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0.1

INTRODUCTION

Cette thése sur travaux comporte une version revue et corrigbe de ma
thdse de 1977 & 1l'Université de Warwick, ainsi que les publications qui
contiennent des resultats qui ne sont pas contenus dans la thése de Warwick.

Il y a s8ix parties distinctes.

1. Interprétations topologiques des conditions de Whitney, Journées

Singulidres de Dijon, juin 1978, Astérisque 59-60, 1979, 233-248.

Dans cet article nous donnons un apercu historique de la théorie des
stratifications et nous décrivons la plupart des resultats dans les cing

premiers chapitres de la thdse de Warwick.

2. Jhitney strgtifications 3 faults and detectors, Thése, Universite de
Marwicik, 1977, 93 pages.

Cette thése a quatre chapitres. Dans Chapitre O nous donnons les
définit;ons de stratification, conditions (a) et (b) de Whitney, et les
théoreémes d'existence sur les ensembles semi-algébriques, semi-analytiques
et sous-analytiques, ainsi que les conséquenceé principales des conditions
de Whitney (stabilité de transversalité et trivialit€ topologique locale).

Le chapitre 1 est sur‘la condition (a) de Whitney. Nous montrons
que (a) est en fait &quivalente 3 1la stabilité de transversalité & une
stratification. Nous considérons la condition (t) qu'une transversale a
une stfate soit localement transverse aux autres strates et nous montrons
que (t) équivaut (a) pour les strates sous-analytiques, mais que les
deux conditions sont distinctes en général. Nous donnons une réciproque &

‘un théoréme de T. C. Kuo en montrant que s'il n'y a qu'un type topologique

d'intersection avec les transversales 3 une strate, aloes ona (t) .
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Nous montrons dans 83 que (a) é&quivaut la condition que tout
feuilletage de classe C1 transverse a une strate soit transverse aux autres
strates 3 en plus les feuilletages de classe C2 ne suffisent pas. D'une
fagon analogue, dans $5 (Chapitre 2) on montre que (b) &quivaut

1 a&finit des sphéres

l'assertion qu'un voisinage tubulaire de classe C
transverses aux strates voisines.

Dans & 4 du Chapitre 1 on donne, pour la condition de Thom sur les
applications stratifiées, les analogues des resultats déja démontrés pour (a).

Dans &6 mnous étudions le comportement de la condition (b) quand
on coupe avec des ailes génériques (variétés lisses contenant une strate). On
montre que si (b) est satisfaite aprds avoir coupe avec une aile générique
de codimension k , alors la dimension de l'ensemble des limites de wecteurs
sécants orthogonaux pour lesguels on nfa pas (b) est moins que k . Nous
montrons que sous une hypothdse sur la dimension de 1l'ensemble des limites
d'espaces tangents, la condition (b) passe aux intersections avec les
ailes génériques.

La &7 est sur la différence entre (b) et les conditions de
régularité proposées par J.-L. Verdier et T.-C. Kuo § on le précise en
donnant_des contre-exemples algébriques et semialgébriques.

Pour conclure on donne des computations qui explicitent les entimrs
positifs a , b, ¢ , d pour que la partie 1iése de Zya = tbxc + xd'z
satisfasse 1es)conditions de Whitney lelong l'axe Ot , dans les deux cas de

3 3

IR et € . Ces computations servent comme une source de contre-exemples.

Le contenu des publications citées au-dessous fait partie de la thése
de Warwick.
(i) A transversality property weaker than Whitney (a)-regularity, Bull.

of the London Math. Soc. 8 , 1976, 225-228., (Voir §2)

ii) Counterexamples in stratification theory : two discordant horns
1Y ’

Proceedings of the Nordic Summer School 1976, ed. P. Holm, Sijthoff &

Noordhoff, 1977, 679-686. (Voir §&7)
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(iii) Stability of transversality to a stratification implies Whitney

(a)-regularity, Inventiones Math. 50, 1979, 273-277. (Voir $1)

(iv) Geometric versions of Whitney regularity for smooth stratifications,

Annales Scientifigues de 1'Ecole Normale Supdrieure, 1979, 45 -46 . (Voir $83,5)
(v) (avec A. Kambouchner) Whitney (a)-faults which are hard to detect,

Annales Scientifiques de 1'Ecole Normale Supérieure, 1979, 46 -46 . (Voir £§2,3)

En outre je suis en train de rédiger les deux articles suivants:

(vi) Transverse transversals and homeomorphic transversals. (Ceci contient

‘une partie de & 2.)

(vii) (avec V. Navarro Aznar) Whitney regularity and generic wings (qui

contient les resultats de €6).

3. Geometric versions of Whitney regularify, Math.’Proo. Cambridge Phil.,

Soc. 80, 1976, 99-101.

Dans cet article on montre dans le cas semi-analytique que la ocondition
(b) 6équivaut la condition que chague Vvoisinage tubulaire d'une strate d&finit
des sphéres transverses aux autres strates. La démonstration donne un résultat
plus précis que la démonstration du;cas C1 ¢ on peut prendre des voisinages

tubulaires semi-analytiques.

4. (avec H. Brodersen) Whitney (b)-regularity is weaker than Kuo's ratio

test for real algebraic stratifications, Mathematica Scandinavia,45,1979,27-34.

On donne des exemples simples de (r)-défauts (b)-réguliers et une
recette pour produire d'autres. On précise que la condition (w) de Verdier
équivaut & dire que tout champ de vecteurs rugueux tangent i une strate se

prolonge en un champ rugueux tangent aux autres stirates.

5 Paftial results on the topological invgriance of the multiplicity of a

complex hypersurface, Séminaire A'Campo-MacPherson, Paris VII, mars 1977,
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Nous avons décrit dans cet exposé tous les résultats connus sur une
question de Zariski : est-ce que la multiplicité d'une hypersurface complexe
est un invariant du type & homéomorphisme prés de 1l'hypersurface comme germe

plongé dans ¢” 2

6. Multiplicity is a C1 invariant, Orsay preprint, mars 1977.

Nous montrons qu'on a une réponse affirmative 3 la gquestion de
Zariski quand on remplace "™ type & homfomorphisme prés " par " iype a

difféomorphisme prés " .
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INTERPRETATIONS TOPOLOGIQUES DES CONDITIONS DE WHITNEY

David TROTMAN

0. Introduction

L'importance des conditions de régularité locale imposées sur les stratif-
ications, que Whitney a introduites en 1965 ([ 35]; [36]),eét bien-connue.
Elles se sont montrées utiles dans le théordme de stabilité topologique de
Thom et Mather ([3], r14] , [23] ) , aussi dans les théorémes de Lefschetz
démontrés par L& Ding Trang et Hamm [4], dans la construction des classes
caractéristiques des variétés singuliéres par MacPherson, M.-H. Schwartz et
Brasselet ( [12] , [16] ) , et dans la classification des singularités et

. des systémes dynamiques.

Parce qu'elles sont gﬁnériques et qu'elles ont des conséquenoes frappantes
— équimultiplicité [5] et trivialité topologique [13] —— elles sont
importantes dans la théorie de 1'équisingularité des variétés analytiques
complexes. De plus elles sont naturelles dans une telle théorie, au moins dans
le cas des hypersurfaces, pour lesquelles (b) Squivaut a Ff-oonstant

(voir les travaux de Teissier [18] N [19] et de Briangon et Speder

[, [l ) -

Je vais décrire ici pourquoi elles sont naturelles dans la topologie
différentielle : (1) on peut les exprimer d'une manidre " géométrique " sans

mention de suites, ni de limites de vecteurs ou plans, et (2) la condition
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D. TROTMAN

(a) est précisément celle dont on a besoin pour que la transversalité & la

stratification soit une propriété stable .

Finalement je parlerai de la relation de la condition (a) avec d'autres
conditions qui sont éguivalentes & la condition (a) dés qu'on peut utiliser
le lemme de sélection des courbes (par exemple pour les stratifications semi-
ou sous-analytiques) , cepenaant plus faibles dans le cas général, mais

int‘rosaantes parce qu'elles sont trés faciles a visualiser .

1. Evolution historigue des conditions d'incidence réguliére.

Je veux rappeler les premidres parutions des définitions et résultats
oongernant les conditions d'incidence réguliare imposées sur les

stratifications.

1957 Whitney [34] Déocomposition de toute variété algébrique réelle en

un nombre fini de sous-variftés lisses. On dit qu'on

a une " .manifold collection " (parfois aussi " sub-

manifold complex ") .

1960 Thom [20] Stratification : une partition d'un sous-ensemble
fermé de R" en une réunion de sous-variétés
connexes différentiables (les strates) , telles que
1'adhérence de chaque strate soit la réunion de
cette strate et d'un nombre fini d'autres strates
(de dimensions plus petites) .

Incidence réguli?re t Pour toute strate Y , il

existe une rétraction Cl 1TY 'y —> Y définie

sur un voisinage tubulaire TY de Y , telle que si
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1964 Thom [21]

(t)

1964 Whitney |35]

(a)

(v*)

1965 Whitney [36]

(v)

CONDITIONS DE WHITNEY

Y < 93X, alors T est une submersion.

YIXATY

Dans le cas des ensembles semimlgébriques,

1l'incidence réguliére ci-dessus est remplacée par

Pour toute sous-variété S transversea Y en y ,
il existe un voisinage U de y (dans &") tel que

S soit transverse a X dans U,

Une stratification est régulidre si pour toutes
strates adjacentes X , Y , avec Y € JX , et pour
tout y € Y , les conditions suivantes sont

satisfaites.

Pour toute suite {xi} € X oonvergeant vers y ,

telle gque {Tx X} a une limite T , on a TyYCf .
i

Pour toute suite {x,3 € X convergeant vers y ,

telle que ETX X} a une limite T , et que
i

ixi_WY(xi)E a une limite A , avec T('Y une

=Ty (x; )1

rétraction Cl sur Y, ona AcT .

Whitney remarque que (a) implique (t) , et que
(a) et (b') sont préservées par les difféomorph-

ismes de classe C1 .

Toute variété analytique complexe (ou réelle) admet
une stratification régulidre.

Introduction de 1la conditiom suivante.

Pour toutes suites Sxiie X, §{ yizeY convergeant
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D. TROTMAN

vers y , telles que {Tx X} a une limite T , et

i
{xi_ yi} a une limite A ,ona ACT .
'xi‘-' yi'

Remargue : (b) est équivalente & 1la conjonction de (a) et (b') .

I1 est évident que (b) implique (b') pour toute ‘l\'Y . D'autre part
(b) implique (a) parce que pour tout vecteur v € TyY , et toute suite
fxi}e X , on peut choisir ;‘yi} sur Y approchant y dans la direction
de Vv assez lentement pour que =Yy tende vers v .

. |xi- yil

Réoiproquement, si (a) est vraie, et (b') est vraie pour une ‘l‘l‘Y

donnée, .on trouve (b) en décomposant le vecteur ‘A (dans la ‘définition de

(b)) en la somme de deux vecteurs, l'un dans TyY , et l'autre dans

(% 7))

1965 Thom [22] La condition (b) sur un couple de strates X , Y
avec Y € ¥ X implique 1'invariance topologique
locale 3 prés de chaque point y de Y on a un

homéomorphisme entre X et Y x (‘RY_I(y)('\ X) .

Conditions géométriques.

Soit (U,$) une carte ct pour Y en y,
}: (U,unY,y) —> @, &% ™™, 0) .
Nous avons une rétraction C' ,
Ty = cb_lo ’Rmoq; t: U—> (YnUu),
et une fonction tubulaire Cl,
P - ()o<t> t U—> R,

n
hY 2
ou H'm(xl,...,xn) = (xl,...,xm,o,...,o) et ()(xl,...,xn) = iE-mdxi .

Dans l'article [22] de Thom sont démontrées les implications

suivantes (page 10) .
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CONDITIONS DE WHITNEY

La condition (a) pour le couple (X,Y) en y ., avec yeYcC X - X,
implique

1 (U,¢) pour Y en y , il existe un

(as) Pour toute carte C
voisinage V de y, V C U, tel que ﬂ‘b'\lnx soit une

submersion.
La condition (b) pour le couple (X,Y) en y implique

(bs) Pour toute carte CI (U,$) pour Y en y . il existe un

voisinage V de y, V C U, tel que (‘7\'¢.,P¢),vnx

soit une submersion.

1965 Feldman [ 2] Les applications différentiables d'une variété N &

une variété M , qui sont transverses a chaque sirate
d'une stratification (a)-rfguliére d'un fermé de X,
forment un ouvert dense de C%® (N,M) dans la
topologie forte (ou fine). Ceci a des corollaires

intéressants en géométrie différentielle.

1965 Lojasiewicz [1I] Stratification (b)-régulisre des ensembles

semi-analytiques.
1971 kuo [9] Introduction de la condition (r) s " ratio test " .
(r) est strictement plus forte que la condition (b) dans le cas semi-
analytique, mais n'est qu'un invariant 02 s+ elle n'est pas préservée par les

diffeomorphismes ¢t — voir [26] et [27] .

1973 Hironaka [6] Stratification (b)-régulidre des ensembles sous—

analytiques.
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1974 wall [32] Conjeotures : (a, ) €= (a) , (b ) &=>(b) .

1976 Verdier [31] Introduction de la condition (w) , qui est une
condition générique et implique la trivialité rugeuse
locale : on a plus de contrSle sur les homéomorphismes

trivialisants que avec (b) .

(w) est strictement plus forte que (r) et donc plus forte que (b)
dans le cas semi-analytigque (ou sous-analytique). Comme (r) , elle n'est que
pr‘servée par les difféomorphismes 02 et pas par les difféomorphisl;les C1 ,

néme pour les strates algébriques (voir [26] et [27] ).

1978 Kuo [10] Soit Y =X - X< R® (pas seulement Y < X - X ) .

La condition (a) powur (X,Y) en y € Y implique

(hab Le type topologique du germe en y de l'intersection
avec X d'une sous-variété S de classe C® telle
que y€S ,S5SAY en y, et dimS =n-dimY ,

est indépendant du choix de S .

Dans la suite je vais parler de plusieurs résultats démontrés dans ma
thése [27] s les réciprqques aux implications (a) :(as) et (b)-:(bs) '
de Thom (1965) , la réciproque du théoréme de Feldman (1965) , et finalement
une réciproque partielle au théordme de Kuo (1978) dans les cas ol le lemme

de sélection des courbes est utilisable.

2. Détecteurs de (a)- et (b)-déefauts.

Langage : Quand une condition d'équisingularité E n'est pas satisfaite

en un point d'une stratification il est naturel d'appeler ce point un
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CONDITIONS DE WHITNEY

E-défaut. Trés souvent, pour démontrer qu'une condition E1 implique une

condition E2, on suppose qu'on a un E2-d6faut et on en déduit qu'on a

forcément un El—défaut .

Les résultats suivants font partie de ma thése f 27] 3 les démonstrations

seront publiées dans [29] .
A Y
Théoreme A : (a) Squivaut 3 (as) .
Theoreme B : (b) &gquivaut 3 (v,) -

Corollaire : Les conditions (a) et (v) sont invariantespar difféo-
morphisme C:l o

Comment démontrer le Théorsme A :

On considére une formulation de (as) suggérée par Dennis Sullivan.
Soient X , Y des sous-vari§tés C! de B® , et yeYc X - X . On dit que

(X,Y) est (G-k)—r‘gglier en y =i

('3-k) Pour tout feuilletage J de olasse C* transverse & Y en
Y , il existe un voisinage U de y tel que 3‘ est

transverse & X dans U .

(‘a) équivaut 3 (3—1).

On remarque d'abo.rd que “4>\X AT est une submersion si et seulement si
les fibres de 1\'4: sont transverses a X dans U .

Donc, §tant donnée ('3-1) , on trouve (as) parce que les fibres de la
retraction C]' 1‘(‘¢ sont les feuilles d'un feuilletage Cl transverse 3 Y
et de codimension ‘ga.le & la dimension de Y. |

£tant donnée (aa) on trouve ('Svl) en prenant une rétraction dont les
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D. TROTMAN

fibres sont contenues dans les feuilles du feuilletage E} .

(;}1) implique (a)s

On suppose que (a) n'est pas satisfaite pour le couple (X,Y) en

erCf-X.Onmmhutmfwﬂhm@ & transverse &

Y en y , mais
qui n'est pas transverse 3 X en chaque point d'une sous-suite de la suite
fx13 avec limite y . Le feuilletage sera appelé un détecteur du (a)-défaut.
Pour le construire on part d'un feuilietage E;b par des hyperplans
parallédles & lim T, X , et autour de chaque point d'une sous-suite {xik}. de
fxii on remplace Sio par un feuilletage proche — on ajoute des ".rides "
telles que la tangente en Xy ,& la feuille qui passe par X5 contienne

k k
Tx X , et donc ce nouveau feuilletage n'est pas transverse 2 X pras de ¥y

oY
c'est A dire que (E};) n'est pas satisfaite.

Par le m@ume genre d'argument on montre que (ba) implique (b) , cette
fois en prenant un feuilletage de tfl— Y ©par des oylindres (les fibres

d'une fonction tubulaire (a#> ) .

Pour X , Y semianalytigques on peut se restreindre 3 des difféomorphismes
avec leurs graphes semianalytiques. (Pour voir celd il suffit de lire

attentivement [24] et [?5].)

Les feuilletages 02 transverses ne sont pas des déteoteurs effectifs
pour les (a)-défauts 3 (3}2) n'implique pas (E}l) . Un contre-exemple a été
construit en collaboration avec Anne Kambouchner (voir [8] et Y?f] ) . Le

méme contre—exemple dorne un (b)-défaut qui n'est pas mis’ en §vidence par les

voisinages tubulaires s 1a condition (bi) , qui est simplement la
oondition (bs) limitée 3 des difféomorphismes ¢ de classe c? , est

satisfaite.
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CONDITIONS DE WHITNEY

3. La condition (a) et la stabilité de la transversalité 2 une

gstratification.

Le théor&me énoncé ci-dessous explique 1'importance de la condition (a)

de Whitney si on s'intéresse aux proprie’tés de stabilité.

Théoreme : Soit 3. une stratification localement finie d'un ferms V

d'une variété M de classe C' . Les conditions suivantes sont &quivalentes.

(1) > est (a)-réguliére,
(2) pour toute variété N de classe ¢t , Ez € Jl(N,M) : zA\Z} est un

ouvert de Jl(N,u) ’

(3) pour toute variété N de classe ct , fi‘ eCl(N,M) s fth} est un

ouvert de Cl(N,M) dans la topologie ¢t forte,

(4) 11 existe une variété N de classe ct , avec

1< dim M - dim N & mex (1, mi}r}dims )
s&
telle gue {fe Cl(N,M) : £ A Z} est un ouvert de Cl(N,M) dans la

topologie C' forte.

(1) =>(3) a 6té démontré par Feldman en 1965 (voir &2 ci-deesus).
(1) & (2) a été démontré par Wall [33]‘; (1)=>(3) en découle parce
que (3) est une consfquence immfdiate de (2) par la définition méme de la
topologie ¢l forte (voir [7] , flS] ).

L'implioation (4)==(1) est nouvelle. Pour les détails de =a démonstr-
ation voir [27-] ou [28] . La démonstration utilise d'une fagon non-triviale
le fait qu'un gous-ensemble de Ck(N,M) ( 04k £ ) qui est ferm§ dans la
topologie Ck faible , a la propriété de Baire dans la topologie Ck forte

ce théordme est démontr§ par Morlet [15] et Hirsoh [T7) .

On a le méme théordme en remplacant partout Cl par Ck , barce gue le
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probldme se réduit & un 6tude des 1-jets.

On sait que {f € Ck(N,M) 3 frl\Z} est toujours dense dans Ck(N,M)
muni de la topologie c® forte (l1£x< o), par application répétee du
théoreéme de transversalité de Thom (voir [7] ) . Donc les applications
transversess une stratification forment un ouvert dense si et seulement si la

stratification est (a)-régulidre.

Avec la topologie Cl faible les applications transversesad une stratifioca-
tion , méme d'un sous-ensemble compact, ne forment un ouvert que si‘la
variété source est compacte (dans ce cas la topologie faible est la weme que
la topoiogie forte). En effet un voisinage ouvert dans la topologie faible ne
donne auoun contrdle en dehors d'un compaot dans la variété source. A ce sujet

il faut signaler les erreurs dans chague partie (a), (b), et (o) de

1'exercice 8 , page 83 de [7] .

4. Transversales homéomorphes et transversales transverses.

Dans $2 j'ai énoncé le théoréme de Kuo t (a) impligue (h®°) . En
suivant la démonstration de ce résultat |10] , on voit que (a) implique
(hz) (dans 1a définition de (b® ) on peut prendre des sous-variétés de
classe c? ) , mais il n'est pas clair que (a) implique (hl) (c'est ¥ dire
qu'on puisse prendre des sous-vari§tés de olasse Cl) , parce que la démonstra-

tion utilise un champ de vecteurs dans un éclatement.

Il est clair que 1'hypothése Y = X - X est nécessaire & cause d'exenmples

comme

242



CONDITIONS DE WHITNEY

Je me suis posé le probléme de considérer une réciproque au théoréme de
Kuo : est-ce gue (hl) implique (a) ? En effet une telle réciproque
n'existe pas en général i cause des exemples que j'ai construit pour montrer
que (t) n'implique pas (a) (voir [8] , [24] y [26] , [27] ) . Dans
1'exemple le plus simple (C26] , ["27] ) on construit un (a)-défaut en
plagmt une suite de bosses sur une courbe tangente & Y , telle que les

sous-variétés transverses & Y en y " ne le voient pas " .

O

b

Courbes

X ) O
%‘33& 5? ~
3

\Q\

§5eS

Y

Evidemment on obtient ainsi un (a)-défaut qui satisfait la condition

(hl) — d'avoir les transversales homéomorphes. ( Ceci suggdre que (t) ,

c'est d'avoir les transversales transverses . )

Maintenant il est naturel de se demander si peut-&tre (t) et (hl) sont
1 . Pé
équivalentes. Je peux montrer que (h~) implique (t) . Plus généralement,
soit (h:) la condition que les transversales & Y de classe ck et de
dimension s aient les germes en y de leurs intersections avec X tous
homéomorphes, et soit (tl:) la condition que ces transversales soient

transverses 32 X prés de y (1€ k€0, codim Y< s<n ).

PR . e s n k
Thecreme : Soient X , Y gous-variétés disjointes de R de eclasse C ,

et ve Y, 1S k<€oo. Alors
k=1
(_h:) implique (t:) si ou

k> 1 et s> codim X .
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La restriction sur s quand k> 1 est nécessaire ; la raison est
essentiellement parce qu'on ne peut pas trouver une petite Cz—perturbation

d'une parabole pr;s de son sommet qui 1l'applique sur sa tangente au sommet.

Les détails de la démonstration du théoréme ci-dessus se trouvent dans

[27] et vont parattre dans [30] .
Comme corollaire on obtient le résultat suivant.

Théoréme : Pour les strates sous-analytigues, (hl) implique (a) .

Démonstration ¢ On applique le théoréme ci-dessus et le fait que (t)
implique (é) dans le cas des sous-analytiques ( on le montre pour les semi-
analytiques dans [24] en utilisant le lemme de sélection des courbes, qui
est valable pour les semi-analytiques par [11] , et la méme démonstration

marche pour les sous—analytiques en citant le lemme de selection d'Hironaka

[6] 5 voir [27] ).
Donc pour le cas des ensembles sous-analytiques on s les implications :

Cl-transversales : Cl-transversales
(8) @ Pe
transverses homéomorphes

Cz-transversales i Cz-transversales
———

homéomorphes transverses

Il n'est pas difficile 3 voir qu'il faut (hl) et pas seulement (h2)

pour obtenir (a) (voir [27, Note 2.8] , ou [30] ).

Je finis avec une conjecture naturelle d'aprés la disocussion ci-dessus.

Conjecture : (ts) —) (hﬁ) — tiransversales transverses impliguent

transversales homéomorphes.
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CHAPTER 0. INTRODUCTION

This work deals with properties of Whitney (a)- and (b)-regularity. The
regularity conditions prescribe the local behaviour of limits of tangent spaces
to smooth manifolds, which are usually stirata of a stratification. So, first,
what is a stratification ?

A stratification :E_ of a subset V of a C1 manifold M is a partition

of V into connected C1 submanifolds, called the strata of :i. . :E; is locally

finite if each point of V has a neighbourhood meeting only finitely many strata.

Example O.1l. V a connected C1 submanifold of M . There is a trivial

stratification of V with just one stratum.

Example 0.2. V the underlying space of a linearly embedded simplicial complex.
There is a natural stratification whose strata are the interiors of the simplices

of the complex.

Example 0.3. V an analytic variety in R™. Let S(V) be the set of points
where V is not a submanifold of maximal dimension. lWrite Sz(V) = 5(s(v)) , ete.
Suppose r is the smallest integer such that Sr+1(V) = 96 . Let (;(A) denote
the set of connected components of a set A . Then

G(V-5(V)) L G(s(V)=s*(V)) ... 1L G(s™H(v)-s"(v)) 1L G(s™(V))

defines a locally finite stratification of V called the full partition by dimension

(by Whitney in [46] )e



N

The Whitney conditions

Let X, Y Dbe disjoint Cl submanifolds of a Cl menifold K and let y
be a point in YNX .

X is (a)-regular over Y g_f y if,

(a) Given a secuence of points {x;} in X tending to y , such that T_X
' i
tends to T , then TyY c T.

X is (b)-regular over Y at y if,

(v) Given sequences {xi} in X, {yi} in Y , both tending to y , such that
Tx X tends to T , and the unit vector in the direction of xi§i tends

i
to A , then Ac T .

These conditions were first defined by Whitney in [45) and [46] . Accounts
of them have been given by Thom in [35] and [36] s by Mather in [_21] and
[22] , vy wWall in ([43] and [44], and by Gibson and Wirthmiller in [7] .

Following Thom , we say that X is (b')-regular over Y at y if, for

some Cl local retraction U associated to a Cl tubular neighbourhood of Y

near y (see §5) ,

(b*) Given a sequence fxi‘s in X tending to y , such that T_X tends to T

-——-—’ 1
and the unit vector in the direction of xi‘it(xi) tends to A , then AC T.

(b) clearly implies (b') for any T . Also (b) implies (z) , since
given any vector v in TyY and any secuence { xi} in X we ean choose fyi}
in Y coming in to y in the direction of v so slowly that i-:'?i/,xi?il tends
to v (see MNather [21-_‘). Conversely, if (a) holds and (b') holds for some

TN , we arrive at (b) by decomposing the vector ?\ into the sum of two vectors,



one in TyY and one in Ty(Tt—l(y)). (Compare Wall [43]) To sum up,

Pt
» /,(,é’

(0.4) (b1) + (2) &> (v) 2 Boitangg 5

S

B, S
f@hsvﬁx

We shall make freguent use of this ecuivalence.

A stratification &. is (a)-regular if, for each pair of strata X , Y
and at every point y€ YNnX , X is (a)-regular over Y at y . Similarly,
we speak of (b)-regular stratifications. We call a locally finite (b)-regular

stratification a Whitney stratification.

Example 1. (0.1) is trivially a Whitney stratification since there is only

one stratum, and (a)- and (b)-regularity are conditions on a pair of strata.

Example 2. The stratification in (0.2) defined by a linearly embedded

simplicial complex is a Whitney stratification by the next example.

Example 3. Let X be a C1 submanifold-with-boundary of a C1 manifold M ,
with interior X and boundary Y . Then X is (b )-regular over Y , since

(b)-regularity is invariant under Cl diffeomorphism (see Corollary 5.3) , and

p+q+T

e®P x o¥*T

B® x (0,002 x 0° is (b)-regular over in R . (b)-regularity

is far from being a topological invariant.

Pictured is a topological manifold-with-boundary X , With interior X a Cl
manifold and boundary Y a line, such that X is not (b)-regular over Y at y :

we say the pzir (X,Y) has a (b)-fault at y (see below).



Example 4. The stratification defined in (0.3) by the full partition by

dimension of an analytic variety is not necessarily a
We give the standard examples. ,
1) v= {yz - 92 4 x3} c ®.

Let Y be the t-axis, and X be V =Y.

Then set Xl Xn{x)O},

X, = Xn{x<0}n ft>0},

X; = xafx<ofn ft<o} .
X; is (b)-regular over Y at O, but
X, and X, are not (v)-regular over Y

at 0. However all three are (a)-regular
over Y at O. The reader may check that
XllLXZLLX3nI is the full partition by

dimension of V .

2) v={y° = tx°} c RB>.
Let Y be the t-axis, and X be V-Y.
Then set X, = Xn{x>0}, X, - xn{x<0} .
X; and X, are neither (a)-regular over Y
at O, but are both (b')-regular over Y .
Again Xln.leLY is the full partition by

dimension of V .

Whitney stratification.

 d

"The fact that we do not get a Whitney stratification from the full partition

by dimension of an analytic variety is only a minor handicap because of the

following theorem.

Theorem(Whitney [45],[}6]) : Every analytic variety admits an analytic

Whitney stratification.




This is proved by showing that every locally finite analytic stratification
(i.e. whose strata are locally analytic manifolds) admits an analytic Whitney
stratification as a refinement : this is because (b)-regularity is generic —
the set of points where (b) fails for a pair (X,Y) of analytic strata is
contained in the complement of an open dense subset of Y .

The class of sets for which (b)-regularity is generic has been extended by

Lojasiewicz [18] and Hironaka [12]. See also Hardt[10] and Gabrielov's thesis.

Definition : A subset of R" which is globally (resp. locally at each point
of B" ) a finite union of subsets each of the form { fi= o, gj>0 l i=1l,..,Dp3
4=1,...,q3 where the ffi} y fgj} are polynomial (resp. analytic) functions

on R", is called semialgebraic (resp. semianalytic) .

Theorem(Lo jasiewicz [}8]) : Every semianalytic set admits an analytic

stratification, and every analytic stiratification of a semianalytic set admits

an snalytic Whitney stratification as a refinement.

A more gocessiblé proof, for semiaslgebraic sets, was given by Wall [ﬁjl.

Definition : A subanalytic set in R" is the image of a semianalytic set

in lRm , Some m , by a proper analytic map lRm — an .

Theorem(Hironaka [12] ) : Every subanalytic set admits an analytic stratification,

and every analytic stratification of a subanalytic set admits an analytic

Whitney stratification as a refinement.

So far we have discussed the existence of Whitney stratifications. Among the
most important applications of Whitney regularity are the consequences of the

following results.



Theorem 4 : Let 2. Dbe a locally finite stratification of a closed subset of

a Cl manifold M . 2 is (a)-regular € the set of maps transverse to o

is open in Cl(N,M) for all C° manifolds X .
See 81 for a precise statement and proof of Theorem A .

Theorem B : A Whitney stratification is locally topologically trivial.

Theorem B was conjectured by Thom and proved by Mather [21} .

Neither Theorem A nor Theorem B makes use of analyticity. However in most
of the work done either on the Whitney conditions themselves — as in Speder's
thesis [29], and Teissier's study of the equisingularity of hypersurfaces [BOJ ’
[31], and the equimultiplicity theorem of Hironaka 1] — oi- using the Whitney
conditions as tools — as in the proof of the topological stability theorem [7] ’
and  the Lefschetz hyperplane theorems of Hamm and L& [9] , and the extensions
vof characteristic class theory to singular varieties by MacPherson [}9 , 2dﬂ,
and M.-H. Schwartz [26] — extensive use of the special properties of analytic

varieties has been made. And it was for complex analytic hypersurfaces that

Zariski demanded a theory of equisingularity [49,5@] .

This thesis can be thought of as a study of aspects of the theory of
equisingularity of smooth stratified sets, the plans of which were drawn in Thom's
"Ensembles et morphismes stratifiés" [36] . When there are improvements in the omse

of subanalytic sets we give them; and we make special mention of any relations

with complex hypersurfaces.

With Theorem B in mind, we make all our counterexamples topological
manifolds-with-boundary, hence topologically trivial, whenever possible. This

shows well the great difference in the nature of the results found here, and those



obtained for com»nlex hypersurfaces, for which topological triviality has fairly
strong consequences, including (a)-regularity.

The basic local situation is as follows ¢t let X and Y be Cl submanifolds
(and, when appropriate, subanalytic subsets) of g™ , with Y X-X. Y is the

base stratum, and X the attaching stratum. When X is (b)-regular over Y at

0in Y , we will say that the pair (X,Y) is (b)-regular at O , or that
(X,Y)O is (b)-regular. When (X,Y)o is not (b)-regular, we say that (X,Y)O

is a sbz—fault ¢ we justify this term below.

Faults and detectors :

When some equisingularity condition E is not satisfied at a point of a
stratification, it is natural to call th® point an E-fault (so retaining the
geologivwal terminology). Many proofs showing that one equisingularity condition

implies another are by reductio ad absurdum : we suppose that the second condition

fails, and then we show that the first condition necessarily fails as well. When

we can do this we say we have detected the fault (the point where the second

condition fails). In the same way counterexamples to implications between .
equisingularity conditions tend to be faults which are not detectable in some
given way. Most of the results given in this thesis consist of taking an
equisingularity condition E and deciding whether possible detectors are effective
or ineffective in detecting every E-fault. We hope that this will clarify and

motivate the point of view taken throughout.



CHAFTER 1. WHITNEY (a)-REGULARITY

We begin by showing that (a)-regularity is precisely the condition to impose
on a stratification in order that the maps transverse to the stratification form
an open set, i.e. that transversality be stable, as well as being generic (the
transverse maps always form a dense set). (a)-regularity was introduced by
Whitney in [45] as a sufficient condition for this to be true ; at the time it
was thought that (t)-regularity (defined in §2) was the condition required, and
that (a) was only useful in that it implied (%) (see the introduction to [45]).
This is true in the analytic case, since then (t) and (a) are equivalent as
proved in Theorem 2.5 below (and [37] ), but we givé examples (2.1 and 2.4)
showing that (t) is in general weaker than (a) . (a) is necessary and
sufficient for openness : the sufficiency was proved in detail by E. A. Feldman
in [5:! and we prove necessity here in Theorem l.l. The only difficulty in the
proof is to.find a transverse map with a given transverse 1l-jet at a given point 3
for this we show that in a suitably choéen Baire subspace of the space of maps
containing the given jet ét the given point, transverse maps are dense.

Example 2.1 , showing (t) to be weaker than (a) in the smooth case, has
(a) failing for a sequence on a curve (in the ambient space) tangent to the base
stratum, thus defining an (a)-fault not detectable by transverse submanifolds. To
show that the property that the (a)-fault be given by sequences tangent to the
base strétum does not characterise those (a)-faults which are not detectable by
transverse submanifolds, we give a second example (2.4) which uses a basic
semialgebraic object called a "barrow", which is defined in 2.3 . Ve then prove,
in Theorem 2.5 , that (t) is equivalent to (a) when curve selection is
available, and‘obtain as a consequence in this case the conjecture of C. T. C. Wall

[43] that (a)-regularity be equivalent to the condition that the fibres of a



Cl retraction onto the base stratum be transverse to the attaching stratum for
all retractions. We prove this conjecture in general as Theorem 3.3 after
rephrasing the conjecture to read ﬁdo transverse Cl foliations detect
(a)-faults ? " Example 3.6 shows, using the barrows of 2.3 , that transverse
c? foliations do not detect all (a)-faults.

To complete §22 we discuss results relating to a theorem of T.-C. Kuo , that
(a)-regularity implies that transversals to the base stratum have germs at O of
their intersection with the attaching stratum, of a single topological type, and
we prove a partial converse to Kuo's theorem.

Finally in 84 we describe the analogues of the results proved here about

(a)-regularity of stratified sets for the (af) condition on stratified morphisms.

1. ga!—regglaritz and stability of transverse maps

C topologies

First we briefly define the weak and strong Ck topologies on the space of
& mappings between two ¢ manifolds (1€k<€w .

A thorough treatment of these topologies is given in Hirsch's book "Differential
Topology" [}3] « Other versions are given by MNorlet [24] y Feldman [5] s and
Golubitsky and Guillemin [8] . |

Let N, P be c® manifolds. Ck(N,P) denotes the set of C° mappings from
N to P, Jk(N,P) denotes the bundle of k-jets associated to such mappimgs,
and 3£ ¢ ¢5(N,P) —> CO(N,J°(N,P)) is the associated jet map. The map

Fr: N —> JK(N,P) is called the k-jet prolongation of f .

A basis for the weak ck topology on Ck(N,P) is given by taking all sets

of the form {feck(N,P) : jkf(K_)C U} where K is a compact subset of N ,

and U is an open subset of Jk(N,P) .
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)
A basis for the strong Ck topology (also known as the Whitney c* topology)

on Ck(N,P) is given by taking all sets of the form {f € Ck(I\I,P) : jkf(N)C U}
where U is an open subset of Jk(N,P) .

If N is compact these topologies are clearly the same.

Transversality

We shall use the notation d\ for "is transverse to" .
If X sy Y are Cl submanifolds of a C:L manifold M ,
AN Y at m & TX+TY = TN
IAY & X AY at n,V¥V mexny
If f:N-—> N is a C1 map,
f AN X at n & Te(n)X * (af) (T, N) = Te(n)H
or f(n)€ X |
tAhN X & £MX at n, Vnefix)
If ze JY(N,M) is a 1-jet, and £ € C*(N,M) is a map representing z (at neN)
zMN X & £ A X at n
We say X is transverse to a stratification > , and write X A 3. ,
wvhen X A S V¥ strata S of X .
We say X is transverse to a foliation '} of M at x , and write
X A 3 at x, when X is transverse at x to the leaf of F through x .
We say a foliation 3' of a submanifold X is transverse at x to a
foliation S of a submanifold Y , and write o A S at x , when the
leaf of ' through x is transverse at x to the leaf of 9 through x .

(This requires that X be transverse to Y at x .)

Now we are in a position to state Theorem A of the introduction.
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Theorem 1.1 Let 2 be a locally finite sjratification of a closed subset

V of a Cl manifold Ik . Then the following conditions are equivalent :

(1) > is (a)-regular,

(2) for every ct manifold N , {z eJl(N,M)

z r\\}:} is open in Jl(N,Iu),

o

(3) for every Cl manifold N, {fect(wu): £MS} is open in cl(w,u)

with the strong Cl topology,

(4) there is some integer r , 1< r< max(l,min(dim S)) , and some ct
SeZ

manifold N with dim N = dim M - © , for which {fec’(w,M) : £ A} is open

in C(W,M) with the strong C' topology.

Notes 1.2 (i) (1) &> (2) is proved by Wall [44) . In fact he asserts
that (2) implies that V is closed, which is not quite true. Consider the
case where V = M - pt., and % hgs a single stratum.
(ii) (1) =>(3) is implicit in Thom [34] (1964) and explicit in
[35,36] 9 but see the discussion in §2 velow. It was proved by Feldman [5], who
describes 2. as cohesive if Z is (a)-regular, and now appears as Exercise 15
at the end of Chapter 3 of Hirsch's "Differential Topology" [13] . Feldman's
proof went unnoticed by several specialiists in the theory to the extent that a
very short false proof of (1)=>(3) appeared several times (see the discussion
and counterexample in §2 ), and in 1975, D. W. Bass [I] wrote "there seems to
be no published proof of this". This was probably due to Feldman's use of the
term "cohesive" before "(a)-regular® came into common usage 3 also his proof
appreared aé a technical lemma in a paper on immersion theory rather than in a
paper oﬁ stratification theory. Observe also that before the term "stratification"
was accepted people talked of "submanifold complex" and "manifold collection" .
(iii) We have the same theorem replacing ct everywhere by ck
(1€k<o00 ) , as the problem reduces to a study of 1-jets.

(iv) The set of & maps transverse to 2. (1€k<oo) is dense

in Ck(N,M) with the strong Ck topology by applying Thom's transversality
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theorem countably often as in [8] or [13] , even without applying (a)-regularity.
Thus if 2. is (a)-regular, the maps transverse to 2 in Ck(N,M) form an
open dense set in the strong Ck topology ( Cl-Open implies Ck—open).

(v) If each stratum is closed, then it follows from the result that
for a closed submanifold W of M , {fec¥(w,n) : £AW] is open (see [8] or [13]),
that {fe Ck(N,M) : ffhzz is open. But we do not assume the strata are closed

(only that V = |3| is closed) and in almost every situation of interest they

will not be closed.

Proof of Theorem 1.1 : (2) implies (3) by definition of the strong topology.

That (3) implies (4) is immediate. We shall prove that (1) implies (2), and
that (4) implies (1), which will establish the equivalences.

(1) implies (2)

Suppose (2) is not satisfied for some ¢t

manifold N . Then there is a 1l-jet

z € J5(N,M), with z A5 and a sequence {z {€ J'(N,M) such that z  tends

| to a8 n tends to o, but for all n, z, is not transverse to 2 . Let

Y , |\ denote the maps J'(N,M) —» N, JL(N,M) —> M, taking source and

target respectively. Let x =V (z), x;l =\)(zn) y ¥ = }A(z) y ¥y = \,l(zn) .

Since z M 2 and znrx >, for all sufficiéntly large n we have that y # J.

Also clearly y eV for all n . Since V is closed, and since y —> ¥ (n = o

we have that ye&V . Let S be the stratum of 5~ containing y . Since 2.

is locally finite, we can suppose (by taking a subsequence) that for all n ,

Y, belongs to the same stratum S' . S'=* S since S is a Cl submanifold.

Thus y€ S N(S' = S') and S' is (a)-regular over S by the hypothesis (1).
Now by means of a chart for M at y we can identify all the. tangent spaces

(and their subspaces) to M at points near y, with lRm (and its subspaces) ’

where m = dim M .

Let Pn (resp. P ) denote the vector subspace of lRm determined by the jet

z, (resp. z ) Vn. By choosing a further subsequence we can supnose that the
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dimension of Pn is constant for all n . (It is possible however that the
dimension of P 1is less than that of Pn.) Because grassmannians are compact
we may sup.ose by taking more subsequences that {Pn} tends to a limit PCJD and
ny S'} tends to a limit T . Then PC Poo’ and, since S' is (a)-regular

n

over S , TyS cT.

z A\ Y means that PA T, , and so P AT . Then 3 & > 0 such that

m
dim P
(o0}

), and 4T, T)< & (Te Gzim 1)y then

if 4P _,e)< € (aec
Q A T (transversality is an open condition on vector subspaces). Now choose
n, such that Y n >n , d(PCD P )< E , and n, such that Vo2 n, ,
d(’C,TynS')<€ . Then Y/ n)ma.x(nl,nz) y P A TynS| y ieee z N2>,
contradicting the choice of § 2.} , and proving that (1) implies (2) .

(4) implies (1) ¢

Suppose that 3 is not (a)-regular. Then there is a point y in V
contained in a stratum Y of 3 (dimY> 1), and a sequence of points fxi}
of V in a stratum X of ) such that I, ~>y a8 i —> ®, and
Txix —>» T as i —» oo, and there ies a vector v e TyYI such that v¢ T .

Let E be the 1l-dimensional subspace of TyM spanned by v . Choose a basis

for TyM such that

¥ - E@W,®T
T - 1,871,
TH - EQ@W@eV,8T er

where Tl’ Tz, Wl’ W2 are vector subspaces of TyM and T1 ’ Wl y Wy are
perhaps empty. Then find a subspace H of Tym with dimH=m=r ( = dim N ),

such that ‘I‘ze W, S HC T]_Q ‘I'2 ® Wle W, (this is possible since 1€r<dim Y).

Then H + TyY = 'I‘yM , but H+T =+ TyM . Let peN, and define
1 .
$H - {rec@m): ) -y, (af) (v ¥) - H} .

Lemma 1.3: ge@H such that grh 2 .
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Choose a chart (W, ) for N at p such that glw is an embedding (if
g€ aH ’

such that g(W)& U . Then it is net hard, since we have reduced the problem to

(dg)D has maximal rank) , and choose a chart (U,¢) for M at ¥y

m-I

one for Cl( ™", R") , to construct, for each i such that x,e U, an f,

in CY(§,M) such that,
(2) Filyw = &y s
(ii) fi‘w is an embedding,

(ii1) f,(w)c v, £(p)-=1x,

i'p" p
for i sufficiently large, where we have

(iv) (af.) (T W) = H, & T"ix @, DV, ,

considered Wl’ W, as subspaces of Tx M.
i

(v) B, =>H (1 2> o),

(vi) £, —> g (i —» o) in the
strong Cl topology.

Then for each sufficiently large i , fi is not transverse to X at «x, ,
Bince E ¢Hi +® X , i.e. f, is not transverse to S . But by the lemma,
lim £, = g is tra:.x‘sverse to J , thus we have a contradiction to the hypothesis

of (4) that the set of maps transverse to > is open in Cl(N,M) , completing

the proof that (4) implies (1) .

Proof of lemma 1.3 : Choose charts (U,$) for N at y, (W, ) for N

at p, and a ¢! map h: N —=>H such that h(W)c U, h\ is an embedding,

W
h(p) =y , and (dh)p(TpN) =H ., Let W'c W be an open set containing p , with
compact closure W' W . Then 3 & > O such that if fe US o (n) , which
9
. 1 .1 .1 -
is {f € co(N,u) 2 Yf(x) -3 h(x)l <d V¥=xe W'} sthen f'w, is an embedding
(see \-_13‘_\, Caapter 2, Lemma 1.3). Let iyé_ Tf"E) denote the weak C:L closure
9
) N A ———
of the weakly open set \’6,'75' (h) , and 1et EH = CBH ﬂva/zj,(h) . Then EH.

is weakly C' closed in CL(N,M) . For, consider any limit point £. of a

0
convergent sequence in $H with the weak Cl topology. Clearly f,(p) =y
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and (dfo)p(TON)Q_ H 3 however the inclusion can be strict : the rank of f can

drop at p . But if f, & :FJ'/Z,ﬁ'Zh) C Ug,‘g-(h) y f, bas maximal rank at D
since fO';—J' is an embedding by choice of 8 . Thus (dfo)p(‘I‘pN) = H, and

foe i)H . Hence EH is weakly C1 closed. Now we quote

Theorem 1.4 : Any weakly ok Closed subspace of Ck(N,M) is a Baire

space in the strong ck topology (14 k< o ).

Proof. See [13] s Chapter 2, Theorem 4.4 , or [24] .

Using this result we can now apply the usual procedure of the Thom
transversality theorem (as in [8] y OT [13] ) to prove that {f [ EH s f r}\zg

is strongly dense in 5H . GCover each stratum S of Z by countably many

compact coordinate discs {lé 22% such that if ye€ th(y) then no other KE(

contains y , and if f & EI—I , then f@')h Ki(y) = ¥ o Now verify that for
each S and each ™ , {fe EH : £ AS on Ki} is open and demse in EH

1 torology. The proof of this is a local argument near Ki

with the strong C
and goes through as for the standard proof in C (N,M) by the choice of K;E( g)°
(Given fe 8H , £ not transverse to Y on KZ((y) , we can find an
arbitrarily small perturbation of f to a map g € g q which is transverse to
Y on KE(( y)? and such that glﬁ, = fl'fi' .) Because there are coumtably many
strata ( > being assumed locally finite) , and because EH is a Baire space in
the strong ¢t topology (Theorem 1.4) , we deduce that

fre®_:tfAhs on Ky, Vu,Vs- {re& it nSE
is stroﬁgly dense in E g Since ,C‘ Hﬂﬁ & ,as h GE g ve have shown the
existence of some g in & g » @nd hence in 3 g s With g A 2 . This completes

the proof of Lemma 1.3 .

Notes on the proof : 1. It is not clear if g)H is a Baire space . This is

the reason for introducing & u in the proof of Lemma 1.3 . Certainly @H is
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not weakly closed, since the rank at p of a2 limit man may be less than the
. 33 . 1.
rank of the mens of a sequence in .~ + convergent in C (1;,[-«1) .
il

1 manifold

¢. The proof of (4) implies (1) shows that if there is a C
. € 1, . ' .
N with %f € C(N,l) s T A\Z} oven, then Z is (a)-regular over the

strata of dimension = dim M - dim N .

2. (a)-regularity and transverse submanifolds

Consider the following condition on a pair of adjacent strata (X,Y) at

1

apoint 0€YN (X-X), with X, Y C  submanifolds of R" .

(t) Given a ct submanifold S of R" transverse to Y at O , there is a

neighbourhood U of O in B" such that S is transverse to X in U,

If (t) is satisfied for (X,Y )O we say X is (t)-regular over Y at O .
If X is (t)-regular over Y for each point in YN (X - X) we say X is
(t)-regular over Y . If each pair of adjacent strata of a stratification

are (t)-regular, then Z is a (t)-regular stratification.

Since spanning is an open condition., it follows at once that (a) implies (%)

The false argument referred to above to prove (1) implies (3) of Theorem 1.1 i

[(a) implies (t)] implies [(;) implies openness of transverse Elip/s]
(1) (3)

This suggests that (t) implies the ovenness of transverse mans, which is false

in general, although true in the case of subanalytic strata (or any situation

where the curve selection lemma is available), as vroved in Theorem 2.5 below.

Thom, iﬁ [34] mentioned that (t) implied that the transverse mans formed an

oven set in the semialgebr:zic czse. In [35] he used this to deduce that (a)

implies that the transverse mans arc oven., again using znalyticity. The
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mistake first occurs in [36] where he repeats the argument, but does not assume
analyticity. The error was then copied by iiall [41] s, Trotman [37] , and
Chenciner [4] . Although [37] contains an example showing that (t) does not
imply (a) , I did not then realise that (a) was equivalent to the openness of
transverse maps, and missed the fact that the example there was actually a
counterexample to (t) implies openness. A fortuitous remark by E. Bierstone at

Oslo in August 1976 led to the recognition of the counterexample which follows.

Example 2.1. A (%)-regular stratification which is not (a)-regular [39] .

Let ( x, ¥, z) be coordinates in B3 . Take Y +to be the y-axis, and let
X = (n\Z{fn -0, g%0})uU (n?jl fx-0,g20,2>0}) were g, < 0}
defines the cylinder G of radius 1/3n(n+l) with axis the line {y =1/n,z-= 1/n?}
and where gfn = O} defines the surface F obtainéd from {x = ((y2+ 22) - &)23
by translating the origin to ( 0, 1/n , 1/n2) and reducing by a factor of
3n(n+l)/d2 so that F, intersects oG~ exactly where tx = 0} is tangent to F e

Az

(0, 1/n°)

FPigure: x = O |
(0 ,1/(n+1)%) ¢y 0 {x - o}

G

1" fx - O}

| l
| 1 N

0 (1/n+1,0) (1/n,of

X is a Cl submanifold and is semialgebraic on the complement of the origin.
The normal vector to X at the point

x, = ( 1/244Zn(n+1) , (1/n) + 1/3d2n(n+l) , l/nz )

is (2 ¢ 1: 0) for all n . Hence the limit as n tends to o is (2 ! 1: 0)



and (a) fails. (For (a) to hold, all limits of normals would have to be of

the form ( c, t02c ) , where ¢, 5 ¢, are not both zero. )

AX

(W2/12n(n+1), 0)

Figure: z = 1/n°

(t) holde since any submanifold transverse to Y will intersect X near
Y only at points near which X 1is defined by {x = O} . Hence the

stratification 3 of R°

defined hy. {Y‘, X, m3 - (XLJYZZ is (t)-regular .
Now we verify explicitly that the set of maps transverse to ;E: is not
open. The mapping h in 01(32, m?) defined by inclusion of the sphere of
radius 1 and tangent §521 +y = O} at O and with centre at (-1/45,-2/y5, 0)
is transverse to the stratification, but for each n +the mapping hn defined
by inclusion of the unit sphere with tangent at x the plane
{ 2x +y = (5 + 12J§(n+1))/(124?n(n+1);}

and with O in the bounded component of R3 - hn(Sz) , is not transverse
to X at x_. Since {h ] tends to h in the weak C  topology, which is
also the strong Cl topology (since 82 is compact) , the set of mappings
transverse to 2 is not open in Cl(Sz,IRS).

Thus (t) cannot replace (a) in the statement of Theorem 1.1.
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Lote that by smoothing near each circle {x = O , g =0} , i can be

. 00 . 3 . .
made into a C7 submanifold of mj , with the normal vector to & at each
. N oo
x =~ as before, for all n , thus oroducing a C counterexample.

I

Construction 2.2 (Hills, or Round Barrows)

The example above used 2 simple construction of a Cl semialgcebraic hill
which will prove useful as a building block for both examples and nroofs of
theorems. Consider the curve {x = (y2 - l)c} in [R2 : it has tangent parallel

to the y-axis for y =2*1.

/\x
(0,1)
/ | (yz | 1)2
(-1,0) 0 (1,0) > v

Figure : Hill of dimendion one

Rotating in (H3 about the x-axis, and cutting around the circle

{yg + 22 =1, x O} and then inserting in the plane gx = O} with the disc

{ y2 + z‘é 1, x O} removed, gives a Cl semialgebraic manifold. The vital
propverty of the curve {x = (y2 - 1)23 which will be used again and again is
that in the region {4:)'2& 13 the tangent to the curve is furthest from (x = O}

when y =*1/d3 , and at the voints ( 4/9 , +1/3) the normal is (1 $*38/3I3 ).

Construction 2.3 (Long Barrows)

3

Consider the surface in R~ with coordinates x , y , z ,

m7r3x _ ‘\m‘ _ zé )2(m4r2 _ y2 )4

where m, r € [O , 00) « The normal to the surface at ( x, y , z ) is



( m7r3 . 4(md _ Zc)c(mcrc _ yd)y . 4(m¢rd _ yd)2(mc _ ZZ)Z ) .

Z

(0 m)

1 \\\\\

(0,-m)

On {22 = m2, X = O} and {yz = m2r2, X = O} the normal is (12 0% 0),
and thus we can cut along these lines to obtain the surface
B(a,z) = {n'x’x = (u- £ PP PP, P&t , yP€ a
and we can insert B(m,r) in the plane f.x = O'} with a rectangle

{ x=20, 22 & n’ , yzﬁ m2r2} removed, to give a ct semialgebraic manifold.

T

At (mrx , mry , mz ) for 221 ’ y2 1 , the normal is now

(1 4y(1- zd)‘(l - yz)  4rz(l - z )(l - y2)2). Thus as m varies
B(m,r) varies in size, but the tangent structure (that is the set of points
in P2( R) defined by the normals or tangents to the surface) remains the

same. But as r varies the normals change, and as r tends to O the

normals tend to lie in the arc of lines {( 1:8\N:0 ) e >\ e [—1 ’ 1]} .
3

We call thies surfece B(m,r) a (1ong) barrow of maegnitude m , ratio T ,

with axis Oz , and centre O , 2nd base yOz . The axis, centre, and base will

always be specified. Calculation shows that for r < A{3/4 , the normal to the

surface is furthest from (1 : 0: 0 ) when y = *mr/d3 &and z-= 0,

o



and at these voints , ( 4mr/Y , ¥ mr/d3,0) , the normal is ( 1 §23/3y3 ¢ 0 ) .

(Compare Construction 2.2)

Linguistic liote ¢ The term barrow is used because of the resemblance of

the surface to the ancient burial mounds called by that name in England, when

r 1is small.

Example 2.4 : This will show that the phenomenon that (t) be strictly
weaker than (a) is not solely due to the possibility of (a)-faults given by
sequences tangent to the base stratum as in IZxample 2.1 : that is, it is not
true that (a) holds for those sequences on curves with limiting direction not
tangent to the base stratum.

In lR3
0o 0 .
X be (IS:J]. {fn =0, gn$03)u (nQ{x =0, g 20, z>0}) where ({fn

is the equation defining the barrow B(mn,rn) with centre ( 0, 1/n, 1/n )

with coordinates ( x,y , z ) let Y be the y-axis, and let

o

and axis §x =0,z +y = 2/n] , with base in the plane §x = 09, and
{ gn$ 03 defines the interior of the rectangular base of the barrow. X is a
1

C™ manifold, and is semialgebraic on the complement of the origin in lR3 . We

choose %(mn,rn)} ;1“;1 such that,
(1) r ~tends to O as n tends to o,
(2) +the barrows are pairwise disjoint (in particular m ~tends to O )
(3) m tends to O fast enough so that the n*®  varrow B(mn,rn) is
contained in the 2-sphere with centre ( 0, 1/n, 1/n ) and radius
l/2n2 (so m = 1/4n2 will do).
By (1) the set of limiting normals is exactly {( 13 (4733 M (4 B/33N)
0 él}\‘él} . (Cf. Construction 2.3) Thus (a) fails, since for (a) to
hold all limiting normals must ve of the form ( c1y O, 02) .

By (3) the set of barrows is contained in the horn which is tangent to

{z =y 4 X = O} and which intersects the plane {z + Yy = 2t;? in a cirecle of



n
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rzdius t° . Hence a Cl submanifold 3 transverse o Y &t O intersects
infinitely many barrows only if {& =¥ , X = o}c 7,5 - But then § will be
transverse to all barrows in some neighbourhood of O . For, supnose 5 were
nontrancsverse to infinitely many barrows § then LOS would be one of the limiting
(1 $U4¥2/3d3)As(4d2/33) ) - but fz =y, x = d}c:‘fos , and S is transverse
to {x=0,z-0})at 0, thus N§ is of the form (p: N -y ) with
YV ¥+ 0, which is not a limiting normal to X .

Thus we have shown that (t) holds and that (a) fails along seguences
waich are not tangent to Y . |

As in example 2.1 , by smoothing near the base of each barrow we obtain a

Coo example.

1

E
(]
M
]
(@]

vV
o

Now we shall prove that (t) and (a) are equivalent in the subanalytic

case. Preoisely, we have the following result.

Theorem 2.5 s Let X , Y Dbe C1 submanifolds of R" _and let 0€YN(X - X),

and let X Dbe a subanalytic set. Then X is (a)-regular over Y at O if

and only if for every semianalytic Cl submanifold S +transverse to Y at O

there is some neighbourhood U of O in which S is transverse to X .

The proof will depend upon two technical leirmas which we display for future

reference.
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Curve Selection Lemma 2.6 : Let U be a subanalytic subset of the analytic

space A, and let O € U . Then there is an analytic arc

% : [0,1] — 1
such that & (0) =0, X(t)€eU if t+=0.

Proofs of Lemma 2.6 : (1) Subanalytic U : Hironaka [12, Proposition 3.9] .

(2) semianalytic U : Lojasiewicsz E.S, page 103] .
(3) Semialgabraic U : kilnor [23, Chapter 2] .

(0f course, (1) implies (2) , and (2) implies (3). )

Lemma 2.7 s Let " be a Cl submanifold of R , and a subanalytic subset

of an . Then {( X , TXX ) : x€ X} is a subanalytic subset of an b ¢ Gg( R) .

Proof : See Verdier [40, Lemma 1.6] .

Lemma 2.7 , with semianalytic replacing subanalytic each time, follows after
partition into real analytic manifolds from the proof of Whitney [47] for
complex analytic varieties. A short proof of Lemmm 2.7 , with semialgebraic

replaoing subanalytic each time, appears in Gibson [6, page 35] .

Proof of Theorem 2.5 : Only if — this is immediate since spanning (and hence

transversality) is an open condition.
If - Suppose (a) fails. Thus there is a unit vector veE€ T , a

sequence fxi} € X such that x;, tends to O, and T, X tends to a limit T,
i

and v ¢ C .
Choose &€ >0 and i,€ Wl such that A~/ i2iy, d( v, T_X )> €,
1
where d( v, P ) denotes the distance between P € GE( {R) and the endpoint

of the unit vector v , both considered as subspaces of g" at O.

Define V, = WK x {r € G (R) : a(v,p) > €3 P x G (R)
n n
v, = ‘{(x,Txx)szX} CRr xGm(IR).



Vl is semialgebraic, and V2 is subanalytic by Lemma 2.7 , since A is
assumed to be subamzlytic. Semialgebraic sets are subanalytic, and the finite
intersection of subanalytic sets is subanalytic ( by Hironaka [12] ). Hence
V, NV, is subanalytic and (0,T)e '\'I-]:/WZ satisfies the hypotheses of the
curve selection lemma 2.5. Thus there is an analytic arc in g™ x Gg( R) (which
is an analytic, even algebraic, manifold) ,

&«:[0,1] — R x GO( R)
with ®&(0)=(0,T ) and a(t)evlr\ v, if t>0.

Write b(l(t‘) for the R"-component of (t) ; the GE( IR )-component is
Tul(t)){ - Let I, € Gg_l( R) denote the normal space at 0(1(t) to the CT
manifold-with-boundary 0(1( [o, l] ) , and let the vector v, be the
projection of v into N, spanning <vt> (S Grll(lR) . |

We shall define am analytic arc @ : [o,i] Y Gg_z(m) such that

()@ <> - N, (*)
Then the union of the fO‘ (t)} , considered as embedded (n-2)-planes in R
passing through the points o(l(t) defines an analytic manifold-with-
boundary S' of dimension (n-1) . Reflection in N, extends S' +to a ¢t
manifold S which is a semianalytic subset of R , and which is transverse to
Y at O by (¥) . However we shall show that no neighbourhood U of O exisis

within which S is transverse to X .

Construction of G :

n s s
Let P,t = NN Tt!l(t)x € Gm_l(R) . Then 0= v, ¢ P, by definition of
V, NV, . Let S(t) = P, @(Pt$ (vt) )'Le Gﬁ_Z(IR) , where ( )"L denotes

orthogonal complement in K t

Figure : N, (n=4,m=2).




G satisfies (¥) Dby construction, and so it only remains to show tuat S
fails to be transverse to X in any given neighbourhood U of O . Now there
exists some t, € (O,l] such thaf, U N 0(1(0,1] = o(l(O,tOJ . But S' (and
hence S ) is not transverse to X at any voint of cll(O,i] . For, if A,
denotes the tangent space to the curve l(0,1] at O(l(t) y

T

ul(t)x Po@®A < G(t)eaA,G = Tul(t)s .

This completes the proof of Theorem 2.5.

Note 2.8 : Even if X and Y are C%®

submanifolds we cannot restrict to
c®, or even c? , semianalytic submanifolds S , since (a) may fail only near
a cusp of type "y2 = x3" s each branch of which is a Cl manifold-with-
boundary, but not a 02 manifold-with-boundary. The same type of example excludes
restricting to analytic submanifolds S , although by the pfoof of 2.5 we

can restrict to analytic submanifolds-with-boundary S , since the statement

that S be transverse to Y at O still makes sense if O € YN 3S . The

proof of 2.5 also shows that we can restrict to those S which are " ruled
submanifolds " , that is a differentiable one-dimensional family of planes of
codimension 2 in R" . Moreover it sﬁffices to consider all submanifolds of
some fixed dimension greater than or equal to the codimension of Y , by a

small adjustment in the proof (choose CYl(t)<: o6 (t) , where oi(o) + TOY =Ny,

6,(t) €6, ;(R) , and ¢ > codimY ).

Te-~C. Kuo has recently proved the following result, which is related to the

questions already treated in this section.

Theorem 2.9 (Kuo) : Let X , Y be c® submanifolds of En sy Y =X -X in

some neighbourhood of Y . Suppose X is (a)-regular over Y at O€Y . Let

Sl ’ 82 be Coo submanifolds transverse to Y at O, with dim Si = n - dim Yi

(i = 1,2). Then the germs of S;NX and S, NI at O are homeomorphic.
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Froof : In {15] .

This is an attractive result since it parallels the Thom-kather theorem
{(Theorem B of the introduction) that (b)-regularity implies tovological
triviality. Bxplicitly, if X is (b)-regular over Y and 5, and 5, are
tyro submanifolds transverse to Y at voints Iy and ¥ in Y (with yl=\: I
allowed) , then the germs of Sln X at ¥y and Sz” X at y, are
homeomorphic. This follows from Corollary 10.6 of [21] . (a)-regularity is

definitely insufficient for the latter propverty as shown by the figure below.

\/
/\

germ of S

/\

N X germ of San

1

at y at O

Conjecture 2.10 : Theorem 2.9 is true with the weaker hypothesiis that X

Observe that the hypothesis Y = % - X rather than YC X - X is essential

in 2.9 and 2.10 s as shown by the next figure.

~

We might also ask if the converse of Theorem 2.9 is true. However examples

2.1 and 2.4 show that this is not so. In both examples X is not (a)-regular

over Y at O, but any ct submanifold transverse to Y (at 0) intersects
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A in a topological open half-line near O . We do though have a converse to

2.9 if we replace (a)-regularity by (t)-regularity as in Theorem 2.11 below.

Definition : Let X , Y be Cl submanifolds of R ,and 0O€YC X -X.

The pair ( X , Y ) is said to have homeomorphic ¢ transversals of dimension

s at 0(1<4€k<w, codimY<s<n ) if,

(hlé) Given a Ck submanifold S of dimension s transverse to Y at O,

the topological type of the germ of SN X at O 1is independent of S .

fe )
cod Y

but it is left in doubt whether (a)

Theorem 2.9 says that (a) implies (h ) . From the proof of 2.9 [15),

. . 2
one sees that (a) implies (hcod Y) ’

implies (hl since the proof makes use of a (tangent) vector field in a

cod Y) |
blowing-up.
Write (t5) for condition (%) restricted to those C submanifolds S

of class C© (1€k<00) and dimension & ( oodim Y € s€ n ) . Then we have ,

Theorem 2.11 : Let X , ¥ be disjoint Ck submanifolds of R" , and let

0O€YNX, with 1<£k< o . Then
k=1

(hlé) implies (tls{) if or
k>1 and s>n-dimX .

( David Epstein has given a counterexamvle showing that the restriction on

s when k> 1 is necessary.)

Proof : Suppose X is not (ti)—regular over Y at O . Then there is some
Ck submanifold S of dimension s +transverse to Y at O , and an infinite
sequence of points X, in X , tending to O , such that 5 and X are not

transverse at S for all 1i.
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“We are vorking locally at O so we can suprose that S is the imzge of a
& ’ T &

¢ emvedding g+ (8%, 0) —> (5, 0) c (R", 0).

N

Choose o sequence of n~irwise disjoint balls :)i of radius T, and centre
. s s . . . =1 ‘
xi , which are contained in coordinate charts for X , such that ig (SnBi) = Di
. . s o . s . =1y
is 2n open subset of ® , and diffeomornhic to R~ ., Let s, = ig (xj.) .

We shall show the existence of a CX embedding g : ( RS, 0) —> ( R, 0)

such that,
Q0
(1) g=1ig off H.Di ,

(II) for all i, & (Rs)anBi is not homeomorphic to a manifold of
dimension (s + dim X - n) , and is nonempty.
From (I) it follows that iy and g have the same k-jet at O, so that

in particular g(IRs) = S' 1is transverse to Y at O .

Existence of & when k =1 3

Finding such & g is particularly simple when k =1 .

1

Fix i, and let ¢, bea C diffeomorphism of B, , fixing x, , So that

d>i(ani) is affine. By an arbitrarily small Cl-perturbation of ig near s,

1

we can change oa C° enbedding g, : (Di,si) —_> (Bi,xi) , such

ls\ni K
that there are open neighbourhoods Ni and Li of S, in R® with
HcNcL,CL,cD, , and g \ DL, = 1s| DL, ’ and
¢i°gi )Ni = d(4>io 1S)(si) lNi . (We have pushed ¢i(S) onto its tangentt
space near xi.)

Near x, we now have two affine subspaces (bi(X A Bi.) and (¢io gi)(Ni)
which intersect at X but are not transverse at X and hence intersect in
an affine subspace of dimension greater than d = max (-1 sy S +dimX - n ) .
Thus dim (C’Di(X N Bi) N (¢ic gi)(Di)) is greater than 4 , and hence

(%) dim (X ngi(Di)) > 4.

In particular X N gi(Di) is nonempty.

Now define g : (RS, 0) —> (R", 0) by setting g . = & forall i
i

and g egual to iS elsewhere,



For g to be a Cl embedding, it suffices to choose {gﬁ such that
‘jl(is)(s) - jl(gi)(s)‘ < ri/21 for all s & D, , forall i.

Then (I) is satisfied by construction, and (*) gives (II) .

Existence of g when k> 1, and s >(n - dim X) :

Fix i . We shall change iSIDi to a CX embedding g, : (Di,si) — (Bi,xi)
by an arbitrarily small Ck-perturbation (1ess than 1'1/21 , 88y ) near 8; » 80

that there are open neighbourhoods Ni and Li of s, in R°® with 'ﬁic L

i i?

- . -1
and L; € D, such that gilDi—Li = 15\ DL, and such that g, (X)n N, 1is
homeomorphic to a cone in R® s of the form
s+dimX-n+l 2
&jzj = 0, where Sj =313

i=1
hence gi-l(x) N I\Ii is not homeomorphic to a topological manifold of dimension
(s + d4im X - n) , and is nonempty.

The existence of such a 8 follows from the Perturbation Lemma of May
(Lemma 1A of his thesis [53] $ Damon has given a detailed proof of a more precise
perturbation in Lemma 3.1 of [ 51] ) applied to the Ck embedding is at 0,
using the hypothesis s > n - dim X . The Perturbation Lemma is stated for c®
maps and uses the C® Morse Lemma, however the proof works for c® maps (k=2),
using the 02 Morse Lemma due to Kuiper ( [52] $ Ostrowski [55] and Takens [56]
provide different proofs) . Note that the classical proof of the Morse Lemma is
only valid for ¢? functions (see [13], Chapter 6, Section 1) .

(1) and (II) now follow for the ck embedding g defined in terms of

is and {gi} , as in the case of k = 1 . This completes our proof of the existence

of g ..

Lemma 2.12 : There is some Ck submanifold S" of dimension s , with

0O¢ S" , transverse to Y at O and transverse to X near O.

Proof : This proof will be similar to that of Lemma 1.3 .
Let ES = ffe Ck( s ,R") : £(0) = O}. ES is weakly closed in the

is a Baire space in the strong

Ck topology, and thus, by Theorem 1.4 , ‘ES



Ck topology. liow we apply the standard procedure of covering X by countably
many coordinate discs fKo(} , and proving that {f Ggs : fTAX on K“} is
open and dense in 5, S in the strong Ck topology, for each & , to deduce
that {fe E : £4 x} is dense in & .

Choose a weak C~ neighbourhood v&v(is) of the (Ck) mapping ig
defined by inclusion of S in R s Where S isa positive real number, V is
a neighbourhood of O in § , with compact closure V , and if fe \Jg i)
flv is a C° embedding transverse to Y at O (Lemma 1.3 in Chapter 2 of
Hirsoh [133 glives 6 sy V for such a ct neighbourhood, and the same d ’
V provide an adeqguate Ck neighbourhood ). Then the strong Ck neighbourhood
foé’s(is) has UA\ = vd,s(is)n gfés g * £ Xz as 5 strongly ck
dense subset. For any f in U’h , S" = f(V) satisfies the requirements of
Lemma 2,12 . |

(Recall that ’U"&ﬁ(is) -§fre (s ,r) : |f(z) - jkis(z)|<6,VzeV}.)

Let S" Dbe given by Lemma 2.12. Then S" /N X is either empty in some
neighbourhood of O , or is a topological manifold of dimension (s + dim X - n) .
Let S' be given as the image of the émbedding & constructed above. Then the
germs at ‘O of S'NX and S"N X are of distinct topological types, by (II) ,

and so (hlsc) is not satisfied, thus proving Theorem 2.11 .

CoroliarL2.l3 : If X is subanalytic and the pair ( X, Y) has homeomorphic

Cl transversals of dimension s at O for some s, n-12>s 2 codim Y ,

then X is (a)-regular over Y at O.

Proof : Combine Theorem 2.11 with Theorem 2.5 , using the remark at the

end of Note 2.8 that forany s, n-1>s>codinyY |, (ti) implies (a) .
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Remark : Conjecture .10 and Theorem c.ll are in accord with the general
principle of Thom that instability of topological type corresponds to a lack

of transversality.

One of the original motivations for this work was the hope of generalising
the theorems about eguisingularity of families of complex hypersurfaces
achieved by Zariski and the French School (led by Teissier). We now explain
how the results Jjust described fit in with this idea.

Let F: ( ¢l g 8 , O0x wk) —>» (¢, 0 ) bea complex analytic
function such that Y = O x €5 contains the singular set of F . Let

n+l k

r: € X ¢ - Y be an analytic retraction. In [36] we find the

following implications :-

(T.E) topological type of F_l(O)f\ r-l(y) is constant as y varies in Y

ll

(}l) the Milnor number }l(F_l(O) r\r—l(y)) is constant as y varies in Y
(a) (F_l(o) -Y) is (a)-regular over Y

(The first implication is (0.1.4) of [}d] , and is also sketched on page 68

of [23] . The second implication is (II.3.10) of [36] 3 a different proof

appears in [ié] .)

In [31] , Teissier denotes by (S.0.E) the condition that (T.E) hold
for all such retractions r . Corollary 2.13 can now be thought of as a
generalisation of the implication: (S.T.E) implies (a) . Also KXuo's Theorem 2,9

has as a direct consequence that (T.E) implies (S.T.E) , a result left



unsettled in [Ei] .

The examnle given by Teissier in the post-script to [3i] is instructive .
Consider VE §y° = tx° + x°§ in R’
Then X 1is topologically trivial over Y , and the topological type of the
intersection of X with each plane {t = constant}' is constant, so that
(T«E) holds for r : R3 —> Y definedby (x,y,t )F—> t . However

X is not (a)-regular over Y at O, and (X,Y) does not have homeomorphic

C1 transversals of dimension 2 at O as is seen from the figure.

3. (a)-regularity and transverse foliations

In his paper " Regular Stratifications " [43] C. T. C. Wall noted that

if a pair of adjacent strata (X,Y) in R" are (a)-regular at 0 in Y then,

(as) Given a Cl local retraction T onto Y defined near O , then there is

a neighbourhood U of 0 in R"™ such that T is a submersion.

XNU

and let Y be the t-axis, and X =V =Y .



iie suggested that the converse was also true, and this wili be the main result
of this section.

First note that U XAU is 2 submersion if and only if the fibres of 7%
are transverse to X in U . Then we see that (as) implies (%) . For , given
a C1 submanifold S +transverse to Y at O we can choose a chart at O in
which S and Y become linear and then take a linear retraction <t whose

fibres lie in S . If the fibres of “{ are transverse to X , S will be

transverse to X . Thus we obtain,

Corollary 3.1 : Let X , Y be C' submanifolds of R® and let 0e Y<X - X

and let X Dbe a subanalytic set. Then X is (a)-regular over Y at 0 if

and only if X is (a )-regular over Y at O.

Proof : As above, (a) implies (as) , and (as) implies (t) . Now apply

Theorem 2.5 .

Clearly if Y is an analytic manifold we can restrict to Cl local
retractions TU whose fibres are semianalytic : further improvements on

Corollary 3.1 may be culled from Note 2.8 .

Remark 3.2 : In both examples 2.1 and 2.4 we can choose a (linear)
retraction T whose fibres are translates (over Y) of a limiting tangent
plane for which (a) fails, and these fibres fail to be transverse to X at

each point of a sequence tending to O .

Before we prove that (as) implies (a) , we give a helpful reformulation

of (as) suggested by Dennis Sullivan.

(f}?) Given a Ck foliation J transverse to Y at O , there is a

neighbourhood U of O in E® such that F is transverse to X in U .



It is clear that (a_) is equivalent to (3 . civen (F), (a)
follows since the fibres of a Cl local retraction define a foliation transverse
to Y of codimension the dimension of Y . Given (a ) , (31) follows by
choosing a retraction whose fibres are contained in the leaves of the foliation.

So the question of whether (a ) implies (a) can be formulated as : do

transverse C' foliations detect (a)-faults ?

Theorem 3.3 (" Transverse ¢t foliations detect (a)-faults ")

Let X ,Y be C' submanifolds of B™ , and let 0€YC X - X « Then X

is (a)-regular over Y at O if and only if X is (7 )-regular over Y at O

Proof : We have already established that (a) implies (3—1) . So suppose
that there is an (a)-fault at O given by a sequence fxiz € X tending to O,
with T = linT_X , and TYET.

i

We shall adjust a codimension 1 foliation by hyperplanes parallel to a

hyperplane containing T so as to be nontransverse to X at infinitely many X;e

Construction 3.4 (Ripples)

Given a hypervlane H € GE_I(IR) , a real number sel:O,é-] , and a real
number r >0 , we construct a Cl foliation GI-SI of codimension 1 of the
ball B: of radius T with centre O in R" such that

(1) for al1 x eB’;‘ - B%r , frx'a-; - H,

(2) for all x €By. , 4(HT J;)<s,

(3)vfor all K e- Gﬁ_l((R) such that d(K,H) = s , there is a unique x € Bg—r

3 m S -
such that lXKB-H =K ,

(4) there is a c::L diffeomorphism q); : Bg —_— 3;1 such that ¢;k3‘§)
is the trivial foliation 3—3 by hyperplanes parallel to H , and such

s .
that q)HlB;l _ Bir = id B;l _ B.Jrir

uniformly as s +tends to O, i.e. V E>o0, 3 S€> O such that

, and dd:; tends to the identity




s & sg  implies \dq}ﬁ(x) - I|< E for all x € B? .
— T—
pdd NG
yd
/!: \\\
Figure : Foliation with a rivnple. L' \\

LN

/
J

\
<
~—— _——

(We shall postpone the verification of Construction 3.4 until after the proof

of Theorem 3.3 . The reader may in any case prefer to admit the verification as

geometrically evident. )

Choose a one-dimensional subspace VCT OY such that V ¢ T . Define a

hyperplane H by T ®(T $V)"L , where ( )"L denotes orthogonal complement
in TR" .

Since T_ X tends to T as i tends to oo , there is some i, such
i
that 12 io implies V¢ T, X « Then for all i> iO define a hyperplane

1

H, by T, xe('rx xev)'l‘c T, ®" . Then H; tends to H as i tends to ™.
i . .

>i

1 1
Pick i such that |, - H|< % for i2>i, .

1 0]

Now pick an infinite sequence of pairwise disjoint balls Br (xi) with
i
radius T and centre X, . This is possible since O is the only accumulstimon

. ’ ® . .
point of gxi}i=1 . Then for all i , O Q‘_Bri(xi) .
For all i > il , Place inside Br (xi) a " ripple " : a foliated ball

i

| : : s 5. -HI
B, = B%ri(yi) with radius -%ri s centre y. , and the foliation 35_ = 3’Hl

i
two possible vositions for the ripple.) Define a foliation 3’ on RS by the

given by Construction 3.4 such that X, 0= X i.e. Txi“a-i = Hi « (there are



trivial foliation H-H by hyperplanes narallel to I on ®" - ({J By)
i>i

together with - on Bi for all i =i, . :'} will be a C1 folia%ion if

1 1
we can define & C- diffeomorphism CP : R —> R" taking F onto 3’1I .
_ : . ;- . .
Let d}lﬁn_(u' Bi) = identity , and CblBi = . as defined in

i> i
Construction 3.4 . To check that q; is a C1 diffeomorvhism it is enough to
check that dCP(x) is continuous at O and ecual to the identity at O .
Given & > 0, (4) of Construction 3.4 gives us an Sg > 0. Pick 12 Zil

such thet |H, - H| < s for all i>i,.Let & = xmei'% fix3 . & is
i

i<€iki
i-1 _ i1 TTF
well-defined and nonzero since O & u B, & U Br.(xi) .
i=1i i=i i
1 1
i—-1
Then |x|<& implies x ¢ U B, , so0
i=i
1
\d, -Hl
|d¢(x) - Il <  max {‘d¢Hl (x') -1 Iz
x! eBi
1312
< & by (4) of Construction 3.4 ,
and the choice of s , 12 .
Thus ddp(x) is continuous near 0 , and ddp(0) = I (the identity matrix).

Hence 3‘ is a Cl foliation and TOG = H , so that 3’ is transverse to Y

at 0 ( V& H by definition of H). But for all i >,i1 y T.F =T, a—i = By
i i
and Tx e Hi s so that 3— is nontransverse to X at Zi . This shows that
i
X is not ('3—l )-regular over Y at O, vproving Theorem 3.3 .
Verification of Construction 3.4 : Tt suffices to take H = [Rn"l x 0c g™

and n =2 . For n > 2 the calculations are similar.
| 2.2, 2 2.2 2
Consider, y o= A+ (1-X)(x"- a® )" A< 1, 26 a”

<

)\ » ‘ _A2$19a

y

with the constant a in (0,1) +to be chosen shortly.
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We shall nrove that this defines a C:L foliation of [—1,]-.)2 of codimension

1, with the leaves corresponding to fixed values of A . (If n> 2, take

o B 2 202
x = A+ (1-A }2(2: x," -a )" , et cetera.)
i=1

Nultiplying by T/4 gives a foliation of [-r/4 , r/4] 2 hich fits into
the ball B%T(O) and extends trivially to a foliation S-a of Br(O) which
satisfies (1) . The leaf with normal vector furthest from (O : 1) is clearly
given by A = O, and this normal is (1 : :(8a3 )/(343) ) at the points

( (4/9)614 yral3 ). : (Compare Construction 2.2)

Write y) = (8a3)/(3ﬁ) . Then ‘(1 : \)a) -{(1: O)' = (\)a)/(lJ'\)az)% .

So 4 given s , choose a such that

2
\)a 2

1+V 2
a
2
ioeo Va2 = '_s-'_z" .
l -8
2
Then a6 - 27 s
64(1 - 8°)

With this choice of a , (2) and (3) of 3.4 are satisfied.

Note that for s € [O,%] we have 3 8.6 < 9/64 (*) .
Derine ¢, ¢ [1,]]° — [1,1°% vy
(x,5) a2 < x2 £1
Pl - (x, 7 + (15 (=5 &% )°) x* & a°
cba 'is then a Cl map. Elementary calculation using (*) shows that ¢a
is in;jec;tive. Now

1 0 2¢ 2
d@a(x.y) = ( )ifx £

¢ 2 L 2y2 22
4x(xi- 25 )12 )% 1 - 4y(1-y° )(x°- &%)

Is -
c

and d¢%(x,y) is the identity matrix if = < x* € 1.
Calculation using (*) shows that dd:a(x,y) is always nonsinguler. Thus Cba

is a Cl diffeomorpirism of [—l,l]d , which after scalar multiplication by r/4

?



s - - s s . 1 . - ~
s described above mzy be extended by the identity to = C diffeonor:inism of

nr(o) since d¢ _(x,k1) is the identity matrix. It defines the foliztion.

S

i will be the inverse of the resulting diffeomornhism. It only remains

. , . -1
to verify (4) of Construction 3.4 , i.e. to show that d(¢e ) tends
uniformly to the identity mstrix as a tends to O 3 but this follows from
the same result for d<bﬁ , 2nd this in turn follows from the exvression above.

Thus we have verified conditions (1) - (4) of Construction 3.4 .

Corollary 3.5 : (a)-regularity is a ct diffeomorphism invariant .

Proof : (:}1) is clearly ¢t diffeomorphism invariant .

Having shown that transverse ¢! foliations detect (a)-faults, we give an
exgmple of an (a)-fault which is not detectable by transverse c? foliations,
showing that Theorem 3.3 is sharp. The details of this example were worked out

with the help of Anne Kambouchner.

Example 3.6 : An (a)-fault not detectable by transverse ¢° foliations.
3

let ( x, ¥y, z) be coordinates, and let Y be the y-axis, and let

00 © ,
X be (Q{x =0, g>0, z>0})U(LJ1§.fn= o, gns()}) , where g is a
nN= n=

function of y and 2z and ?gné O} intersects {x = O} in a rectangle of
length m o width mT and Efn = O} defines the barrow Bn of magnitude

m , ratio r , axis {x =0,y + tan(en)z = (1/2n) + (tanen)/2n3 , and

P

centre p_ = ( O, 1/2n , 1/2n ) with base in the plane {x = 03 .(Cf. 2.3.)

First choose a monotonic decreasing sequence {mn} such that for any choice
of 8n s and any rné 1 , the barrows are pairwise disjoint (and do not intersect
Y ). Now let 6n be the radius of the largest 2-sphere sg(o) such that

582(0)(\ B # # vwhen r =1 and Gn takes all values in [—1‘/2 , TS/?] .

n

) 2 =1 i 2
Then set r . (35/8)&2 and en = sin “((343/8)( CSS + éf’l )) , so defining



.b‘n comsletely, and hence specifyings X .
(Hiote that (36/'4)(52?1‘(1 ) 1.e. én< 64/3143 , and so this choice of

Bn is possible for all n 21, by the choice of the centre », = ( O, %, )

of Bl.) z2 =Y
j\ /;>K(// l /4<://
AN I ’
Bn N\ | mn\
\ X
\ ! | S\
\
Bm\l | = AN
/ \ | n'n
j o+l mn+1| AN
\ \ I
\¢”
: n+l z\ mn+1rn+1
0 . , > 7
Figure : x = O

Since fén? is a monotonic decreasing sequence, tending to 0 , both
{ rn} and gen‘} are monotonie decreasing to O . Thus (cf. Construction 2.3)
the set of limiting normals to X at O is {( 1:7N:0): =83 TEAE 8/3,{3} .
Hence (a) fails at O for the pair (X,Y) .
Suppose (3-2) does not hold at O for (X,Y) . Then there is a ¢?
foliation 3’ which is transverse to Y at O and vwhich is not transverse
to £ in any neighbourhood of O . Necessarily 3‘ is of codimension 1
and T 03— (the tangent at O to the leaf of J nvassing through 0) must be
of the form ( 1 :0L: O ) where 0< lx\<8/3(3 .

We shall show that there is a constant C >0 and an nO such that for
all n>,nO and for all pe B »
|x - (1:0¢c:0)|> céE (*)
0 n
( Np X is the normal space to X at p.) The proof of (*) will be given later.

3
Let ¢ : (R, 0) —> ('R3, 0) denote the ¢? diffeomorphism defining
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p - &
} so that the leaves of 3’ are the images of 3(&‘ x w} veR Then

dCt)(O)(F:zf: 9; is the vlane with normel (1 : QX : 0 ) .

4

Since ¢ is  C° , the map ( (R3, 0) > (GL3(&'{) , aPp(o) ) is ¢! ana

p > ab(¢d ()
thus there exist & > O and M >0 such that
|ab(d7H(e)) - ad(0)] < Mol , for all pe3B, (0) .
It follows at once that

(d¢(¢‘1(p>)-d¢(0))|m2 | < wlel, for sl pene(0)

or in other words that
[Tp3 -1,3| < ¥ \pl, for all peBe (0) .

Now, by hypothesis, :} is nontransverse to X at some point of Bn , for
infinitely many n , i.e. for infinitely many n , there exists P QBn such

that Tp‘3- = TPX . Let n, 2n, be such that for all n>n, , if p€ B ,

1 0
then |p| <£ » Then for infinitely many n znl , there exista p ¢ 13n such

(1]

that Mipl > anX - (1:%:0 ), . But assuming (*) and using the

choice of & , we know that for all n»ng , and for all pe& B,

|NDX - (1:%X:0 )\ > c p\% . These last two inequalities are absurd,

since there is some n, such that for all n 2> n, , and for all p € B

2 n ?

Ipl < (c/M)3/ 2 , i.e. M |plLC \p\% . Thus we obtain a contradiction,
showing that (9—2) holds, and that transverse c° foliations camnot detect

this (a)-fault.

Proof of (*) : A short calculation shows that for all n the set of
normalé to B/ (rotated back through Gn) , is contained in
{( L:Asp) s Ae[78303, /353] , peler /35, 8rn/}.]'3]} .
It will suffice to establish (*) in the euclidean norm \ | \e in the
usual chart for PZ( R) centred at (1:0:0) given by the homogeneous
coordinates | OEPY ) —> A3 , WA ), since this norm is equivalent to

the standard one. ( |(LaNept) = (LeXep)| o = ((N= NP+ (p -p)?)% L)



#

(-1:-8/313:0)

normals to Bn contained in

shaded region

Figure : Chart for P (fR) at (1:0:0) .

It is evident from the figure above and the choice of T, and en that
there exists n' such that for all n>n' , (1:®:0) is outside the shaded
region which contains the normals to Bn . We calculate the minimal distance
of (1:&:0) from a normal of B, . This is clearly (™sin Qn - 8rn/345).
Thus for all n2n' and all p € Bn ’

lex - (1:%:0)| , > osinD - &r /303
w(:53/8)(0% + 6% - 4%
S8 Bwe) - &3 - 3Bw/s)) ).

Since (Sn tends to O as n +tends to oo , there exists no> n' such

that for all nanO y and all p €3 ',

|nx - @xs0)|, > aBxa6)8E .

Thus we obtain (*) .

Note 3.7 : We have in fact proved slightly more by the above example. Namely
that a transverse foliation, with Cl leaves, which is C1 with a Lipschitz
derivative in the direction transverse to the leaves, cannot detect this
(a)-fault. If (31,;0) denotes the condition similar to (3-1) but restricting
to foliations defined by a ct diffeomorpuism ct along the leaves and CP
transverse to the leaves, then clearly (3'1’p) implies (3—1’q) if p<a
(2nd (3_1,p) implies (t) for all p<Coo ). Also it is (now) easy to construct

examples showing (3_1,q) does not imply (Sl’p) when p < q . Simply set
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sin_l(BE( (Si_% + \'Sip-%: )/8)
B8ty

and repeat the argument of 3.6 .

.

T
n

4. Detecting Thom faults in stratified mappings.

Since the regularity condition imposed on a stratified morphism is formally
very similar to (a)-regularity we note here the analogues of the results we
have proved about (a)-regularity in $8§1-3.

Following [6] , let £ : N —>P Dbe a C1 map, between ct menifolds
N and P, and let X and Y be ¢! submanifolds of N such that flx and
f|y have constant rank, and let 0 €Y cX - X . We say that X is
(af)-regglar over Y at O (in the terminology of Gibson [6], X is Thom

regudar over Y at O relative to f ) if,

(af) Given a sequence {xi} in X , such that X tends to O as i tends

to o, and ker d_ (fIX) converges to a plane T , then ker do(le)g’C .
i

Since le is of constant rank, the fibres of f'X form the leaves of a

foliation 3—; of X, and similerly for Y . Thus (a,) may be stated,

(af) Given a seguence {ki} in X , such that Xs tends to O as 1 +tends
to o, and T (:3%) converges to a plane T , then TO(:¥§)SE T .
i
Here 'I‘O( 3’§) denotes the tangent space at O to the leaf of 3{ vassing
through O .

The natural analogue of (t)-regularity is,
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(tf) Given 2 C' submanifold S such that S is transverse to 3:? at O,

there is 2 neighbourhood of O in which § is transverse to 3f .
Similarly the analogue of (3—k) is,

(3};) Given a C° foliation 3’ of N transverse to 3{ at 0, there is

a neighbourhood of O in which 8’ is transverse to 3»§ .

lNote 4.1 : (i) Another way to say that S is transverse to 3-;‘ at 0 is

to say that the rank of flsnY' at O equals the rank of f|Y .
e ~k
(i1) If f has rank zero on X and Y ‘then (ag) » (t5) (3f)

become (a) , (t) , (}k) respectively.

With these definitions all of the results proved in &2 and 83 have
corresponding versions, with just some nuances.

Thus,  (a,) @(31,)—_—?& ¢) by merely mimicking the proofs that

1

()&= (F) = (¢t) .

Example 4.2 : Take Example 2.1 and define f : B3 —> R by

. f .

(%, 5, 2) > 2. (af) fails since the tangent to GX at x  will be
the vector ( 2, 1, 0) for all n . (tf) holds since no submanifold transverse
to Y intersects the horn containing the sequences on which (af) fails. (3’§

is the trivial foliation with one leaf.) Thus (t f) does not imply (af) .

Example 4.3 : If we define f : &> —>R b (x,¥9, 2) —> 2z and
examine Example 2.4 we find that X 1is not (t 7 )-regular over Y at O :
it is easy to find a Cl submanifold, with tangent nlane at the origin spanned
by the lines {lz =y, X= O’} and {z =0,y = x?, which is not transverse

to 3; on a sequence of points in X +tendingto O .
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To obtain an examnle with (t,.) and not ('vf) we can either take f 1o be
4

the constant me» (see Lote 4.1 (ii)), or adé a2 fourth variable w , and

consider )\’.1 = A x@, Yl =Y xli C L{3 xIk and let I : [RB'

vrojection ( x, ¥, z, w) b—> w . Then X, is (tf)-regular over Y, at O,

X ——> [ Dbe
but not (af )-regular.

Example 4.4 : As in Example 4.3 we take Example 3.6 , let X
Yl =Y xRk < E{B xR , and take f : IR3 xR —= R to be projection

( x, ¥, 2, W) —> w . Then X, is (3'?.)—regular over Y, at O, but not

(a £ )-regular. ( X is neither (3';. )-regular nor (a £ )-regular over Y at O0.)

Thus (3';)—regularity does not imply (af)-regularity.

The next result is an analogue of Theorem 2.5 .

Theorem 4.5 : Let X , Y be Cl submanifolds of [R" y and let O & Y<X-X ’

and let X be a subanalytic set. Let £ IRn —_— \Rp be a subanalytic map (i.e.

the graph of f 1is subanalytic in ] x lRp), such that le and f{Y are of

constant rank. Then X is (af)-rggular over Y at O if and only if for every

semianalytic Cl submanifold S transverse to S'.f.‘ at O, there is some

neighbourhood of O in which S is transverse to 3‘5 .

Proof : The proof is similar to that of Theorem 2.5 , save that instead of
proving that {(x,TxX) t x € Xz is subanalytic, we must prove thnat
€(x,’l‘x(3,§} : X¢ X3 is subanalytic. But this reduces to proving that
{(x,TXx) : x € X ¢ is subanalytic. For, TK(};) = ker dx(f]X) = ker d_f ND.X,
and ker d_f is a fixed subspace of R™ if we suppose (as we can) that f is
a linear projection, since f 1is the compwosition of an embedding onto its graph

followed by a linear projection (cf. page 30 of [6] ). Theorem 4.5 follows.

Finally we consider a possible analogue of Theorem 1.1 . Let g ¢ ki —==d [
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and f : N —» P be Cl maps between C1 manifolds, and X a submanifold

of N . Then,
g\ ker 4 (fl ) for all x € X & =A 3‘f
x X < X
& ¢\ fibres of flx
= :flxog : i —=» f(X) is a submersion.
Then the analogue of Theorem 1.1 is as follows, writing " g/h 3»;; " for
PV N (})f for all { in = " .

Hypothesis 4.6 : Let Z be a locaily finite stratification of a closed

subset V of a Cl manifold M , and let f : M —>» P be a Cl map, P a

¢! nmanifold, such that for each stratum X of 3, f|, has constant rank.

Then the following conditions are ecuivalent :
(1) 2 is (a;)-regular,

(2) for every C' manifold N, {z € J*(N,M)

z ch Sé.} is open in JT(N,M),
gh F=4 is open in Cl(w,n)

(3) for every ¢! manifold N ’ ggecl(m,m)
with the strong Cl ‘topology,

(4) there is some integer r , 1< r< max(l,min (rank f,x)) , and some
Xes ,
¢* manifold N with dim N = dim M — r , for which {g € Cl(l\T,M) : g A 322

is open in Cl(I\'J,I\’;) with the strong C- topology.

One can prove (1)&D(2) == (3)=3(4) without much difficulty, by
copying the proof of Theorem 1.1 . To make Hypothesis 4.6 into a theorem
we must orove (4) imolies (1) . If we try to copy the proof that (4) implies

(1) in Theorem 141 we arrive at,

WJuestion 4.7 ¢ If X is a C:L submanifold of ﬁm , Oe X - X , and

£ 3" —-)[E{p is a Cl map such that f'}( has constant rank, then given a
plane H and a C1 manifold I with dim N = dim H , and n € Il , is

<{g c 01(12-',&{“‘) - N 3; , gn) =0, dng(frnu) = ﬂ} nonempty ? *

¥ See over.



A vositive ansier to .uestion 4.7 would suffiice to prove Fyvothesis 4.6.
o nrove that (3) implies (1) it sufiices to answer .uestion 4.8 , which

is a priori weaker than 4.7 .

~

wuestion 4.6 : Is there some vl manifold 7 for which <Cuestion 4.7 has

%

a oositive i :sponse ?

Note 4.9 : The proof of Lemma 1.3 made use of the local transversality

1 mans transverse to a submanifold on a compact

lemima : the set of C
coordinate disc is open and dense. The corresponding statement that Cl maps
transverse to the leaves of a foliation on a compact coordinate disc be dense

is clearly false (although ovenness is easy). (Cf. page 193 of [4?] .)

Consider

TN /
£\ ;r /A
Pl /
A4 or Z N7
[ / - 4 A4
\ / - / ~
N\ Z 7
N——— [

N compact /' N non-compact

So another method of proof is required to attack (3) dimplies (1) of

Hypothesis 4.6 .

Observe also that the figures above show that the set of C1 maps transverse

f
to :355

. ¢
Finally we remark that the results of §§1-3 could also be extended to the

is not dense (cf. lote 1.2 (iv)).

Wgeneralised condition (a) for O-bundles" of ~M.-H. Schwartz in [27] .

¥ An example of David Epstein shows that the answer to Questions 4.7 and 4.8

is no. However Hypothesis 4.6 is still undecided : a finer study is needed.
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CHuWER 2o WHIT:EY (0 )-REGULARITY

In this chzpter we consider various natural ways of detecting (b)-faults.
The most striking proverty of (b)—regularity in the theory of smooth
stratified objects is that a (b)-resular stratification is locally topologically
trivial, as provec by Mather in [ZI] . The proof shows en route that
(b)-regularity implies a condition we have called (bs) in [}8] , namely
that for any Cl tubular neighbourhood of the base stratum, associated to
which are a retraction T{ and a distance function () , the fibres of (T x [))
(which are embedded spheres) are transverse to the attaching stratum. This has
an exact countervart in the implication (a) implies (as) (see §€3). In [43]
C. T. C. Wall conjectured that (as) implied (a) and that (bs) implied (b);
we proved these implications in the semianalytic case in [37] and [38] « In
Chapter 1 (Theorem 3.3) we have shown that (as) implies (a) in general, by
verturbing a transverse foliation with an infinite seqguence of ripvles so as to
detect a given (a)-fault. The same idéa will be used in § 5 to prove that
(bs) implies (b) ; this time we use the ripples (of 3.4) to perturb a foliation
by spheres (the fibres of 1‘x‘) ) of the complement of the base stratum, so as

to detect a given (b)-fault.

In 86 we study how (b)-regularity behaves with respect to generic sections.
Wle show that, if Y 1is linear, and if, for a generic set of linear spaces H
containing Y , (XnH, Y)O is (b)-regular, then any (b)-fault of (X,Y) at
0 cannot be too "deev". Conversely, we shéw that if (X,Y) is (p)-regular
at O , then for generic such H , (XONH, Y) is (b)-regular at O .

Knowing that (b)-regularity is generic for subanalytic sets — see the
introduction — it is natural to ask what are the strongest generic regularity

conditions. In [46] J.-L. Verdier introduced (w)-recularity, proved that it



implied (b)-regularity, and showed that it wzs generic (and also that it gave
locel itrivizlisstions by integrating continuous vector fields tangent to the
strata, whereas the vector fields'resulting from (b)-regularity may theoretically
be discontinuous). (w)-regularity is easily seen to imply Kuo's ratio test (r),
and hence (r) too is generic. In §7 we give examples which show that even

for semialgebraic strata, (b) , (r) and (w) are distinct, and that (r) and

(w) are not invariant under Cl diffeomorphisms, although they are preserved

~

by C° diffeomorvhisms.

5. (b)-regularity and tubular neighbourhoods.
Following Mather in [22] s we first define what is meant by a C:L
tubular neighbourhood.

Definition 5.1 ¢ Let X be a C:L submanifold of a Cl manifold M . A Cl

tubular neighoourhood T of X in M is a quadruple (p,E,E,q:) where

p ¢t E—> X is an inner product bundle of class C:L y £ X -—-)IR+ is a
positive Cl function on X , and q) is a Cl diffeomorphism of

= {é €E :lell £ ("R(e))}. onto an open subset of N which commutes with

8

e I
-1 .
e set |T| = ¢(Be) + The map T, = pod5 : [T| —> X will be called

Bg

the zero section Z] of E : &

the C1 retraction ‘T‘T associated to T , and the non-negative function
Py = (JEO¢'1 : || —> ® , where ()F(e) = Jlefl® for e € E , will be called

the Cl distance function P(P associated to T .

(We have, similarly, C° +tubular neighbourhoods. )

It is clear that the map (WT’VT) : |7 - X —> X xR is a submersion .
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As what follows will be entirely local, we can restrict to the situation of
adjacent struta in gr" .

Let X , Y be Cl submanifolds of R" and let 0e Yc X - X . We say that

X is (bs )-regular over Y if for all ¢t tubular neighbourhoods T of Y ,
there is a neighbourhood N of Y in |T| such that (’H‘T, PT)'XI\N is a
submersion.
Given a C:L chart for Y at O,
b: (v,UnY,0)—> (R ,B"x0"",0) ,
the standard tubular neighbourhood of g™ x 0™ in R/" provides a retractimn
We= ¢‘le'rrmo ¢ :U—> YU, where T, * B® —> R" x 0"™ is linear
projection taking ( Xy g eee 5 X ) to ( X) g eee 3 X5 0,5 000, 0 )
and a distance function ()d> = ()o¢ s U —> B+ , Where e : (Rn — [R+
. 2
is the function P( Xy 5 eee 5 X ) = E x,” . We refer to the tubular

neighbourhood T¢ of UnY in U.

We say X is (bs)-—regula.r over Y at O when,

(bs) Given a C' ohart (U,$) at 0 for Y as a ¢! submanifold of R",

there is a neighbourhood U' of O, U'C U , such that (1Y¢, P¢' )lxnU'

is a submersion.

The following lemma justifies our use of the term (bs )-regularity in the

local and global cases.

Lemma 5.2 : X (bS )-regular over Y if and onmly if X is (bs )-regular
over Y at y, forall ye€Y.

Proof : " If " : Given a sequence of points on X tending to Y , at which
(T T f P )‘X is not submersive, there must be some convergent subseguence with
a limit Y, in Y . The implication follows.

" Only if " ¢ Given a point Yo of Y and a C1 tubular neighbourhood

TCP of a neighbourhood UNY of Y, in Y defined by 4 cl chart (U "P)
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for Y at Yo it will suffice to find a Cl tubular neighbourhood T of Y
and a neighbourhood U' of y_, U'C U, such that T(;,ny = Tg|yiny °

This follows from the Tubular Neighbourhood Theorem of '[22] s which is proved

in [21] .

For a simpler proof, let L#’ be a Cl diffeomorphism of R" which is the
identity outside some neighbourhood of yo , and such that there is a smaller
neighbourhood W of Yo WC U , such that the fibres of the retraction
\Po'“qﬂ\l’—l intersect \P(W) in a ¢l field of planes transverse to P(yY) ,
and such that f%po\y-l is the square of the function measuring distance from
\P(¥) in R® . Extend this local C' field to a globally defined (over \P(Y))
¢l field of planes (whose dimension is the codimension of Y) transverse to QJ(Y) .
In Theorem 4.5.1 of [13] Hirsch shows how to obtain a tubular neighbourhood
of \P(Y), so that the transverse planes contain the fibres of the associateil
retraction. There is also a very careful proof of fhis fact by Munkres on page 51

of [54] . Pulling back by \P™" we have a tubular neighbourhood T of Y with

the required properties. This completes the proof of Lemma 5.2.

In [43] C. T. C. Wall conjectured that (b, )-regularity is a necessary
and sufficient condition for (b)—reguiarity. Applying Lemma 5.2 , together with
the convention that X is (b)-regular over Y when X is (b)-regular over Y
at y for all y in Y , we see that the local and global versions of the

conjecture are equivalent. We now prove the local version.

Theorem 5.3 + Let X , I be disjoint C' submanifolds of R , and let

OEY . Then X is (b)-regular over Y at O if and only if X is

(bs)-regular over Y at 0.

Proof : " Only if " was proved by Mather as Lemma T.3 in [21] , and in fact
in 1964 by Thom on page 10 of [35] . For another published proof see Lemma 2.3
of 48] .

It is left to prove " if v ,
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Suppose X is (bS )-regular over Y at O . It follows at once that X is
(as )-regular over Y at O (see €3) , so that we can apply Theorem 3.3 to
show that (a) holds. Suppose (b) fails : we shall derive a contradiction.

By (0.4) , (b') must fail for every ¢l retraction onto Y .

Let ﬂl (resp. 1'(2) be the local linear retraction defined near 0 of R"

onto Y (resp. TOY) orthogonal to T,Y . Then (b') fails for T\'l , and there

is a sequence {xj} in X tending to O such that Ai = xiﬂl(xi) tends
1z T, (x5 )

to a limit A , and T_X tends to a limit T , and AET.

1 i

The C~ diffeomorphism defined near O ,

®: B® — ®"
P > p+ (TN,(p) - T (p))

preserves { A i} , }\ and T , and sends Y onto T.Y s hence we may identify

0
Y with B" x 0™ in R". wWrite T: B" —> R" x O°™ for the projection
mapping ( Xigeeey xn) to ( xl,...,xm,o,...,o) . Then, continuing to write fxi}
and X for their images by X , we have that >\i = x:I.T‘(xi) tends to A ’
ERNEN)

which is not contained in T = lim Tx X .
i
Now let A be a linear automorphism of 0" xR~ such that A( ) and

A(TNnR™™) are orthogonal. By applying the linear change of codrdinates
(Im ,A): B xB* ™S we may suppose that N and T are orthogonal. The

function measuring distance from Y is e : &% — lRa o °* taking

n
(xl,...,xn) to D 112 . We shall construot a Co

i=m+l
an with cb,l&"x oo = identity , such that the tangent space to X is

diffeomorphism 4) of

contained in the tangent space to the fibre of f>¢> = Poq) on an infinite

subsequence of the sequence {xj} , So that (bs) fails for ( X, Y) at 0.

As in the proof of Theorem 3.3 , pick an infinite sequence of pairwise

disjoint balls Br (xi) = Bi with centre x. and of radius T, - Then 0 & Bi
i
for all i . We shall obtain (d by perturbing the foliation of R" - ( R"x 0°")

by the level hypersurfaces of () , Within each Bi .
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Let H = A'L € Gﬁ_l( IR) , and note that H = T®(Te }\)'L because T

and A have been assumed orthogonal. Since Tx X tends to T , and ?\i
i
tends to /\ , @ 1 tends to oo, there is some io such that i2 io implies

A ;i 4 T X . Then for all i 2 io we define a hyperplane

i
1

H = T X®(T._ X®AN ) <1 R"

i x, x; i x;

H, tends to H as i tends to c. Pick i,2> i  such that |H, - H[< 1/4

for 1> il .

Let 61 > 0 . Then it is clear that we can find a ct diffeomorphism

W, + (B, , x;,)O , equal to the identity near 3B, , such that AW, (x,) = I_

(the identity matrix), ljl(\yi)(p) - jl(id [Rn)(p)l< <Si and
\:jl(\yi_l)(p) - ,jl(id mn)(p)l < (Si for all pe€ B; and such that for some

t, , 0<t,<r, , the image by \{, of the foliation of Bti(xi) by the level

hypersurfaces of P is the trivial foliation by h'yperplaners parallel with
=T, (()_1( P(xi))) . Now X, = >\ , by definition of }\i , and so K,
tends to H= >\’L (1im A ) as 1 tends to oo. Piok i, > i, such that

. Then IKi -5 |<1/2 for 131, , by

|5, ~8l< /4 for a11 i=i,

our choice of il and 12 .

For all i >/12 we now perturb the trivial foliation of B, (xi) by planes
i

parallel with K. by placing inside B, (xi) a "ripple" : a foliated ball
i
. lHi—Ki'
B%ti(yi) of radius -%ti , centre Vi o with the foliation 3—Ki given
by Construction 3.4 , such that X; = Xy (the tangent at Xy to the leaf of
i
the foliation passing through X, is H ) « In the notation of 3.4 , d)mi—Ki‘
1
is the Cl diffeomorphism defining the resulting foliation of B (xi) , and

we may extend d)ml -Kil by the identity to the rest of Bi .
lHl.K l . N l
Set C‘Di = OCP %0 \4/1 : By S . ¢i is a ¢ diffeomerphism,
-1
and the tangent space at x; to (()o ¢i) (() (¢i(xi))) is H; which
" contains Tx X by definition (we have used here for the second time that

i
aW; (xy) = In' ). Compare the figure overleaf.
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We have yet to fix 61 . It is easy to verify tbat sup |d, i(p) -1 |

|H « PG:Bl
be set as near as we please to sup 'd¢ 1~ 1'( ) - I , by choosing .
PEB, *
small.
Let ¢§ 5 be chosen such that,
sup ld(b (p) -1 , 2 sup |d¢l§:}'Ki| (p) - Inl . (*)
peB peBi i

Define d) : RS by setting Cblﬁ -(U B. ) = identity , and
1312
. ‘ 1
= . ? . . - . .
¢|Bi C‘:\ ; for i 2i, To verify that d: is a C~ diffeomorphism it
is enough to check that d¢(p) is continuous at O, and that d¢(0) = I .

Given € >0, (4) of Construction 3.4 gives an Sie > 0 . Pick

132 12 such that lHi - H| and |K - H[ are each less than %5%6 for
all 12i, . Then |H -K| < s3e forall 1>i,. Let d = mn §|pf§.
PE Bi
_ ieéi<13
Then & is well-defined and nongero since 0 € GJ By
: 1'12 iz-1
Let p € R" be such that |pl< & . Then p ¢ () B, , and thus
i=3
. 2
lad) - 1,1 < mex §ad (') - 1.(]
p'eB,;
>
i,.iB
-K
¢ zmx {laplen -1} (by (%))
p'eB,
>
131,
£ 2. %¢ (by choice of 13 and s%e - see 3.4)
= 6 .

Hence d¢(p) is continuous at 0, and d¢(0) is the identity matrix.
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By construction, the fibre of f%b = eoda is not transverse to X at
x; , and henoe neither is the fibre of ('ﬂ',:‘> , ()d, ) = (e | en<[> ) , so that
(1T¢,, P#’)‘X is not a submersion_near x; e Hence we have shown that X fails
to be (bs)-regular over Y at O, using the hypothesis that X is not
(b)-regular over Y at O .

This completes the proof of Theorem 5.3 .

Corollary 5.4 : (b)-regularity is a ¢t invariant.

Example 5.5 : Theorem 5.3 is sharp 02 tubular neighbourhoods do not
detect all (b)-faults. Consider once again Example 3.6 . There we have a
(b)-fault, since it is an (a)-fault. However for all ¢! distance functions
(? (associated to a Cl tubular neighbourhood), the fibres of P are
transverse to X near O . For, all limiting tangent planes to X at 0
contain the z-axis , and near O all points ( x, ¥, z) on X have x/z
small, and at such points the normal to the fibre of E) will be close to
(0:0:1). (To see that near 0, if ( %, y, z) is on X , then =x/z is
small, notice that the x—coordihate of the points in each barrow Bn is
bounded above by mT o while the z-coordinate is bounded below by mn ’
and r tends to O as n tends to o and we approach O .)

Since we have shown in 3.6 that all C2 retractions have their fibres
transverse to X near O , it follows that for all C2 tubular neighbourhoods

>

T of Y , the fibres of (1VT, PT) are transverse to X near O .

lote 5.6 : A semianalytic version of 5.3 .

We refer to [36;] for a proof that (bs) implies (b) when X and Y



are semianalytic. A careful reading of the »nroof in [38] shows that
semianalytic (b)-faults can be detected by ot semianalytic tubular

neighbourhoods, i.e. we can sujpose the maps in the definition of tubular

neignhbourhood to have semianalytic granhs.

Note 5.7 : On }x-constant inplies towological triviality.
In [17] L8 Dling Trang and Ramanujam prove that for a family of complex

hypersurfaces (with isolated singularity) defined by

2+l 6, 02 &)= (¢, 0)

(z) , that N(Ft) constant implies that the topological

F :(C

with F( z, t) = Fy
type of Ft—l(o) is constant, provided n=F2 . Timourian has proved further
that the family is topologically trivial (see [33] )e

If one could prove that ¥KFE) constant impliéd the existenme of a CF

tubular neighbourhood T of O x Ck

with the fibres of (1TT’fDT) transverse
to F—l(O) near O , one could then apply the proof of Mather in [?1] to
give tovological triviality, so removing the restriction n¥ 2 . Avplying
Theorem 5.3 , we know from the countergxamples of Briaqgon and Svpeder in [2]
that JA(F,) constent does not imply that (FL(0) - (0x ), 0x ) is
(b)-regular, and hence does not imply (bé) , and indeed following the proof
in [38] that (bs) implies (b) it is easy to construct explicit semianalytic
tubular neighbourhoods T with the fibres of (TTT’(DT) nontransverse to
7 1(0) along the curve through O for which (b) fails. There are though
some tubular neighbourhoods T for which the fibres of (W‘T’f)T) are transverse
to F—l(o) in their examples, since in each case F( z, t) is weighted
homogeneous in 2z , and so the standard svheres cut F_l(O) transversally.
Thus, ewen though n = 2 , we can derive topological triviality from [él] .

A more promising way of removing the restriction that nZ% 2 looks to be

a new theorem of Kuo (Theorem 2 in [15] ) which may give topological

triviality directly from the hypothesis that rA(Ft) be constant. This depends
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on whether M(Ft) constant implies that there is some constant C <1 and a
neighbourhood U of O such that (dF/dt (z,t))/|erad F| < C |z /%]

whenever (z,t) e-U'f\Frl(O) . We shall leave this question for the present.

6. (b)-regularity and generic sections

Part I . Detecting (b)-faults with generic sectioms.

The work in this section was motivated by the result of Teissier in [30]
that " H*—constant " implies (b)-regularity for a family of complex
hypersurfaces. Using the converse result (proved by Briangon and Speder in
[3]) we £ind that if we have topological triviality, and (b) for generic
hyperplane sections, then (b) follows. That this result doés not generalise

to real semialgebraic strata is shown by the next example.

Example 6.1 : In the open subset of G3 (with ( x, y, z) as coordinates)
where y2<:]., let Y be the y-axis, and let X be

p 2.2
§x =0, (2 - )28, 203U %x - ((z - ¥ )P~ %)%, (= - ¥°)P=s®

’ 270}.

X is a Cl manifold, and a semialgebraic set.

0, ¥y 5+ 7°)
2
_,X‘( O, ¥, ¥ )

(O’ Yo y2_ y3)
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Then A ic tonologically trivial along Y and , since the non-linear
oart of X is contained in a horn tangemt to Y , X is (a)-regular over Y .
But £ 1is not (b)-regular over Y at O : on the curve
K(t) = ( 91:3/16 , b, . &t )
which lies in X , the normal tends to ( 1, O, 3/2) , so that the limiting

tangent space does not comtain Oz , which is the limit of xiﬂ(xi) for all

7,
seguences 'f'xi-f on X tending to O , since the radius (y3) of the horn
tends to O faster than the height (yz) above Y of the centre of the horn.

Also if x = ™z defines the plane Hy , which contains Y , then H
intersects X near O only if X =0. Thus (XNH,, Y) is not a

b )-fault (by default) for generic sections H containing Y .
8 4

Notation : Let (X,Y) be a pair of adjacent strata, and let 0EYC X - X .
Suppose Y is a linear space, and that TU is orthogonal projection onto Y .
We let XO(X,Y) (resp. A,(X,Y)) denote the set of limit vectors for which

(b) (resp. (b')) fails.

Koxx) =§ A I fxdex frlevr, A - limlii__:’:_i.‘ ¢ T - lin Tx.xz
X,y i
No(x,) = ta:d fx.Jex , N = lim X T(x) ¢ T=lnT xz

7 ) ;

In Example 6.1 , A (X,Y) = §( 0: o 1), X, (x,¥) - ?( 0: at b) b*O}.
It is easy to see that (when dim I\O(X,Y) is defined),
dim Nj(%,Y) + qimY £ dim J(O(X,Y)
if j(o(x,Y)=t=¢.
If X is (a)-regular over Y at O , then by the proof of (0.4) that
(b) is equivalent to (a) + (b') ,
Xo®xr)c Ayxy1)® v,

and hence,
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dim ’J(O(X,Y)é_ aim A (5,7) + aimY .

Thus if (a)-regularity holds and ,\O(X,Y)-_-#:¢ (or, ecuivalently, ;K'O(x,y HE),
ain K (%,Y) = din No(xY) + dimy .

That is, the dimension of AO(X,Y) determines the dimension of j(O(X,Y )s

so that we can restrict our attemtion to N (X,¥) .

e say that X is (b -regular over Y at O for O0<k<codY -1,

cod k)
vhen Y is linear (as it will be throughout this first part of §6), if

(bcod k) There is an open dense subset ol of the set of linear subspaces of
codimension k containing Y , such that if L €L , L A X near O,

and XNL is (b)-regular over Y at O in L .

We must suppose L M) X to be able to talk of (b)-regularity of X n L
over Y . In the case where X 1is the nonsingular part of a family of complex
enalytic hypersurfaces with singular locus Y , there is a 2Zariski open dense
subset of the set of linear subspaces of (complex) codimension k containing
Y, consisting of subspaces transverse to X (moreover the topological type of
their intersection with X is well-defined : see Chapter 1 , §1 of [30] ).
It was this situation which motivated the work in this section : see Note 6.9 .

The following theorem says that (bcod 1{) implies that dim I\O(X,Y)< k .
Here dim /\O(X,Y) is the maximal integer T , 1< r<codY - 1 , for which
/\O(X,Y_) has a point near which it is a differentiable submanifold of G:Od Y((R)
of dimension r . This is the same as the usual dimension of AO(X,Y) when
X is subanalytic, for then I\O(X,Y) is the union of countably many compact

manifolds-with-boundary of varying dimensions, the largest of which being the

dimension of /\O(X,Y) $ this will follow from the proof of the theorem.
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We point out that a section of a pair (X,Y) , as in the title of &6 , is
a linear subspace of r" containing Y , which is assumed to be linear. Thus

Theorem 6.2 describes the extent to which generic sections detect (b)-faults.

Theorem 6.2 ¢ Let Y be a linear subspace of \Rn containing O, and

let X be a C2 submanifold (resp. and a subanalytic subset) of R" such

that YC X - X . Suppose there is an open dense (resp. dense) subset ik'

of the set «Zk (of linear subspaces of codimension k in R" which contain

Y ) such that L € o(’k' implies LA X near O and XNL is (b)-regular
over Y at O.

Then dim I\O(X,Y) < k.

Proof ¢ We first state two assertions which we shall prove once we have

shown how they give the theorem.

Assertion 6.3 : Let Y € R" be linear, 0 €Y , and X a c2 submanifold

n

of B", YCX-X, such that dim A (X.Y) = & > k.

Then there is a dense subset 'I'Ii of a nonempty open subset o[; of

o(k , suoh that if L < 6( g . there is a sequence fxi} in XN L such that

x; tends to O as i tends to o , and lim xiT\"(xi) d: lim Tx X .
: xiT\'zxiS i

Assertion 6.4 : In Assertion 6.3 , if X is also a subanalytic subset of

Lo

‘Rn

: d
, we may take £
(The conclusion of Assertion 6.4 is that there is a nonempty subset of
°<k consisting of linear sections containing "bad" sequences, and that this

subset may be taken to be open, not merely dense in some open set.)
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Suppose that Theorem 6.2 is false.
Take Y and X which satisfy the hypotheses of Theorem 6.2 , and yet
dim I\O(X,Y) = i > k.

Assume for the moment that X is not subanalytic, and apply Assertion 6.3 .

Assertion 6.3 gives ‘Li , whioh is dense in the nonempty open subset
,(12 of -(k , and hence meets the open dense subset "(k' of Jk described
in the hypotheses of Theorem 6.2 .

Take LEL 'NLL . Then LAX near 0 and (XNL,Y), is (b)-regular.

Hence for all sequences {'xif in XAL tending to O,

1 5D~ g5 T_ (XNL) .
xi‘l\'ZIis i

But T_ (XnL) ¢ T_ X forall i . and so 1im T. (XNL) € 1im T_X .
xi x.l Ii xi

Thus,

um ATy — gy T_X.
xin‘z:i; i

However this is not true for all f'xi'f in XNL since LE&E .[d s by

Assertion 6.3 . Thus we find a contradiction, showing that Theorem 6.2 is

valid when X is not subanalytic so long as Assertion 6.3 is true.

The argument for subanalytic X is similar : the dense subset ofk' of

.Zk must meet the open subset .,(; of ’(k given by Assertion 6.4 .

We shall have to prove Assertions 6.3 and 6.4 separately, but we first

set up the situation which is common to both.

Rotate the coordinate axes so that Y = RP™x0". Let dimX = 4.
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Define ZS : K —> G;l b'd Gg and let G denote the closure of the graph of

X > (.X‘TI‘SX), TXX )

FEIEI
K in B" z g™ x ¢¥ (we write @7 for Gm(B),etc.). Since X is C° y X
1 d 1 1
is a Cl wap. Let p and q denote the vrojections from [Rn b d GT b4 Gg onto
RY and GI; respectively. p\xk) is a cl diffeomorvhism.

N
If { is a line througn O in R" , let § denote the line in R"
— A
given by the inclusion 0" x&" <> ®" . Then B = {(4,T)ecl x ¢} : ol
is an open subset of GT b 4 Gg .
From now on we write /A for AO(X,Y) . Observe that
-] . n
N = aeno™(0)n@®" x3)).
. . . ~ ~ m
Given a subspace L in I’k we can write L =Y x L where L € Gm—k .
m m m
. . % - . . .
Given A €Gp , , write a* = §Qec):Lcad < o]
Let D, be a compact coordinate disc (of dimension m-1 ) for /\ as a
C submanifold of GT of dimension i . DO exists by hypothesis on dim A .

Proof of Assertion 6.3:

Lemma 6.5 : There is a dense subset _2:; of the oven set

L2 =S1eL, s @A N on Aoy}

1}

such that for all L Gdﬂg s, LA X near O and there is an open ball BL
such that (i) 'ﬁLcman and q(B ) < D,
. . . =1 -1 -1 o
(1) if F = o @Hnens N (X)nfzec : cA (D)% at 2},
~ then q’l(‘f)*r\G nBan'l(o) has nonempty intersection with FL .

Assuming Lemma 6.5 , let L € otlc} , and let Ezi} be a sequence of voints

in F; tending to a limit 2z, in q—l(f)*n GnBan_l(O) . Let x, = p(zi)

for all i . Then {xi/f is a sequence of points in £ tending to p(zo) =0.

Also for all i, X, €L since q(b/(xi)) € T)* . FPinally
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Cx ) N ——- —
tim T L O € o= linm T_ X since (0,0,T)e # < B cr’xs,

=T L

E T('(xi)| Tl
. , , A
vy (i) and (ii) of Lemmz 6.5 , and so (£&,C)€ B, i.e. { & T . This

comnletes the wroof of Assertion 6.3 .

Proof of Lemia 6.5

Sublemna 6.6 : Given a Cl retraction r : D, —> ANnaD there is a

O 9

dense subset W of ANn D, sueh that if L e W, (roq)_l( 0 ) contains

0]

a_seguence faiz in p_l(x)nGr\((Rn x B) tending to a2 point in p_l(O)nq_l(DO)

such that (ro q)_l(Q) is transverse to G at a; for 2ll i .

Proof (after L. Siebenmann) :
Let Wy = %'Qc-,’\nDo : 3 al;’eG.f\(roq)_l(Q) with (req)_l(Q)/h G
at a}z and 0 < |1v'\p(a12))‘< 1/1\"‘} , for I a positive integer. ag is inside

a region R of radius 1/¥ around p"l(O) . W, is oven since transversality

N
is an open condition. W, is dense (and hence nonempty) by Sard's theorem

N
applied to the ¢t map (re q)'Gr\R nq-l(D ) Note that GnRqu—l(Do) is
N 0

nonempty since,

-1 -1
(AADy) calp (0) N(GAR NG T(Dy)) ) -
Because AN D, is a ¢} nanifold, it is locally compact and Hausdorff,

o]
and hence is a Baire space. Thus W = an is dense in /\(\ DO « Given
=1

0 e w , there is a limit voint of %ai"} in p_l(O) since p_l(O) is compact
) . This limit point will be in q '(D,) since D, is

-1. o m n
(»77(0) &= 6] x Gy

closed. Then W satisfies the properties required for Sublemma 6.6 .

ow we can prove Lemma 6.5 .
Given L in ,{,; with (I* AN at L in And,n(T)* , there is a
neighbourhood U of L in the k-dimensional family in o{f; which is defined

by the (k+1)-dimensional linear subspace orthogonal to L and containing the

line { , such that if L'€ U, (Di)* A N in An D, - ‘{(L’”.)*,L.GU}
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defines a foliation of codimension k transverse to A near e .

Caoose a C- retraction r : Dy —> An D, such that r‘l(Q_)c ()=
and for all (' in some neighbourhood of L in A NnD, > r-l( ") c (Li)* ,
where L' dis the element of U such that (' & (f1)* . By Sublemma 6.6 ,
arbitrarily near Q_ there is some ' e W . Hence arbitrarily near L in
oﬁz there is some L' (in U ) with (£T)* A N in D, and such that
q-l((’l\»‘t )¥) contains a seguence of points fai? in G n((Rn x B) tending to a
limit &. in GNo T(0)na L((E1)*) such that for all i, o LT((£7¥)*) is

U

transverse to G at a; - Choose an oven ball BL' around a, such that

a(B,,)c D, and B, c R xB.Then (i) eand (ii) of Lemma 6.5 are

Ll
. o . . = -1, -1 .
satisfied since a; € F,Na ((L*)*)ne NB, NP (0) . This completes the

proof of Lemms 6.5 .

Proof of Assertion 6.4 :

Lemma 6.7 : There is a compact coordinate disc D for I\ as a submanifold

of dimension i in Ggl s with D C Int DO , such that if T is a C1 sub-

manifold of Grf of dimension (m-k-1) which is transverse to /\ on pal,

then there is an open ball BTC R™ x B such that,

(1) B CrR" x B and a(B)e D,

(i1) F, = o (T)ncav ™ (X)nB, isa ¢! submanifold of G of

codimension k .

-1 -1 =
(111)4 P *+¢ (T)AGnp (0)nB, < Fy -

We leave the proof of Lemua 6.7 for the moment.
0 = S‘ M T * WL = ~
tet. £7 = (Led : XA N on D§ . Let . p(Fgy,) for L
in ,C; . By Lemma 6.7(ii) and the fact that plx(v) is a Cl ditfeomorphism ,
M. is a C' submanifold of X of codimension k , and oe'rIL by (iii) .

L
Also if x€ N then q(Y(x)) € (¥)* by definition of I s and hence
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Q'\X(X))CL'E by definition of ( )¥ , so that x € T(x) xTeixT = L.
Thus IVLLCL for Le°£1(2 .

Let fxi'§ be a sequence in L_  tending to O as i tends to oo. To

L
complete the proof of Assertion 6.4 we must show that
A
£ - 1im T () ¢ 1im? X = T .

]Xi Tl X, ) X

liow for all i (xi,eg(xi)) e F(ﬁ‘)* , by (ii) of Lemma 6.7 and the definition
. ‘ . _ , = = n_. .

of M . Hence ( 0, l:.mzs(xi)) =(0,0,T)e F(r)*c B(L)*C R x B using

(i) and (ii) of Lemma 6.7 . Thus (¢,C)€ B, i.e. § & T , by the

definition of B . This completes the proof of Assertion 6.4 .

Proof of Lemma 6.7 : First, G is subanalytic in R x Grf X Gg . For

we can partition X into a locally finite set of real a.na.lyfic submanifolds

by [12] (See also [10] and E40] ) s then complexify each real analytic
part, apply the argument of §17 in [46] , take real parts, and finally take
closures, using that the closure of a subanalytic set is subanalytic [12] .
The closures match up since X is 02 .

Then apply Lemma 4.8.3 of [12] 'to G to give a (b)-regular
stratification 9, of G such that an_l(Y) and an—l(o) are each the
union of strata of S . since N = a(c np-l(O) nER" x B)) has dimension i
there is some stratum S of 9, contained in an-l(O) such that
dim (q(s)n DO) = i . By the implicit function theorem there is an open subset
V of S contained in R™ x B such that q(V)‘CAnDO is a C' submanifold
of dimension i , and qlv has rank i . Let D be a compact coordinate disc
for D,n a(V) as a submanifold of dimension i .

Suppose T is a Cl submanifold of dimension (m-k-1) in GIJI_l , btransverse
to N ‘on pn N . Then q-l(T) is transverse to S on V since qlv has

constant rank. Let z € V {\q_l(T) « By (a)-regularity of 9 there is an open

ball B, in @®" x B such that z € (B, NS)CV and such that g (T) is
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transverse to every stratum of 9 within 3’1‘ . 7We may further suppose that

q(BT)c D, proving (i) of Lemma 6.7 .
By definition of G , tnere is a stratum 5, of g , not meeting p-l(Y) ’
such that ze 5, , i.e. SNS, *¢@ . Then by 10.4 of [21],

Cz_l(T)nS(\BT < q—l(T)AslnBT .

Repeating :ie argument given above for S for each stratum of 9 in p-l(O)
adjacent to S we find that q_l(T)nG np_l(O)nBT is nonempty and contained
in 'F"T , where F, = q’l(T)nGAp‘l(x)nBT » and that F, isa ct
submanifold of G of codimension k . This proves (ii) and (iii)> and
completes the proof of Lemma 6.7 .

We have now completed the proof of Theorem 6.2 .

Note 6.8 ¢ (1) In the proof of Lemma 6.7 we cited the result of Mather
(10.4 of [21] ) that if Z is (b)-regular over Y in R" and S is a
submanifold of R” transverse to Y then SNYC SN X . It is amusing that
for complex analytic X , Y , and S , this follows from (a)-regularity : see
the appendix of [25] . |

(2) If X, Y are complex analytic in C° we obtain the same
theorem, but involving complex linear subspaces of complex codimension k , and

with the conclusion that dimy N (X,¥) < k .

Note 6.9 : In the context of a family of complex hypersurfaces with isolated
singula:ity, if one could prove that M(Ft) consiant implies that
aimg A (F20) - (0x ¢5), 0x¢ ) *0,
then using Theorem 6.2 we would obtain an inductive proof of the result of
Teissier that r/\*-constant implies (b)-regularity for the pair
(F7H(0) - (0x €), 0x ¢) ( [30] ).
In the only known examples of a r\-constant family which is not (b)-regular

. . 1, k
(due to Briancon and Speder), dlmGAe(F- (0) - (0x¢5), 0x & ) > 0.
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3 3 4

For example, consider F( X, ¥y, 2, t) = X~ + txy~ + ¥ 2 + z9 (due to

Speder. Ct. [2] ) . Analogous to the calculation in [2] we find that (b)

3, h(o(us)o(u3, u ) where h: ¢ —>C

fails on a curve ZS(u) = (ﬁu5,o(u
satisfies h(0) = 1 and h(y)y5 + (h(y)y)9 = y5 ( b exists by the implicit
function theorem), and oC , ﬁ are complex numbers defined by the equations

ﬁ3 + 0(3@ F k2 =0 , 3‘@2 + o = 0. The 1imit of orthogonal secant vectors
N is (0:1:1) and the limit of normal vectors ¥V is

(0 3F> + 40(2 : o{z) . }\ is not contained in the limiting tangent space
orthogonal to V since 3@ + 50(2 F+ 0.

Now consider the curve KQ(u) = ( @9 u5, ®g u5, hy (% g u3)0(e u3(1+ 6), u)
where D € ¢, 10l < & for some positive & < 1 , and he : ¢ —>C
satisfies hg(0) = 1 and he(y)y5(l+ 8) + (hg (v)y(1+ 8))? = y°(1+9) ,
and 0(9 ’ @9 are complex numbers defined by the eguations
ﬁ93 + 0(93(39 + (1+9)0(35 =0, Bﬁaz + 0(93 = 0 ., Then )B =(0:1:1+08),
and Vo = (0 359 + 4(1+9)0(e2 : 0(92) . )\9 is not contained in the
limiting tangent space orthogonal to Ve since 3ﬁ9 + 5(1+8)°(32 =% 0 for
small © , 1.e. for & sufficiently:small. As 9 varies we obtain a complex
1-dimensional subset of /\o(x,’r) and thus dimg AO(X,Y); 1 . In fact
dimg, /\O(X,Y) = 1 here since the family is equimultiple (with multiplieity 3),
which is the same as saying that (X0L,Y) is (b)-regular for generic complex

linear subspaces L of codimension 2 containing Y , or again that X NnL = ¢

for generic L . (Recall X = F_l(o) -(0x¢€),and Y = 0x €, the t-axis)

Note 6.10 (added 1980) : When X is subanalytic and Y is 1l-dimensional
Vicente Navarro Aznar and the author have obtained a converse to Theorem 6.2,

i.e. a proof that dim A<x implies (b . If either of these two

cod k)

conditions is not satisfied we have examples showing that the converse to 6.2

does not hold in general. For details see [ 57] .
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tart II . Preservation of (b)-regularity under generic sections.

Let X, Y be Cl submanifolds of " , and Oe€ Yo X-X.lecall a

C” submanifold of dimension (n-k) containing Y a section of codimension

k (cod Y< k=< 0).(This term was reserved for linear subspaces in Part I.)
Denote the set of germs at O of sections of codimension k by :S K ° In the
notation of Whitney [46] [47], the set of limits of tangent vlanes to X
given by sequences on X tending to 0 is T(X,0)c Ggim X( R) . Let ;ﬁ;
denote the subset of :’Sk consisting of germs at O of sections S of
codimension k such that ‘I‘OS is transverse to every element of T(X,0) in

T 1rR® . We give 'S the topology induced from the topology on G- .(R) by
k n-k

the map © \-——)‘DOG .

Theorem 6.11 : Let X be (b)-regular over Y at O, and let S Dbe a

*
representative of ¢ € 5 «.Then S N X near 0 and XN S is (b)-regular
lc ———— —— —ﬂ——

over Y at O.

Proof : It suffices to prove the Tesult for k =1, since we may consider
a section of codimension k as the intersection of k sections of codimension
1.Let €& SI , and let S be a representative of 6 . It is clear that
S AN X near 0 , 8o that it makes sense to test for (b)-regularity.

Let fxi} and fyi—f be seqﬁences in X NS and Y tending to O so that

%iYi tends to J , T (XnS) tends to T, and T_ X tends to T .

I i i

*
7, A T since S€ :Sl , and clearly Ty € TNTS - Thus Tg= TN TF .
Since X is (b)-regular over Y at O, ?\C’C .But S isa C
submanifold, and thus N\ TS , and AC Ty » showing that X NS is

(b)-regular over Y at O , and completing the proof of the theorem.

* .
If 5 x Were open and dense in Sk (in the topology given by the tangents
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at 0) , we would have proved that (b) implies (b ) .« Our next result

cod k

will give sufficient conditions for this to be so.

Theorem 6.12 : Let MNe G;+q be a subset of Hausdorff dimension at most

p-k.Lt Y = B x0"% © R".Then N =§Heq, |YcH ana HAT,VTEl?

n -
is a dense subset of {HEG.  [YeH].
Proof : Write Y* = 0% xR"™™%, andlet 7 - §r el‘" dim o (TaY*) = p+if.
Then [ = POUPIU ....Ur'r , where r = inf (g, n-p-q) , and so

r
N-N21x, , vhere 1, - fHEC I YcH and HAT,V 7el. 3. Note that
i=0 i i , n-k 1

dim r‘is dim M € p-k+l , so that we can assume r‘ = Pi . Also if HaY™t

i are transverse in Y‘L it follows that H and T are transverse

and TnY
in R" s and thus it will suffice to prove the theorem in the case of q = 0.
Also because dimr'i & pk+l L (p+i)-k+l (i3 1), if we prove the result

when [ = [ o » this will include the case when r' = r'i (121). Ve are

left with the following lemma to prove.

Lemma 6.13 : Let r‘O c G; have Hausdorff dimension at most p-k . Then

n . . n
_n_0= {HeGn_leA\T , Y Te FO} is dense in G, , -

Proof of Lemma 6.13 : Let

n n . . .
Aj = {(mm)ec, , x ¢} l dim o(HaT) = p-k+J, anda 7€ M3 (125¢np).

Then if N 18 Gz—k x Gg — Gz-k denotes projection onto the first factor,
n-p
n - . . .
‘Q'O = G, - (1\‘1(3% Aj)) . It will suffice to show that dim Aj is less
than k(n-k) = dim Gﬁ-—k , Where climh denotes Hausdorff dimension, for each
n-p n-p
i, 1£j& np. For then dim 1\’1( U Aj)< k(n-k) , so that TU,( U Aj)
, =1 i=1

has nonempty interior in GE_ , and hence its complement N 0 will be dense.

Kk
Now A, fibres over [ o by projection (H,T)#>T , with fibre

n . . . . .
Aj,T = {H (S Gn—k l dim (HnT) = p—k+3} . Hence dlmh Aj = dlmh Aj,T + dlmhr'o .
Also A. fibres over GP . by intersection H = HAT with fibre
HT 7 T P-k+j
isomorphic with GRPHE-]

n-p-
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Thus dimh Aj,T = dim Gg—k+j + dim Gﬁ:grg.j
= (k-j)(pk+j) + k(n-p-j)
= ki(nk) - j(p-k+j) .
since dim I') & p-k+l , we obtain
dim, Aj < k(n-k) - (j-1)(p-k+j) ,

hence dimh Aj < k(n-k) as required.

This completes the proof of the lemma and hence of the theorem.

Corollary 6.14 : Let X , Y be Cl submanifolds of IRn , and O € Yi\(i - X).

n

If T(X,0) in Gy;p ¢

has Hausdorff dimension at most dim X - dim Y - k ,

*
then :S K is open and dense in :Sk .

Proof : Apply the theorem to show density. Becamse < (X,0) is closed it is

also compact and the required openness follows easily.

Corollary 6.15 : If Y 4is linear, X is (b)-regular over Y at O and

T (X,0) has Hausdorff dimension at most dim X - dim Y - k , then X is

(b

cod i )-Tegular over Y at O.

Proof : Apply Theorem 6.11 and Corollary 6.14 .

Note 6.16 : If X is subanalytic, T (X,0) is also subanalytic and its
Hausdorff dimension coincides with the maximal dimension of a stratum of an

analytic stratification. See Lemma 2.7 .

Note 6.17 : An example described by Mark Goresky at I. H. E. S. in June
1979 shows that the dimension hypothesis in Corollary 6.15 is required in
general. For details see Y57} . This example is not subanalytic j; however
semiaglgebraic examples have recently been found of (b)-regular pairs (X,Y)
for which T(X,0) = dim X - dim Y (again see [57] ) , although Teissier

has shown that these cannot occur in the complex analytic case [58] .
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T. Stronger generic regularity.

Let X be a Cl submanifold of R s, and a subanalytic set. Let Y be

an analytic submanifold of " such that 0 €YCX - X .

According to Verdier [40] sy X is (w)-regular over Y at O if,

(w) There is a constant C >0 and a neighbourhood U of O in R" such

that if xeUANX, y€UNY, then d(TxX,TyY)éc\bc—yl\.*

Verdier proves that (w) implies (b) . Here we give an example showing
that (b) does not imply (w) , even for algebraic strata.
Example 7.1 : In tR3 with ( x, y, t) as coordinates, let V be

(5% =% + 23, Let Y ve the t-axis, and X be (V - Y).

X ‘ b ¢

A A

y S 0 yN 0
Figure : t = O . Figure : t+ *#0 .

From the figures it is clear that V 1is a topological manifold near O ,
and in particular that X is topologically trivial along Y . It will follow
from the calculations of &§8 that X is (b)-regular over Y at O . In fact
in this. example X 1is Cl trivial along Y : V is a Cl suomanifold. We show
that at O there is a unique limiting tangent plane, with normal (1 : 0: 0 )

— a chart for V at O follows easily.

¥ See Addendum 7.13 for the definition of d( , ) .



The normal to X at ( %, y, t) = ( X, (t4x + x3)1/4, t) is

(3x° + 4 -4(t4x + x3)3/}4 : 4t3x) (7.2)
Since X 1is algebraic it suffices to consider curves on X through O
defined by an analytic arc a(s)‘= (x(s),t(s)) , s € [O,l] . If Jt(s)/x(s)|
is bounded as s tends to O , the normal is
(3 + 2032 ¢ —a(¥3/x)3 & /334 L 42(4/x) )
and tends to (1:0¢: 0 ). If ‘t(s)/x(s)l is not bounded as s tends to

149 + (higher terms in t ), & > 0 . The normal becomes

( 3c2t2+29 . 4 £9+9 c3t3+39 )3/4 4+9)

O we set x = ct
s =4(c : 4et
disregarding higher terms.

D=1: 4 <18/4 = min ((15/4) + (39/4) , (9/4) + (99/4))<5<4+8 ,

hence the normal tends to (1 : 0: 0 ).
B<1: 2+20 < (9/4) + (9/4) < (15/4) + (35/4) , and so once

again we find (1:0:0 ).

54 1 = (9/4) + (98/4)

HPF - = — == — -

> 0

Figure : Justification of the inequalities when 9< 1.

0

(w) fails : Consider the curve 6(3) = ( 32, (236)1/4, s ) on X . From
(7.2) we find that the normal to X at K(s) is  ( 4s4 : —4(236)3/4 : 4s5 )

and hence that  d( X,TOY) = 455/((434)é + eee )% ~ s . Kow

T
| x(s)
"8(5) - TTY(ZS(S))“ = “(329 (236)1/4’ 0 ),\ A S’?’/2 . Hence X fails to be

(w)-regular over Y at O .



is a consequence (w)-regularity is not a2 C~ diffeomorphism invariant.
However it is clear from the definition of (w) +that it is a C diffeomorphism
. . . . 1 ... .
invariant, or more vrecisely that it is invariant under a C diffeomorphism

with a2 Lipschitz derivative.

lote 7.3 : Ho example has been found so far of complex analytic strata for
which (b) holds and (w) fails. In the special case of a family of complex
hypersurfaces with isolated singularity parametrised by Y it is known that
(b) and (w) are eguivalent. This is because (w) is a trivial consequence
of (c)-cosecance as defined by Teissier in [32] . It follows from [3] and

[}i] that (b) implies (c)-cosecance.

Now we suppose that Y is linear (apvly a local analytic isomorphism at
0 to R" ). Let ¢ denote orthogonal projection onto Y .

We can reformulate (w) by saying that for x , y near 0, d(T_X,T Y)

Te=3T

is bounded, and so in particular d(TxX,TOY) is bounded for x near O .

Wx - ()|
Then it is clear that if X is (w)-regular over Y at O then (X,Y)O

satisfies the ratio test (r) of Kuo (defined in [14] ) ¢

(r) Given any vector veToY , lim ]’Wx(v)“]x" = 0.

x-q»()-——-———T-—X
x€X “x—'w 2

Here TYx denotes orthogonal projection onto the normal space to X at
x , so that I'\Tx(v)l = a(T X, v) .

Kuo proved in (14] ,

Theorem 7;4 (Ruo) ¢ (1) (r) dimplies (b) ,

(2) (b) implies (r) if Y is of dimension one.




T4

rroof : In each case the prooi in [14] uses the curve selection lemma with
the assumption that X be a semianalytic set. Using Lemma 2.6 we can use the

same vroof when X 1s a subanalytic set.

Corollary 7.5 : (w) implies (b) .

Example 7.6 : For an example showing that (r) does not imply (w) apply

Theorem 7.4 (2) to Bxample 7.1l .

Actually we can make more precise what was proved in [141 « It is shown

there that (b) is equivalent to the conjunction of (a) and

(r') If z(t) , t €& [9,1] , is an analytic arc an X with ¥(0) = O, then

tiiEITYt(V)llla(t)” = 0, where v is the tangent at O to the arc in
I 5(t) -w(xCt)N

ellilne Yy o when nonzero ) an 18 projection ontvo e
Y defined by Tox(t) (wh ) and N, i jecti to th

normal space to X at z(t) .

It is obvious that (r) implies (a) + (r') , and that (a) + (r') implies
(r) when Y is of dimension one. With this in ﬁind we now give an example of
a pair of semialgebraic strata, with Y of dimension two, X (b)-regular over
Y , and where (r) fails to hold for a curve Zr(t) and a vector Vv spanning
the orthogonal complement in TdY to the subspsce spanned by the tangent at O
to the curve in Y defined by Ttog(t) .

This example, discovered at Oslo in August 1976 (see [39} ),gives the

first {b)-regular pair of subanalytic strata which fail the ratio test (r)
(introduced in 1970) . It is an open question whether real algebraic or complex
analytic examples exist, although from the argument for (w) in Note 7.3 we

see that (b) is equivalent to (r) when X is the nonsingular part of a

complex hypersurface.



Example 7.7 : Let ( x, y, z, w) be coordinates in g4 , and let Y be
the plane {z = W = O} . Define the semialgebraic set,
X = fw=0, 2(:° + (z - ¥°)°)= 5P, z>o}

o) ) 2 ~ nrw Lol , 2 2
(22 + (2 - y°)2 = 5°%2)F , 2(:° + (z - ¥P)?) &¥°® , 2> 0]

LJ{qu
where p and g are positive integers satisfying
2p <L o L 3p . (1.8)
(For example let p =2 , ¢ =5 .)
Observe that because the algebraic variety defined by the equality in the
second part of the expression for X has fw = O} as tangent space at every
point of its intersection with {é(xz + (z - yp)z) = szZ y X is a ¢t

submanifold of IR4 (compare Construction 2.2) .

b4

N

Assertion 7.9 : (b) holds .

Proof : We show that there is a single limiting tangent 3-plane for
sequences on X tending to O , namely {ﬁ = O} . It suffices to consider the
points on quw = (x2 - y°? 2)2}_ (with y fixed) where ddw/dxd =0,

~

since at these points the normal is furthest from the (w)-direction (cf. 2.2) .



Tworst!

normal vector

¥

\\d
M

Figure : z =y , y fixed.

Iy

dzw/dx2 = 0 when 6x2 = ydp , and the normal vector is (1(4/3[3}y3p : —yq )
which tends to ( O : 1 ) as y tends to O since g<3p by (7.8) . Hence
fw = Oz is the unique limiting tangent plane.

At the points on X where the secant vector defined by orthogonal projection
onto Y is furthest from the z-direction , the secant vector is contained in
the tangent space to X . Hence Oz is the unique limit of tangent vectors,
and (b') holds. (a) holds (since {w =0, z.= (f?(: fw = d? ) 5 so we can
apply the result that (a) + (b') is equivalent to (b) (0.4) +to show that

(b) holds, proving the assertion.

Assertion 7.10 : (r) fails to hold.

Proof : Consider the curve e‘(t) = (¢PHNE , ¢, t° ’ t4p—q/9 ) which lies

on X . The normal vector to X at Z‘(t) is,
( (4/306)%® + ((20/3) - (0/9))t% L 2 02 12 ) .

Let TYt denote projection onto this normal space. Then

| (0x)] ~ £ v ED
"(t3p ’ t4p-1 sy 0, tq)“ 12

since, by (7.8_) sy a<3p.
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W (¢ = WERL6 , v, t° , ¥ Yo ~n
B t‘)l wé%(tnu Il o , 0, , *%Ygll

Hence the ratio (as in the definition of (r) ) becomes 2P-a+l , which

does not tend to zero since 2p<g q by (7.8) . This proves Assertion 7.10 .

Finally we check that (w) fails to hold.

3p-q

a(T )Y) ~ 1 ’

> (£ Tl (t)
Ay (8) ,W(Y(8)) ~

so that (w) fails exactly when 2p<q .

Note 7.1l : The proof of Assertion 7.9 gives in fact that X is a Cl
manifold-with-boundary. Basing the construction on {w = (xz,k -1/2 )22,
1< k<o, instead of k = 1 as here, we can build similar examples with X

4

a Ck submanifold and semialgebraic subset of IR’ . However X will still be

a submanifold-with-boundary of class ¢t , not c?. (r) , 1ike (w) , is a

C2 diffeomorphism invariant, but not a Cl diffeomorphism invariant. In this
context note that there is no C2 version of the lemma showing that wings are
generically submanifolds-with-boundary of class C:L (see [43] ). Hence the
proof in [43] ;chat (v) is generic doeé not aﬁply directly to (r) or (w) .

(As a counterexample to a 02 version it suffices to take the product of

(R and a semi-cubical cusp in (R3 .)

Note 7.12 : In [14] there is an example of Kuo showing that (r) does
not imply (b) if X is merely smooth. Kuo has also an example where Y is
l-dimensional, (b) holds, and (r) fails, and of course X merely smooth

(orivate communication). This is why we assumed subanalyticity of X from the

beginning of ' §7 .
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Addendum T.13. If A, B are vector subspaces of mn , let
d( 4, B) = sup |b -1tA(b)|
beB
bl=1

where 1rA is orthogonal projection onto A . This is not symmetric in A and
B. Clearly d( A, B) = O if and only if A 2 B .
(Compare [14] , [40] , [46] , [47] in all of which the order is the reverse

of the above. )



CHAPPER 3. COMPUTATIONS

During a talk delivered at the Gottingen Catastrophe Theory Conference in
October 1973, C. T. C. Wall suggested that it would be useful to determine
Whitney regularity in the following case : X = gya = tbxc + xdz - {t-axis} in
3 3

B° or ¢, Y = {t-axis} , with a , b, c, d positive integers.

We determine (a)- and (b)-regularity completely in the complex case and
record this together wih the calculations for the real case that have been made.
These calculations have proved useful in oroviding Example 7.1 (showing (b)
to be strictly weaker than (w) even for algebraic strata), and in answering
several questions posed by J.-J. Risler concerniné algebraic stratifications

not regular over (€ , yet regular over R .

The tables below collect the results which ai'e obtained.

Key : - regularity holds ; X - there is a fault at O ;5 ? - undecided .

Pable 8.1 : (a)-regularity over € .
a=1 v (8.6)
(a¢c Vv (8.7)
agb v (8.12)
a>1 ( c<d<b+ec ot d < ac/(a=b) V (8.12)

d 2ac/(a=b) X (8.12)

b+ c&d X (8.8)



Table 8.2 ¢ (a)-regularity over R .

==1 Vv (3.6)

ia€c Vv (3.7)

= <b Vv (8.11,3.12)
d < b+ d <ac/(a=b)  (8.12
°= ° [ of (a-P) ) =c (2) VvV (3.14)

a>b < {bso(z) 2) X (5.13)
d 2 ac/(a-b) d=c+l (2 .13
a>1 N b=1(2) X (8.13)

(A=c+l (2) X (8.9)

b=0 (2) a<b Vv (8.11)
d=bsc v (8.15)
kb+c$d d=c (2)¢ b < a < b+

b+c €4 ?
b+tc<La X (8.10)

=1 (2) X (8.9)

Table 8.3 : (b)-regularity over € .
1 v (8.16)

{d c V- (8.17)
a>1l1

©
W

c<d X (8.18)

Table 8.4 : (b' )-regularity over R . (Wot (b))

a=1  (8.16)
d<&c ( (8.17)

d<a  (8.20)
a>1 d=c (2)
b =0 (2) a&d ?
c<d =c+l (2) X (8.19)

bE1(2) X (8.19)

Note 8.5 ¢ it is easy to show that if (a) (resp (b'), resv. (b) ) holds

over € , then (a) (resp. (b') , resp. (b) ) holds over R .
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urite  £( %, ¥, t) = —y* + t°x° + x* . Then (a) holds at O if and

only if of/dt( x, ¥, t) tends to O as ( x, y, t) tends to O om X,
leradf( x, y, )|

i.e. if and only if at least one of Bfgat and lfs'ét tend to O . We have
f/ax DLy

(9f/3x ,3f/dy ,9f/3t )

O AL T RS R

that grad f

tb_lxc )

8.6: (a) holds if a =1.
3 = bt 1C
y -1

—>» 0 as x —>» 0.

vjor
HhiHy

8.7 ¢+ (a) holds if d£c .

We may suppose Of/dx =F 0, for fx is identically zero only on

{dxd-c + ctb§= 0O , and since d < ¢ , this surface intersects X 1in an isolated
point at O . Then \31’58*«\,\, £~ 15C - gP-lgo-d+l —> 0 as
?f/dx 'dxd_l+ cxc—l tb d + cxc-dtb

x tends to O if d<c .

8.8 : (a) fails over ¢ if d=2 VB +c and a>1l.
Consider the curve on which 9ffey = 0, i.e. y =0 = xc(tb + xd-c) .

Let t° = - x%° . Then bféat - ptP-1x° LS+(d=¢)(b=1)/b
f/ox

? 0L . oxo1iP 0L _ oL

~ xc-d.+l+( d-c)(b-1)/b

_ x(b+c-d)/b_+> o

0w t?+ xd’°§ .

if d> b+ c . Hence if d>b + ¢ , (a) fails on {y

8.9 : (a) fails over R if d>=Db+c , a>1 and either b= 1 (mod 2) or

(d-¢)=1 (mod 2) , or both .

As in 8.8 ftb = - xd-c}r\ X has a branch through O .
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3.10 : (a) fails over R if b+c<g a , b+c< d , b=0 (mod 2) and

d=c (mod 2) .

VEPy T 0 since E’Gb = - Xd_c} ¢\ X has no branches near 0 . Let x = At ,
N 0. Then 2£Bt n zPo+e-1 A, xPro-l-(b+c)(a-1)/a
sy (Xb+c + Xd)(a_l /e = X(b+c-a )/ a

Thus Bféat —> 0 along fx: )\tz if az>Db+c .
¥y

Also  df/3t A £t on fx = At%
df/dx dxd—l . cxb+c_1
x°*° L gince a> bec
b+c-1
cX
4> 0.

Hence (a) fails along (X = >\t§ .

8.11 : (a) holds over R if a<b, b=0 (md 2), and d=c (mod 2) .

dfdy == 0 since ftbx°+xd} *=0 except at O if b and (d-c) are
even., d£/dt v 4b-1.0 4P-1.° b-1-b(a-1)/a_c/a

£
ofPy ‘(tbxc . xd)l-l]a. (tbxc)1-17a

-t
t(b-a)/a xc/a.

— 0 if a$hb.

8.12 : Let c<d<b+c . Then (a) holds over ¢ if and only if either

a<b or, a>b and d< ac/(a-b) .

After curve selection (2.6) we can reduce to the case of curves along which
\t/x| is bounded or unbounded as x and t tend to O .

(i)'lt/xl is bounded. Then 0f/dx = O and

/3t goro=d (/o yd-o-1

—p 0 ) if C< d< b+c .
of/dx d + ctb+c—d—1 (t/x)d_c

(ii) |x/t| tends to O .

| . d-c, b
ggt,v (;gét)b-.éolf x“"%ect® 4 -1.
A c + &x“"%/¢




et ax®%/ct® > -1.

Then DE/Dt 4P-1.¢ N £S+(d=c)(b-1)/o
ofjey (1% 4 x)Ye ((1-d/c )xd)l_?a
N XC+(d_c)(b-1 Vo - da-1)/a since d>c
~ X(ac—d(a—b))/ab which

—>» 0 if d(a-b)< ac
-+> 0 if d(a=b)=>ac , when (a) fails

along dx +ct =0.

8.13 + (a) fails over B if c<d <b+c , a> b, d >ac/(a~b) and either
b=1 (mod 2) or d=c+l (mod 2) , or both.

d-c b
+

As in 8.12 , (a) fails along dx ct =0.

8.14 : (a) holds over R if c<d<&bsc, D=0 (mod 2) , d=c (mod 2) .

8.12 shows that (a) fails only for curves on which dxd—c/ctb — -1,

and these curves have no points on X near O if b and d-c are even.

8.15 ¢ (a) holds over R if b<L.a<b+tc =4, b=0 (mod 2), d=c (mod 2) .

(i) Ix/t| Dvounded near O . |
b-1-b(a-1)/a xc—c(a.--l)/a _ t(b—'a)/a xc/a

x/t (a=b)/a x(b+c—a.)/a.

VENt AU 1
offpy

—> 0 if b< a< bec .
(ii) l‘t/x\ tends to O .

Suppose t tends to x9 , B>1.
VAt = 1 P-15C ~ Xc+b9-9-d+l ) x(b—l-)(G—l)

f/dx dxd—l . cxc_ltb

if d = b+c .

— 0.

This completes our calculations of (a)-regularity — the inquisitive reader
can work out for himself the remaining cases of (a)-regularity over R : when

b<adbtc<d and D=0 (mod2), d=c (mod 2) .



(b') holds at O if and only if x(3£/3x) + y(IEAy) tends to
|(x,y)l,{(3f/6x, %fﬁy,éf/}t )T

O as ( x, 5y, t) tends to ( 0, 0, 0) .

8.16 : (b) holds if a =1 .

x(9£/dx) + y(£/ (a-1 )xd + (e-1 )tbxc
l69y)l.'(bf/$xa'°f/‘byﬂ‘f t [(x,y)[,l(3f/)x, 1 ,»f/2t)(

= (a-1)x%T 4 (e-1)tPx%1
(L,y/x)[. (05 x,1, ot/at)l

—» 0.

Now use (8.6) and (0.4) .

8.17 ¢ (b) holds if d Lo .

Since by (8.7) (a) holds, by (0.4) it is enough to ‘show that

x(3£/0x) + y(of tends to O, i.e. (c-a)tbxc + (d—a)xd tends to O.
Rx,y,i,izgfﬁxﬁf%y;( Jeo || ecceee |

Since d< o , it is enough to show that _ x©  tends to O when d<4a ,
lel Voo d
b_c
and {1°x tends to O when d =a .
Io\.‘-O" a
4 -1
d ' X
(i) d >a . X =
: b - b d,\l-
S NTOA= 5270 1L, 5/x)| 1(ex®LtPeaxtL, _a(PxCxd)t-1/2) |
| (d¢/a)-1
~ X
@/ 1oy =a(3P2% 4 1)1
—> O as d>a , unless
t°2%% L 1 tends to O , but there are no such points near 0 as d<c .
(ii) d<a . x4 = x
. I(x,y )| . 1(3£/3x,3f/dy ) l(x,-(tbx°+xd l/a )I |(d+cxc_dtb,. . )l
_ Xl—c't/a.
Gy =(£%x%% 1)/2)) (arex®3P, .. )|
—> O since d<a, and d<& c .
(iii)d = a . £Px® b c-d

[(x,5 0 [(ex®4Pax®2 ey )| 11, 5/x)) Ket® + 4,...))]

—) O since d<c .



3,18 ¢+ (b') fails over € if c<d and a>1, and (a) holds.

y=0 and Ry = 0 on tbx°+xd=O,Then

df/2x) + yO£NY) = (a-c )x%
=,y 1. 1B~ x,3 AT ) [0 KotP="T + axL, o)
= (d—c)xd—l

[(1,0).]((a~c)x*2, o)

—>» 0, so (b*) fails, and hence (b) fails.

8.19 ¢+ (b*) fails over R if a>1, c<d and either D=1 (mod 2)

or d=c+l (mod 2) or both.

xn ftbxc + 29 O’% has real branches through 0 if b or (d-o) is odd.

8,20 : (b') holds over R if d<a , b=0 (mod 2) and d=c (mod 2) .

x(d£/3x) + y(3£Ly) (d—a)xd + (o—a)tbxc

(x,y JIQE/Qx, OEA 3,2 £/0 )| |(x,(tbxc+xd 1/a)|'|(ctbxc-1 R dxd—l,"’")l

- (d-a )xl- d/a
l(xl-d/a, ('l;bxc""‘1 +1 )l]a )\ \(cstb:::c""i + dyesgen )‘

+ (c-a)x 4/a
l(xl-d[a,('t'.b:ztc"d + 1)1/8')“(0 + axd-¢ t_b,..,.. )‘

— 0 if d<a.

This completes our calculations of (b')- and (b)-regularity save for the

case 1<a<d,c<d, b=0 (mod 2) , d=c (mod 2) , over R .

Example 8.21 : J. J. Risler asked for an example which was (a)-regular over

R , but not over ¢ . By 8.11 and 8.3 it suffices that a £b< d-c ,

b=0 (mod 2) and d== ¢ (mod 2) . For example fyz - t%x + XB}.

Example 8.22 : For an example which is (b)-regular over R but not over € ,
8.12 , 8.18 , and 8.20 give c< d<a<b(or c<d<a, b<a, d<a6/(a—b) )

b= 0 (mod 2) , d5=c¢ (mod 2) . For example fyA' -t 4 x3z or§y5 -tz 4 x3} .



~

Example 8.23 : If an equimultiple example is demanded, satisfying the

: Qe : 2 2z L )
recuirements of d.zz , consider }y =t x + x4z. By 8.8 (a) fails over € ,

and by O8.11 (a) holds over R . It remains to check that (b') holds over R ,

using (004) .

x!éf?x! * yQREAY) 2x*
[ (x, 5 )1 1(8£/9x, 85,3y )| |(x, (t2x2+ x4)%)' ~|(4x3+ 21;.2}[, —2(x4+t¢12 )%)'

= 2 x
K1, (4% <% %) \(ax + 26%/x, -2(1 + (t/x)°)%)]

—3> 0 as (x,t) tends to O since X/\?’cz +x° = O:(

has no branches passing through O . Hence (b) holds over R .

Note 8.24 : Table 8.3 corresponds with the known fgpct that for families

of plane curves, " )&-constant " is equivalent to (b)-regularity ( [-30] ) .
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Geometric versions of Whitney regularity

By D.J. A. TROTMAN
University of Warwick, Coventry

(Recetved 16 June 1975)

Let X™and Y™ be C! manifolds embedded in R?, m < » < p,andletze X <« Y- Y.
In (4) C.T.C. Wall considered the following conditions:

(a,) For any local C* retraction at z, m: R? - X, z has a neighbourhood U such that
7|y ny 18 & submersion.

(b,) For any local C* tubular neighbourhood of X at z, given by #: R? - X and
p: RP >R, U {0}, where p~1(0) = X, z has a neighbourhood U such that (7, p)|y .y is
a submersion.

Wall conjectured that (a,) and (b,) are respectively equivalent to Whitney’s condi-
tions (a) and (b):

(@) Given y;€ Y so that, asi > o0, y; >zand T, Y -7, then T, X < 7.

(b) Given y;eY and z,eX so that, as ¢ >0, y;, >2, z,>2, T7,,Y >7 and
Yi—f|ly;—x] =A;, > A, thenA = 7.

Itis not difficult to show that (a) implies (a,). See (2), p. 35, for a proof that (b) implies
(b,); this enabled Mather to show that if X is a stratum of a (b)-regular stratification I,
then Z is locally topologically trivial over X. In(3), §3, it is proved that (a,) implies
(@) if Y is semianalytic. Here we prove the following,

THEOREM. (b,) implies (b) if X and Y are semianalytic. (C. G. Gibson has also obtained
this result.)

Note. The conjectured equivalences have been verified in exactly the cases where the
“curve selection lemma is applicable. It would be interesting to know if they are true in
the general, i.e. non-semianalytic, case, so as to have geometric versions of the
regularity conditions available, avoiding sequences.

Proof of the theorem. Suppose (b) fails; we shall show that (b,) fails.

We havesequencesz;€ X,y;€ Y tendingtoz, T, Y - 7,andy; — z;/|ly; — ;| = A;~>A.
Since A ¢ 7 we may suppose that d(A,7) > ¢ > 0 for some ¢, with distance d( , ) defined
appropriately. Then, for some 4y, d(A;, 7, Y) > ¢ when i > 1,.

Let G, denote the Grassmannian of s-planes in R’, a compact analytic manifold. Set

V, ={(v,P)eG? x G%: d(v, P) > €}
and V,={yy—z/ly—=|,T,Y): zeX,ye Y}

Then ¥, is semialgebraic, and ¥, is semianalytic since both X and Y are semianalytic
by hypothesis. Hence
V=(XxYxWK)n¥
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is a semianalytic subset of R? x R? x G? x G2, and (x, z, A, T) € Vsatisfies the hypotheses
of the curve selection lemma. See (1), p. 103. This provides an analytic curve

@i [0,1] > X x ¥ x GP x G2,
b (2, Y6 A T, Y),

where A, = y, —2,f |y — x|, ye€ Y if t + 0,and d(A;, T;, Y) > €.

Write 5 for the C manifold-with-boundary Uy, and £ for Uz,, contracting the
domain of « if necessary. t t

Since we are trying to show that (b,) fails, and (b,) implies (a,), we may assume that
(a,) holds. Then by (3), § 3, since Y is semianalytic, (a) holds. This implies that

T:cﬂ = Ta:g (*)

AT ER T,y
cT,X+T.7y

<7

For, suppose not. Then

using (@). But A ¢ 7 by hypothesis, giving (*).

Notation. Given distinct lines A, A’ in the plane meeting at a point ¢, and a point ¢’ on
A’ at unit distance from ¢, consider the circles with tangent A at ¢ which contain ¢’ in
their interior. If ¢ = d(A, A’) let r, denote the lower limit of the radii of these circles.

LEMMA. There exists a local C* retraction defined on a neighbourhood U of x in RP,
m: U - X, such that for each t, m(x;)
(i) 48 the intersection with U of a (p —m)-plane containing A,,
(ii) ¢stransverseto Y in U,
(iii) contains a (p —m)-disc D, of radius r, |y, —z,| with y,€ 2D, x,€Int D,, and

T,(Y naY(z,)) < T,,(0Dy),
(iv) imtersects y only at y,.

Proof. Because (b) fails and (a) holds, A ¢ T}, X. Thus there exists a (p —m)-plane
transverse to X at z, and containing A. Using (*) and the analytic dependence of y,, A,,
and 7,, Y upon ¢, we can find an analytic, and hence a C*, fibre bundle over £, restricting
o if necessary, so that the fibre over z; is a (p —m)-plane containing A;. Choose a (!
diffeomorphism ¢ of an open neighbourhood U of z in R?, so that ¢(X n U) is affine
and ¢(£ n U)is aline. Extend the fibration over ¢(£) to the rest of (X n U) by parallel
translation, and pull back by ¢! to give a C! retraction 7: U — X with each fibre C*
diffeomorphic to R?—™, and which satisfies (i).

For (ii) use (,), shrinking U if necessary, and observe that 7| is a submersion at y
if and only if #~1(n(y)) is transverse to Y at y. (ii) tells us that ¥ n7(z,) is a C*
(n —m)-manifold.

Let D, be a disc of radiusr, |y, — ;| in the (p —m)-plane of (i), with y, on its boundary

and so that T, (Y n7mY(x,)) < T,,(0D).

Because d(A,, T, Y) > € and 7, is a decreasing function of ¢, z, belongs to the interior
of D,. For sufficiently small ¢, D, < 7~1(,), giving (iii).
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Finally use (*), restricting « if necessary, to ensure that 9 n 7-1(2;) = y,. This proves
(iv) and completes the proof of the lemma.
Project A, onto N, (0D,) to give u, € GY. By (iii) each y, is non-zero and

fe < N (¥ 0 71 (a).
Now we construct a tubular function p so that p(y;) = ¢t and

U < Ny,((ﬂi P)_l (xt) t))

This will show that Y is not transverse to the fibre of (m, p) at y,, for each ¢, which is
the same as saying that (7, p)|y is not a submersion at y,, for each ¢, so that (b,) fails.
It suffices then to find p so that

oD, = (m,p)~* (x, 1)

for each t. Let ¢ be as in the proof of the lemma, and for each ¢ > 0let F, be obtained by
first translating ¢(0D;) along ¢(£), using (iv), and then over ¢(X n U) orthogonal to
@(&). Shrink U so that

U ¢(B) = U\X D).

Then we have a C! fibration
p: U\XnU)~(0,1],

with p~1(¢) = ¢~1(£) a C manifold (" diffeomorphic to S#—™-1 x R™. Setting p| xny = 0
extends p to be C! on U, and p is the required tubular function. This completes the
proof of the theorem.
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WHITNEY (b)-REGULARITY IS WEAKER
THAN KUO’S RATIO TEST FOR REAL
ALGEBRAIC STRATIFICATIONS

HANS BRODERSEN and DAVID TROTMAN!

We give examples of real algebraic hypersurfaces such that the full partition
by dimension gives a stratification which is Whitney (b)-regular, but which fails
to satisfy Kuo’s ratio test (r), and hence also fails to satisfy the (w)-regularity of
Verdier. Such a hypersurface can be a C' submanifold, so that the stratification
is C! trivial, showing that (r) and (w) are not invariant under C' changes of
coordinates, although they are C? invariant. We show that (w)-regularity is
characterised by the possibility of extending rugose vector fields defined on
some strata to rugose vector fields tangent to the remaining strata.

1. On regularity.

Let X be a C! submanifold of R", and a subanalytic set (defined in [2]). Let
Y be an analytic submanifold of R" such that 0 € Yc X\ X. Verdier [8]
defines X to be (w)-regular over Y at 0 if,

(w) There is a constant C>0 and a neighborhood U of 0 in R" such that if
xeUNX and y e UNY, then d(T,Y, T,X)<Cl|x -yl

Here d(., .) is defined as follows.

DeFINITION. Let A, B, be vector subspaces of R".
d(A,B) = sup la—mng(a)l ,

aeA

lal=1

where ng is orthogonal projection onto B.

This is not symmetric in A and B. Clearly d(A4,B)=0 if and only if ASB.
It is clear from the definition of (w) that it is a C? invariant, or more precisely

! The work on this paper was done while both authors were at the Matematisk Institut in
Aarhus, Denmark.
Received December 4, 1978.
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that it is invariant under a C' diffeomorphism with Lipschitz derivative. We
shall see below that it is not a C' invariant.

Kuo’s ratio test.

We suppose that Y is linear (apply a local analytic isomorphism at 0 to R").
Let ny denote orthogonal projection onto Y. .

Reformulate (w) by the condition that d(T,Y, T, X)/|x —y| is bounded near 0.
Then in particular d(T,Y, T, X)/|x — =y (x)| is bounded for x near O (recall Y is
linear). Then it is clear that if X is (w)-regular over Y at 0, then (X, Y), satisfies
the ratio test of Kuo [3\3:

(r) Given any vector v € T,Y,

m @l
x=0 | X—Ty(X
v=p (X =y (0

Here =, denotes orthogonal projection onto the normal space to X at x, so
that for unit vectors v, |n,(v)|=d({v), T, X). In [3] Kuo proved that (r) implies
Whitney (b)-regularity (defined in [9]) and that (b) implies (r) when Y is 1-
dimensional. In [6] a fairly complicated semialgebraic example was given with
Y 2-dimensional showing that (b) is weaker than (r). We give a simple algebraic
example below.

First observe that if (b) (respectively (w)) holds for a paif of strata (X, Y)at0
in R", then (b) (respectively (w)) holds for (X xR, Y x R) along 0 x R in R" x R.
However (r) does not have this property.

ProrosiTion 1. Let (X ,.Y) be a pair of strata in R" not (w)-regular at 0 (but
possibly satisfying (r)) and let Y be linear. Then (X x R, Y x R) fails to satisfy (r)
at any point of 0x R in R"xR.

PrOOF. Let X, Y have dimensions m, p respectively and identify the set of one
dimensional subspaces of T,Y with the Grassmannian G.
Define three subsets of R" x R" x G, x G? x R:
Vi = {{(x,my(x), T,.X) : xe X} xG{xR

{(x, 5, T.,<v),8) : |x—yl<ed({v), T)}
R"x R"x {(T,{v)) : d({v),T) = d(T,Y,T)} xR

V
Vs

V, is subanalytic using Verdier [8, Lemma 1.6] (by restriéting to a compact
neighbourhood of 0 in R" if necessary), V, is semialgebraic, and V;, is algebraic,
Hence V=V, NV, NV, is a subanalytic set.
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We have that (w) fails for the pair (X, Y) at 0, which is equivalent to the
existence of T € G, and v € T,Y with ||v|=1 such that

(0,0,7,<{v),0)e ¥ = R"xR"x G" x G xR .
By curve selection [2] we can find an analytic arc
a: [0,1] - R"XR"xGh x G xR,
such that a(0)=(0,0,1,{v),0) and such that a(t) € V if t+0. Write
a(t) = (x, my(x), T, X, {v).¢)
where v, € T,.)Y, |lv, =1 and v, — v as t — 0. Then

v, T, X)
|X,— n)‘(xl)l

is unbounded as t tends to 0. We assert that
d((v), T, X) 2 3d( v, T, X)

for t sufficiently small. This is a consequence of the definition of V;, as follows:

Let v=v,cos ¢, +u,sin g, where |lu||=1, v,Lu, and ¢, is the positive angle
between v and v, we can assume 0S¢, <n/2. Let #n, denote the orthogonal
projection onto T, X. Then

d((v), T, X) = lo—m@)| = |(o,=7,(v))cos ¢, + (u,—m,(u)sin g

2 |v,—n,(v) cos @, — |u, — m,(u,)| sin @,
(using the triangle inequality)

2 |v,~—m,(v)l(cos @, —sin ¢,)
(By definition of V,,|v,—x,(v)| 2 |u, — 7, (u,)))

= d({v,), T, X)(cos ¢, —sin ¢,)

Sincé @, tends to 0 as ¢ tends to O, it follows that, for ¢ sufficiently small,
(<), T, X) 2 4d((0). T, X) .

We deduce that d({v), T, X)/Ix,— m.(x,)| is also unbounded as ¢ tends to 0. After
reparametrisation we can suppose that

(), TX)

t™*  for some k=1
|X, - R.V(X,)l

In R" x R consider the curve ¢(t)= (x,, t, +t). Using the canonical inclusion T,Y
< T .Y xR), we can consider v as a unit vector of T, ,,(Y xR). Then
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d(<v), Ty (X x R))-1q (1) — (0, 2,)]
lq(t)—my.r(q(D)

_ d(<U>, Tx,X)' |(X,, )]
llx, - ny(xl)l

S 40, TX)t

> ~ ¢k
= =y ()l

which does not tend to zero as t approaches zero since k= 1. Hence the ratio

test (r) fails for the pair (X x R, Y x R) at every point (0,¢,) of 0 xR in R" xR,
completing the proof of Proposition 1.

ExampLE 1. Let V={y*=z2x>+x°} <R3, and let Y be the z-axis and X =
V-Y.

(z2x*+x%)'3 is a C! function of x and z, and so V, as the graph of a C! map,
is a C' submanifold of R*. Hence X is (b)-regular over Y. By Theorem 2 of [3]
we deduce that (X, Y) satisfies (r) at 0, since dim Y=1.

Consider the curve p(t)= (t{i/i-t’, t3) from the origin into X. The normal
direction to X at (x,y,z) is (3x%z2+5x*: —3(z2x% +x%)%3:2zx3). At p(t) this
becomes

(8t3: —3:2%3:22)

So
212
d(ToY, TyyX) = —
(68¢% +18]/2)¢
and
AT, T,,X) £ 1
p@O—-ny(p@) ¢ ¢’

which is unbounded as t approaches zero, so that (w) fails for (X, Y) at 0.
Now let

V' = VxR = {y’=22x3+x5} < R* = {(x,y,z,u)} .

Let
Y = YxR = {y=x=0} cR* and X =V -Y'.

By Proposition 1, (X', Y’) fails to satisfy (r) at any point of 0 x R (for example
consider the curve ¢(f)=(p(1),t) from 0 into X’). But since V' is a C!
submanifold, (X', Y’) is (b)-regular.
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Example 1 describes the first example of a pair (X,Y) satisfying (b) but not
(r) where X is the regular part of an algebraic variety and Y the singular locus.
Contrast this with the complex hypersurface case where (b)-regularity, the
ratio test, and (w)-regularity are equivalent. This is a consequence of the
equivalence of (b)-regularity with Teissier’s (c)-cosecance [5] (references for the
implications giving this equivalence may be found in [1]); (c)-cosecance
trivially implies (w)-regularity, and hence also the ratio test. It remains to be
seen whether (b), (r) and (w) are distinct when V is a complex analytic variety
of codimension greater than 1.

ExaMmpLE 2 (from [7]). V={)*=z*x+x} <R3, Y={z-axis}, X =V \ Y. Here
y is not a C! function of x and z, but V is still a C' submanifold of R3, so that

(b) holds for (X,Y). (w) fails along the curve p(t)=(t“,i/§~r3,t2). As with
Example 1 we can apply Proposition 1 to show that (X xR, Y xR) fails to
satisfy (r) on 0 x R in R*, but (b) clearly holds.

ExampLE 3 (due to Kuo [4]). V={y*=22x*+x"}=R?, 'Y the z-axis, X =
V—Y. Vis no longer a C' submanifold -for each z, y*=2z2x>+x" defines a
plane curve of “cusp type” near 0. However (b) does hold and (w) fails. We can
apply Proposition 1 as before.

Examples 1 and 2, and indeed the second discordant horn of [6], show that
(r) and (w) are not invariant under C! diffeomorphisms. So (b) is more natural
in differential topology; it is a C' invariant.

Looking closely at the proofs in [3] we see why it is not surprising that (r) is
strictly stronger than (b) when dim Y2>2. It is proved in [3] that (b) is
equivalent to the conjunction of (a) and (r') defined as follows.

(r') If p(t), t € [0,1] is an analytic arc in R" with p(0)=0 and p(t) € X for t 0,
then

I, )lip ()]
m-——=
i~0 [p(t) =y (p(0))
where v is the tangent at 0 to the arc nycp([0, 1]) on Y, and =, is projection
onto the normal space to X at p(t).

It is obvious that (r) implies (a)+ (r') and that (a)+ (r') implies (r) when Y has
dimension one. Being able to choose a vector v in T,Y and a curve whose
tangent at 0 is orthogonal to v suggested the counterexample in [6], and gives
rise to the examples here too.
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Rugose vector fields.

Given a (b)-regular stratification, one might hope to be able to find rugose
vector fields tangent to the strata. Verdier shows that these exist on (w)-regular
stratifications [8] and derives rugose trivialisations. However it can be
impossible to extend a constant vector field on a base stratum Y to a rugose
vector field on an attaching stratum X when (X, Y) is (b)-regular. This is a
consequence of our next proposition and the existence of (b)-regular examples
which do not satisfy (w).

We refer to [8] for the definition of rugose vector field. (Note the misprint in
the definition of rugose function on page 307 of [8], as described below).

ProposiTION 2. Let X be a C? submanifold of R" and let Y=R™x0cR".
Suppose that each of the constant vector fields {0/dy;}, i=1,...,m, on Y extends
to a rugose vector field on XUY. Then X is (w)-regular over Y.

Prookr. Let §; denote the extension of 6/dy;. For each i there exists a constant
C and a neighbourhood U of 0 such that
. 0
Ui(x)"g

Fi

< Clx—yl

forallx e UNX,y e UNY. We can assume that C and U are the same for all i.
Let x € U. Then

0 0
—_— < |——10;
d(ay.' T.\X> = lay' U,(X) ’

l

hence

)
(*) d(a—;,TxX) S Clx—y| forall xe XNU, yeYNU.

Take v € T,Y with |v|=1.
v=ia-i, withia-z=1.
s oy i1

Let N X denote the orthogonal complement of T, X in R" and n,: R" - N, X

the orthogonal projection.
“ d
Z a;Ry <a_>
i=1 CYi

d(v, T.X) = |n(v)|
m ¢
5 (e

1
().
1 \9y;

mClx—y| by (*).

A

i

I
™Ms

A
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Hence

d(T,Y. T, X) = SUP d(v, T.X) £ mClx~y| forall xe XNU,ye ¥NU,
veT,Y

i.e. X is (w)-regular over Y at 0. Repeating the above argument for each y € Y,
we obtain that X is (w)-regular over Y, completing the proof of Proposition 2.

COROLLARY. Let A=XUB be a closed subset of R", BN X=, X a C?
submanifold, B a closed subset, and let (B, X) be a (w)-regular stratification, with
each stratum a C? submanifold. Then the stratification X’ of A given by adding X
to X is (w)-regular if and only if every rugose vector field on B tangent to Z can
be extended to a rugose vector field on A tangent to X'.

Proor. “Only if” is proved by Verdier [8]. “If” follows from Proposition 2
above by making the stratum containing a given point y, affine near y, by a C?
change of local coordinates.

WARNING. The definition of rugosity in [8] should read “for all x € S, there
is a constant C and a neighbourhood V of x such that for all x' € VN §, and all
yeVNA,

**) IfX)=f) = ClIx' =y
and not
(***) “If () =f) £ Clx—y".

To see that these are effectively distinct notions in the case of vector fields we
can use Example 2. (w) fails, so by' Proposition 2 no lift of J/0z satisfies (**).
However the canonical lift of d/6z (namely the vector field v(x,y,z) on V
defined by projecting 0/0z onto the tangent space to X at each point of X)
satisfies (***) as follows.

Let f(x,y,2)= —y*+z*x+x>. Then

(ffu £ L.
lgrad f| |grad f|°

v(xvyyz = (0.0, l)—

Hence

1A
|grad f|°
We must check that |v(x,y,z)— (0,0, 1)|/|(x,y.z) is bounded as (x.y,z) tends to
0 on X.

|v(x,y, z)— (0,0, l)l =

Math. Scand. 45 - )
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|D(X,y,2)—'(0,0, 1)' — 'f:l
1(x, . 2)] Igrad f1-1(x,y,2)|

_ |423x|
[(z*+3x2, —4(z*x +x%)*4,42°x)| - |(x, (z*x + x3)'/4, 2)|

Cask 1. |x/z?| £ 1. Dividing through by z°, gives

|4x/2%| -
(14 (3x3/z%, .. ) 1(x/z, ., 1)

which is at most 4.

Cask 2. |z2/x| £ 1. Dividing through by x?z, gives

1422 /x|
I(z*/x*+3, .,42%/x)|*|(x/z, ., 1)|

which is at most 4/3.
We have shown that (***) is satisfied.
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SEMINATRE A'CAMPO - MACPHERSON

Paris VII 10 mars 1977

Partial results on the topological invariance of the multiplicity

of a complex hypersurface.

David Trotman

The Problem. In 1971, Zariski posed several problems concerning
egiisingularity [21] s most of these have been resolved by the French School
in Paris or Nice [ 5], [17] . However the first problem, apparently the

simplest, has not yet been decided.

Question : Is the multiplicity of a complex hyperéurface a topological invariant ?

nw+l

TEat is, given two hypersurfaces V, , V, in ¢ , with 0eV, (1i=1,2)

1

and a homeomorphism h of a neighbourhood Ny of 0 in ¢ onto a

neighbourhood N, - sending Nl" Vl onto N, NV, and fixing O, is the

multipliocity m(Vl) of V, at O equal to that of V, ?

1
Definition. The multiplicity m(¥) at O of a complex hypersurface V is

the number obtained as follows : take a generic complex line L passing
through O , i.e. L not in the tangent cone to V at O (so that LAV = to3
near O ) , then perturb L away from O slightly and count the number of
points of intersection of V with the new line.

[}
-

L
V vV



Clearly m(V) is also equal to the degree of the leading form of a

function f defining V ( = f—l(O)) .

f(zo,...,zn) = £ (z) + f .5 (z2) + oeo &

N

homogeneous polynomials

Concerning this problem, in his survey paper [21] Zariski said,

" I would be disappointed if topologists do not provide an answer in a
short time."

Thom has pronounced it a scandal that the answer is not known.

Let me describe what is known.

Curves (n = 1) [15]

In this case the result has been known for more than 40 years (work of
Burau, Brauner, Zariski). Two plane curves are topologically equivalent if
and only if their branches correspond under the equi?alence, and the multiplicity
of a curve is just the sum of the multiplicities of the branches (and these
are always positive in the compiex case). Moreover for a single branch the
Puiseux exponents are topological invariants, and there is a formula for the

multiplicity in terms of these exponents.

Surfaces (n = 2)

Nothing is known.

For hypersurfaces of small Milnor number ( r\é 15) there is no counterexample

- see Arnol'd's lists,
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If we ask what happens for small m(V) we only get as far as the

following result. Let V1 be nonsingular and topologically equivalent near

O with a hypersurface V, with an isolated singularity atn O. Then m(Vl) =1,

. 2n+l
and the link K, =V, Sen+ is an unknotted (2n-1)-sphere, and so
2n+l
(s - Kl) has the homotopy type of st . The homotopy exact sequence of

the Milnor fibration Sg - K, {Zﬁﬁ" s!  becomes

oo = W (8T) > W (F) = ® (S -Ky) —> ... .

n+l
Thus Hn(Fz) = 0, and '1(12) = 0, so that m(V2) =1.

3

Question ¢ Are there two surfaces V v in ¢

10 Y5 with m(Vl) =2,

n(V,) = 3, and (V,,0) /& (V,,0) ?
(It is evident that we know very little.)

A recent result which ought to be helpful is due to Henry King [9] .

Theorem(King): If n 4 2 , and V, , V, are topologically equivalent

hypersurfaces, then if V., = fi—l(O), the functions f, , f, are topologically

equivalent (up to conjugation).

Thus we may assume that the homeomorphism h preserves the level surfaces
of the functions defining the hypersurfaces near O . (This is false for real

hypersurfaces if n > 6 , see King f8].)

Some restriction on the nature of any counterexample may be derived from the

following theorem.

Theorem (A'Campo [1]) : Let h be the characteristic homeomorphism of the

monodromy of a hypersurface V . Then +the Lefschetz number of hk is zero if

k< n(V) .
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. mpy _
Corollary : V, ?;p Vv, ,m 7 m, =$/\(h2 ) =0.
Unfortunately it is possible for (h2m2) to equal zero.

Example: Weighted homogeneous f , V = f_l(o) , h periodic of period p ,

m(V) =m . If (myp) = 1 , then A(hm)

[t}
o
.

1]
H
N
)
+
<
~
+
N
L]

For an explicit case, let f(x,y,z)

i
@
.

This hys type (8/3, 4, 8) , m=3, p

bh(x, y, 2) = (u3x , u2y , uz) where u = e2ﬂ1/8

rix (1) - @ =D X (Fix 2%)) - 0,80 AR} -0.

Intersection number.

Looking at the definition of multiplicity given above we see that m(V)
is the intersection number i(V,L) of V with a generic complex line L
passing through 0 [12] o Thus if we could replave the given homeomorphism
(perhaps by isotopy) by one which mapped some generic complex line (for Vl)
onto a complex line generic with respect to V2 then we would obtain the
desired result,’since intersection number is invarient under homeomorphism of
pairs.

By Lemma 1.4 of [20) it is in fact enough to show that h (can be
replaced by some homeomorphism which ) maps a generic complex line onto a
generiv real 2-plane. This gives the following partial answer to the original

problem.

Theorem (Ephraim-Trotman): Multiplicity is a ct invariant, i.e. if we

suppose V and V2- are topologically equivalent by a homeomorphism h which

1
is a C1 diffeomorphism of an+2 , then m(Vl) = m(Vz) .
Proof : (Given in the talk)
see [6] or [20] . One proves that i(V,P) € m(V) for a generic

real 2-plane P . Then use symmetry.
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Families of hypersurfazwes.

Let F: (8™ xe,0x¢) — (€, 0) Leananalytic furction
with ( 0 x € ) the critical set of F , and cuppoce ea®h v, = F+-l(o)
has an isolated singularity at 0 ( I'(z,t) = Ft(z) ) . The following diagram

describes the results known.

(4] ﬁ(,]
P(F ) constant (FY(o)-(ox ¢), 0 x ¢) =§E cl triviality
Whltney regular V
[13,18) 1L 'ﬂ: %@
topological triviality jv/
[no] €] 1[*
}1 (F ) cons,1:.<—=*= F&F‘) topolo?fcal type const.<f——- cl type constant
oo St N %
U .
% egnimultiplicity /

In the only known examples where rA(Ft) is constant and IA*(Ft) is
not constant (due to Briancon and Speder [3]), the Ft are weighted

homogeneous of fixed type, so that the multiplicity is constant.

x3 + txy3 + y4z + z9 .

Example (Speder): F( x, y, z, t) =
Then m(F,) = 3, P3(Ft) = 56 , P\Q(Ft) =7(t%+0), }42(1**0) =-8.

F, has type (3,9/2,9) for all t .

t

We do have a useful characterisation of r& constant families due to

L& Ding Tréng and SaitokN]:

Theorem (L&-Saito): r&(Ft) constant ¢&= F has a "bonne stratification"

&> normal vectors to the level
varieties of F tend to be

orthogonal to 0 x € near O.
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Corollaryl: If F, is semihomogeneous (i.e. F, equivalent to its lowest
homogeneous part), and N(Ft) is constant, then ‘,\*(Ft) is constant - in
particular one hee equimultiplicity.

Proof: See Briangon and Speder [5] or Gabrielov and Koushnirenko [7] .

Note: If F, is semihomogeneous (t=%=0) and p(Ft) is constant , then
we have equimultiplicity. For suppose in general that VO and Vl are two
topologically equivalent hypersurfaces with Vi = fi_l(o) , then if f1 is
semihomogeneous, m(Vl) > m(VO) .( If £, is semihomogeneous, hvlfl is the
identity, so A(h$1) = K(FV ) = 1 + (-1)° H(fl) which is nonzero if
P.(fl) >1 , so that A(h?é) is also nonzero and m(VO) < m(Vl). If M(fl) =1
then so is }A(fo) , and both V) and V, have multiplicity 2 .) Now use

semicontinuity of multipliecity.

Corollary 2 : ,A(Ft) constant implies that the leading form in 2z and t
is equimultiple in z as t varies.

Proof : Let H(z,t) be the leading form of F(z,t) , i.e. the homgeneous
polynomial of lowest degree in the decomposition of F into its homogeneous
parts. If the conclusion of the corollary fails to hold, t divides H(z,t),
which we can write as H(z,t) = tG(z.t) . Let z, = a;u , t = bu,then

for sufficiently gemeral a, and b, G(z,t) ~ w81,

Now grad F - (3FRz,, ... , 3FRz_ , 3Nt )
= (13G/dz, + eeeyeee, BGRZ 4+ oo, G+ 1G4+ L.
d [¢ { {
uE1 u&1 u&1 w81

+’(Co:oco‘,cn:0)o
This contradicts the theorem of Le and Saito which says that grad F

tends to (cge...,0 40) with = le,l == 0.
]

Thus for families of the form F(z,t) = F(z) + tG(z) , or F(z) + p(t)a(z)



wn
.
-~

(this is the same line in the jet swace Jk) y r& constant implies
equimultiplicity.

If all F.constant families cpuld be expressed in the form F + t G ,
we would have the required result.

However Arnol'd has the following example of a P constant family :
3 3 3 3

x> +y +2° +w + (ax + by + cz + dw)3 + exyzw .

Finally we give the simplest type of family where our problem is unresolved.

3

Fo(xy,2) = 20 + t(z+w)® «B(x, 5, t) with B,(x,y)€ (M(x,))
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LULTIPLICITY I5s A C I L VARIANT

DAVID TrOTILA:

0. Introduction

Let Vl, V2 be complex hypersurfaces in Cn+l each containing the origin O,
n+l such that there exists a C1

and let N N, be neighbourhoods of O in €

1° 72

diffeomorphism ¢: ( L., B NV, 0) —> ( N, N,nV,, O ) . We prove that the

1’ 71
multiplicity of V1 at O 1is the seme as that of V2 at O .

By multiplicity we mean the number of points of intersection of the hypersurface

with a generic complex line passing close to, but not through, the origin (i.e. the

intersection number of the hypersurface with a generic complex line through the

origin, as defined by Lefschetz [3] ).
The result was motivated by the first of the problems posed by Zariski in [7] :

is multiplicity a topological invariant ? liost of the problems of [7] have been

decided, but this, the simplest in statement, remains unsolved.

Our result has also been proved by R. Ephraim [2] ¢ the idea of his proof is
much the same as ours, but the details differ because he uses a different interpret-
ation of multiplicity. In view of the fact that the classical topological character—
isation of plane curves ( [1] , [5} ) uses intersection number, it seemed worth-
while to record the present proof.

The proof has grown out of fertile conversations with Henry King (sustained by
Kiki's sfrawberries), Bernard Teissier, Norbert A'Campo, and Bob MacPherson (who
acted as a éatalyst in the process of transforming my intuitive conviction into a
proof ). I thank Jean-Jacoues Risler for suggesting the problem.

In §1 we state the key lemnas and use them to nrove that multiplicity is a
Cl invariant; in &2  we prove the 1emmas; in €3 we describe an example showing

that not =2ll excellenf real ?-planes for V have intersection number with V ecual

to the multiplicity of V .



1. “The zHesult

Let V Dbe = comr~ler hynersurfsce in -Cn+1. We write m(V) for the multivnlicity

of V »t 0O (rs defined in 80) , and i(V,S) for the intersection number »t O

of V with » subset S of ®n+1 . whenever this is defined (see [3] ) . i(Vv,s)
ig defined wiien S dis a2 rerl differentizble submznifold of ®n+1 of class Cl

i

rnd dimension ~ such that O 1is an isolated point of intersection of V and S .
(Bv {47 V 4is trisnsulable, and hence Lefschetz' definition applies to V . )

Theorem 1.1. Let V., V., N, I, ¢ be as in 80 . Then m(Vl) = m(VZ).

1‘)

Lemms 1.Z2. Let S be a real 2Z-dimensional ol submanifold of Cn+1, such
that (TOS)(\(C(V,O)) = fo}. Then i(V,S) and i(V,TOS) are defined and equal.

Remarks_1.3. (i) C(V,0) is the usual tangent cone to V at O .
(6(v,0) = €4(V,0) in ihitney's notation of [6] )
(ii) We implicitly identify TOS with fhe real 2-plane through
0 tangent to S .
(iii) We shall not distinguish between a 2-plane at O in ¢t

and its canonical image in G2n+20R) . We regard G?+1(C) as

2 subset of G§n+2GR) : it is a compact submanifold of

dimension (and codimension) 2n .

(iv) The subset of definition of i(V,P) for P in G§n+20R) is
clearly open and dense. We call this the set of good planes
for V =nd denote it by SV . ( Pegv &> 0 is an isolated
point of intersection of V »nd P, i.e. i(V.P) is defined.)
S; Vf\G§+1(C) is precisely the set of good complex lines for
V 2t O nc defined in |6 , p.732) ., whence the name.

(v) Let EWI denote the (oven dense) set of excellent nlanes for

cn+e
[}
[

2t 0O . EqﬂﬂG§+l(C) is the set of excellent comdlex lines

V in G (R) : those vlanes which intersect C(V,0) only



(€3)

for V =t 0 as defined in {6 . z).?'34J . 5y Lemma 1.2 ,
£VC BV (excellency imnlies goodnesc).
(vi) iet 0‘»/' be the {(over) subset oi EV consisting of those
vlanes F for which i(V.P) = m(V) , the perfect planes.
By [6 , Theorem 7P , »n.234], ®.ne®te) - B ne™ie).
v 1 v 1
it is not true in general that ZV = (P y ° see §3.

However the following lemme defines = 1imit to the poscible

values of i(V,P) for excellent P .

Lemre 1.4. If I is excellent. then i(V,P) < m(V) .

Yroof of Theorem 1.1. Let P e EV f\G;Hl(@)-
1

By Remark 1.3 (vi) ,
n(V,) = i(V),P) | (1)

Because the intersection number of 2 pair is an invariant of the topological

embedding type of the vair (see [3] )s

i(V,P) = i(V,,§(F)) \ (2)

(\) is assumed to be a ¢t diffeomorphism, thus, by Remark 1.3 (iii), there

is an indueed homeomorphism of pairs,

en+2 $

. 2
G “®), C(v,0)) —> (ng‘“ (R), C(V,,0))
By Lemma 1.2 ,
1(v,,$ () - i(v,,$(p)) (3)
But, since $(C(Vl.,0)) = C(VQ,O) and $ is » homeomorphism, then by the
e e
definition of EV (Remark 1.3(v)), ¢(£Vl) = EVE and ¢(P)€8V2'
Ap»lying Lemma 1.4 gives,
i(v,, §(r)) € n(v,) (4)
From (1), (2), (3), (4), and symmetry, we find the required result,
m(Vl) = m(VZ)'

This completes the proof of Theorem 1.1.



2. Proof of the Lemmas

Lotation. Let S;nJrl(O) be the (&n+l)-sphere in lRén+2 , centred at O ,
and with radius () . For each subset A of [R2n+(.' we define, following the
notation of [6] .

AP - AAcC cn+l(o)
2n+1
Uplhp) - {xesp™ (0) : 3yen, such that |x - y\<ep3
) = mt (U G o (L))
0<p'<p

Proof of Lemma 1.2. A chart for S at O yields 81>O and a diffeomorphism

P (mzn*‘, R x O , 0) —> ( Bs, s Bélms , 0 ) where Bél is the open ball

of radius <§ 1 centred at O .

Sublemma 2.1. We can find v)>0 such that for all positive E€£Y) , there
exists some positive 8(g)< §, such that for a1l pg§(e) ,
(i) Uge(C(VaO)P)nUep((TOS)F) = £,
(ii) Vpc UEP(C(V,O)P) ,
(iii), SPCUEP((TOS)P) y
(iv) if ||\y(x)\|-=() , then d(\{/(x),W'(O)(x))<€P.
S and C(V,0) are closed cones , and T, 0 C(V,0) = §0%,

0
there exists ¥)»0 such that °°('I' s)nU (c(v,0)) = {03}, and (i) follows

Proof. Because T

for all (3 .

Now observe that it suffices to find some 6(&) for each of (ii),
(iii), (iv) separately, and to then take the smallest of the three.

For (ii) see [6 , p.219]

Elementary analysis (using only the continuify and differentiability

of \J and \P-l at 0 ) gives (iii) and (iv) , completing the proof of 2.1.

Using (i), (ii) and (iii) of Sublemma 2.1 and setting & - 8(\9) gives

BgnVnsS = BaVnT,s - {0%.



5
Thus i(V,S) and i(V,TOS) are defined (see the discussion 2t the begimning

of 81). It remains to show that they are ecual.
Let o : [0,00) —> [0,8) ©vea C® diffeomorphism. Then

x > W) + s(@(V(0)(x)]).WO)x) -W(x))
NACNE

defines a homology between BgnS and BénTOS within
ud(18) © Bg~UE(C(V,0)) C Bg~(VNBg)
using (ii), (iii) , and (iv) of Sublemma 2.1. Hence by the definition of
intersection number ( [3] ) we have that i(V,S) = i(V,TOS ).
(Bob MacPherson vointed out that a homology is sufficient; it becomes messy,
although possible, to construct a homeomorphism of pairs.)

This completes the proof of Lemma 1.2.

Proof of Lemma 1.4 : Consider the smooth fibration
22 @) ~c"(e) L5 o2(e)
P t——>» complex 2-plane spanned by P

Each fibre of p is isomorphic to the 4-~dimensional connected open
submanifold of Gg(lR) which is the complement of Gi(c)‘ .

Let J{V be the  open dense subset of Ggﬂ(c) such that Heﬂv if and only
if the complex l-dimensional submanifold of GL' (€) ,{Pec]* (¢) s PcE}, is
transverse to C(V,0) in G;H]'(C) .

Because @ is the projection of a smooth fibration, p is both open and

continuous, hence 5-1(KV) is both dense and open in G§n+2(m) . In particular,

Evnﬁ-l(f‘(vs) is dense in EV .
(Note that in genersl & B~ @), PR IEE, .)

Assertion 2.2: If Hej&v , Pe(jv and PcH , then i(V,P) = i(VnH,P) .
(Note that if PCH and PC.™(C), then H = B(P).)

Assertion 2.3 (Curve case) : If Pe Ey s and n=1, then i(V,P) £ m(V).




Assume foi' the moment that we have proved the two assertions.
Let PeEV a) ﬁ_l(éev) . Then in particular Pe S’V since E’VCQ'V by
Lemma 1.Z. So, by Assertion 2.2 ,
i(v,p) = i(Vf\ﬁkP),_P) (1)
and by Assertion 2.3 ,
ivapE),r) £ o(Vnp(e)) (2)

Let L Dbe an excellent complex line for V contained in ﬁ(P) . By Remark

1.3 (vi), m(v) = i(V,L) . Also i(V,L) = i(VARB(P),L) by Assertion 2.
And clearly, i(Ve p(P),L) = m(Vnp (S(P)) , since LGEVng(P)nG?.(C) . Thus
(VA B(P)) = m(v) (3)

(1), (2), and (3) show that i(V,P) £ m(V) for all PeF N PR (3 ). But
since Z ., N ﬁ-l(zf(v) was shown above to be demse in £ . , and since i(V,P) is

locally constant for P in EV , we find that for all Pe & i1(V,P) & n(V) .
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Hence, modulo the assertions, we have proved Lemma 1.4.

Proof of Assertion 2.2 : The intersection number i(V,P) (defined since Peg_v)

is the linking number {(Vg,Pg) for sufficiently small positive d , ana L(Vs,Ps)
is given by the number of points of intersection (counted with + or - signs,
depending on whether orientations match up or not) of Vg with a disc in S%n"'l(o),
spanning Pg (which is a circle), and transverse to Vg . (See [3] )

If HefHf v and PcH , we can find such a transverse disc lying in the

3-sphere Hg . Hence e(Vg,Pg) = L(VsnHg,Pg) . Since VgnHg = (VnH)5 ,

the assertion follows.

Proof of Assertion 2.3 : V is the union of r (distinct) branches {Vk"g k=1

] r ’..,r
r -
and i(V,P) = Ell(vk,P) for all PGEV , and m(V) = E;lm(vk) .
Hence it suffices to prove the assertion for r =1, so that we may suppose
. . . . 2
that C(V,0) is a single point in Gl(t) .
Let u , v be independent vectors spanning P . Then projection parallel to

C(V,0) onto the complex line P, erthogonal to C(V,0) sends u, v onto

0]

independent vectors U, Y5 spanning PO . The family of pairs of vectors



{(tu + (1 - t)uo s v o+ (1 - t)vo)} t€[0,1]

defines a family of planes, each transverse to C(V,0), i.e. in & v

liow using Sublemma 2.1 , properties (i) and (ii) , we can find a positive
radius & such that this family defines a homology in S%(O) between Pg and
(PO)S , with support in the complement of V . We deduce (as in the proof of
Lemra 1.2) that i(V,P) is % i(V,PO) , depending upon an initial choice of
orientation for P . i(V,PO) = m(V) since P, is an excellent complex line for
V (Remark 1.3 (vi) ) . Thus i(V,P) = * m(V) , and summing over each branch we

obtain the result of Assertion 2.3.

3. Possible Values of i(V,P)

In the proof of Assertion 2.3 we saw that for .V, a branch of a plane curve

k

Vv , and PeEv , then i(V,,P) is +m(V, ) or - m(V,_) , depending on our

choice of orientation for P . Given a branch Vk ’ . We can obviously assign

an orientation to each Pesv so that i(Vk,P) is positive. However, given any

other branch V there will be some excellent P for which i(V, ,,P) is

kl’

negative using this preassigned orientation.

kv’

2 )
Example 3.1. C(V,0) = {z1z2 - 0%3cC €. Let C, be the z -axis, and C, be

the z.-axis. We can parametrise the 4-dimensional open submanifold of Gg(ﬁ)

2
consisting of the planes P such that PI\Cl = { O} , as follows.
Let P, .4 = {(a}\+ by, ch+ d'a,)\,P) :)\,peua} with a, b, c, d € R .

Then . P C

0000 = "2 °
It is easy to check that

2
Pabcdecl(c)(=) c=-b,d=2a.

Thus if Pabcd is complex and not equal to C, , ad > be .
Also, P, .. is emcellent for C,UC, &3 P, . nC, = 103
& ad #®bc.
Hence Pabcd is isotopic to a complex line by an isotopy with support in the



complement of Cluc2 if and only if ad > bec .

Further, orienting each Pabcd such that l(cl’Pabcd) = + 1 , one finds that

i(CprPopeg) = {

(One way to see this is to consider the projection parallel to C2 , of the

+ 1 if ad > be

-1 if ad < be

. . .
Porog'® mear C, , onto C; (as in the proof of Assertion 2.3).)

Thus if Ci is the tangent cone of several branches of V whose multiplicities
edd up to m, (i -1,2) and C(V,0) = CUC,, then &, = §P. .+ ad=* bo)
and m. + m if ad > be

. 1 2
i(v ’Pabcd) =
m -m if ad < be
1 2
YN
)
, ‘g'
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