Q). This implies that h, =1

(identity map), completing the proof of (i) of Theorem 1.

~ Proof of Lemma 1, At each singular point p € ZV=T5¢C , let gp be a

defining polynoﬁial of V in a neighborhood of p and take a small disk Dg b
! . A R
centered at P , Let K =V N SS and C =V N D6 which is a cone of
: P €,p ’ P 1 €,p
6
K_ . Take >0 small enough and let V = o .
P n . & pPsM & (TD €,p

Since oV N is diffeomorphic to K ,

P P
we can replace C_ by .V at each
‘ P P y‘ PN '
singular point p . Then we have a non- K
‘ P

-~t
singular surface V and it is easy to see
that V is diffeomorphic to a non-sin-

gular projective hypersurface of degree

d . Let Vc = V-1 Int Cp where T

means the disjoint sum at every singular

Figure 1

point p . Then we have two Meyer-Vietories exact sequences :
(B) .- = BT Kp) > () - HB(VC) ® 1w (z cp) > w(5 K.p) RARRRE

() -+ - H(E k) > B ) - H3<vc> ®(ry D w3 (s Kp')-»

n,

Because V,n P has a homotépy type of a 2-dimensional CW-complex,
N ,

H3(E v, )=7 R3(V ) = 0 ., Therefore, in the sequence (C)
' TP n)p :

RB(VC) - H?(Z Kp) is injective because H3(§3 = 0 , This means that

{HB(Z Kp)'* HB(V) > 0} 1is exact. Thus to prove Lemma 1 it is sufficient to

prove that HB(Kp) is a torsion group. Now by the assumption, at each singula:

— & —



point p we can take x2+ y2+ wd as a defining polynomial gp . Identifying

A n as the fibre of the Milnor fibering of gp at p , we have a Wang

2

sequence :

.-..—>H2(V ) > H, (V )-91{(85

-K)=o0
Ps7 hp*"I% 2 'p,M 2 "€,p P

" By the join theorem of Brieskorn-Pham ([{]), we have Hz(\?p n ) ~Z D .. B2
’ .

((d-1)-copies) and gp* is represented by the matrix

A
0.1 0.0
\1‘\~ ot (d-1)
: \\’~ 0
' S ~ . }
O...._..90,1

Thus Hz(Sg - Kp) =Z4 by a slight computation, This means

3

Hz(Kp) =Z; by the Alexander duality. Thus Hz(Z Kp) £ LZy and this com-

pletes the proof.
Proof of Lemma 2. Consider the Wang sequence of the Milnor fibering of  f

V 5
=+~ B (F) W ,(F) » 1, (s - K)»Z =0

We know that HI(SS— K;Q) = HB(K;Q) 2Q@ -+ ®Q (r-coples). Therefore the
above exact sequence says that rank (Eil(F;Q)) 2r-1 . This completes the proof

of Theorem 1,

§4. Generalization of the results in §3.

Iet C. be any curve of degreé d and let p be a singular point

oz



of C . Let fp be a local defining polynomial of C . Then we can consider

3 1
the Milnor fibering of £_ at : arg(f ) : S - K.~ S8 where
& P P & P €,p €

K€ = Sz P Nec . Let Fp be the fibre of this fibering and let Ap(t) be the
’ .
characteristic polynomial defined by the determinant of ¢t.I - hp* : Hl(Fp;Q)

- Hl(Fp;Q) where hp* is the monodromy map of the fibering.

Definition. A singular point p € C 1is admissible if and only if the roots

2 d-1 _ 2l
of Ab(t) are distinct from §d, gd,...,gd where E; = exp =g~ . Ordinary
double points are clearly admissible. Now we can generalize Theorem 1

as follows.

Theorem 3. Let C be a projective curve which admits only admissible singu-

N

larities. Then we have (i) Hl(F;Q) =Q®-.-- ®Q, wvhere r is the number
r-1

of irreducible components of C

(i1) The monodromy h, : Hl(F;Q) - HI(F;Q) 18 equal to the identity map.

Proof of Theorem 3. The proof is essentially the same as that of Theorem 1.
We used the fact that C has only ordinary double points to prove that H?(K )
is a torsion group in the proof of Lemma 1. This is also the case if P 1is i
an admissible singularity of C Dbecause the local monodromy vﬁ;* in the proof

of Lemma 1 is the tensor product of the local monodromy h , of the curve C
p

and the matrix.

0. 1.
0 !
]l e I
by the join theorem of Thom-Sebastiani ([// 3]) Therefore
hp* -1: HZ(VP’n)-+ HZ(Vp,n) has only a finite cokernel, because E;* has

not 1 as eignevalue, This completes the proof.

Example., let € = {xd + yd—q 2% = 0} (d =20).

Case 1, -Assume that q = 1 . Then C has only one singular point

P = [0,0,1] .As p , C 1is defined by xd + yd_l = 0 and we have

e J) S



(td(d"l)- 1) (t-1)
d

(£ -1) ‘(td'l—l)

A(t) =
P

Therefore p is admissible, In fact we have that nl(F) = 0 by the join

theorem ([43]).

Case 2. Assume that d-2 2q=22 and (d,q) =1 . C has two singular points

p=1[0;0;1] , q=1[0;1;0] and we have that

(td(d-q)

~1) (t~-1)
A () =
P 4 (49
and
dq
A (B) _(t d-l) (t-1)
d (£%-1) (Y1)

Thus p and q are admissible. Similarly we have that ﬂl(F) =0

Case 3. Assume that d-2 = q=22 and r =(d,q) >1 . Then C has the

same éingular points p,q but we have

A (p) = DT (e _ dd-q)
p d d-q » BHF T
(t7-1) (& *-1)
and
A (t):= (t)\—l)r (t—l) ‘ \ = gﬂ
1 (td-l) (e%-1) r

Thus neither p nor q are admissible. In this case we have that
i 1(F) = F((d-1)(r-1)) and not abelian. (The right side means a free group of
rank (d-1) (x-1) .)

Remark. Assume that a curve C = C1U C2 ... U Cr admits only admissible sin-

gularities, Let My be the multiplicity at a singular point p . As for the



Euler number %(C) of C , we have a formula,

w(C) =3d - d® + % My

where d is the degree of C and T means the sum at each singular point p
Then by [44], we have that

X(F)

= x@) - x(©

(3-3d+d%) - % "

We consider the zeta function ((t) of the monodromy map h : F-> F . Then

ﬁe have
-x(F)
(1-td)

-1 -1
Po(t) Pl(t) Pz(t)

()

it

where Pi(t) is the determinant of the linear map
hy, - tI : Hi(F;Q) - Hi(F;Q). (D

By theorem 3 we have that Pl(t) = (1-t)r.1 . Therefore we have
that Pz(t) = (1-tH*® (1-0)F? where k=3 - 3d + -3 S This implies
that (1) h,(F;Q) = {d(3-3d+d® - ¥ b)) + -2} Q and (ii) the rank of the

kernel of the map
hy - I : Hy(F) > H,(F)

is equal to l4+r - 3d + d2 - pp . From this we can see that the total multi-
plicity % by has a upper-bound (d-1)(d-2) if C is an admissible, irre-

ducible curve. The curve of the above example is one of the such curves,



ChcngQ,r L On the fundamental group of the c,(nnp)?memt' of a reducible

S

| carve  in P2
§ 1, Statement of results
Let C =¢C, UC2 u...u C. be an algebraic curve in 'Ez Vsuch
that its irreducible components {Cj} _are in general position i.e.
cy and Cj meet transversely for each i, j (i # j) and CiﬂCj r]Ck =@

for each mutually distinct i,j and k ., How can we decide the fundamental

group ﬂiGPz-C) in the words of ﬂiGPz—Cj) (3=1,2,...,r) ?

Zariski's conjecture says that ﬂiGPZ—C) should be abelian if
each irreducible component Cj has only ordinary double points as singula-

rities. ([20]). Our results are partial answers to this question.

Theorem 1, Let C' be any curve in iPz and let C be an irreducible
curve such that C meets transversely with C' and ﬂiGPZ-C) is abelian.

Then we have the following central extension,
i 2 2
1 »z » mE-cuc) -» m@E" -c¢c) -1
Moreover the composition homomorphism of 1 with the Hurewicz homomorphism

is also injective,
z L ﬂl(JPz—C uct) = Hl(]PZ—C uch)

{By 1 we mean the trivial group.)
In this paper, every homomorphism is induced by the respective inclusion
map, unless otherwise stated, In.[y&], we have proved this theorem assuming

that C 'is non-singular., As an immediate corollary, we have:

Corollary 1. Under the same assumption, ﬂiGPZ— c UcC') is abelian if

and only if ﬂiGPz - C') is abelian,

— 1 —



Using Corollary 1 inductively, we have the following reduction

theorem,

Corollary 2 (Reduction Theorem), Let C = C1 uc, U.,.. U Cr be a curve

2

such that its irreducible components {Cj} are in tﬁe’general position,
Then ﬂiGPz-C) is abelian if and only if ﬂiGPZ~Cj) is abelian for each

j=152’t0:’r .

The only if part is the result of the general position property'

[N
[0

niGPz - C) - niGPz - Cj) is surjective., This implies, for example,

that Zariski's conjecture is true if it is true for irreducible curves,

§ 2. A reduction lemma.
‘In many cases, it is more convenient to study ﬂi(&z - C) rather
than ﬂiGP2~C) . One:of the reasons is that H10P2~C) has a torsion
: ZZ/dOZ if, assuming that € has r-components {Cj} (j=1,2,...,t) ,

the greatést common divisor do of their degrees {dj} is greater thaﬁ 1.
For this, we prove the following lemma. (See also U4{]).

Lemma 1. Let € be a curve in ]P2 and let 1L be a general line to C

Then we have a central extension

1>z - Trl(}PZ— cuL)y » nrl(le;c) ~1

such that the composition map

Z > nlcm2~ cuL) "Hlﬂsz- ¢ UL

is also injective, This implies that ﬂiGPZ» ¢ UL) is abelian if and

only if ﬂiGPz - C) .is abelian,

— ,7;2 N



Proof, Let L., be another line which is general to C UL . Without
losing generality, we can assume that L_ 1s defined by Z =0 and L
is defined by Y =0 . Let L, be the line Y- Nz =0 . This is a

pencil centered at ® = [1; 0; 0] . We can take a positive number € so

that Lﬂ is general to C for each 0 ('T}l <€) , Let N =

u L
| lalse M
and take a base point * on L, -CUL_ . Then we have a following

Van Kampen diagram,

m, (N-C, *) ,
/‘p-’ 1 \
2

ﬂl(N—C UL, % nl(lP -C, ¥

¢ /
\nlopz - c ULH

Considering the fibering map h : N - L, »D> = {n €€, |n| <e} which
is defined by h[X; Yv; z)l=7Y/Zz , we have. that N-C UL is

diffeomorphic to (L, - C U {=} x (D‘:‘: - {o) and N-C 1is homeomorphic:

2

to the quotient space of (L, - C) XDy

identified {» } X Dze to a point,
Therefore L, - € is a deformation retract of N-C . We can take
generators {EJ} (j = 1,2,...,d) of 'nl(N..C, %) so that their generating

relation is only ;-;1 o éz“"éd =1 (d is the degree of C .) (See Figure 1)




ﬂi(N -Cc UL, ® is isomorphic to F(gl,...,gd) X Z . The first part
F(gl,...,gd) is the free group generated by {gi} which corresponds to
T!'l(Le -C U {=}, ®» and each generator gj is mapped to éj by ¢

The generator of Z (say t ) is expressed by [&71. vp.L] where vp

is a small loop which revolves round L starting at p € L -C U {=}
and 4 is a pathin N-C UL connectiﬁg p to * | Because t 1is con-
tained in the center of ﬂi(N -C UL, ¥ , we can takev p and 4
arbitrarily. Thus in the above diagram we have that ¢ is surjective and
Ker ¢ 1is the minimal normal subgroup containing t and g;g,...8,

Therefore we obtain the following exact sequence,

W) 12N, ¥esy...8) » M@ - UL, B > m@c, B -1

where N(y(t), ¢(g1g2...gd)) is the minimal normal subgroup containing
_ N _ -1

y(t) and ¢(g1g2.‘.gd) . First we assert that (t) = ¢(g1g2...gd)
(under a suitable orientation of t ). We can represent t by a loop

sufficiently near ® , Projecting t on L in the direction parallel

to L , we have that Y(t) = 7= 1ll(g1g'2...gd)—1 (See Figure 2).

L

Figure 2,
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Now we prove that { is surjective. By the general position property,
2 v
ﬂiGP -cuUL UL, * = ﬂiGPz— C UL, ¥) 1is surjective, Therefore we need

~

only prove that ¢ : ﬂi(N -c UL, ¥ = ﬂiﬁPz -cUL UL_, * is surjective,

Let ¥ be the set defined by {n €¢; L, and C are not in the general

n
position}; By the elimination theory, we can see that X is a finite set,
Let X = {pl, pz,...,pu} and let h : P> - C UL_ =€ be defined by
hiX; ¥; 2] = ¥/Z . Then, using a éontrolled vector field near C UL_ ,
we have that h: h'l(C - £ »C - 5 is a fiber bundle. Take
a positive number & so that {D%(pj)} are mutually disjoint ‘and included
in € - D2€ where D%(pj) is the disk defined by f{p €¢; |p - pjl <6}
Take paths {Li} (j=1,2,...,1) which satisfy the following conditions,

(i) {3(0) = € and {5(1) is a point of the boundary of D%(pj)

(ii) {j N Di(pi).= 43(1) or § for j=i or j # i respectively.

(iii) LJ, mj = {e} for each 1,3 (i#j)

Let T, =4, UDz(p.) and W, = (D> - foh U\ T .(See Figure 3.)
i j 637 . j € K= j k

Figure 3,
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Then one can see that h—l(wu) is a deformation retract of
IP2— cuUL U'L°° using the above fibering, Now we consider the following
exact sequence,
1 hy
- : ¥* - - #* -
1ML, -cU{=}® »>mn (I‘J.) ij, ) ='m (T, {pj }, e =1
Take an element T, of TI (h-l(Iﬂ)—L , ¥ such that h#(T.) is a
3 1 i e ]
generator of ﬂi(IE - {Qj},€) ®7Z and aj(ﬂh) = 1 where aj is the
a,
homomorphism ﬂi(h’l(I})—Lp , ¥ =l ﬁi(hnl(IE),*) . We can define a cross-

J -
section Oj of h#:using 13 so that ni(h 1(I‘j)—L'p ,¥) 1is a semi-product of

J
ni(Le_C U {=},% and Z . Because a is surjective by the general
position property, it is clear that q% : TH(Le—C U {=], % ’>T&(h_1(f}),*)

is surjective, Now consider the following Van Kampen diagram

m ("), %
J

P, '
TTI(LG_ C U{co},* /
\\\\\\\$ . ’/ﬁgj:}’
m (h (Wj_l),*)

'rrl(h"l(w.),*)
]

Because ¢3 is surjective, we have that wj—l is also surjective. Thus
by the induction on j we obtain that

¥ ) °...0 tl:oz TTl(N- c UL, anl(h‘l(w“), )

1" -2
is surjective, This implies. that 1F (and therefore { ) 1is surjective,
Going back to the exact sequence (A), we have proved that N({(t),

W(glgz...gd)) is the cyclic group generated by {(t) because the sur-

jectivity of | implies that Y(t) 1is contained in the center of

nl('le-c uL, * .,
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2
Let § :TTl(]P -CUL,¥® = Hl(le - C UL) be the Hurewicz homomorphism,
Then by Lefschetz duality we have Hl(]Pz— cuL) % H3(IP2, cuUL) . By

the exact sequence of the couple (C UL, ]Pz)

R ) > r2(c UL) = B®2, ¢ UL) = o

we have that Hl(]PZ—CU L) T HBOPZ, C UL) 1is isomorphic to coker T which

is clearly isomorphic to the quotient group z("t:;)ﬁ’)ztﬁ)@“Z(tr)/tﬁdt’-r—rd,'.tp
where Z(t) 4s Ahe anfinite eyd{g 3’”‘“}’ generated by T (J=0-uF) and Aj =
“L‘W(Cj)) adguming That 20, % (jui,-oy) ot imreducidly complrents
c{ C. . Using this isomorphism, & {y(t) corresponds to ¢, . Thus

Eoy(t) is not a torsion element. Therefore by (A) we obtain a central

extension with the desired property.

1 -»zZ - nl(le-c UL, * ->Tr10P2- c, ¥ =1

This completes the proof of Lemma 1,

§ 3. Preliminaries,

2 \ .
Let C be a curve in P~ . Taking a general line L_ , we

identify IPZ-L°° with 6:2 . Let V0 = (l:an and let f(x, y) be a

”~
square-free polynomial which defines V0 . Let X be the set of critical

o~
values of £ . It is clear that X is a finite set, Therefore we put

~
Z=2- {0}= {pl,...,Du} . Let € be a positive number so that

Di NT=¢ . Let N = f—l(Dﬁ) and take a base point ¥ on f_1

(e)

Lemma 2. (M. Kato) The following homomorphism is surjective.

2
"l_(N'Vo’ #) = rrl(m -V, *)



Proof. The proof is parallel to that of § in § 2. Let VP = f_l(p)

L ot e ) —
Then we have V NL V. NL =¢C NL_ where V_ 1is the
p © [s) [«2] w p
closure curve in ZEZ . Thus V; is in the general position to L_ .

Therefore using a controlled vector field near L°° s
f e f-1(¢ - % = t-3% is a fiber bundle, Take a positive number &
and paths {{3} in the exact same way as in the proof of lemma 1 and
2
let T, =4, UDY(P,) similarly.
i U arty
Let ¢ﬁ : TH(Ve’ *) - ni(f—l(I}),*) be the natural homomorphism and con-

sider the exact sequence:

f
-1 # -
- * - 3 -
1 >mv,, ¥ -m(f (I‘J.) ij, ) >n1(I‘j {pj }, e »>1
First observe that f has finite critical points on V . Otherwise
J- .
f(x, y) - pj should have a square divisor which implies Vo NL_ contains
: i

strictly less than d points by Bezout's Theorem. This is a contradiction,
Thus we can take an element Tj such that fg 13 is a generator of

~ . -1 .
ﬂl(rj-—{pj },e) Sz and '1'j is of the form [4  .v.4] where v is a small

loop revolving round Vp in the normal plane of a non-singular point of

j .
Vp and 4 is a path in V. which connects v(0) to the base point ¥ |
3 v
Define a cross-section Oj of Q* naturally using 15 . Then

AL

T&(f—l(T})—Vp »*¥) is a semi-product of ﬂi(Ve, ¥) and Z . It is clear that
15 is mapped to the unit element 1 of T&(f—l(I}),*) . Thus by the above
argument, we can see that ¢ﬁ is surjective, Then the proof is done by the

exact same way as that of surjectivity of { in Lemma 1.

3t 2
. VvV -V - 11 -y
Let K( ) be the kernel of {Tfl(N Py ) l(dl 3 ) } .

Lemma 3, Assume that Vo is irreducible. Then T&(EZ—VO,*j is abelian
if and only if K(Vo) is equal to Tﬁ(Ve, ¥) considering ﬂi(Ve,*) to

be a subgroup of ﬂi(N—Vo, .
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Proof., Consider the following diagrams,

1
}

K(V )
(¢
¢
' g 2
1= M, —2—> v, H T——>m0-fole) » 1

1 1
Ib °.7 ) %
m 5y ¥ ———>m (@ f{o}, €)
* #

Take a cross-section T of f# and et T=Db o U Because ‘Vo is
irreducible, ﬂ1(¢2—vo,*) is abelian if and onlyy‘ if Tfl(diz-vo,*) is iso-
morphic to Z . Therefore, by the diagram, ﬂl(@z-vo,*)k is abelian if and
only if f&‘g ~is isomorphism,

Assume that nl(mz-vo,*) is abelian, Then we héve( fy ch=@ofyoa=
the ‘trivial map. This implies that h is ktrivia’l.i.e. ' ‘ﬁl(ve, ¥ = K(\?o) .
On the contrary, assuming TTl(VG, #) "‘—“'K(Vo) , we have that T is isomorphic

which implies ‘ﬂl(ﬁ‘,z-vo,*) is isomorphic to Z . This completes the proof.

§ 4. Proof of Theorem 1,

~Let C - be an irreducible curve in P> - such that ’ﬂl(IPz;C) is
abelian and let C' be any curve which is in the general position to C
i.e. C ‘and C' meet transversely, Take a general line L_ to C ucr .
Identiszing ‘,?‘IPZ-‘-LOQ with ﬁlz_ , let V. and V' be the corresponding affine
curves C ‘ﬂ Ez .and c' N (L'z respectively, Actually we are going to prove

the following theorem,



Theorem 2. nl(mz—v UV') 1is naturally isomorphic to TTl(GIZ-V) X nl(mz-\m
i,e. we have the following central extension which splits by the natural

homomorphism: TT1(032—V uv',# - Trl((Ilz-V, & I

1 - nl(mz-v,*) - nl(mz-v Uv',# = nl(mz-v',*) -1

Assuming this theorem, we can prove Theorem 1 as follows, Consider the

following commutative diagrams where the vertical sequences are obtained

by Lemma 1,
1 1
1 1
i 2. 1 4 a 2 3%
1"Kera—>1‘r1(]P--CUC,) > m@E-c',®H -1
A 1
{ h thb _ td
§ 2 ' kY C 2 (_
1> Z j>Tr1(JP—CUC'ULw,*)-—> ﬂl(]P_c'ULw,*)-—)l
tk 14
z id, >z
1 ' t
1 1

let h :Z *Ker a be the canonical homomorphism induced by the above
diagram. We assert that h is isomorphic. Take m €Z and assume that
h(m) =‘1 . Then we can take an element m' of Z such thatj(m) = k(m') .
Then we have ¢,j(m) = Um') = 1 which implies that m' = O and therefore
m=0 ., (We consider Z  as an additive group.) Thus we have that h is
injective. Take an element ® in Ker a . Then we can take an element W'
of Tfl(TPz—C Uc' UL_,* such that b(w') = i(w) . Because d c(w') =1 ,
we have an element m of Z such that 4Um) = c(w') . Now letting

W' = w k(m)-1 , we have that b(wW') = i(w) and c(W') =1 .
Therefore we can find an element n of Z so that j(n) = @' which
implies h(n) = W ., Thus we obtain that h is surjective. Now it is clear
that Ker a is included in the center of 1T1C[E’2-CU C',%) . This completes

the proof of Theorem 1 modulo Theorem 2,
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Let f(x, y) and g(x, y) be'square—free polynomials which
define V and V' respectively,
Let 'gf be the set of critical values of f and let X = 3?-{0} ={p1,pz,...,%il
Let- D be a large disk which includes Z U {O} . We can assume that
o= [1; 0; 0] is contained in L,~- C UC'" . Consider pencil lines L
centered at <« where L,n is defined by y =1 ., (In Imz,ﬁn is defined by
Y =mNn2Z because x =X/Z and y = Y/Z ).
We can take a positive number a large enough so that Vp = f-l(p) and
LT‘ meet transversely for each p €D and TKInI 2q) . Let D be

-1 ~
£ (D) nt.{ Ln . Then D is a compact subset of Ez satisfying the
nisa

following properties,
(1) D 1is a deformation retract of f—l(D) and therefore it is élso
a deformation retract of m2 .
(1) £:D-£(SU {oh»D- 32U {0} is a fiber bundle which is
homotopically equivalent to the fibering

f:f'l(D-EU{o}-vD-ZU{o}

Take a point P _ = (xo, yo) in €. v Uuv' . Let U(po) be é neighborhood
of Po in ¢2— Vv UV' |, Now we consider radical deformations of V!
centered at Po . More precisely, let V'(1) be the affine curve defined
by the polynomial equation ngx,y) = g(TKx-xo)+xo, 7 (y—yo)+yo) =0

Let hﬁ be the liner transformation of Ez defined by hrfx, y) =
(TKx—xo)+xo, TKy—y°)+y0) . Bhen we have  that (i) hrfxo, yo) = (xo, yo)
for each M E€C and (i1) V'=V'(1) and V'(1) = h;:(V') for each 1,

(n# 0)

Let A be the set defined by {n €¢ - {0} ; V'(1) and C are not in the

general position }, We consider that O 1is contained in A

— c*?ﬁ/ —_—



Then we have the following lemma,
Lemma 4. A 1is a O-dimensional analytic subset of &

Proof. V'(1) is defined by the homogeneous polynomial
d

GTfX’ Y, 2)= 2 zg(TKX/Z-XO)+x0, TKY/Z-yO)+yO) where d, 1is the degree

2
of glx,y) (r{% o) . ExPregsing chx,Y,z) as GT{X,Y,0)+Z‘€;fx,Y,z) ,
we can see that Gyfx,Y,O)/r}z does not depend on 1M (N # 0) . This
implies that 'E‘??% NL,=V' NL_ . Thus each curve V'(®m (n# 0) is
controlled by L, . Let F(X,Y,2) be the homogeneous polynomial whiéh

corresponds to f(x,y)

We consider an algebraic set B of IEZ X & by the following polynomial

equations,
F(X, Y, 2) =0 . GT{X, Y, 2) =0 and
¥ T O=F
rank x ' X’ X =1
&ﬂ, &ﬂ; &ﬂ
X oY 74

Here 7 is considered to be the variable of &€ . Let T ;P2 XC 2T be

the projection map., Then by the proper mapping theorem (p.162, E?J) s
T(B) 1is an analytic set of € and 1(B) = A ., Because
V'(1) =V , we have that 1 is not contained in A . This means that A

igs a O-dimensional analytic subset of € completing the proof.

Now we can take a number TB in C-A (fTBl small enough) so
' -1
U

Take a smooth path p in &-A such that p{0) =1 and p(l) = ?b‘ .

that Vv'(1n) ND =¢ . This is done by taking so that h_  (U(p )) DD
o b o

We can assume that p is an embedding of the unit interval I = fo, 1] .
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Then we can prove the following lemma.
Lemma 5. There is a diffeomorphism 1 : e -2 such that (V) =V
and ¢(V'(Tb)) = V' . Therefore in particular we have a diffeomorphism

s ey Uvt(n) > e’ v Uy

Proof: Let W= U {V UV'(p(t)) Xt} and W, = U (vNvi(p(e)) xt)
t€I t€ T
which are subsets of ¢2 XT.. Let q : mz XTI =1 be the projection map.

By o/ot , we mean the unit vector field with positive direction on I

We can construct a connection vector field v(x,y,t) = vix,y,t) + d/dt for

q , where v(x,y,t) 1is the Ez—component of v(x,y,t) , satisfying the
-1

following conditions., Let € be a small number so that V = f "(p) and

V!'(1r) meet transversely for each p('p| <€) and m which is contained in

the €-neighborhood of p(I) in €-A
(i) For any point (x,y,t) such that Igp(t)(x,y)l z2e , vix,y,t) =0

(ii) For any point (x,y,t) such that lgp(t)(x,y)l £ ¢ and
|f(x,y)| <ef/2 , v(x,y,t) 1is tangent to Vf(x ) and in particular,
if gp(t)(x,y) =0 , v(x,y,t) 1is tangent to the curve w(s) which is

defined by the corresponding component of V vix,y,t)

Nnvt
£(x,y) V' (p(s))
is normalized so that the integral curves of V are stable in W and

Wy

(iii) For any point (x,y,t) such that gp(t)(x,y) =0 and
If(x,y)l z¢/2 , vix,y,t) 1is taken so that the inteazral curves are
stable in W ., If If(x,y)l > € , we can take v(x,y,t) so that

. . . -1
its integral curve w(s) is hp(s).hp(t)(x,y) except near

L, NV (p(e)) .
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(iv) We can consider that = [1; 0; 0] is contained in L,-¢cUuc!'
Considering the pencil lines LTI= {y=n} centered at « (lnl is
sufficiéntly large so that Ln and V'(p(t)) (t €I) meet transversely),
we can construct v so that v(x,y,t) is controlled by {Ln] near
L, NV (p(t)) i.e. vix',y',t) is tangent ta Ly, and if
gp(t)(x',y') =0 , v is tangent to the curve Ly' Nv'(p(s)) and

normalized so that W 1is integrably stable.

V 1is integrable and integral curves are stable in W and wl .
Using the integral curves of V we obtain a desired diffeomorphism

of m2 . This completes the proof,

We are ready to prove Theorem 2., Take a positive number € and &

so that the following conditions are satisfied,

(1) Di NZ=¢ and Vp meets transversely with V'(TB) for each

2

pED€

(ii) Let P, Pz,..;,Pm be the singular points of V and let Dé(Pj)
be the 4-disk of radius & centered at Pj which 1is included in 5
For each p € Di s Vp meets transversely with the sphere BDé(Pj)
and f:Ej -V —>Di - {0} is a Milnor fibering where Ej=f—1(Di)r1D6(Pj) .

Let Fj be the fiber V_ rWDé(Pj) . (See Figure 4).

Sy

Figure 4.



-1

Let N = f (Di) and consider the following Van Kampen diagram.

T (N-V'(1 ), *
1 b7
8!

(V.0 VUV ), n]_(m’--v'(w,*)
?
nl(mz-vu v'(TL),*)‘

Consider the following fibering: f£:N-vU V'(Tl)) "Di— {o} . Using the fact

m o
that £ : N—(V'(’%) u u Ej) "’Di is trivial fibering, we have a family
j=1

. . . . . e - Lt
of characteristic diffeomorphisms {TS} 2 Ve V.(‘r‘b) V€(S) v (rb)

(e(s) = c.exp(2TMis) , 0.<s <1) such that (i) T, is the identity map

m )
and (ii) T, IVG—V'(T‘B) Uu u ﬁj is the identy map. (Ei is the interior
j=1 ) o m
of Ej ). We can assume that the base point * 1is contained in VeﬂD - U Ej
j=1

Now consider the following exact sequence.
(4) 1 ->mW -v'(n),® >mN-vUv'(n),* f—#-> (02-fo}, &) »1
A 1 Ve T 1 e M iD= 105,

Let T be the element of ﬂl(N—VU V'(Tl)),*) which is represented by the loop
w(s) = TS(*) . We can define a cross-section o of f# using T . Usine
this cross-section 0 , TTl(N—VU V'(T‘b),*) is a semi-product of
ﬂl(Ve-V'(Tb),*) and ﬂl(Di— o}, =z . By the above consideration,

m

e . , g
(Ve v (Tb)) Ujgl Ej is a deformation retract of N-V (TB) ;

_yt # _ut 3* : ;
Let K be the kernel of {TTI(Ve \Y ('r]o), ) ->1T1(N v (Tb)’ )} . First we prove

the next lemma.

Lemma 6, K0 is generated; by elements of the form [L—l.v.'f/] where v is
a loop contained in some Fj- and 4. is a path in Ve—V'(Tk) such that

20) = v(0) and 4(1) = *

—_— 24 —



Proof: Let I} = (v, - V’(Th)) U U E, and consider tha following Van Kampen
15
diagram,

a m (B, U4, *)

1 15417 Y410
Py - mE. . U4 9 \JW(I‘
17 j4+1 ' I

j+1 3 +1°
: S~ , ’//////,//;? j
b . \\\“‘\. T{,
J+1k \\5 ﬂi(f}s #) j+1

» - Y L : P * > - * -
where £}+1 is a path such that (i) {3+l(0) and {3+1(1) is a point

*)

of 5F3+1V . (ii) The inclusion Fj+1cf———~> Fj+1 L!{3+1 is a homotopy
equivalence, This means {3+1 makes no cycles. By the induction on j , we
prove that Kernel [T&(V€~V'(Tg); ®) - ﬂi(f}, #)] is generated by
elemeﬁts of the form [{7;.9.&3 where V is a loop contained in some
kFi(i,Sj) and 4 is a path in V€~V‘(Tb) which comnnects V(0) to %  Let

K(I}) be the latter group. Because Ej§1 is contractible, a is the trivial

i+l
) .

homomorphism, Thus we have an exact sequence from (Bj+1

(B*. .) : 1 ~9N(Image(bj+l)) -> ﬂi(fg, #) - ﬂi(I3+1’ N > 1 .,

j+1
where N(Image(bj+1)) is the normal closure of Image(bj+1)~ .

Putting 3 = 0 , we have

1K) M), B oW, N > 1

Assume the exact sequence

L2 2 m v =viin), > mI, M -1

Then using (Bj+1') , we have that the sequence

1+ K(Tj+l) - ”1(Ve‘v’(%)’*) - ﬂl(I‘jﬂ, ® =1

is-exact, completing the proof.
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Now we return to the diagram (V,K) ., By the above argument, we
have that @ is surjective and Ker qﬁ is normally generated by T and

KO . Therefore we obtain the following exact sequence,

: 2 2 .
(E) : 1 ~>N(<g2<*r), cpz(KO)) eﬂl(m -V Uv‘('q)), #) ””1((“ —v'('qo), ) 21
where N(¢§(1) s ¢§(Ko)) is the minimal normal subgroup which contains

¢b(19 and every element of ¢§(Ko) .

Assertion 1, qb(Kb) is the trivial group,

For this, we consider the following diagrams

ﬁl(veﬂ'ﬁ, ¥) = > ﬂl(ve'v'("%)’ ) s nl(N-vuv'(q)},*)
a b ¢bk
m (Bv, ® > M ETH -V (1), ®) —> m (@PvU Vi (1),

By Lemma 3 and the definition of D , we have that a 1is the trivial
homomorphism, On the other hand, by Lemma 6, Ko is
included in the normal closure of Image ¢ , Thus we have that b(KO) is the

 trivial group which implies f¢§(Ko) is also the trivial group,

Assertion 2, In (V,K), @, is surjective,

For this, let X' be the set defined by {n €a; v;f"l(n) and -
V‘(TE) are‘not in the general position} ., By the elimination theory, this
is a finite set, Let Xg =35 Usm U @O} and consider
f : f-l(m - Eg) —‘V'(TL) » ¢ -~ 2; . Using a controlled yugtor ficld near
L, and V'(TB) R this is a fiber bundle, Then the

proof is completely parallel to that of Lemma 2,

—2F —



Assertion 3, ¢§(T) is contained in the center of ni(mz-v LIV'(TB), o,

For this, we cousider the geometric picture of Ve ND and Ve-V'(TB) .
Let d1 and d2 be the respective degrees of Ve and V‘(TB) . Then V_
is a Riemann surface punctured at d1~points. By the definition of D s
V€ -V€ n 5’ has dl-connected components each of which is diffeomorphic to
a punctured disk, By Bezout's theorem, V. rxv'(rb) contains exactly

d; d2 points, It is easy to see that Z;O(X, Y, Z) = nl_)ir(x)x ¢ (X, ¥, 2) =

- %2
Z .g(xo,yo) (see Lemma 4),

This implies that 1im V'(1) is dz-fold L, . Thus we have
7 0

~
that, in each component of Ve - VQF\D , there are exactly dzfpoints which

are contained in V, Y)V‘(TB) . (See Figure 5.)

Figure 5°
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Let V. riV'(TB) = {al, az,...,adldz} . By Van Kampen's theorem, we can |
take loops {bj} (3 =1, 2,...,d1d2) so that the following conditions afe
satisfied,

(i) bj is of the form {gl \3 {3 where ?j is a small loop revolving

round a and 43 is a path such that {5(0) = V(0) and {3(1) = ¥

(1) MV v (), ®) | is generated by {[bj]} (3=1,2,...,d;d,) and

2
AR _ut *
Tmage [ﬂi(ve Np, ®» = ﬂi(Ve \Y (TE), )]
(iii) Because V 1is irreducible, Vg - LJFj is connected, Therefore
i
we can also assume that 4, is a path in VS- Ur, .
Recall the exact sequence:

(F) : 1= ﬂi(VQ-V'(Tb),*),a'ﬂi(KeV LfV‘(TB),*} - hi(Di_{O}’ €) =1

~Takelany elemenﬁ [w] of _ﬂi(Ve-V'(TB), ¥) . By pulling back by characteristic
diffeomorphisms ffs} s f-lfw]T is nothing but |
(r,(w)] . Therefore fr“l[bj It = [bj] in mN-v UV'(n),¥% . Using the
diagrams of the proof of Assertion 1, it is easy to see that Image (¢h) is
generated by q&([bj]) (j = 1;2;...,d1d2) and ¢§(1ﬁ . Thus we obtain that
¢b(1? . is contained in the center of Image @ which is equal to

ﬂi(@z—v LJV'(TB),*) by Assertion 2, This completes the proof of Assertion 3,
Returning to the sequence (E), we have just préved that N(¢§(19, ¢§(K0))
is isomorphic to the cyclic'group generated by ¢b(19 . By the following

diagram, it is clear that ¢h(T) is not a torsion element,

£4

nl(N—v uv! (q’), #) > ﬂl(Di-’{O 1,

§

m (@5 UVi(n),® —————s m (€ -0}, ©




Thus we can reduce (E) as follows,
2 2
- - - 1 3* _yt *
12z rrl(c: vUv(q),) enl(m V('r]),)"l

Identifying TT1(¢2—V, *) with Z , one obtains, that

2
TTl(E -V UV'(T]O),*) - TTl(Gz—V, ¥) is a splitting of the above sequence,
Since Z 1is included in the center of nl(mz-v UV'(’r‘b),*) , this gives

us a natural isomorphism,
m a2y Uvi(n),® T m ey, H xm@tvi(n),"
1 /s 1 : 1 USE

Now by Lemma 5, we have the following diagrams,

1o m@v,® - m@iy Uvi(n),» - meivig),9 - 1
= 2 ~

V3 3T V-

1 -»nl(mz-v,*') - rrl(mz-v uvr, #®) - nl(mz-v', #Y) o

This completes the proof of Theorem 2,

Remark, Let € be a non-irreducible curve, It is not always necessary that
R . . - 2
its irreducible components are in the general position for TTl(]P -C). to be

abelian,

Example, Let C1 be the non-singular curve Xd + Yd - Zd =0 and let L

be the line Y-Z =0, (d 22) , Then C, NL = {[o;'l; 1]} and the inter-

1

section multiplicity is d . We can see that nl(le- C, UL) is isomorphic

1
to Z as follows, Let L_= {2 =0} and consider the map

Q: IP2-L°° U C1 UL =€ - {0} defined by [X; ¥; 2)) = Y/Z . Then ¢ has
(d-1)-critical values % = {¢, Cz,..., Z:d_l} where € = exp(2mi/d)

Q: <p'1(m-2 Ufoh =t - 2x2U {0} is a fiber bundle. At

- J0 —



each critical value, we have topologically the same situation., The general
fiber F 1is diffeomorphic to €& - {m; 'nd =1} and the characteristic map
Tj around Ci(Tj: F 2 F) can be cénsidered to be the rotation of the angle
21/d , Therefore we have that - ﬂlm’z-};m UCI UL) 1is isomorphic
to Z ®Z ., This implies by Lemma 1 that T\‘l(]Pz- CIU L) =2 . This exémple

is essentially due to Zariski ([4?]).



C}\cwﬁ/km .

On the topology of the complement of a hypersurface in IPn+1

§ 0. Introduction,

The purpose of this paper is to describe the similarity of :mn+1-v to

K(m, 1) where V is a hypersurface in ZEn+1 and T 1s the fundamental
group of ]Pn+1-V in the case that 1T 18 abelian. This paper 18 organized
as follows,

§ 1. Statement of results

§ 2. A Zariski type theorem

§ 3. AFLefschetz type theorem

§ 4, Fundamental groups

§ 5, Criterions for niGPn+1-V) to be abelian

§ 6, Proof of Theorem 3

§ 7. Proof of Theorem 4

§ 8, Algebra structures and examples

§ 1., Statement of results

let fj(zo’ z > (j=1,2,...,r) be mutually distinct irreducible

17 2%

homogeneous polynomials and let V, be the projective hypersurface defined

3

by v, = {[z] eptl | £(2) =0} (4=L,...,r) . let V be v, UV, U..Uv,

1
n+2
and let F be the affine hypersurface defined by F = {z €¢ H

fl(Z)’fZ(Z) "'fr(Z) =1} , Then F 1is a d-fold eyclic covering space of
r

PPy where d =% degree (fj) . We have that ﬂi(F) is a free abelian
j=1

group of rank r - 1 if ﬂiGPn+1—V)

is abelian. (See § 4). We assume that
rz2 , (For r=1, see Example 1 in § 8.)

¥.r-1
We define amap B : F = (¢ ) by

8(z) = (£,(2), f3(z),...,fr(z)) .



Then we can express our results as follows,

Theorem 3, Assume that Vl QVZ.. N Vr is non-singular and complete

t 1

Then € is an (n-r+2)-equivalence. (Actually it is not necessary to assume

that ‘\Tl

For the assumption that Vl ﬂVzﬂ ﬂVr is non-singular implies that

(i.e. dim, V ﬂv2 N ...ﬂVr = n-r + 1) and that ﬁl(IPnH-V)‘ is abelian,

GPn+1-V) is abelian if {Vj'} (§=1,2,...,r) are in a general position.

dim, Z‘Vj. <n-2 (r<n) and we know that ﬁ1®n+1-V) is abelian by Theorem 1

and Corollary 1 of Theorem 2 in § 5.)

By the Whitehead theorem, we have the following;

Corollary'1, anPﬁ+an) = ﬂj(F)-'—' 0 for 2 =j <n-r+l ,

Corollary 2, ! (F; Z) is isomorphic to (,rj-:l) Z and the monodromy map
h¥* ;I (F; Z) =83 (F; Z) 1is equal to the identity map for- j Sn-r+l .
Here kZ means the direct sum Z 9z © ,..@Z' (k-copies) and the monodromy

map h : F »F 1is defined by

2T o 2mi 27
h(z) = (z, exp 3 5 2 exp “geeeazyy P )

Let VI" Vé’“’"’r ‘be non-singuiar hypersurfaces. We assume that

\A n \ n...n v, 1s non~singular and complete for each sequence
2 " .

1 s ~
i <i2< ,,,<is (s <r) ., Then we say briefly that .} G=1,2,...,r)

1

meet transversely in the strict sense,

Theorem 4. Assume that {Vj } (3=1,...,r) are non-singular and meet transverse-

ly in the strict sense, Then & is an (nt+l)-equivalence,

As ‘a ‘corollary, we have the following.

Corollary. (i) TTjGPnH-V) = Tfj (F) =0 for 2 Sj <n

(11) Hj(F; z) =~ (r;]‘) Z and the monodromy map



h#* ; Hj(F; Z) >Hj(F;VZZ) is the identity map for j Sn

Theorem 4 was essentially proved by Hattori-Kimura ([}]) and Hattori ([F])

in the case of each Vj being a hyperplane;

§ 2, A Zariski type theorem,

Let f(zo, zl,...,zn+1) be a square-free polynomial such that £(0) = 0 ,

n+2 n+2

Let H/ be the affine hypersurface in & defined by H = {z€ ¢

in+3 where S§n+3 is the (2n+3)-dimensional sphere of

;£(2)=01}
and let K be Hor\S
radius € centered at the origin and € 1is a small positive ﬁumber which is
a stable radius of the Milnor fibering of £ at the origin, Let L be a
general hyperplane which contaiﬁs the origin, Then we have the following

theorem,

Theorem Z . (Hamm; L& [6] . The homomorphism
- r * - 3
nj((se K) NL, ¥ -*nj(se K, ¥
defined by the inclusion map is
(i) bijective for j Sn-l

(ii)  surjective for j =n

S2n+3

(Here S€ =8,

and the base point ¥ is chosen on (Se-K) nL .)

Roughly speaking, a plane L is general if L meets transversely for each
stratum X of a good stratification 8 of H (or K ) so that {Lﬂ}(%( €s
should be a good stratification of Ho NL , For the precise definition and

the proof of Theorem Z, we refer to [4) .

—_— ‘;sz —_—



The following corollary will be used to prove Theorem 4,
Assume that £(z) 1is a homogeneous polynomial and let V be the projective

n+1

hypersurface defined by {[z] €P" '; £(z) =0} . Let L be the corresponding

projective hyperplane to L , Then we have:

Corollary, The natural homomorphism

nj((]Pn+1_ V) nIN" * - .n,j (]PI’H'].—V , #)
is (1) bijective for j Sn-1
and

(ii) surjective for j =n .

. S2n-¥-3_ n+1

Proof. Let K »P -V be the restriction of the Hopf fibering

: 82n+3_{mn+1 . Put § = S2n+3 and P =]Pn+1 . Take base points X, and
~ . ’ 6 - g g =
¥ respectively so that X (P-v) NL and ¢£xo) X, . Using the homotopy

exact sequence of a fibration, we obtain that

Oy rrj(s - K, ¥) ->rrJ.(P -V, x)

is bijective for j 23 , For j = 2 , we consider the Milnor fibering

¢=f/gl :s-x-ast .

Identifying ﬂ1(¢—1(xo), }'Z'o) and T&(Sl, ¥) with the infinite cyclic group

Z , we see that the composition homomorphism

-1 ~ ~ 1
TTl(go (xo), xo) "TLL(S-K, xo) T> ﬂl(S , ¥

is the multiplication with d = degree (f) wunder a suitable orientation
(* = ¢(§;).) This implies that the homomorphism
-1 ~ ~
1Tl(<p (xo), xo) - TTl(S - K, xo)
is injective, Combining this and the homotopy exact sequence of the fibration

¢:8=-K>P -V , we obtain that P4 rrz(s-K, >’?o) - TTZ(P-V, xo)

—-—jf‘_



is also bijective, Considering f[L in the case of (S-K) NL , the above
Cofollary is an immediate consequence of Theorem Z and the above arguments

using the following commutative diagram and the five lemma:

(p .
m(S - K, &) Tt me™ly, x )
J o o o

T .

mUEONLE) > (@™ lnng, x)

0> m(F (x),%) —> 1 (5K, %) > me™h v, k) —> o

AP i

0~ Mm@l ),E) —>m(s-RNLE) —>n(@nnL, x) —> o

This. completes the proof of the Corollary, (This corollary was proved by

Zariski [24] for the fundamental groups.)

§ 3. A Lefschetz type theorem,

Let fl(zo’ ?1""’Zn+1)"""fr(zo’ zl,...,zn+1) be square-free
homogeneous polynomials and let X be the projeétive‘variety defined by
X = {{z] ep® £,(2) = fz(z)": L= (2) =0} . Let a:X P be
fhe incluéion map, Then we have the following theorenm (Kato,\[?j, Lemma 6,1
of § 6) .

Theorem L. a : X *ﬂf”i is (n-r+l)-equivalence i.e.

. " n+1 3
ay: nj(x, ) *-*TerIP s M
is hijéctive for j Sn-r and surjective for j = n-r+l .

Proof: Let H be the affine variety {z € m“*z; £,(2) =£,(2)=. =f (2)=0 }

— 3§ —



2n+3 2n+3

and let K=H NS . Then we know that (8§ ,'K) is (n-r+l)-connected

by Hamm, Satz 2.9, [$). Now considering the homotopy exact sequence of the

S2n+3

Sl-.bundle pair ¢ : ( , K) = CKPRH', X) , we obtain the desired result.

By virtue of the Whitehead theorem, we have the following corollary,

n+l )

Corollary 1, (0Oka, [14]) ay: Hj(X)‘%HjG?
is bijective for § Sn-r+l . (Unless otherwise ‘stated, every homology is
with Z-coefficient,)

In the case of X being a non;singular, complete intersection variety :
(i.e. dim, X = n-r+l), we can decide Hy(X; Q) as follows.

Corollary 2,  Assume that X is a non-singular and complete intersection

variety, Then we have:

HJ.(X;Q‘) & (q 0 £j <2(n+l-xr) , j : even, j # ntl-r

0 otherwise

where €(j) =1l or O for j even or odd respectively and clj = degree (fj)

(i =1,2,...,r) and M. is the following polynomial,

z .

: _ r n+2) - j i, k]
p‘ (dlsdzs con ,Cir)_-'(‘—l)n r+1( H d ) Z.. (-d}.) 1("‘d2) 12u * ("d}:) r
t j=1 J j+j1+..+jr=n-r+l ‘ ‘

o DT (o)
Proof, In the case of j # n-r+l, Corollary 2 is an immediate consequence
of Corollary 1 and Poincaré duality. ur is computed by the adjunction ’

formula of the normal bundle, For the algebra structure of H¥(X; Q) s see

Oka, [14).



§4, Fundamental groups

Let f(zo, zl""’zn+1) be a square-free homogeneous polynomial

of degree d , Let V = {[z] €]Pn+1; £(z) =0} and K ={z€ ¢n+2; £f(z) =0,
”z” = 1} . Consider the Milnor fibering ¢ = £/ Ifl . Szn+3-1( - s1 and let

F!' be the fiber \Lr—l(l) . F' 1is naturally diffeomorphic to the affine
hypersurface F = {z €¢n+2; £f(z) = 1} by the diffeomorphism k : F - F'
defined by

k(zo, zl""-’zn+1) = (ZO/HZOH , z1/”z”,...,zn+1/”z” ) I

The uionodromy maps h : F ?F and h' : F' 2 F' are defined by the coordinate-

2ni
d *

wise multiplication with exp These maps define free

Z/&-actions on F and F' so that k is Z/d-compatible (i.e,

h' ok = koh) . The orbit space F'/Z/dZ is clearly diffeomorphic to
1Pn+1-V . Therefore we have:

Proposition 1, F 1is a d-fold cyclic covering space of ]Pn+‘1- V..

Next we consider the case that V = V1 U VZU veo U Vr and

£(z) = fl(Z) fz(z)...fr(z)-’where Vj is irreducible and defined by

n+1

{fj =0} for j=1,2,...,vr . Assume that Trl(]P -V, #) be abelian,

n+1

Then Trl(]P - V,#) 1is decided as follows,

m @y, » ¥u ey
'=“'H2n+1(]Pn+1, V) (Lefschetz duality)

Considering the following exact sequence

- HZnGPn+1) - HZn(V) - H2n+1'GPn+l’ V) -0 ,
(4]

2n+1 ClPn+1 ,

we have that H , V) = Coker ¢ . Using the canonical isomorphism:

— 3f —



22@™H Tz and uz“(v)’” 2“(v ) @...eu WOk zeze..ez ,

¢ is defined by @(1) = (dl, 2”“’dr) where d, = degree (£,) (G =1,...,r) .

h| 3
Therefore we can take canonical generators e, (j =1,2,,..,r) of
i J

GPn+1

-V, #) as follows, Take a nonmsingﬁlar point P, of Vv, - U Vv, and

let sj be a small loop defined by a Sl-fibre in the normal bundle of VJ
at Pj . Let Lj be a path in B" 1-V such that &j(o) = # and
-1
4,(1) = 5,(0) ., Define e, b 1,8, 4, . (Figure 1)
i ; me ey by [hyey 4] . (Figu

Figure 1,

By the above isomorphisms, e, corresponds to (0,...,1,...,0) . Note

J

that f{e,} (j = 1;2,...,r) have one generating relation

3

G) j§1 dj I =0 ,

Let P : F = 3?“+1~~v be the above covering map, Because P#: ﬁl(F, ?e‘) -
- TTICIPH+1-V, %) 1is an injection, we can consider ﬁl(F, % to be a
subgroup of TTIGPn+1-V' . (e =

“ﬂ—v, #) be abelian, Then T, (F, % is a free

Lemma 1, Assume that ﬂlﬁi’
abelian groﬁp of rank r-l1 and P‘#(TTl(F, #)) 1is generated by {el-ej
(j = 2,3"Ct0’r) .

Proof. Let L be a general plane to V , Because e, is independent of-

3

the.choice‘of 1’j s sj and ‘Lj (3=1,...,1) we can assume that Ljsj&;l

— 0)7...



1

is a loop in ZPn+ -v UL for j=1,2,...,r . If necessary, by a suitable

transformation of coordinates, we can assume that L. 1is defined by {zo=0} .

~

Let ‘% (the fixed base point) = (2;, zl,...,2;+1) . Consider the canonical

n+2_f-1(0)) n {Zo n+1

~J
zo} »P -V UL defined by

diffeomorphism a : (C

N N .
- . . ..o R e
a(zo, ZyseeesZy 1) [zo, Zyseee3Zy 1] By virtue of a , we have a canonlcal

element 2% of ej in ni(mn+2-f-1(0), i) (j=1,2,...,r) . Consider the

following exact sequence derived from the Milnor fibering:

£ e £ o) -

%) ——> m@*, £®) so
#

N | (

Z

o~ nl(F, ¥ L n1(¢n+2-f'1(0),

Py

‘ ﬂiGPn+1—V, %)

Under the canonical orientation of sj (3=1,...,r) , we can assume that

~

fﬁgej) = 1 (identifying ﬂi(m*, £(3) with Z ) for each i=1, 2,...,1
~N o~ :

This implies f#ﬁel - ej) =0 for j=2,...,3 and therefore they are contained
in the image of @ , By the definition we have that ¢q§g;) =ey . Thus by
the commutability of the above diagram, we have that e, -e, (j=2,...,r)
are contained in the image of Py . Let N be the subgroup of ﬂiGPn+1—V, *)
generated by {el-ej} (j=2,...,r) . Using the generating relation @) , we

have that TTl(an+1-V, ¥)/N 1is isomorphic to Z/dZ which implies, by the

n+1

fact that TtlﬁP 'V’*)/P#(nl(F’ #))=z/dz , that N = P#(-nl(F, ?)) .

Now we prove that {el-ej} (j=2,3,...,r) are linearly independent, Assume

(

-e.) + a,(e

that e -e, 3 1-83)+...ar(el-er) =0 for some a, €Z (3=2,...,1) .

)
Eliminating e using (G) and the above equation, we obtain the following

equation using the independence of €yresss€, .



- d1+dz, dz,... , dZ 32

dgs dyHds,

d3,...,d3 a,

r“l EEREER IXER] =

.

2
=N
-
-
L4
[«
b
[a 7
[

This implies that a; = 0 by the nextsublemma, completing the proof..

Sublemma, Let A.n be the following matrix,

14x 1,...,1

1!

1’ 1+X 1,-;0,1

2? .
(x, >0 for j=1,2,...,n)

1,...,1L, 1+~xn

Then the determinant of Ah‘ is always positive.

Proof. let f (xX,,...,x ) be the determinant of A_ .,
n 1 n n
Then.. fn(xl,...,xn) is a symmetric polynomial of {xj} . The coefficient
of the monomial xl.xz...xj is clearly the constant term of fn—j(xj+1”"’xn)

i,e, fn-j(O) . But fn_j(O) is O except j=n or n-l, Thus we have
n
.“x + 2 X
n

fn(x) = x
j=1

X ?C X
1 20.. jtto n

1%2
Therefore fn(x) >0 if X is positive for each j=1,...,n .

Now recall that & : F *>(¢*ﬂr-; is defined by

g(z) = (fz(z),...,fr(z)) . Then we have;



n+1

Lemma 2: Assume that wlﬁP -V, #) be abelian,

Then g#: TTl(F, ) *Ttl((ﬁl*)r-l, §(/;"’))~ is bijective,

n+l

~ "“1 * 1’.‘-1 g ‘
Proof, Let & : @& “=f (0) = (&% be defined by §(z)=(f2(z),...,fr(z)) .

Then it is clear that E!F =g,
- ~ ‘

Identifying ﬂl((ﬁi*)r 1, E(®) with 2z ©Z & ,,.,8Z in a natural way, we
. \q -1

A N
put Uj = (0y.0451y... 0) , Then by definition of ey we have that
B =0, for j B (e |

#ei = O‘j or j=2,.,..,r and g#(el =0 , This implies that

E#(el-ej) =“Gj (3=2,3,...,r) , completing the proof,

§ 5. Criterions for :Tl‘lﬁPn+1—V) to be abelian,
Again assume that V}_,...,Vj be irreducible hypersurfaces in 1Pn+1

and let V = vy U V2U veu U V.o Generally Vj may have singularities,

Definition: Vl’ V?_”“’Vr are said to be in a general position (in the‘wea-k

sense) if they satisfy the following inductive conditions.

(Ci) If n=1 , each two curves Vj and V, (§#k) meet tramsversely
and Viﬂ anvk = ¢ for-mut:ually distinet i, j, k . |

(Cn) There is a hyperplane L which is general to Vj (j=1,...,r) and V
in the sense of Theorem Z (§2) such that Vl nL , VZQL,...,'VrQL

satisfy. (Cn-l) .

It is clear that if {Vj} are non-singular and meet transversely

in the strict sense, then {Vj} are in a general position,

We have the following criterion for TIlGPn+1-V, ¥) to be abelian.



Theorem 1, Assume that V., V ""’Vr are in a general position, Then

1’ "2
Trl(IPn+1-V, ¥) 1is abelian if and only if ﬂlﬁPn+1-Vj’ ¥) is abelian for

each j =1,2,,..,r .,

Proof: Applying the Corollary of Theorem Z inductively, we can take a
general ]P2 for Vl""’Vr and V which satisfies the following conditioas.

let Cj =Vj f'\IP2 (j=l,...,xr) and C =V ﬂ]Pz .

¥ (i=l,...,r)

.2 n+l
(1) ﬂl(]P - cJ., *) ->n1GP - Vj,

and
nl(le-c, #) - rrlﬁP“+1-v, #)

are bijective,

Now by Corollary 2 of Theorem 1 in Oka [1% ), we know that TTIGPZ-C, *) is abelian
if and only if nl(]Pz—Cj,*) .is abelian for each j=1,...,r . This completes the

proof, As for the irreducible curves, we have the following criterion.

n+1

Theorem 2. Assume that V 1is irreducible (i,e, r=1 ), Then TthP -V, #

~
is abelian if and only if Trl(F, N =0 ,
Proof: Let F —>IE’n+l- V be the covering map. Then we have that the quotient

n+l

N
group TTlClP -V, *)/P# Tfl(Fl ¥) is isomorphic to the cyclic group Z/dZ

(d = degree £ ), while H GPn+1—V) is also isomorphic to Z/dZ by the
& 1

LaV4
Lefschetz duality, This implies that Py TTl(F, ¥*) is the commutator group of

ﬂlﬁPn+1—V, ¥) , completing the proof,

Corollary 1, Let XV be the singular points of V ., Assume that

dim n+1

mv}:v <n-2 ., Then TIICIP

-V, ¥) 1is abelian,
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Proof: This is an immediate consequence of Theorem 2 and the Theorem of
Kato-Matsumoto ] because F 1is (n-s-1)-connected where s = dim‘x v .
(This can also be proved by the Corollary of Theorem Z.)

As a special case of Theorem 1 and Theorem 2, we have the following
Corollary 2. Assume that {Vj} (3=1,2,...,r) are 'non-singulark and wmeet

transversely in the strict sense, Then rtl@n+1~v, ¥) is abelian,

§ 6 Proof of Theorem 3,

n+1_ r-l

Assume that TILGP V, ¥ 1is abelian, Recall that E : F = (0%

is defined by §&(z) = (f2€z),...,fr(‘z)) where F 1is the affine hypersurface
n+2 ' _

2 e % fl(z>‘f2(2)“’fr(8) =1} .

The following lemma is essential for the proof of Theorem 3,

"~
Lemma.3, Under the same assumption as in Theorem 3, we have that Hj (Fa) = 0

for j <n-r+l and for each « € @®* ! where Fo = €"l(a) .

Proof: lLet a= (0.2, G’B""’ar} . Then by the definition we can ekpress

+2

F_= H1 ﬂHZ n...n Hr where {Hj} are affine hypersurfaces in ¢ ‘ defined

04
n+2 -1 n+2
= H = . s e 2 = e 3 = 2
by Hy {z €07, fl(z) (cxz CL3 cr,r) } and HJ fzead ", fj(_Z) (13}
: ~
for j=2, 3,...,r. Consider the projective hypersurfaces Hj in ]Pn+2 de~

- d
fined by ’ﬁ'fx[z; W) €]Pn+2; fl(Z) = (Oaz...ar) L w 1} and

: q. ' o
'fljj = {{z; w] E}}?n+2; fj(z) = aj wi } for j=2,...,r. (dj“w" degree (fj).)
,gj is the closure of Hj» in IPMHZ‘ by the inclusion Hj Cd:n+2 C]Pn+2‘ ‘. Let

L. be the hyperplane f{w =10} . Then we have natural homeomorphisms

’.:N' ~ S vy ~ N
Fo= H0H, ﬂ.k..ﬂHr -H NHy N...0H NL_ and



Tnfn...nf nL, Yv.nv,n
Hl H2 Hr L, --V1 V2 ...ﬂvr .
By the assumption, V1 ﬂvzﬂ ...ﬂVr is non-singular and complete, Let N be

. ~
a tubular neighbourhood of L_ in ]Pn+2 . Because H,NHN... ﬂﬁ;OL

1 2 ©
is non-singular and complete, we can assume that N =N ﬂHlﬂ Hzﬂ veo N H

is
1 HoaEn...nY n A NEN...NH

a tubular neighbourhood of Hl H2 e Hr L, in Hl H2 ces Hr .
. n'f‘z ~ ~ ~ ~e . ~

Putting P =T , H= Hlﬂ Hzﬂ ..,ﬂHr and C =H NL , we have the follo-

wing commutative dlagram .

?{l(g) 4 > H(?f F.)
i 3 e
, o
e §>H(PPL <= LanL) <5 ®F -0
j b »j""og» 82 j > o ) j 3

Q@Q’:g

Hj_z(Lw) <-;-  Hj_z(C)

-
Here ej (j=1, 2) are excision isomorphisms and & and & are Thom-isomorphisms,

Because P -ng ¢n+2 s, b is-bijective, By tﬁe corollary of Tﬁecrem L, a 1is
bijective for j =n-r+l and surjective for j = n-r+2 . Similarly c (there-
fore d ) is bijective for j Sn-r+2 and surjective for j=n-r+3 |,

Therefore we ob_tain from the diagram that @ is bijective for i 5n-r+1

and surjective for j=n-r+2 ., Considering the homology exact sequencé of the

fad ~ :
pair (H, Fc,) » we have that H, (Fa) =0 for j<n-r+l , This completes the

proof,

Now we are ready to prove Theorem 3,
Let m: R ™ ((i:"")r"1 be the universal covering map and let §"IR be the

pull back of T: R = (&*)r-l i.e, §"1R = {(z,y)E€EFXR ; &) = n{y)} .

— %



-1 ~ -1
Let p: § R=2>F and §: & R »R be the respective projection maps,

By Lemma 2 of § 4, p : E-lR - F 1is the universal covering map i.e,

g-lR is simply connected,

~ ~ 1
For each y €R , we have that gl(y) = & (m(y)) = Fn(y) = €_I(TT(y)) .
o~
By the above lemma, we have that Hj(g-l(y)) = 0 for each j<n~-r+l |,

Now we consider the Leray's spectral sequence for & , (See for example VI,

6 of [3]. We have a convergent E, - spectral sequence:

2

Eg’q = #P(R; sz*(g)) > PR s z)

where M(E) 1s the associated sheaf to the presheaf defined by

~ ~
U > Hq({l(U); Z) . Now note that & 1s locally equivalent to & and
that £ can be considered to be a proper map, (For a given compact set

K C (m*)r'l , we can take a tubular neighbourhood N of L, in the proof of

Lemma 3 so that f’a AN is a tubular neighbourhood of faﬂ L, in F_ for

a
each 0o €K where ?‘a is the closure of Fa in ]Pn+2 . This implies that
: o
FOL - I?I CFG. is a homotopy equivalence for each a €K , N being the interior
~ W ¥ydcel

of N .) Therefore we have that (§)x = H'(E "(x); Z) . Then Lemma 3 implies
that Elz)":l 0 for 0 <q <n-r+l and E(z),n-r+2 is torsion-free, Thus we
obtain that §* : (R Z)-)H (§ R Z) 1is bijective for j <n-r+l and

n—r+2(g R; Z) is torsion-free, By the universal coefficient theorem, we have

that 'g* : Hj(g' R; Z) ->HJ.(R; #Z) is bijective for j S<n-r+l which implies
ov

that & (therefore & ) is (n+r+2)-equivalence by the Whitehead theorem,

This completes the proof of Theorem 3.

Proof of Corollary 2, The first part is clear, By the spectral sequence of a
d
covering space (see [11), g GPn+1-V; Q) 1is isomorphic to [Hj (F; Q)JZ/ Z

which is the kernel of h*—.id:Hj(F; Q) ->Hj(F; Q) . Because

—~ £



#'@ v, Q) = (r-1)Q , this implies that h* H'(F; Q) ~»ul(F; Q) is the
identity map. ;rherefore h¥ = {4 : H]’(F; Z) "*Hl(F; Z) by the universal coeffi-
cient theorem, By Theorem 3, AjHI(F; Z) QHj(F; Z) 1is bijective for j<Sn-ry4] |
Therefore the multiplicative property of h¥* implies the desired result,

completing the proof,

§ 7. Proof of Theorem 4,

Let {Vj} (3=1,2,.,.,r) be non-singular hypersurfaces, meeting trans-

versely in the strict sense, Let V =V,U VZU TR S

Lemma 4, The topology of 39““-\: is decided by the respective degree dj

of V, (3=1,...,r) and it does not depend on the particular choice of Vj‘é

(G=1,...,Y)

N ; ‘
Proof, Let P 3 be the parameter space of hypersurfaces of degree d, where

h|

N
each point t €P 3 corresponds to a homogeneous polynomial ft(Z) of degree
d, (or a hypersurface V_= {£ =0} ., N, = Gl R 1)
J £t J d,
3
NN Ny |
Let U= {t = (t;, t,h. ., t JEP "XP “X .. XP ~ {th}' (3=1,...,Y) are

non-singular and meet transversely in the striet sense.}
Then we have that U is Zariski-open and therefore path-connected, Let

t = )
v Vl ‘
Theorem &4 such that degree V,' = degree V

U VéU ..o U V:" be another hypersurface satisfying the assumption of
i (1=1,...,v) .

Then we can find a smooth family of hypersurfaces {V(t)} (0 £t <1) such
that V(0) =V and V(1) =V' and V(t) can be written as

v(t) =b’Vl(f:.) uvz(t) U ...Uvr(t) satisfying the assumption of Theorem &4,

Therefore we can construct (ﬁsing the technique of vector fields) an isotopy

@ of IPn+l such that @ = id and lpL(V) = V! | This completes the proof.
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Proof of Theorem 4,
A~ ~s ~
V 3 23 LI 3v be

Take a positive integer N (N-r+lzn) and let .

1
"}’j) = degree (Vj) and

{G’j} (3=1,2,...,r) meet transversely in the strict sense, By Theorem 3 and

non-singular hypersurfaces in- ZIPN such that degree (

' ~ ~r ~
Corollary 2 of Theorem 2 in § 5, putting V = ?7'1 UV?_U U\,"r we have that

o~ .
m, @"- V) =0 for 2 <j <N-r+l, Taking a sequence of general hyperplanes L

k| ; ]
(j=1,2,...,N~n~1) where L, 2"l ana applying the Corollary of Theorem Z
in § 2 inductively, we have that TS(L—L NN To for 2 £j Sn where

L=y T ™! | By Lemma 4 this implies that m ®*ly) =0 for

2 £3 Ssn , This completes the proof of Theorem 4, combining Lemma 2 in § 5.

§ 8. The aglgebra structure and examples

In this section, we assume that Vl"“’vr are non-singular and meet

transversely in the strict sense,

+2

Because F 1is a non-singular affine hypersurface in ¢ s F has the homo-

topy type of a CW-complex of dimension (n+l), Therefore we obtain the follo-

wing theorem as a corollary of Theorem 4,

Theorem 5, H*F; Z) is isomorphic as an algebra to the quotient algebra

of the exterior algebra

E = Mxl"xz”..,xr"l; Yl,...,yu)

by the ideal & which is generated by the monomials of degree 2n+ 2

+2

where degree x, = 1 (j=1,2,...,r~1) and degree vy = ntl , (3=1,...,0 .

3
(L is a polyriomial of dl’ dz’;"’dr . See Remark 1)

n+l .

Using the Corcllary of Theorem 4 and the fact that H¥®" -V; Q)

Z/az

'3'5'_ H*¥F; Q] , we have the following theorem,

.,,4}....



n+1l

Theorem 6, H¥(@P ~-V; Q) .is isomorphic to the quotient algebra of the

t == . ] 1 1
exterior algebra E A(xl""’xr-l’ Y'pseeesy A) by the ideal .,

generated by the monomials of degree = n+2 where degree x, =1 (§=1,..,,r~1)

h|
and degree y:: =n+l (§=1,2,...,A) .

( A 1is a polynomial of dl’ d2""’dr . See Remark 1)

Example 1, Let V be a non-singular hypersurface of degree d 1in ]Pn+1 .
Then F has the homotopy type of a bouquet Sn+1 v Sn+1 V...V Sm":l
( (d-l)n+2-copies) . Therefore 1‘1’j GPn+1-V) 3 TTj (F) = nj(sn+1) D,..® ‘rrj(Sn+1)

for 1 <j <2n+1 ,

Example 2, Assume that {Lj} (j=1,2,...,r) are hyperplanes which meet trans-

versely in the strict sense,

Case 1. r <n +2 ., In this case we have that £ is an «equivalence i.,e,
P-L is a R((r-1)Z, 1) space. (L = L UL,U...uL) .
Case 2. r 2n+3 In this case P-L 1is not a K((r-1)Z, 1) space but
+1 il
L) =0 for j #0 , ntl where PV -L is the

L1 (see [8D.

Hattori prove that Hj(IP

universal covering space of 1Pn+

n+1

Remark 1, In general, H¥( TP ~-V; Z) has a torsion.

n+1_V; Q)

The number X in Theorem 6 is decided by a direct computation of H¥*( P
as follows:

T

r
dr) + Z ur"l(d].’.‘.’di"..’dr)+...+ =21 U-l(di)

Pk, 1=1 1

2,000’

where {uj] are the polynomials defined in Corollary 2 of Theorem L in § 3,
The number W in Theorem 5 is decided by the following equation of the Euler-

Poincaré characteristics,

x(F) = dx (P*lv)

...4(7..
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C:Axygti«"a?? Non-trivial examples of projective curves

In [2], 0. Zariski gave an example of a projective curvek C
of degree 6 such that the fundamental group ~7tl(92 -C) is
isomorphic to Zb:k%é where Zn is a cyclic group of orde;' n
and % 1is the free product. This curve C has six cusps on a
"conic. Each of them is locally described by the folldwing equation

(in the sense of topolggical equivalence).
x2+y3=‘0 .

The purpose of this note is to propose a‘family-of curves Cp,q
of degree pq (p, q: coprime integers),‘enjoying the following
properties. o
(1) Cp,q has pq cusp singularities each of which is locally
definedkby the equation:

xp + yq =0 .
(II) The fundamental group ‘Klﬂsz—Cp’q) is isomorphic to
Z%:k?q |
(II1) Therefore the commutator‘group of ‘EI(PZ-Cp’q)  is a free
group of rank (p-1) o(q-l).

For the calculation we use the method of so-called pencil
section'introducéd by Zariski [2]. 1In the remark (8.1), we will
give anoﬁher family of curyes qu of degrée 2q:, qu has ¢ ’cusps
and‘the fundamental group ﬁﬁ(?z -Dzd) is isomorphic to Zéq

(therefore abelian).

~ 59~



1. Definition of C
Psq

Let C be the following projective curve.
> .

Here X, Y and Z are homogeneous coordinates of @2 and p

and q are coprime integers. Then the possible singularities of

C_} must satisfy these three equations:

(1.2) xp'l(xp-&-Yp)q"1 =0

(1.3) YP P+ yPy a7t 4¢3 yda g Pl J g
(1.4) 297 x4 2Pt - o

Thus solving (1.2), (1!3) and (1.4), we find pq singularities in

C if 2 2 2 2):
p,q(l p » g )

e Te s 10a] « P = - q . .
(1°5) P&’ﬁ - [0\': s }-:ﬁ} s A = ]-5 {5 1.

To study the local behavior in a neighborhood of Pd ﬁ’ we consider
3

the affine coordinates x = X/Y and z = Z/Y then we put X = X -«
and 2z = z-ﬁ . Then it turns out that the equation (1.1) is
locally equivalent to the following

(1.6) ¥4+ 3P =0 , (¢ : non-zero constant).

2. Pencil section

Consider the family of lines L X=nY, 7ne€¢€. Each

D) :
line qu passes through the point &= [0; 0; 1]. We take ¢

as a base point of ?2-6 - . Since the intersection of LQ and

3

\Cp q is contained in the affine chart .{Y %‘O}, we consider the
3N . - .



affine coordinates x = X/Y and =z = Z/Y. 1In these coordinates,
the equation of the intersection points of Ll : {x =7 } and

C is the following

b

(2.1) A+ "%+ a+2HP = 0.

By solving (2.1), we have:

p
(2.2) 24 = —14\/- (1+ P9
These roots have two special cases.
Case (i). Assume that ‘Qp = -1. Then we have that 2% = -1:

Namely LQ passes through the singular points P? g’ /3q = -1
2

of (1.5). At each P the intersection multiplicity is exactly

T

P.
Case (ii). Assume that (l+~qp)q = -1 i.e. Qp = -1+ ?/—1 .
In this case, one of the roots of (2.2) is zero. This implies that

L7 is tangent to Cp q at #k® non-singular point ( 7 s 0) with

3

the intersection multiplicity q.

For the other N L,Z and C meet at exactly pqg-points.
2 .
Let : € -C —* € be the projection ma i.e. X, 2
¢ b,q projecti p ¢ (x, 2)

q
= x. Let 2 be {7 e C; qp = -1 or )Zp = -1+ \ -1 }. Then
it is clear that the restriction of ? to ?'1(¢ -S) is a
locally trivial fibration.

By Van Kampen [1], we have the following properties.

(I) Every loop £ in ?2 ~C is deformed into a loop in the

'S

compactified fiber ?-1K:7)'U {w} = L7 -Cp q for any 7% ¢ 2. .

?
(IT) 1If we fix 70 € €C-25, and if we choose generators of
7 ( ?_l(>zO)L){ua}, ), tte generating relations are obtained by

- &4 —



one torsion relation plus monodromy relations i.e. relations
derived from the deformaticns of the generators along the fibers on
the small circle |x-7| = ¢ for every n € A

It is important to see that these monodromy relations depend

upon only the value of ‘)zp byr virtue of (2.2) and the fact:

0¢c-2
Wé take >20 so that 720 = -1+ £ €XP (1i/q) where €
is’'a small positive number. We take generators aij’ 1€4i¢gaq,
1 € 3i<p in the way sketched in Figure 2.1. |
' po

«f : X
P Figure 2.1

In Figure 2.1, each a;. is oriented in the positive (= counter-
J .

clockwise) direction and is joined to the base point oo  along

-



the half line: argument (z) = T/q
The torsion relation is this:

(2.3) WqWq-1' T Fwy =¢

where e 1is the unit element and w. is defined by the following

,(2'4)i: | W, =

. a. ‘a. . a
i "i,p "i,p-l

i,1

where 1 & 1 £ q.

3. Local model I

Figure 3.1 shows the distribution of bad points {‘rlpe €5 ez

in Qp*plane.
e
X% X .
SOy A
- ﬁ)ﬁy’»@ / e
,,.Mw(m o . Y
¥ e o
...; wwwww X"’iip‘ - -
v -4 %o ”0 )
v ed gV
-~ < o “a":.// )
Qp-plane_
Figure 3.1
First we consider the case (i) ie. Q}? = -1. Then c

| . P>

iand L,Z are written as foliows in a small neighborhood of P

| tf
(pd=-1). |

(3.1) c ¥+ c¥P =0 (c#0)
Psq ~ ‘

(3.2) Ly xr{'t, t=n-7-

We may assume that:

b —



(3.3) q =mp+r, l14<r£p-1 and (p,r) =1.
Choosing a small positive number & , we take generators ays 8y,

ce ap in the plane X =& . See Figure 3.2.

Figure 3.2

When t moves around the small circle '|t} = ¢ in the positive

direction, a; is transformed into ai in Figure 3.3.

(m =12) | (9(3‘@"5 ?{;3

Figure 3.3

Thus we get the following relations.



] i} bl t1]
1t+r

(3.3) a' =a = w'a W

where

(3.4) W=ga .+ -a

4. Local model II
Now we consider the case (ii). Fix 71 ~such that 73? =
q . . » | .
-1+ \/-1 . Then in the neighborhood of the tangent point (Qé’ 0)

of Lq and C , We can consider that C and L are
1 Psq q n

’ P

described by these equations:

(4.1) | Cp;q : z% = cx (¢ # 0)
(4.2)» , L,z : =7
Take generators bl’ bz, ., D

Figure 4.1 Figure 4.2
. ~57 - gure -2



Figure 4.2 shows the transformation of ., ..., b along a small
. 1 q

circle centered at =74 Namely we get the following monodromy

relations.,

by = bi = b,

b, = bé = b3

Pg-1 = Pqi1 T P

b, = b, = (bqbq_l-«-bl)bl{bqbq_l~-~bl)“1 :
Thus we obtain the relations:
(4.3) b1=b2=~~ =§q

5. Generating relations
Now we are ready to write down the generating relations between

a (1€i<€q; 1€ 3¢ p) of Figure 2.1. Take 721‘ such that

ij .
P _ _ . - 4 L.P_ Py
7; = -1. By the deformation over the circle I2°-27 1 6

(¢ : small enough), each group of the elements {ai,l’ 81,27

. ai,p } (1€ i & q) gets tﬁe same relations as (3.3) and‘ (3.4).
Therefore we get the following relations.
{217 wiméi,1+rw;m
Ay T Wi A g Wy
(B.I)i i e.{j_,p;.r ___’wima,i,pw;m
i,p-r+l N wiﬁhl il w;(#ﬁ"l)




where 1 & 1< q.

it

. | . -(2k- i
Now we take 721{ such that 721( 1+exp (-(2k-1) i/q)
where 0 € k $ g-1. We consider the following path 'gk §, 1in
YP—plane for the translation of the monodromy relations at ="

“into the words Of‘aij (1€i<€q; 1<3j<p).

-
P \
X?* i
Y{)F Y~ !,,./“ \\ » Tr'
o (7 A < AR A
G ) - hald
. _ -
TP A
Sk |

Figure 5.1 ( Qp-'pléne)

Here is an arc of the sphere !72?+1l = eo and Zk is the

Sk
following line segment.

(5.2) 1P =ty l+ -0 (D)

where 80 £tsl- 61 ( €1 is a small positive number). The

intersection of L,Z and C q ( Y, satisfies (5.2)) is the fol-

b

lowing
(5.3) 28 = -1+ Ve,

| . -1, B
We take loops bl’ b2’ Cees bq “in 30 (721{) U{oa} = L’z{( Cp,q

as in Figure 5.2 where (721;);) = -1+ (1- él)%f,

NN -



Figure 5.2

Each . bi is chosen so that the other roots of (5.3) do not meet

any bi when t moves for €0 < t<gl- 51‘.

By the consideration in the 1océl model II, we have:

(5.4) b, = b, = «++ =5 .

When t moves from kl - 81 to £ b., 1€i<% q, are transfbrmed~

into\‘bi as in Figure 5.3.

-1 =



V P - . nP
L’l (7 —--1+€0 7k)

Figure 5.3

1 ‘ - 1 =
| Now we must pull back b,, , bq‘ along S to ? (‘70)
U{M}. Let 1+ )zp = aoexp (i8) where -(Zk—l)‘ﬁ’:/qua € m/q.

By (2.2), we have:

(5.5) z4 = -1+ i/; 8é§exp(iq6 }‘.

Thus it is easy to see that each bi is rotated along the respective
small circle in Figure 5.3. These deformations are sketched in

Figure 5.4,

g2



‘ LQZO Figure 5.4

Translating in the words of {aij} and {wi} we have:

| & -

b1 =8y 14k

bl = u)bla | w

2 1 “2,1+k ™1 0£ ke op-l

b"""""(w "‘(«9)_18 (w w .-.u_))VV

q q«lwq-Z’ 1 q,1+k " ¥q~1"q-2 17
Thus (5.4) implies the following relatioas

oL ot T S -1 : e
(5.5) al,j = “’1 82,3' u)j (wq~1 ogl) ac“:.‘(wq“1 “‘}1
for 1€ j<€p

~§3~—



6. Representation of the group
Thus ni(@z -Cp q,'ca) is generated by pq+q elements
3

aij’ Wy (L€ i€q; 1< j%p) and the generating relations are

these:
- a. ‘ . ve i <
(2.4)4 W, 8 585 pe1 a; 1> leisgq
(2.3) | a)q-wq_.l. wy = e
_..m . .-m
[ 31,17 Y3 14 Wy
_ m -m
83,2 7 Wi 33 o4y
, é ‘ e :wma -1
(5.1)i 'Tj i,p~r i i,p“Ji ; 1l<€igq
| ml - (mbl)
di,p-rtl T Wi 3 1%
\ o, = Wt L)
i,p i i,r i
and |
: -4
5.5 a, ., = a, .w, =
-5 1,5 - Y1 %2,5%
-1 .
= (w a (w_ . ,rw.), 1%3j<p.
( q-1Wq-2 wy) q,3( q-1%q-2° x j=p

(5.5) is equivalent to the fbllowing

_ -1

“2,5 7 W1%1,5%
a | = W, a Eofl

(6.1) RS R , 1<3j<p
a = ,a w L
q,J q-1 q-1,j "q-1

. {y = = .;- = | !
Assume that Qi £0i~1 : u}l. Thgn we have

‘«-‘4.....



(2-8) 541

@i 3541,p @i41,p-1" T "PiH1,1

(6.1) | | -1
= (w2 Jw; ) (wyay o gw ) (wyay y we)
o a Ceea, cw
W;ai,p %i,p-1 i,1° %1
(2.4),
1
P - wi .

Therefore by the induction we get:

(6.2): wq=wq__l= e =Wy
or

. w o= . . .
(6.2)1. i ‘wi_l, 2¢€i<q.

Conversely we can see that <6'2)i+1+‘ (6.1) + (2.4)1.~ implies (2.4)i+l-.
Thus an induction argument gives us the following equivalence |
(6.3) (2.4)1 (1aigq)+ (6.1) & (2.4)1+ (6.1)+ (6.2) .

Now we consider the relations (5'1)3’.':

For each k, 1€k < p-r, we have:

N . (6.1)+(6.2) o 1 -
Wi ks Wi (Wi 185 1 r®io1) Wy
CDia 1
1-1%1-1,k%1-1
(6.1)

m——— ;g
Similarly.yfor each k (p-r+t1 € k ¢ p),‘ (6.1), (6.2) and (5.1);]_‘“1
implies (S.I)i. Thérefore by the induction and (6.3), the gener-
ating relations are equivalent to (2.3)+ (2.4)1’%- (5.1jl+ (6.1)+ (6.2).

Now (6.1) and (6.2) implies that each a; 3 (i 22) and w‘i (i ?2)

b

) 8 . ) . . ! ' . .. ) d .
can be expressed in the words of a1 41 90t 3 5 gm Wy



1

2
Therefore =, (@ -C , 00 is generated b s e ey and @
, 1( P»q ) gene € Y a}-J- alap ne
The generating relations are reduced to (2.4)1+'(5.l)1 plus
(2.3)": wlq =@,
Putting aj = alj' (LS j<€p) and W= wl’ we obtain the fol~
lowing.

Lemma 6.1. The fundamental group th(IPZ ~Cp qQ’ &) has the

b

following representation:

3

.
a1y 855 +ens ::1p and (W generate Wl(éP -~Cp qQ’ &) and

(6.4) w = apap_ln-al
(6.5) wl = e
R - SA s
(81 7 wWaw
- m -m
) w Aoty ¥
6.6 J s = W -m
(6.6) Y e w'a w o
okl -(m+1)
q-rt+l w- 1w
) | - (m¥l
kap = a)m*.larw ( )‘.

7 Group structure

First we introduce elements a, for any integer i € Z by

| ok -k L
(7.1 i T W Agw . for 1 <jsp ,kez
Then one can see that (7.1) implies
(7.2 a, :wa.m"l' for € Z2
’ Hp T -



Using (7.2), we can rewrite (6.6) by this

(7.3 a, = a, for j € Z
e 3 3 €

Therefore we get the representaticn :

(@i @ = <wa ez (6.0, (6.5, (7.2),07.3) >

q)

Because p and ¢ are coprime, we can write

(7.4) 1= Py P + 9,4 for some 'p,sql €z .
Then
qi41 ai+p1p+q1q
P -p ~
=y laiw 1 by (7.2) and (7.3)

Thus one gets.:

. ipl ~ip1
= w ot cor 1€ 7
(7.5) ;. 2, ‘ for i€ Z

By (7.5) and (6.4) ,

~{p-1)p, (p-2)p1

w=ﬁn(p'i)p1a1w 4

-(p~2)p1
W R P a

:‘L Ae w e s e s 1

Namely by (7.4) and. (6.5)

.
3
<
[¢vd
4
n
0]
frerd

*

5.5, (7.5) and (7.6) ‘mplies (6.4), (7.2) and

(7.3}

(p-1)p ~{p-Dp, =(p=-2)p, -(p-2)p, -
a_a a, =y L @ Ya,w Law Y by {7.5)
p ‘p_}.. . ¥ 1 1 l . 1 ooooooo | ' '

P
= (w 1al)p’ by (6.5)
= W by (7.6)
Gi+g-1)p;  -(i+q-1)p,
a = a, w ‘ by (7.5)

Ui - 1



= a, by (6.3) and (7.5) .

<i+P*l)P1 -(i+p~1)pl
i a

ai+p = 19 by (7.5)
. mpp}"a (}:ppl .
: by (7.5)
Y | .
=waw by (7.9) and (6.5)

Therefore one gets

2 ~ . Ty
nl(?—cpq,m) = <m,ai(1 € Z) (6.5‘) , (7.5), (7.6) >

e

<,a (6.5) , (7.6) >

1 3

by eliminating generators a.(i # %)

..??
- A -~ - . L ¥
faking @ and b =y “a, as generators, we obtain
- ( 2 ~ g D
“1 P—Cpq)m)‘~<\ﬁ: D jwo=e , bY =e -
~ Al
= 77 77
P g

8. Conclusion

Let us restate the result.

Let Cp q: (Xp-%-Yp)q + (Yq-i-Zq)p = ) where p and q are

coprime, p 2 2, q 2 2.

Theorem. The fundamental group ‘WiGPZ-Cp q) is isomorphic

b]

to Z %7 .
p q ; ‘ )
Corollary. The commutetor group D of mi(? -C_ ) 1is a
pPsq’

free group of rank (p-1)(qg-1).

Proof. This is a well-known fact. A geometric sketch of the

~{3-



proof is the following: Let X be {a 2-disk minus two small

open 2-disks }

Figure 8.1

Let Y be the space obtained by attaching two 2-disks along aP

and bY. Then the fundamental group of X 1is a free group generated
by x and y in Figure 8.1 and the fundamental group of Y is
isomorphic to Z’p»&—Zq. Consider a surjective homomorphism (ao:
'71:1()() '-"'?Z?p@ Zq‘ such that ?(X) | and ?(y) are fespective
generators of Z% and Zg, We can construct a finite covering
space. 7L : ?{"‘-"’*X corresponding to the kernel of ? . 'Then the
lift of aP (bq respectively) is g-copies (p-copies respectively)
of embedded circles. Attaching (p-i;q) 2-disks along these circles
we obtain a Riemann surface Y with boundary. (We maf assume that
the attaching maps are compatible with the action of 1;1CX).) By
the construction, we can extend {TC : g”"—?XII to .?'z‘:c' : ?"‘““?Y}
so that é*{t' : :;?’—**%Y} is a covering space corresponding to the
commutator group of 7T1(Y), Therefore one can see that the com-
mutator group of ’i‘ﬁ'l(Y); which is isomorphic to ‘?rl(’?) ; is a ‘fre’e

group. The rank of Wl&‘) is easily calculated by the Hurewicz

_67...-



formula. (One can also prove the corollary purely group theoreti-
cally: If a and b are generators of Zp and 'Zq respectively,
then %, 5 = aibjap‘ibq-j, 1 «1<p-1 and l £js q-I, are free
basis of D.)

Remark (8.1). Consider the following curve:

qu‘: qu—lY%-(Yqi-Zq)z =0

where q 2 2.  This curve qu- has 'q cusps at Pﬁ = [0;}Jrﬁ],
ﬂq‘= -1. Using the same pencil LQ : X =Y (’75 C), one can
is isomorphic to Zéq. “The calcula-

tion is done in the similar way. What is important is the technique

see eas?ly that 7?1(?2 -qu)
to minimize the generating relations and generators.

Question 1. Take any irreducible curve € 1in Wz.’ Is tﬁexéf
arhormal subgroup of the fundamental group 'ml(?z -C) with a finité
index which is isomorphic toka finitely‘generated free group?

Question 1'. If TEI(?z -C) 1is infinite, is the commutator

- group of 7t1(92 -C) a free group? (cf. [2])
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