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§ 1. Introduction.

If R is a Banach algebra and ¢@€R', the dual space, then we may define a bounded

linear map @ : R +R' by

(Bx),y? =<o,xy> Vx,yeR.
We shall show that for suitable p the requirement that each @ be p-absolutely summing
constrains R to be an operator algebra, or even, in certain cases, a uniform algebra.
In this way we are able to give generalisations of results of Varopoulos [12] and Kaijser
[4].

The apparently artificial conditions imposed on R may be seen to have very natural
interpretations in terms of the continuity of the multiplication map M:R® R +R when
R® R is equipped with certain ® -norms of Grothendieck [3] and Saphar [9] . We shall
go into this in more detail in the next section.

First, let us give precise definitions of the notions with which we work.

DEFINITION. (a) A uniform algebra is a closed subalgebra of the usual Banach algebra

C(X) of continuous functions on some compact Hausdorff space X.
(b) A Q-algebra is a Banach algebra (algebraically) isomorphic with a quotient of a
uniform algebra.

(c) An operator algebra is a Banach algebra (algebraically) isomorphic with a closed




subalgebra of L(H), the usual Banach algebra of bounded linear operators on some

Hilbert space H.

If E and I are Banach spacesand 1< p< «, then the linear mapping

u:E »I is said to be p-absolutely summing if there is a positive number K such that

p p 1MP . 1 1
23.’=1”u(ej)“ <K sup{ZJ}I=1 I(ej,e >| : e'cball(E )}
for every finite set CERREPLY in E. The least such constant K is written ﬂp(u).
ﬂp defines a complete norm on the vector space np(E,F) of all p-absolutely summing

operators E »F.

DEFINITION. The Banach algebra R is a p-summing algebra (1< p < ) if there

is a positive K such that for each ¢€R' the mapping ('5 defined above is p-absolutely
summing and satisfies 'iTp(('E) < K”é“ If K maybetakentobe 1, then R is said

to be an isometrically p-summing algebra.

Charpentier [1] has proved that every commutative 1-summing algebra is a Q-algebra.
On the other hand, Cole [1 3] has shown that every Q-algebra is an operator algebra. We
work in this wider context, but it is perhaps worth noting that Charpentier's result could

be obtained by much the same method.

THEOREM 1. Every 2-summing algebra is an operator algebra.

As an immediate consequence, we have a simpler proof of a striking result of Varopou-

los [:12] .

COROLLARY 2. If an ;ﬁm—space (in the sense of [6] ) has a Banach algebra structure,

then it must be an operator algebra.




It would be of interest to know whether one can replace "ofoo—space" by "the disc
algebra A(D)" in corollary 2. Indeed, any non-trivial replacement would be welcome.
In the case of algebras with an identity (always of norm 1) we are able to generalise

a result of Kaijser [ 4] to show

THEOREM 3. Every isometrically p-summing algebra (1< p < «)} with (normalised)

identity is & uniform algebra.

In fact, in theorem 3, the weaker hypothesis that the Banach algebra R has an

= 1]

approximate identity whose elements have norm < 1 will ensure that ”x = ”x VxER.
The example of 91 with pointwise multiplication shows however that some such hypothesis

is necessary.

§ 2. The approach via tensor products.

The multiplication on a Banach algebra R may be thought of as a linear map
M:R® R »R. Inthe usual definition, R is given the projective tensor product norm
and M is required to be a contraction. As this norm is the greatest of the natural ®-norms
of Grothendieck [_—3:] , it is of interest to consider what happens if M is supposed continuous
even when R® R is equipped with a smaller ®-norm. Saphar's paper [_9] contains a
useful summary of the properties of ®—norms ; we shall use his notation, except that the

norms L and € are sometimes written w and v, resp.

DEFINITION. Let « be a® -norm. The Banach algebra R is said to be an g-alge-~
bra if the multiplication M:R® . R +R 1is continuous. If M is a contraction, then

R is said to be an a-algebra,
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Varopoulos [10] was the first to give significant results about «-algebras. He was
concerned with g-algebras (e is the familiar injective tensor product norm) and showed
that the commutative g-algebras are precisely the "direct" Q-algebras [1 1] . Kaijser [4]
specialised this to prove that unital e-algebras are uniform algebras. On the other hand,
Charpentier [1:' generalised Varopoulos' results, showing that commutative w -algebras
(which are in fact the commutative 1-summing algebras) are Q-algebras.

The most interesting ®-norms from our point of view are the norms dq (1< qg<= )
introduced by Saphar [9] and Chevetk [2] . Their crucial property is that if E and ‘F

are Banach spaces, then (E® . F)' may be identified isometrically with Hp(E,F') under

d
q

1 1). It is now an immediate consequence of the definitions that the

1
the norm 7 -
no: (p + 3

p

p-summing algebras are exactly the ES_ -algebras and that the isometrically p-summing

algebras are exactly the dq—algebras. We may thus rephrase theorems 1 and 3.

THEOREM 1'. Every d2 -algebra is an operator algebra.

THEOREM 3!, Every dq-algebra (1 < g< ) with (normalized) identity is a

uniform algebra.

On the other hand, the natural ®-norms of Grothendieck [3:] are of basic importance.
The ones which interest us in this paper are €, w, H, H/ and H'. Inview of the results
of [6_] » H, H/ and H'-algebras may be defined quite simply in terms of factorisations of
the mappings ¢ introduced in §1. If C denotesa C(K) space, L2 denotes a
Hi 1 1 . . [:[
ilbert space and L~ denotes an L (u)-space (as defined in [6]), we have :

R is an H-algebra if, for each ¢@€R', the mapping @ factorises as follows :



t

B

R ————— R!

J 1

C 1t

B

‘R is an H/ -algebra if, for each ¢€R', the mapping ?5 factorises as follows :

~

R—2 L, R

C———— L2

R is an H'-algebra if, for each ¢@€R', the mapping ZE factorises as follows :

~

R —f R

\

In each of these cases «, § and 7Y are bounded linear mappings, the product of whose
norms does not exceed a fixed multiple of ”5”

As Saphar has observed, the norms d, and H/ are (uniformly) equivalent (since
every bounded linear mapping C ->L2 is 2-absolutely summing), and doo and w are

equal. Thus, yet another formulation of theorem 1 is

THEOREM 1. Every H/ -algebra is an operator algebra.

This complements Charpentier's result that every operator algebra is an H'-algebra.
Since H/ and H' are adjacent in Grothendieck's table of natural ®-norms, we see that
there are operator algebras which are not H/ -algebras, but I do not know of an H'-algebra
which is not an operator algebra.

Finally, in the spirit of corollary 2, we may combine our results with theorems of
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Kwapien [5] and Lindenstrauss-Pelczynski [6] to show that the possible Banach algebra
structures on the £p—spaces of [6] are rather limited. This gives, in 4b and 5b, a partial
answer to a question in [12] , and provides a stronger version of corollary 2.

THEOREM 4.
(a) An o‘goo-space with a Banach algebra structure is an H-algebra.

(b) An o‘@p—space (2 < p< ) with a Banach algebra structure is an H! -algebra.

(c) An %p—space (2 < p< ) with an r-summing algebra structure (1 < r < )

is a 2-summing algebra.

(d) An £p-space (1 < p<2) witha 2-summing algebra structure is a 1-summing

algebra.

(e) An %rspace with an H'-algebra structure is an g-algebra.

As interesting special cases, we have LN

COROLLARY 5.

(a) An cj,’p-space (1'< p<2) with a commutative 2-summing algebra structure is

a Q-algebra.

(b) An ;gp—Space (2 < p< «) with an r-summing algebra structure (1< 1 < o)

is an operator algebra.

(c) An afrspace which is an operator algebra must be an g-algebra.

An :sz-.-space which is a Banach algebra is always an operator algebra [12] .

§ 3. The tools.

To prove theorems 1 and 3, we rely on results of Pietsch and of Varopoulos ,
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THEOREM P [8] . Suppose that u is a p-absolutely summing operator from the

Banach space E to the Banach space F. Write S for the unitballof E' provided

with the weak * topology. Then there is a probability measure g on the compact set S

1/
such that Hu(e)” < ﬂp(u) US l(s,e)lpdu(s)} g Ye € E.

THEOREM V [12] . The Banach algebra R is an operator algebra if there is a

positive K such that for any ¢€ball(R') and any positive integer N, there are a

Hilbert space H, linear mappings L - R+L(H) (1<n<N) eachof norm<K, and

h,k€ball(H) for which

T xN> =L, (x;) 0...0 LN(XN)h,k>

for every choice of Xis +ees

Here (., .> denotes both the duality between R and R', and the inner

product on H.

§ 4. The proofs.

Proof of theorem 1. Suppose that the Banach algebra R satisfies 772(5 )< K”go”

Yo€ER'. We shall verify the condition of theorem V for N = 3. The same procedure clearly
works for arbitrary N. Fix ¢@€ball(R'). We first construct the associated Hilbert space.

By theorem P, 13 may be factorized as follows :

~

%

R ———— R!
d T

Here S is the unit ball of R' under the weak* topology, u(p is the probability



measure corresponding to '{5 as in theorem P, 1 is the natural map x u-~>fx
where fx(s) = (s,x? (s€S), J is the formal inclusionand & is a bounded linear map
with [l = 7,(®).
Thus, if x,y,z€ER, we have
(o,xyzd = (Blxy),z) = (@JIxy),z> = JIlxy), 0 (z)
where '@ :R" —»Lz(u ‘P) is the transpose of ®. Consequently, if we write

Z(p = t<I>(z) € LZ(,u(p), we have

Co,xyz?) = | <b,xy2Z (¥)du_(¥).
5 %) ©

~

Now, applying the same process to ¢ and using the natural notation
(o,xyz) =js DS@-,x>Y¢(g),du¢<e>]z(p(¢>duw(w).

We may thus define a probability measure u(gz) on SXS such that

<<p,xyz>=J &Y, (6) 7 ) ) v, ¢).

SXS

2

lLet us now take H to be the Hilbert direct sum C & L, (2))'

,u(p)eaLZ(u¢ , and define
three operators L(x), Ly(y), Ly(z) in L(H) by
L, ()o,f,g) = (0,0,G)  where G (¥,&)=<(&,x2e(¥,¢),
L) t,8) = (0,0,F )  where F.(§,8)=Y,(£)1(¢), and
Ly(2),f,g) = 0,A,,0) where A (#)=a Z,,(#).

It is easy to see that ”L1(x)” < ”x”, HLz(y)” < K”y” and ”LB(Z)” < K”ZH Thus,

L,, L,:R>L(H) which are bounded in the right

we may produce linear operators L1 » Lyy Lg

way. A simple calculation shows that

(o xyz? = (L,(x) oL,(y) o L (z)1., 1 >
1 2 "3 ¢ Lz(ufpg))

and so the condition of theorem V is indeed satisfied for N = 3.
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Proof of corollary 2. If R is an Q,’w—space, then R!' isan a‘ﬁl—space [7] .
Hence, [6] , thereisa K> 0 such that every bounded linear operator u:R »R'!' must
be2-absolutely summing with 772(u) < -K”u”, The conclusion follows immediately from

theorem 1.

Proof of theorem 3. If R is our algebra, we have wp(c,'b') < ”(p” Yo € R'.
The main idea of the proof (used by Drury and Kaijser in the case of e¢-algebras) is to
show that every extreme point of the unitball S of R' mustbe a scalar multiple of a
multiplicative linear functional. Once again, we use theorem P to factorise ?o'

o\l

R—2 4R

N/

Writing u ® for the probability measure on S corresponding to ?o’ R Ap is the
subspace of Lp(u(p) formed by taking the closure of the natural image of R in C(S)
under the LP(u @) norm. I isthe canonicalmap X+ f , with tX(S) = {s,x) (s€S),
and @ is a linear map of norm 'np(&').

Now, if x,yc€R,

(p,xy) = (Bx),y) = <@Ix),y = <Ix) , ‘(y)

where @ :R" —-»-(Ap)‘ is the transpose of @®. But, (Ap)' =LYy qo)/ (Ap)O
(;1) + (11 = 1), where (Ap)o is the annihilator of A, in LYu (p). A weak¥ limit argument

shows that t(ID(y) has a representative function By € Lq(u(p) of norm ”t@(y)“ .

Hence <(o,xy? = JS<<D,X>By(¢)du(p(¢).

In particular, if e is the identity of R,

o) = | b0BH) duy0),
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or, symbolically, ¢ = J que(;b) dp(p(z/)).
S
Suppose now that ¢ is anextreme pointof S andthat S = S1USZ’ where

S1 ~and 82 are disjoint measurable sets. Define

0, = Js.‘b BoW)du () (=1, 2).

1

Then ¢ =¢,+¢, and “(pills Js. lBe(¢)|du<p(¢)- In fact, “qoiH =js'du(p(¢), for
1 1

1 =lloll < llo.ll+ ol < ls_ll < I_|l < [lell =1.
[ A T A
Since q# 1, the equality ”BeHL1 = ”Be”Lq =1 gives IBe(zp)] =1 Boae e

Thus o, =J lBe(“’)ld“@(¢)=JSd“<p(¢)- 4 (S) A0, thefactthat ¢ is

S
i
extreme now gives ¢ = <P1/H§01|| s

i.e. = b).
i Jo eamor= ] ¥ B @) )
‘ 1 1
This equality is thus valid for every measurable subset of S, whence
¢ =B, (@) K,ma-e.

Consequently, <{o,e?{o,xy? = ((p,e>jo ({D,X>By(¢’) d.U(p(d))

- js<¢,e> Bo()(¥,x)B () du (%)
- JS-<¢,e><<p,x>By(<b) ds (9

= {@,x?<0,y? .
Easily, I <<p,e>l =1, andso ¢/{p,e’? is a multiplicative linear functional. Now,
or xER, |k = supy {<®,X : ¢ extreme point o
for xeRr, |b°|] | (0, %®) t intof S

=sup{l< ® ,x2>I:<p extreme point of S}
(p,e>

= sup {I( e x 12, ¢ extreme point of S}
(p,e)
=[xl
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The result follows at once.

Proof of theorem 4. We shall only prove (e). The rest is a straightforward consequence

of the fact that the dual of an ip-—space is an oﬁq—space (113 (ll = 1) (see [71) and of the

results in [5] and [6] . Note that for (a) we need the fact [:6] that an o‘f

1~-Space which is

a dual space - and so complemented in its bidual - is a complemented subspace of an
L] (u )-space.

Suppose now that R is an o‘(grspace with an _I_{_f—algebr*a structure. In all that
follows, the constants K (with or without a subscript) will be independent of the algebra
structure of R. If goeR', it follows from §2 that ?5 factors through a Hilbert space
H. Butby [6, p. 286] a bounded linear operator f:R +H is 1-absolutely summing
and satisfies 1(f) = KHfH Hence R isa 1192 -algebra. To show that it is an g-algebra,

choose {x1 yeees X , ¥y J} c R and consider the closed subspace generated by

J? y1,---

these elements and {){1371 ey XgY J} . This is contained in some subspace E of R

1
of finite dimension n for which there are isomorphisms u:E -+ B and v Bn +E

[vll<1
such that Hu“ <K 1,%171"’5 ou=Id,. Since R isa d_ -algebra,

R®d R“KHZ . jEédE

(e} [+2}

uf,;ﬁ vl = Iy

- KH z, v(u(X ) @ vluly, ))HE®E

sK”jaq x,)® uy)”e@ e

= K”JiS1 u( J)® u(y )” 91 ® 9 by definition of ws

<@ 15 xe vl gn

2
= K.K1” zj=1 X, ® yjHRé R
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Since our choice of the xj' s and yj' s was arbitrary, R is an g-algebra.

[1]
[2]
[5]
[4]
[5]
[6]
7]
(]
[o]

Finally, corollary 5 needs no proof.
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