THÈSES DE L'UNIVERSITÉ PARIS-SUD (1971-2012)

CHRISTIAN GÉRARD

Propagation de la polarisation pour des problémes aux limites, 1986

Thèse numérisée dans le cadre du programme de numérisation de la bibliothèque mathématique Jacques Hadamard - 2016

Mention de copyright :

Les fichiers des textes intégraux sont téléchargeables à titre individuel par l'utilisateur à des fins de recherche, d'étude ou de formation. Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale.

Toute copie ou impression de ce fichier doit contenir la présente page de garde.

ORSAY
n° d'ordre

UNIVERSITE DE PARIS-SUD CENTRE D'ORSAY

THESE

présentée

Pour obtenir

le titre de DOCTEUR de l'Université de Paris-Sud

Spécialité : Mathématiques Pures

par

Christian GERARD

Sujet: PROPAGATION DE LA POLARISATION POUR DES PROBLEMES AUX LIMITES.

Soutenue le 10 juin 1986 devant la commission d'examen :

MM. J.M. BONY Président

S. ALINHAC

A. GRIGIS Examinateurs

G. LEBEAU

J. SJÖSTRAND

TABLE DES MATIERES

INTRODUCTION

PREMIERE PARTIE	
Opérateurs pseudodifférentiels et Fourier intégraux totalement caractéristiques	6
Front d'onde polarisé d'une distribution vectorielle et propagation à l'intérieur	15
Systèmes de type principal réel et propagation de la polarisation le long des caractéristiques transversales et tangentes au bord	18
Propagation de la polarisation pour des problèmes aux limites	50
DEUXIEME PARTIE	
Propagation de la polarisation dans des domaines convexes pour les bicaractéristiques	77

REMERCIEMENTS

Je voudrais d'abord rendre hommage à la mémoire du Professeur Charles Goulaouic. C'est lui qui m'a indiqué l'article de Dencker et il m'a toujours encouragé à travailler sur ce sujet.

Ma reconnaissance va ensuite au Professeur J. Sjöstrand qui a accepté d'être mon directeur de thèse après la disparition de Charles Goulaouic, et qui m'a appris beaucoup de choses.

Je remercie également les Professeurs J.M. Bony, S. Alinahc et G. Lebeau pour avoir accepté de faire partie de ce jury.

Je remercie enfin A. Grigis pour ses conversations et ses encouragements et pour avoir accepté de faire partie de ce jury.

Enfin, je tiens à remercier Claudine Harmide et Dominique Concha pour le soin qui a été apporté à la réalisation matérielle de ce travail.

SECTION O

INTRODUCTION

Dans l'étude des solutions de systèmes hyperboliques comme par exemple les équations de Maxwell, on s'intéresse tout d'abord au tracé de rayons, ce qui devient dans le formalisme microlocal l'étude de la propagation des singularités. De nombreux travaux ont été consacrés à ce sujet, tant pour la propagation libre que pour les problèmes aux limites.

L'étape suivante consiste à étudier la polarisation des solutions.

On sait que de nombreux phénomènes physiques intéressants en optique sont liés à la polarisation de la lumière. Citons par exemple le cas des cristaux biréfringents ou des verres polaroïds.

Dans [1] N. Dencker a donné une définition microlocale de la polarisation d'une distribution vectorielle qui correspond à la traduction microlocale du tracé de rayons. Dencker démontre dans [1] que pour des solutions de systèmes d'équations aux dérivées partielles qui sont en un certain sens à caractéristiques réelles simples, on peut prédire la propagation de la polarisation le long des rayons.

On observe une torsion de la polarisation le long des rayons qui vient des termes d'ordre inférieur du système.

L'objet du présent travail est d'étudier la polarisation des solutions de problèmes aux limites. Les résultats de Dencker traitant le problème de la polarisation à l'intérieur, il reste à étudier le problème de la réflexion au bord.

On suppose que u est une solution d'un problème aux limites vérifiant des hypothèses convenables. En un point du bord arrivent plusieurs rayons, éventuellement tangents au bord. On suppose que l'on connait la

polarisation de u sur un certains nombre de ces rayons (polarisation entrante), et on veut déterminer la polarisation de u sur les autres rayons (polarisation sortante).

On observe alors que la polarisation sortante est l'image de la polarisation entrante par une application linéaire qui dépend de la condition
au bord. L'intérêt de ce résultat n'est pas que théorique car il montre
que l'on peut déterminer une condition au bord inconnue en envoyant sur
le bord des rayons avec une polarisation donnée et en observant la polarisation sortante.

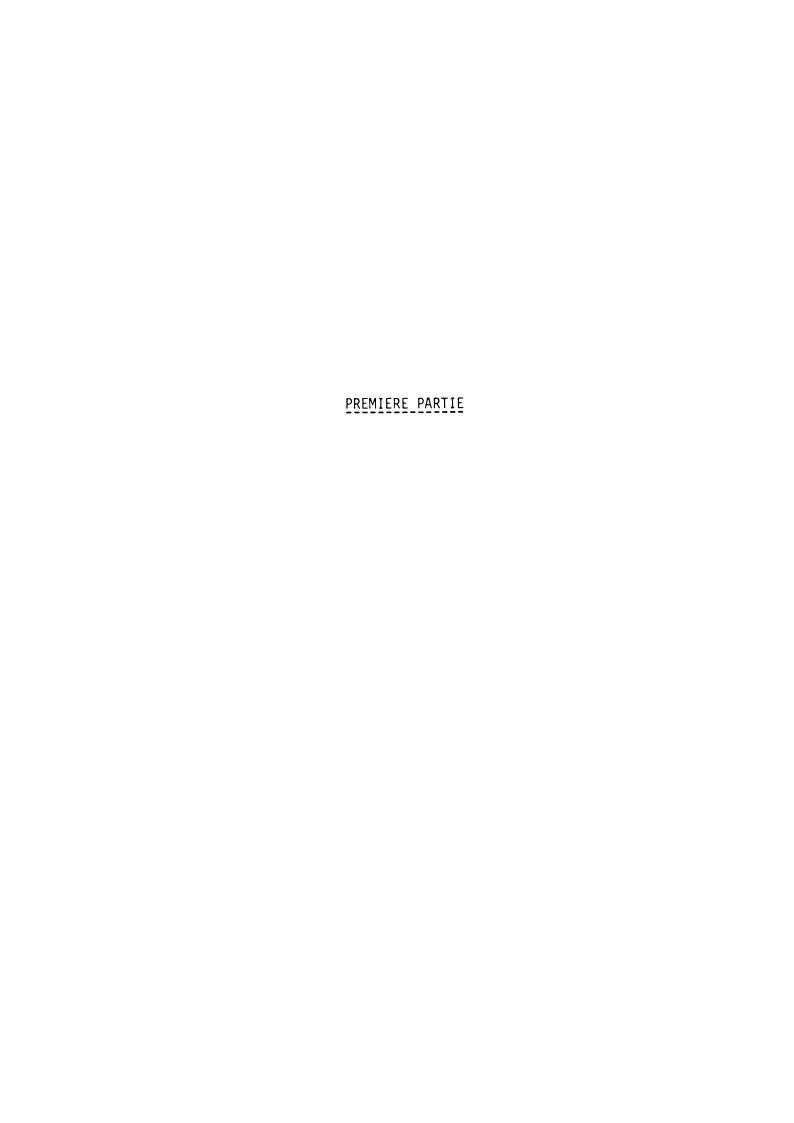
Dans la Section I, on introduit quelques espaces de fonctions et de distributions sur une société à bord et on rappelle le calcul des opérateurs pseudo-différentiels totalement caractéristiques introduits dans [2].

Dans la Section II, on rappelle les résultats et définitions de N. Dencker sur la polarisation des solutions de systèmes d'équations aux dérivées partielles à l'intérieur et on introduit une notion de polarisation construite sur des espaces de régularité finie.

Dans la Section III, on introduit la classe de problèmes aux limites que l'on va étudier et on démontre les principaux résultats sur la propagation de la polarisation le long de rayons transverses et tangents au bord.

Dans la Section IV, on utilise les résultats de la Section III pour démontrer des résultats sur la réflexion de la polarisation. On don-

ne pour finir des exemples où l'on applique les résultats précédents aux équations de Maxwell, à l'optique des cristaux et aux équations de la magnétohydrodynamique linéarisées.



S E C T I O N I

OPERATEURS PSEUDO-DIFFERENTIELS ET FOURIER INTEGRAUX TOTALEMENT CARACTERISTIQUES

Dans cette section, nous introduisons quelques espaces de fonctions et de distributions sur une variété à bord et nous rappelons quelques résultats sur les opérateurs pseudo-différentiels et intégraux de Fourier introduits par Melrose dans [2].

I.1. ESPACES DE DISTRIBUTIONS ET DE FONCTIONS SUR UNE VARIETE A BORD ([2]).

Soit M une variété à bord C^{∞} de bord ∂M et $\mathring{M}=M\setminus\partial M$ On notera $C^{\infty}(M)$ l'espace des fonctions $C^{\infty}(M)$ jusqu'au bord sur M, et $C^{\infty}_{C}(M)$ l'espace des fonctions de $C^{\infty}(M)$ à support compact. On les munit de la convergence uniforme des dérivées sur les compacts de M. $\mathring{C}^{\infty}(M) \subset C^{\infty}(M)$ et $\mathring{C}^{\infty}_{C}(M)$ désignent les sous espaces formés des fonctions qui s'annulent à tous les ordres sur ∂M . $D'(M) = (C^{\infty}_{C}(M))'$ est l'espace des distributions sur \mathring{M} prolongeables, et $\mathring{D}'(M) = (\mathring{C}^{\infty}_{C}(M))'$ est l'espace des distributions supportées par M. On notera $\mathring{C}'(M) \subset D'(M)$ et $\mathring{C}'(M) \subset \mathring{D}'(M)$ les sous espaces formés des distributions à support compact.

Enfin on a besoin d'espaces de régularité finie.

On suppose donc qu'on a choisi des coordonnées locales (x,y) près de ∂M de telle sorte que $\partial M = \{x = 0\}$ et $x \ge 0$ sur M.

Pour s E R . on définit alors l'espace suivant :

 $\begin{array}{ll} \underline{\text{D\'efinition 1.1}}. & \mathcal{H}^s(\mathtt{M}) & = & \{\mathtt{u} \in \mathcal{V}'(\mathtt{M}) \, \big| \, D_x^j \mathtt{u} \in C^\circ(\overline{\mathbb{R}}_x^+, \, \mathtt{H}^{s-j}(\mathbb{R}_y^n)) \, \, \forall \, j \in \mathbb{N} \, \, \} \\ \\ \text{où } & & \mathsf{H}^s(\mathbb{R}_y^n) & \text{d\'esigne 1'espace de Sobolev classique dans les variables } y \, . \end{array}$

I.2. LE FIBRE COTANGENT COMPRESSE. ([2]).

Dans [2] Melrose définit un fibré vectoriel $\widetilde{T}^*(M)$ qui est le support naturel du WF_bu utilisé pour l'étude des problèmes aux limites. Nous en rappelons la définition et nous donnons quelques propriétés.

Soit $V\subset C^\infty$ (TM) l'espace des champs de vecteurs sur M tangents à ∂M . C'est l'espace des sections d'un fibré vectoriel C^∞ que l'on note $\widetilde{T}M$. Pour $m\in M$ on considère la relation d'équivalence sur V:

$$V \underset{m}{\sim} V' \Leftrightarrow \begin{cases} (V-V') \ f(m) = 0 & \forall f \in C^{\infty}(M) \end{cases}$$

$$\text{si } m \in \partial M \ d((V-V')g)(m) = 0 \quad \forall g \in C^{\infty}(M) \text{ avec } g = 0 \text{ sur } \partial M.$$

On a la proposition suivante : (Lemme 2.2.I de [2]).

Proposition 2.1. On peut identifier $V/_{\widetilde{m}}$ à $\widetilde{T}_{m}M$ de telle sorte que $V = C^{\infty}(\widetilde{T}M)$ et il y a une application $C^{\infty}(2.2)$ $\widetilde{T}M \to TM$ d'image $T\widetilde{M} \cup T(\partial M)$

<u>Démonstration</u>: Au dessus de $m \in \mathring{M}$ la condition (2.1) est vide donc définit la fibre du fibré tangent TM . Donc si $m \notin \partial M$ $T_m M = \widetilde{T}_m M$. Si $m \in \partial M$ prenons des coordonnées locales (x,y) avec $M = \{x=0\}$. $y=(y_1,\ldots,y_n)$.

Les éléments de V s'écrivent $\sum_{j=1}^{n} a_j(x,y) \frac{\partial}{\partial y_j} + xb(x,y) \frac{\partial}{\partial x}$ et la classe de V par m est déterminée par $(b(m), a_1(m), \ldots, a_n(m))$ l'application (2.2) qui envoie (b, a_1, \ldots, a_n) sur (xb, a_1, \ldots, a_n) vérifie les propriétés de la proposition 2.1. #

Soit $\widetilde{T}^*(M)$ le dual de $\widetilde{T}M$. Par dualité, l'application (2.2)donne une application $\pi: T^*(M) \to \widetilde{T}^{(k)}(M)$.

Dans des coordonnées locales, une section de T*(M) s'écrit :

$$\alpha = \lambda(x,y)x^{-1} dx + \sum_{j=1}^{n} \eta_{j}(x,y) dy_{j}$$

où dy; , $x^{-1}dx$ est la base duale de $\frac{\partial}{\partial y_j}$, $x\frac{\partial}{\partial x}$ ($x\frac{\partial}{\partial x}$ est considéré comme une section de $\widetilde{T}M$) , alors l'application π s'écrit :

$$\xi dx + \sum_{j=1}^{n} \eta_j dy_j \rightarrow x\xi \frac{dx}{x} + \sum_{j=1}^{n} \eta_j dy_j$$
,

on a donc $\lambda = x\xi$, $\eta = \eta$

on voit donc en séparant les cas x=o et x>o que l'image de T(M) par π s'identifie naturellement à T(M) T(M). C'est sur ce dernier ensemble qu'est défini le WF_bu de [7].

1.3. OPERATEURS PSEUDO-DIFFERENTIELS TOTALEMENT CARACTERISTIQUES.

Dans ce paragraphe nous rappelons la définition et quelques propriétés d'une classe d'opérateurs pseudo-différentiels sur une variété à

bord. Leur principale propriété est la façon dont ils préservent les valeurs au bord. On se place sur $M = \overline{\mathbb{R}}^+ \times \mathbb{R}^n$ avec les coordonnées naturelles z = (x,y).On considère des opérateurs qui s'écrivent sous forme d'intégrale oscillante :

$$Au(z) = (2\pi)^{-n-1} \int e^{i(z-z')\zeta} \tilde{a}(z,\zeta)u(z')dz' d\zeta$$
 (3.1)

avec $\widetilde{a}(z,\zeta) = a(x,y,x\xi,\eta)$ et $a(x,y,\lambda,\eta) \in S_{1,0}^m(M\times \mathbb{R}^{n+1}_{\lambda,\eta})$.

Il est démontré dans [2] que A envoie $C_c^{\infty}(M)$ dans $C^{\infty}(M)$, et $C^{\infty}(M)$, et $C^{\infty}(M)$.

<u>Définition</u> 3.1. : L'espace $L_b^m(M)$ des opérateurs pseudodifférentiels totalement caractéristiques est l'espace des applications linéaires continues $A: C_c^\infty(M) \longrightarrow C^\infty(M)$ telles que p'Ap est de la forme (3.1) pour tous $p,p' \in C_c^\infty(M)$.

On peut définir le symbole principal de A $\in L_b^m(M)$ qui est une fonction sur $\widetilde{T} \divideontimes (M)$.

Proposition 3.2: l'application symbole principal est un isomorphisme:

$$\widetilde{\sigma}_{\mathbf{m}}: L_{\mathbf{b}}^{\mathbf{m}}(\mathbf{M})/\underset{L_{\mathbf{b}}}{\longrightarrow} S^{\mathbf{m}}(\widetilde{\mathbf{T}}, \mathbf{M})/\underset{S^{\mathbf{m-1}}(\widetilde{\mathbf{T}}, \mathbf{M})}{\longrightarrow} S^{\mathbf{m-1}}(\widetilde{\mathbf{T}}, \mathbf{M})$$

<u>Proposition</u> 3.3.: On a une application () $L_b^m(M) \longrightarrow L^m(\partial M)$ telle que

$$\forall u \in C_{\infty}^{o}(\overline{\mathbb{R}}^{+}, \mathcal{E}^{\prime}(\mathbb{R}^{n})) \quad \forall A \in L_{m}^{b}(M) \quad Au_{\mid \mathbf{x} = o} = (A)_{\partial} u_{\mid \mathbf{x} = o}.$$

En effet on voit facilement sur la formule (3.1) que A est défini par

$$A_{\partial} u = (2\pi)^{-n} \int_{\partial} e^{i(y-y')\eta} a(o,y,o,\eta)u(y')dy'd\eta$$

et on a : $\sigma_{m}(A_{\partial}) = \sigma_{m}(A) |_{T}(\partial M)$

On a un calcul symbolique pour les opérateurs de $L_b^m(M)$ que nous ne rappelerons pas et qui coinc¶de avec le calcul symbolique dans $L^\infty(M)$ au-dessus de M.

Nous nous contentons de renvoyer à l'article original de Melrose [2] pour une étude complète de ces opérateurs. Rappelons simplement la définition de WF u associée à ces opérateurs.

 $\begin{array}{l} \underline{\text{D\'efinition}} \ \ 3.4 \ : \ \text{Si} \ \ u \in \ D'(M) \ \ \text{WF}_b u = \bigcap \ \big\{ \Sigma_b(A) \ \ ; \ A \in L_b^o(M) \ \ \grave{a} \ \text{support propre} \\ \text{et } Au \in \dot{A}(M) \big\} \ \ o\grave{u} \ \Sigma_b(A) \subset \overset{\overset{\bullet}{\text{T}}}{}^{\overset{\bullet}{\text{T}}}(M) \ \ \text{est l'ensemble caract\'eristique de } A \ . \end{array}$

I.4. TRANSFORMATIONS CANONIQUES A BORD ET OPERATEURS INTEGRAUX DE FOURIER TOTALEMENT CARACTERISTIQUES.

On connait la définition d'une transformation canonique χ entre deux variétés sans bord. Si X et Y sont deux variétés à bord on peut demander que χ préserve le bord i.e. $\chi(\partial T^*(X)) \subset \partial T^*(Y)$ (4.1).

Proposition 4.1: Si X et Y sont deux variétés à bord et $\mathbf{y}: \Omega \to T^*(Y)\setminus 0$ est une transformation canonique qui vérifie (4.1) avec Ω ouvert conique de $T(X)\setminus 0$ et si $(\mathbf{i}_X^*)^{-1}(\mathbf{i}_X^*\rho) \cap (\Omega \cap \partial T^*(X))$ est connexe $\mathbf{V} \cap \mathcal{E}(\Omega \cap \partial T^*(X))$, il existe une unique transformation canonique $\partial_{\mathcal{X}}: \mathbf{i}^*(\Omega \cap \partial T^*(X)) \to T^*(\partial Y)$ telle que le diagramme commute :

$$\Omega \cap \partial T(X) \cap X \rightarrow \partial T(Y)$$

$$\downarrow i_{x} \qquad \qquad \downarrow i_{y} \qquad \qquad \downarrow$$

ici i $\frac{\pi}{x}$ désigne la projection naturelle de $\partial T(X)$ sur $T(\partial X)$.

Pour se débarasser de l'hypothèse de connexité des fibres de i * on utilise des germes de transformations canoniques. De plus on veut des transformations canoniques qui conservent les fonctions de $(x,y,x\xi,\eta)$. Pour celà on introduit l'espace de fonctions suivant :

Cet espace de germes est noté c_{to}^{∞} .

On vérifie facilement que C_{OP}^{∞} est l'espace des germes en P des fonctions C^{∞} sur $\widetilde{T}(M)$. Et il suffit de vérifier la propriété (4.2) dans un seul système de coordonnées canoniques.

 $\frac{\text{Définition 4.3}: \text{Si } \rho \in \partial T(X) \backslash N(\partial X), \ \rho \in \partial T(Y) \text{ un germe de transformation}}{\text{canonique à bord est un germe}} \quad \chi \text{ de transformation canonique } \chi :$ $T(X), \quad T(Y), \quad \rho \text{ qui vérifie (4.1) et telle que : } X^{**} C_{t}^{\infty}, \quad C_{t}^{\infty}, \quad \forall t \in \mathbb{Z}. \quad (4.3).$

La proposition suivante montre qu'il suffit de vérifier (4.3) pour t = 1. Proposition 4.4: χ est un germe de transformation canonique à bord ssi χ vérifie (4.1) et χ^{\sharp}_{μ} appartient à $C_{1,\rho}^{\infty}$ pour un $\mu \in C_{1,\rho}^{\infty}$, qui n'est pas constant le long de la fibre ($i^{\sharp}_{1,\rho}$).

On peut interpréter la définition 4.3 à l'aide de \widetilde{T}^{R}

Proposition 4.5: un germe de transformation canonique χ T(X), ρ \longrightarrow T(Y), vérifiant (4.1) est un germe de transformation canonique à bord si et seulement si il se relève en un difféomorphisme local:

On peut quantifier ces transformations canoniques par des opérateurs intégraux de Fourier qui s'écrivent formellement comme intégrale oscillante :

$$Fu(z) = \int e^{i\varphi(z,y',x\xi,\theta)-ix'\xi} a(z,y',x\xi,\theta) u(z')dz' d\xi d\theta$$

avec $\varphi \in C^{\infty}(M \times \mathbb{R}^{n} \times \mathbb{R}^{N+1} \setminus O)$ réelle et homogène de degré 1 en $(\mu, \theta) \in \mathbb{R}^{N+1}$ et a $\in S^{m}(M \times \mathbb{R}^{n} \times \mathbb{R}^{N+1} \setminus O)$.

On a la proposition suivante analogue à Prop.3.3 :

Proposition 4.6 : On a Fu $|_{\mathbf{x}=\mathbf{0}} = \partial F(\mathbf{u}|_{\mathbf{x}=\mathbf{0}})$ où ∂X est un opérateur intégral de Fourier associé à ∂X .

I.5. QUELQUES PROPRIETES DE L'ESPACE \mathfrak{K}^s .

Démontrons quelques propriétés de l'espace $\mathcal{K}^{\mathbf{S}}$ qui seront nécessaires par la suite.

Lemme 5.1 : Soit $u \in (D'(M))^m$ tel que $D_u - G(x,y,D_y)u \in C^{\infty}(M)$ avec $G \in L^{1'}(M)$.

Alors si $u \in (\mathcal{H}^S(M))^m$ on a : Au $\in (\mathcal{H}^S(M))^m$, \forall $A \in L_b^O(M)$ à support propre.

<u>Démonstration</u>: On va utiliser le théorème de préparation de Malgrange pour écrire A sous la forme B (xD -xG) + C avec $B \in L_b^{-1}(M)$ et $C \in L_b^{0'}(M)$.

Soit $a(x,y,\lambda,\eta) = \sum_{i=0}^{+\infty} a_{-i}(x,y,\lambda,\eta)$ avec $a_{-i} \in S_b^{-i}(M)$ le développement asymptotique

du symbole de A. Cherchons B sous forme de série asymptotique

$$b(x,y,\lambda,\eta) = \sum_{i=1}^{+\infty} b_{-i}(x,y,\lambda,\eta) \text{ avec } b_{-i} \in S^{-i}b(M).$$

D'après le théorème de préparation de Malgrange il existe $b_{-1} \in S_b^{-1}(M)$ et $c_0 \in S_0^{-1}(M)$ tels que : $a_0(x,y,\lambda,\eta) = b_1(\lambda \prod_{m} -xg_1(x,y,\eta)) + c_0(x,y,\eta)$.

Soit $\frac{\tilde{a}_1}{a_1}(x,y,\lambda,\eta)$ le terme d'ordre -1 dans le développement de $a-\frac{b_1}{a_1}o(xD_x-xG)-c_0$ on peut à nouveau trouver $b_2 = S_b^{-2}(M)$ et $c_1 \in S_b^{-1}(M)$ tels que $a_{-1} = S_b^{-1}(M)$

 $\begin{array}{lll} b_{-2}(\lambda 1I_m - xg_1) + \underline{c}_1 & \text{et a-}(b_1 + b - 2) \circ (xD_x - x^G) - c_0 - \underline{c}_1 \in L_b^{-2}(M) \,. \,\, \text{On peut ainsi} \\ \text{\'eliminer tous les termes du symbole complet de a . Donc il existe} \\ B \in L_b^{-1}(M) \,\, \text{et C} \in L_b^{\circ\prime}(M) \,\, \text{tels que A} = Bo(xD_x - xG) + C \,\, \text{modulo S}_b^{-\infty} \,\, \text{Alors} : \\ Au = Cu \,\, \text{modulo C}^\infty(M) \,. \end{array}$

D'autre part comme $D_x^u-G(x,y,D_y^u)u\in C^\infty(M)$ $Cu\in (\mathcal{K}^s(M))^m$ si et seulement si $Cu\in C^0(\overline{\mathbb{R}}_x^+,H^s(\overline{\mathbb{R}}_y^n))$ et comme $C\in L^{o'}(M)$, $Cu\in C^0(\overline{\mathbb{R}}_x^+,H^s(\overline{\mathbb{R}}_y^n))$ On a donc démontré le lemme. #.

On a la propriété suivante qui fait le lien entre les espaces $\mathcal{K}^{\mathbf{S}}(\mathbf{M})$ et $\mathbf{H}^{\mathbf{S}}(\mathbf{M})$ pour s > 0 .

Lemme 5.2 : Soit $u \in D'(M)$ solution de $D_u-G(x,y,D_y)u \in C^{\infty}(M)$ avec $G \in L^{1'}(M)$, tel que $u \in \mathcal{H}^S(M)$ microlocalement en (x,y,ξ,η) avec x>0, s>0; Alors $u \in H^S(M)$ microlocalement en (x,y,ξ,η) .

 $\begin{array}{l} \underline{\text{D\'emonstration}}: \mathfrak{K}^S(M) \text{ est inclus dans } L^2_{\text{loc}}(\overline{\mathbb{R}}_x^+, H^S(\mathbb{R}_y^n)). \\ \\ \text{Si } u \in \mathfrak{K}^S(M) \text{ microlocalement en } (x,y,\xi,\eta), \text{ il existe a} \in S^O(M) \text{ elliptique} \\ \\ \text{en } (x,y,\xi,\eta) \text{ tel que a } u \in \mathfrak{K}^S(M). \text{ Il faut remarquer que comme} \\ \\ D_u - G(x,y,D_y) u \in C^O(M), \text{ d'après le lemme 5.1, la notion d'appartenance} \\ \\ \text{microlocale à } \mathfrak{K}^S(M) \text{ ne d\'epend pas de a . Notons } v = au \text{ . On a donc :} \\ \end{array}$

(5.1)
$$\int (1+\left|\eta\right|^2)^{s} \left|\hat{v}(\xi,\eta)\right|^2 d\xi d\eta < + \infty . D'autre part WFu $\cap \{\eta=o\} = \emptyset .$$$

Donnons enfin quelques notations :

On suppose qu'on a fixé des coordonnées locales au voisinage de ∂M (x,y) avec $\partial M = \{x=o\}$. On notera $L_{\rho,\delta}^m(\mathbb{R}_y^n)$ et $L_{cl}^m(\mathbb{R}_y^n)$ l'espace des opérateurs pseudodifférentiels d'ordre m de type ρ,δ et classiques dans les variables y , pour $m \in \mathbb{R}$, et $L_{\rho,\delta}^{m'}(M)$, $L_{\rho,\delta}^{m'}(M)$ les espaces $C_{\infty}^{\infty}(\overline{\mathbb{R}}_x^+,L_{\rho,\delta}^m(\mathbb{R}_y^n))$ et $C_{\rho,\delta}^{\infty}(\overline{\mathbb{R}}_x^+,L_{\rho,\delta}^m(\mathbb{R}_y^n))$. On notera $L_{\rho,\delta}^{m,p'}(M)$ et $L_{cl}^{m,p'}(M)$ l'espace des opérateurs de la forme $\sum_{\mu=0}^{\infty}P_{\mu}D_{\mu}^{\mu}$ avec $P_{\mu}\in L_{\rho,\delta}^{m-\mu'}(M)$. On notera $L_{b}^{m,p}(M)$ l'espace des opérateurs de la forme $\sum_{\mu=0}^{\infty}P_{\mu}D_{\mu}^{\mu}$ avec $P_{\mu}\in L_{b}^{m-\mu'}(M)$ On notera $L_{b}^{m,p}(M)$ l'espace des opérateurs de la forme $L_{\rho,\delta}^{m,p}(M)$ avec $L_{\rho,\delta}^{m,p}(M)$ on notera $L_{\rho,\delta}^{m,p}(M)$ on notera $L_{\rho,\delta}^{m,p}(M)$ l'espace des opérateurs de la forme $L_{\rho,\delta}^{m,p}(M)$ avec $L_{\rho,\delta}^{m,p}(M)$ on notera $L_{\rho,\delta}^{m,p}(M)$ on no

 S_b^m les classes de symboles associées à ces classes d'opérateurs. Si q est une fonction scalaire dans $C^\infty(\widetilde{T}^kM)$ le champ hamiltonien de q, H_q , s'écrit dans les coordonnées (x,y,λ,η) :

$$Hq = \frac{\partial q}{\partial \lambda} \times \partial_{x} - \frac{\partial q}{\partial x} \times \partial_{\lambda} + \sum_{i=1}^{n} \frac{\partial q}{\partial \eta_{j}} \partial_{yj} - \frac{\partial q}{\partial y_{j}} \partial_{\eta j}.$$

Si p et p sont deux mxm matrices dans $S_b^{\mathbf{m}}(M)$ on note :

$$\begin{split} \{\widetilde{p},p\} &= \partial_{\lambda}\widetilde{p}x\partial_{x}p - \partial_{x}\widetilde{p}x\partial_{\lambda}p + \sum_{i=1}^{n} \partial_{\eta_{j}}p\partial_{y_{j}}p - \partial_{y_{j}}p\partial_{\eta_{j}}p \\ \text{et } p_{m-1}^{s} &= p_{m-1} - \frac{1}{2i}(\partial_{\lambda}p + x \partial_{x} \partial_{\lambda}p + \sum_{i=1}^{n} \partial_{y_{j}} \partial_{\eta_{j}}p) \end{split}.$$

SECTION II

FRONT D'ONDE POLARISE D'UNE DISTRIBUTION VECTORIELLE ET PROPAGATION A L'INTERIEUR

Dans cette section nous commençons par rappeler les résultats et définitions de N. Dencker [1] sur le front d'onde polarisé d'une distribution. Nous introduisons une notion de front d'onde polarisé nécessaire pour étudier les solutions de problèmes aux limites. Nous donnons aussi quelques propriétés de ce front d'onde polarisé.

II.1. LE FRONT D'ONDE POLARISE D'UNE DISTRIBUTION VECTORIELLE SUR UNE VARIETE A BORD.

Dans tout ce paragraphe X désigne une variété C^{∞} de dimension n .

<u>Définition</u> 1.1 ([1]) : Soit $u \in (D^{\nu}(X))^{m}$. le front d'onde polarisé de u est :

wFpolu =
$$\bigcap N_A$$
 avec $N_A = \{(x,\xi,w) \in T^*(X) \setminus O \times C^m | w \in Kera(x,\xi)\}$
 $Au \in C^{\infty}(X)$

où A désigne un 1 \times m système d'opérateurs pseudodifférentiels dans $L_{cl}^{o}(X)$, de symbole principal $\sigma(A) = a(x,\xi)$.

On notera WFpol u (x,ξ) la fibre de WFpol u au-dessus de (x,ξ) . WFpol u indique dans quelles directions de C^m u est microlocalement C^∞ . Dans la suite on aura besoin d'une version $H^S(X)$ de WFpol u , notée WFpol u que l'on définit de façon analogue en demandant $Au \in H^S(X)$.

On a les propriétés suivantes pour WFpol u et WFpol u :

Proposition 1.2.([1]). $\pi(WFpol u \setminus 0) = WF u (resp.\pi(WFpol u \setminus 0) = WF u)$, si π est la projection de $T^*(X) \times C^m$ sur $T^*(X)$ et WF_S u le front d'onde H^S de u.

Proposition 1.3 ([1]) : Si A est un lxm système dans $L_{cl}^{p}(X)$ de symbole principal $a(x,\xi)$ alors $a(WFpolu) \subset WFpolAu$ (resp. $a(WFpolu) \subset WFpol_{s-p}Au$) si $a(x,\xi,w) = (x,\xi,a(x,\xi)w)$

Proposition 1.4 ([1]): Si E est un mxm système dans $L_{cl}^{p}(X)$ de symbole principal $e(x,\xi)$, elliptique près de $(x_{0},\xi_{0}) \in T(X) \setminus 0$, WFpol Eu= e(WFpol u) (resp. WFpol Eu = e(WFpol u)) au voisinage de (x_{0},ξ_{0}) .

Dans [1] N. Dencker introduit des systèmes de type principal réel et les orbites hamiltoniennes de ces systèmes, dont nous rappelons les définitions.

 $\begin{array}{l} \underline{\text{D\'efinition}} \ 1.5 \ (\text{[1]}) \ : \ \text{un mxm syst\`eme P} \in L^p_{cl}(X) \ \text{de symbole principal p}(x,\xi) \\ \text{est de type principal r\'eel en } (x_o,\xi_o) \in T^{it}(X) \setminus 0 \ \text{s'il existe un mxm symbole} \\ \widehat{p}(x,\xi) \ \text{tel que} \ : \ \widehat{p}p = q(x,\xi) \ \text{II}_m \ \text{au voisinage de } (x_o,\xi_o), \ \text{où } q(x,\xi) \ \text{est un} \\ \text{symbole scalaire de type principal r\'eel et II}_m \ \text{est l'identit\'e de } \mathbb{C}^m \ . \end{array}$

 $\begin{array}{l} \underline{\text{D\'efinition}} \ 1.6 \ (\text{[1]}) \ : \ \text{avec les notations de d\'ef} \ 1.5, \ \text{on note } D_p w = \\ H_q w + \frac{1}{2} \left\{ \widetilde{p}, p \right\} \ w + i \widetilde{p} \ p_{m-1}^S \ w \ , \ \text{où} \ w \ \text{est une fonction } C^\infty \ \text{sur } T^*(X) \setminus O \ \grave{a} \\ \text{valeurs dans } C^m \ \text{et } p_{m-1}^S \ \text{est le symbole sous principal de } P \ . \ \text{Les orbites} \\ \text{hamiltoniennes d'un système} \ P \ \text{de type principal r\'eel sont les ensembles} \\ \Gamma = \left\{ (x,\xi,w(x,\xi)),(x,\xi) \in \gamma \right\} \ \text{où} \ \gamma \ \text{est une bicaract\'eristique nulle de } q \ \text{et} \\ w(x,\xi) \in \text{Ker } p \ (x,\xi) \ \text{v\'erifie } D_p w = O \ . \end{array}$

Le résultat essentiel de [1] est que WFpolu , pour u solution de Pu $\in C^{\infty}(X)$ est une union d'orbites hamiltoniennes de P . Ce résultat s'étend immédiatement à WFpolu

Théorème 1.7 : Soit u solution de Pu = f , avec $P \in L^p_{cl}(X)$ de type principal réel ; si f est microlocalement H^s au voisinage de (x_0,ξ_0) , WFpol $_{s+p-1}u$ est une union d'orbites hamiltoniennes de P au-dessus d'un voisinage de (x_0,ξ_0) .

II.2. LE FRONT D'ONDE POLARISÉ D'UNE DISTRIBUTION VECTORIELLE SUR UNE VARIETE A BORD.

Soit M une variété à bord C^{∞} de bord ∂M et soit $M = M \setminus \partial M$. On va introduire une notion de front d'onde polarisé construit sur $H^{S}(M)$ qui sera défini uniquement pour les solutions de systèmes non caractéristiques. Vu le problème qui nous intéresse et qui est énoncé dans la section IV, il ne nous a pas semblé nécessaire d'introduire une notion de front d'onde polarisé construit sur le WF_{b} utilisé par différents auteurs pour l'étude des problèmes aux limites. Signalons cependant que certains résultats sur WF_{b} , en particulier le fait qu'en un point du bord on peut l'obtenir comme réunion des fronts d'onde des traces de u , ne s'étendent pas immédiatement à un WFpol $_{b}$ u éventuel.

WFpol_s
$$u(\rho) = \bigcap N_A$$
 avec $N_A = \{w \in \mathfrak{C}^m | w \in \text{Ker } a(\rho)\}$, $Au \in \mathcal{H}^S(M)$

où A désigne un 1xm système dans $L_{cl}^{o}(\mathring{M})$ de symbole principal $a(x,y,\xi,\eta)$.

D'après le lemme 5.1 I il suffit de prendre A dans L^{o'}(M) dans la définition.

Les trois propositions suivantes se démontrent comme dans [1] en utilisant le lemme 5.1. I .

Proposition 2.1: $\pi(WFpol_s u \setminus 0) = WF_s u$ si $WF_s u$ est le front d'onde $\Re^S(M)$ et si $u \in (D'(M))^m$ est solution de $\Pr_x u - Gu \in C^\infty(M)$. (2.1)

Proposition 2.2 : Si u \in (D'(M))^m vérifie (2.1) et A est un lxm système dans $L_{cl}^{o}(\mathring{M})$ de symbole principal $a(x,y,\xi,\eta)$, alors $a(WFpol_{s}u) \subset WFpol_{s}$ Au

Proposition 2.3 : Si E est mxm système d'opérateurs pseudodifférentiels dans $L_{c1}^{o}(\mathring{M})$, elliptique près de $(x,y,\xi,\eta) \in T^{*}(\mathring{M}) \setminus 0$, alors pour $u \in (D^{\bullet}(M))^{m}$ vérifiant (2.1) on a WFpol Eu = e(WFpol u).

SECTION III

SYSTEMES DE TYPE PRINCIPAL REEL ET PROPAGATION DE LA POLARISATION LE LONG DES BICARACTERISTIQUES TRANSVERSALES ET TANGENTES AU BORD.

Dans cette section on introduit la classe de problèmes aux limites que l'on va étudier et on démontre les résultats de propagation qui seront utilisés dans la section IV pour obtenir les résultats principaux.

III.1. SYSTEMES DE TYPE PRINCIPAL REEL.

On considère des problèmes aux limites du type suivant :

$$(\mathfrak{b}^{3}) \left\{ \begin{array}{l} D_{\mathbf{x}}^{u} - G(\mathbf{x}, \mathbf{y}, D_{\mathbf{y}}) u \in C^{\infty}(M) \\ \\ \beta(\mathbf{y}, D_{\mathbf{y}}) u(\mathbf{o}) \in C^{\infty}(\partial M) \end{array} \right. \quad \text{sur } M = \overline{\mathbb{R}}_{\mathbf{x}}^{+} \times \mathbb{R}_{\mathbf{y}}^{n} \ .$$

avec les hypothèses suivantes : (H) .

1) $G(x,y,D_y)$ est une mxm matrice dans $S_{cl}^{1}(M)$ de symbole principal $g_1(x,y,\eta)$

2)
$$f = det(\xi \coprod_{m} - g_{1}(x,y,\eta)) = \prod_{v=1}^{j} (\xi - \mu_{v}(x,y,\eta))^{\alpha} \prod_{v=j+1}^{k} ((\xi - a_{v}(x,y,\eta))^{2} - b_{v}(x,y,\eta))^{\alpha} e(x,y,\xi,\eta)^{\alpha}$$

avec i) pour $1 \le y \le k$, e, μ_y , a_y , $b_y \in \mathbb{R}$ $\forall (x,y,\eta) \in \mathbb{R}^+ \times T^*(\mathbb{R}^n_y)$

ii) pour $1 \le \nu \le k$, $1 \le \nu' \le k$, $\nu \ne \nu'$ on $a : \mu_{\nu} \ne \mu_{\nu'}$, $a_{\nu} \ne a_{\nu'}$, $\mu_{\nu} \ne a_{\nu'}$ $\forall (x,y,\eta) \in \mathbb{R}^+_x \times T^{*}(\mathbb{R}^n_y)$

iii)
$$e(x,y,\xi,\eta) \neq 0 \quad \forall (x,y,\xi,\eta) \in T^{*}(M)$$
.

3) \S^{11}_{m} - g_{1} est de type principal réel, i.e. \S^{n}_{p} mxm matrice dont les éléments sont dans des espaces $S^{1,k'}_{cl}(M)$ telle que :

$$\widetilde{p}(\xi 11_{m} - g_{1}(x,y,\eta)) = \widetilde{\pi}(\xi - \mu_{v}(x,y,\eta)) \underbrace{\widetilde{f}(\xi - a_{v}(x,y,\eta))^{2} - b_{v}(x,y,\eta)}^{k} (\xi - a_{v}(x,y,\eta))^{2} - b_{v}(x,y,\eta)) e(x,y,\xi,\eta) 11_{m}$$

4) $\beta(y,D_y)$ est une pxm matrice dans $L_{cl}^o(\mathbb{R}_y^n)$.

On se place au voisinage d'un point $(y^o, \eta^o) \in T^*(\mathbb{R}^n_y)$ avec $(y^o, \eta^o) \in G_y$ pour $j + 1 < y \le k$ i.e. $b_y(0, y^o, \eta^o) = 0$ pour $j + 1 \le y \le k$.

On examine maintenant quelques conséquences des hypothèses (K).

On peut obtenir des renseignements sur les espaces propres de g_1 .

L'hypothèse 2 entraîne qu'il existe une mxm matrice $S(x,y,\eta)$ dans $S_{c1}^{o'}(M)$ homogène de degré 0 en η et définie dans un voisinage V de $(0,y^o,\eta^o)$ telle que : S est elliptique et :

et : $-E_{+}(x,y,\eta)$ a des valeurs propres à partie imaginaire > 0.

-pour $1 \le \nu \le j$ M est une $\alpha_{\nu} \times \alpha_{\nu}$ matrice qui a $\mu_{\nu}(x,y,\eta)$ comme unique valeur propre.

-pour j+1 \leq ν \leq k M est une 2α \times 2α matrice qui a α + \sqrt{b} comme valeurs propres.

Il est clair que $\xi II_m - \widehat{g}_1$ est encore de type principal réel. En écrivant la décomposition en blocs de la matrice \widehat{p} correspondant à \widehat{g}_1 on voit que pour $1 \le \nu \le j$ il existe $\widehat{p}_{\nu}(\xi) \propto \times \propto m$ matrice polynômiale en ξ telle que : $\widehat{p}_{\nu}(\xi)(\xi-M_{\nu}) = (\xi-\mu_{\nu}) \times q_{\nu}(\xi)II_{\alpha_{\nu}}$. Or on a $q_{\nu}(M_{\nu})$ qui est inversible car $q_{\nu}(\xi)$ ne contient pas la racine μ_{ν} donc $M_{\nu} = \mu_{\nu}II$.

Donc l'hypothèse 3) entraîne que <u>les blocs de</u> g₁ <u>associés aux valeurs propres</u> <u>simples sont diagonalisables. (1.2)</u>

De même pour $j + 1 \le v \le k$ il existe $\widetilde{p}_{v}(\xi)$ $2\alpha_{v} \times 2\alpha_{v}$ matrice polynômiale en ξ telle que : $\widetilde{p}_{v}(\xi)(\xi-M_{v}) = ((\xi-a_{v})^{2}-b_{v}) q_{v}(\xi) II_{2\alpha_{v}}$ comme $q_{v}(M_{v})$ est encore inversible on a $(M_{v}-a_{v})^{2}-b_{v} = 0$. (1.3)

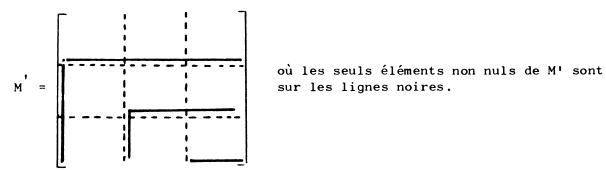
Démontrons le lemme :

<u>Lemme</u> 1.1 : Soit $M(x,y,\eta)$ une $2m \times 2m$ matrice dans $S_{cl}^{1}(M)$ et a et b deux symboles scalaires dans $S_{cl}^{1'}(M)$ et $S_{cl}^{2'}(M)$ respectivement. On suppose que $\det(\xi 11_{2m} - M) = ((\xi - a)^2 - b)^m$ et que $(M - a11_{2m})^2 - b11_{2m} = 0$ au voisinage de $(0,y^{\circ},\eta^{\circ})$. Alors il existe $S(x,y,\eta)$ 2m × 2m matrice dans $S_{cl}^{\circ l}(M)$, homogène de degré 0 en η et définie dans un voisinage V de $(0,y^0,\eta^0)$ telle que : S est elliptique et

(1.4)
$$S^{-1}MS = M \text{ avec } M = \begin{bmatrix} N \\ N \\ N \end{bmatrix} \text{ et } N = \begin{bmatrix} a & |\eta| \\ b & |\eta| \end{bmatrix}$$

 $\underline{\text{D\'emonstration}} : \text{ en remplaçant } \text{M} \text{ par M-all}_{2m} \text{ on se ram\`ene au cas où a = 0}.$ Plaçons nous au point $(0,y^0,\eta^0)$. On peut diviser M par $|\eta|$ pour se débarasser du problème de l'homogénéité. En écrivant la forme de Jordan de M au point $(0,y^0,\eta^0)$ et en utilisant que $(M(0,y^0,\eta^0))^2 = 0$ on voit que les blocs de Jordan ne peuvent être de dimension supérieure à 2 . Donc il existe une 2m × 2m matrice K inversible telle que $K^{-1}M(0,y^{0},\eta^{0})$ K = M avec M de la forme indiquée dans (1.4) avec a = b = o $|\eta|$ = 1 . On peut donc supposer que $M(O,y^{O},\eta^{O}) = M_{O}$.

D'après les résultats de [13] il existe une 2m \times 2m matrice $S(\mathbf{x},\mathbf{y},\eta)$ C^{∞} telle que $S^{-1}MS$ est de la forme suivante : $S^{-1}MS = M + M'$ avec



On utilise maintenant que $(M_0 + M')^2 = b \text{ II}_{2m} (1.5)$. Regardons par exemple les 2 premières lignes et les 2 premières colonnes de M' . On voit facilement que (1.5) entraîne que la 2ème ligne de M' est nulle sauf son ler élément qui est égal à b et que la 1ère colonne de M' est nulle sauf son 2ème élément qui est égal à b . Donc M' se décompose en 2 blocs :

O b	1 0	o
)	หั

et on peut traiter de la même façon le cas de \widetilde{M}' . On a donc $S^{-1}MS$ de la forme (1.4) avec $N = \begin{bmatrix} 0 & 1 \\ b & 0 \end{bmatrix}$. On a donc démontré le lemme. #

On peut appliquer le lemme 1.1 à chaque bloc M_{ν} pour $j+1 < \nu \le k$. Donc il existe une $2\alpha_{\nu} \times 2\alpha_{\nu}$ matrice $S_{\nu}(x,y,\eta) \in S^{o'}(M)$ telle que $S_{\nu}^{-1}M_{\nu}S_{\nu}$ soit de la forme (1.3) au voisinage de $(0,y^{o},\eta^{o})$.

Donc pour $b(x,y,\eta) \neq 0$, M_y a deux valeurs propres de multiplicité α_y associées à des espaces propres de dimension α_y et pour $b(x,y,\eta) = 0$ M_y a une valeur propre de multiplicité $2\alpha_y$ associée à un espace propre de dimension α_y .

Le fait que la partie principale de G se sépare suivant les différentes valeurs propres entraine qu'on peut découpler G en blocs modulo $S^{-\infty}$, d'après un résultat de [14].

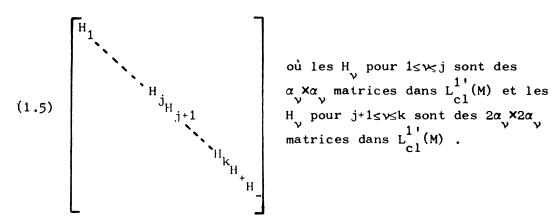
Soit $u \in (D^{\bullet}(M))^m$ une solution de (P) et soit $S(x,y,D_y) \in L^{O^{\bullet}}(M)$ définie par (1.1). Soit $\widetilde{u} = Su$, alors \widetilde{u} est solution de :

$$\begin{cases} p_{\mathbf{x}} \widetilde{\mathbf{u}} - \widetilde{\mathbf{G}} \widetilde{\mathbf{u}} \in C^{\infty}(M) \\ \beta s^{-1}(0, y, p_{\mathbf{y}}) \widetilde{\mathbf{u}} \in C^{\infty}(\partial M) \end{cases}$$

avec $\widetilde{G} = SGS^{-1} + D_xSS^{-1}$ si $S^{-1}(x,y,D_y)$ est une famille d'inverses de $S(x,y,D_y)$. Le symbole principal de \widetilde{G} , \widetilde{g}_1 est de la forme indiquée dans (1.1). On utilise maintenant un résultat de [14]: Proposition 1.2: il existe une m \times m matrice $K(x,y,D_y)$ dans $L_{cl}^{o'}(M)$ de symbole principal $\mathbf{1I}_{\mathbf{m}}$ telle que si $\mathbf{v} = \mathbf{K}\mathbf{u}^{2}$ \mathbf{v} est solution de

(P1)
$$\begin{cases} D_{\mathbf{x}} \mathbf{v} - H \mathbf{v} \in C^{\infty}(M) \\ \beta S^{-1} K^{-1} \mathbf{v}(\mathbf{o}) \in C^{\infty}(\partial M) \end{cases}$$

avec $h_1(x,y,\eta) = g_1(x,y,\eta)$ et H a pour symbole :



On donne maintenant la définition des orbites hamiltoniennes du système (P)

 $\frac{\text{D\'efinition}}{\Gamma} = \{(x,y,\xi,\eta,w(x,y,\xi,\eta)) \in T^{*}(M) \times C^{m}\} \subset Y \times C^{m} \text{ où } Y \text{ est une bicaract\'eristique}$ nulle de $q = \iint_{y=1}^{j} (\xi - \mu_y) \iint_{y=j+1}^{k} ((\xi - a_y)^2 - b_y) e$ et w est solution de $H_q w + (\frac{1}{2} \{ \widetilde{p}, p \} + i \widetilde{p} p_o^s) w = 0$ où $p = \xi II_m - g_1$ et p_o^s est le symbole sous principal de $D_{x} I_{m} - G$.

Rappelons maintenant la classification des points de T * (∂ M) associée au symbole $g_{v} = (\xi - a_{v})^{2} - b_{v}$ qui est celle de [3]. $T^*(\partial M)$ se divise en :

- 1) $\mathcal{H}_{v} = \{(y,\eta) | b_{v}(o,y,\eta) > 0\}$ appelée zone hyperbolique. Dans \mathcal{H}_{v} on a 2 solutions en ξ de $g_{\nu}(o,y,\xi,\eta) = 0$ et deux bicaractéristiques de g_{ν} qui arrivent en (y, η) et qui sont transverses à ∂M .
- 2) $\xi_{y} = \{(y,\eta) | b_{y}(o,y,\eta) < 0\}$ appelée zone elliptique.

Dans $\frac{\xi}{\sigma_{\nu}}$ on n'a pas de solutions de $g_{\nu}(0,y,\xi,\eta) = 0$ et aucune bicaractéristique de g_{ν} n'arrive en (y,η) .

3) $C_{y} = \{(y,\eta) | b_{y}(0,y,\eta) = 0\}$ appelée hypersurface glancing.

Dans G_{ν} on a une racine double en ξ de $g_{\nu}(0,y,\xi,\eta)=0$ et une bicaractéristique de g_{ν} arrive en (y,η) qui est tangente à ∂M .

Les points de $\mathbb{Q}_{_{\mathcal{V}}}$ sont classifiés par le comportement local des bicaractéristiques de $\mathbb{Q}_{_{\mathcal{V}}}$ en ces points.

On définit $\Sigma_{\frac{1}{2}}^{2} = \{(y,\eta) \in T^{*}(\partial M) | H_{g_{y}} x(y,\eta) = 0, H_{g_{y}}^{2} x(y,\eta) > 0\} \Sigma_{y+}^{2} \text{ est l'ensemble des points diffractifs pour } g_{y} \text{ et } \Sigma_{y-}^{2} \text{ l'ensemble des points glissants.}$

On considérera uniquement des points de \sum_{v+}^{2} .

III.2 PROPAGATION DU FRONT D'ONDE POLARISE LE LONG DES BICARACTERISTIQUES TRANSVERSALES.

On considère le cas où P est un des blocs de la décomposition (1.5) associé à une bicaractéristique transversale. On suppose donc que $G(x,y,\eta) = \mu(x,y,\eta) \Pi_m + \sum_{j=0}^{\infty} G_j(x,y,\eta)$ avec $\mu(x,y,\eta)$ réel et homogène de degré un en η et G_j homogène de degré -j en η .

Soit $(y^{\circ}, \eta^{\circ}) \in T^{*}(\partial M) \setminus 0$ et \forall la bicaractéristique nulle de $\xi - \mu(x, y, \eta)$ qui part de $\rho_{\circ} = (0, y^{\circ}, \mu(0, y^{\circ}, \eta^{\circ}), \eta^{\circ})$ on notera $(x, y(x), \xi(x), \eta(x))$ les points de γ pour x assez petit.

On a alors la proposition suivante :

<u>Proposition</u> 2.1. : Sous les hypothèses précédentes, soit u $\in (D^{\bullet}(M))^{m}$ solution de :

$$\begin{cases} p_{\mathbf{u}} \in C^{\infty}(M) \\ u_{|\mathbf{x}=0} = \mathbf{v} \text{ avec } \mathbf{v} \in (D^{\mathbf{v}}(\partial M))^{\mathbf{m}} \end{cases}$$

alors au dessus de γ , pour x assez petit, WFpolu (resp.WFpol $_{_{\mathbf{S}}}$ u) est égal

à l'union des orbites hamiltoniennes de P qui partent de (ρ_0, w_0) avec $w_0 \in WFpol\ v(y^0, \eta^0)$ (resp.WFpol $_Sv(y^0, \eta^0)$).

On commence par démontrer le lemme suivant :

Lemme 2.1 : Il existe E mxm système dans Lo'(M) tel que :

- E est elliptique sur ν
 PE = E(D_x-μ(x,y,D_y)) modulo L_b^{-∞}(M).

Démonstration : on cherche E sous forme de série asymptotique $E = E_0 + E_{-1} + ... + E_{-j} + ...$ avec E_{-j} homogène de degré -j en η . Pour celà il faut résoudre les équations de transport

(2.1)
$$H_{\xi-\mu} E_0 + i G_0 E_0 = 0$$

(2.2)
$$H_{\xi-\mu} = E_{j} + i G_{o} = R_{-j}$$
.

On peut trouver E inversible et indépendant de § solution de (2.1) et par récurrence on montre facilement que si E_{-k} est indépendant de ξ pour $k \le j-1$, R l'est aussi. On peut donc résoudre (2.2) avec E indépendant $de \xi \cdot #$

On peut maintenant démontrer la proposition.

Soit $u \in (D'(M))^m$ solution de $Pu \in C^{\infty}(M)$. Soit $E \in L^{O'}(M)$ obtenu par le lemme 2.1 on a $(D_x - \mu(x,y,D_y))E^{-1}u \in C^{\infty}(M)$ où E^{-1} est une paramétrix de E. Pour démontrer la Prop.2.1, il suffit de montrer que WFpol $E^{-1}u(resp.WFpol_sE^{-1}u)$ est égal à WFpol $E^{-1}v(o)$ (resp.WFpol $E^{-1}v(o)$). (2.3).

En effet l'équation des orbites hamiltoniennes de P est :

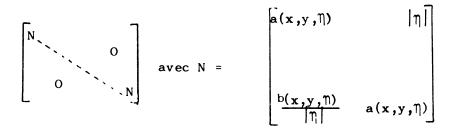
$$H_{\xi-\mu}^{w} + ip_{o}^{s} w = 0$$
 et $p_{o}^{s} = G_{o}$. D'après (2.1) E_{o} vérifie $H_{\xi-\mu}^{e} = E_{o}^{e} + i G_{o}^{e} = 0$. Soit $p_{1}^{e} \in Y$ et $w_{1}^{e} \in WFpolu(p_{1}^{e})$ (le raisonnement est le même pour $WFpol_{s}^{u}$). Soit $(p, w(p))$ l'orbite hamiltonienne de P qui part de (p_{1}, w_{1}) . Supposons que (2.3) est vérifié :

on a: $H_{\xi-\mu}(E_o^{-1}(\rho)w(\rho)) = (H_{\xi-\mu}E_o^{-1}(\rho))w(\rho) + E_o^{-1}(\rho)H_{\xi-\mu}w(\rho) =$ $= E_{0}^{-1} i G_{0} w(\rho) - E_{0}^{-1} i G_{0} w(\rho) = 0 . Donc : E_{0}^{-1} (\rho_{0}) w(\rho_{0}) = E_{0}^{-1} (\rho_{1}) w(\rho_{1}) .$ D'après (2.3) comme $E_0^{-1}(\rho_1)w(\rho_1) \in WFpol E^{-1}u(\rho_1)$ on a $E_{0}^{-1}(\rho_{0})w(\rho_{0}) \in WFpole^{-1}v(0)(\rho_{0})$. Donc $w(\rho_{0}) \in WFpolv(\rho_{0})$ et la prop.2.1 est démontrée. Il suffit donc de démontrer (2.3). On suppose donc que u est solution de $D_{x}^{u-\mu(x,y,D_{v})}$ $u \in C^{\infty}(M)$. Remarquons tout d'abord qu'audessus de $\rho \in \{\gamma \cap \{x>0\}$ on peut définir WFpolu(ρ)(resp.WFpol_su(ρ)) uniquement à l'aide d'opérateurs dans L o' (M) sans agrandir WFpol u (ρ). En effet en suivant la preuve du lemme 5.1.I on vérifie facilement que : $V A \in L^{\circ}(M)$ $\exists \widetilde{A} \in L^{\circ'}(M)$ tel que $Au = \widetilde{A}u$ modulo $C^{\infty}(M)$ et $\sigma(A) = \sigma(\widetilde{A})$ en ρ . On peut donc se restreindre aux opérateurs de L $^{\circ}$ '(M). Soit $_{1}$ \in γ et $w_1 \notin WFpol_{\mathbf{S}}^{\mathbf{u}}(\rho_1)$ il existe donc $A \in L^{o'}(M)$ tel que $Au \in \mathcal{H}^{\mathbf{S}}$ et $<\sigma_{0}(A)(\rho_{1}), w_{1}>\neq 0$. Notons $\rho_{1}=(x_{1},y_{1},\xi_{1},\eta_{1})$, en prenant la trace sur $x = x(\rho_1)$ il existe $B \in L^{0}(\mathbb{R}^{n}_{v})$ tel que $Bu(x(\rho_1)) \in H^{s}(\mathbb{R}^{n}_{v})$ et $< \sigma_0(B)(y_1, \eta_1), w_1 > \neq 0$. En suivant la preuve du lemme 2.1 on construit B \in $L^{o^{\dagger}}(M)$ tel que $B_{|x=x_1} = B \text{ et } (D_x - \mu(x,y,D_y)) B = B(D_x - \mu(x,y,D_y)) \text{ modulo } S^{-\infty}(M), \text{ alors}$ Bu vérifie : $D_{\mathbf{x}} \overset{\sim}{\mathbf{B}} \mathbf{u} - \mu(\mathbf{x}, \mathbf{y}, D_{\mathbf{y}}) \overset{\sim}{\mathbf{B}} \mathbf{u} \in C^{\infty}(\mathbf{M})$ et $\overset{\sim}{\mathbf{B}} \mathbf{u}|_{\mathbf{x}=\mathbf{x}_{1}} \in H^{\mathbf{S}}(\mathbf{R}_{\mathbf{y}}^{\mathbf{n}})$ donc d'après les résultats classiques sur les problèmes hyperboliques on a $\operatorname{Bu}_{\mid x=0} \in \operatorname{H}^{s}(\operatorname{IR}_{y}^{n})$, et on a $\sigma(B)(\rho_{0}) = \sigma_{0}(A)(\rho_{1})$, donc $\operatorname{w}_{1} \notin \operatorname{WFpol}_{s}v(o)(\rho_{0})$. Pour démontrer la proposition dans l'autre sens on raisonne de la même facon en remplaçant ρ_1 par ρ_0 et en utilisant que $Bu \in C^0(\mathbb{R}^+_x, H^s(\mathbb{R}^n_v))$ on démontre de même la Prop. 2.1 pour WFpol u. #

On considère maintenant le cas où P est un des blocs de la décomposition (1.5) associé à une bicaractéristique tangente à ∂M en $(y^0, \eta^0) \in T^*(\partial M) \setminus O$

tel que (y^0, η^0) est un point diffractif pour cette bicaractéristique.

On suppose donc que $g(x,y,\eta) = \sum_{j=1}^{+\infty} g_{-j}(x,y,\eta)$ avec $g_{-j}(x,y,\eta)$ homogène de degré -j en η et $g_1(x,y,\eta)$ est de la forme :



où a(x,y, η) et b(x,y, η) sont réels et homogènes en η de degré 1 et 2 respectivement. On a donc det (ξ II_{2m}-g₁) = $((\xi-a)^2-b)^m$ où m désigne le nombre de blocs et b(0,y°, η °) = 0 et $\{\xi-a,b\}$ > 0 en (0,y°, η °). P = D_x II_{2m} - G est de type principal réel au sens de la définition de III.1 en effet si \tilde{P} est de la forme :

$$\begin{bmatrix} c_0(\xi 1_2^{-N}) & & & \\ & \ddots & & \\ & & 0 & \\ & & & \\ & & c_0(\xi 1_2^{-N}) \end{bmatrix}$$
 où $c_0(A)$ désigne la comatrice de A .

alors $\widetilde{PP}_{1} = ((\xi-a)^{2}-b) \coprod_{2m} = q_{2}(x,y,\xi,\eta) \coprod_{2m}$.

On note γ la bicaractéristique de q_2 issue de $(0,y^0,a(0,y^0,\eta^0),\eta^0)$ et γ_+,γ_- les 1/2 bicaractéristiques sortante et entrante.

Soit $u \in (D'(M))^{2m}$ solution de $Pu \in C^{\infty}(M)$ (3.1). On peut composer (3.1) à gauche par $P \in L^{1,o'(M)}$ avec $\tilde{p}_{o}^{s} = 0$. Si $Q = \stackrel{\sim}{PP}$ on a $Qu \in C^{\infty}(M)$ et $q_{2} = (\xi-a)^{2}-b$. On notera $Q_{2} = q_{2}(x,y,D_{x},D_{y})$.

On va d'abord montrer que l'on peut se ramener au cas où $Q = \frac{Q}{2}$, c'est à dire au cas où le système est diagonal. Notons ρ_0 le point $(0,y^0,0,\eta^0)$. Démontrons d'abord la proposition suivante :

Proposition 3.1: Soit f une 2m×2m matrice $\in C^{\infty}(T^{\frac{1}{M}})$ f = $c_1 \xi^2 + c_2 \xi + c_3$ avec les $c_i \in C^{\infty}(T^{\frac{1}{M}})$; il existe une 2m×2m matrice $a \in C^{\infty}(T^{\frac{1}{M}})$ telle que $c_1 = c_2 + c_3 = c_3 + c_3 = c_3$

<u>Démonstration</u>: D'après les résultats de [6] on peut trouver une transformation canonique à bord qui transforme q_2 en $\xi^2 - x \eta_n^2 + \eta_1 \eta_n$ au voisinage de ρ_0 . On va suivre la démonstration de la prop.V.12 de [6] avec quelques modifications dues au fait qu'on est au voisinage d'un point diffractif et à la présence du produit af .

On se place dans les coordonnées (x,y,λ,η) de $\Upsilon(M)$.

On a :
$$xHq_2 = 2\lambda(\partial_x + \xi \partial_\lambda) + x^2\eta_n \partial_\lambda + x\eta_n \partial_{y_1} + x(\eta_1 - 2x\eta_n) \partial_{y_n} \cdot Sur\{q_2 = 0\}$$
 on a : $\xi^2 - x\eta_n^2 + \eta_1 \eta_n = 0$ donc $\lambda^2 = -x^2 \eta_1 \eta_n + x^3 \eta_n^2$.

D'autre part, comme on cherche des solutions homogènes on pose $\eta_n=1$ il vient : $W=xHq_2=2\lambda\ \partial_x+(3x^2-2x\ \eta_1)\ \partial_\lambda+x\partial y_1+x(\eta_1-2x)\ \partial y_n$ on veut résoudre Wa+axf=0 sur $\{q_2=0\}$. Comme f est un polynôme de degré 2 en ξ , grâce au théorème de division de Malgrange on peut supposer que f est un polynôme de degré 1 en ξ donc que $xf=g(x,y,\eta)\lambda+h(x,y,\eta)$ avec $h(0,y,\eta)=0$. On va chercher a sous la forme $b(x,y,\eta)\lambda+c(x,y,\eta)$.

On a : $w_a = 2\lambda^2 \partial_x b + 2\lambda \partial_x c + (3x^2 - 2x\eta_1) b + x\lambda \partial_y b + x\partial_y c + x(\eta_1 - 2x)(\partial_y b \lambda + \partial_y c) = \lambda(2\partial_x c + x\partial_y b + x(\eta_1 - 2x)\partial_y b) + (3x^2 - 2x\eta_1)b + x\partial_y c + 2(-x^2\eta_1 + x^3)\partial_x b + x(\eta_1 - 2x)\partial_y c = \lambda[2\partial_x c + x(\partial_y + (\eta_1 - 2x)\partial_y b)] + (2(x^3 - x^2\eta_1)\partial_x b + (3x^2 - 2x\eta_1)b + x(\partial_y + (\eta_1 - 2x)\partial_y c)] + (2(x^3 - x^2\eta_1)\partial_x b + (3x^2 - 2x\eta_1)b + x(\partial_y + (\eta_1 - 2x)\partial_y c)] + (x^3 - x^2\eta_1)\partial_x b + (x^3 - x^2\eta_1)b + x(\partial_y + (\eta_1 - 2x)\partial_y c)] + (x^3 - x^2\eta_1)\partial_x b + (x^3 - x^2\eta_1)b + x(\partial_y + (\eta_1 - 2x)\partial_y c)] + (x^3 - x^3\eta_1)\partial_x b + (x^3 - x^3\eta_1)\partial_$

On résoud d'abord l'équation Wa + axf = 0 en séries formelles de η_1 .

On pose donc :
$$\begin{cases} b\lambda + c = \sum_{j \ge 0} (b_j \lambda + c_j) \eta_1^j \\ g\lambda + h = \sum_{j \ge 0} (g_j \lambda + h_j) \eta_1^j \end{cases}$$

Le coefficient de η_1^j dans $W(b\lambda+c)$ est :

 $\lambda \left[2\partial_{\mathbf{x}}^{c}_{j}^{+} \times (\partial_{y_{1}}^{-} - 2x\partial_{y_{n}}^{-})^{b}_{j} + x\partial_{y_{n}}^{b}_{j-1} \right] + \left[2x^{3}\partial_{\mathbf{x}}^{b}_{j}^{+} + 3x^{2}b_{j}^{-} + x(\partial_{y_{1}}^{-} - 2x\partial_{y_{n}}^{-})^{c}_{j} + 2x^{2}\partial_{\mathbf{x}}^{b}_{j-1}^{-} - 2xb_{j-1}^{+} + x\partial_{y_{n}}^{c}_{j-1} \right] .$

Le coefficient de η_1^j dans axf est : $\sum\limits_{n+m=j}$ $\binom{b}{n} \binom{m+c}{m} \binom{g}{m} \binom{\lambda}{m+n=j}$

 $c_{n}^{h} + x^{3} b_{n}^{g} - x^{2} \sum_{m+n=j-1}^{j} b_{n}^{g}$. Dans la suite on notera $\sum_{m+n=j}^{j} a_{n}^{b} = (ab)_{j}$.

Puis on résoud chaque équation obtenue en séries formelles de x :

Pour
$$j \ge 0$$
 on pose :
$$\begin{cases} b_j \lambda + c_j &= \sum_{k \ge 0} (b_j^k \lambda + c_j^k) x^k \\ b_j \lambda + b_j &= \sum_{k \ge 0} (g_j^k \lambda + b_j^k) x^k \end{cases}$$

et on notera $\sum_{p+q=r}$ a^p_j b^q_j = $(a_jb_j)^r$. En identifiant les coefficients de x^r il vient :

$$2(r+1)c_{j}^{r+1} + \partial_{y1}b_{j}^{r-1} - 2\partial_{y_{n}}b_{j}^{r-2} + \partial_{y_{n}}b_{j-1}^{r-1} + (bh)_{j}^{r} + (cg)_{j}^{r} = 0$$
 (3.2).

$$(2r-1)b_{j}^{r-2} + \delta_{y_{1}}c_{j}^{r-1} - 2\delta_{y_{n}}c_{j}^{r-2} + 2(r-1)b_{j-1}^{r-1} + \delta_{y_{n}}c_{j-1}^{r-1} - 2b_{j-1}^{r-1} + (ch)_{j}^{r} + (bg)_{j}^{r-3} - (bg)_{j-1}^{r-2} = 0$$
 (3.3).

Pour j = 0, r = 0 l'équation (3.3) ne donne rien car h_0^0 = 0.

Pour j = 0, r = 1 l'équation (3.3) donne : (3.4) $\partial_y c^0 + c^0 h^1 = 0$. On peut résoudre (3.4) en imposant $c_0^0 = II_{2m}$ sur $y_1 = 0$ (3.5).

Puis on détermine les c_0^r et b_0^r par récurrence. Si on connait c_0^k pour $k \le r$ et b_0^k pour $k \le r-1$, l'équation (3.2) au rang r permet de déterminer c_0^{r+1} et l'équation (3.3) au rang (r+2) permet de déterminer c_0^{r} n'intervient pas dans (ch) car $h_0^0 = 0$.

On peut donc déterminer successivement les b_0^r , c_0^r pour $r \ge 0$.

Supposons maintenant que l'on connaisse les c_p^r , b_p^r pour $r \ge 0$ et $0 \le p \le j-1$. On peut alors déterminer les c_j^r , b_j^r pour $r \ge 0$.

En effet pour r = 1 (3.3) donne : $\partial_y c_j^0 = -(c_0^0 h^1)_j$ car $h_p^0 = 0$ Vp.

et $(c^0h^1)_j = c^0_j h^1_o + f_j(c^0_0, \dots, c^0_{j-1})$. On peut donc déterminer c^0_j . Supposons alors que l'on connaisse c^k_j pour $0 \le k \le r$ et b^k_j pour $0 \le k \le r-1$. L'équation (3.2) au rang r permet de déterminer c^{r+1}_j car $h^0_o = 0$. L'équation (3.3) au rang r+2 permet de déterminer b^r_j . On peut donc déterminer successivement tous les b^r_j et c^r_j . On construit ensuite b et c qui admettent b^r_j et c^r_j comme coefficients de Taylor en $x=\eta_1=0$. alors $a=b\lambda+c$ est une solution de : $H_{q2}a+af=\ell$ avec $\ell\in O(x^\infty,\eta_1^\infty)$, et à cause de (3.5) a est inversible au voisinage de (o,y^0,o,η^0) . Si on peut trouver une solution de H_q a + $a\ell a^{-1}=0$ avec a inversible en ρ^0 alors aa sera une solution de la Prop.3.1.

On peut donc se ramener à démontrer la Prop.3.1 dans le cas où $f \in O(x^{\infty}, \eta_1^{\infty})$.

Dans ce cas on va résoudre Wa + axf = 0 en séries formelles de x .

On pose donc :
$$\begin{cases} b\lambda + c = \sum_{k \geq 0} (b_k \lambda + c_k) x^k \\ k \geq 0 \end{cases}$$

$$g\lambda + h = \sum_{k \geq 0} (g_k \lambda + h_k) x^k . \text{ et chaque } g_k, h_k \text{ est dans } O(\eta_1^{\infty}) .$$

Le coefficient de x^k dans $W(b\lambda+c)$ est : $(2(k+1)c_{k+1}^{}+\partial_{y_1}^{}b_{k-1}^{}+\eta_1^{}\partial_{y_n}^{}b_{k-1}^{}-2\partial_{y_n}^{}b_{k-2}^{})\lambda$ + $(2(k-2)b_{k-2}^{}-2\eta_1^{}(k-1)b_{k-1}^{}+3b_{k-2}^{}-2\eta_1^{}b_{k-1}^{}+\partial_{y_1}^{}c_{k-1}^{}+\eta_1^{}\partial_{y_n}^{}c_{k-1}^{}-2\partial_{y_n}^{}c_{k-2}^{})$. Le coefficient de x^k dans $(b\lambda+c)(g\lambda+h)$ est : $((bh)^k + (cg)^k)\lambda + (ch)^k + (bg)^{k-3} - \eta_1(bg)^{k-2} \quad \text{où on a noté}:$ $(ab)^k = \sum_{m+n=k}^{} a_m^{} b_n \cdot \text{En identifiant les coefficients de } x^k \text{ il vient}:$ $2(k+1)c_{k+1}^{}+\partial_{y_1}^{}b_{k-1}^{}+\eta_1^{}\partial_{y_n}^{}b_{k-1}^{}-2\partial_{y_n}^{}b_{k-2}^{}+(bh)^k + (cg)^k = 0$ $2(k-2)b_{k-2}^{}-2\eta_1^{}(k-1) b_{k-1}^{}+3b_{k-2}^{}-2\eta_1^{}b_{k-1}^{}+\partial_{y_1}^{}c_{k-1}^{}+\eta_1^{}\partial_{y_n}^{}c_{k-1}^{}-2\partial_{y_n}^{}c_{k-2}^{}+$ $(ch)^k + (bg)^{k-3} - \eta_1(bg)^{k-2} = 0 \cdot \text{La 2ème équation au rang 1 est } : \partial_{y_1}^{}c_0 +$

 $(\operatorname{ch})^k + (\operatorname{bg})^{k-3} - \eta_1 (\operatorname{bg})^{k-2} = 0 \text{ . La 2ème équation au rang 1 est } : \partial_y c_0 + \eta_1 \partial_y c_0 - 2\eta_1 b_0 + c_0 h_1 = 0 \text{ . On choisit } c_0 = \operatorname{II}_m \text{ . On a donc } \partial_y c_0 = \partial_y c_0 = 0$ et comme $h_1 \in O(\eta_1^\infty)$ on peut trouver $b_0 \in O(\eta_1^\infty)$ tel que $-2\eta_1 b_0 + c_0 h_1 = 0$.

Supposons par récurrence que l'on connaisse b_j, c_j pour $j \le r$ et que $b_j \in O(\eta_1^{\infty})$ et $c_j \in O(\eta_1^{\infty})$ pour $j \ne 0$.

La 1ere équation au rang r permet de déterminer $c_{r+1} \in O(\eta_1^{\infty})$.

La 2ème équation au rang r+2 permet de déterminer $b_{r+1} \in O(\eta_1^{\infty})$.

on va résoudre :
$$\begin{cases} H_{q_2} = 0 \\ Q_2 & \text{avec a } \in C^{\infty}(\widetilde{T}^{\frac{1}{m}}). \end{cases}$$
(3.6)
$$\begin{cases} a \text{ elliptique en } \rho_0 \end{cases}$$

en utilisant la méthode de Peano-Baker ([15] p.408).

Pour appliquer la méthode de Peano-Baker on commence par chercher

$$a_o \in C^{\infty}(\widetilde{T}^{*}M)$$
 tel que :
$$\begin{cases} H_{q_2} a_o = 0 & \text{sur } \{q_2 = 0\} \\ a_o \big|_{x=o} = \widetilde{a}_o \end{cases} \text{ et } \widetilde{a}_o(\rho_o) \text{ elliptique.}$$

Il suffit de prendre $a_0 = 11_{2m}$. Puis pour $i \ge 1$ on cherche $a_i \in C^{\infty}(\tilde{T}^{\frac{1}{M}})$ tel que: $\begin{cases}
H_{q_2} a_i = a_{i-1} f & +\infty \\
& \text{Alors } a = \sum_{i=0}^{n} a_i \text{ est solution de (3.6)} \\
a_{i|x=0} = 0
\end{cases}$

Commençons donc par résoudre (3.8) sur $\{q_2=0\}$. On veut maintenant des solutions qui sur x=0 sont paires par rapport à ξ . On écrit f comme polynôme du ler degré en ξ par le théorème de division de Malgrange. Comme d'autre part on cherche des solutions avec une certaine homogénéité on fixe $\eta_n=1$. Sur $\{q_2=0\}$ on prend comme coordonnées près de ρ_o , $(x,y,\xi,\eta_2;\ldots\eta_n)$.

Le changement de coordonnées :
$$\begin{cases} x = s^2 - r \\ \xi = s \\ y_n = y_n^* + \eta_1 + 2(rs - \frac{s^3}{3}) \end{cases}$$

transforme H_{q_2} en $\partial_{y_1} + \partial_{s}$.

En oubliant les indices i , il suffit de résoudre :
$$\begin{cases} H_{q_2} = 0 \\ a_{|x=q_2} = 0 \end{cases}$$

avec $f \in O(x^{\infty})$.

Prolongeons f par 0 dans $x \le 0$. Dans les nouvelles coordonnées il faut trouver a telle que $\begin{cases} (\partial_y + \partial_z)a = f \\ y_1 & \text{Comme on a prolongé f par 0} \\ a_{\mid_S 2 - r = 0} & \text{dans s}^2 - r \le 0 \end{cases},$

est évidemment paire en ξ sur x = 0.

Donc on a résolu (3.8) et donc (3.6) sur $\{q_2=0\}$. Il reste à étendre a hors de $\{q_2=0\}$ pour avoir a \in $C^{\infty}(T^{\infty}M)$. Soit h une extension quelconque de a hors de $\{q_2=0\}$. Par le théorème de préparation de Malgrange on peut écrire : h = $c(x,y,\xi,\eta)q_2$ + $a_1(x,y,\eta)\xi+a_0(x,y,\eta)$. Alors $a=a_1(x,y,\eta)\xi+a_0(x,y,\eta)$ vérifie évidemment $a=a_1(x,y,\eta)\xi+a_0(x,y,\eta)$ et

$$\begin{split} & \stackrel{\sim}{a}_{\mid q_2 = x = 0} = a_1^{(0,y,-\xi^2,\eta_2,\dots,\eta_n)} \xi + a_0^{(0,y,-\xi^2,\eta_2,\dots,\eta_n)} \cdot \text{Comme a}_{\mid x = 0} \\ & \text{est paire en } \xi \text{ on a : } a_1^{(0,y,\eta_1,\eta_2,\dots,\eta_n)} = 0 \text{ sur } \eta_1 \leq 0 \text{ . Il reste} \\ & \text{encore à modifier } \stackrel{\sim}{a} \text{ dans } \eta_1 \geq 0 \cdot a_1^{(0,y,\eta_1,\eta_2,\dots,\eta_n)} \text{ est nul dans } \eta_1 \leq 0 \\ & \text{donc s'annule à l'ordre } \infty \text{ sur } \eta_1 = 0 \text{ .} \end{split}$$

D'autre part l'hypersurface $\{q_2=0\}$ est au-dessus de $\eta_1-x \le 0$. Soit $X(t) \in C^\infty(\mathbb{R})$ telle que $\left\{ \begin{array}{l} X(t) = 0 \text{ pour } t \ge 1 \\ X(t) = 1 \text{ pour } t \le 0 \end{array} \right. .$

 $\begin{aligned} \mathbf{a}_1 &(0,\mathbf{y},\eta_1,\dots,\eta_n) \mathbf{X}(\mathbf{x}/\eta_1) \text{ est } \mathbf{C}^{\infty} \text{ car } \mathbf{a}_1 &(0,\mathbf{y},\eta_1,\dots,\eta_n) \in \mathbf{O}(\eta_1^{\infty}), \text{ et elle} \\ \text{est nulle sur } &\{\mathbf{q}_2 = 0\}. \text{ Notons encore } \widetilde{\mathbf{a}} \text{ la fonction } (\mathbf{a}_1(\mathbf{x},\mathbf{y},\eta) - \mathbf{X}(\mathbf{x}/\eta_1) \mathbf{a}_1(\mathbf{o},\mathbf{y},\eta)) \in \mathbf{A}_0(\mathbf{x},\mathbf{y},\eta). \\ &+ \mathbf{a}_0(\mathbf{x},\mathbf{y},\eta). \\ \text{Elle vérifie } \mathbf{H}_{\mathbf{q}_2} \widetilde{\mathbf{a}} + \widetilde{\mathbf{a}} \mathbf{f} = 0 \text{ sur } \{\mathbf{q}_2 = 0\} \text{ et} \end{aligned}$

 $\frac{\partial \tilde{a}'}{\partial \xi}\Big|_{x=0} = a_1(0,y,\eta) - a_1(0,y,\eta) = 0$. et $\tilde{a}(\rho_0) = a_0(0,y^0,\eta^0)$ est elliptique. On a donc démontré la Prop.3.1. On démontre de la même façon la Prop.3.1. pour une équation non homogène, dont le second membre est de la même forme que f #.

Proposition 3.2. : il existe A et B 2m×2m matrices dans $L_b^0(M)$ telles que $BQ-Q_2A \equiv 0$ et A elliptique au voisinage de P_0 .

<u>Démonstration</u>: On a Q = $Q_2 + Q_1 + Q_0 + \dots$ avec $Q \in L_b^{i,2}(M)$ et q_i homogène de degré i en (ξ,η) .

On va déterminer a et b sous forme de série asymptotique :

$$a = \sum_{i=0}^{+\infty} a_i$$
 $b = \sum_{i=0}^{+\infty} b_i$ avec a_i , $b_i \in S_b^{-i}(M)$.

La seule différence avec la méthode classique des équations de transport, vient du fait qu'on cherche des symboles dans $C^\infty(T^*M)$.

On a :
$$\sigma_{\mathbf{2}}(Bq-q_{2}A) = q_{2}(b_{0}-a_{0})$$
. On prend donc $a_{0} = b_{0}$

$$\sigma_{\mathbf{1}}(Bq-q_{2}A) = b_{-1}q_{2} + \frac{1}{i}\sum_{j=1}^{n} \partial_{\eta_{j}}a_{0} \partial_{y_{j}}q_{2} + \frac{1}{i}\partial_{\xi}a_{0} \partial_{x}q_{2} + a_{0}q_{-1} - q_{2}a_{-1}$$

$$-\frac{1}{i}\sum_{j=1}^{n} \partial_{y_{j}}a_{0} \partial_{\eta_{j}}q_{2} - \frac{1}{i}\partial_{x}a_{0} \partial_{\xi}q_{2} = b_{-1}q_{2} + a_{0}q_{1}-q_{2}a_{-1} + \frac{1}{i}H_{q_{2}}a_{0}.$$

On résoud d'abord H a -ia q =0 sur $\{q_2=0\}$ en utilisant la Prop.3.1. On peut trouver a sous forme de polynôme du ler degré en ξ , donc H a -i a q est un polynôme du 2ème degré en ξ qui s'annule sur $\{q_2=0\}$. Donc il existe $\underline{c}_1(x,y,\eta) \in S^{-1'(M)}$ tel que :

H_{q2} a -ia q₁ = c₋₁q₂. On prend alors
$$i(b_{-1}-a_{-1}) = c_{-1}$$
. Supposons par récurrence que l'on connaisse les a_{-i} , b_{-i} $\forall i < n-2$. Pour éliminer $\sigma_{-n}(Bq-q_2A)$ on doit résoudre une équation du type : H_{q2} -n+1 -i a_{-n+1} q₁ = f_{-n}+i(b_{-n}-a_{-n})q₂ avec f_{-n} dépendant des q_i et des a_{-i} , b_{-i} pour $i \le n-2$.

On résoud d'abord cette équation sur $\{q_2=0\}$ par la Prop.3.1.

On a donc H_{q_2-n+1} -i $a_{-n+1}q_1$ -f = $c_{-n}q_2$ avec c_{-n} connu dans S^{-n} (M).

On prend ensuite $i(a_{-n}-b_{-n})=c_{-n}$. On peut ainsi déterminer tous les a_{-1} , b_{-1} ce qui démontre la proposition # .

Si $u \in (D'(M))^{2m}$ est une solution de $Qu \in C^{\infty}(M)$ on a donc $Q_2Au \in C^{\infty}(M)$.

Proposition 3.3 : Soit $u \in (D^{\bullet}(M))^{2m}$ solution de $Q_2 u \in C^{\infty}(M)$. Soit $\rho^1 = (x^1, y^1, \xi^1, \eta^1) \in Y$ avec $x^1 > 0$. Alors il existe \widetilde{A} 2mx2m matrice dans $L_{cl}^{0}(M)$ telle que $\widetilde{A}u \in C^{\infty}(\text{resp }\mathcal{K}^{S})$ microlocalement en $(x^1, y^1, \xi^1, \eta^1)$ et WFpol $u(x^1, y^1, \xi^1, \eta^1)$ (resp. WFpol $u(x^1, y^1, \xi^1, \eta^1)$) = Ker $\widetilde{a}_0(x^1, y^1, \xi^1, \eta^1)$. et $Q_2\widetilde{A} - \widetilde{A}Q_2 \equiv 0$ dans un voisinage conique de $(x^1, y^1, \xi^1, \eta^1)$.

Démonstration : Comme on est en un point de T*(M) on peut se ramener au cas où $Q_2 = D_x$ par conjugaison par des opérateurs intégraux de Fourier classiques. Comme $x^1 > 0$, vest transverse aux surfaces x = cste au voisinage de ρ^1 . On peut donc trouver F et G opérateurs intégraux de Fourier classiques et X opérateur de troncature près de ρ^1 , tel que XGQ_2 - XD_x F $\equiv 0$ au-dessus d'un voisinage de (x^1,y^1) . Fixons une surface initiale $x = x^1 + \epsilon$ avec ϵ assez petit.

On peut de plus choisir X commutant avec D_x . Alors v = Xfu est solution de $D_v v \in C^{\infty}$ au voisinage de (x^1,y^1) (3.11).

Soit $B(x,y,D_x,D_y)$ un système dans $L_{c\ell}^o(\mathring{M})$ tel que $Bv \in C^{\infty}$ et WFpol $v(x^1,y^1,\xi^1,\eta^1) = Ker b_O(x^1,y^1,\xi^1,\eta^1)$.

D'après la Prop.2.1 il existe un système $\widetilde{B}(y,D_y)$ dans $L_{\mathcal{C}}^{o}(\mathbb{R}_y^n)$ tel que $\widetilde{B}(y,D_y)v(x^1+\epsilon)\in C^{\infty}(\mathbb{R}_y^n)$. De plus on a

 $\text{WFpol } v\left(x^1+\epsilon\right)(y^1,\eta^1) = \text{Ker } \widetilde{b}_0(y^1,\eta^1) \text{. A cause de (3.11),}$ $\widetilde{B}(y,D_y)v(x,y) \in C^\infty(\mathring{M}) \text{ en tronquant } \widetilde{B} \text{ au voisinage de } x^1 \text{. Il faut enfin modifier } \widetilde{B}(y,D_y) \text{ qui n'est pas un opérateur dans } L^0(\mathring{M}) \text{. Soit } X(\eta,\xi) \text{ } C^\infty$ et homogène de degré 0 en (η,ξ) telle que :

$$\begin{cases} x(\eta,\xi) = 0 \text{ si } |\eta| \le \epsilon_1 |\xi| \\ x(\eta,\xi) = 1 \text{ si } |\eta| \ge \epsilon_2 |\xi| & \text{avec } \epsilon_1 < \epsilon_2 \text{ . Si } \epsilon_2 \text{ est assez petit,} \end{cases}$$

 $X(\eta,\xi)$ est égal à 1 au voisinage de (x^1,y^1,ξ^1,η^1) et si $\widetilde{c}(y,D_y,D_x) = X(D_y,D_x)$ $\widetilde{B}(y,D_y)$, $\widetilde{c}(y,D_y,D_x) \in L^0(\mathring{M})$ et $\widetilde{c}(y,D_y,D_x)$ $v \in c^\infty(\mathring{M})$.

D'autre part, d'après la Prop.2.1. on a WFpol v $(x^1, y^1, \xi^1, \eta^1) = \text{Ker } \tilde{b}_o(y^1, \eta^1)$ = Ker $\tilde{c}_o(x^1, y^1, \xi^1, \eta^1)$ et $D_x \tilde{c} - \tilde{c} D_x \equiv 0$ au voisinage de $(x^1, y^1, \xi^1, \eta^1)$.

Pour revenir à u on vérifie facilement que $\widetilde{A} = \widetilde{GCF}$ vérifie la proposition. Le cas de WFpol u se traîte de la même façon #.

On se place maintenant dans le cas général c'est-à-dire qu'on a : $q_2 = \left(\xi - \lambda(x,y,\eta)\right)^2 - \mu(x,y,\eta) \text{ et } \rho^0 = (0,y^0,\lambda(0,y^0,\eta^0),\eta^0) \text{ est un point strictement diffractif pour } q_2.$

Proposition 3.4 : Soit $u \in (D'(M))^{2m}$ solution de $Q_2 u \in C^{\infty}(M)$. L'opérateur A de la Prop.3.3 se prolonge en un opérateur A $\in L^{0,1}'(M)$ tel que $Q_2 A - BQ_2 \equiv 0$ (3.12) avec $B \in L^{0,1}'(M)$.

 $\frac{\text{D\'{e}monstration}}{\text{est transverse \`{a} S}} : \text{Soit S l'hypersurface } \{x=x^1\}. \text{ Si } x^1 \text{ est assez petit H}_{q_2}$

En utilisant les arguments de la démonstration de la Prop.3.2, il suffit de vérifier que pour $f \in L^{p,2}(M)$ et $a_0(y,\xi,\eta)$ $2m\times 2m$ matrice polynômiale du ler degré en ξ il existe $a(x,y,\xi,\eta)$ $2m\times 2m$ matrice dans $S^{0,1}(M)$ telle que :

$$\begin{cases} H_{q_2} & = f \text{ sur } \{q_2 = 0\} \\ 2 & (3.13) \text{ où } V_1 \text{ est un petit voisinage conique de } \rho^1 \\ a_{|S \cap V_1} & o \end{cases}$$

En effet en utilisant le théorème de préparation de Malgrange comme dans le lemme $5.1\ I$, on peut supposer que l'opérateur A est dans $L^{0,1}$ '(M). Démontrons donc (3.13):

On cherche tout d'abord la restriction de a à $\{q_2=0\}$ sous la forme $a(x,y,\xi,\eta) = a^1(x,y,\eta)\xi + a^0(x,y,\eta)$.

On peut alors trouver a et a tels que a = a + b vérifie :

$$\begin{cases} H_{q_{2}}^{a = f} & sur \{q_{2}=0\} \\ a_{|S \cap v_{1} \cap \{q_{2}=0\}} & a_{o|\{q_{2}=0\}} \end{cases}$$

Puis on peut étendre a et a hors de $\{q_2=0\}$ pour avoir a $|S \cap v_1|$ = a o on a donc démontré (3.12). #

On définit maintenant les opérateurs de Neumann N_{+} et N_{-} associés à l'opérateur Q_{2} . Pour $u_{0} \in D'(\partial M)$. Soit $u_{\pm} \in D'(M)$ solution de :

$$\begin{cases} q_2^u \in C^{\infty}(M) \\ u_{\partial M} \equiv u_0 \text{ en } (y^0, \eta^0) \\ u \equiv 0 \text{ sur } v_+ \end{cases}$$

On définit alors $N_{\pm}u_{o} = D_{x}u_{\pm}|_{\partial M}$

Rappelons maintenant un lemme qui sera utile dans la suite :

Lemme 3.5 : Soit $u \in D^{\bullet}(M)$ solution de $Q_2 u \in C^{\infty}(M)$. Si $u \in \mathcal{K}^S$ microlocalement en un point de \forall . Alors $D_x u(0) - N_+ u(0)$ est microlocalement H^{S-1} en $(y^{\bullet}, \eta^{\bullet})$ où N_+ est défini plus haut.

<u>Démonstration</u>: On peut facilement extraire ce résultat de [10] sous l'hypothèse supplémentaire que $u(0) \in C^{\infty}(\partial M)$. Il suffit de remplacer u par $u - K_{+}u$ où K_{+} est une paramétrix sortante du problème de Dirichlet pour se ramener à la situation de [10] et démontrer le lemme. # .

On peut maintenant démontrer un premier résultat de propagation de WFpol u.

Proposition 3.6 : Soit u € (D'(M))^{2m} solution de :

$$\left\{ \begin{array}{l} Q_2^{\ u} \in C^\infty(M) \\ \\ u_{\ | \ \partial M} \in C^\infty(\partial M) \end{array} \right. \text{ et soit } w \in \mathfrak{C}^{2m} \text{ et } \rho^1 \in \gamma_- \ .$$

Alors si w \notin WFpol u(ρ^1)(resp.WFpol_u(ρ^1)), il existe des 1×2m matrices $b^0 \in L^0(\partial M)$, $b^{-1} \in L^{-1}(\partial M)$ telles que $b^0 D_x u(0) - N^+ b^1 D_x u(0)$ est microlocalement cl

 C^{∞} en $(y^{\circ}, \eta^{\circ})$ (resp. microlocalement H^{s-1} en $(y^{\circ}, \eta^{\circ})$). et $< \sigma(b^{\circ})(y^{\circ}, \eta^{\circ})$, $w > \neq 0$ (3.14)

 $\frac{\text{D\'{e}monstration}}{\text{D\'{e}monstration}}: \text{Soit } w \in \mathbb{C}^{2m} \quad \text{tel que } w \notin \text{WFpol } u(\rho^1) \text{ (resp.WFpol } u(\rho^1))$ Par d\'{e}finition il existe une 1×2m matrice \widetilde{a} dans $L_{c\ell}^{o}(M)$ telle que $\widetilde{a}u \in C^{\infty}(M) \text{ (resp.} \mathbb{K}^{S}(M))$, $< \sigma(\widetilde{a})(\rho_1)$, $w > \neq 0$ et \widetilde{a} vérifiant les propriétés de Prop.3.3.

D'après la Prop.3.4 on peut prolonger \tilde{a} en $a = a^1(x,y,D_y)D_x + a^0(x,y,D_y)$ $a^0 \in L_{c\ell}^{o'}(M)$ $a^1 \in L_{c\ell}^{-1}(M)$. Notons v = au

on a d'après $(3.12): Q_2 v \in C^{\infty}(M)$ et $v \in C^{\infty}(M)$ en P_1 $(resp. \in \mathcal{K}^S(M))$ en P_1 donc d'après le lemme 3.5 on a $: D_x v - N_+ v \in C^{\infty}(\partial M)(y^0, \eta^0)$ $(resp. H^{S-1}(\partial M))$ et $D_x v(0) - N_+ v(0) = (D_x a^1) D_x u(0) + a^1 D_x^2 u(0) + (D_x a^0) u(0) + a^0 D_x u(0) - N_+ a^1 D_x u(0) - N_+ a^0 u(0) = (a^0 + D_x a^1) D_x u(0) - N_+ a^1 D_x u(0)$ modulo $C^{\infty}(\partial M)$ car $u(0) \in C^{\infty}(\partial M)$ en posant $b^0 = (a^0 + D_x a^1)$, $b^1 = a^1$ on a $: b^0 D_x u(0) - N_+ b^1 D_x u(0) \in C^{\infty}(\partial M)$ en (y^0, η^0) $(resp. H^{S-1}(\partial M))$ en (y^0, η^0) .

D'autre part : $\sigma(b^{\circ})(y^{\circ},\eta^{\circ}) = \sigma(a^{\circ})(y^{\circ},\eta^{\circ}) = \sigma(a)(\rho^{\circ})$ car en $\rho^{\circ},\xi = 0$ et $\sigma(a)(\rho^{\circ}) = \sigma(a)(\rho^{\circ})$ car on a $H_{q_2}\sigma(a) = 0$ sur $\{q_2=0\}$. Donc $< \sigma(b^{\circ})(y^{\circ},\eta^{\circ}), w > \neq 0$ et on a démontré la proposition. #

Remarque 3.7 : L'opérateur b°-N_+b¹ n'est pas dans une des classes $L_{\rho,\delta}^{o}(\partial M)$ avec $\rho + \delta \geq 1$ mais dans la classe $A_{+}^{o,+}(\partial M)$ de [11]. A priori on ne peut donc pas conclure de (3.14) que w \notin WFpol $D_{\mathbf{x}}^{u}(0)(\mathbf{y}^{o},\eta^{o})$. Cependant d'après [6] il existe F et G opérateurs intégraux de Fourier elliptiques dans $\mathbf{I}^{o}(\partial M, \mathbb{R}^{n}, \partial \chi)$ tels que $\mathbf{F}_{N_{+}} \equiv \widetilde{N}_{+}^{c} \mathbf{G}$ au voisinage de $(\mathbf{y}^{o}, \eta^{o})$ où \widetilde{N}_{+}^{c} est le multiplicateur de Fourier $\eta_{n}^{2/3} = \frac{A_{+}^{i}}{A_{+}^{i}} (\eta_{1} \eta_{n}^{-1/3})$, où A_{+}^{c} est une des 2 fonctions d'Airy utilisées dans la construction de paramétrix dans le cas diffractif. Soit $\psi_{1}(\mathbf{s}) \in C_{o}^{\infty}(\mathbb{R})$ telle que $\left\{ \begin{array}{ccc} \psi_{1}(\mathbf{s}) &= 1 & |\mathbf{s}| \leq 1 & \text{et } \psi_{2} = 1 - \psi_{1} \\ \psi_{1}(\mathbf{s}) &= 0 & |\mathbf{s}| \geq 2 \end{array} \right\}$

Rappelons la définition de la classe $N_{\rho}^{m}(\{\eta_{1}=0\})$ (voir [16])

 $\begin{vmatrix} \frac{\text{D\'efinition}}{|\eta_1|} < |\eta_2, \dots, \eta_n| \text{ on a: } |D_y^\beta D_1^{\gamma} D_1^{\alpha} P| \leq C_{\alpha,\beta,\nu} |\eta^{\nu}|^{m-|\alpha|} (|\eta^{\nu}|^{\beta+|\eta_1|})^{-|\gamma|} \text{ . et } \\ |\text{si } p \in S_{1,0}^m \text{ sur tout cone disjoint de } \{\eta_1 = 0\} \text{ .}$

 $\begin{aligned} &\text{alors} \ \frac{\text{A}_{+}^{'}}{\text{A}} \ (\eta_{1}\eta_{n}^{-1/3}) \ \in \ N_{1/3}^{1/3}(\{\eta_{1}=0\}) \ \text{ et on a le résultat suivant } : \ \text{si a > 1/3} \\ &\phi_{1}(\eta_{1}\eta_{n}^{-a})\eta_{n}^{2/3} \ \frac{\text{A}_{+}^{'}}{\text{A}_{+}}(\eta_{1}\eta_{n}^{-1/3}) \ \in \ N_{1/3}^{1-(1-a)/2}(\{\eta_{1}=0\}) \ \text{ et } \phi_{2}(\eta_{1}\eta_{n}^{-a})\eta_{n}^{2/3} \ \frac{\text{A}_{+}^{'}}{\text{A}_{+}}(\eta_{1}\eta_{n}^{-1/3}) \\ &\in \ N_{a}^{1}(\{\eta_{1}=0\}) \ . \ \text{D'autre part } N_{\rho}^{\text{m}}(\{\eta_{1}=0\}) \ \subset \ S_{\rho,\rho}^{\text{m}}(\mathbb{R}^{n}) \ , \ \text{donc on a décomposé} \\ &\widetilde{N}_{+} \ \text{en } : \ \widetilde{N}_{+} \ = \ \widetilde{N}_{1}^{+}\widetilde{N}_{2} \ \text{ avec } \ \widetilde{N}_{2} \ \in \ L_{a,\rho}^{1}(\mathbb{R}^{n}) \ , \ \widetilde{N}_{1} \ \in \ L_{1/3,\rho}^{1-(1-a)/2}(\mathbb{R}^{n}) \end{aligned}$

Prenons a > 1/2 alors $F^{-1} \overset{\sim}{N_2} G \in L^1_{a,1-a}(\partial M)$ et le théorème d'Egorov s'applique à $\overset{\sim}{N_2}$.

On va maintenant donner une définition de WFpol u où l'on utilise des symboles dans les classes $S_{\rho,1-\rho}^{o}({\rm I\!R}^n)$, $\rho>1/2$.

 $\begin{array}{l} \underline{\text{D\'efinition}} \ \ 3.9 : \text{Soit} \ u \in (\mathbb{D}^{\text{!`}}(\mathbb{R}^{n}))^{\text{m}} \ , \ w \in \mathfrak{C}^{\text{m}} \ , \ \text{et} \ (x_{o},\xi_{o}) \in T^{\text{``}}(\mathbb{R}^{n}). \\ \\ \text{On dit que } w \not\in \text{WFpol} \ u(x_{o},\xi_{o}) \ (\text{resp.WFpol}_{s}u(x_{o},\xi_{o})) \ \text{si il existe} \\ \\ a_{1},\ldots a_{m} \in L^{o}_{\rho,1-\rho}(\mathbb{R}^{n}) \ \text{tels que} \ \sum_{i=1}^{n} \ u_{1} \in C^{\infty}(\text{resp.H}^{S}) \ \text{et il existe} \ \textbf{V} \\ \\ \text{voisinage conique de} \ (x_{o},\xi_{o}) \ \text{tel que lim inf} \ | \ \sum_{t\to +\infty} a_{i}(x,t \ \xi)w_{i} \ | \ \neq 0 \ \ \textbf{V}(x,\xi) \in \textbf{V} \ . \\ \\ \\ t_{\to +\infty} \ i=1 \ i \ \end{array}$

On note alors WFpol $u = \{(x, \xi, w) \in T^*(\mathbb{R}^n) \times \mathfrak{C}^m | w \in WFpol \ u(x, \xi)\}$, qui est un ensemble fermé de $T^*(\mathbb{R}^n) \times \mathfrak{C}^m$.

On a les deux propositions suivantes:

Proposition 3.10: avec les notations de Prop.1.2 II, $\pi(\widetilde{WFpolu}\setminus 0) = WFu$ (resp. $\pi(\widetilde{WFpolu}) = WFu$).

 $\begin{array}{l} \underline{\text{D\'emonstration}}: \text{Si W\'Fpol u}(x_0,\xi_0) = 0 \text{ il existe une mxm matrice } E \text{ dans} \\ L^0_{\rho,1-\rho}(\mathbb{R}^n), \text{ telle que Eu} \in C^\infty, \text{ et telle que } \forall w \in C^m \setminus \{0\} \\ \lim \inf_{t \to +\infty} \|E(x,t\xi)w\| \neq 0, \\ \text{$t \to +\infty$} \\ \forall (x,\xi) \in V \text{ voisinage conique de } (x_0,\xi_0). \\ \text{Ceci entraîne que } E \text{ est microlocalement inversible au-dessus d'un voisnage conique de } (x_0,\xi_0) \text{ ce qui d\'emontre} \\ \text{la proposition. } \# \end{array}$

Proposition 3.11 : Soit $u \in (D^{\bullet}(\mathbb{R}^{n}))^{m}$ et E une mxm matrice dans $L_{cl}^{o}(\mathbb{R}^{n})$ elliptique en (x_{o},ξ_{o}) alors WFpol Eu = e WFpol u où e est le symbole principal de E.

Supposons que u $\in \mathbb{K}^{s'}$ avec s' > s-1/4 et qu'on s'intéresse à la propagation de WFpol u . Alors on a le résultat suivant :

 $\begin{array}{l} \underline{\text{Proposition}} \ 3.12 \ : \ \text{Soit} \ u \in \left(D^{\text{!}}(M)\right)^{2m} \ \text{avec} \ u \in \mathcal{K}^{\text{S'}}(M) \ \text{et s'} > s-1/4 \\ \\ \text{et} \ u \ \text{solution} \\ \left\{\begin{matrix} Q_2 \ u \in C^{\infty}(M) \\ u \mid_{\partial M} \in C^{\infty}(\partial M) \end{matrix} \right. \\ \\ \text{Soit} \ w \in \mathfrak{C}^{2m} \ \text{tel que} \ w \not\in \text{WFpol}_{\text{S}}^{-1} \\ u \mid_{\partial M}^{-1} \ \text{alors} \ w \not\in \text{WFpol}_{\text{S}-1}^{-1} \\ u \mid_{\partial M}^{-1} \ \text{olive} \\ \end{array}$

 $\begin{array}{l} \underline{\text{D\'emonstration}} : \text{ D'apr\`es la remarque } 3.7 \text{ prenons a } > 1/2 \text{ tel que } \frac{1-a}{2} > \text{s-s'} \text{ ,} \\ \text{alors on a b}^0 \text{D}_x \text{u-F}^{-1} \tilde{\text{N}}_2^{\circ} \text{G b}^1 \text{D}_x \text{u} \in \text{H}^{s-1} \text{ microlocalement en } (\text{y}^{\circ}, \eta^{\circ}) \text{ . On a,} \\ \text{d'apr\`es la Prop.} 3.6 < \sigma(\text{b}^{\circ}) \ (\text{y}^{\circ}, \eta^{\circ}) \text{ , w } > \neq 0 \text{ . et } \text{F}^{-1} \tilde{\text{N}}_2^{\circ} \text{G b}^1 \in \text{L}_{a,1-a}^{\circ} (\partial \text{M}) \text{ .} \\ \text{Pour d\'emontrer la proposition il suffit donc de montrer que : } \forall \epsilon > 0 \text{ } \text{J} \text{ V} \\ \text{voisinage conique de } (\text{y}^{\circ}, \eta^{\circ}) \text{ tel que } \forall (\text{y}, \eta) \in \text{V} \text{ lim sup } |\tilde{\text{N}}_2^{\circ} (\text{y}, \text{th}) \tilde{\text{b}}^1 (\text{y}, \text{th}) | < \epsilon \text{ ,} \\ \text{où } \tilde{\text{b}}^1 = \text{Gb}^1 \text{ G}^{-1} \in \text{L}_{1,0}^{-1}(\mathbb{R}^n) \text{ . On coupe à nouveau } \tilde{\text{N}}_2 \text{ en 2 parties :} \\ \tilde{\text{N}}_2^{\circ} (\text{y}, \eta) = \varphi_1 (\eta_1 \eta_n^{-1/3}) \tilde{\text{N}}_2^{\circ} (\text{y}, \eta) + \varphi_2 (\eta_1 \eta_n^{-1/3}) \tilde{\text{N}}_2^{\circ} (\text{y}, \eta) \text{ . Donc} \\ \tilde{\text{N}}_2^{\circ} (\text{y}, \text{th}) = \varphi_1 (\text{t}^{2/3} \eta_1 \eta_n^{-1/3}) \varphi_2 (\text{t}^{1-a} \eta_1 \eta_n^{-a}) \text{t}^{2/3} \eta_n^{2/3} \frac{\text{A'}}{\text{A'}} (\text{t}^{2/3} \eta_1 \eta_n^{-1/3}) \text{ .} \\ \varphi_2 (\text{t}^{2/3} \eta_1 \eta_n^{-1/3}) \varphi_2 (\text{t}^{1-a} \eta_1 \eta_n^{-a}) \text{t}^{2/3} \eta_n^{2/3} \frac{\text{A'}}{\text{A'}} (\text{t}^{2/3} \eta_1 \eta_n^{-1/3}) \text{ .} \\ \end{array}$

. Pour t assez grand le 2ème terme est nul. Il reste à regarder le comportement du 1er terme.

D'après le développement asymptotique de A_{+} on a :

$$\left|\frac{A_{+}^{\prime}}{A_{+}} (t^{2/3} \eta_{1} \eta_{n}^{-1/3})\right| \le C(t^{2/3} \left|\eta_{1} \eta_{n}^{-1/3}\right|)^{1/2}$$

 $\begin{array}{l} {\rm et} \ : \ \big| \, {\rm b}^1({\rm y},{\rm t}\eta) \, \big| \ \le \ {\rm c} \ \, {\rm t}^{-1} \, \big| \eta \big|^{-1} \ . \\ {\rm Donc} \ \, \big| \, \phi_1({\rm t}^{2/3}\eta_1\eta_n^{-1/3}) \, \phi_2({\rm t}^{1-a}\eta_1\eta_n^{-a}) \, {\rm t}^{2/3}\eta_n^{2/3} \, \, \frac{{\rm A}_+^!}{{\rm A}_+} ({\rm t}^{2/3}\eta_1\eta_n^{-1/3}) \, {\rm b}^1({\rm y},{\rm t}\eta) \, \big| \le C \, (\frac{|\eta_1|}{\eta_n})^{1/2} \end{array}$

Donc si on prend V de la forme $|\eta_1,\ldots,\eta_{n-1}|<\epsilon_0|\eta_n|$ avec ϵ_0 assez petit on a : $\limsup_{t\to +\infty} |\tilde{N}_2(y,t\eta)\tilde{b}^1(y,t\eta)|<\epsilon$ V . On a donc démontré la proposition. #

On s'intéresse maintenant à la propagation de la polarisation dans l'autre sens le long de $\boldsymbol{\gamma}$.

Soit $\rho^1 = (x^1, y^1, \xi^1, \eta^1)$ un point de γ avec $x^1 > 0$ et x^1 assez petit pour que l'opérateur A de la Prop. 3.1 soit elliptique en ρ^1 .

Soit S l'hypersurface $\{x=x^1\}$. On va construire une paramétrix microlocale du problème mixte :

(3.15)
$$\begin{cases} Q_2 u \in C^{\infty}(M) \\ (y^0, \eta^0) \notin WFu(0) \\ u_{|S} = f \text{ en } (y^1, \eta^1) \text{ et } (x^1, y^1, -\xi^1, \eta^1) \notin WFu \end{cases}$$

Il suffit de se donner une seule trace sur S car si u est solution de $Q_2u\in C^\infty(M)$ alors au voisinage de ρ^1 , Q_2 se factorise en $(D_x-\Lambda_+(x,y,D_y))\circ (D_x-\Lambda_-(x,y,D_y))$ et en ρ^1 $D_x-\Lambda_+$ est elliptique donc on a $D_xu|_S=\Lambda_-(x^1,y,D_y)u|_S$ microlocalement en (y^1,η^1) .

Soit \widetilde{Q}_2 une extension de Q_2 dans x < 0 et soit $\mathscr U$ une paramétrix microlocale du problème de Cauchy : $\{ \widetilde{Q}_2 v \in C^\infty(\widetilde{M}) \\ v_{\mid S} = f \text{ en } (y^1, \eta^1) \text{ et } (x^1, y^1, -\xi^1, \eta^1) \notin \text{WFv} .$

Alors la solution de (3.15) s'écrit $u = \mathcal{U}_{f-K_{+}} \mathcal{R} \mathcal{U}_{f}$ microlocalement au voisinage de ρ^{O} . On a donc $D_{\mathbf{x}} \mathbf{u}(0) = (\mathcal{R}D_{\mathbf{x}} \mathcal{U} - N_{+} \mathcal{R} \mathcal{U}) \mathbf{f}$.

 folding au point $(m_1, m_2) \in C$ si les deux projections $\pi_i : C \longrightarrow T^*(M_i)$ sont des folds en (m_1, m_2) .

On a alors la proposition suivante démontrée dans [10] :

Proposition 3.14: (Proposition 6.16 de [10]:

 $\Re \mathcal{M}$ et $\Re \mathcal{M}$ sont des opérateurs intégraux de Fourier associés à une relation canonique $C \subset T^*(\partial M) \times T^*(S)$ qui est folding au point $(y^0, \eta^0, y^1, \eta^1)$

L'exemple classique d'une relation canonique folding est la relation canonique Λ_{ϕ} dans $\vec{T}^{''}(\mathbb{R}^n)\times\vec{T}^{''}(\mathbb{R}^n)$ avec $\phi(y,y',\mu,s)\in c^{\infty}(\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^{n+1})$ $= (y-y')\mu + s\mu_1/\mu_n - 1/3 \ s^3/\mu_n^2 \ .$ on a Λ_{ϕ} = $\{(y,\eta),(y',\eta')\in\vec{T}^{''}(\mathbb{R}^n)\times\vec{T}^{''}(\mathbb{R}^n) \ | y_j=y_j' \ 2< j < n-1,\eta=\eta' \ , (y_1-y_1')^2 = -\eta_1/\eta_n, \ y_n-y_n'=\frac{1}{3} \ (y_1-y_1')^3 \ \} \ .$

Rappelons maintenant quelques résultats sur les fonctions d'Airy dont on aura besoin dans la suite. Les fonctions d'Airy sont les fonctions entières solutions de A''(s) = sA'(s). Parmi ces fonctions on note A_i l'unique solution qui est bornée sur \mathbb{R}^+ et qui vérifie $A_i(0) = 1$.

A_i est exponentiellement décroissante sur \mathbb{R}^+ et oscillante sur \mathbb{R}^- et tous ses zéros sont sur \mathbb{R}^- . on a A_i(s) = $\int_{-\infty}^{+\infty} e^{its+1/3t^3} dt$ (3.16).

à partir de A_i on construit les fonctions d'Airy $A_{\frac{1}{2}}(s) = A_i(e^{\frac{t}{2}i\pi/3}s)$. A sont oscillantes sur \mathbb{R} et exponentiellement croissantes sur \mathbb{R}^+ . On notera $A_i(resp.A_i^t)$ le multiplicateur de Fourier de symbole $A_i(\eta_1\eta_n^{-1/3})$ (resp. $A_i^t(\eta_1\eta_n^{-1/3})$). En utilisant la formule (3.16) on vérifie facilement que A_i et A_i^t sont des opérateurs intégraux de Fourier associés à la relation canonique A_{ϕ} . On a d'autre part les représentations suivantes pour A_i et A_i^t on a : $A_i(s) = -\frac{i\omega}{2}F(s)$ $e^{iX(s)}$ $A_i(s) = \frac{i\overline{\omega}}{2}F(s)$ $e^{-iX(s)}$ où F(s) et X(s) sont des fonctions C^{∞} positives qui ont les développements asymptotiques suivants :

$$F^{2}(s) \sim \frac{1}{\pi(-s)^{1/2}} (1-a_{1}(-s)^{-3}+...) \text{ pour } s \to -\infty$$

$$F(s) \sim \frac{1}{\pi} e^{\frac{2}{3}} s^{3/2} \text{ pour } s \to +\infty$$

$$X(s) -\frac{\pi}{4} \sim 2/3(-s)^{3/2} (1-b_{1}(-s)^{3}+...) \text{ pour } s \to -\infty$$

On a le résultat suivant démontré dans [12].

Proposition 3.15: (Corollaire 5.8 de [12]) Soit $C \subset T^*(\partial M) \times T^*(S)$ une relation canonique homogène qui est folding au point $(y^0, \eta^0, y^1, \eta^1)$, et Γ un petit voisinage conique de $(y^0, \eta^0, y^1, \eta^1)$. Alors il existe des opérateurs intégraux de Fourier elliptiques $J \in I^0(\mathbb{R}^n, \partial M, \chi_1)$, $K \in I^0(S, \mathbb{R}^n, \chi_2^{-1})$ associés à des transformations canoniques locales:

$$\chi_1 : T^*(\partial M) \longrightarrow T^*(\mathbb{R}^n)$$
 $\chi_2 : T^*(S) \longrightarrow T^*(\mathbb{R}^n)$ $(y^0, \eta^0) \longrightarrow (0, \widetilde{\eta}_0)$ $(y^1, \eta^1) \longrightarrow (0, \widetilde{\eta}_0)$

avec η_0° = (0,...,0,1), tels que tout opérateur intégral de Fourier classique $F \in I^m(S,\partial M,C)$ avec $WF'(F) \subset \Gamma$ est de la forme $F = J(A_iB_1 + A_i'B_2)K$ avec $B_1 \in L_{cl}^{m+1/6}(\mathbb{R}^n)$, $B_2 \in L_{cl}^{m-1/6}(\mathbb{R}^n)$

Proposition 3.16: il existe un opérateur $a \in L_{cl}^{5/6}(\mathbb{R}^n)$ elliptique tel que: $(3.17) \ RD_{x} \mathcal{U} - N_{+} R \mathcal{U} \equiv J \ a \frac{1}{A} K \ sur un voisinage conique de <math>(y^0, \eta^0, y^1, \eta^1).$

 $\frac{\underline{\underline{D\text{\'emonstration}}}}{\underline{\underline{B}}_{1}^{7/6}(\mathbb{R}^{n}), \, \underline{\underline{B}}_{2}^{2} \in L_{cl}^{5/6}(\mathbb{R}^{n}) \, \text{tels que} :}$

$$RD_{x}\mathcal{U}-N_{+}R\mathcal{U} \equiv J(A_{i}B_{1} + A_{i}B_{2})K - N_{+}J(A_{i}B_{1} + A_{i}B_{2})K$$

D'autre part d'après ([12]8.4) on peut choisir J de telle sorte que : $N_{+} = J \left(a \underset{0}{\tilde{N}}_{+}^{+} + b_{0}^{-}\right) J^{-1} \text{ en } (y^{0}, \eta^{0}) \text{ avec } : \overset{\sim}{N_{+}} \text{ est le multiplicateur de Fourier}$ de symbole $\frac{A_{+}^{+}}{A_{+}^{+}} (\eta_{1} \eta_{n}^{-1/3}), \ a_{0} \in L_{cl}^{2/3}(\mathbb{R}^{n}) \text{ elliptique et } b_{0} \in L_{cl}^{0}(\mathbb{R}^{n}).$ Donc on a RD \mathcal{W} - $N_{+}R \mathcal{W} \equiv J(A_{1}B_{1}^{+} + A_{1}^{+}B_{2}^{-} - (a_{1}N_{+}^{+} + b_{1}^{-})(A_{1}B_{1}^{+} + A_{1}^{+}B_{2}^{-})) K \equiv$

$$= J(A_{i}B_{1}^{2} + A_{i}B_{2}^{2} - a_{0}^{N} + A_{i}B_{1}^{2} - a_{0}^{N} + A_{i}B_{2}^{2} - b_{0}^{N} + A_{i}B_{2}^{2} - b_{0}^{N} + a_{0}^{1} + a_{0}^{1}$$

D'après le lemme 3.17 on peut écrire a_0^{-1} $A_1\tilde{B}_1$ + $a_0^{-1}A_1\tilde{B}_2$ - $a_0^{-1}b_0A_1B_1$ - $a_0^{-1}b_0A_1B_2$ sous la forme $A_1^{C}_1$ + $A_1^{C}_2$ avec C_1 $\in L_{c\ell}^{1/2}(\mathbb{R}^n)$, C_2 $\in L_{c\ell}^{1/6}(\mathbb{R}^n)$.

Donc $RD_{\mathbf{x}}\mathcal{U} - N_{+}R\mathcal{U} = Ja_{0}(A_{1}C_{1}+A_{1}C_{2}-N_{+}A_{1}B_{1}-N_{+}A_{1}B_{2}) K$

D'autre part, on a l'identité suivante entre A_{+} , A_{i} et A_{i} :

$$A_{i}'(s) = \frac{c}{A_{+}(s)} + A_{i}(s) \frac{A_{+}'(s)}{A_{+}(s)}$$

Donc $RD_{\mathbf{x}}U - N_{+}RU \equiv J a_{0}(A_{1}(C_{1}+N_{+}C_{2}-N_{+}B_{1}-N_{+}B_{2}) + \frac{c}{A_{+}}(C_{2}-N_{+}B_{2})) K$

où $\frac{1}{A_+}$ a pour symbole $\frac{1}{A_+(\eta_1\eta_n^{-1/3})}$.

 $J^{-1}(RD_{\mathbf{X}}\mathcal{U}-N_{+}R\mathcal{U})K^{-1} \text{ doit avoir une relation canonique \widetilde{C} incluse dans } \Lambda_{\varphi} \text{ . Mais d'autre part, à cause des résultats de propagation des singularités pour les solutions de (3.15) on sait que \widetilde{C} doit être bijective de $T^{*}(\mathbb{R}^{n})$ sur $T^{*}(\mathbb{R}^{n})$ et non régulière car on est au voisinage d'un point diffractif. Donc \widetilde{C} doit être égale à une moitié de Λ_{φ} .$

Les opérateurs $\frac{1}{A_+}$ et $\frac{1}{A_-}$ ont pour relation canonique chacun une des moitiés de $\Lambda_{\frac{1}{\Phi}}$. Supposons tout d'abord que C soit égale à la relation canonique de $\frac{1}{A_+}$. Plaçons nous dans $\eta_1 < 0$. Dans $\eta_1 < 0$ A est un opérateur intégral de Fourier classique. Comme $\frac{c}{A_+}$ (C_2 - N_+ B_2) a la relation canonique C on a :

$$c_1 + N_+ (c_2 - B_1) - N_+^2 B_2 \in S^{-\infty} \text{ dans } N_1 < 0$$
 (3.18)

D'après la proposition 6.11 de [12], ceci entraîne que C_1 , C_2 - B_1 , B_2 s'annulent à l'ordre ∞ sur η_1 = 0 , c'est-à-dire que C_1 , C_2 - B_1 , B_2 \in O(η_1/η_n) ∞ (3.19).

Soient : $q_1(s) \in C_0^{\infty}$ (IR) $\begin{cases} q_1(s) = 1 & \text{pour } |s| \le 1 \\ q_1(s) = 0 & \text{pour } |s| \ge 2 \end{cases}$

$$q_2(s) \in C^{\infty}(\mathbb{R})$$
 $\begin{cases} q_2(s)=1 & \text{pour } s \ge 2 \\ q_2(s)=0 & \text{pour } s \le 1 \end{cases}$ et $q_1 + q_2 = 1$ pour $s \ge 1$.

Soit $q_3 = 1 - q_1 - q_2$. Soit 1/3 < a < 1. Notons $Q_i(D_y)$ $1 < i \le 3$ les opérateurs de symbole $q_i(\eta_1\eta_n^{-a})$. Soit $R(D_y)$ un opérateur de troncature dans $|\eta_1,\ldots,\eta_{n-1}| \le \epsilon \eta_n$ pour ϵ assez petit.

A cause de (3.19), $Q_1(D_y)R(D_y)(C_1 + \overset{\sim}{N_+}(C_2-B_1) - \overset{\sim}{N_+}B_2) \in S^{-\infty}$ et $Q_2(D_y)R(D_y)A_1 \in S^{-\infty}$, car A_1 (s) est exponentiellement décroissante dans \mathbb{R}^+ . Enfin $Q_3(D_y)R(D_y)(C_1 + \overset{\sim}{N_+}(C_2-B_1)\overset{\sim}{N_+}B_2) \in S^{-\infty}$ à cause de (3.18). Donc on a $RD_x\mathcal{U} - N_+R\mathcal{U} = Ja_0 \frac{c}{A_+}(C_2-N_+B_2)$ K au voisinage de (y^0,η^0,y^1,η^1) Comme $B_2 \in O(\eta_1/\eta_n)^{\infty}$ d'après les résultats de [12] $\overset{\sim}{N_+}B_2$ est classique. Il reste à vérifier que $A_1 = A_1$ est elliptique en $A_2 = A_2$ est elliptique en $A_3 = A_4$ est elliptique en $A_4 = A_4$ est elliptique en $A_4 = A_4$ est nul en $A_4 = A_4$ est nul en $A_4 = A_4$ est nul en $A_4 = A_4$ est classique. Ce qui est faux. Donc $A_4 = A_4$ est bien elliptique en $A_4 = A_4$ est nul en

 $\begin{array}{l} \underline{\text{Lemme}} \ \ 3.17 \ : \ \text{Soit} \ \ a \in L^{m}_{c\ell}(\mathbb{R}^{n}) \ . \ \ \text{Alors on a} \ : \ \ (3.20) \ \ aA_{i} = A_{i}a_{1} + A_{i}a_{2} \\ \\ \text{avec} \ \ a_{1} \in L^{m}_{c\ell}(\mathbb{R}^{n}) \ , \ \ \sigma_{m}(a) = \sigma_{m}(a_{1}) \ \ \text{sur} \ \ \eta_{1} = 0 \ , \ \ a_{2} \in L^{m-1/3}_{c\ell}(\mathbb{R}^{n}) \ . \\ \\ (3.21) \ \ \ aA_{i} = A_{i} \ \ a_{1}^{\prime} + A_{i}^{\prime} \ a_{2}^{\prime} \ \ \ \text{avec} \ \ a_{1} \in L^{m+1/3}_{c\ell}(\mathbb{R}^{n}) \ , \ \ a_{2}^{\prime} \in L^{m}_{c\ell}(\mathbb{R}^{n}) \ \ \text{et} \\ \\ \sigma_{m}(a) = \sigma_{m}(a_{2}^{\prime}) \ \ \text{sur} \ \ \eta_{1} = 0 \ . \end{array}$

Démonstration : On suit la démonstration de Prop.5.2 de [12]

Démontrons d'abord (3.20) :

on a :
$$A_i^{(1)}u(\eta) = \int_e^i (t\eta_1/\eta_n + 1/3t^3/\eta_n^2) \eta_n^{-2/3}\hat{u}(\eta) dt$$

Donc:
$$aA_i u(x) = \frac{1}{(2\pi)^n} \int_{e}^{i(x-y)\eta + it\eta_1/\eta_n + i} \frac{t^3}{3\eta_n^2} a(x,\eta) \eta_n^{-2/3} u(y) dy d\eta dt (3.22)$$

et de même on a : $(A_i a_1 + A_i a_2)u(x) =$

$$\left(\frac{1}{2\pi}\right)^{n}\int_{e}^{i(x-y)\eta+it\eta_{1}/\eta_{n}+\frac{i}{3}t^{3}/\eta_{n}^{2}\eta_{n}^{-2/3}a_{1}(y,\eta)+it\eta_{n}^{-4/3}a_{2}(y,\eta)u(y)dy\ d\eta\ dt\ (3.23),$$

où $a_1(y,\eta)$ et $a_2(y,\eta)$ sont les symboles réduits à droite de a_1 et a_2 .

Notons φ la phase $(x-y)\eta + t\eta_1/\eta_n + 1/3 t^3/\eta_n^2$. On a $\frac{\partial \varphi}{\partial \eta}$ =

$$(x_1 - y_1 + t/\eta_n, x'' - y'', x_n - y_n - t\eta_1/\eta_n^2 - 2/3 t^3/\eta_n^3)$$
 où on écrit $y = (y_1, y'', y_n)$

Donc on a : $a(x,\eta) = b(y,\eta,t) + \frac{\partial \varphi}{\partial \eta} \cdot c(x,y,\eta,t)$ où $b(y,\eta,t) = a(y_1 - t/\eta_n,y'',y_n + t)$

+
$$t\eta_1/\eta_n^2$$
 + $2/3$ $t^3/\eta_n^3,\eta$)

on a b(y,\eta,t) \in S_{cl}^m , et c(x,y,\eta,t) \in S_{cl}^m . On a $\frac{\partial \phi}{\partial t} = \eta_1/\eta_n + t^2/\eta_n^2$, donc on peut écrire :

 $b(y,\eta,t) = b_1(y,\eta) + t \ b_2(y,\eta) + \frac{\partial \phi}{\partial t} \ d(y,\eta,t) \ \text{avec} \ b_1 \in S_{c\ell}^m, \ b_2 \in S_{c\ell}^{m-1}, d \in S_{c\ell}^m \ .$ En intégrant par parties dans (3.22), (3.22) s'écrit comme somme d'un

terme de la forme (3.23) avec $a_1 \in S_{c\ell}^m$, $a_2 \in S_{c\ell}^{m-1/3}$ et d'un terme de

la forme

$$\int e^{i\phi(x,\eta,t)} f(x,y,\eta,t) u(y) dy d\eta dt \quad avec f \in S_{cl}^{m-1}$$

On peut répéter ce procédé en écrivant $f(x,y,\eta,t) = f_1(x,y,\eta) + \frac{\partial \phi}{\partial \eta} g(x,y,\eta,t)$, et en sommant asymptotiquement les symboles obtenus, on démontre (3.20).

Il reste à voir quel est le symbole principal de a_1 sur $\eta_1=0$. Sur $\eta_1=0$ on a $b_1(y,\eta)=b(y,\eta,0)=a(y,\eta)$. Donc sur $\eta_1=0$ le symbole principal de a_1 est égal à celui de a. On démontre (3.21) de la même façon. #

Démontrons maintenant un lemme qui sera utile dans la suite :

Lemme 3.18: Soit $a \in L_{cl}^{m}(\mathbb{R}^{n})$, alors il existe $a_{1} \in L_{cl}^{m}(\mathbb{R}^{n})$ et $a_{2} \in L_{cl}^{m-1/3}(\mathbb{R}^{n})$ avec $\sigma_{m}(a) = \sigma_{m}(a_{1})$ sur $\eta_{1} = 0$ tels que $a \frac{1}{A_{+}} \equiv \frac{1}{A_{+}}(a_{1} + a_{2} + a_{2}$

 $aA_{i} = A_{i}a_{1} + A_{i}a_{2} = t$ $aA_{i} = A_{i}a_{1} + A_{i}a_{2} = donc$ $a\frac{1}{A_{+}} = A_{i}(c^{-1}a_{1}N_{+}+c^{-1}a_{1}) + A_{i}(c^{-1}a_{2}N_{+}+c^{-1}a_{2})$

En réutilisant l'identité on a :

$$a \frac{1}{A_{+}} = A_{i} \left(c^{-1} a_{1} \overset{\sim}{N_{+}} + c^{-1} \overset{\sim}{a_{1}}\right) + c \frac{1}{A_{+}} \left(c^{-2} a_{2} \overset{\sim}{N_{+}} + c^{-1} \overset{\sim}{a_{2}}\right) + A_{i} \overset{\sim}{N_{+}} \left(c^{-1} a_{2} \overset{\sim}{N_{+}} + c^{-1} \overset{\sim}{a_{2}}\right)$$

$$= \frac{1}{A_{+}} \left(\overset{\sim}{a_{2}} + a_{2} \overset{\sim}{N_{+}}\right) + c^{-1} A_{i} \left(a_{1} \overset{\sim}{N_{+}} + \overset{\sim}{N_{+}} a_{2} + \overset{\sim}{a_{1}} + \overset{\sim}{N_{+}} a_{2} \overset{\sim}{N_{+}}\right) .$$

D'après les arguments de la Prop.3.16 $A_1(a_1\tilde{N}_+ + \tilde{N}_+\tilde{a}_2 + \tilde{a}_1 + \tilde{N}_+ a_2\tilde{N}_+)$ est dans $S^{-\infty}$ dans un voisinage conique de $\eta_1 = 0$. On ne peut pas en déduire que $a_2 \in O(\eta_1/\eta_n)^{\infty}$ car on a des \tilde{N}_+ à droite et à gauche dans l'expression. On a simplement que $\sigma(a_2) = 0$ sur $\eta_1 = 0$, et on a $a_2 \in L_{c\ell}^{m-1/3}(\mathbb{R}^n)$, $\tilde{a}_2 \in L_{c\ell}^{m}(\mathbb{R}^n)$. On a donc démontré le lemme. #

On peut maintenant démontrer un résultat de propagation de WFpol u en sens assez faible, c'est-à-dire qu'on obtient des formes linéaires dont les . coefficients sont dans de mauvaises classes de symboles.

Proposition 3.19: Soit $u \in (C^{s'}(M))^{2m}$ solution $de \begin{cases} Q_2 u \in C^{s'}(M) \\ u \mid \partial M \end{cases}$ avec s'>s-1/4.

et soit $w \in \mathbb{C}^{2m}$. Alors si $w \notin WFpol_{s-1}^{}D_xu(0)(y^o,\eta^o)$, il existe une 1×2m matrice $d \in L_{a,1-a}^o(S)$ avec $\frac{1-a}{2} > s-s'$ et copérateur scalaire dans $L_{1/3,2/3}^c(S)$ $\forall \epsilon > 0$ qui est le conjugué par des opérateurs intégraux de Fourier d'une troncature non homogène, tels que cdu $|S| \in H^S(S)$ microlocalement en ρ^1 , et : il existe V voisinage conique de ρ^1 dans S tel que

 $\left| \begin{array}{c|c} \lim \inf & < d(y,t\eta), w > \neq 0 \quad \forall (y,\eta) \in V \\ t \rightarrow +\infty \end{array} \right|$

 $(3.25) \ \, bD_{x}u(0) \in H^{S}(\partial M) \ \, et < \sigma(b)(y^{O},\eta^{O}), \ \, w> \neq 0 \ \, . \ \, Notons \ \, f=u_{\mid S} \ \, .$ D'après la Prop.3.16 on a : $D_{x}u(0)=Ja\frac{1}{A_{+}}$ Kf avec les notations de Prop.3.1 Donc $bD_{x}u(0)=bJa\frac{1}{A_{+}}$ Kf $\equiv J\overset{\leftarrow}{b}$ a $\frac{1}{A_{+}}$ Kf avec $\overset{\leftarrow}{b}\in L^{-1}_{c\ell}(\partial M)$, $J\overset{\leftarrow}{b}\equiv bJ$ et $\sigma(\overset{\leftarrow}{b})(o,\overset{\leftarrow}{\eta}_{O})=\sigma(b)(y^{O},\eta^{O})$ à cause du théorème d'Egorov pour les opérateurs intégraux de Fourier classiques. D'autre part d'après la Prop.3.16 a est scalaire et $a\in L^{5/6}_{c\ell}(\mathbb{R}^n)$.

On a J ba $\frac{1}{A_{+}}$ Kf = J $\frac{1}{A_{+}}$ ($\tilde{b}_{1} + \tilde{b}_{2}\tilde{N}_{+}$) à cause du lemme 3.18, avec $\tilde{b}_{1} \in L_{cl}^{-1/6}(\mathbb{R}^{n})$ et $\sigma(\tilde{b}_{1})$ ($0, \tilde{\eta}_{0}$) = $\sigma(\tilde{b}_{a})$ ($0, \tilde{\eta}_{0}$) et $\tilde{b}_{2} \in L_{cl}^{-1/2}(\mathbb{R}^{n})$.

 $\text{(3.25) donne (3.26)} : \frac{1}{A_{+}} (\tilde{b}_{1} + \tilde{b}_{2} \overset{\sim}{N_{+}}) \text{K f } \in \text{H}^{s}(\mathbb{R}^{n}) \text{ microlocalement en } (y^{o}, \eta^{o}).$

Soit $q(s) \in C^{\infty}(\mathbb{R})$ avec $\begin{cases} q(s) = 1 \text{ pour } s \le 1 \\ \\ q(s) = 0 \text{ pour } s \ge 2 \end{cases}$

Notons q/F l'opérateur de symbole $q(\eta_1\eta_n^{-1/3})$ $\frac{1}{F(\eta_1\eta_n^{-1/3})}$. D'après le compor-

tement asymptotique de F donné page 40 q/F \in Op(N $_{1/3}^{1/6}\{\eta_1=0\}$). En composant (3.26) à gauche par le multiplicateur de Fourier de symbole

 $q(\eta_1^{-1/3})e^{-iX(\eta_1^{-1/3})} \quad \text{on a : } q/F(b_1^{-}+b_2^{-}N_+)Kf \in H^S(\mathbb{R}^n) \text{ en } (0,\eta_0^{-}).$ On réécrit cette égalité sous la forme q/F ee $^{-1}(b_1^{-}+b_2^{-}N_+)Kf \in H^S(\mathbb{R}^n)$ en $(0,\eta_0^{-})$ avec e elliptique scalaire dans $L_{c2}^{-1/6}(\mathbb{R}^n)$. D'après [8], $c = K_q^{-1}/FeK \text{ appartient à } L_{1/3,2/3}^{\mathcal{E}}(S) \text{ V } \varepsilon > 0 \text{ . D'après la remarque}$ $3.7 e^{-1}b_1^{-}+e^{-1}b_2^{-}N_+ \text{ se décompose en } d_1^{-}+d_2^{-} \text{ avec } d_1^{-} \in L_{a,o}^{o}(\mathbb{R}^n) \text{ et } d_2^{-} \in L_{1/3,0}^{-(1-a)/2}(\mathbb{R}^n).$

Comme $u \in (\mathbb{K}^{s'}(M))^{2m}$ on a : $K_q^{-1}F$ eKK $^{-1}d_1Kf \in H^s(S)$ microlocalement en \mathfrak{p}^1 et en suivant la preuve de la Prop.3.12 on a : $\exists V$ voisinage conique de $(0,\widetilde{\eta}_0)$ dans $T^*(\mathbb{R}^n)$ tel que :

$$\lim_{t\to +\infty}\inf\big|< d_1(y,t\eta), w>\big|\neq 0 \quad V(y,\eta)\in V.$$

alors $K^{-1}d_1K \in L^o_{a,1-a}(S)$ et d'après la remarque qui suit la définition 3.9 on a le résultat de la Prop.3.19. #

Remarque 3.20 : On ne peut pas éviter l'opérateur c qui est dans une mauvaise classe de symboles, car c correspond à une troncature non conique qui est nulle dans la région elliptique. En effet, si on étudie l'influence du bord sur la polarisation le long d'un rayon tangent γ , on ne peut espérer avoir des résultats uniformes dans un voisinage conique de γ , car dans tout voisinage conique de γ on a des rayons qui ne rencontrent pas le bord.

Revenons maintenant au problème initial, c'est-à-dire :

 $u \in (D^{\bullet}(M))^{2m}$ solution de $Pu \in C^{\infty}(M)$. En composant à gauche par $\widetilde{P} \in L^{1,O^{\bullet}}(M)$ avec $\widetilde{P}_{0}^{s} = 0$ on a : $Qu \in C^{\infty}(M)$ et $q_{2} = (\xi-a)^{2}-b$. Soit \widetilde{K}_{+} une paramétrix sortante du problème de Dirichlet pour Q:

alors
$$v = u - K_+ u$$
 est solution de
$$\begin{cases} Qv \in C^{\infty}(M) & \text{et } v - u \text{ est } C^{\infty} \text{ sur } \gamma_- . \\ v_{|\partial M} \in C^{\infty}(\partial M) \end{cases}$$

Soit A une $2m\times2m$ matrice $\in L^{0}b(M)$ donnée par la Prop.3.i.

Av est solution de
$$\begin{cases} Q_2 Av \in C^{\infty}(M) \\ Av(0) \in C^{\infty}(\partial M) \end{cases}$$
 car $Av(0) = A_{\partial}(v(0))$

D'après [2] on peut écrire A sous la forme : $Av(x,y) = \int e^{i(y-y')\eta} Ma(x,y,\eta,t) v(xt,y') dy' d\eta dt$

avec $\operatorname{Ma}(x,y,\eta,t) = \int e^{i(1-t)\lambda} a(x,y,\lambda,\eta) d\lambda$ et $a \in \operatorname{S}_{1,0}^{o}(\mathbb{R}^{n+1} \times \mathbb{R}^{n+1})$.

Donc $\operatorname{D}_{x}\operatorname{Av} = \int e^{i(y-y')\eta} \operatorname{D}_{x}\operatorname{Ma}(x,y,\eta,t) v(xt,y') + \operatorname{Ma}(x,y,\eta,t) t\operatorname{D}_{x}v(xt,y') dy'd\eta dt$ et $\operatorname{AD}_{x}v = \int e^{i(y-y')\eta} \operatorname{Ma}(x,y,\eta,t) \operatorname{D}_{x}v(xt,y') dy'd\eta dt$.

Donc $D_{\mathbf{x}} A \mathbf{v} - A D_{\mathbf{x}} \mathbf{v} = A_{\mathbf{v}}^{\dagger} \mathbf{v} + A_{\mathbf{1}}^{\dagger} D_{\mathbf{x}} \mathbf{v}$ où le symbole de $A_{\mathbf{v}}^{\dagger}$ est $D_{\mathbf{x}}^{a}$ et celui de $A_{\mathbf{1}}^{\dagger}$ est $D_{\mathbf{x}}^{a}$.

Donc $D_{\mathbf{x}} \mathbf{A} \mathbf{v}(0) = (\mathbf{A}_{\partial} + \mathbf{A}_{1\partial}^{\dagger}) (D_{\mathbf{x}} \mathbf{u}(0) - \mathbf{N}_{+}^{\dagger} \mathbf{u}(0)) + \mathbf{A}_{0\partial}^{\dagger} \mathbf{v}(0) = (3.28)$ $(\mathbf{A}_{\partial} + \mathbf{A}_{1\partial}^{\dagger}) (D_{\mathbf{x}} \mathbf{u}(0) - \mathbf{N}_{+}^{\dagger} \mathbf{u}(0)) \text{ modulo } \mathbf{C}^{\infty}(\partial \mathbf{M}), \text{ où } \mathbf{N}_{+}^{\dagger} \text{ est 1'opérateur de Neumann}$ $\mathbf{associ\acute{e}} \ \mathbf{a} \ \mathbf{Q} \ \mathbf{0} \ \mathbf{n} \ \mathbf{N}_{+}^{\dagger} = (\mathbf{A}_{\partial} + \mathbf{A}_{1\partial}^{\dagger})^{-1} (\mathbf{N}_{+} \mathbf{A}_{-}^{\dagger} \mathbf{A}_{0\partial}^{\dagger}) \ \mathbf{0} \$

Enfin, en examinant la preuve de la Prop.3.1 on voit qu'on peut prendre $^{A}_{\partial}$, $^{A}_{1\partial}$, $^{A}_{0\partial}$ classiques.

On a alors les deux théorèmes suivants :

Théorème 3.21 : Soit $u \in (D'(M))^{2m}$ solution de $Pu \in C^{\infty}(M)$ avec $u \in \mathcal{K}^{s'}(M)$. Soit Φ le flot sur \mathbb{C}^{2m} associé aux orbites hamiltoniennes de P. Alors si $w \in WFpol_{s-1}(G(0)u(0)-N_{+}u(0))(y^{o},\eta^{o})$ pour s' > s-1/4 on a : $\Phi(w) \in WFpol_{s}u$ le long de γ_{-} .

Soit a le symbole principal de A donné par la Prop.3.1 a vérifie l'équation $\operatorname{Hq}_2 a_0 - \operatorname{ia}_0 q_1 = 0$ avec $\operatorname{q}_1 = \frac{1}{2\mathrm{i}} \{ p,p \} + p p_0^s$. On peut appliquer la Proposition 3.6 à Av et à cause de Prop.1.4.I, $\operatorname{a}_0(\rho^1) \operatorname{w}^1 \not\in \operatorname{WFpol}_{\operatorname{S}} \operatorname{Au}(\rho^1)$. Donc en appliquant la Prop.3.12 à Av on a : $\operatorname{a}_0(\rho^1) \operatorname{w}^1 \not\in \operatorname{WFpol}_{\operatorname{S}-1} \operatorname{D}_{\operatorname{X}} \operatorname{Av}(0) (y^0, \eta^0)$. Notons $\Gamma = (\rho(t), \operatorname{w}(t))$ l'orbite hamiltonienne de P qui part de $(\rho^1, \operatorname{w}^1)$. On a $\operatorname{H}_{\operatorname{q}_2}(\operatorname{a}_0 \operatorname{w}) = (\operatorname{H}_{\operatorname{q}_2}(\operatorname{a}_0) \operatorname{w} + \operatorname{a}_0 \operatorname{H}_{\operatorname{q}_2}(\operatorname{a}_0) = \frac{\operatorname{a}_0}{2} \{ p,p \} \operatorname{w} - \operatorname{ia}_0(\operatorname{p}_0) = \operatorname{a}_0(\operatorname{p}_0) = \operatorname{a}_0(\operatorname{p}_$

Soit $w^{O} \in \mathfrak{C}^{2m}$ tel que $(O,y^{O},O,\eta^{O},w^{O}) \in \Gamma$. D'après (3.30) on a :

 $\begin{array}{l} a_{0}(\rho^{1})w^{1} = a_{0}(0,y^{0},0,\eta^{0})w = a_{0}(y^{0},\eta^{0})w^{0} \text{ . A cause de } (3.28) \text{ on a :} \\ a_{0}^{-1}(0,y^{0},0,\eta^{0}) \ a_{0}(\rho^{1})w^{1} \notin \widetilde{WFpol}_{s-1}(D_{x}u(0)-\widetilde{N_{+}}u(0)) \text{ et } (3.30) \text{ entraine que :} \\ a_{0}^{-1}(0,y^{0},0,\eta^{0}) \ a_{0}(\rho^{1})w^{1} = w^{0} \text{ .} \\ Donc \ w^{0} \notin \widetilde{WFpol}_{s-1}(D_{x}u(0)-\widetilde{N_{+}}u(0)) \text{ et on a démontré le théorème.} \end{array}$

Théorème 3.22 : Soit $u \in (D'(M))^{2m}$ solution de $Pu \in C^{\infty}(M)$ avec $u \in \mathcal{H}^{S}(M)$. Soit ϕ le flot sur \mathbb{C}^{2m} associé aux orbites hamiltoniennes de P. Alors si $w \in \widetilde{WFpol}_{S^{-1}}(G(0)u(0)-N_{+}u(0))(y^{0},\eta^{0})$.

Soit $\mathbf{w}^{\circ} \notin \mathrm{WFpol}_{s-1}(D_{\mathbf{x}}\mathbf{u}(0) - \widehat{N_{+}}\mathbf{u}(0))(\mathbf{y}^{\circ}, \eta^{\circ})$. Par (3.28) on a $\mathbf{a}_{o}(0, \mathbf{y}^{\circ}, 0, \eta^{\circ})\mathbf{w}^{\circ} \notin \mathrm{WFpol}_{s-1}D_{\mathbf{x}}\mathrm{Av}(0)(\mathbf{y}^{\circ}, \eta^{\circ})$. Donc par la Prop.3.19 on a $\mathbf{a}_{o}(0, \mathbf{y}^{\circ}, 0, \eta^{\circ})\mathbf{w}^{\circ} \notin \mathrm{WFpol}_{s}\mathrm{Av}_{\mid S}(\mathbf{p}^{1})$ donc $\mathbf{a}_{o}^{-1}(\mathbf{p}^{1})\mathbf{a}_{o}(0, \mathbf{y}^{\circ}, 0, \eta^{\circ})\mathbf{w}^{\circ} \notin \mathrm{WFpol}_{s}\mathbf{u}_{\mid S}(\mathbf{p}^{1})$ (3.30) entraine que $\mathbf{a}_{o}^{-1}(\mathbf{p}^{1})\mathbf{a}_{o}(0, \mathbf{y}^{\circ}, 0, \eta^{\circ})\mathbf{w}^{\circ} = \mathbf{w}^{1}$ où \mathbf{w}^{1} est tel que $(\mathbf{p}^{1}, \mathbf{w}^{1}) \in \Gamma$. On a donc démontré le théorème. #

S E C T I O N I V

PROPAGATION DU FRONT D'ONDE POLARISE POUR DES PROBLEMES AUX LIMITES.

IV.1 Notations et définitions.

Dans cette section on utilise les résultats de la section III pour démontrer des résultats sur la réflexion de la polarisation. Donnons d'abord le problème que l'on va essayer de résoudre. On utilise les notations de §1 III. On se place au voisinage d'un point $(y^0, \eta^0) \in T^*(\mathbb{R}^n_y)$ tel que $(y^0, \eta^0) \in G_y$ pour $j+1 \le y \le k$. Notons pour $1 \le y \le j, \gamma_y$ la bicaractéristique de $\xi-\mu_y$ issue de

Notons pour $1 \le \nu \le j$, γ_{ν} la bicaractéristique de $\xi - \mu_{\nu}$ issue de $(0, y^0, \mu_{\nu}(0, y^0, \eta^0), \eta^0)$ et pour $j + 1 \le \nu \le k$, γ_{ν} la bicaractéristique de $(\xi - a_{\nu})^2 - b_{\nu}$, issue de $(0, y^0, a_{\nu}(0, y^0, \eta^0), \eta^0)$. On suppose que parmi les variables y, il y en a une notée y_1 , qui joue le rôle du temps, ce qui permet de séparer de façon intrinsèque γ_{ν} en deux demi-bicaractéristiques γ_{ν}^+ et γ_{ν}^- . On suppose que l'on connait le front d'onde polarisé de u en un point de γ_{ν} pour $1 \le \nu \le j_0$ et en un point de γ_{ν}^- pour $j + 1 \le \nu \le k$, et on veut déterminer le front d'onde polarisé de u le long de γ_{ν}^+ pour $j + 1 \le \nu \le k$.

On commence par se ramener au cas où le problème aux limites est de la forme (\wp ') avec les notations de $\S 1$ III. v se sépare en v =

 $(v_1,\ldots,v_j,v_{j+1},\ldots,v_k,v_+,v_-)$ suivant les blocs de H dans la Prop.1.2 III. Chaque $\mathbf{v}_{\mathbf{v}}$ est solution d'un système : $\mathbf{D}_{\mathbf{x}}\mathbf{v}_{\mathbf{v}} - \mathbf{H}_{\mathbf{v}}\mathbf{v}_{\mathbf{v}} \in \mathbf{C}^{\infty}(\mathbf{M})$ (1.1) $\mathbf{v}_{\mathbf{v}}$ et $\mathbf{v}_{\mathbf{v}}$ sont solutions de systèmes paraboliques rétrograde et direct respectivement.

Donnons quelques définitions :

<u>Définition</u> 1.1 : . pour 1 < $\nu \le j$, $L_{\nu}(x,y,\eta)$ est l'espace propre de

 $g_1(x,y,\eta)$ associé à la valeur propre $\mu_{\nu}(x,y,\eta)$ pour $(x,y,\mu_{\nu}(x,y,\eta),\eta) \in \gamma_{\nu}$ et $\mathfrak{L}_{\nu}(x,y,\eta)$ le symbole de la projection propre sur $\mathfrak{L}_{\nu}(x,y,\eta)$.

. pour j + 1 < ν < k , $L_{\nu}^{\frac{1}{2}}(x,y,\eta)$ est l'espace propre de $g_{1}(x,y,\eta)$ associé à la valeur propre $a_{\nu}(x,y,\eta) \pm \sqrt{b_{\nu}(x,y,\eta)} = c_{\nu}^{\pm}(x,y,\eta)$ pour $(x,y,c_{\nu}^{\pm}(x,y,\eta),\eta) \in \gamma_{\nu}^{\pm}$ et $\mathfrak{L}_{\nu}^{\pm}(x,y,\eta)$ est le symbole de la projection propre sur $L_{\nu}^{\pm}(x,y,\eta)$.

. $L_{\pm}(x,y,\eta)$ est la somme des espaces propres généralisés associés aux valeurs propres de $g_1(x,y,\eta)$ à partie imaginaire positive (négative) et $\pounds_{\pm}(x,y,\eta)$ est le symbole de la projection propre sur L_{\pm}

. pour j + 1 \leq \vee \leq k , $\pounds_{\vee}(x,y,\eta)$ est le symbole de la projection sur l'espace propre généralisé de $g_1(x,y,\eta)$ associé à $a_{\vee}(x,y,\eta)$ + $\sqrt{b_{\vee}(x,y,\eta)}$. Soit pour $1 \leq \vee \leq$ k π_{\vee} la projection $v \longrightarrow (0,\ldots,0,v_{\vee},0,\ldots,0)$ et π_{+} , π_{-} les projections $v \longrightarrow (0,\ldots,0,v_{+},0)$ $v \longrightarrow (0,\ldots,0,v_{-})$. On a $\pi_{\vee}S = S\pounds_{\vee}$ pour $1 \leq \vee \leq$ j $\pi_{\vee}S = S(\pounds_{\vee}^{+} \oplus \pounds_{\vee}^{-})$ pour j + $1 \leq \vee \leq$ k , et $\pi_{+}S = S\pounds_{+}$.

Donnons d'abord une conséquence de (1.1)

Lemme 1.1 : Pour $u \in (D^{r}(M))^{m}$ solution de (\mathfrak{P}) on a :

$$\text{WFpol u } (x,y,\xi,\eta) \text{ (resp.WF pol}_{S} u(x,y,\xi,\eta)) \subset \begin{cases} L_{\gamma}(x,y,\eta) \text{ pour } 1 \leq \gamma \leq j \text{ et } (x,y,\xi,\eta) \setminus \gamma_{\gamma} \\ \\ L_{\gamma}^{+}(x,y,\eta) \text{ pour } j+1 \leq \gamma \leq k \text{ et } (x,y,\xi,\eta) \in \gamma_{\gamma}^{+} \end{cases}$$

<u>Démonstration</u>: il suffit de raisonner sur v et d'utiliser (1.1) qui entraine que $v_{v'}$ est microlocalement C^{∞} sur $v_{v'}$ pour $v \neq v'$ et pour $1 \leq v \leq j$. Pour $j+1 \leq v \leq k$, on raisonne de la même façon en utilisant que H_{v} se sépare à nouveau sur deux espaces propres par le lemme 1.1.III. #

Lemme 1.2: Les orbites hamiltoniennes de ξ Π_m - H au-dessus de γ_{ν} pour $1 \le \nu \le k$ sont de la forme $(0,\ldots,0,w_{\nu},0,\ldots,0)$ où w_{ν} est une orbite hamiltonienne de $\xi\Pi_m$ - Π_{ν} .

IV.2. Cas transverse.

Dans ce paragraphe on suppose qu'il n'y a que des rayons transverses, c'està-dire k = j . On dira qu'on a réflexion du front d'onde polarisé si on peut déterminer le front d'onde polarisé de u sur les bicaractéristiques sortantes en fonction de sa valeur sur les bicaractéristiques entrantes. On veut des hypothèses portant uniquement sur β_o , symbole principal de β . Une condition suffisante pour avoir la réflexion de WFu en (y^0, η^0) est :

 $(2.1) \ \forall w \in \textbf{C}^{\textbf{m}} \ \textbf{V}(y,\eta) \ dans \ un \ voisinage \ de \ (y^{\textbf{O}},\eta^{\textbf{O}}) \ ,$ $\beta_{\textbf{O}}(y,\eta)w = \textbf{O} \Rightarrow \pi^{\textbf{I}}(y,\eta)w = \textbf{M}(y,\eta)\pi(y,\eta)w + \textbf{M}^{\textbf{I}}(y,\eta) \ \pi^{\textbf{I}}(y,\eta)w \ où \ \pi(y,\eta)w \ est$ la projection de w sur le produit des $L_{\textbf{V}}(\textbf{O},y,\eta)$ pour $1 < \nu \leq j_{\textbf{O}},\pi^{\textbf{I}}(y,\eta)w$ la projection de w sur le produit des $L_{\textbf{V}}(\textbf{O},y,\eta)$ pour $j_{\textbf{O}}+1 \leq \nu \leq j$ et $\textbf{M}(y,\eta) \ et \ \textbf{M}^{\textbf{I}}(y,\eta) \ sont \ des \ matrices \ homogènes \ de \ degré \ \textbf{O} \ en \ \eta \ . \ On \ note$ cette condition (ϵ_1) .

Une condition plus forte est (ϵ_2) :

 (ϵ_1) est vérifiée et $M(y,\eta)$ est inversible en (y^0,η^0) , et envoie chaque espace propre de $g_1(x,y,\eta)$ sur un espace propre de $g_1(x,y,\eta)$ On va aussi étudier les phénomènes d'ondes de Rayleigh quand le système au bord est de type principal réel.

Une condition pour observer ces phénomènes est (R) :

 $\beta(y,Dy)u(0) \in C^{\infty}(\partial M)$ entraîne : pour un $y \in [1,j]$ $R_{y}(y,Dy)v_{y} \in C^{\infty}(\partial M)$. avec $R_{y}(y,Dy)$ opérateur de type principal réel au sens de [1].

On note δ_{y} la bicaractéristique de R passant par (y^{0}, η^{0}) .

Donnons enfin quelques notations. D'après les hypothèses du §1 on suppose qu'on connait WFpol u (resp.WFpol u) en un point de γ , pour $1 \le \nu \le j_0$. On s'est donc donné des d, \times m systèmes a, dans $L^O(M)$ de symbole principal a, (x,y,ξ,Π)

tels que $a_{v}(x,y,D_{x},D_{y})u \in C^{\infty}(M)$ (resp. $\in \mathcal{H}^{S}(M)$) et pour un point $\rho_{v}^{O} = (x_{o},y_{v}(x_{o}),\mu_{v}(x_{o},y_{v}(x_{o}),\eta_{v}(x_{o})),\eta_{v}(x_{o})) \in \gamma_{v}$ $\text{Ker } a_{v}(\rho_{v}^{O}) = \text{WFpol } u(\rho_{v}^{O}) \text{ (resp.WFpol}_{S}u(\rho_{v}^{O}))$

Soit $\psi_{\nu}(x)$ le flot associé aux orbites hamiltoniennes de ξ 11 - G tracées au-dessus des bicaractéristiques de $\xi-\mu_{\nu}$.

Pour (y,η) dans un voisinage conique de (y^0,η^0) la bicaractéristique nulle de $\xi-\mu_y$ issue de $(0,y,\mu_y(0,y,\eta),\eta)$ coupe l'hypersurface $x=x_0$ en un point unique $\alpha_y(y,\eta)$.

Pour $1 < v < j_o$, on note alors WFpol $u(y, \eta, v_v)$ (resp.WFpol $u(y, \eta, \gamma_v)$)

1'espace $\psi_v^{-1}(x_o)$ (Ker $a_v(\rho_v(y, \eta))$).

On a alors les théorèmes suivants :

Théorème 2.1 : Soit $u \in (\mathfrak{FC}^{s-1}(M))^m$ solution du problème aux limites (\mathfrak{b}°) vérifiant la condition (ϵ_1) . Si la dimension de $F_{\nu}(y,\eta)$, image de l'espace $K(y,\eta) = \bigoplus_{1 \leq k \leq j} WFpol_{s}u(y,\eta,\nu_{k})$ par $\mathfrak{L}_{\nu}(0,y,\eta)oM(y,\eta)$ est constante dans $1 \leq k \leq j_{o}$ un voisinage conique de (y^o,η^o) pour un $\nu \geq j_{o} + 1$, alors au-dessus de (y^o,η^o) , (y^o,η^o) and (y^o,η^o) are (y^o,η^o) .

Théorème 2.2 : Soit $u \in (\mathbb{K}^{s-1}(M))^m$ solution du problème aux limites (P) vérifiant la condition (ϵ_2) alors pour tout $v \ge j_0 + 1$ WFpol u au-dessus de v est égal à l'union des orbites hamiltoniennes de $D_x II_m - G$ issues de points $(0, y^0, \mu_y(0, y^0, \eta^0), \eta^0, w)$ avec $w \in F_y(y^0, \eta^0)$.

Corollaire 2.2 : Sous les hypothèses des théorèmes 2.1 ou 2.2 si $f_{\nu}(0,y,\eta)oM(y,\eta)$ restreint à K est injectif alors les conclusions des théorèmes 2.1 et 2.2 sont vraies pour WFpol u .

Démonstration du théorème 2.1 : D'après le § 1 on peut se ramener au cas où le problème aux limites est de la forme (β') et à démontrer ces résultats

pour v = K Su . D'après les hypothèses du § 1, on connait WFpol u en un point de v pour $1 \le v \le j$ donc on connait WFpol v en un point de v pour $1 \le v \le j$ d'après le lemme 1.1. On peut appliquer la Prop.2.1.III à v pour $1 \le v \le j$ et on a :

(2.1) pour 1 $\leq v \leq j_0$ il existe des $d_v \times \alpha_v$ matrices $A_v(y,D_y)$ de symbole principal a_v dans $L^O(\partial M)$ telles que : $A_v(y,D_y)v_v \in H^S(\partial M)$ (2.2) et Ker $a_v(y^O,\eta^O) = \pi_v \circ S(O,y^O,\eta^O) \circ WFpol_s u(O,y^O,\eta^O,v_v) = WFpol_v(O)(y^O,\eta^O)$ (2.3). β_o vérifie la condition (ϵ_1) donc $\gamma_o = \beta_o \circ S(O,y,\eta)$ vérifie :

$$Y_{o}(y,\eta)w = 0 \Rightarrow \begin{pmatrix} w_{j_{o}+1} \\ \vdots \\ w_{j} \end{pmatrix} = \widetilde{m}(y,\eta) \begin{pmatrix} w_{1} \\ \vdots \\ w_{j_{o}} \end{pmatrix} + \widetilde{m}^{-}(y,\eta)w_{-} \qquad (2.4)$$

D'autre part $v_0(0) \in C^{\infty}(\partial M)$ car v_0 est solution d'un système parabolique rétrograde. Donc comme $\gamma v \in C^{\infty}(\partial M)$ on a :

$$\begin{pmatrix} v_{j_0} + 1 \\ \vdots \\ v_{j} \end{pmatrix} (0) = \widetilde{M}(y, D_y) \begin{pmatrix} v_1 \\ \vdots \\ v_{j_0} \end{pmatrix} (0) \text{ modulo } C^{\infty}(\partial M)$$
 (2.5)

où $\widetilde{M}(y,D_y) \subseteq L^0(\partial M)$ a pour symbole principal $\widetilde{m}(y,\eta)$. A cause de (2.1), il existe une matrice $N(y,D_y)$ elliptique dans $L^0(\partial M)$ de symbole principal $n(y,\eta)$ telle que $\operatorname{si}\begin{pmatrix} v_1 \\ \vdots \\ v_j \end{pmatrix} = N(y,D_y)\widetilde{v}$ les $\ell = d_1 + \ldots + d_j$ premières

composantes de $\overset{\backprime}{v}$ sont dans $H^{S}(\partial M)$ microlocalement en (y°,η°) . (2.6). Soit $\overset{\backprime}{K}$ le sous-espace de $\overset{\backprime}{U}^{1}$ formé des vecteurs dont les $\overset{\backprime}{L}$ premières composantes sont nulles. Alors on a de plus : $n(y^{\circ},\eta^{\circ})\overset{\backprime}{K}=K$. L'hypothèse que $F_{\downarrow}(y,\eta)$ est de dimension constante entraîne que si on remplace les $\overset{\ldotp}{L}$ premières colonnes de $\overset{\backprime}{M}(y,\eta)\times N(y,\eta)$ par des zéros, on a des combinaisons linéaires entre les lignes de $\overset{\backprime}{M}(y,\eta)\times N(y,\eta)$ correspondant à $\overset{\backprime}{W}_{\downarrow}$ qui sont identiquement nulles dans un voisinage de (y°,η°) . Il existe donc une matrice $P_{\downarrow}(y,\eta)$ homogène d'ordre 0 en η telle que :

sur un voisinage de (y°,η°) $P_{v} \circ \pi_{v} \circ \widetilde{m} \circ (n(y,\eta)|_{\widetilde{K}}) \equiv 0$ (2.7) et par définition de $F_{v}(y,\eta)$: $S(0,y,\eta)F_{v}(y,\eta) = \text{Ker } p_{v}(y,\eta)$. Si $P_{v}(y,D_{y}) \in L^{\circ}(\partial M)$ a pour symbole principal $p_{v}(y,\eta)$ on a donc : (2.8) $P_{v}(y,D_{y})v_{v}(0) = P_{v}(y,Dy) \circ \pi_{v}$. $\widetilde{M} \circ N\widetilde{v} \in H^{\circ}(\partial M)$ à cause de (2.6) et (2.7). Les termes d'ordre -1 dans le calcul symbolique sont absorbés par le fait que u donc v appartient à $H^{\circ -1}(\partial M)$. (2.8) entraîne que $WFpol_{s}v_{v}(0)(y^{\circ},\eta^{\circ}) \subset \text{Ker } p_{v}(y^{\circ},\eta^{\circ})$. A cause de (1.1), on peut appliquer la Prop.2.1 III à v_{v} ce qui démontre le théorème . #

Démonstration du corollaire 2.2 : Si on s'intéresse à WFpol u il faut prendre en compte tous les termes du calcul symbolique. Il est facile de vérifier qu'on a (2.6) en remplaçant $H^S(\partial M)$ par $C^\infty(\partial M)$ avec les notations précédentes. On a aussi (2.7). Le problème est de choisir les termes d'ordre inférieur du symbole de P_{N} pour avoir :

(2.9)
$$P_{N}(y,D_{v}) \circ \pi_{N} \circ (N_{|K}) \equiv 0 \text{ modulo } S^{-\infty}$$

Cherchons donc le symbole complet de P sous la forme : $\sum_{j=0}^{\infty} p_{\gamma}^{j}(y,\eta)$ le symbole complet de $\widetilde{M} \circ N_{|\widetilde{K}}$ s'écrit : $\sum_{j=0}^{\infty} m^{j}(y,\eta)$. On trouve d'abord p_{γ}^{0} grace à (2.6). Puis pour éliminer le terme d'ordre -1 dans $P_{\gamma} \circ \pi_{\gamma} \circ \widetilde{M} \circ N_{|\widetilde{K}}$ il faut trouver p_{γ}^{-1} pour que :

$$p_{\nu}^{o} \circ \pi_{\nu} \circ m^{-1} + p_{\nu}^{-1} \circ \pi_{\nu} \circ m^{o} + \sum_{k=1}^{n} D_{\eta k} (p_{\nu}^{o} \circ \pi_{\nu}) D_{\kappa} (m^{o}) = 0$$
.

on peut trouver p_{γ}^{-1} tel que $p_{\gamma}^{-1} \circ \pi_{\gamma} \circ m^{\circ} = f$, où f est une matrice arbitraire si $\pi_{\gamma} \circ m^{\circ}$ est injective. On vérifie ensuite qu'on peut déterminer les p_{γ}^{-j} pour $j \geq 1$ pour avoir (2.9). (2.9) et (2.6) entrainent que $P_{\gamma}(y,D_{\gamma})v_{\gamma}(0) \in C^{\infty}(\partial M)$ microlocalement en (y°,η°) . On a donc démontré le corollaire 2.2 pour le th.2.1 et on procède de même pour le Th.2.2. # $\frac{D\text{émonstration du théorème}}{D\text{émonstration du théorème}} \text{ 2.2 : on conserve les notations précédentes.}$

$$\widetilde{m}(y,\eta) \begin{pmatrix} w_1 \\ \vdots \\ w_j \\ o \end{pmatrix} = \begin{pmatrix} w_{j_o+1} \\ \vdots \\ w_j \end{pmatrix} \text{ avec } w_v = n_v(y,\eta)w_{v_k} \text{ avec } v_k \leq j_o \text{ pour } j_o+1 \leq v \leq j \text{ .}$$

Donc on a : $\mathbf{v}_{\mathbf{v}}(0) = \mathbf{N}_{\mathbf{v}}(\mathbf{y}, \mathbf{D}_{\mathbf{y}})\mathbf{v}_{\mathbf{k}}(0)$ modulo $\mathbf{H}^{\mathbf{S}}(\partial \mathbf{M})$ où $\mathbf{N}_{\mathbf{v}} \in \mathbf{L}^{\mathbf{O}}(\partial \mathbf{M})$ a pour symbole principal $\mathbf{n}_{\mathbf{v}}(\mathbf{y}, \mathbf{\eta})$. On a WFpol $\mathbf{v}_{\mathbf{v}_{\mathbf{L}}}(0)$ $(\mathbf{y}^{\mathbf{O}}, \mathbf{\eta}^{\mathbf{O}}) =$

 π_{v_k} $s(o, y^o, \eta^o)$. (WFpol_su(y^o, η^o, γ_{v_k}).)

et par la Prop.2.3 II WFpol $_{s}v_{v}(0)(y^{o},\eta^{o}) = n_{v}(y^{o},\eta^{o})$ (WFpol $_{s}v_{k}(0)(y^{o},\eta^{o})$)
Puis on peut appliquer la Prop.2.1.III à v_{v} ce qui démontre le théorème. #

Remarque 2.1 : avec les notations du théorème 2.1 supposons que le rang de $\mathfrak{L}_{v}(0,y,\eta)\circ M(y,\eta)$ est constant au voisinage de (y°,η°) . Alors si $K(y^{\circ},\eta^{\circ})$ est transverse à Ker $\mathfrak{L}_{v}(0,y^{\circ},\eta^{\circ})\circ M(y^{\circ},\eta^{\circ})$ l'hypothèse de dimension constante est vérifiée.

Remarque 2.2 : L'hypothèse du théorème 2.1 dépend de la donnée de WFpol u au-dessus de γ_{ν} pour $1 \le \nu \le j_{\nu}$, alors que le théorème 2.2 est valable pour toutes les polarisations incidentes.

Remarque 2.3 : on vérifie aisément qu'une relation $a(y,D_y)v(0) \in H^S(\partial M)$ qui couple v_y et v_y , pour $v \neq v'$ ne donne pas de renseignement sur WFpolsv le long de v_y et de γ_y . Ceci explique que dans la condition (ϵ_2) on suppose que $m(y,\eta)$ se sépare en blocs sur les espaces propres de $g_1(0,y,\eta)$. On peut voir un exemple l'utilité de considérer WFpolsu en supposant que $u \in (\mathbb{R}^{s-1}(M))^m$. Supposons que $u \in (\mathbb{D}^r(M))^6$ est solution d'un système (\mathfrak{P}^r) avec 2 bicaractéristiques transverses en (y^0,η^0) , v et v^r . Notons $\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ et $\begin{pmatrix} u_1' \\ u_2' \\ u_3' \end{pmatrix}$ les projections de u sur

les espaces propres associés à v et v'.

Supposons que la condition au bord est : $(2.10) \begin{cases} u_1' = u_1^{+u_2^{+u_3^{+a}}-1} {}^{(u_1')} \\ u_2' = 2u_1^{+2u_2^{+u_3^{+b}}-1} {}^{(u_2')} \\ u_3' = u_3^{+c}-1 {}^{(u_1')} \end{cases}$

avec ${\bf a}_{-1}$, ${\bf b}_{-1}$, ${\bf c}_{-1}\in L^{-1}(\partial M)$.(2.10) vérifie (\$\epsilon_1\$) mais pas (\$\epsilon_2\$) .

Supposons d'autre part que la donnée de WFpol u sur γ entraîne que $u_{\gamma}(0) \in C^{\infty}(\partial M)$ microlocalement en $(y^{\circ}, \eta^{\circ})$.

On a alors:
$$\begin{cases} u_1' = u_1 + u_2 + a_{-1}(u_1) \\ u_2' = 2u_1 + 2u_2 + b_{-1}(u_2) \\ u_3' = c_{-1}(u_1) \end{cases}$$
 modulo $C^{\infty}(\partial M)$

Cherchons à priori α^1 , α^2 , $\alpha^3 \in L^0(\partial M)$ tels que : $\alpha^1 u_1^1 + \alpha^2 u_2^1 + \alpha^3 u_3^1 \in C^\infty(\partial M)$. Il vient $(\alpha^1 + 2\alpha^2 + \alpha^1 a_{-1} + \alpha^3 c_{-1})u_1 + (\alpha^1 + 2\alpha^2 + \alpha^2 b_{-1})u_2 \in C^\infty(\partial M)$.

Comme u_1 et u_2 sont arbitraires il faut donc que :

(2.11)
$$\begin{cases} \alpha^{1} + 2\alpha^{2} + \alpha^{1} a_{-1} + \alpha^{3} c_{-1} \equiv 0 \\ \alpha^{1} + 2\alpha^{2} + \alpha^{2} b_{-1} \equiv 0 \end{cases} \quad \text{si } \alpha^{i} = \sum_{j=0}^{-\infty} \alpha^{i}_{j} \quad \text{pour } i = 1,2,3.$$

Prenons par exemple $\alpha_0^2 \neq 0$. Il vient $\alpha_0^1 + 2\alpha_0^2 = 0$. Pour annuler les termes d'ordre -1 dans (2.11) il faut :

$$\begin{cases} \alpha_{-1}^{1} + 2\alpha_{-1}^{2} = -2\alpha_{0}^{2} a_{-1} + \alpha_{0}^{3} c_{-1} \\ \alpha_{1}^{1} + 2\alpha_{-1}^{2} = \alpha_{0}^{2} b_{-1} \end{cases}$$

$$Donc \quad \alpha_{0}^{2} (b_{-1} + 2a_{-1}) = \alpha_{0}^{3} c_{-1} .$$

Il suffit de prendre $c_{-1}(y^0,\eta^0)=0$ et $(b_{-1}+2a_{-1})(y^0,\eta^0)\neq 0$ pour avoir une contradiction. Donc avec la condition au bord (2.10) on n'a pas réflexion de WFpol u . Par contre si u $\in \mathbb{K}^{s-1}(M)$, on a réflexion de WFpol u pour la polarisation incidente $u_3(0)\in \mathbb{K}^s(\partial M)$.

Enfin on peut remplacer dans les théorèmes 2.1 et 2.2 l'hypothèse u $\in \mathbb{K}^{s-1}(M)$ par u $\in \mathbb{K}^{s-1}(M)$ microlocalement sur $\gamma_1, \ldots, \gamma_n$.

On va maintenant démontrer un théorème sur les ondes de Rayleigh.

Théorème 2.3 : Soit $u \in (D^1(M))^m$ solution du problème aux limites (f) vérifiant la condition (R). Si WFpol $u(y^0,\eta^0,\gamma_v)=E_v(0)$, alors au-dessus des bicaractéristiques de $\xi-\mu_v$ qui partent des points de δ_v , WFpol u est égal à l'union des orbites hamiltoniennes qui partent des points appartenant

aux orbites hamiltoniennes de R issues de (y^0, η^0, w) avec $w \in E_y(0)$.

Démonstration: D'après (R) on a Rv(y,Dy)v,(O) \subset C $^{\infty}$ (OM) et WFpol $v_v(O)(y^0,\eta^0) = E_v(O)$. Il suffit d'appliquer le théorème 1.7 II à $v_v(O)$ qui est solution d'un système de type principal réel. Donc au-dessus de δ_v WFpolv,(O) est l'union des orbites hamiltoniennes de R partant de (y^0,η^0,w) avec $w\in E_v(O)$. Puis en tout point de δ_v on peut appliquer la proposition 2.1.III à $v_v(O)$,ce qui donne le théorème. #

IV.3. Cas diffractif.

Dans ce paragraphe on suppose qu'il y a des rayons qui sont tangents à ∂M , plus précisément les rayons \vee_{v} pour j+1 < v < k. Notons $\stackrel{\frown}{N_{v}}^{+}$ et $\stackrel{\frown}{N_{v}}^{-}$ les opérateurs de Neumann associés aux blocs $D_{x}H - H_{v}$. Notons $v = \beta S^{-1}K^{-1}$ et D^{-1} l'opérateur de symbole $|\eta|^{-1}$. On se ramène donc à v solution du problème aux limites $(\ell^{(i)})$. Une condition suffisante pour avoir la réflexion de WFv pour v solution de $(\ell^{(i)})$ est :

$$\forall v \in C^{\infty}(\partial M) \text{ entraine :} \begin{bmatrix} \pi'v \\ D^{-1}(H_{j+1}(O) - N_{j+1})v_{j+1} \\ \vdots \\ D^{-1}(H_{k}(O) - N_{k})v_{k} \end{bmatrix} = M(y,D_{y}) \begin{bmatrix} \pi v \\ D^{-1}(H_{j+1}(O) - N_{j+1})v_{j+1} \\ \vdots \\ D^{-1}(H_{k}(O) - N_{k})v_{k} \end{bmatrix}$$

modulo $C^{\infty}(\partial M)$, où M est un opérateur pseudodifférentiel matriciel. En général les composantes de M sont des produits d'opérateurs d'Airy associés à des hypersurfaces différentes. Pour simplifier les résultats on va donc supposer qu'il n'y a qu'un seul rayon tangent, c'est à dire que j+1=k (hypothèse K'). Sous cette hypothèse, on va voir que la condition (3.1) est satisfaite si β vérifie la condition de Lopatinski-Shapiro, dans le cas où les γ_{ν} pour $1 \le \nu \le j_{\nu}$ sont des bicaractéristiques entrantes et pour $j_{\nu+1} \le \nu \le j_{\nu}$, des bicaractéristiques sortantes. Supposons donc

que β vérifie la condition le Lopatinski-Shapiro (voir [17] pour la définition). D'après les résultats de [7] par une transformation canonique dans les variables (y,η) dépendant de façon C^{∞} de x, on peut se ramener au cas où $a_{j+1} \equiv 0$. Les opérateurs intégraux de Fourier associés à ces transformations préservent l'espace $\mathfrak{X}^S(M)$. Oublions l'indice j+1, pour simplifier les notations.

D'après le lemme 1.1.III on peut trouver une base de ${\bf C}^{2\alpha}$ dans laquelle ${\bf C}^{1}$ dans laquelle ${\bf C}^{1}$ dans laquelle ${\bf C}^{1}$ dans laquelle ${\bf C}^{1}$ dans laquelle ${\bf C}^{1}$

$$\begin{bmatrix} 0 & ||\eta| \mathbf{1I}_{\alpha} \\ \hline ||\eta| & \mathbf{1I}_{\alpha} & 0 \end{bmatrix}$$

Notons π_1^w la projection de $w\in \mathbb{C}^m$ sur l'espace engendré par les α premiers vecteurs de cette base et π_2^w la projection sur l'espace engendré par les α derniers. La condition de Lopatinski-Shapiro est bien sûr invariante par changement de base. Soit γ_0^v le symbole principal de γ . La condition de Lopatinski-Shapiro vérifiée par γ_0^v entraîne que :

(3.2)
$$\forall w \in \mathfrak{C}^{m'} \gamma_{o}^{w} = 0 \Rightarrow \begin{pmatrix} \pi^{\dagger} w \\ \pi_{1}^{w} \end{pmatrix} = K(y,\eta) \begin{pmatrix} \pi w \\ \pi_{2}^{w} \end{pmatrix} + K(y,\eta) \pi^{-}w$$

avec $K(y, \eta)$ matrice homogène d'ordre 0 en η . Donc

$$\gamma_{\mathbf{v}} \in C^{\infty}(\partial M) \Rightarrow \begin{pmatrix} \pi^{\dagger} \mathbf{v} \\ \pi_{1} \mathbf{v} \end{pmatrix} = K(\mathbf{y}, D_{\mathbf{y}}) \begin{pmatrix} \pi^{\mathbf{v}} \\ \pi_{2} \mathbf{v} \end{pmatrix} \mod C^{\infty}(\partial M).$$

avec K \in $L_{c\ell}^{o}(\partial M)$. D'après la Prop.3.16 III il existe J opérateur intégral de Fourier elliptique dans $I^{o}(\mathbb{R}^{n},\partial M,\chi_{1})$ tel que $:JN^{\pm}\equiv(a_{0}^{\pm},\Phi^{\pm}+b_{0}^{\pm})$ J au voisinage de (y^{o},η^{o}) où :

- N^{\pm} sont les opérateurs de Neumann associés à ξ^2 -b
- $\mathbf{a}_{o}^{\pm} \in \mathbf{L}_{c\ell}^{2/3}(\mathbf{R}^{n})$ est elliptique en $(0,\eta_{o})$, $\mathbf{b}_{o}^{\pm} \in \mathbf{L}_{c\ell}^{o}(\mathbf{R}^{n})$
- Φ^{\pm} est le multiplicateur de Fourier de symbole $\frac{A_1}{A_+}(\eta_1\eta_n^{-1/3})$

En décomposant K en blocs on a :

(3.3)
$$\begin{cases} \pi'v = K_{11}\pi v + K_{12}\pi_{2}v \\ \pi_{1}v = K_{21}\pi v + K_{22}\pi_{2}v \end{cases} \text{ modulo } C^{\infty}(\partial M) .$$

et
$$D^{-1}$$
 (H(O,y,D_y)- \tilde{N}^{+})v(O) = $\begin{pmatrix} \pi_{2}v-D^{-1}\tilde{N}^{+}\pi_{1}v \\ D^{-2}b\pi_{1}v-D^{-1}\tilde{N}^{+}\pi_{2}v \end{pmatrix}$ + A_O $\begin{pmatrix} \pi_{1}v \\ \pi_{2}v \end{pmatrix}$ = $\begin{pmatrix} h^{+}_{1} \\ h^{+}_{2} \end{pmatrix}$

avec $A_0 \in L_{cl}^{-1}(\partial M)$.

On travaille maintenant sur $J^{-1}v$ et $J^{-1}h^{+}$ que l'on notera \checkmark et \hbar^{+} .

(3.3) entraine :
$$\begin{cases} \pi^{\mathsf{idr}} = \mathbf{K}_{11} \pi v + \mathbf{K}_{12} \pi_2 v \\ \pi_1 v = \mathbf{K}_{21} \pi v + \mathbf{K}_{22} \pi_2 v \end{cases} \text{ modulo } C^{\infty}(\mathbb{R}^n)$$

avec $K_{ij} = J^{-1}K_{ij}J \in L_{ck}^{o}(\mathbb{R}^{n})$. Supposons de plus que $v \in H^{s'}(\partial M)$

(3.4) entraîne :
$$\begin{pmatrix} \mathbf{A}_{1}^{+} \\ \mathbf{A}_{2}^{+} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{2}^{\mathbf{V}} - \mathbf{A}_{1} & \mathbf{A}_{1}^{+} \\ \mathbf{B}_{1}^{\mathbf{T}} \mathbf{V} - \mathbf{B}_{2} \mathbf{A}_{2}^{+} \mathbf{A}_{2}^{\mathbf{V}} \end{pmatrix} \quad \text{modulo } \mathbf{H}^{\mathbf{S}^{1}+1/3}(\mathbb{R}^{n})$$

avec $A_1 \in L_{c\ell}^{-1/3}(\mathbb{R}^n)$, $B_1 \in L_{c\ell}^o(\mathbb{R}^n)$, $B_2 \in L_{c\ell}^{-1/3}(\mathbb{R}^n)$. En effet (3.29)III entraîne que $N^{\frac{1}{2}} = N^{\frac{1}{2}} \mod L_{1/3,0}^{2/3}(\partial M)$.

Donc
$$\mathbf{K}_{1}^{+} = \mathbf{I}_{\alpha}^{-} \pi_{2} \mathbf{v} - \mathbf{A}_{1} \phi^{+} \pi_{1} \mathbf{v} = (\mathbf{I}_{\alpha}^{-} - \mathbf{A}_{1} \phi^{+} \mathbf{K}_{22}) \pi_{2} \mathbf{v} - \mathbf{A}_{1} \phi^{+} \mathbf{K}_{21} \pi \mathbf{v} =$$

$$(11_{\alpha} - A_1 K_{22} \Phi^+) \pi_2 v - A_1 K_{21} \Phi^+ \pi v \mod H^{s'+1/3}(\mathbb{R}^n).$$

Dans la suite on va utiliser le calcul des opérateurs de Fourier-Airy développé dans [11]. Les notations employées sont celles de [11].

D'après le théorème 4.21 de $[11]F^+ = II_{\alpha} - A_1 K_{22} \Phi^+$ a un inverse microlocal près de $(0, \eta_0)$ dans la classe $A_+^{0,+}(\mathbb{R}^n)$.

Donc on a :
$$\pi_2 \mathbf{v} = (\mathbf{F}^+)^{-1} (\mathbf{A}_1^+ + \mathbf{A}_1 \mathbf{K}_{21} \Phi^+ \pi \mathbf{v})$$
. modulo $\mathbf{H}^{s'+1/3} (\mathbf{R}^n)$

$$\pi_2 = (F^-)^{-1} (h_1^- + A_1 K_{21} \Phi^- \pi V) \text{ modulo } H^{s'+1/3} (\mathbb{R}^n).$$

Donc:
$$(F^{-})^{-1}\mathbf{A}_{1}^{-} = (F^{+})^{1}\mathbf{A}_{1}^{+} + ((F^{+})^{-1} \mathbf{A}_{1}\mathbf{K}_{21}\Phi^{+} - (F^{-})^{-1}\mathbf{A}_{1}\mathbf{K}_{21}\Phi^{-})\pi \mathbf{V} \mod \mathbf{H}^{\mathbf{S}^{+}+1/3}(\mathbb{R}^{n})$$

De même on a : $\pi \Psi = \mathbf{K}_{12}(\mathbf{F}^+)^{-1}\mathbf{A}_1^+ + (\mathbf{K}_{11} + \mathbf{K}_{12}(\mathbf{F}^+)^{-1}\mathbf{A}_1\mathbf{K}_{21}\Phi^+)\pi \Psi \mod \mathbf{H}^{s'+1/3}(\mathbf{R}^n)$ et : $\mathbf{A}_2^- = \mathbf{B}_1\mathbf{K}_{21}\pi \Psi + (\mathbf{B}_1\mathbf{K}_{22} - \mathbf{B}_2\Phi^-)\pi_2\Psi \mod \mathbf{H}^{s'+1/3}(\mathbf{R}^n)$.

donc
$$\mathbf{A}_{2}^{-} = (\mathbf{B}_{1}\mathbf{K}_{22}^{-}\mathbf{B}_{2}^{-}\mathbf{\bar{Q}})(\mathbf{F}^{+})^{-1}\mathbf{A}_{1}^{+} + ((\mathbf{B}_{1}\mathbf{K}_{22}^{-}\mathbf{B}_{2}^{-}\mathbf{\bar{Q}})(\mathbf{\bar{F}}^{+})^{-1}\mathbf{A}_{1}\mathbf{K}_{21}^{-}\mathbf{\bar{Q}}^{+} + \mathbf{B}_{1}\mathbf{K}_{21})\pi\mathbf{v}^{-}$$

Donc on peut obtenir l_1 , l_2 , π 'v en fonction de π v et de l_1 . On a donc obtenu (3.1).

Rappelons brièvement la définition des classes $A_{+}^{m,+}(\mathbb{R}^{n})$ et $A_{-}^{m,+}(\mathbb{R}^{n})$ de [11]. Soit $\psi_{\pm}(z) = \frac{A_{\pm}^{i}}{A_{\pm}}(z)$ on note $\psi_{\pm}^{j}(z) = \frac{d^{j}}{dz^{j}}\psi_{\pm}(z)$

et on note $\phi_{\pm}^{\,j}$ le multiplicateur de Fourier de symbole $\phi_{\pm}^{\,j}(\eta_1\eta_n^{-1/3})$.

Alors $\Phi_{\pm}^{j} \in L_{1/3,0}^{(1/3-2j/3)+}(\mathbb{R}^{n})$ où $n_{+} = \sup(n,0)$ pour $n \in \mathbb{Z}$. D'après la Proposition 4.1 de [11], $B \in A_{s}^{-}(\mathbb{R}^{n})$, $s = \pm \text{ si } B \in L_{1/3,0}^{m}(\mathbb{R}^{n})$ et $B \text{ a un symbole } \sigma(B) \sim b_{0}(y,\eta) + \sum_{j\geq 1} b_{j}(y,\eta) \Phi_{s}^{j-1} \text{ avec } b_{j} \in S_{c\ell}^{m-j/3}(\mathbb{R}^{n}).$

Le développement converge dans $S_{1/3,0}^{m}(\mathbb{R}^{n})$. On appellera $b_{0}(y,\eta)$ la partie classique de B . Comme $u(0) \in H^{s'}(\mathbb{R}^{n})$, \boldsymbol{v} et $\boldsymbol{k}^{\pm} \in H^{s'}(\mathbb{R}^{n})$ donc $\forall B \in A_{s'}^{0,+}(\mathbb{R}^{n})$ on a :

(3.5)
$$\begin{cases} B\mathbf{v} = (b_0 + b_1 \Phi_s)\mathbf{v} & \text{modulo } H^{s+1/3}(\mathbb{R}^n) \\ B\mathbf{A}^{\pm} = (b_0 + b_1 \Phi_s)\mathbf{A}^{\pm} \end{cases}$$

On a donc

$$(3.6) \begin{pmatrix} (F^{-})^{-1} \mathbf{A}_{1}^{-} \\ \pi' \mathbf{A} \end{pmatrix} = \mathbf{M} \begin{pmatrix} \mathbf{A}^{+} \\ \pi \mathbf{A} \end{pmatrix} \quad \text{modulo } \mathbf{H}^{s'+1/3}(\mathbb{R}^{n}) \text{ où } \mathbf{M} \text{ a un symbole}$$

de la forme suivante : $M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$, où les blocs correspondent

à la décomposition suivant $(F^-)^{-1} {\bf k}_1^-$, $\pi' {\bf v}$, ${\bf k}^+$ et $\pi {\bf v}^-$, et on a : ${\bf M}_{11}$, ${\bf M}_{21}$, ${\bf M}_{22}$ sont dans ${\bf A}_+^{0,+}({\bf R}^n)$ et ${\bf M}_{12}$ est la somme d'un terme de ${\bf A}_+^{0,+}({\bf R}^n)$ et d'un terme de ${\bf A}_-^{0,+}({\bf R}^n)$. Pour simplifier les calculs, on va

supposer que $K_{21} \equiv 0$, ce qui entraîne que $K_{21} \equiv 0$ donc que $M_{12} \equiv 0$. (voir remarque 3.2). (Hypothèse \mathfrak{K}'') on notera $M_{0}(y,\eta)$ le symbole principal de la partie classique de M. on a :

$$M_{o}(0,\widetilde{\eta}_{o}) = \left(\begin{array}{c|c} 1I_{\alpha} & 0 \\ \hline K_{12}(0,\widetilde{\eta}_{o}) & K_{11}(0,\widetilde{\eta}_{o}) \end{array}\right) = \left(\begin{array}{c|c} II_{\alpha} & 0 \\ \hline K_{12}(y^{o},\eta^{o}) & K_{11}(y^{o},\eta^{o}) \end{array}\right)$$

Donnons maintenant quelques notations:

D'après les hypothèses du §1 , on suppose que l'on connait WFpol v le long de γ_{j+1}^- . On s'est donc donné un $d_{j+1} \times 2$ α_{j+1} système $a_{j+1} \in L^o_{c\ell}(M)$ de symbole principal $\sigma(a_{j+1})$ tel que a_{j+1} $v_{j+1} \in \mathcal{K}^S(M)$ et WFpol $v(\rho_{j+1}^o) = Ker \sigma(a_{j+1}) (\rho_{j+1}^o)$ où $\rho_{j+1}^o \in \gamma_{j+1}^-$. Alors d'après la Prop.3.6 III et le théorème (3.21) III, il existe des $d_{j+1} \times 2$ α_{j+1} systèmes a_{j+1}^o et a_{j+1}^1 dans $L^o_{c\ell}(\partial M)$ et $L^{-1}_{c\ell}(\partial M)$ tels que : $(a_{j+1}^o - N^+ a_{j+1}^1) D^{-1}(H_{j+1}(O) - N^+) v_{j+1}(O) \in H^S(\partial M)$, si $u \in \mathcal{K}^{S'}(M) s' > s-1/3$ On note alors WFpol $u(y^o, \eta^o, \gamma_{j+1}^-)$ l'espace $S^{-1}(O, y^o, \eta^o) Ker \sigma(a_{j+1}^o) (y^o, \eta^o)$. On note \mathcal{M}_o la matrice $S^{-1}(O, y^o, \eta^o) M_o(O, \widetilde{\eta}_o) S(O, y^o, \eta^o)$.

les orbites hamiltoniennes de $D_{\mathbf{x}}^{11}$ - G issues de points $(0, \mathbf{y}^{\circ}, \mathbf{a}_{j+1}^{\circ}, \mathbf{y}^{\circ}, \mathbf{\eta}^{\circ}), \mathbf{\eta}^{\circ}, \mathbf{w})$ avec w appartenant à l'image de K par $\mathbf{y}_{j+1}^{\circ}(0, \mathbf{y}^{\circ}, \mathbf{\eta}^{\circ}) \circ \mathbf{m}_{o}$.

Démonstration: On se ramène tout d'abord au cas où le problème aux limites est de la forme (Ω) et à démontrer le théorème pour v = KSu. En suivant la démonstration du théorème 2.1 et d'après la définition de WFpol_su(y^0, η^0, v_{j+1}^-), il existe pour $1 < v < j_0$ des $d_v \times \alpha_v$ matrices $A_v(y,D_y)$ de symbole principal $a_v(y,\eta)$ dans $L_{c\ell}^0$ (∂M) telles que: $A_v(y,D_y)v_v \in H^S(\partial M)$ (3.7) et Ker $a_v(y^0,\eta^0) = \pi_v \circ S(0,y^0,\eta^0)$ WFpol_su(y^0,η^0,v_v)(3.8). De même il existe des $d_{j+1} \times 2\alpha_{j+1}$ matrices $A_{j+1}^0 \in L_{c\ell}^0$ (∂M) et $L_{c\ell}^{-1}$ (∂M) telles que: $(A_{j+1}^0-N_+ A_{j+1}^1) D^{-1}(H_{j+1}(0)-N_- v_{j+1}) O \in H^S(\partial M)$ (3.9) et Ker $a_{j+1}^0(y^0,\eta^0) = \pi_{j+1}^1 \circ S(0,y^0,\eta^0) \circ WFpol_su(y^0,\eta^0,v_{j+1}^-)$ (3.10). En conjugant les relations (3.7) et (3.9) par J, il existe pour $1 < v \le j_0$ des $d_v \times \alpha_v$ matrices $d_v \in L_{c\ell}^0$ ($d_v \in L_{c\ell}^0$ 0), et il existe des $d_{j+1} \times 2\alpha_{j+1}$ matrices $d_v \in L_{c\ell}^0$ 0, $d_v \in L_{c\ell}^0$ 0, $d_v \in L_{c\ell}^0$ 1, $d_v \in L_{c\ell}^0$ 1, telles que: $(d_{j+1}^0+d_j^1+e_j) = d_v \in L_{c\ell}^0$ 1, $d_v \in L_{c\ell}^0$ 1, $d_v \in L_{c\ell}^0$ 1, $d_v \in L_{c\ell}^0$ 1, $d_v \in L_{c\ell}^0$ 2, $d_v \in L_{c\ell}^0$ 3, $d_v \in L_{c\ell}^0$ 3, $d_v \in L_{c\ell}^0$ 4, $d_v \in L_{c\ell}^0$ 4, $d_v \in L_{c\ell}^0$ 4, $d_v \in L_{c\ell}^0$ 4, $d_v \in L_{c\ell}^0$ 5, $d_v \in L_{c\ell}^0$ 6, $d_v \in L_{c\ell}^0$ 7, $d_v \in L_{c\ell}^0$ 8, $d_v \in L_{c\ell}^0$ 9, $d_v \in L_{c\ell}^0$ 9,

- si
$$\begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_j \\ \mathbf{v}_o \\ \mathbf{v}_j \end{pmatrix}$$
 = $\sqrt{\frac{\mathbf{v}}{\mathbf{v}}}$ les d = $d_1 + d_2 + \dots + d_{j_0} + d_{j+1}$ premières composantes de \mathbf{v}_j sont dans $\mathbf{v}_j \in \mathbb{R}^n$ (3.11).

elliptique en (y^0, η^0) , et si $\mathcal{N} = \mathcal{N}^0 + \mathcal{N}^1_{\Phi_1}$, on a :

Pour celà on utilise le calcul symbolique et les notations de [12]. Notons $L \in A_+^{0,+}(\mathbb{R}^n)$ l'opérateur π_v on $M \circ \bigcup_{K}^{\infty} N$. On a $L = L^0 + L^1 \circ_+ N$, avec $L^0 \in L_{cl}^0(\mathbb{R}^n)$, $L^1 \in L_{cl}^{-1/3}(\mathbb{R}^n)$ et d'après les hypothèses du théorème, le symbole principal de L^0 est injectif en $(0,\tilde{\eta}^0)$, donc injectif sur un voisinage de $(0,\tilde{\eta}_0)$. En suivant la preuve du théorème 4.21 de [12], on démontre facilement qu'il existe une matrice $F \in A_+^{0,+}(\mathbb{R}^n)$, telle que $F \circ L - \Pi_K^{\infty} \in S^{-\infty}$ sur un voisinage conique de $(0,\tilde{\eta}_0)$. Grâce à (3.12) et à l'injectivité de L^0 , il existe $C_v \in A_+^{0,+}(\mathbb{R}^n)$ tel que

le symbole principal formel de C_{γ} o L est nul. Ceci entraîne que C_{γ} o L est la somme d'un élément de A_{+}^{-1} , (\mathbb{R}^{n}) et d'un symbole classique $H \in L_{cl}^{0}(\mathbb{R}^{n})$ dont le symbole principal s'annule en $(0,\tilde{\eta}_{0})$. En remplaçant C_{γ} par C_{γ} - HF on a une solution de (3.13). Si on note encore C_{γ} cette matrice le symbole principal de la partie classique de C_{γ} est égal à $C_{\gamma}(0,\tilde{\eta}_{0})$ en $(0,\tilde{\eta}_{0})$.

(3.6), (3.11) et (3.13) entraînent donc que
$$C_{\gamma}\pi$$

$$\pi^{\gamma}$$

$$\left(F^{-}\right)^{-1}\pi^{-}$$

$$\pi^{\gamma}$$

$$\in H^{S}(\mathbb{R}^{n}).$$

On distingue maintenant deux cas:

- Si $j_o^{+1} \le \nu \le j$ on a obtenu en utilisant (3.5) une relation $(c_{\nu}^o + c_{\nu}^1 \phi^+) \psi_{\nu} \in H^S(\mathbb{R}^n) \text{ avec } c_{\nu}^o \in L_{c\ell}^o(\mathbb{R}^n), c_{\nu}^1 \in L_{c\ell}^{-1/3}(\mathbb{R}^n) \text{ et } c_{\nu}^o(0,\widetilde{\eta}_o) \text{ est l'image par } \pi_{\nu} \circ M_o(0,\widetilde{\eta}_o) \in S(0,y^o,\eta^o) \text{ de } K.$

On whilise maintenant la remarque 3.7 III , la définition 3.9 III et le fait que $v_{\gamma}(0) \in H^{s'}(\partial M)$, ce qui montre que $\widetilde{WFpol}_{s}v_{\gamma}(0)(y^{o},\eta^{o}) \subset Ker(c_{\gamma}^{o})(0,\eta_{o}^{o})$

D'après la proposition 2.1III qui est encore vraie pour WFpol u on en déduit la conclusion du théorème.

- Si y = j+1. On a obtenu en utilisant (3.5) une relation :

 $(c_{j+1}^{o} + c_{j+1}^{1} \Phi^{+}) (F^{-})^{-1} \mathbf{A}_{1}^{-} \in H^{S}(\mathbb{R}^{n}) \text{ avec } c_{j+1}^{o} \in L_{c\ell}^{o}(\mathbb{R}^{n}) \text{ et } c_{j+1}^{1} \in L_{c\ell}^{-1/3}(\mathbb{R}^{n})$ et Ker $\sigma(c_{j+1}^{o}) (O, \eta_{o})$ est l'image par $\pi_{j+1} \circ M_{o}(O, \eta_{o}) \circ S(O, y^{o}, \eta^{o})$ de K.
En utilisant à nouveau (3.5) pour l'expression de $(F^{-})^{-1}$ on obtient une

relation: $(d_{j+1}^{0} + d_{j+1}^{1} \Phi^{+} + d_{j+1}^{2} \Phi^{-} + d_{j+1}^{3} \Phi^{+} \Phi^{-}) A^{-} \in H^{s}(\mathbb{R}^{n})$ (3.14) avec:

 $d_{j+1}^{o} \in L_{c\ell}^{o}(\mathbb{R}^{n}), d_{j+1}^{1}, d_{j+1}^{2} \in L_{c\ell}^{-1/3}(\mathbb{R}^{n}), d_{j+1}^{3} \in L_{c\ell}^{-2/3}(\mathbb{R}^{n}), \text{ et}$ $\sigma(d_{j+1}^{o})(0,\widetilde{\eta}_{o}) = \sigma(c_{j+1}^{o})(0,\widetilde{\eta}_{o}). \text{ On utilise maintenant que } \widetilde{h} = J^{-1}h^{-1} \text{ et}$ on va suivre la preuve de la Proposition 3.19 III. Notons $f_{j+1} = v_{j+1}|_{S}$. Comme dans la preuve du théorème 3.21 III, on se ramène au cas où v_{j+1} vérifie les hypothèses de la Prop.3.19 III.

Notons d l'opérateur qui apparaît dans (3.14). (3.14) entraîne que d $J^{-1}D_{\mathbf{x}}\mathbf{v}_{,j+1} \in H^{s-1}(\mathbb{R}^n)$. Avec les notations de Prop.3.10 III on a :

$$d J^{-1}D_{x}v_{j+1} = d J^{-1}Ja\frac{1}{A_{+}} K f_{j+1} = da \frac{1}{A_{+}} K f_{j+1}$$
.

On a da $\frac{1}{A_{+}} \equiv \frac{1}{A_{+}}$ $\stackrel{\frown}{a}$ avec $\stackrel{\frown}{a}$ de la forme (3.14) et Ker $\sigma(d_{j+1}^{\circ})(0, \stackrel{\frown}{\eta}_{o}) = Ker \sigma(d_{j+1}^{\circ})(0, \stackrel{\frown}{\eta}_{o})$ en effet il suffit d'utiliser le lemme 3.18 III et le fait que Φ_{+} , Φ_{-} et $\frac{1}{A_{+}}$ commutent car ce sont des multiplicateurs de Fourier. On a donc $\frac{1}{A_{+}}$ $\stackrel{\frown}{a}$ $\stackrel{$

Remarque 3.2 : Dans le cas où l'hypothèse \mathcal{K}'' n'est pas vérifiée le théorème 3.1 est encore vrai mais il faut développer un calcul symbolique dans une classe plus grande que $A_+^{m,+}(\mathbb{R}^n)$, celle des opérateurs $B \in L_{1/3,0}^m(\mathbb{R}^n)$ tels que $\sigma(B)$ a un développement :

$$\sigma(B)_{\sim b} \circ (y, \eta) + \sum_{j,k \geq 1} b_{jk}(y, \eta) \Phi_{+}^{j-1} \Phi_{-}^{k-1} \quad \text{avec } b_{j,k} \in S_{cl}^{m-j/3-k/3}(\mathbb{R}^n).$$

4. Exemples.

pour démontrer le théorème. #

Dans ce paragraphe on va donner quelques exemples.

4.1 Réflexion sur une surface pour l'équation des ondes.

On se place en dimension d'espace égale à 3. On a donc $y = (y_1, y_2, y_3)$

 y_1 représentant le temps, et on regarde la réflexion sur x = 0.

le système est un système 3×3 du 2e ordre : $\frac{\partial^2 \vec{E}}{\partial y_1} - \frac{\partial^2 \vec{E}}{\partial x_2} - \frac{\partial^2 \vec{E}}{\partial y_2} - \frac{\partial^2 \vec{E}}{\partial y_2} = 0$.

Si $\vec{E} = (e_1, e_2, e_3)$ les changements d'inconnues :

 $(1+\left|\eta\right|^2)^{1/2}$ ramènent le système à :

$$\begin{cases} D_{x}u_{i} = \Lambda u_{i}^{t} \\ D_{x}u_{i}^{t} = \Lambda^{-1}ru_{i} & \text{où } r(D_{y}) = D_{y_{1}}^{2} - D_{y_{2}}^{2} - D_{y_{3}}^{2} \end{cases}.$$

Regardons d'abord le cas transversal,

Soit $(y^0, \eta^0) \in T^*(\partial M)$ tel que $\eta_1^2 > \eta_2^2 + \eta_3^2$. Au voisinage de (y^0, η^0) les

ramènent le système à $D_{\mathbf{x}}(\frac{\vec{v}}{\vec{v}!}) = G(\frac{\vec{v}}{\vec{v}!})$ où le symbole principal de

G est
$$\begin{bmatrix} \mu 1I_3 & 0 \\ 0 & -\mu 1I_3 \end{bmatrix}$$
 En (y^0, η^0) on a donc 2 bicaractéristiques triples y et y' qui arrivent.

Il est facile de vérifier que au-dessus de \vee WFpol \vec{E} = WFpol \vec{v} et au-dessus de \vee ' WFpol \vec{E} = WFpol \vec{v} '.

Regardons maintenant un certain nombre de conditions aux limites.

(4.2)
$$\begin{cases} \operatorname{div} \vec{E} = 0 & \text{où } \vec{v} \text{ est un vecteur normal à } x = 0. \\ \vec{E} \times \vec{v} = 0 \end{cases}$$

On obtient:
$$\begin{cases} v_2 + v_2' = 0 & \text{on est dans les hypothèses du théorème 2.2} \\ v_3 + v_1' = 0 & \text{et du corollaire 2.2.} \\ v_1 - v_1' \in C^{\infty} \end{cases}$$

on a donc réflexion de WFpol u et de WFpol $_{\mathbf{S}}^{\mathbf{u}}$.

(4.3) $\{D_{\mathbf{x}} \vec{E} - A(y)D_{\mathbf{y}_{1}} \vec{E} = 0 \text{ où } A \text{ est une matrice } 3 \times 3 \text{ (condition de type impédance).}$ (4.3) entraîne que $(\mu\Pi_{3} - AD_{\mathbf{y}_{1}})\vec{v} = (\mu\Pi_{3} + AD_{\mathbf{y}_{1}})\vec{v}'$. Si $-\frac{1}{\eta_{1}^{o}} \mu(\eta^{o})$ n'est pas une valeur propre de $A(y^{o})$ on est dans les

hypothèses du théorème 2.2. et du corollaire 2.2.

Regardons maintenant le cas tangent. On part d'un système 3 x 3 du 2e ordre $D_{\mathbf{x}}^{2}\vec{\mathbf{E}} = \mathbf{r}(\mathbf{x}, \mathbf{y}, D_{\mathbf{y}})\vec{\mathbf{E}}$. Supposons que la condition au bord est du type $D_{\vec{E}}(0) = A \vec{E}(0)$ avec $A \in L^1(\partial M)$. Soit (y^0, η^0) un point strictement diffractif pour D_x^2 -r et γ la bicaractéristique nulle de ξ^2 -r qui passe par $(0,y^0,0,\eta^0)$. La condition au bord vérifie Lopatinski Shapiro si A est elliptique en (y^0, η^0) . On suppose donc que A est elliptique en (y^0, η^0) . Dans ce cas on obtient un résultat plus précis en utilisant les Prop.3.6 III et 3.19 III. Supposons que 1ºon connaisse WFpol \vec{E} en un point de \vee . En remplaçant \vec{E} par $\vec{E'}$ = \vec{E} - $\vec{K_+}\vec{E}(0)$ où $\vec{K_+}$ est une paramétrix sortante pour le problème de Dirichlet pour D_x^2 - r , on voit qu'il existe des matrices $\mathbf{a}_0 \in \mathbf{L}^0(\partial M)$ et $\mathbf{a}_1 \in \mathbf{L}^{-1}(\partial M)$ telles que $(\mathbf{a}_0 - \mathbf{N}^+ \mathbf{a}_1)(\mathbf{D}_x \vec{\mathbf{E}} - \mathbf{N}^+ \vec{\mathbf{E}})(0) \in \mathbf{C}^\infty(\partial M)$. On a $D_{\mathbf{x}}\vec{E} = A\vec{E}$ donc $D_{\mathbf{x}}\vec{E} - N^{\dagger}\vec{E} = (A - N^{\dagger})(A - N^{\dagger})^{-1}(D_{\mathbf{x}}\vec{E} - N^{\dagger}\vec{E})$. Donc on a : $(a_0 - N^+ a_1) (A - N^+) (A - N^-)^{-1} (D_x \vec{E} - N^- \vec{E}) \in C^{\infty} (\partial M). (A - N^-)^{-1} \text{ est dans } A_-^{-1}, ^+ (\mathbb{R}^n).$ Donc on peut écrire $(A - N^-)^{-1}$ sous la forme $\sum_{i=0}^{\infty} b_i (N^-)^i$ avec $b_i \in L_{c\ell}^{-1-i} (\mathbb{R}^n).$ Ceci permet en suivant la preuve de la Prop.3.19 III d'obtenir une relation de type a $\vec{E}_{|S} \in C^{\infty}(S)$. Mais on ne peut pas suivre le symbole principal de a . On a WFpol_S($D_{\mathbf{x}}\vec{E}-N^{-}\vec{E}$)(O) (\mathbf{y}^{O} , η^{O}) = WFpol_S($D_{\mathbf{x}}\vec{E}-N^{+}\vec{E}$) (O) donc la polarisation de \vec{E} ne change pas par interaction au bord, quelle que soit la condition au bord.

4.2. Problèmes de transmission entre deux milieux.

On se place en dimension d'espace égale à 3,on regarde la transmission à travers x = 0. Dans x > 0 on est dans l'air on $a: D_x^2 \vec{E}_+ - r_+(x,y,D_y)\vec{E}_+ = 0$ Dans x < 0 on est dans un cristal isotrope on $a: D_x^2 \vec{E}_- - r_-(x,y,D_y)\vec{E}_- = 0$.

et on a $r_+ > r_-$ (la vitesse de la lumière est plus grande dans l'air). On a les conditions aux limites $\begin{cases} \vec{E}_{+}(0) = \vec{E}_{-}(0) \\ D_{x}\vec{E}_{+}(0) = -D_{x}\vec{E}_{-}(0) \end{cases}$

$$\begin{cases} E_{+}(0) = E_{-}(0) \\ D_{\mathbf{x}}\vec{E}_{+}(0) = -D_{\mathbf{x}}\vec{E}_{-}(0) \end{cases}$$

Regardons d'abord le cas transversal.

On se place en un point (y^0, η^0) tel que $r_1(0, y^0, \eta^0) > 0$ et $r_1(0, y^0, \eta^0) > 0$. Sur chaque système on fait les transformations de 4.1 et on se ramène à :

$$(4.4) D_{\mathbf{x}} \begin{pmatrix} \overrightarrow{\mathbf{v}}_{+} \\ \overrightarrow{\mathbf{v}}_{+} \end{pmatrix} = G_{+} \begin{pmatrix} \mathbf{v}_{+} \\ \mathbf{v}_{+} \end{pmatrix} D_{\mathbf{x}} \begin{pmatrix} \overrightarrow{\mathbf{v}}_{-} \\ \overrightarrow{\mathbf{v}}_{-} \end{pmatrix} = G_{-} \begin{pmatrix} \overrightarrow{\mathbf{v}}_{-} \\ \overrightarrow{\mathbf{v}}_{-} \end{pmatrix} \text{ avec}$$

$$G_{\pm} = \begin{bmatrix} \mu \pm 1I_{3} & 0 \\ 0 & -\mu_{\pm} 1I_{3} \end{bmatrix} \mu_{\pm} = \sqrt{r_{\pm}}.$$

Au point (y^0, η^0) arrivent 4 bicaractéristiques transversales γ_+ , γ_+^1 , γ_-^1 . Supposons que l'on connaisse WFpol \vec{E} le long de \vee et \vee , c'est-à-dire WFpol $v_{+}(0)$ et WFpol $v_{+}(0)$.

dans ce cas on ne peut donc pas appliquer le théorème 2.2.

Regardons maintenant le cas tangent.

On suppose donc que (y^0, η^0) est un point strictement diffractif pour $D_x^2 - r_(x,y,D_y)$, donc que $r_(0,y^0,\eta^0) = 0$. Pour \vec{E} on ne peut plus faire la réduction vue plus haut. En faisant le changement d'inconnues (4.1) sur \vec{E} on se ramène à (4.4) avec G comme plus haut et G de la forme :

$$\begin{bmatrix} 0 & \Lambda II_{3} \\ \Lambda^{-1}r_{-}II_{3} & 0 \end{bmatrix}$$
 la condition au bord devient :
$$\begin{cases} v_{+}+v_{+}^{*} = v_{-} \\ \mu_{+}(v_{+}-v_{-}^{*}) = \Lambda v_{-}^{*} \end{cases}$$

où $N^{\frac{1}{2}}$ sont les opérateurs de Neumann associés à D_{X}^{2} -r . En remplacant $N^{\frac{1}{2}}$ par des opérateurs dans $L_{a,o}^{0}(\partial M)$ on se ramène à :

$$\begin{pmatrix} \Lambda \mathbf{v}_{-}^{!} - \mathbf{N}_{-}^{+} \mathbf{v}_{-} \\ \Lambda^{-1} \mathbf{r}_{-} \mathbf{v}_{-}^{-} \mathbf{N}_{-}^{+} \mathbf{v}_{-}^{!} \end{pmatrix} = \tilde{\mathbf{M}}_{-}^{+} \begin{pmatrix} \mathbf{v}_{+} \\ \mathbf{v}_{+}^{!} \end{pmatrix} \text{ modulo } \tilde{\mathbf{H}}^{\mathbf{S}}(\partial M) \text{ si } \vec{\mathbf{E}}_{+}(O), \vec{\mathbf{E}}_{-}(O) \in \tilde{\mathbf{H}}^{\mathbf{S}}(\partial M) \text{ pour } \mathbf{v}_{-}^{*} \mathbf$$

avec \widecheck{M}^+ \in $L^1_{a,1-a}(\partial M)$. Sous une hypothèse de dimension constante analogue à celle des théorèmes 3.1 et 2.1 on peut montrer la réflexion de la polarisation et on vérifie que la polarisation de \overrightarrow{E}_- est la même le long de γ_- et γ_-^1 .

4.3. Equations de la magnétohydrodynamique.

C'est un système d'équations hyperboliques non linéaires dont les inconnues sont \vec{u} , \vec{B} , $\vec{\rho}$, vitesse du fluide, champ magnétique et densité du fluide.

$$\begin{cases} \operatorname{div} \vec{B} = 0 \\ \partial_t \vec{B} - \operatorname{rot}(\vec{u} \times \vec{B}) = 0 \\ \rho \partial_t \vec{u} + \rho(\vec{u} \cdot \vec{\nabla}) \vec{u} + \operatorname{grad} p - \mu^{-1} \operatorname{rot} \vec{B} \times \vec{B} = 0 \\ \partial_t \rho + \operatorname{div} \rho \vec{u} = 0 . \end{cases}$$

On suppose le fluide incompressible c'est-à-dire $y = y_0 = cste$.

Donc on a div \vec{u} = 0. Le système linéarisé au voisinage de \vec{u} = 0, \vec{B} = \vec{B}^O devient : $\begin{cases} \partial_t \vec{B} - r \vec{o} t (\vec{u} \times \vec{B}^O) = 0 \\ \rho_O \partial_t \vec{u} - \mu^{-1} (r \vec{o} t \vec{B}^O \times \vec{B} + r \vec{o} t \vec{B} \times \vec{B}^O) = 0 \end{cases}$

On se place sur $\mathbb{R}_t \times \mathbb{R}_y^3$. $\eta = (\eta_1, \eta_2, \eta_3)$ est la variable duale de y.

. Commencons par étudier la polarisation à l'intérieur.

(4.6) se met sous la forme $D_t \begin{pmatrix} \vec{B} \\ \vec{u} \end{pmatrix} + G \begin{pmatrix} \vec{B} \\ \vec{u} \end{pmatrix} = 0$ G a 3 valeurs propres doubles, O, $\alpha^{1/2}(\vec{B}^0.\eta)$, $-\alpha^{1/2}(\vec{B}^0.\eta)$ où $\alpha = \frac{1}{\mu\rho_0}$. associées chacune à des espaces propres de dimension 2, si $\vec{B}^0.\eta \neq 0$ Plaçons nous dans une base de \mathbb{R}^3 où $\frac{1}{|\eta|} = \vec{e}_3$, par exemple

$$\vec{e}_1 = \frac{1}{|\eta|} (\eta_2, -\eta_1, 0) , \vec{e}_2 = \frac{1}{|\eta|} (\eta_1, \eta_2, -\frac{\eta_2^2 + \eta_1^2}{\eta_3}) \vec{e}_3 = \frac{1}{|\eta|} (\eta_1, \eta_2, \eta_3)$$

0, $\alpha^{1/2}(\vec{B}^{\circ}.\eta)$, $-\alpha^{1/2}(\vec{B}^{\circ}.\eta)$ sont associés respectivement aux vecteurs propres $(0,\vec{B}^{\circ})$, $(\vec{e}_3,0)$; $(\alpha^{1/2}\vec{B}^{\circ}\times\vec{e}_3,-\alpha\vec{e}_1)$, $(\alpha^{1/2}\vec{B}^{\circ}\times\vec{e}_1,-\alpha\vec{e}_2)$; $(\alpha^{1/2}\vec{B}^{\circ}\times\vec{e}_3,\alpha\vec{e}_1)$, $(\alpha^{1/2}\vec{B}^{\circ}\times\vec{e}_1,\alpha\vec{e}_2)$. Supposons d'abord que $\vec{B}^{\circ}.\vec{e}_3 \neq 0$.

Les bicaractéristiques de τ sont associées à un déplacement d'ensemble du fluide. Le long d'une bicaractéristique de τ les résultats de [1] et le lemme 1.1. IV montrent que \vec{u} et \vec{B} sont microlocalement \vec{C} . En effet on a div $\vec{u}=0$, div $\vec{B}=0$ (4.7) donc WFpol \vec{u} et WFpol \vec{B} sont orthogonaux à \vec{e}_3 et WFpol (\vec{B},\vec{u}) est inclus dans $\text{vect}\{(0,\vec{B}^0),(\vec{e}_3,0)\}$. donc on a WFpol $\vec{u}=\text{WFpol}$ $\vec{B}=0$.

Les bicaractéristiques de $\tau \pm \alpha^{1/2}(\vec{B}^o,\eta)$ sont associées à des ondes appellées ondes d'Alfven. Le long d'une bicaractéristique de $\tau + \alpha^{1/2}(\vec{B}^o,\eta)$ on a : WFpol $(\vec{B},\vec{u}) \subset \text{vect}\{(\alpha^{1/2}\vec{B}^o\times\vec{e}_3,-\alpha\vec{e}_1),(\alpha^{1/2}\vec{B}^o\times\vec{e}_1,-\alpha\vec{e}_2)\}$. Donc WFpol (\vec{B},\vec{u}) est de dimension 1 à cause de (4.7). On a le même résultat le long d'une bicaractéristique de $\tau-\alpha^{1/2}(\vec{B}^o,\eta)$.

- . Regardons maintenant le cas où $\vec{B}^{o}\vec{e}_{3} = 0$. Ce mode de propagation est appellé propagation perpendiculaire. Dans ce cas G a : une valeur propre quadruple, O associée aux vecteurs propres $(\vec{B}^{o}\vec{x}\vec{e}_{3},\vec{e}_{1})$, $(\vec{B}^{o}\vec{x}\vec{e}_{3},\vec{e}_{2})$, $(\vec{e}_{3},\vec{e}_{1})$, $(\vec{e}_{3},\vec{e}_{2})$, deux valeurs propres simples $\pm \alpha^{1/2}|\vec{B}^{o}|$ associées aux vecteurs propres $(-\vec{B}^{o},\alpha^{1/2}|\vec{B}^{o}|\vec{e}_{3})$ et $(+\vec{B}^{o},\alpha^{1/2}|\vec{B}^{o}|\vec{e}_{3})$.
- . Le long d'une bicaractérstique pour τ on obtient que WFpol (\vec{B},\vec{u}) est de dimension 3.
- . Le long d'une bicaractéristique pour $\tau_{\pm \alpha}^{1/2} |\vec{B}^o|$ on obtient que \vec{u} et \vec{B} sont \vec{C}^∞ .
- . Enfin si $\frac{\partial \vec{B}}{\partial t} = 0 \vec{B}$ est constant le long d'une bicaractéristique donc on reste dans l'un ou l'autre cas. Dans tous les cas on a propagation

de WFpol (\vec{B}, \vec{u}) le long des orbites hamiltoniennes de (4.6).

Regardons maintenant la réflexion sur un obstacle.

Supposons qu'on regarde la réflexion sur la surface $y_1 = 0$ et que $\vec{B}^o = (b^o, 0, 0)$. en utilisant que div \vec{u} = div \vec{B} = 0 on obtient à partir de (4.6) le système suivant : $D_{\mathbf{y}_1} \begin{pmatrix} \vec{B} \\ \vec{u} \end{pmatrix} = H(D_t, D_y, D_y) \begin{pmatrix} \vec{B} \\ \vec{u} \end{pmatrix}$ (4.7) où le symbole principal de H est :

$$h = \begin{bmatrix} \frac{\tau}{b^{\circ}} & \mathbf{II}_{3} & 0 \\ \hline 0 & -\eta_{2} & -\eta_{3} \\ \hline \eta_{2} & 0 & 0 & \rho_{0} \mu \frac{\tau}{b^{\circ}} & \mathbf{II}_{3} \\ \hline \eta_{3} & 0 & 0 & 0 \end{bmatrix}$$

$$h \text{ a deux valeurs propres triples } \frac{\tau}{b^{\circ}} \text{ et est diagonalisable.}$$

Le système (4.7) est donc de type principal réel.

Prenons les conditions aux limites naturelles sur $y_1 = 0 : u_1 = 0$, $b_1 = 0$, $\partial_{y_3} b_1 - \partial_{y_1} b_3 = 0$, $\partial_{y_1} b_2 - \partial_{y_2} b_1 = 0$. En utilisant (4.7) on obtient la condition au bord suivante : (4.8) $\beta \begin{pmatrix} \vec{B}(0) \\ \vec{u}(0) \end{pmatrix} = 0$ où le symbole principal de β

En supposant pour simplifier que $\begin{pmatrix} \vec{B} \\ \vec{u} \end{pmatrix}$ (O) \in H^{S-1}(y₁=O) on voit facilement que dans ce cas on n'a pas réflexion de WFpol_S $\begin{pmatrix} \vec{B} \\ \vec{u} \end{pmatrix}$, mais que la condition au bord se propage à l'intérieur.

En effet notons \vec{e} et \vec{f} les projections de $\begin{pmatrix} \vec{B} \\ \vec{u} \end{pmatrix}$ sur les espaces propres de h associés à τ/b° et $\rho \mu \tau/b^{\circ}$.

Alors (4.8) entraine que $\vec{f}(0) \in H^{S}(y_{1}=0)$ et que $e_1(0) \in H^s(y_1=0)$ microlocalement en un point $(t^o,y_2^o,y_3^o,\tau^o,\eta_2^o,\eta_3^o)$ avec $\tau^o\neq 0$.

D'après la Prop.2.1. III ces conditions se propagent à l'intérieur le long des orbites hamiltoniennes de D $_{y_4}$ -H .

4.4. Réfraction entre deux milieux

On regarde la réfraction entre un milieu anisotrope et un milieu isotrope, par exemple entre un cristal et l'air.

On se place dans \mathbb{R}^3 et on regarde la réfraction à travers (x=0). Dans x>0 on est dans le cristal que l'on suppose pour simplifier monoaxial . Le champ électrique \vec{E}_1 vérifie le système :

$$\frac{\partial^2 \vec{E}_+}{\partial t^2} = (-\sigma^{-1} \vec{rot} \ \vec{rot} \ \sigma^{-1} + \sigma \ \text{grad div } \sigma) \ \vec{E}_+ \qquad (4.9)$$

où $\sigma = \begin{bmatrix} \sigma \\ 1 \\ 1 \end{bmatrix}$ avec $\sigma > 1$. On note (y_1, y_2) les autres variables d'espace.

Le symbole principal de ce système est $-\tau^2 II_3$ + A avec :

$$A = \begin{bmatrix} \frac{1}{\sigma^2} (\eta_2^2 + \eta_2^2) + \sigma^2 & \xi^2 & (\sigma - 1/\sigma) \xi \eta_1 & (\sigma - 1/\sigma) \xi \eta_2 \\ (\sigma - 1/\sigma) \xi \eta_1 & \xi^2 + \eta_1^2 + \eta_2^2 & o \\ (\sigma - 1/\sigma) \xi \eta_2 & o & \xi^2 + \eta_1^2 + \eta_2^2 \end{bmatrix}$$

les 3 valeurs propres de A sont : $\lambda_1 = \sigma^2 \xi^2 + \eta_1^2 + \eta_2^2$, $\lambda_2 = \xi^2 + \eta_1^2 + \eta_2^2$, $\lambda_3 = \xi^2 + \frac{1}{\sigma^2} (\eta_1^2 + \eta_2^2)$ associées aux vecteurs propres :

$$\vec{a}_{1} = \frac{1}{\Lambda} \begin{pmatrix} \sigma \xi \\ \eta_{1} \\ \eta_{2} \end{pmatrix} \vec{a}_{2} = \frac{1}{\Lambda} \begin{pmatrix} 0 \\ \eta_{2} \\ -\eta_{1} \end{pmatrix} \vec{a}_{3} = \frac{1}{\Lambda^{2}} \begin{pmatrix} \eta_{1}^{2} + \eta_{2}^{2} \\ -\sigma \xi \eta_{1} \\ -\sigma \xi \eta_{2} \end{pmatrix}$$

$$\vec{a}_{3} = \frac{1}{\Lambda^{2}} \begin{pmatrix} \eta_{1}^{2} + \eta_{2}^{2} \\ -\sigma \xi \eta_{2} \end{pmatrix}$$

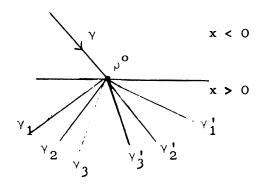
$$\vec{a}_{3} = \frac{1}{\Lambda^{2}} \begin{pmatrix} \eta_{1}^{2} + \eta_{2}^{2} \\ -\sigma \xi \eta_{2} \end{pmatrix}$$

Dans x < 0 on a simplement l'équation des ondes classiques avec une vitesse c plus grande que $1.\frac{1}{2} \frac{\partial^2 \vec{E}}{\partial t^2} - \Delta \vec{E} = 0$ (4.10).

Les conditions aux limites peuvent se mettre sous la forme suivante :

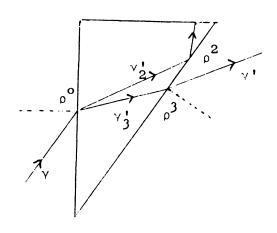
$$\begin{cases} \vec{E}_{+} = \vec{E}_{-} & \text{sur } x = 0. \\ D_{x}\vec{E}_{+} = D_{x}\vec{E}_{-} \end{cases}$$

Enfin dans x > 0 on a de plus div σ $\vec{E}_+ = 0$ et dans x < 0 div $\vec{E}_- = 0$. On se place en un point $\rho^0 = (y_1^0, y_2^0, t^0, \eta_1^0, \eta_2^0, \tau^0)$ de $\{x=0\}$ et on suppose qu'il y a un rayon γ qui arrive en ρ^0 de la région x < 0 donc dans la région x > 0 on a 6 rayons qui partent de ρ^0 γ_i , γ_i^i $1 \le i \le 3$ associés à λ_i . On suppose qu'aucun rayon n'est tangent au bord et que $(\eta_1^0, \eta_2^0) \ne (0,0)$, c'est-à-dire qu'on ne regarde pas la réfraction conique.



Il est clair que le long de $\frac{1}{i}$ et $\frac{1}{i}$ WFpol \vec{E}_{+} est colinéaire à \vec{a}_{i} d'après le lemme 1.1. D'autre part div $\vec{\sigma}$ \vec{E}_{+} = 0 dans x_{1} > 0 donc en tout point $(x_{1},y_{1},y_{2},t,\xi,\eta_{1},\eta_{2},\tau)$ = ρ WFpol $\vec{E}_{+}(\rho) \subset \{w \mid \sigma \xi w_{1} + \eta_{1} w_{2} + \eta_{2} w_{3} = 0\}$.

Ceci montre que le long de \forall_1 et \forall_1' \vec{E}_+ est microlocalement C^{∞} . On suppose que la lumière le long de \forall n'est pas polarisée c'est à dire que sur \forall WFpol \vec{E}_- est de dimension 2 . Le long de \forall_2 , \forall_3 , \forall_2' , \forall_3' WFpol \vec{E}_+ est de dimension 1 , c'est à dire que la lumière est polarisée. On peut ainsi expliquer comment on produit de la lumière polarisée par passage à travers un cristal biréfringent.



En effet en choisissant correctement les angles du prisme on peut faire en sorte qu'on ait réflexion totale en ρ^2 tandis qu'en ρ^3 on a WFpol \vec{E}_+ qui est de dimension 1 le long de \forall et de dimension 0 le long des autres rayons.

En réduisant le problème à un problème du 1er ordre en ρ^3 et en appliquant le théorème 2.1 on voit que le long de γ' WFpol \vec{E} est de dimension 1 , c'est à dire que la lumière est polarisée. # .

Références :

- [1] N. Dencker: On the propagation of polarization sets for systems of real principal type. Journal of Functional Analysis n°3 (1982) p. 351-373.
- [2] R.B. Melrose: Transformation of boundary problems. Acta mathematica 147 (1981) p.149-235.
- [3] R.B. Melrose: Differential boundary values problems of principal type Seminar on singularities of solutions of linear equations
 Princeton University Press (1978).
- [4] K.G. Andersson-R.B. Melrose: The propagation of singularities along gliding rays. Inventiones math.41 (1977) p.197-232.
- [5] L. Hörmander: Spectral analysis of singularities. Seminar on singularities of solutions...
- [6] R.B. Melrose: Transformations methods of boundary values problems.

 dans singularities of boundary values problems édité par H.G. Garnir.
- [7] R.B. Melrose-J. Sjöstrand: Singularities of boundary values problems I C.P.A.M. (1978).
- [8] M. Farris: Egorov's theorem on a manifold with diffractive boundary.

 Communications in p.d.e. no6 (1981) p.651-687.
- [9] L. Hörmander: Chapitre XXIV du livre à paraître.
- [10] M. Williams: Wave fronts sets of extensions of solutions to diffractive boundary values problems. Communications in p.d.e. n°8 p.875-928 (1983).
- [11] R.B. Melrose: Airy operators Comm. in p.d.e. n°3 p.76 (1978).
- [12] R.B. Melrose-M.E. Taylor: near peak scattering for a convex obstacle à paraître.

- [13] V.I. Arnold: On matrices depending on parameters. Russians Math. Surveys. (1971).
- [14] M.E. Taylor: Reflection of singularities of solutions to systems of differential equations. C.P.A.M. n°28 p.457-478. (1975).
- [15] E.L. Ince: Ordinary differential equations. Dover Publications.1956.
- [16] M.E. Taylor: Pseudodifferential operators. Princeton University Press1981.
- [17] J. Chazarain-A. Piriou : Introduction à la théorie des équations aux dérivées partielles linéaires. Gauthier-Villars 1981.

DEUXIEME PARTIE

L'article constituant cette 2nde partie est paru dans COMM. in P.D.E. $\underline{10}(12)$, 1347-1382 (1985).

PROPAGATION DE LA POLARISATION POUR DES PROBLEMES AUX LIMITES CONVEXES POUR LES BICARACTERISTIQUES.

C. Gerard
Centre de Mathématiques de l'Ecole Polytechnique
91128 Palaiseau Cedex - France.
" U.A. du C.N.R.S. 169 "

On étudie la propagation de la polarisation des solutions de problèmes aux limites dans le cas où il y a des rayons glissants. On montre qu'au-dessus de ces rayons la polarisation se propage le long de courbes appelées orbites hamiltoniennes frontière. La torsion de la polarisation le long de ces courbes fait intervenir la condition aux limites.

On étudie aussi l'interaction entre rayons transverses et rayons glissants, dans le cas d'un système formé de plusieurs blocs couplés par la condition aux limites.

* *

§.0. INTRODUCTION.

Le but de cet article est d'étudier la polarisation des solutions de problèmes aux limites dans le cas où il y a des rayons glissants. Un exemple de ces problèmes est donné par les équations de Maxwell à l'intérieur d'un ouvert strictement convexe. La propagation des singularités C^{∞} pour des problèmes analogues dans le cas scalaire a été étudiée par plusieurs auteurs ([2], [5]) et on observe la propagation de singularités dans le bord de l'ouvert le long de courbes appelées rayons glissants qui sont des limites de bicaractéristiques réfléchies.

On s'intéresse ici à la propagation de la polarisation des solutions de systèmes le long des rayons glissants et à l'interaction entre rayons transverses au bord et rayons glissants.

On introduit d'abord une classe de systèmes du 1er ordre pour lesquels on va étudier la propagation de la polarisation.

Dans le §.2, on étudie la propagation de la polarisation le long des rayons transverses à l'aide des arguments de [1]. Dans les §.3, 4 et 5 on étudie la propagation le long des rayons glissants en réduisant le système à une équation scalaire du second ordre et en adaptant les méthodes de [2] au front d'onde polarisé.

Enfin, dans le §.6, on étudie l'interaction de la polarisation entre rayons glissants et transverses.

Rappelons d'abord la définition de la polarisation (WF polu) d'une distribution vectorielle introduite dans [1].

WF polu indique dans quelles directions de \mathbf{C}^m u est microlocalement C^∞ . On notera WF polu (x,ξ) la fibre de WF polu audessus de (x,ξ) . WF polu se projette sur WF u :

Proposition 0.1 ([1]): $(x,\xi) \notin WF u \iff WF pol u(x,\xi) = \{0\}.$

Dans [1], N. Dencker étudie la propagation de WF pol u pour u solution de $Pu \in C^{\infty}(X)$ où P est un système de type principal réel (voir [1]) et montre que WF pol u se propage le long de courbes dans $T^*(X) \times C^m$, appelées orbites hamiltoniennes, et tracées au-dessus des bicaractéristiques de P.

On va montrer ici que dans le cas de problèmes aux limites avec des rayons glissants, la polarisation de la trace de u sur le bord se propage au-dessus de ces rayons le long d'orbites hamiltoniennes frontière. La torsion de la polarisation le long de ces courbes fait intervenir à la fois la condition aux limites et le symbole sous principal de P.

§.1. NOTATIONS.

Soit M une variété à bord C^{∞} de bord ∂M . Notre étude sera locale au voisinage d'un point du bord, donc on supposera qu'on a des coordonnées (x,y) sur M et que $M = \overline{\mathbb{R}}_X^+ \times \mathbb{R}_y^n$ avec $y = (y_1, \dots, y_n)$. On note (ξ, η) les coordonnées duales.

On note $L^p(\mathfrak{IM})$ l'espace des opérateurs pseudodifférentiels classiques d'ordre p sur \mathfrak{IM} , $L^p(M)$ l'espace $C^\infty(\overline{\mathbb{R}}_X^+, L^p(\mathfrak{IM}))$ et $L^p_b(M)$ l'espace des opérateurs introduits dans [6]. On note \widetilde{T}^*M le fibré cotangent compressé introduit dans [6].

On notera $\text{S}^p(\partial \text{M})$, $\text{S}^{p'}(\text{M})$, $\text{S}^p_b(\text{M})$ les classes de symboles associées à ces opérateurs.

On note D'(M) l'espace des distributions prolongeables et $\mathcal{H}^S(M)$ l'espace défini par : $u \in \mathcal{H}^S(M) \iff D_X^j u \in C^0(\overline{\mathbb{R}}_X^+, H^{S-j}(\mathbb{R}_Y^n))$, $\forall j \in \mathbb{N}$. En un point $(x,y,\xi,\eta) \in T^*(M)$ avec x > 0, on définit $\forall F \text{ pol}_S u(x,y,\xi,\eta)$ pour u solution de : $(P) D_X u - G(x,y,D_y)u \in C^\infty(M)$ avec $G \in L^{1'}(M)$ comme dans la Déf. 0.1, en remplaçant X par M et a $u \in C^\infty(X)$ par a $u \in \mathcal{H}^S(M)$.

La notion d'appartenance microlocale à $\mathcal{H}^{S}(M)$ ne pose pas de problème à cause de (P) (voir lemme 5.2 de [3]).

En un point $(y,\eta) \in T^*(\partial M)$ on définit WF pol_S $v(y,\eta)$ pour $v \in (D^*(\partial M))^m$ comme dans la Déf. 0.1 en remplaçant X par ∂M et a $v \in C^\infty(X)$ par a $v \in H^S(\partial M)$ où $H^S(\partial M)$ désigne l'espace de Sobolev classique.

Donnons enfin la définition des rayons glissants associés à un opérateur scalaire de 2ème ordre ([2]).

Soit $q_2(x,y,\xi,\eta)=(\xi-\lambda(x,y,\eta))^2-\mu(x,y,\eta)$ avec λ et μ homogènes en η de degré 1 et 2 respectivement. Soit $(y^0,\eta^0)\in T^*(\partial M)$ tel que $\mu(0,y^0,\eta^0)=0$. On appelle rayon glissant de q_2 passant par (y^0,η^0) la courbe intégrale de H_r passant par (y^0,η^0) où $r_0=\mu(0,y^0,\eta^0)$. On notera $\mathcal G$ l'hypersurface glancing donnée par $r_0(y,\eta)=0$.

On introduit maintenant la classe de problèmes aux limites pour lesquels on va étudier la propagation du front d'onde polarisé.

On considère des problèmes aux limites de type suivant :

$$\begin{cases} D_x u = G(x,y,D_y)u & \text{sur } M = \overline{\mathbb{R}}_x^+ \times \mathbb{R}_y^n , \\ \beta(y,D_y) \ u(0) = 0 , \end{cases}$$

avec les hypothèses suivantes : (\mathcal{H})

- 1) G est un $m \times m$ système dans $L^{1'}(M)$ de symbole principal $g_1(x,y,\eta)$.
- $2) \quad \det\left(\xi \ 1_{m} g_{1}\right) = \prod_{\nu=1}^{j} \left(\xi \mu_{\nu}(x,y,\eta)\right)^{\alpha_{\nu}} \left(\left(\xi \lambda\right)^{2} \mu\right)^{\alpha_{j+1}},$ avec μ_{ν} , λ , μ réels, μ_{ν} , $\lambda \in S^{1'}(M)$, $\mu \in S^{2'}(M)$, $\mu_{\nu} \neq \mu_{\nu}$, pour $\nu \neq \nu'$. $\mu_{\nu} \neq \lambda$ pour $1 \leq \nu \leq j$.

3) $\xi 1_m - g_1$ est de type principal réel, i.e. il existe h_1 , $m \times m$ matrice dans $S^{1'}(M)$ telle que

$$(\xi \ 1_m - h_1) \ (\xi \ 1_m - g_1) = \prod_{v=1}^{j} \ (\xi - \mu_v) \left((\xi - \lambda)^2 - \mu \right) 1_m \ .$$

4) $\beta \in L^{O}$ (∂M) est une $p \times m$ matrice.

On se place au voisinage d'un point $(y^O, \eta^O) \in T^*(\partial M)$ tel que $\mu(0, y^O, \eta^O) = 0$, $\{\xi - \lambda, \mu\}$ $(0, y^O, \eta^O) < 0$, c'est-à-dire que (y^O, η^O) est un point strictement glissant pour $(\xi - \lambda)^2 - \mu$ (voir [2]).

Examinons maintenant quelques conséquences des hypothèses $(\mathcal{H}). \ \mbox{On peut obtenir des renseignements sur les espaces propres}$ de \mbox{g}_1 .

L'hypothèse 2) entraı̂ne la proposition suivante :

Proposition 1.1: Il existe une $m \times m$ matrice $S(x,y,\eta)$ dans $S^{O'}(M)$, homogène de degré 0 en η , définie au voisinage de $(0,y^O,\eta^O)$, telle que S est elliptique et :

$$(1.1) S^{-1}g_1S = \overset{\circ}{g}_1 avec \overset{\circ}{g}_1 = \begin{bmatrix} M_1 & 0 \\ & \ddots & \\ & & M_j \\ 0 & & M_{j+1} \end{bmatrix}$$

et : - pour $1 \le v \le j$, M_v est une $\alpha_v \times \alpha_v$ matrice qui a μ_v comme unique valeur propre ;

- pour v=j+1, M_v est une $2\alpha_v \times 2\alpha_v$ matrice qui a $\lambda \pm \sqrt{\mu}$ comme valeurs propres.

Démonstration : Cette proposition est classique et découle facilement de l'hypothèse 2). Il est clair que $\xi 1_m - \hat{g}_1$ est encore de type principal réel. En écrivant la décomposition en blocs de la matrice $\xi 1_m - \hat{g}_1$ et en utilisant que $\xi 1_m - \hat{g}_1$ est aussi de type principal réel, on voit que pour $1 \leqslant \nu \leqslant j$ il existe $\hat{p}_{\nu}(\xi)$ $\alpha_{\nu} \times \alpha_{\nu}$ matrice polynomiale en ξ telle que $\hat{p}_{\nu}(\xi)(\xi 1_{\alpha_{\nu}} - M_{\nu}) = (\xi - \mu_{\nu}) q_{\nu}(\xi) 1_{\alpha_{\nu}}$. Or $q_{\nu}(M_{\nu})$ est inversible car q_{ν} ne contient pas la racine μ_{ν} . Donc $M_{\nu} = \mu_{\nu} 1_{\alpha_{\nu}}$.

Donc l'hypothèse 3) entraîne que les blocs de g_1 associés aux valeurs propres simples sont diagonalisables. (1.2). De même, il existe $\stackrel{\sim}{p}_{j+1}(\xi)$ $2\alpha_{j+1} \times 2\alpha_{j+1}$ matrice polynomiale en ξ , telle que $\stackrel{\sim}{p}_{j+1}(\xi)(\xi|_{2\alpha_{j+1}}-M_{j+1})=((\xi-\lambda)^2-\mu)q_{j+1}(\xi)|_{2\alpha_{j+1}}$. Comme $q_{j+1}(\lambda \pm \sqrt{\mu})$ n'est pas nul, on a $(M_{j+1}-\lambda|_{2\alpha_{j+1}})^2-\mu|_{2\alpha_{j+1}}=0$ (1.3).

On a alors le lemme suivant :

Lemme 1.1 : Soit $M(x,y,\eta)$ une $2m \times 2m$ matrice dans $S^{1}(M)$ telle que :

 $\det(\xi \, \mathbf{1}_{2m} - \mathbf{M}) = ((\xi - \lambda)^2 - \mu)^m \quad \text{et que} \quad (\mathbf{M} - \lambda \, \mathbf{1}_{2m})^2 - \mu \, \mathbf{1}_{2m} = 0$ au voisinage de $(0, y^0, \eta^0)$. Alors il existe $S(x, y, \eta) = 2m \times 2m$ matrice dans $S^{O'}(\mathbf{M})$, définie dans un voisinage de $(0, y^0, \eta^0)$ telle que :

- S est elliptique;

$$(1.4) - S^{-1} MS = \stackrel{\wedge}{M} \quad avec \quad \stackrel{\wedge}{M} = \begin{bmatrix} N \\ & \ddots \\ & N \end{bmatrix} \quad et \quad N = \begin{bmatrix} \lambda & |\eta| \\ \frac{\mu}{|\eta|} & \lambda \end{bmatrix}.$$

<u>Démonstration</u>: En remplaçant M par $M-\lambda 1_{2m}$ il suffit de démontrer le lemme pour $\lambda=0$. En divisant M par $|\eta|$ on peut se ramener au cas où M et μ sont homogènes de degré 0. Le lemme est vrai au point (y^0,η^0) en utilisant la forme de Jordan de $M(0,y^0,\eta^0)$. Soit $(e_1,\ldots,e_n,f_1,\ldots,f_n)$ une base dans laquelle $M(0,y^0,\eta^0)$ est de la forme (1.4). Alors la base $(e_1,\ldots,e_n,f_1,\ldots,e_n)$ est une base dans laquelle $M(0,y,\eta)$ est de la forme (1.4).

Le fait que la partie principale de G se sépare en blocs suivant les différentes valeurs propres entraîne qu'on peut découpler G en blocs modulo $S^{-\infty}$ d'après un résultat de [4]. Soit $u \in (D'(M))^{m}$ une solution de (P) et soit $S(x,y,D_{y}) \in L^{O'}(M)$ définie par (1.1). Soit $\widetilde{u} = Su$. Alors \widetilde{u} est solution de :

$$\begin{cases} D_{x} \widetilde{\mathbf{u}} - \widetilde{\mathbf{G}} \widetilde{\mathbf{u}} \in C^{\infty} (M) \\ \beta S^{-1} (0, y, D_{y}) \widetilde{\mathbf{u}} \in C^{\infty} (\partial M) \end{cases}$$

avec $\widetilde{G} = SGS^{-1} + D_XSS^{-1}$ si $S^{-1}(x,y,D_y)$ est une famille d'inverses de $S(x,y,D_y)$. Le symbole principal de \widetilde{G} , \widetilde{g}_1 est de la forme indiquée dans (1.1). On utilise maintenant un résultat de [4].

<u>Proposition 1.2</u>: Il existe une $m \times m$ matrice $K(x,y,D_y)$ $L^{o'}(M)$ de symbole principal 1_m telle que si $v = K\widetilde{u}$, v est solution de :

$$\begin{cases} D_x v - Hv \in C^{\infty}(M) \\ \beta S^{-1} K^{-1} v(0) \in C^{\infty}(\partial M) \end{cases}$$

avec
$$h_1(x,y,\eta) = \widetilde{g}_1(x,y,\eta)$$
 et H a pour symbole :
$$\begin{bmatrix} H_1 \\ \vdots \\ 0 \\ H_j \\ \vdots \\ 0 \\ H_{j+1} \end{bmatrix}$$

où les H_{v} , pour $1 \le v \le j$, sont des $\alpha_{v} \times \alpha_{v}$ matrices dans $L^{1'}(M)$, et H_{j+1} est une $2\alpha_{j+1} \times 2\alpha_{j+1}$ matrice dans $L^{1'}(M)$.

On définit maintenant les orbites hamiltoniennes du système (P).

$$H_{q} \omega + (\frac{1}{2} \{ \widetilde{p}, p \} + i \, \widetilde{p} \, p_{o}^{S}) \, \omega = 0 \quad \text{où} \quad p = \xi \, 1_{m} - g_{1}, \quad \widetilde{p} = \xi \, 1_{m} - h_{1}$$
 et
$$p_{o}^{S} \quad \text{est le symbole sous-principal de} \quad D_{x} \, 1_{m} - G.$$

§.2. PROPAGATION DU FRONT D'ONDE POLARISE LE LONG DES BICARAC-TERISTIQUES TRANSVERSALES.

On considère maintenant le cas où P est un des blocs de la Prop. 1.2 associé à une bicaractéristique transversale. On suppose donc que $G(x,y,\eta) = \mu(x,y,\eta) \, 1_m + \sum_{j=0}^{\infty} G_j(x,y,\eta)$ avec $\mu(x,y,\eta)$ réel et homogène de degré 1 en η et G_j homogène de degré -j en η .

Soit $(y^0,\eta^0) \in T^*(\partial M) \setminus 0$ et Υ la bicaractéristique nulle de $\xi-\mu(x,y,\eta)$ qui part de $\rho_0=(0,y^0,\mu(0,y^0,\eta^0),\eta^0)$. On notera $(x,y(x),\xi(x),\eta(x))$ les points de Υ pour x assez petit.

On a la proposition suivante :

<u>Proposition 2.1.</u>: Sous les hypothèses précédentes, soit $u \in (D'(M))^m$ solution de :

$$\begin{cases} Pu \in C^{\infty}(M) \\ u|_{x=0} = v \quad avec \quad v \in D'(\partial M) \end{cases}$$

alors au dessus de Y, pour x assez petit, WF polu (resp. WF pol_su) est égal à l'union des orbites hamiltoniennes de P qui partent de (P_o, w_o) avec $w_o \in WF$ pol $v(y^o, \eta^o)$ (resp. WF pol_s $v(y^o, \eta^o)$).

On commence par démontrer le lemme suivant :

<u>Lemme</u> $\underline{2.1}$. : Il existe E m \times m système dans L $^{o'}$ (M) tel que :

- 1) E est elliptique sur Y
- 2) $PE \equiv E(D_x \mu(x, y, D_y) \mod u \log L^{-\infty}(M)$.

<u>Démonstration</u>: On cherche E sous forme de série asymptotique $E = E_0 + E_{-1} + \dots + E_{-j} + \dots \text{ avec } E_{-j} \text{ homogène de degré -j en } \eta.$

Pour cela il faut résoudre les équations de transport

(2.1)
$$H_{\xi - \mu} E_0 + i G_0 E_0 = 0$$

(2.2)
$$H_{\xi-\mu} E_{-j} + i G_0 E_{-j} = R_{-j}.$$

On peut trouver E_0 inversible et indépendant de ξ solution de (2.1) et par récurrence on montre facilement que si E_{-k} est indépendant de ξ pour $k \leqslant j-1$, R_{-j} l'est aussi. On peut donc résoudre (2.2) avec E_{-j} indépendant de ξ .

On peut maintenant démontrer la proposition.

Démonstration de la Proposition 2.1 : Soit $u \in (D^*(M))^m$ solution de $Pu \in C^\infty(M)$. Soit $E \in L^{O^*}(M)$ obtenu par le lemme 2.1. On a : $(D_x - \mu(x,y,D_y))E^{-1}u \in C^\infty(M)$ où E^{-1} est une paramétrixe de E. Pour démontrer la proposition 2.1, il suffit de montrer que WF pol $E^{-1}u$ (resp. WF pol $E^{-1}u$) est égal à WF pol $E^{-1}v(0)$ (resp. WF pol $E^{-1}v(0)$). En effet, l'équation des orbites hamiltoniennes de P est : $H_{\xi-\mu}w+i\,P_O^Sw=0$ et $P_O^S=G_O$. D'après (2.1) $P_O^S=G_O$ 0 vérifie $P_{\xi-\mu}E_O$ 1 o $P_O^S=G_O$ 1.

Soit $\rho_1 \in Y$ et $w_1 \in WF$ pol $u(\rho_1)$. (Le raisonnement est le même pour WF pol $_S u)$.

Soit $(\rho,w(\rho))$ l'orbite hamiltonienne de P qui part de (ρ_1,w_1) . Supposons donc que WF pol E^{-1} u est égal à WF pol E^{-1} v (0) :

$$\begin{split} &H_{\xi-\mu}(E_o^{-1}(\rho) \ w(\rho)) = (H_{\xi-\mu} \ E_o^{-1}(\rho)) \ w(\rho) + E_o^{-1}(\rho) \ H_{\xi-\mu} \ w(\rho) = \\ &E_o^{-1} \ i \ G_o \ w(\rho) - E_o^{-1} \ i \ G_o \ w(\rho) = 0 \ . \end{split}$$

Donc
$$E_0^{-1}(\rho_0) w(\rho_0) = E_0^{-1}(\rho_1) w(\rho_1)$$
. D'après (2.3) comme $E_0^{-1}(\rho_1) w(\rho_1) \in WF \text{ pol } E^{-1} u(\rho_1)$

on a:

$$E_0^{-1}(\rho_0) \ w(\rho_0) \in WF \ pol \ E^{-1} \ v(0) \ (y^0, \eta^0)$$
.

Donc $w(\rho_0) \in WF \text{ pol } v(y^0, \eta^0)$ et la Prop. 2.1 est démontrée.

Il suffit donc de démontrer (2.3).

On suppose donc que u est solution de $D_X u - \mu(x,y,D_y) u \in C^\infty(M)$. Remarquons tout d'abord qu'au dessus de $\rho \in \Upsilon \cap \{x>0\}$ on peut définir WF polu(ρ) (resp. WF pol $_S u(\rho)$) uniquement à l'aide d'opérateurs dans $L^{O'}(M)$ sans agrandir WF polu(ρ). En effet par une application facile du théorème de préparation de Malgrange on vérifie aisément que : $\forall A \in L^O(M)$, $\exists \widetilde{A} \in L^{O'}(M)$ tel que $A u = \widetilde{A} u$ modulo $C^\infty(M)$ et $\sigma_O(A) = \sigma_O(\widetilde{A})$ en ρ . (Voir l'annexe de [4]).

On peut donc se restreindre aux opérateurs de $L^{O'}(M)$. Soit $\rho_1 \in Y$ et $w_1 \notin WF \operatorname{pol}_S u(\rho_1)$. Il existe donc $\Lambda \in L^{O'}(M)$ tel que $A u \in \mathcal{H}^S(M)$ et $<\sigma_O(A)(\rho_1)$, $w_1 > 0$. Notons $\rho_1 = (x_1, y_1, \xi_1, \eta_1)$. En prenant la trace sur $x = x(\rho_1)$, il existe $B \in L^O(\mathbb{R}^n_y)$ tel que $B u(x(\rho_1)) \in H^S(\mathbb{R}^n_y)$ et $<\sigma_O(B)(y_1, \eta_1)$, $w_1 > 0$.

En suivant la preuve du lemme 2.1 on construit $\widetilde{B} \in L^{O'}(M)$ tel que $\widetilde{B}_{|X=X_1} = B$ et $(D_X - \mu(x,y,D_y)) \widetilde{B} = \widetilde{B}(D_X - \mu(x,y,D_y))$.

$$\text{Alors $\widetilde{\mathtt{B}}$ u v\'erifie } \left\{ \begin{array}{l} (\mathtt{D}_{x} - \mu(x,y,\mathtt{D}_{y})) \ \widetilde{\mathtt{B}} \ u \in C^{\infty}(\mathtt{M}) \\ \widetilde{\mathtt{B}} \ u_{\big| \ x=x_{1}} \in H^{s}(\mathbb{R}^{n}_{y}) \end{array} \right. .$$

D'après les résultats classiques sur les problèmes hyperboliques on a :

$$\widetilde{\mathbf{B}} \, \mathbf{u}_{\mid x=0} \in \mathbf{H}^{\mathbf{S}}(\mathbb{R}^{n}_{y}), \quad \text{et} \quad \sigma_{\mathbf{0}}(\widetilde{\mathbf{B}})(\rho_{\mathbf{0}}) = \sigma_{\mathbf{0}}(\mathbf{A})(\rho_{1}).$$

Donc $w_1 \notin WF \text{ pol}_S v(o)(y^O, \eta^O)$. Pour démontrer la proposition dans l'autre sens on raisonne de la même façon en remplaçant ρ_1 par ρ_0 et en utilisant que $\widetilde{B} u \in C^O(\overline{\mathbb{R}}_X^+, H^S(\mathbb{R}_y^n))$. On démontre de même la Prop. 2.1 pour WF pol u.

§.3. PROPAGATION DU FRONT D'ONDE POLARISE LE LONG DES RAYONS GLISSANTS.

On considère maintenant le cas où P est le bloc de la Prop. 1.2 associé à un rayon glissant. $u \in (D'(M))^{2m}$ est donc solution de :

(3.1)
$$\begin{cases} D_{X} - G u \in C^{\infty}(M) \\ \beta u(o) \in C^{\infty}(\partial M) \end{cases}$$

où G est un $2m \times 2m$ système dans $L^{1'}(M)$ de symbole principal:

(3.2)
$$g_{1} = \begin{bmatrix} 0 & -\eta_{n} & 1_{m} \\ \frac{\mu}{\eta_{n}} & 1_{m} & 0 \end{bmatrix} + \lambda 1_{2m}.$$

On fait de plus l'hypothèse suivante (\mathcal{L}) :

 β est un m × 2m système qui vérifie la condition de Lopatinski-Shapiro, c'est-à-dire que la restriction de $\sigma_{_{\hbox{\scriptsize O}}}(\beta)$ à $\mathbb{C}^m\times\{0\}$ est elliptique.

Si A est une $2m \times 2m$ matrice, on note $(A)_{ij}$ pour $1 \le i$, $j \le 2$ les blocs de A associés à la décomposition (3.2). On note ρ_0 le point (o, y^0, o, η^0) . On notera $G = G_1 + G_0$ avec $G_1 = g_1(x,y,D_y)$. Par conjugaison par des opérateurs intégraux de Fourier en y dépendant de façon C^∞ de x, on peut se ramener au cas où $\lambda \equiv 0$. (Voir [8]).

On commence par simplifier autant que possible le symbole de G.

<u>Proposition 3.1</u>: Il existe une $2m \times 2m$ matrice K dans L^{-1} '(M) telle que $\widetilde{u} = (1+K)u$ est solution de $D_x\widetilde{u} - \widetilde{G}\widetilde{u} \in C^{\infty}(M)$ avec \widetilde{G} de symbole principal g_1 et l'équation suivante est vérifiée :

(3.3)
$$(G_0)_{1,2} = (G_0)_{2,2} = 0 \mod 10 \quad S^{-\infty}.$$

On a
$$G_1 = \begin{pmatrix} 0 & E \\ F & 0 \end{pmatrix}$$
 avec $E = \eta_n 1_m$, $F = \frac{\mu}{\eta_n} 1_m$.

Si
$$G_0 = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}$$
 $K_1 = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}$, on a :

$$K_{1}G_{1}-G_{1}K_{1}+G_{0} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \text{ avec} \begin{cases} A_{11}=K_{12}F-EK_{21}+G_{11} \\ A_{12}=K_{11}E-EK_{22}+G_{12} \\ A_{21}=K_{22}F-FK_{11}+G_{21} \\ A_{22}=K_{21}E-FK_{12}+G_{22} \end{cases}$$

on prend d'abord K_{11} et K_{22} tels que $K_{11} - K_{22} = -E^{-1}G_{12}$. Puis on prend $K_{12} = 0$ et $K_{21} = -E^{-1}G_{22}$. On peut donc supposer qu'on a (3.3) modulo S^{-1} . Pour annuler les termes d'ordre -1 on multiplie v par $1 + K_2$ avec $K_2 \in L^{-2}$ (M) et K_2 doit vérifier

$$(K_2 G_1 - G_1 K_2 + G_{-1})_{12} = (K_2 G_1 - G_1 K_2 + G_{-1})_{22} = 0$$

où G_{-1} est le terme d'ordre -1 dans $((1+K_1)G_1+G_0+D_xK_1)$ $(1+K_1)^{-1}$. On peut donc trouver K_2 et éliminer successivement tous les termes dans $(G_0)_{12}$ et $(G_0)_{22}$.

On pose $1 + K = \prod_{j=1}^{\infty} (1 + K_j)$. Alors K vérifie la proposition.

Dans la suite on supposera donc que u est solution de (3.2) et que G vérifie (3.3). En composant (3.1) à gauche par un opérateur \widetilde{P} de symbole principal $\xi 1_{2m} + g_1(x,y,n) = \widetilde{p}$ et de symbole

sous principal nul, u est solution de $Qu \in C^{\infty}(M)$ avec $Q = Q_2 + Q_1 + Q_0$ avec $q_1 = \frac{1}{2} \{\widetilde{p}, p\} + i \ \widetilde{p} \ p_0^S$, $q_0 \in L^{O'}(M)$ où $p = \xi \ 1_{2m} - g_1$ et p_0^S est le symbole sous principal de $D_X - G$. On remarque que $(q_1)_{12} = 0$ en utilisant que $(G_0)_{12} = (G_0)_{22} = 0$. On se ramène maintenant au cas où $q = q_2(x, y, D_X, D_Y)$.

On a la proposition suivante :

<u>Proposition 3.2</u>: Soit f une $2m \times 2m$ matrice dans $C^{\infty}(T^*M)$ polynomiale de degré 2 en ξ à coefficients dans $C^{\infty}(\widetilde{T}^*M)$ telle que $(f)_{12} = 0$. Alors il existe une $2m \times 2m$ matrice $a \in C^{\infty}(\widetilde{T}^*M)$ telle que $H_{q_2}a + af = 0$ sur $\{q_2 = 0\}$, $(a)_{12} = 0$ et $a(\rho_0)$ inversible.

<u>Démonstration</u>: Cette proposition est démontrée dans [9] dans le cas scalaire et dans [3] dans le cas matriciel quand (y^0, η^0) est un point strictement diffractif pour q_2 . On peut suivre la preuve de [9] en utilisant les modifications introduites dans [3] pour traiter le cas matriciel. On trouve que a|g vérifie l'équation : $H_{r_0} = a + a f = 0$.

La proposition 3.2 permet de démontrer la prop. suivante comme dans [3].

Soit v = Au; v est solution de $Q_2 v \in C^{\infty}(M)$ microlocalement près de ρ_0 . On réduit maintenant (3.1) à une équation scalaire du 2ème ordre avec condition au bord matricielle, qu'on étudiera dans le §.4.

Soit A^{-1} un inverse microlocal de A près de ρ_O . On a $\mathcal{D}_X A^{-1} v - G A^{-1} v \in C^\infty(M)$, or $\mathcal{D}_X A^{-1} v = A^{-1} \mathcal{D}_X v + C_O v + C_{-1} \mathcal{D}_X v$ où le symbole de C_O est $\mathcal{D}_X a^{-1}$ et celui de C_{-1} est $\mathcal{D}_X a^{-1}$ si le symbole de A^{-1} est noté a^{-1} . Donc :

(3.5)
$$(A^{-1} + C_{-1})D_{x} v - (GA^{-1} - C_{0})v \in C^{\infty}(M) .$$

Si $C \in L_b^O(M)$ on notera $C_{\partial} \in L^O(\partial M)$ l'opérateur de symbole $c(o,y,o,\eta)$. La condition au bord est : $\beta A_{\partial}^{-1} v(o) \in C^\infty(\partial M)$. β vérifie la condition de Lopatinski-Shapiro donc si $u = (u_1,u_2)$ on a : $\beta u = \beta_1 u_1 + \beta_2 u_2$ où $\beta_1 \in L^O(M)$ est elliptique. (3.5) entraine que $((A^{-1} + C_{-1})D_x v)_1 = Ii(A^{-1} v)_2 + D_0 v_1$ avec

(3.5) entraine que
$$((A^{-1} + C_{-1})D_X v)_1 = Ii(A^{-1} v)_2 + D_0 v_1$$
 avec $D_0 \in L^0(\partial M)$, $H \in L^1(\partial M)$ elliptique et

$$\begin{cases} (\Lambda_{\partial}^{-1} D_{x} v)_{1} = (A_{\partial}^{-1})_{11} D_{x} v_{1} \\ (\Lambda_{\partial}^{-1} v)_{1} = (A_{\partial}^{-1})_{11} v_{1} \end{cases} \text{ modulo } C^{\infty}(\partial M) \text{ d'après la Prop. 3.3.}$$

Donc la condition au bord s'écrit : $\beta_1(\Lambda_{\partial}^{-1})_{11} v_1 + \beta_2(\Lambda_{\partial}^{-1} v)_2 = \beta_1(\Lambda_{\partial}^{-1})_{11} v_1 + \beta_2(H^{-1}(A_{\partial}^{-1})_{11} D_x v_1 - H^{-1} D_o v_1) = \gamma_1 v_1 + \gamma_2 D_x v_1$ avec $\gamma_1 \in L^O(\partial M)$ elliptique et $\gamma_2 \in L^{-1}(\partial M)$.

 $\text{Donc} \quad \mathbf{v}_1 \quad \text{est solution de} \; : \; \left\{ \begin{array}{l} \mathbf{Q}_2 \, \mathbf{v}_1 \in \boldsymbol{C}^\infty(M) \\ \\ (\mathbf{Y}_1 \, \mathbf{v}_1 + \mathbf{Y}_2 \, \mathbf{D}_{\mathbf{X}} \, \mathbf{v}_1 \, (0) \in \boldsymbol{C}^\infty(\partial M) \end{array} \right. .$

Dans le paragraphe 4. on va étudier la propagation de WF pol D_x $v_1(0)$ le long d'un rayon glissant.

§.4. PROPAGATION DE WF pol u DANS LE CAS MODELE.

On suppose maintenant que $u \in (D'(M))^{2m}$ est solution du problème aux limites :

(4.1)
$$\begin{cases} Q_2 u \in C^{\infty}(M) \\ u(0) + K D_X u(0) \in C^{\infty}(\partial M) \text{ avec } K \in L^{-1}(\partial M) \end{cases}$$

et on s'intéresse à la propagation de WF pol D_X u(o) le long des rayons glissants associés à q_2 . Soit $\rho_0 = (y^0, \eta^0) \in \mathcal{G}$, soit γ le rayon glissant passant par ρ_0 et soit ρ'_0 un autre point de γ avec $\gamma_1(\rho'_0) < \gamma_1(\rho_0)$. Soit W un voisinage conique du segment de rayon glissant $[\rho'_0, \rho_0]$ et V un voisinage de ρ'_0 ne contenant pas ρ_0 .

Démontrons d'abord la proposition suivante : (lemme 7.6 de [2]).

Proposition 4.1: Soit $C(y,D_y)$ un $1\times 2m$ système dans $L^{-1}(\partial M)$ à support dans V. Alors il existe A et B, $1\times 2m$ systèmes polynômiaux du 1er degré en ξ à coefficients dans $L^{O'}(M)$ et $\varepsilon>0$ tels que : Supp $A,B\subset\{(x,y,\xi,\eta)\mid x\leqslant \varepsilon$, $y_1(\rho_O')-\varepsilon\leqslant y_1\leqslant \varepsilon$, $(y,\eta)\in W\}$

-
$$Q_2 A - BQ_2 \in L_b^{-\infty}(M)$$
 au dessus de $y_1 \leqslant \varepsilon/2$

-
$$A_{|x=0} = E(1 + KD_x) + C(y, D_y)D_x$$
 avec $E \in L^0(\partial M)$.

Démonstration: On cherche A et B sous forme de séries asymptotiques $a \sim \sum_{j=0}^{\infty} a_j$, $b \sim \sum_{j=0}^{\infty} b_j$ avec a_j , b_j , homogènes en (ξ,η) de degré j.

Soit $c \sim \sum_{j=-1}^{-\infty} c_j$ le développement de c. Le premier terme dans le développement de $Q_2 A - BQ_2$ est $q_2(a_0 - b_0)$. On prend donc $a_0 = b_0$. Le terme suivant est $H_{q_2} a_0 + i q_2 (a_1 - b_{-1})$. On résout d'abord $H_{q_2} a_0 + i q_2 (a_1 - b_{-1}) = 0$ sur $\{q_2 = 0\}$ en imposant a_0 sur x = 0. D'après les résultats de [7] on peut trouver une transformation canonique à bord qui transforme q_2 en $\xi^2 + x \eta_n^2 +$ $\eta_1 \eta_n$ et ρ_0 en $(0, \eta_0)$ avec $\eta_0 = (0, 0, ... 1)$. On se ramène donc à ce modèle pour la construction des symboles. Dans $T^*(\mathbb{R}^n_y \times \overline{\mathbb{R}}^+_x)$, on note G l'hypersurface $\{(x,y,\xi,\eta) \mid \xi^2 + \xi^2\}$ $x \eta_n^2 + \eta_1 \eta_n = 0$ et F l'hypersurface $\{(x,y,\xi,\eta) \mid x=0\}$. On note $J = F \cap G = \{(o, y, \xi, \eta) \mid \xi^2 = \eta_1 \eta_n\}$, J a deux involutions J_F et ${\rm J_G}$ définies par les feuillages hamiltoniens de F et G. On a $J_F(y,\xi,\eta) = (y,-\xi,\eta)$ et $J_G(x,\xi,\eta) = (\overline{y},-\xi,\eta)$ avec $\overline{y} = (\overline{y}_1,y_2...$ y_{n-1}, \overline{y}_n) et $\overline{y}_1 = y_1 + 2\xi/\eta_n$, $\overline{y}_n = y_n - 2\eta_1 \xi/3\eta_n^2$. On suppose que sur W on a $|\eta| \leqslant 2 \eta_n$. Sur ce voisinage, J est donc au-dessus de $n_1 \leqslant 0$. Notons encore c_{-1} la restriction de c_{-1} à J. En suivant le lemme 7.6 de [2] on doit trouver a, $1 \times 2m$ système dans $C^{\infty}(J)$, J_C invariant, tel que:

 $(4.2) \quad (J_F^* a + a) k_{-1} \xi + J_F^* a - a = (J_F^* (c_{-1} \xi) + c_{-1} \xi) k_{-1} \xi + (J_F^* (c_{-1} \xi) - c_{-1} \xi).$

Notons $c = c_{-1} \xi$. On cherche d'abord $\widetilde{a} \in C^{\infty}(J)$ tel que :

(4.3)
$$(J_F^*(\widetilde{a}+c) + \widetilde{a} + c)k_{-1}\xi + (J_F^*(\widetilde{a}+c) - (\widetilde{a}+c)) \in O(\xi^{\infty})$$

et \widetilde{a} est J_G invariant. Sur J on prend comme coordonnées (y,ξ,η') avec $\eta'=(\eta_2\ldots\eta_n)$. On cherche \widetilde{a} sous la forme $\widetilde{a}(y,\xi,\eta')=h(y_1+\xi/\eta_n\,,y_2\,,\ldots\,,y_{n-1}\,,y_n+\xi^2/3\,\eta_n^2\,,\xi^2/\eta_n\,,\eta')$, \widetilde{a} est bien J_G invariant. Soit $\sum\limits_{j=0}^\infty h_j(y,\eta')t^j$ le développement de Taylor de $h(y,t,\eta')$ en t=0, le coefficient de ξ^k dans le développement de \widetilde{a} en $\xi=0$ est :

$$\sum_{\substack{2j+\alpha+2\beta=k\\j,\alpha,\beta\geqslant 0}} (\partial_{y_1}^{\alpha} \partial_{y_n}^{\beta} h_j) (1/\eta_n)^{\alpha} (y_1/3 \eta_n^2)^{\beta} \alpha! \beta!$$

l'équation (4.3) donne donc : $\partial_{y_1} h_o - \eta_n h_o k_{-1} = c_{-1} \eta_n$. On peut résoudre cette équation en imposant $h_o = 0$ sur $y_1 = y_1(\rho_o^*) - \epsilon$. Alors h_o est nul pour $y_1 \leq y_1(\rho_o^*) - \epsilon$. $\partial_{|\xi=0}$ vérifie donc l'équation suivante :

Pour annuler le coefficient de ξ^k dans (4.3) pour $k \ge 2$ on a à résoudre des équations du type $\partial_{y_1} h_k - \eta_n h_k k_{-1} = H_k(h_0, \ldots, h_{k-1})$ où H_k est un opérateur différentiel nul pour $y_1 < y_1(\rho_0') - \epsilon$. On peut donc déterminer successivement les h_k en fixant $h_k = 0$ sur $y_1 = y_1(\rho_0') - \epsilon$.

En remplaçant c par $c-\tilde{a}$, on peut donc supposer que :

(4.5)
$$(J_F^* c + c) k_{-1} \xi + J_F^* c - c \in O(\xi^{\infty}) .$$

En suivant la preuve du lemme 7.6 de [2] on introduit l'involution

 \widetilde{J}_F^* définie par :

(4.6)
$$\widetilde{J}_{F}^{*} f = J_{F}^{*}(f) \times (k_{-1} \xi + 1_{m}) (k_{-1} \xi - 1_{m})^{-1}.$$

Avec ces notations on cherche $a \in C^{\infty}(J)$ tel que :

$$\widetilde{J}_{F}^{*} a - a = \widetilde{J}_{F}^{*} c - c$$

et $J_G^* a = a$ et a = 0 pour $y_1 \leqslant y_1(\rho_0^*) - \epsilon$. (4.7) entraine que $\widetilde{J}_F^* J_G^* a = a + (\widetilde{J}_F^* c - c)$. On définit alors a par

$$a = \sum_{k=0}^{\infty} (\widetilde{J}_{F}^{*} J_{G})^{k} (\widetilde{J}_{F}^{*} c - c) \quad \text{pour } \xi > 0$$

la somme étant localement finie à cause de (4.7). Pour $\xi < 0$ on définit a par $a = J_G^*a$. La fonction a définie ainsi est C^∞ si $(\widetilde{J}_F^*c - c) \in O(\xi^\infty)$, ce qui est le cas. On a donc trouvé une solution de (4.2). D'après le lemme (5.2) de [2], il existe donc $\widetilde{a}_0 \in C^\infty(G)$ tel que $H_{q_2}\widetilde{a}_0 = 0$ et $\widetilde{a}_0 \mid_J = a$. Par le théorème de préparation de Malgrange, on peut écrire \widetilde{a}_0 sous la forme $\widetilde{a}_0 = a_0^0(x,y,\eta) + a_0^1(x,y,\eta)\xi$ avec a_0^i homogène de degré -i en η .

Il reste à étendre a_0^0 et a_0^1 dans $x \eta_n^2 + \eta_1 \eta_n \geqslant 0$ sans changer $a_0^0 + a_0^1 \xi$ sur $\{q_2 = 0\}$ et en vérifiant la condition au bord.

 $H_{q_2}(a_0^0+a_0^1\xi)$ est un polynôme du 2ème degré en ξ qui s'annule sur $\{q_2=0\}$, donc il existe un $1\times 2m$ système $d\in S^{-1}(M)$, C^∞ dans $x\,\eta_n^2+\eta_1\,\eta_n\leqslant 0$, tel que :

(4.8)
$$H_{q_2}(a_0^0 + a_0^1 \xi) = dq_2 \quad dans \quad x \, \eta_n^2 + \eta_1 \, \eta_n \leq 0.$$

En écrivant les coefficients des puissances de ξ dans (4.8), il vient :

(4.9)
$$2 \partial_x a_0^0 + H_{r_0} a_0^1 = 0$$

(4.10)
$$2 \partial_x a_0^1 = d$$
 dans $x \eta_n^2 + \eta_1 \eta_n \le 0$.

(4.11)
$$H_{r_o} a_o^0 + \eta_n^2 a_o^1 = d(x \eta_n^2 + \eta_1 \eta_n) .$$

On étend $a_0^O(o,y,n)$ et $a_0^1(o,y,n)$ dans $n_1>0$ de façon à vérifier la condition au bord de la Proposition 4.1. (4.11) permet d'étendre d(o,y,n) dans $n_1>0$ car $grad(n_1,n_n) \neq 0$. Puis (4.9) et (4.10) permettent d'étendre $D_X a_0^O(o,y,n)$ et $D_X a_0^1(o,y,n)$ dans $n_1>0$.

En dérivant ces équations par rapport à x, on peut étendre les $D_x^k a_o^o(o,y,n)$, $D_x^k a_o^1(o,y,n)$ $D_x^k d(o,y,n)$ dans $n_1 > 0$.

Puis, par le théorème d'extension de Whitney on peut étendre a_0^0 , a_0^1 , d dans $x \eta_n^2 + \eta_1 \eta_n > 0$.

Pour déterminer les a_{j} , b_{j} pour $j \leqslant -1$, on doit résoudre des équations :

(4.12)
$$H_{q_2} a_j + i q_2 (a_{j-1} - b_{j-1}) + R_{j+1} = 0$$

où R_{j+1} ne dépend que de a_j - b_j et des a_k , b_k pour k>j. R_{j+1} est nul pour $y_1 < y_1(\rho_0')$ - ϵ , car les a_k , b_k et a_j - b_j le sont.

Soit \widetilde{a}_j une solution de (4.12) sur $\{q_2=0\}$ qui est nulle pour $y_1\leqslant y_1(\rho_0')$ - ϵ . En suivant le même raisonnement que plus haut, on peut trouver α_j $1\times 2m$ système ϵ $C^\infty(J)$, J_G invariant, tel que α_j est nul pour $y_1\leqslant y_1(\rho_0')$ - ϵ , et α_j - \widetilde{a}_j - c_{j-1} $\xi=e_j(1_m-k_j\,\xi)=\ell_j$ de façon à vérifier la condition au bord de la Proposition (1.1). Notons encore α_j l'extension de α_j à $\{q_2=0\}$ qui vérifie $H_{q_2}\alpha_j=0$. Alors $a_j=\alpha_j-\widetilde{a}_j$ est solution de (4.12) sur $\{q_2=0\}$, et par le théorème de préparation de Malgrange $a_j=a_j^0(x,y,\eta)+a_j^1(x,y,\eta)\xi$ avec a_j^1 homogène de degré j-i en η . Il reste à étendre a_j^0 et a_j^1 dans x $\eta_n^2+\eta_1\eta_n\geqslant 0$, ce qui se fait comme pour a_0^0 et a_j^1 . On a donc démontré la proposition.

On définit maintenant des orbites hamiltoniennes associées au problème aux limites (4.1) analogues aux orbites hamiltoniennes de [1] et qui sont tracées au dessus des rayons glissants de q_2 . Rappelons que $q_2 = \xi^2 + r(x,y,\eta)$ et que $r_0(y,\eta) = r(0,y,\eta)$ et soit k_{-1} le symbole principal de K.

On a alors le théorème suivant :

Théorème 4.3: Soit $u \in (D'(M))^{2m}$ solution de

$$(P) \begin{cases} Q_2 u \in C^{\infty}(M) \\ u(o) + K D_x u(o) \in C^{\infty}(\partial M) \end{cases}$$

alors au dessus de Y WF pol D_x u(o) (resp. WF pol D_x u(o)) est une union d'orbites hamiltoniennes frontière de (P).

 $\begin{array}{lll} \underline{\text{D\'emonstration}} &: & \text{On commence par traiter le cas de } \text{WF pol } D_x \text{ u(o)}. \\ \\ \text{Soit } w_o' \in \mathbb{C}^{2m} & \text{tel que } w_o' \notin \text{WF pol } D_x \text{ u(o)} \text{ (ρ_o')}. \text{ Il existe donc un} \\ \\ 1 \times 2m & \text{syst\`eme } C(y, D_y) \in L^{-1}(\partial M) & \text{tel que } C(y, D_y) D_x \text{ u(o)} \in C^{\infty}(\partial M) \\ \\ \text{et } < c_{-1} \text{ (ρ_o') , w_o'} > $\neq 0$. Supposons par exemple que :} \end{array}$

(4.13)
$$\operatorname{Re} < c_{-1}(\rho_0^1), w_0^1 >> 0.$$

On remplace alors $C(y,D_y)$ par X(y) $C(y,D_y)$ où X(y) est une fonction troncature non nulle en ρ_0' telle que $\operatorname{Re} < X(y)c_{-1}(y,\eta)$, $w(y,\eta) > > 0 \ \forall (y,\eta) \in Y$ où $w(y,\eta)$ est l'orbite hamiltonienne frontière de (P) qui part de (ρ_0',w_0') . On applique maintenant la Proposition 4.1 à XC.

Soit A l'opérateur de la Proposition 4.1. v = Au vérifie :

$$(4.14) \left\{ \begin{array}{l} Q_2 \, v \in \operatorname{C}^{\infty} \left(M \right) \\ v = 0 \quad \text{hors de} \quad \left\{ \left(x, y \right) \, \middle| \, x \leqslant \epsilon \, , \, \, y_1 \left(\rho_0^{\prime} \right) - \epsilon \leqslant y_1 \leqslant \epsilon \, , \, \exists \, n \right. \\ \text{tel que} \quad \left(y, n \right) \in \mathbb{W} \right\} \\ v_{\mid x = 0} \in \operatorname{C}^{\infty} \left(\partial M \right) \, . \end{array} \right.$$

En effet, on a:

$$\mathsf{Au}(\mathsf{o}) = \mathsf{E}(\mathsf{y}, \mathsf{D}_{\mathsf{y}}) \, (\mathsf{u}(\mathsf{o}) + \mathsf{R} \, \mathsf{D}_{\mathsf{X}} \, \mathsf{u}(\mathsf{o})) \, + \mathsf{X} \, \mathsf{C} \, (\mathsf{y}, \mathsf{D}_{\mathsf{y}}) \, \mathsf{D}_{\mathsf{X}} \, \mathsf{u}(\mathsf{o}) \in \mathsf{C}^{\infty} \, (\partial \mathsf{M}) \ .$$

En suivant les arguments du théorème 4.15 de [2] on en déduit que $v \in C^{\infty}(M)$. On a :

$$D_{x} v (o) = (D_{x} A_{o}) (o,y,D_{y}) u(o) + A_{o} (o,y,D_{y}) D_{x} u(o) + (D_{x} A_{1}) (o,y,D_{y}) D_{x} u(o) + A_{1} (o,y,D_{y}) D_{x}^{2} u(o)$$

si

$$A_0(x,y,D_y) + A_1(x,y,D_y)D_x = A$$
.

Donc $D_x v(o) = (-(D_x A_o)K - A_1 r_o K + A_o + D_x A_1)D_x u(o) = \widetilde{A}D_x u(o) \in \mathbb{C}^{\infty}(\partial M)$. Le symbole principal de \widetilde{A} sur G est égal à a_o , symbole principal de A_o . D'après la preuve de la Proposition 4.1, $a_o|_{G}$ vérifie l'équation suivante :

$$\begin{cases} H_{r_0} a_0 - e a_0 k_{-1} = e X c_{-1} \\ a_0(\rho_0') = 0 \end{cases}$$

où e est égal à η_n^2 dans les coordonnées canoniques de la Proposition 4.1 ; e est donc bien constant sur les rayons glissants.

Soit $w(y,\eta)$ l'orbite hamiltonienne frontière de (P) qui passe par (ρ_0',w_0') et soit $w_0=w(\rho_0)$. Montrons que $< a_0(\rho_0)$, $w_0>\pm 0$. On a :

$$\begin{aligned} & \text{II}_{r_{o}} < a_{o}(\rho) \text{ , } w(\rho) > = < e \, a_{o} \, k_{-1} + e \, X \, c_{-1} \text{ , } w > + < a_{o}(\rho) \text{ , } - e \, k_{-1} \, w > = \\ & < e \, X \, c_{-1} \text{ , } w > \text{ et } & < a_{o}(\rho_{o}^{\dagger}) \text{ , } w(\rho_{o}^{\dagger}) > = 0 \text{ , } \operatorname{Re} < e \, X \, c_{-1}(\rho) \text{ , } w(\rho) > 0 \text{ ,} \end{aligned}$$

donc
$$< a_0(\rho_0), w(\rho_0) > \pm 0$$
.

- Regardons maintenant le cas de $\mbox{ WF pol}_{S}\, \mbox{ D}_{\! X}\, \mbox{ u(o)} \; .$

On obtient de même un $1\times 2m$ système $c(y,D_y)$ $L^{-1}(\partial M)$. Avec les mêmes notations que plus haut v vérifie :

$$\begin{cases} Q_2 \ v \in C^{\infty}(M) \\ v = 0 \text{ hors de } \{(x,y) \mid x \leqslant \varepsilon, y_1(\rho_0^{\prime}) - \varepsilon \leqslant y_1 \leqslant \varepsilon \neq \eta \} \\ \text{tel que } w(y,\eta) \in W \} \\ v_{|x=0} \in H^{s+1}(\partial M). \end{cases}$$

La seule chose à vérifier est que $\mathcal{D}_X \, v(o) \in H^S \, (\partial M)$ microlocalement sur Υ . Ceci est clair sur le cas modèle où $q_2 = \xi^2 + x \, \eta_n^2 + \eta_1 \, \eta_n$ car la paramétrixe microlocale pour le problème (4.15) construite dans [5] montre que $\mathcal{D}_X \, v(o) \equiv N_+ \, v(o)$ où N_+ est un multiplicateur de Fourier de symbole $\eta_n^{2/3} \, \frac{A_i^i}{A_i} \, (\eta_1 \, \eta_n^{-1/3})$, où A_i est la fonction d'Airy utilisée dans [5].

 N_+ envoie $H^S(\partial M)$ dans $H^{S-1}(\partial M)$. Dans le cas général on se ramène au cas modèle par conjugaison par les opérateurs intégraux de Fourier construits dans [6].

On a donc démontré le théorème.

§.5. PROPAGATION DE WF pol u DANS LE CAS GENERAL.

On revient maintenant au problème initial, c'est-à-dire que $u\in (D^*(M))^{2m}\quad \text{est solution du problème aux limites (P) où g_1 est}$

de la forme (3.2). On s'intéresse à la propagation de WF polu(o) au dessus de γ , où γ est un rayon glissant de q_2 . D'après la Proposition 3.1 on peut supposer que G vérifie (3.3) sans changer WF polu(o).

On a alors le théorème suivant :

<u>Théorème</u> 5.2: Soit $u \in (D'(M))^{2m}$ solution du problème aux limites (P). Alors au dessus de γ , WF polu(o) (resp. WF polu(o)) est une union d'orbites hamiltoniennes frontière de (P).

$$(w_1, w_2) \in WF \text{ pol } u(o)(y, \eta) \iff w_1 = \sigma_0(\beta_1^{-1}, \beta_2)(y, \eta)w_2$$

et

$$w_2 \in WF \text{ pol } u_2(o)(y,\eta)$$
.

Il suffit donc de regarder $WF pol u_2(o)$

Soit v = Au, avec A donné par la Proposition 3.3.

D'après le §.3. on a :
$$\begin{cases} Q_2 v_1 \in C^{\infty}(M) \\ Y_1 v_1(o) + Y_2 D_x v_1(o) \in C^{\infty}(\partial M) \end{cases}$$

avec
$$Y_1 \in L^0(\partial M)$$
, $\sigma_0(Y_1) = \sigma_0(\beta_1) \times \sigma_0(A_{\partial}^{-1})_{11}$, $Y_2 \in L^{-1}(\partial M)$, $\sigma_{-1}(Y_2) = \frac{1}{|\eta|} \sigma_0(\beta_2) \sigma_0(A_{\partial}^{-1})_{11}$ et on $a : u_2(0) = (A_{\partial}^{-1} v)_2 = \widetilde{\Lambda} D_x v_1(0)$ avec $\widetilde{\Lambda} \in L^{-1}(\partial M)$ et $\sigma_{-1}(\widetilde{\Lambda}) = \frac{1}{|\eta|} \sigma_0(A_{\partial}^{-1})_{11} = \widetilde{a}(y,\eta)$. Donc :

WF pol
$$u_2(0)(y,n) = \widetilde{a}(y,n)$$
 WF pol $D_x v_1(0)(y,n)$.

D'après le théorème 4.3 WF pol D_X v_1 (o) est une union d'orbites hamiltoniennes frontière au dessus de Υ pour le problème aux limites :

$$\left\{ \begin{array}{l} {\rm Q}_2 \, {\rm v}_1 \in {\rm C}^{\infty}({\rm M}) \\ {\rm v}_1({\rm o}) \, + {\rm Y}_1^{-1} \, {\rm Y}_2 \, {\rm D}_{\rm X} \, {\rm v}_1({\rm o}) \in {\rm C}^{\infty}(\partial {\rm M}) \end{array} \right. .$$

Ces courbes sont les solutions de :

(5.1)
$$H_{r_0} w + \sigma_o(A_{\partial})_{11} \sigma_o(\beta_1^{-1}) \sigma_o(\beta_2) \sigma_o(A_{\partial}^{-1})_{11} w = 0 .$$

D'après (3.4) \tilde{a} vérifie $\Pi_{r_0} \tilde{a} + (\frac{1}{2} \{\tilde{p}, p\} + i \tilde{p} p_0^s + \Pi_{r_0} \frac{1}{|n|})_{11} \tilde{a} = 0$.

On peut oublier le terme $H_{r_0} = \frac{1}{|\eta|}$ qui correspond uniquement à multiplier \widetilde{a} par un facteur scalaire non nul. Si w est une solution de (5.1), $\widetilde{a}(y,\eta)$ w (y,η) vérifie :

$$H_{r_0}(\widetilde{a} \text{ w}) = -(\frac{1}{2} \{\widetilde{p}, p\} + i \widetilde{p} p_0^s) \widetilde{a} \text{ w} - \widetilde{a} \widetilde{a}^{-1} \sigma_0(\beta_1^{-1}) \sigma_0(\beta_2) \widetilde{a} \text{ w}.$$

On a donc démontré le théorème pour WF polu(o).

On le démontre de la même façon pour WF pol_su(o).

§.6. INTERACTION ENTRE BICARACTERISTIQUES TRANSVERSALES ET RAYONS GLISSANTS.

Dans ce paragraphe on étudie la propagation de la polarisation pour les solutions du problème aux limites (P).

 $D_{X}\widetilde{u} - H_{j+1}\widetilde{u} \in C^{\infty}(M)$ qui vérifie les hypothèses du §.3.

On a $\widetilde{u}=(\widetilde{u}_1\,,\widetilde{u}_2)$ avec les notations du §.3, et on note $u_+=(u_1,\ldots,u_j_0)$ $u_-=(u_{j_0+1}\,,\ldots,u_j)$. On suppose que β vérifie la condition de Lopatinski-Shapiro par rapport à cette décomposition des bicaractéristiques, c'est-à-dire que la restriction de $\sigma_0(\beta)$ à $\{w\in {\bf C}^m\mid w_+=\widetilde{w}_2=o\}$ est bijective. (hypothèse ${\bf L}$). Alors l'hypothèse ${\bf L}$ entraîne que : β u(o) \in C $^\infty$ (∂ M)

$$\Rightarrow (6.1) \begin{cases} u_{-}(o) - B_{11} u_{+}(o) - B_{12} \widetilde{u}_{2}(o) \in C^{\infty}(\partial M) & \text{avec} \quad B_{ij} \in L^{0}(\partial M) \\ \widetilde{u}_{1}(o) - B_{21} u_{+}(o) - B_{22} \widetilde{u}_{2}(o) \in C^{\infty}(\partial M) \end{cases}.$$

Pour simplifier on va supposer que :

(6.2) WF
$$u_{v} \subset Y_{v}$$
 pour $1 \leqslant v \leqslant j_{o}$.

Par hypothèse on connaît WF pol_su en un point de Υ_{V} pour $1 \le v \le j_{O}$. On note WF pol_su($y^{O}, \eta^{O}, \Upsilon_{V}$) l'image de WF pol_su par les orbites hamiltoniennes de D_{X} -H au dessus de Υ_{V} . On connaît aussi WF pol_su(o) en un point ρ'_{O} de Υ_{L} , donc on connaît WF pol_su(o) en ρ'_{O} . On dira que deux sous-espaces vectoriels E et F de C^{M} sont transverses si la codimension de E \cap F est maximale, c'est-à-dire si codim (E \cap F) = min (m, codim E+ codim F).

On fait enfin les hypothèses suivantes :

(6.3) i) le rang de $\sigma_0(B_{21})$ est constant sur un voisinage de (y^0, n^0) .

- ii) $K = \bigoplus_{j=1}^{j_0} WF \operatorname{pol}_S u(o)(y^0, \eta^0, \Upsilon_k)$ est transverse à f(x) = 0 f(
- iii) Notons $u_{-}(o) = M(y,D_y) \begin{pmatrix} u_{+}(o) \\ \widetilde{u}(o) \end{pmatrix}$ modulo $C^{\infty}(\partial M)$ la première équation de (6.1). Pour $v \geqslant j_{0} + 1$ on note π_{v} la projection $(w_{1},\ldots,w_{j},\widetilde{w}) + w_{v}$. On suppose que le rang de $\pi_{v} \circ \sigma_{0}(M)$ est constant sur un voisinage de (y^{0},η^{0}) et que $K \oplus H$ est transverse à $Ker \pi_{v} \circ \sigma_{0}(M) (y^{0},\eta^{0})$.

On utilisera le problème aux limites suivant :

(6.4)
$$\begin{cases} D_{x}\widetilde{u} - H_{j+1}\widetilde{u} \in C^{\infty}(M) \\ \widetilde{u}_{1}(o) - B_{22}\widetilde{u}_{2}(o) \in C^{\infty}(\partial M) \end{cases}.$$

Théorème 6.1: Soit $u \in (D'(M))^m$ solution du problème aux limites (P') vérifiant les hypothèses (\mathcal{L}) et (6.3) et tel que $u(o) \in H^{S-1}(\partial M)$. Alors :

- on peut décomposer $\widetilde{u}(o)$ sous la forme $\widetilde{u}(o) = u_g + u_t$ avec :
- $\forall \rho \in \Upsilon$, WF $pol_s u_g(\rho)$ est égal à l'image de WF $pol_s u(o)$ (ρ_o') par les orbites hamiltoniennes frontière de (6.4).

- $-u_t \ \ \text{est microlocalement} \ \ C^{\infty} \ \ \text{sur} \ \ \Upsilon_-, \ \ \text{WF pol}_s \ u_t(y^o, \eta^o)$ est inclus dans H, $\text{WF pol}_s \ u_t(\rho_1)$ est inclus dans $H(\rho_1)$ pour $\rho_1 \in \Upsilon_+ * (y^o, \eta^o)$.
- Pour $\vee > j_o + 1$, au dessus de Y_{\vee} , WF pol_s u est inclus dans l'union des orbites hamiltoniennes de (P') partant de (y^o, η^o, w) avec w appartenant à l'image par $\pi_{\vee} \circ \sigma_o(M)(y^o, \eta^o)$ de l'espace $K \oplus H$.

On peut obtenir un résultat sur WF polu en faisant les hypothèses suivantes :

(6.3)' i)
$$\sigma_0(B_{21})(y^0,\eta^0)|_{K}$$
 est injectif

ii)
$$\sigma_{O}(M)(y^{O}, \eta^{O})$$
 est injectif.

Corollaire <u>6.1</u>: Soit $u \in (D'(M))^m$ solution du problème aux limites (P') vérifiant les hypothèses (L), (6.3) et (6.3). Alors les résultats du théorème 6.1 sont valables en remplaçant WF pol_su, WF pol_su_g et WF pol_su_t par WF polu, WF polu_g et WF polu_t.

Démonstration du théorème 6.1: Soit $v = A\widetilde{u}$ donné par la Proposition 3.3. D'après le §.3 on a :

$$\begin{cases} \widetilde{u}_{1}(o) = (A_{\partial}^{-1})_{11} v_{1}(o) \\ \widetilde{u}_{2}(o) = \widetilde{A} \in D_{x} v_{1}(o) + \widetilde{B} v_{1}(o) \end{cases}$$
 modulo $C^{\infty}(\partial M)$

où
$$\widetilde{A} \in L^{O}(\partial M)$$
, $\sigma_{O}(\widetilde{A}) = \sigma_{O}(A_{\partial}^{-1})_{11}$ et $e = \frac{1}{|D_{y}|}$, $\widetilde{B} \in L^{-1}(\partial M)$ et la 2ème équation de (6.1) se transforme en : $\Upsilon_{1} v_{1}(o) + \Upsilon_{2} D_{x} v_{1}(o) - B_{21} u_{+}(o) \in C^{\infty}(\partial M)$ avec $\Upsilon_{1} \in L^{O}(\partial M)$, $\sigma_{O}(\Upsilon_{1}) = \sigma_{O}(A_{\partial}^{-1})_{11}$ et $\Upsilon_{2} \in L^{-1}(\partial M)$, $\sigma_{-1}(\Upsilon_{2}) = -\frac{1}{|\Pi|} \sigma_{O}(B_{22}) \sigma_{O}(A_{\partial}^{-1})_{11}$.

D'après les résultats de [5], il existe une solution \mathbf{v}_{o} du problème mixte microlocal :

$$\begin{cases} Q_{2} v_{o} \in C^{\infty}(M) \\ v_{o} \in C^{\infty}(M) & \text{pour } y_{1} < 0 \\ Y_{1} v_{o}(o) + Y_{2} D_{x} v_{o}(o) - B_{21} u_{+}(o) \in C^{\infty}(\partial M) \end{cases}.$$

Alors $\tilde{v} = v_1 - v_0$ est solution du problème aux limites du théorème 4.3, et on a :

(6.5)
$$\widetilde{v} = v_1 \mod C^{\infty}(\partial M) \quad \text{pour} \quad v_1 < 0$$
.

On a:

$$(6.6) \left(\widetilde{u}_{1}(0)\right) = \left((A_{\partial}^{-1})_{11}\widetilde{v}(0)\right) + \left((A_{\partial}^{-1})_{11}v_{o}(0)\right) + \left((A_$$

$$a_{v}(y,D_{y}) u_{v}(o) \in H^{S}(\partial M)$$

$$\text{Ker } \sigma_{O}(a_{V}) (y^{O}, \eta^{O}) = \pi_{V} \text{ WF pol}_{S} u (y^{O}, \eta^{O}, \gamma_{V})$$

où π_{y} est définie en (6.3).

En notant $C = \begin{pmatrix} a_1 \\ \vdots \\ a_j \\ 0 \end{pmatrix}$ on $a : Cu_+(o) \in H^S(\partial M)$ et $(Cu_+(o) \in H^S(\partial M)) = K$. It exists donc $(Cu_+(o) \in H^S(\partial M)) = K$. It exists donc $(Cu_+(o) \in H^S(\partial M)) = K$. It exists donc $(Cu_+(o) \in H^S(\partial M)) = K$. It exists donc $(Cu_+(o) \in H^S(\partial M)) = K$. It exists donc $(Cu_+(o) \in H^S(\partial M)) = K$.

$$\begin{cases} \text{Si } u_+ = N\widetilde{u}_+(o) \text{ les } d = d_1 + \dots + d_j \text{ premières} \\ \text{composantes de } \widetilde{u}_+(o) \text{ sont dans } H^S(\partial M) \text{ et} \\ K = \sigma_0(N) (y^0, \eta^0) \widetilde{K} \text{ où } \widetilde{K} \text{ désigne le sous-espace} \\ \text{de } \mathbb{C} \\ \end{cases}$$

Les hypothèses (6.3) i) et ii) entraînent que l'image de \widetilde{K} par $\sigma_{O}(B_{21})(y,\eta)$ $\sigma_{O}(N)(y,\eta)$ est de dimension constante au voisinage de (y^{O},η^{O}) . Il existe donc une matrice $d(y,\eta)$ de rang maximal telle que :

(6.8)
$$d(y,n) \sigma_{o}(B_{21})(y,n) \sigma_{o}(N)(y,n) |_{\widetilde{K}} = 0$$

sur un voisinage de (y^0, η^0) et Ker $d(y^0, \eta^0) = F$.

Donc si $D(y,D_y) \in L^O(\partial M)$ a pour symbole principal $d(y,\eta)$ au voisinage de (y^O,η^O) on a :

(6.9)
$$DB_{21}u_{+}(o) \in II^{s}(\partial M)$$
.

En effet on a besoin de ne regarder que les termes d'ordre 0 dans le calcul symbolique car $u(o) \in H^{S-1}(\partial M)$.

D'autre part en suivant la preuve du théorème 5.2, on vérifie facilement qu'il existe une matrice $\widetilde{C} \in L^O(\partial M)$ telle que :

(6.10)
$$\begin{cases} \widetilde{C} & \left(A_{\partial}^{-1} \right)_{11} \widetilde{v}(o) \\ \widetilde{A} \in D_{X} \widetilde{v}(o) + \widetilde{B} \widetilde{v}(o) \end{cases} \in H^{S} (\partial M) \text{ et} \\ & \text{Ker } \sigma_{O}(\widetilde{C}) (y^{O}, \eta^{O}) \text{ est \'egal \'a L.}$$

Enfin, on a : $B_{21} u_{+}(o) = \Upsilon_{1} v_{0}(o) + \Upsilon_{2} D_{X} v_{0}(o)$ modulo $C^{\infty}(\partial M)$. Donc $B_{21} u_{+}(o) = (A_{\partial}^{-1})_{11} v_{0}(o) - B_{22}(\widetilde{A} e D_{X} v_{0}(o) + \widetilde{B} v_{0}(o))$ modulo $C^{\infty}(\partial M)$ d'après la définition de Υ_{1} et Υ_{2} .

Donc on a:

$$\text{WF pol}_{s} \begin{pmatrix} (A_{\vartheta}^{-1})_{11} & v_{o}(o) \\ \widetilde{A} \in \mathbb{D}_{x} & v_{o}(o) + \widetilde{B} & v_{o}(o) \end{pmatrix} \underbrace{ \begin{pmatrix} y^{o}, \eta^{o} \end{pmatrix} \subset 2\alpha \\ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \end{cases} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} } \underbrace{ \{ (w_{1}, w_{2}) \in \mathbb{C} \\ \} }_{ \{ (w_{1$$

Ce dernier espace est noté H dans (6.3).

En notant
$$u_g = \begin{pmatrix} (A_{\partial}^{-1})_{11} \widetilde{v}(o) \\ \widetilde{A} e D_X \widetilde{v}(o) + \widetilde{B} \widetilde{v}(o) \end{pmatrix}$$
, $u_t = \begin{pmatrix} (A_{\partial}^{-1})_{11} v_o(o) \\ \widetilde{A} e D_X v_o(o) + \widetilde{B} v_o(o) \end{pmatrix}$

on a démontré la partie du théorème concernant $\widetilde{u}(o)$ en (y^0, η^0) , d'après (6.6).

On démontre de même la partie du théorème concernant $\widetilde{u}(o)$ en ρ_1 avec $\rho_1 \in \Upsilon_+$, $\rho_1 = (y^0, \eta^0)$.

Soit donc $v \geqslant j_0 + 1$. On utilise maintenant la première équation de (6.1). On a $Cu_+(o) \in H^S(\partial M)$ et $E\begin{pmatrix} \widetilde{u}_1(o) \\ \widetilde{u}_2(o) \end{pmatrix} \in H^S(\partial M)$ avec $E(y^0, \eta^0) = H$ à cause de la 2ème équation de (6.1).

L'hypothèse iii) entraîne que la méthode utilisée pour obtenir la matrice D permet d'obtenir une matrice $F_{\nu}(y,D_y)\in L^O(\partial M)$ telle que $F_{\nu}(y,D_y)$ u(o) $\in H^S$ (3M) et Ker $\sigma_O(F_{\nu})$ (y^O,η^O) est l'image par $\pi_{\nu}\circ\sigma_O(M)$ (y^O,η^O) de K Θ H.

Puis on applique la Proposition 2.1 à $u_{_{V}}$. Ceci démontre la partie du théorème concernant $\gamma_{_{V}}$ pour $\nu \geqslant j_{_{O}}+1$.

On a donc terminé la démonstration.

<u>Démonstration du corollaire 6.1</u>: Si on s'intéresse à WF polu, il faut prendre en compte tous les termes du calcul symbolique. Il est facile de voir qu'on a (6.7) en remplaçant $H^S(\partial M)$ par $C^\infty(\partial M)$. On a aussi (6.8). Le problème est de choisir les termes d'ordre inférieur du symbole de D pour avoir :

(6.11)
$$D(y,D_y) \circ B_{21} \circ N |_{\widetilde{K}} = 0 \mod S^{-\infty}(\partial M).$$

On cherche le symbole complet de D sous la forme $\int_{j=0}^{-\infty} d_j(y,\eta)$. Le symbole complet de $B_{21} \circ N_{|\widetilde{K}}$ s'écrit $\int_{0}^{-\infty} m_j(y,\eta)$.

On trouve d'abord $d_{O}(y,\eta) = d(y,\eta)$ grâce à (6.8). Puis pour éliminer le terme d'ordre -1 dans $D \circ B_{21} \circ N_{|\widetilde{K}}$ il faut trouver d_{-1} tel que :

$$d_{o} m_{-1} + d_{-1} m_{o} + \sum_{k=1}^{n} \frac{1}{i} D_{n_{k}} (d_{o}) D_{y_{k}} (m_{o}) = 0$$
.

On peut trouver d_{-1} tel que $d_{-1}m_0 = f$ où f est une matrice arbitraire car m_0 est injective. On vérifie ensuite qu'on peut déterminer d_j pour j < -1 pour avoir (6.11).

Puis (6.7) et (6.11) entraînent :

(6.12)
$$D(y,D_y) B_{21} u_+(o) \in C^{\infty}(\partial M)$$
.

A cause du théorème 5.2 pour la propagation C^{∞} on obtient la partie du théorème qui concerne u_g . Grâce à (6.12) on obtient la partie du théorème qui concerne u_t .

On a donc démontré le corollaire 6.1.

REFERENCES

- [1] N. DENCKER:

 On the propagation of polarization sets for systems of real principal type,

 Journal of Functional Analysis, vol. 46 (1982), 351-373.
- [2] K.G. ANDERSON, R.B. MELROSE:

 The propagation of singularities along gliding rays,

 Inventiones Math., 41 (1977), 197-232.
- [3] C. GERARD:

 Thèse de 3ème cycle, Université Paris XI (Orsay), (1984).
- [4] M.E. TAYLOR:

 Reflection of singularities of solutions to systems of differential equations,

 CPAM, 28 (1975), 457-478.
- [5] G. ESKIN:

 Séminaire Goulaouic-Schwartz, exposé n° 12, (1977).
- [6] R.B. MELROSE:

 Transformations of boundary value problems,

 Acta Mathematica, vol. 147, (1981), 149-236.
- [7] R.B. MELROSE:

 Equivalence of glancing hypersurfaces,

 Inventiones Math., 37, (1976), 165-191.
- [8] R.B. MELROSE, J. SJÖSTRAND:

 Singularities of boundary value problems II,

 CPAM 35, (1982), 129-168.
- [9] R.B. MELROSE:

 Transformations methods of boundary value problems,
 In Singularities of Boundary Value Problems, D. Reidel
 Publishing Company, Edité par H.G. Garnir (1981).