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ABSTRACT

We are interested in particles systems located on a lattice,
with different type of interaction . For short range interaction
on , we study the large deviation properties for the empirical
field of a Gibbs measure ; we also cover the case of random interac-
tion , and derive some applications .

Next we study Glauber dynamics of a local mean field model
on the torus , iIn the asymptotics of a large number of particles .
The fluctuation process has to be rescaled in space and time at
the critical temperature . We analyse the dynamics of a change of
attractor using large deviations techniques : at low temperature ,
we recover a description for nucleation .

We then need to study the stationary points in such a local

mean Ffield model ; this 1is tackled in the frame of bifurcation
theory .

KEY WORDS : Gibbs measure , large deviation , spin-flip process ,
spin glass model , maximum of entropy , critical renormalization |,

nucleation , bifurcation theory .
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~INTRODUCTION -

Ce travail regroupe les cing articles [12-16] référencés ci-dessous,
Nous y considérons une famille de variables aléatoires dépendantes
X = (NiNies indexées par un réseau S, pour laquelle la difficulté d’

une réalisation x est mesurée par une fonction d'énergie H(x).

Ce modele s'est d'abord développé en mécanique statistique a
partir de 1920 autour du célébre modéle d'lsing, qui décrit un cristal
magnétique. Dans ce cas, Xi représente l'orientation du moment magné-
tique de la particule au site i du réseau, et sa distribution dépend

des orientations des autres sites. L'énergie correspondante s'écrit,

du moins formellement,

H(x) = - _- L Jii. x,, X
-jes 1J
ou mesure l'intensité de I'interaction entre les particules
situées aux points i et j. D'apreés les premiere et seconde lois

de la thermodynamique, le systeme évolue vers une distribution d'équi-
libre, appelée nGHIGCéGuB définie par sa dérivée Ze“’\H par
rapport a une distribution de référence (la loi du systéme sans in-
teraction), 3>0 désignant I'inverse de la température, et la constante
de normalisation 2 donnant a cette mesure (positive) wune masse égale
a un. Dans le cas d'un réseau S infini, les deux formules précéden-

tes permettent de comparer les configurations x qui coincident a



I"extérieur d"une partie finie de S, sous réserve d"hypothéses (accep-
tables) sur les J},j. Nous considérons des formes d"interaction plus
»,

générales, comme I"interaction a k corps (k>2), mais aussi celles

qui sont elles-mémes aléatoires (modeles de verres de spin).

Les mesures de Gibbs interviennent dans d"autres domaines, par
exemple en neurophysiologie -pour décrire l"activité de certains neu-
rones dans le cerveau-, en biologie -pour la contamination de cellules

dans 1"étude des tumeurs-, ou encore en épidémiologie.

On peut également considérer une dynamique de ces modéles, sui-
vant un processus de Markov stationnaire qui laisse invariantes les

mesures de Gibbs.

L"étude mathématique des mesures de Gibbs, et celle de ces pro-
cessus, a nourri une vaste littérature (voir la bibliographie de [1]
[21), en particulier autour des phénomenes de transition de phase
(coexistence de plusieurs mesures de Gibbs), brisure de symétrie,
renormalisation critique, nucléation. Elle s"est avérée difficile,
et elle a été menée a l"aide de nombreuses techniques dont certaines

propres a ce domaine.

L*ingrédient essentiel de notre approche est la théorie des
grandes déviations, dans la mesure ou la fonction d"énergie H pos-
sede une propriété d additivité, et pour des réseaux de grande taille
comme dans les exemples précédents (ce qui écarte pratiquement I"ap-
proche combinatoire). Nous avons adopté le point de vue introduit

récemment par Donsker et Varadhan dans [3] pour étudier les propriétés



de grandes déviations du champ empirique (niveau 3) de différentes me-
sures de Gibbs sur S = 2~ au chapitre 1. Dans le modéle plus simple
du chapitre 1Il, le processus apparatTt comme une petite perturbation
aléatoire d"un systéeme dynamique : I"étude de la nucléation (11.B) est
menée dans l"esprit des travaux de Wentsell et Freidlin [4] ; quant a
1"étude Ffluctuations (11.A), elle ne revet toute sa signification
qu-avec celle du comportement de la mesure de Gibbs au sens des gran-

des déviations traitée dans [5] au niveau 1 du théoreme de Chernov.

Pour en revenir aux différents modeles de particules, ceux qui
présentent des interactions locales (a courte portée) sont les plus
réalistes ; mais leur étude, et I"interprétation des résultats, sont
alors difficiles. A I"inverse, le modele de Curie-Weiss (champ moyen),
dans lequel I"intensité de I"interaction ne dépend pas de 1"éloignement
des sites, est simpliste dans 1 asymptotique d“un nombre infini de
particules. Le modele simplifié (champ moyen local) du chapitre 11 est
intermédiaire - S = Sn est un réseau régulier sur le tore a d di-

mensions, de cardinal n™ ; I"interaction entre les particules situées

aux points i et J vaut

Jij = n-d

ou J est une fonction réguliere, et dépend de la distance séparant
les particules. En particulier, il confére au systeéme une géométrie
suffisante lorsque n > oo pour quil exhibe des phénoménes coopé-
ratifs locaux tels que des phases antiferromagnétiques, des fluctua-

tions critiques riches, et la nucléation.

Nous détaillons a présent nos résultats.



Le chapitre | est consacré a |'étude des états d'équilibre,

Dans la partie A, on établit les estimations de grandes déviations
du champ empirique pour une mesure de Gibbs sur 2¢ associée a une
interaction sommable et invariante par translation. La fonctionnelle
n mesurant le taux de décroissance exponentielle, est définie sur

I'ensemble des champs stationnaires *s<IR ) Par

la(Q) - - PEQU + 3(Q) - p
ou -U(x) désigne l'interaction normalisée du site 0 avec les autres
sites, 0 I'entropie relative par rapport a la mesure de référence,
et p = inf {(BE"U + 0(Q) ; Q@ la pression.

Cette fonctionnelle ne dépend que de l'interaction, et de la mesure
de référence ; elle est la méme pour toutes les mesures de Gibbs lors-
gu'il y a transition de phase, et on ne peut pas discriminer celles-ci
a l'ordre de grandeur exponentiel du volume. De plus, ces estimations

de grandes déviations sont également valables pour celles qui ne sont
pas ergodiques (dans le cas de transition de phase), et celles qui ne
sont pas stationnaires (dans celui de brisure de la symétrie). Pour
établir ce résultat, on traite d'abord le cas sans interaction H=0,
en généralisant des techniques introduites dans [3] pour d=1 puis
le cas avec interaction a l'aide d'un changement exponentiel de

probabilité.

A la conclusion de cette partie, l'auteur a eu connaissance des

résultats identiques de [6], et de [7] par une méthode différente.



Dans la partie 1-B, on considére des modéeles sur avec
interaction aléatoire. Reprenant la stratégie précédente, il s'agit
d'abord de montrer un principe de grandes déviations conditionnel au
niveau 3 pour un champ bivarié (XN, ) indépendant identiguement
distribué ; ceci nous donne acces a des interactions dépendant de
Y = (Yi)i et par la méme, aux exemples usuels de verres de spin a
interaction sommable. Pour presque tout Y, on obtient alors une
formule variationnelle relativisée pour la pression (résultat déja
obtenu dans [8]), mais aussi les propriétés de grandes déviations
pour les mesures de Gibbs, avec une fonctionnelle 12 déterministe,
définie cette fois sur @\@Rz) ). Une conséquence de ceci est que,
sous certaines hypothéeses de convergence et de stationnarité, une
limite de mesure de Gibbs a volume fini peut s'écrire Q(.1Y) avec
i2(Q m °» c'est-a-dire comme une distribution d'entropie minimale

conditionnelle a Il'interaction.

Enfin, nous montrons que le résultat précédent est vrai sans
hypothéses dans les modeéeles de champ moyen. Sur un exemple particulier
de verre de spin, nous montrons que la distribution d'une particule
est alors la méme que celle d'une particule choisie au hasard dans la
phase antiferromagnétique d'un modele avec interaction (non aléatoire)

de champ moyen local.

Nous décrivons maintenant les états d'équilibres asymptotiques d‘un

modéle de champ moyen local [5], avant de détailler le chapitre 1I1I. On



peut réduire |'étude du systeme X & celle d'une MCEWH]Q

tion

Xn = n-d _Z X,lsi .

1ES

n
Dans l'asymptotique n oof le systéme sera représenté par une
densité de magnétisation sur le tore, I'analogue d'un profil en hydro-

dynamique .

— f J*xn(s) Xn(ds)
2]

Remarquant que I1'énergie s'écrit alors -

ou * représente la convolution, on obtient des inégalités de grandes

déviations traduisant que

"n*A Log P {Xn voisin de u} est approximativement égal a 13 (u)",
avec
13 u J*U s) U(s ds + J JL[u(s)] ds
ou i. est la transformée de Cramer de la distribution de référence d'une
particule. Les minima de sont les densités d'équilibre ; ils pré-

sentent un éventail varié de comportements, suivant les valeurs de
J et p , comme la phase ferromagnétique (les densités sont constantes
non nulles), ou la phase antiferromagnétique (elles constituent une

famille d'ondes).

Dans le chapitre 11, nous menons |'étude de la dynamique de Glau-
ber de ces modéles, et tout particulierement celle des phénomeénes liés

a la transition de phase. La fonctionnelle 1~, qui décrit le compor-



tement asymptotique de la mesure invariante du processus '"mesure de
magnétisation” x£ , mesure le temps moyen que passe X£ au voisinage
d"un état ; en particulier, x£ apparait comme une perturbation aléa-
toire (d" autant plus petite que n est grand) d"un systéme dynamique

qui lI"entraine vers les équilibres (minima de i3)» au voisinage des-

quels il passe la majeure partie du temps.

Dans la partie A, I"auteur établit en collaboration avec T. Eisele
des résultats de fluctuations (théoréemes de limite centrale) hors de
1"équilibre et a 1"équilibre, aprés avoir prouvé la loi des grands
nombres ci-dessus, et un résultat de propagation du chaos (qui justifie
1"exhaustivité de la seule étude du processus mesure). Au voisinage

d"un minimum non dégénéré u de 1, le processus de fluctuation

nd/2 (XE - u)

converge, en norme de Sobolev, vers un processus de Ornstein-Uhlenbeck
généralisé. Lorsque le minimum est dégénéré, la convergence précédente
a lieu, mais le processus limite ne posseéde plus de distribution inva-
riante. Il convient alors de renormaliser en espace, mais aussi en
temps en raison de cette convergence. Nous traitons le cas du point
critique d"une transition de phase ferromagnétique, correspondant

a une dégénérescence d"ordre m arbitraire dans une seule direction :
alors u = 0 et le processus de fluctuation critique

d/2 (m+1) yn
n tnm/ (m+1)

converge vers un processus stationnaire non gaussien occupant la direc-



tion de dégénérescence ; cet espace étant ici celui des constantes, le
processus de Tfluctuation critique est donc homogene dans lI"espace. Au
point critique d"une transition de phase antiferromagnétique de fré-
quence q avec dégénérescence d"ordre m=1l, le processus de fluctuation
critique converge vers un processus stationnaire non gaussien, de fré-
quence q sur le tdore - cet espace de fréquence (de dimension 2) cons-
tituant alors le noyau de dégénérescence -, Enfin, nous traitons le cas
ou les deux transitions précédentes se combinent. Dans tous les cas,

la mesure invariante du processus limite est la limite des fluctuations
de la mesure de Gibbs conditionnée au voisinage de 1 équilibre. Cer-
tains résultats analogues de [9] sont obtenus dans un modéle de champ
moyen ; notre cadre, qui introduit une plus grande richesse de parame-
tres et de géométrie, met en évidence I"universalité des processus

limites.

La partie I11.B concerne le comportement du processus sur des
échelles de temps beaucoup plus longues. L"auteur de cette these
y étudie les changements d"attracteurs selon 1 approche par les
grandes déviations de [4], [10], proposée dans ce cadre par G. Ruget
[11]- L"idée originelle est d"expliquer le phénomene de nucléation,
a savoir IlTapparition d"un nombre déterminé de noyaux dont la compo-
sition approche celle du nouvel attracteur, ces noyaux se propageant
par la suite jusqu"a remplir tout I"espace. Il s"agit dans un premier
lieu d"obtenir des estimations en temps fixe T , que l1%on peut cari-

caturer par

1 n
- 4 Log Pr{dist (Xt, ut) <y ; t < T> est a peu prées 14(T;u)
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pour toute trajectoire (déterministe) u sur [0,T] dans I"espace des
densités ; 1 sT"annule sur les trajectoires du systéme dynamique
sous-jacent. En généralisant certaines estimations a des durées
plus grandes, nous déterminons alors les points de sortie d"un

bassin d"attraction, qui se trouvent étre les points du bord les

plus bas dans le paysage d"énergie défini par 1Ig. Ces points col
vérifient I1"équation VI® = 0, étudiée ci-dessous ; en particulier,
ils sont non homogénes a température assez basse : il y a alors

nucléation.

Enfin, 1le chapitre |11l qui ponctue ce travail, consiste en
1"étude des solutions u de VIN = 0, ou plutdét de I"équation

équivalente

u=g9g @JIUW

avec g = (@G™*1. 11 résulte d"une collaboration entre T. Eisele,
motivé par [1"étude des minima de I, M. Schatzman, intéressée plus

particuliérement par la modélisation du développement du cortex visuel,

et lTauteur, pour les différents motifs déja évoqués. Il révéele la
géométrie du paysage d"énergie 13, dictée par les coefficients de
Fourier de I"interaction J . Nous décrivons de maniére plutdt

complete les branches de bifurcation primaire et secondaire, pour des
noyaux de bifurcation de dimension au plus deux, ainsi que leur
stabilité. Au passage, nous obtenons un exemple de transition de
phase du premier ordre dans le cadre du champ moyen local, ou

1"équilibre saute brutalement d"une branche de solutions a une autre

pour une certaine valeur du paramétre p .
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CHAPITRE I :  DISTRIBUTIONS A L' EQUILIBRE

Partie A :  GRANDES DEVIATIONS POUR LES MNESURES DE GIBBS

AVEC INTERACTION A COURTE PORTEE
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C. R. Acad. Sc. Paris, t. 303, Série I, n° 11, 1986 511

PROBABILITES. — Grandes déviations pour des champs de Gibbs sur Zd Note de
Francis Comets, présentée par Robert Fortet.

Un principe de grandes déviations est d"abord étzbli pour ke processus empirique dun champ de variables
independantes equidistribuées indexées par Zd, pour d™\. Ce résultat est ensuite gérérallise aux champs de
Gibbs statiomaires associés a une interaction sonmable, et méne a la formule variatiorelle de Gibbs.

PROBABILITY THEORY. — Large deviations results for Gibbsian random fields on

A large deviatias principle sfirst proved for the enpirical process of L/Zd. random \ariables indexed by the
integer lattice dt2\. This reault s then extended 1o stationary Gibbsian fields corresponding to a summable
interaction, and we dotain the Gibbs variatioal fomula.

I. Enoncé du résultat principal. — Soit X un espace polonais, et fi= Xz On
d

considére une suite A, de parallélépipédes de N*, A,= f] [0, a'] ou chaque suite 4d,,
i=1

(/=1, ...,d) tend vers I'infini. Pour toefi, on note coB I’élément de fi obtenu en

prolongeant par périodicité en dehors de A, la restriction de co a A,,. On définit alors le
processus empirique

RB«=77-T Z 5eV'">
IAn] leA,

ou |A| désigne le cardinal de Ac=ZJ et 9\ XeZd les opérateurs de shift sur fi : pour
tout < R,, w appartient a I'ensemble ~ s(fi) des mesures de probabilités stationnaires
(sous I’action de J.4) sur fi.

Soient a une probabilité sur X et P la probabilité produit sur fi. Considérons une
interaction J= {JA; A partie finie de Z*}, ou les JA sont des fonctions continues sur fi,
mesurables par rapport a la tribu <r(A) engendrée par les applications coordonnées <ot-»a>x

pour XeA; on suppose J invariante par translation, et £ sup |Jal)|<°o-
A30 w€n

Pour toute partie finie A de Z* et toute condition extérieure <aeXAf, on définit le
potentiel hamiltonien U*“ pour 6>eXA par
U“(¢>)=- £ JA(co)
A:An A* 0
avec ©= (dj &), Z“ = ERPa{exp —U*(6»)} ou PA désigne la restriction de P a cr(A), et
enfin
" (0>)=(Z*) - Llexp{ - U “(co)}

la spécification. Soit G I’ensemble des états de Gibbs invariants par translation, i.e. des
Q e#s(fi) tels que, pour toute partie A finie, JAdPA soit une version réguliéere de Q
étant donné a(Af) (probleme de Dobrushin-Lanford-Ruelle).

Théoréme. — (i) lim 1| A,,| logZA™existe, est indépendante de la suite des conditions(dn
n*a
extérieures a A,,, uniforme par rapport a cer, et est égale a
P=- inf {E°(U)+ I(Q, P)}
Qces<M

0249-6291/86/03030511 S 2.00 @ Académie des Sciences
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512 C. R. Acad. Sc. Paris, t. 303, Série I, n° 11, 1986
avec
U(FFD»- 1| 7T T Ja(*
(C )» RN a(*)
et
I(Q, P) = sup -U (Q a, PA,

A partie finie de Zd | ** |

ou /i(Ji, v) est Finformation de Kullback de fi par rapport a v lorsque |i et v sont deux
probabilités définies sur la méme tribu.
(ii) Si QeG, on a pour tout borélien B de &S(Q)

- inf {ERU + I(R, P)+/7}’\Iim—Al— logQ{R"eB }

REB no.ce
= amTT*>71° R"-«e B} —inf {ERU + 1(R, P)+p}.
AT 17 9Q{R™-ee B}~ —int{ (R, P)+p}
Commentaires. — La formule variationnelle de Gibbs (i) est bien connue; cependant

la preuve donnée ici, a I'aide de techniques de grandes déviations, est nouvelle.
Du principe de grandes déviations (ii), on deduit

'II'!°gQ{ R-.0.eB}=°
des que B contient I'un quelconque des états de Gibbs [il est en effet connu que

/?= ERU + I(R, P) équivaut a ReG] : I'apparition d’un autre état de Gibbs, s’il en existe,
n’est pas de probabilité exponentiellement petite sous Q.

On montre aisément que I(., P) est s.c.i. sur et QU6 ses lignes de niveau sont
compactes; on retrouve ainsi que sous nos hypothéses.
1. Indication de preuve et le cas indépendant. — Pour A, A'c Zdet Q une probabilité

sur Q, notons QA une version réguliére de Q conditionnelle a a (A), restreinte a a (A")
(on écrira 0 pour {0} ).

Proposition. — (@) Soient ~ un ordre total sur Zd, compatible avec les translations,
(«—0] [resp. (+-,0)] I'ensemble des minorants [resp. des minorants stricts] de 0 (le « passé »).
Si Qe.”s(Q), le sup définissant | peut étre calculé sur les parallélépipédes de et est

égal a T= Eo/j(QQ ‘O\ a).
(b) Pour tout borélien B de (fi), la loi du processus empirique Rnlusous P satisfait
un principe de grandes déviations avec constantes | A, | et fonction de taux I(., P).

Remarques. — Ce résultat est la clé du théoréme; il généralise celui de Donsker-
Varadhan en dimension 1 ([1], [2]); (a) est d0 a FOllmer [3] dans le casX fini et ™ un
ordre Icxicographiquc.

Pour montrer (a) on ordonne les éléments d’une partie finie A arbitraire de Zd, et on
obtient comme dans [2]: EQF—log EpF~| A|T pour toute F, a(A)-mesurable bornée.
Puis, pour établir sup {( /| A|)/j(Qa, Pa); A parallélépipéde }~T, on décompose

I'(QAPa)= | Eq/i(QJ~Xa"< 0), &)
A

>6

oU Txest la translation de vecteur X dans Zd
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L’argument en dimension 1 de [2] méne a lim EQh(QSr, 2) 2T pour toute suite A,
"o
croissant vers (+, 0) : on le compléte cn remarquant que A— E1(Q}, «) est croissante
en Ac(«, 0) (inégalité de Jensen), et on peut alors adapter 'argument de Cézaro.
En s’inspirant de [2], on montre que I(Q, P) est une fonction affine de Q et que
Qe Z5(Q)) a une representation intégrale

j Suq(dS) avec [(Q, P)=JI(S, P) pq (4S).
S ergodique

La majoration dans (b) est semblable au cas d=1{2]. Pour la minoration, on établit
d’abord

(l) _lin__ logP{Rn.wEV}g_l(Q’ P)’

,,—.x,I "I

pour tout voisinage V dans Z(QQ) d’une probabilité ergodique Q verifiant I(Q, P)< oo :
le point crucial est que la famille filtrante {logdQ}/da; A partie finie de («~,0) } est une
Q-0 (AU {0}) sous-martingale, convergeant dans £'(Q) vers Y,

Y <logdQy™ ¥ /da Qp.s.
On écrit alors

P{R,.,eV}Zzexp{—|A,|[(I(Q P)+2¢) } Q@ NQIN{R, ,eV})

ou

Q! = log Qs " 8 1(Q, P
rw) <
. {Mllz ™ ——(8*0) SI(Q, )+8}

€Ayg

et

d (0--.0)r\'1'_7"1\,|
Qf:{]/\l | [Y—log&—d——](e‘m)g—s};
n|l Ae Ay, a

la Q-probabilité de Q? tend donc vers 1, mais aussi celles des deux autres ensembles
d’apres le théoréme ergodique multiparamétrique.

D’apres la représentation intégrale précédente, il suffit alors de vérifier que I'’ensemble
des Qe #4(Q) vérifiant (1) est convexe, en utilisant un argument classique.

La preuve du thcoréme consiste alors a combiner les résultats de [4], § 3, et les inégalités
(b) qui sont bien sir indépendantes de ©".
Regue le 23 juin 1986, acceptée le 22 juillet 1986.
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PREWES DE LA NOTE:

'‘GRANDES DEVIATIONS POUR DES CHAVPS DE GIBBS™

Nous reprenons ici les notations définies dans la note. Une biblio-
graphie complémentaire, référencée par le nom des auteurs, Tigure a la

fin des preuves.
Si A c , on note
= {FG->MR ; Fa(A)-mesurable, bornée, E e < 1 >

Alors, h(QA ,PA) = sup {EQF ; FEDA> .

O Preuve de la proposition:

.Montrons d<"abord que I < T . Soient A une partie finie de Z ,

dont on note X ,...X ses éléments classés par ordre croissant, et
1A 1
F 6 DA. Soient F = F et
A 1Al
r Fw)
Pk ,..., = log J e a(de. . . -a(do)x
I((Al 0)"k) g ( k+1) ( )A IAI)
C + .
pour k = 0, ...JA] - Comme FQ < 0 et ~ O ot(cax n on a
Q-p.s-
Q
E <Xk+1> { Fk+1 - Fk > < h[ Q(<e’Xk+l), a ] = h(Q~"’0) ,a)o0Xk+1
k+1*

d"aprés la stationarité de Q; on integre ces inégalités par rapport a

Q, on somme sur k, et il vient

L*inégalité inverse nécessite une étape de plus qu“"en dimension
d=1. Maintenant, A est un parallélépipede; la formule de décomposition

de I1"entropie (lemme 2.3 de [1]) s"écrit

Q A-{X]Al>

>) + E h(Q{x S ,CX)

Al IA|

h - = h .
QRFA = "Caix > " a-gx
1A |

g («,O)I"IT"X Al A

. Q . )
ou le dernier terme est égal a E hj ,a] par stationnariteé,



D*ou I1"on obtient

Q (~,0)nT"'XA
hQA*PA) “ 8 E h(Q0 RY) @-

L"argument suivant, suffisant pour d=1, devra ici étre complété
si An est une suite croissante de parties de (<,0) avec U An « (<,0,
n

le théoréme usuel de convergence des martingales montre que

7oy

An _, QE; , Q-p-s. ( => désigne la convergence étroite des probabi-

0
lités). Puisque p => h{(/i,v) est s.c.i. , le lemme de Fatou montre que

lim inf EQh(Q n,cH > EQh(Q(*'O),aj ).
n —>m o o 0

Q

AT A AT
D"autre part, on a Q-p.s. QA A QO ﬁ‘QO pour A"C A C (==,0) , et

donc

Q. A _ -Q _Qala’ Qo Q Q' _ _Q A’ .
E h(QO,a) = E E EngE u F>E E%BqE u F=E h(Qﬁ,a)

En combinant cette propriété de croissance avec (1),(2) et un argu-
ment de Cezaro, on obtient aisément
I > sup{ ];] h(Qﬁ,Pﬁ) ; A parallélépipede de 2¢ } > 7T

ce qui prouve a).

-Nous établissons maintenant la majoration de la probabilité de
grande déviation, en suivant l"esprit de la preuve de [2]. Soient A
un parallélépipede de (" contenant l1Torigine, et FED” ; on peut
recouvrir An par des translatés TMA de A deux a deux disjoints et

on majore

exp -i- £ F(OX) = exp £ £ F(OT+Xw)
|IAl X€An Al X€A r:T+XSAn
< £ exp £ F(Ot+X»)
|IA] X6A T

par convexité de I1"exponentielle. Puisque F£D™ et P est une mesure

produit, on obtient en intégrant par P

P 1
E exp — £ FOXw») < 1
IA] X€An
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Comme £ (n) = su —— 'T" F(O\0o) - f F dR est un
F() @ JAn | X£An (Vo) 0 T -®

od (AI11AJ/min{aji}) ., on en déduit pour tout borélien B de 3 (0)

ep(m V "1}*e=p{m | FR™}

> P{Rp {6B> exp{ af” §8E b F dQ)

d"apres 1"inégalité de Chebichev; soit

. 1 1 ) _
Irlﬂ_i%p log piRn,0)eBA < - SUp{IAI Eg . (5215: E F ;A parallélépipéde}.

La fin de la preuve est alors identique a la référence ci-dessus.

-Montrons maintenant que 1(Q,P) est une fonction affine de Q; notre
preuve reprend et explicite celle de Cl1],[2]- Comme O est polonais,
on peut trouver une famille dénombrable U d"éléments de [I"espace *6°(0)
-des fonctions continues bornées sur 0 a valeurs réelles- ne dépendant
que d"un nombre fini de coordonnées, qui soit déterminante pour la

/
convergence étroite des probabilités sur 0. Soit An une suite de cubes

croissante vers (ZBd; pour et €U, on définit
n<f 1im £ F00X (co) lorsque cette limite existe
n-xX» \6A>
= @ sinon

Alors, O1F:: {>€0: fl f € R} et 0= IguO?f sont des boréliens de O,

f

éléments de cr{(2A_)d}- D "apres le théoréeme ergodique, on constate que

VQere (Q), Q(0o) - 1 et nw- Q  Q-p.s.,

ou on a noté 9e(Q I1"ensemble des probabilités stationnaires ergodiques

sur O.
- ~od -
On choisit a présent < tel que (Z) < (<,0) - un ordre lexicogra-
phique par exemple -, on note R(Q,<0) une version réguliére de la proba-

bilité QGNgCQ) conditionnelle a (=<-,00 qui soit conjointement mesurable
en Q et a ; soit RiO= RjIMa)) . Pour QE9e (), on a

Q(dco' ) = d‘ RAde' ) Q(dco) A .
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Maintenant, supposons simplement Q stationnaire. Toujours en vertu
a
du théoreme ergodique, = 1 et Q“Pese 11=Q , ou 3 est la tribu

des invariants. Mais Q est presque sOrement ergodique et

=/ Q> d =/ S n (ds 4
Q / Q QV Je 0 Q( ) Q)
ou x est I"image de Q par l1"application O-mesurable e Q : donc
0 N
(@) reste vrai pour QEITs(0) et Q = RO* Q-p-.s.-

Donc 1(Q,P) est une fonction affine de Q et vérifie:

1Q.P) -7/ h(RB .a) Q ()

/ MQ @@s) 7/ h(Rg‘,a) S (du)

fn (@S 1@G.P) ®)
Q

d"apres le théoréme de Fubini.

-Nous montrons maintenant la minoration b). 1l suffit de prouver

que pour tout voisinage V de Q dans ik (0) avec 1(Q,P) < o ,

1
lim inf —— 1log P{R EV} > - 1(Q,P) (6).
|An | n>0>
Supposons d"abord Q ergodique. La preuve, plus délicate que pour d = 1

nécessite le
A

dQQ
Lemme : Si 1Q.,P) <oo , la fami lie fil trante { log — ; A Cl (<0),
dot

A Ffinie } converge dans H1(@Q) vers une variable Y Vvérifiant

(<_!0)
dQo
Y < log S Q-p.s
dot
A
. (<*,0] dQo
O Preuve du lemme: soit Q = Q 0 ¢ 6 "X ) ; —— est une
(<-,0) 0 dot
_ . ] da, _ don . .
Q-a (AU{0>) martingale. Puisque 2= —— , pou R*c A 1la probabi-
dQAU{O0> da
_ A *U{ 0} i A *U {0} 0>
lité Q est 0Q-p.s. absolument continue par rapport a Q
A-A* A A-A*
avec dérivée g@ / QQQ . En posant O(X) = x logx pour x>0
da / da

on a Q-p-s.
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A"U{0} A _ATU(O} A A
eQ IOEISa - eq [ » f£20 W 12a \
da \ \da J/ da. J
A" _A"U{0> A
-<un/ ?2>n0" e (?7)

5 | | / «aA'\ | T/EOA.U{O>

v / da 7/

7). e

en utilisant 1/inégalité de Jensen pour la fonction convexe O et la

propriété de martingale; comme I1(Q,P) < m
f 4 A d -0 dQo
r + w
EQ log i*i—J < EQ ( log —QQ— <00 , log — —Q est une
Vv da ; V da J da

Q sous-martingale filtrante qui converge dans I1(Q) vers une limite

Y lorsque A croit vers (%0 [NEVEU]. Pour A = (-*,0), on a
A" A*U{0> A*U{0> (<-,0)
dQo

log —— < E log — — Q-p-.s.; en passant a la limite sur
da da

A"/ (<-,0), on obtient la majoration de Y .O

Choisissons a présent < tel que (™,00 H N ~ 0 . Puisque Q est

stationnai re,

(«.xjriA (™, 0)NnT-xA/
dQ dQ n dQ n
ANy - m =7 @) = YZ o _2 O 2
- @ " Ga € = exp gL 199 5
An
On a donc :
dQ

PeRPAEV > > Qugr ) (Rigevs/
n

1.0 <*.0
do D dQ( D
Q 0 0
* E exp i 10g -—-- (e\o) log Y (0 Xw)
,€AN da xI™n da
@=>0)nT~XA[
dQo
I Y - log —— 1 9Xo> 1 \Y4 7
xEAN L I da J ¢ ) )) { Rniwev > / ()

D"aprés le lemme, 1le premier crochet est positif, et la moyenne de
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Cezaro
(=m0 )HT XA,,
dQ n

1
Z_ =
> IAn1 XeA» [ Y - 108 5T*" 1 (9x™

converge vers 0O dans Ll(Q): si £>0, 02: {v£0; Zn > - e > est de Q-pro-
«,O)

habilité tendant vers un. DYautre part, comme E log Sa — 1(Q,P) ,
a
™ O
| OIQ( )
celle de ol:= {Cco€0; 1 T~ log 0 (0>1D) < 1(Q,P) + s } tend
[An 1 X£AnN da

aussi vers un d"apres le théoreme ergodique multiparamétrique [KRENGEL];

il en est de méme pour {Rn ~V}. En écrivant (7) comme

P< Rn,ciieV > > e*P( " IAnl CI(Q.P) + 2e] ) QC 0* n Qi  {RP@EV} )

on obtint (6) pour Q ergodique.

Montrons a présent (6) pour Q € ~"s() e Soit S1,...Sm,... un
échantillon de la loi § sur iT-(0): d"aprés (@), (6) et 1(Q,P)<oo, la
Q e

loi des grands nombres entraTtTne que

uam (1/m) _
m=>>» i

nHn3s

S. = Q et Lim (I/m) E 1(S..,P) = 1(Q,P) , @ -p.s.
1 m=X>» i=l

1(.,P) étant affine, il suffit donc d"établir (6) lorsque Q est une
combinaison linéaire finie d"éléments de e (0), ou, plus simplement,

que l1"ensemble des QGNAS(0) vérifiant (6) est convexe.

Soit donc Q =t Q + (1-t) Q , O<t<l, Q et Q vérifiant (6), et V

un voisinage de Q. Notons ici R, 47 RA v . Soient b, un entier tel
X
que bn= t a* + a(l) , XQ= (bn,0,...0) ,d= 0 o© , An= CO,bn]x n [0 ,a*]
_— 1 N -
et A =[O ,a“—b”IxArq [0,a";]1 : alors RHyW est voisin de

t R® + (1-t) R_ , la différence résultant des effets de périodi-
~noLe ~n, e
sation au bord des bandes. Puisque la convergence des processus est

essentiellement celle de leur marginales de dimension Ffinie, cet effet

devient négligeable pour toute portée donnée lorsque n —> ® : on peut



27

trouver des voisinages V de Q et V de Q tels que

R~ GV et €V »=> R 6 V pour n assez grand,
n,@a n,o

Comme P est une mesure produit, on a pour n assez grand

P<Rn ,<€V> > P<R~ € V} P{R V>

g
An,@ kn,(ﬁ

> exp( - tJAn] [1(Q,P)+e] ) exp( - (I-t)]An]| CI(Q.-P)+e] )

= exp( - [AN[[1Q.P)+e]) .

Na Preuve du théoreme est mot pour mot la méme que celle des théo-
remes IV. 1l et 1V.2 de l"article ~large déviation estimates for a
conditional probability distribution ..." Tfigurant dans cette these,
en prenant pour u une masse de Dirac ( on conditionne par une fonction

constante ); elle ne sera donc pas répétée ici.

Sur les commentaires :

1) La preuve de la formule variationnelle de Gibbs a I"aide de
techniques de grande déviation est nouvelle pour d>2 [ELLIS,p .161].
Elle est, du reste, analogue a celle donnée dans cette référence
pour d=1. Pour une autre preuve, voir [PRESTON], qui contient
également beaucoup de résultats sur les états de Gibbs.

Notre résultat montre que la fonctionnelle de grandes déviations
est la méme pour tous les états de Gibbs correspondant a une
interaction donnée; elle ne dépend que des caractéristiques locales.
Elle induit une fonctionnelle de grandes déviations pour la mesure
n

_EI 6 _ qui n"est pas strictement convexe s"il y a
i= wi

S|

empirique

transition de phase. Une autre conséquence est que l1"on ne peut



discriminer les mesures de Gibbs a I"ordre de grandeur exponentiel

du volume.

2 1(Q.P) est s.c.i. : en effet, 1(Q,P) = sup — h(QA,PA) , ou
A A AT A

h(.,v) est s.c.i. (car X est polonais), et Q »> est continue.

3) Les lignes de niveaux de | sont compactes dans tfs (0):
si I€IR+ , la ligne de niveau { QOPs(Q);: 1(Q,P)<1 } est fermé en vertu
du point 2). Pour montrer qu“elle est relativement compacte, il
suffit de montrer qu“elle est tendue, ou encore que chacune de ses
projections finies-dimensionnelles le sont; mais ceci résulte du

fait que sa projection unidimensionnelle est incluse dans le compact

{ge?(X) ;h@.,a) <1 }

4) G ™0 : comme U est continue sur 0, Q >> Ecb + 1(Q,P) est s.c.i.
et atteint son minimum -p sur le compact non vide

{Q;ECL + 1@Q,P) < -p+1}. Donc G ™~ 0O .
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Let (x©, ) , i€Zd, be independent identically distributed random
variables with arbitrary distribution. We show that,for almost every
(yMi» the conditional law of the empirical field given satisfies
to large deviations inequalities. This applies to the study of Gibbs
measures with random interaction, iIn the case of some mean-field models
as well as of short range summable interaction. We show that the
pressure 1is non random, and is given by a variational formula.These
random Gibbs measures have the same large deviation rate, which does
not depend on the particular realization of the interaction; their local
behaviour is described in terms of conditional probabilities given the
interaction of solutions to the variational formula.
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I . INTRODUCTION:

In [7], DONSKER and VARADHAN have recently Initiated the large
deviation theory for stationary random processes on the "level 3” of the
empirical process; their methodology was shown to be fruitful, and has
been since applied to various domains. Among these, Gibbs random fields
were proved to have large deviation properties depending only on the
local characteristic ([3], [14] .[21]): a Gibbs field is a random field
on such that the conditional distribution of a finite set of coordo-
nates given the other ones has exponential density with respect to some
independent identically distributed (i.i.d.) field; this density
involves a translation invariant interaction, which describes the
dependence between the variables. One strategy is to establish Tfirst
a level 3 large deviation principle for the i.i.d. field, and then to

transfer it to the Gibbs field via Laplace"s method.

In recent years, Gibbs random fields with random interaction have been
extensively used to describe disordered systems; this time, it is assumed
that the law of the interaction 1is translation invariant. In this paper,
we study such a field for allmost every realization of the interaction,

using large deviation techniques.

We will adopt the same strategy as above, so we will Tfirst establish
that a conditional large deviation principle for i.i.d. random fields
holds with probability one (w.p.l1). Let (Wi)i be an i.i.d. fTield, with
index i€z~ for some integer d>1 , and values iIn a Polish space 1I7; let
k be continuous on U to another Polish space, and Y= AW : we estimate
large deviation probabilities for a regular version of the conditional

law of the empirical field Rn ~ given the Y-field, with Y=(Y*)”, under
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typical conditioning (i.e. on a set of Y"s with Tfull probability).
The rate function iIn the conditional case coincides with that of the
unconditional case on the set of stationary fields with the typical

margin, and is infinite elsewhere.

The proof does not reduce to a mere consequence of Bayes formula,
as when conditioning consists in an event { Rﬂ’_6 B > with non-zero
probability as in [18]; by the way, our result implies the latter for
typical B"s. Our techniques are not either related to the expansions
of probability densities of 2ABELL [29] for exact conditioningWe will
essentially use the non conditional estimates and Borel-Cantelli lemma.
The lower bound will be proved by means of an exponential change of
probability, which is a central idea in large deviation theory: here,
the new probability will be the law of an i.i.d. field indexed by a
bigger lattice with some rectangle A as unit cell, each variable

having cardinal(A) components.

In section 1V and V, we derive applications to Gibbs measures with
random interaction, which randomness will be given by the Y variable.
We will consider separately short range summable interaction (81V) and
some mean-field interaction (8V); one can refer to detailed references

of such models in spin-glasses and neural networks.

We show that the pressure exists in the thermodynamic limit w.p.1I,
is independent on the experiment and is given by a Gibbs variational
formula; in particular, we recover results of LEDRAFPIER for Ising
spins [19].-We obtain large deviation probability estimates, for almost

every realization of the interaction; the rate function, which give the



rate of exponential decay, does not depend on the particular realiza-
tion. The problems are tackled with a particular emphasis on uniformity
with respect to boundary conditions; our results also apply for Gibbs
measures which are obtained in the thermodynamic limit with boundary

conditions depending on the interaction itself.

But the thermodynamical limits of finite volume Gibbs measures
depend on the interaction, and they are random measures. Therefore we
localize the previous results on space averages, and show that these
limits are related to the maximum entropy distribution - which are by
definition the solutions to the variational problem -, more precisely
they are conditional versions of these distributions given the

interaction.

In section 11, we recall generalities on large deviations and
empirical fields, and state some known results used in this paper.
Section 111 is devoted to the conditional large deviation principle
in the i.i.d. case. We give now a simple explicit computation showing
why it holds at level 1 (of course, the level 3 proof is not trivial
like this one): let and Y~ ,i=1,2,... be two sequences of two
sequences of bounded real i.i.d. random variables; we prove that the

conditional distribution of
= (1/rojhy. (I.1)

given M(Y~)”™ obeys a large deviation principle for almost every
realization of Y . Indeed, using the independence assumption, one can

compute the logarithm of the Laplace transform of nzZn given Y



Lnz (t> = l1o® Ex exp(tnzZn) - 1og”Ejj exp(tYiX) “ _SAXNY..)

with Lx(s) = log exp(sX) and EN the expectation in the X variable;

the law of large numbers iImplies that

(1/n) Lnz (t> -1PIl» L(t) =Ey Lx(® 1.2).

Denote by ¥ the Borel set where the limit (1.2) holds; it is shown

in [6] that (1.2) implies that we have on ¥

- Iinf{L*(2);z€B> < lim %;f asn) log Pr{ Z_€B / Y>
n a—

* - -
< lim Eo%p @sn) log Pr{ Z €B /7 Y) < - inf{L (2);z6B} (1-3)
n a—
with L* the Legendre transform of L given by
L*(z) = sup{tz-L (t);tER> a.4).

Notice the set ¥ of conditioning under consideration is typical in

the sense it has probability one.
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Il . DEFINITIONS and GENERALITIES ;

Let E be a Polish space, 1i.e. a metrizable complete separable
topological space, and denote by ~(E) the set of probability measures
on E. Consider a sequence of positive numbers an going to infinity
and a function 1 : E »> [O0,#0] . A sequence Pne<P(E) obeys a large

deviation principle on E with rate function 1 and sequence an if

i) 1 is lower semi-continuous on E, and the level
set { x€E ; I(X) < a > 1is compact for all a€DR+;

ii) for all Borel subset B of E,
- 1(B) < Ilim inf a”llog Pn(B) < Llim inf a~log Pn(B) < - 1(B) (2.1)

with 1B))=infF{l1(x):x6B> .

When concerned with a partial summary of the information weighted by
Pn , we will use the contraction principle (theorem 2.4 in [27]): let
0O be continuous on E to another Polish space, and assume the above
principle holds, then PnoO""”obeys a large deviation principle too,

with same sequence an and rate function T given by

i(y)=inf { 1) ; D) =y }

NOTATIONS : Let Hl be a Polish space, d>l be integer and 0 = UR

If i=Cil,...,id)(\d and jeOMd , we denote by A(i,j) the rectangle

d i i

nI [“T »J*] in Z . Through all this paper, w consider sequences i
= n

i
and jn with Jn+in —> @O » in tlie sense jk+ Jj_ﬁ —> w for each k<d,
and we set An=A(in,j ). For , let ®n”™ be the element of 0 obtained

in making periodic the restriction of o to An: jn~ iaf

i-j= in.(in+Jn+1) for some m€zZd and !'=(!,...1). Let Oi,i€Zd, be the



shift operators on 0 given by GI1n *= , and define the empirical
field

V. - - |JA»rlik V .e> (2-2)
with |IA] the cardinal of a finite set A in - Then N € $78(&)

the set of all stationary (shifts invariant) measures on 0. Except 1in

the proof of theorem 111.1, we will write Rn w instead of R ,w .

Notice that space averages may be evaluated asymptotically in

terms of the empirical field, since

f f dRn,m ~ TAnI~S fCS1lw) —» 0 as n-»-~
1GANn

for any bounded continuous function f on O.

Let a,3 in 9(117); Kullback information h(p;a) of p with respect
to a on the Borel field of U is

do dp } de dp -
., — Qlog — da if Pka and — log — €L (@
h(P;a) = / J da da da da

vV @ otherwise.
We will denote by Pa the product measure a® . The law of the
empirical field R, 4 under P2 is known to obey a large deviation prin-
ciple on 9S() ( refer to [3],[14] or [21]) with sequence JAn] and

rate function H(.;Pa)

H(Q;Pa) = sup{ |Ari1h(QA;Pa A) - A C Zd finite >

TAn 1 1 h « vV Pa ., A p) <2 '3 >
n h

S oNn—X»
with the restriction of Q to the a-algebra ~(A) generated by

{ i ,iEA }. In fact H is a linear functional of Q.



37

large deviations of the empi-

This result implies Sanov theorem on

as Cram&r-Chernov theorem, via the

rical measure |A £ 6 _ as well
1€AN 1

it also applies to empirical correlations

contraction principle; but

which are space averages too, and, by the way, to Markov random fields

which involve spatial dependence between variables.






I11. CONDITIONAL PROBABILITY FOR LARGE DEVIATION OF 1.1.D.

RANDOM FIELDS :

Let ~ be another Polish space, and x : U —-> ~ be continuous, k

induces a continuous map n on 0O = to > , MU=y with y\ = ,
and n itself induces a continuous n*: tfhs(@Q) —> ) » n*Q = Qon""™*.
-

Notice that n Pa is the product measure based on a®k , and

n*Rn w = Rn the empirical field based and no. Since 0 and ™ are
Polish spaces, we can define a regular version Pa{ ./ y > of Pa
condionally on no =y [22],1i.e. amap vy h» Pa{ ./ y > on such that
i) Vy, Pa{*/y} € iT(©) , ii) Tor all Borel subset B in 0, yi>Pa{B/y}

is a version of the conditional expectation of given nko = y .

THEOREM 111.1 : With Pa~probability one, the sequence of conditional
distribution of the empirical process under Pa given no =Yy
Pa < Rn,co 6 = / V >
obeys a large deviation principle on B () with sequence (An]
and rate function 1 given by

f h@:p ) it n*Q = n*p

KQ) = a

\ o otherwise .

REMARKS: .1) In the applications we give in this paper, we restrict to
a product space W= X x with projection k on U and to a product

measure a = ji® v , as we did for the computation iIn the introduction.

We then have PN a.s.
Pa < Rn,c e B/ y >=/ IB(Rn>0) d*@*" G.D

for all Borel subsets B of "s(0) . The estimates (1.3) follow from the



contraction principle and the above theorem.
.2) The usual non-conditional case is a consequence of the
theorem with k a constant function.

.3) Since H(.;P ) and fl*are linear , so is 1I.

We prove the theorem. Since H is a rate function and since n* is
continuous, the level sets {Q;1(Q)<a> = (n*)_1<n*Pa> n {Q;H(Q;Pa)<a>
are compact sets in *"s() for all a€IR . Then we only need to prove
that (2.1) holds for Pn = Pa{ Rn we./y> , Pa a.s.. We begin with

the upper bound :

PROPOSITION 111._2: There exists a Borel subset ~of ~ with P~ proba-
bility one such that, for all y € , we have
sup |JAn|_1log PR RN 9 € C /7 vy } < - 1(O) (3.2)

for all closed set C in $s() .

O 1) We first prove that (3.2) holds on a Borel set 01(C) of full proba-
/
bility, for any closed set C. Let Cm , mON, be a sequence of closed

N

* *
neighbourhoods of n Pa in 9s@ ), decreasing to {n Pa> , and

Cm=C~" N~ (Cm) = Since H is lower semi-continuous in its Tfirst
argument, H(Cm;Pa) is non-decreasing to H(C O (n*) {n*Pa>;Pa) - 100
by definition of 1. For positive e, fix m such that
HCm;PQ) > Mc>*“ 6 (3.3).
The ergodic theorem implies that
V(C,e) = {y€uU2d /7 3 nQ®) :V n>nQ(y), Rny e >

has -probability one; on this set, Pa{Rn(tue cm /vy >= pa{Rn, a6 c / y >

for n>nQ(y) - From the upper bound (2.3) for Pa , we have for large n

P«< Rn,a>e Cm > < exp -JA,I{ H~APJ -e > (3.4).



Let ¥(C,£,n) = { y€V’Z‘d: PFf{ Rnf,,6 Cm /7 yv > > exp -|An|[ 1(C) - 3e ] >

Since Pa{ Rn w6 <> =/ Pa{ Rni(0S */y> dPa .Chebichev inequality yields

exp(-]1An J[I(C)-3£]) Pa{ ¥(C,£,n)> < Pa [{Rn " D ¥(C,e,n)>

< exp -JAn ][ 1(C) - 2e ]

combining (3.3,4). Then Pa{ ¥(C,E,n)> < exp -]An]e Ffor large n : Borel-

Cantelli lemma implies that ¥-(C,e) = ¥(C,£) 0 {lim sup ¥(C,£,n)}c has

n— x>o

Pa-probabi 1ity one too; let a>€¥1(C,£), we have
Pa< Rn,a)€ C / vy > < exp -|An|[ 1(C) - 3e ]
for large n. So ¥-(C) :OE V-(Cfe)) with arbitrary sequence £->0 1is such

that (4.1) holds

2) ~s (0 being separable, we can find a countable basis of open

sets O , MEIN . Define ¥- = ¥,( H_ ©f ) where S ranges over the
m 1 T 1 mF m
(countable) set of finite subsets of IN; then Py(*i) = 1« If C C s (0)
is closed, then c= Mf__0~ for some IN ; but we can find a finite
meF
c <2 with I N_ of > 1(C) - £ . Hence,
y mOT m )
lim sup JAn|]-11log P { R C /y} < oLlim sup JA |_1log P { R 6 0 0° Zy>
n >00 * n— x» s  mOF
< -H n qc
mes- m
for y€¥”~ , which 1is less than -1(C)+£ ; since £ 1is arbitrary, ¥~ 1is as

in proposition I111.2. O

PROPOSITION 111.3 : There exists a Borel set ¥2 JJQ a with Py probability

one such that we have for all y G ¥2
lim inf JAnr 1 log Pa{ Rn @@ 0 /7 y > > - 1(0) (3.5)

for all open set Q 1iIn ss (Q)
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O Again we begin to prove that (3.5) holds on some V2 (0). We assume that
the right hand side of (3.5) is finite, since there is nothing to prove
otherwise. Let e>0, and R€0 such that
IR) < 10 + e (3.6).
Since U7 is Polish, we can pick a finite number pQ of bounded conti-
nuous functions fp on Q, depending on finitely many .

, such that

{Q € *.(0) ; |EQFfp-ERfp] < 2 , VP<PO >C Q
Let Q1 - { QEi>s(n) ; |[EQfp-ERFp I<l, VP<PQ>.

The following construction 1is that of FOLLMER and OREY in [14] ,
lemma 3.2: let i,j€INd and A = A(i,j) as given in 811. If r £ WAy o,
we will denote by VY € 3(0) the probability measure which coincides
with j o €Me i #®I*D) (yhere 1 = (1,..,1)) on the a-fields

af A + m_(+j+3L)}, m , and making th”se fields independent; we next

randomize the origin in defining P @) € *"s™) by
= 1 7»0k -
() 11z, 7»0
From (2.3) and the definition of Qj, we can fix i1 and j such that

I IA]"1h(ra ;Pa™) - H(RiPa) | < £ @G3.7)
and
A ( Ra ) 6 Q1 (3.8)
for A = A(i,j). Clearly 9A 1is continuous on /YN, and A = A)“1(01)

is a neighbourhood of RA . We now need a lemma

LEMMA 111 .4 : Let E,F be Polish spaces, g : E->F continuous, 3,rG9(E)
with 8g$~*= roT1l and h(r;Q)<°° m For any weak neighbourhood A of
T and any positive £ , there exists p 6 A such that
po~*1= 00T1, th@;3) - h(r;@)I<€ and log % is @-almost surely

equal to a bounded continuous function en E
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The lemma will be proved later; it applies to EA4I/N\ FQFA, .__o A R=d®A,

and $((°>i)ierd) = (NiJieA * since P e A> FA(P) € Ox

Let An be the part of the lattice with unit cell A, which is con-
tained in An : An = U (A + 1.g-i+2D)) where
leLn
Ln = { IG(Nd; A+ 1.(-i+tJL) C An } . We identify Mn to Q™ n as well

as \0® to (l0a)2d., with identification

= am for 1€An , m£A, 1€Ln , and 1 = 1.-i+l) + m (3.9)

Recalling the definition (2.2), we see that the empirical field
Ra is the image of R, f, % > - that we shall denote by R~ _ -
An w Ln@.,1"1 Ln *w
built on the lattice with bigger cell A, through the map <A,

$A: AS((lilMzd) —> ~S(Q) » QA AA(QA) = Q such that

ffdQ = /| 1Al _1_ foel dQA (3.10)
1<€A
for all bounded continuous f on 0. In particular, we have 2~(P™) = €A ()
for r~MiUT™) . is continuous, hence
A (3.11)

o) = @) @) H { QReP-C\iID* ); IE° log —— -Ep log — |< £ >
1 s dp dp

is open; 1in the last formula, the expectations are defined acording to
the identification (4.8), and we recall that p = a®A. But the law of

Rfln’ under Pp obeys a large deviation principle with sequence

ILn] = JAn )/ JA] and rate function H(.;P ) ; since 0(e) 1is open and con-

tains Pp , this implies that there exists r]>0 such that

\% RLn,0, € ®(£) > > 1 - exp - n JAn| (3.12)

for large n . Furthermore we have
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dp®LR
V RL. .» £ 3(e - EPR L PA @© -
n 0 (e) dp®LA
= Ep- n
W .-1 ~r 1l vyl}
®Ln
< expf-1A.Je) + E a/l @ E a 1 LRF ,, 1 —-— /y >
1n' \' *2(n.i)" L ©O<*> Ln*®° d ®Ln / J |/
P (3.19).
with
®Ln
V2(n,e) = {ye¥2 ; Eal[ 1 [ re 1 - — / y 1 >exp(-l1A e >
2 L ©(e) n’ dp®L“ / J n

Since P°€*'1lss Po7t'"l= (aolc’1)®”, E a{ a— /'y }=1 PO a.s. Vand the
p

conditional expectation in (3.13) in not more than one : together with

(3-12), this implies P ¥2(,£) > > 1 - 2 exp (- JAn inF{j,£>) . From

Borel-Cantelli lemma, ¥2@&) = lLlim inf ¥2(,£) has P~-probability one.

From the definition of ¥2(n ,£) and (3.11), we see that for y6¥2(£)

exp (- Anle) < EP«[ Ug(E)L 1 expl IL,] 3 log ~ dR*~ [ ]
< exp ILNJl E Prog- +en P{rE weo@ /vy >
\Y / n'
< explLn|c h@E:3) + £ > Pa< RA W E Q1L /'y > (3.14)
n
since ~(RML = Rﬁ o and (3.11) again . But it follows from the
n n,

lemma and (3.6) that h(p;p) < JAI[I(R)+Ffi] + £ . Moreover, fp with
p<pQ depends on a finite number of coordonates o , hence

sup __ u fn dRA “ / dRA | converges uniformly with respect
p<pQ P n* p n,

tog and {RA ~ € 01} c { RA £0 %} fgr Jdarge n. So (3.14) yields
n n

Pa{ RA ,a) E 0 / vy > > exp “ I1TAnl { I(R) + 4£ >



At last, 3.6) and lin I |/]A = 1 impl that
(3.6 Vig 1o 1/1A | ply
n inf JAn]-1 log Pa{ Rn(]) 6 0 /7y > > - 1) - 5e

holds for y £ ¥2(e).We set ¥2(@0) = H ¥2() with any sequence £ going

to 0 , and this ¥2(@) is a desired set.

2) We keep the notations in point 2) of the proof of proposition

1H1.2 . Let ¥2 = H ¥2m™ * Any °Pen set © in ~"s() is the form
© =U ©_ with J"C IN ; but there exists mCF" with I(Om) < 1(®) + £ =
me*?" T m

since Om Z 0, the left hand side of (3.5) is bounded from point 1)

with -[1(0) + £] on ¥2 ; since e is arbitrary, (3.5) holds on ¥2 _0O

O We now prove lemma I111.4 : since h(r;P) < ® , 7 is absolutely
continuous with respect to 0; denoting by g the derivative, E~(g/8) =1
@ a.s. since vy and p have the same image by 5 (E~(g/78) denoting here

the conditional expectation of g:E->IR given £e = .).

First we show that we may assume that log g is bounded. Let m>1 |,
Dm = ¢e|3{ s ~ inf(g-m) /7 5 > and gm = (I-m-2)[ inf(g,m) + Dm ] + m_1
Then, 7m = gm O E (E) satisfies to 7m°5"1= P0?”1. According to
Lebesgue theorem, gm converges almost everywhere to g, and, since

gm < g+l , 7m goes to 7 in the topology of probability measures on E.

Using the convexity inequality log(g+l) < (log g)+ + log 2 , the
sequence gm log gm is bounded from above with (g+1)[(log g)+ + log 2]
which is integrable since Kullback information h(7 ;J3) is finite

using again Lebesgue theorem, we see that ILim h(7m;B) = n (7 :;0)
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As m*“l< gm <m , 0 a.s., it is enough to prove the lemma under this

extra assumption.

Applying Lusin theorem [13], we find a sequence ?ke;qE) such that

lim llrj<gllp = 0 for I<p<oo and m“I1< < m . Now, we define
Pk - rk P With rk - ?2k /7 Ep{ ?k / 5 > e
Then, Hlog r~ is bounded and continuous and has same image as 0O by 8§.

Moreover,

irk_gUp < » / E3{?k"~> Ip + » (1-EP{?k/8>) S / E3"/?} |b
< m ILrk - g Jlp+ m2 | 1 - EP<?k/«> |p
Since r” converges to g in tP, EP{?k/8> converges to E~{g/£} = 1 in

IP and the above computation shows that r”» goes to g in HP ; in parti-
cular, converges weakly to y , and the continuity of f »> h(f]3;0)

in the |.|P norm implies éiQ h(r&;O) = h(r;p) , which ends the proof.

»



IV. GIBBS MEASURES WITH SHORT RANGE RANDOM INTERACTION :

From now now on, we assume 17= Xx# with Polish spaces X,™ as
in remark 1 in the last section, with k the second projection. We
write = (X. ,y-) , where x» is the spin at site i£Zd and where v,
y = (Vi )i contains the randomness of the interaction; let a =
with H1IE"PiIX) the a priori single spin distribution and veO>™) . Notice

that we can define the conditional law of o under Pa given y for all y

by Pa{B/y>=/1B (0))dP™ , which we will denote by P{B/y} for simplicity.

For any finite set A in Zd, let JA be a continuous function on O,
ct(A)-measurable ; for arbitrary fixed y, JA@) represents the interac-
tion between the spins located in A in the experiment y = (®1)1 *
set J = {Ja;A finite subset of , and we assume that

J is translation invariant : JAo001=
J is summable : || = Aé‘,o as)Lé% BPAW) | < @ (4.1).

Fix y for a moment. Let AdZ Z is finite ; a boundary condition
(b.c.) is a configuration xex™° of the particle system outside A ;
we define the Hamiltonian U*’y (x) , which represents the energy of a

configuration XxEXA inside A, given the configuration x outside, by

U*-y () = - 2z JA @) 4.2)
A;AIWO0
with a>=(x,y) and x=(x,x) the configuration equal to x on A and to

X outside. We can view the b.c. as governed by a boundary condition

distribution (b.c.d.) E 6 oo(xX*%) .
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The finite volume Gibbs measure on A with b.c.d. S is the the probabi-

lity measure ga-y on X given by

Gr-y (dx) = (Z7°y)-1 / cexp{-UN-y(x)> H(dX) JI Mdj™) 4.3)
XA
with normalizing Z7~,y. We will write A*y and GA*y w”en and

n n when A:A’n .

An infinite volume Gibbs measure in the experiment y is, by defini-

tion, a solution to Dobrushin-Lanford-Ruelle (D.L.R.) problem , that is

any probability measure Gy on XZ such that, for all finite A c ,

Q
Gy (dx/x) = G*7y (dx) for Gy-a.e. %EXA (4.4).

Our first result is the thermodynamic limit of the pressure:

THEOREM IV.1 : With P  probability one, lim |A ™1 10g 2°RY

nx»

exists, does not depend on the sequence of boundary condition

distribution En and is equal to the deterministic number

p = - infF{EQU+I (Q) ;QE3\.(Fi) >
with
U(co) = - E |A|"LJa(d
(co) A90| | a( )
Moreover, this limit is uniform with respect to En G XAn ) -
P { lim SL|J_?1 IIA |-1log Z n?V- p] = 0 >=1
n~o
REMARK 1 : .1) 1t is well known in the litterature 1in physics that the

limit exists w.p.l and is constant [28]. The Gibbs variational formula
for the pressure p was established by LEDRAPPIER [19], with ergodic
theory techniques, 1in the particular case of nearest neighbour 1Ising
model with free b.c., but for more general conditioning including

non typical y~"s.
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.2) Because of the uniformity in the limit with respect to b.c.d.
one is allowed to consider b.c.d. depending on the interaction . We put
emphasis on this, since some infinite volume Gibbs measures may not be
limit of finite volume ones with b.c.d. independent on the interaction.

Before proving the theorem, we give

EXAMPLES OF PAIR INTERACTION :

Let ~ = @B with 8 and I bounded subsets of R; a generic element
y. of will be written (y.) , - Let J be an even real function on
such that £ 131 <<»

k€zd

.1) Define J by

-y xi if A=<i>
JA © = ] - vi-1 xi xj if A={i,j> with i<j (4.5)
| 0 otherwise

with lexicographic order < on Zd. The Hamiltonian ((4.2) is of the form

22 J(i-j) zifj Xj + E xd (4.6)
i<j * i
with z. ; . for i<j and external field t-=y? . Choosing v as

the appropriate product measure, we cover TfTollowing situations :
i) the z—liJ-'s are i.i.d. with arbitrary distribution and ti is
equal to some constant t : this a usual framework in spin glass models
( see [O] .[1] .[11] .[12] )
ii) the z™ j"s are equal to 1 and the t.-"s are i.i.d. : this is

the random external field model [15].

.2) We may also consider Hamiltonian of the form (4.6) with

dependent z j/s- Let"s illustrate this in modifying I in (4.5) by
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ja () “m~ <Cyi.yl) xi xj If A={i,j> with i<gj

for a symmetric continuous function on [R2 When 1 has values 1iIn the
finite set {1,...,1Q0}, this describes a crystal of a mixture of 1Q
different kind of particles or isotopes which are randomly distributed
in the crystal; <p(l,1") represents the energy interaction between
particles of type 1 and 1%, and is modulated by the intensity J(i-j)
which takes 1into account the distance between the particles (refer

to [20] -examples in ch.X1V). For 1Q=2 and (@ ,1" = (1-1)(1"-1), this

is the site disorder model [2] for a non magnetic crystal (particles

of type 1) with randomly located magnetic impureties (type 2).

.3) With slight modifications in (4.5), we also cover XY spin glass

model [11], which correspond to the formal Hamiltonian

J(i-j) Z(C ,‘r cos (xi—xJ.)

1.
with i.i.d. J°s , xMEX=[0,27rf] and jLe(dx1l) = dx™ .
REMARK 2 : Our method shows its limit in example 1-i); 1indeed there
still exists a limit p when J(k) = |k]~ad with a>1/2 and Ezlo‘\]_=0 [17],

which is non summable, but only square summable.

REMARK 3 ; With little extra work, we can also consider in the above
examples unbounded spins x with some control on the tail of distribu-
tion n; for instance, the results in this section remain valid for

Gaussian spins under boundedness assumption on the function J .

rd
O Proof : Let xn an arbitrary b.c. outside An and y£n , XEX ,
x=(xn ,x), co=(X,y). Then,

urny @ = - { 2¢ JA(e + Uj } “.n
A C An

with ul=£Ja (o)) where the summation 1is over the sets A which intersect

An but are not contained in it. In other respects, translation inva-

riance of I implies
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L UdRn» - - IV 1n 2Z IM1+<W “(n)>
w i€An A30
= - 1AJ"1 < 27 JA@®) <« u2 > (4.8)
A C An
with U2= ZZ Z +A<« n)) 7 tHe lasl- summation ranging over A contai-
i6An

ning 0 such that i+A is not contained in An . From (4.1), there exists
for any positive e an integer m(e) such that £ sup]JA ()] < e with
summation over all A containing 0, with diameter more than m(e). Hence
we have uniformly 1in Xxn

ANl 1lukl < £ + m@E) D» o(l/min{ij+jj:I<d>) “4.9
for k=1 ,2. Then, for n larger than some nQ independent on xn :
exp(-4|An |£) Z*n V< E{exp(-]An Pf U dRn{0)/y> < exp(4]Anj]e) Z*n>V (4.10)
where conditional expectation means integration with respect to P{./y}*

2N
According to theorem Il11.1, there exists a Borel set ¥ in of

P~N-probability one such that a large deviation principle holds on ¥
for the law of Rn w under P{./y}. Notice that U is bounded and conti-
nuous on Q, and so is Q # > E~U ; then, Tor all y€¥, theorem I11.2 in

[27] applies and show that the quantity

an(®) = JAnr 1llog E{ exp(-]An ¥ U dRna)) /Zy> - p
(independent on Xn) converges to O on ¥. From (4.10), we derive that

SUP IIAnr 1log Z™n’y - p| < 4£ + JanWI (4.11)
*n
holds for n>r'\Q , which implies
lim sup sup ||An |_I log zH">Y _ p|I < 4e
n >0 -n

for y€¥ ; this ends the proof.O
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We now give large deviation estimates for the different empirical

fields of Gibbs distributions. Define

*=>»> {Qrs@® ; I1(Q =0 > (4.12)
where
1I(Q) = EQU +1 (Q) +p (4.13).
d d d
Let n" : 0 = X2 —> 3Z be the Tfirst projection n"to = XINI*“ X

and (r)*: Is@O) —» TMOCN) the first margin map . Then,

(FI")*Rn o ~ Rn x t#He emPirical Tfield for the spin variables only.

THEOREM 1V.2 ; There exists a Borel ¥ set in & with P~-probability
one . such that

i) the sequence of the laws of the empirical field RnF) [resp. R, .1

H Ly vd
under Gn obeys a large deviation principle on Rs(n) [resp "S(X )]

with rate function I [resp- 1(.) = min{I1@Q); (n")*Q =. }] and sequence

11 * ~or anv sequence of boundary condition distribution

-n 6 *0C n)e
ii) this sequence is tight, and any limit point is concentrated
on [resp (n")*V].
iii) the previous points hold for any infinite volume Gibbs

measure G~.

Clearly, T given in (4.13) is lower semi-continuous and linear
with compact level sets, and (n")*V are non-empty convex compact
sets, independent on y; but the limit points in ii) may depend on y
as well as on Zn.

We emphasize on point iii) : all the solution to D.L.R. equations

have the same large deviation properties, and these do not depend on
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the particular experiment. As in the non random case, the rate function
depends only on the structure of the local characteristics, and

the Gibbs measures are not discriminated in the order of exponential
magnitude of the volume. On the other hand, the rate is non random
because the empirical field is only sensitive to the ergodic behaviour

of the iInteraction.

O Proof: Fix a b.c. Xn. By definition
(4.3), we have

XN »y >Y\ Xn,y _

Gn <Rn,p>eB> = w J E{exp[-UAn r*x)] 7 /y) <4 -14)
for any Borel set B in ~s(0). Combining the estimates (4.7,8,9,11),

we obtain for any xn and n>nQ

exp{-1An | (p+tlan () |+8e)> E{exp (- JAn |£ U dRn w ) HB[Rn(<0] /V)

< Gin "y<Rn,0,€B> 415>
p{-1An | (p-lan ) |-8e)> E{exp(-]JAn PfU dRn w ) aB[Rn ( ly>.
Since the bounds do not dependent on xn , as well as nQ , we can
integrate (4.15) with respect to any b.c.d. En ;hence (4.15) holds for
GH" Y . on the other hand, the techniques of [26], 83, show that

for all y£¥

- inf {EQU+I(Q)> < Tlim inf TAJ~log E{exp(-]An U dRn>w) I B[RnfJ Jy>

Q€B
lim su A |-1log E{exp(-]An ]/ U dRn Rn /
im sup |A |-1log E{exp(-|An I/ L) R /vy
< - inf {EQU+I(Q)> (4.16)
Q£B

Together with (4.15), this yields the inequalities (2.1) for the

E ,
law of Rn ~ under Gnn y_ But, if Gy satisfies to (4.4), we have



53

= Gnn , with En= Gyc the restriction of Gy to cr(A);
n An

hence the results for the infinite volume Gibbs measures are contained
in those for finite volume Gibbs measures with arbitrary b.c.d. En.
Since Rn|¥: (n')*Rﬁpoo with continuous (IV)*,the corresponding results
for Rn x are a staightforward consequence of the contraction principle.
We have proved i).

Since W is compact and | lower semi-continuous, Y @M)>0 for all

neighbourhood X of i in ~s(0). According to the point i) ,we have

lim G"n,y{R
il

n>o0o0

> = 0 4.17)
,UJ

for all y€¥ and all RF. But (4.17) and compactness of implies that
E vy

the sequence Gnn> {Rn > is tight ([22],p-49) for such y"s, and

that the limit points are concentrated on . Then ii) Tollows easily.

As above, the same hold for Gy. O

The previous results concern space averages; in the next one,
we localize our results to study the Gibbs distribution itself, and we
express it in terms of solutions to the variational problem. We consider

b.c.d. E , depending on y as a measurable function, that is

E = &Zd——> 9(Xac) is a transition probability kernel

—t d
We extend G» g given in (4.3) to any probability measure on Xrp , say

H,y E.y
AC



THEOREM 1V.3 : Assume that , with P~ probability one , G%n Y converges
weakly to some cYe T ) . IfFG = GVP’\ is stationary , then
G €9 .
In other words, there exists a GOP such that

Gy (dx) = G(dx/y) w.p.1l .

COMMENTS =: .1) The stationarity assumption on G is needed, since the
result does not hold for arbitrary b.c.d. in the (usual) case of
deterministic interaction : a finite volume Gibbs measure may converge
to a non-stationary solution to D.L.R. equation; this is symmetry
breaking ([24].p-77)- On the other hand, a stationary G is characterized
by the sequence of its empirical fields, which asymptotics are known

from theorem 1V.2 .
2) We give two examples where the assumptions are fulfilled:

a) random ferromagnetic Ising model with free boundary
- 1 _ _ _ + An
condition: j = > (<§i+<'3..:ll.), J given in (4.5 withCBCIR , hn: ®8 L3}
(free b.c. meaning that the particles in An are isolated from the
- - - - - En*V
outside). Then G.K.S.-2 inequality ([10],p-142) implies that Gn

converges, monotonically in some sense, for all y; denoting by Gy

the limit, GyP”" is stationary because the b.c. are free.

b) let A& as above (Ising spins), d=1 (one-dimensional) ,
J be given by (4.5) with Euy® = 0 , and En be independent on y .
it is shown in [0] that the limit Gy exists w.p.l, 1is independent on
such a sequence Zn . Furthermore, GyP”~ is stationary, since free b.c.

are among those En .
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O Proof: let f(xX) and g(y) be bounded real continuous Tfunctions on O,
a(A)-measurable for some finite A c 2~. The convergence assumption
implies
Y4 P Gy G
E y(g En f)=EvVv(gE ¥ )-E (fg )
G
- B ( fg dRm(0 ) £(m]
with lim £(m) = 0 , because G is stationary and f,g depend on finitely
m->00

many coordonates. But this last expectation itself is equal to the

limit as n—x» of

P G_nwb P G@

C
E v ENn fngftB:m,%)UEm 1t5fgch$’o>

when n>m with Hjj some measurable b.c.d. outside Am; hence we have

P N
EG(fg )- E wWEMm Jf fg dRmi0O) +e(m) + em(n)

We choose n * n(m) such that le (] < 1/m . Combining (4.17) and

Lebesgue theorem, we derive

P En.y
lim Eu <m {R SJF>=0
m- >co m n»0D

for any neighbourhood M of 9 in **S(0): then, the laws of Rm under

ER,.Y
Pw ~m are a tight sequence with limit points concentrated on ,

Since f and g are arbitrary, G 6 & . 0O



V. MEAN FIELD MODELS WITH RANDOM INTERACTION :

In the case of non random interaction, each pair of particles
in a mean field model interacts with constant intensity, so that the
Hamiltonian depends only on the empirical measure of the spins. Here,
we consider Hamiltonian depending on the empirical measure

1 S iy € ITOXV) G.1)

rn,g> =" Z
n 1

with x» the spin of the ith particle and y the randomness of the
interaction as in the above section; we take d = 1 since no geometry
is involved in such models. We could also treat a (more general) local
mean field as in [8] - where the iIntensity of the interaction depends
also on the distance between particles iIn a suitable way -, via the

adequate (known) techniques.

We do not cover the SHERRINGTON-KIRCKPATRICK model [25], which
has a weaker normalization in n and independent couplings. Nevertheless
there are some similarities iIn the two models, such as frustration,
strongly oscillating couplings at long distance, and the dependence
between couplings decreases iIn the asymptotics: refer to the discussion
of Van HEMMEN, Van ENTER and CANISIUS [16], 82. Examples will be given

later on; we first define the Gibbsian set-up.

o
Denote by 1 the Hilbert space of square summable real sequences,

with scalar product t.t* for t, t" in 1p-

Let M 2 Xx# ——> 12 bounded continuous G.2)

o , - _ -
and v ;1 —>I[R twice continuously differentiable

with bounded derivatives on bounded sets in 10. (5.3).
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Define the Hamiltonian VA(X) = nv(rn(0) with

V(r) = v( / mdr ) VreFOCxtf) (.4).

We are 1iInterested in the asymptotics of the Gibbs measure <y € )
IN*

Qndx) "™ Zn exp{ > VnXx) > ® M (i (5.5)

with normalizing Zy . The order parameter fot dr , and its empirical

version mn(@) = JM drn ~ are a priori infinite dimensional; it is
a quantity of interest for it characterizes the equilibria of the
system.
For t€12, we define L(t) = f LAt)  u»(dyl) with
LY! ® = log f exp{ t-M(x1l,yl) > ~(dXj) , and its Legendre transform L*
L*(m) = sup{ t.m - L(t) ; t£l12} for m€12 (5.6).

We assume that p is not a Dirac mass, which is unrestrictive,

THEOREM V ; For almost every y , we have
i) lim n”’l log zy = - infF { v(m) + L*(m) ; m€l2}

N=X>»
which we will denote by p
ii) The law of the empirical order parameter mn() under <y
obeys a large deviation principle with rate function V + P*+ p
and sequence n

iii) The sequence (@ is tight on *P@ ) , and any limit point

is a mixture f B) rPﬁi t(dm) for some TOPGt) depending on y
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= { mEl™; v(m) + L*(m) + p=0 3} , and

rm1(dxi) = exp< t-M&i-Vi) _ ~(t) > nidj.)

where t = t(m) satisfies to L/(H) =nm

REMARKS =: 1) The local asymptotics in iii) 1is analogous to theorem 1V.3:
here, consists in the mixtures f P t({@dm) with r~(">) not
b ory

depending on y; a version of the conditional probability given y 1is

f ® r*1 r@dm)

2) IFf la] = 1 , the Gibbs measure converges w.p.l, the spins
are independent in the limit, and the margin of is the "maximum
(conditional) entropy™ distribution given y»

EXAMPLES

Assume X be bounded in [R, J symmetric , and ELO(v) separable

with complete orthonormal system (K at most countable) such
that W = 1 and is continuous and ﬁ%?( <°° e Let (@k)kEX

be an element of 12= 172 ) with a™ ~ 0 for all k. We consider

M(o) = O('ttk*k-Ml ex GBG.7).
Then we can compute explicitely L*(m)
L*(m = / X*Kk|x (nkkZ7alk) » dw if <ank/ak>k s 12-
N a-00 otherwise (5.8),

where X* is the Cramer transform of j given by X*(u) = SSE{SU—X(S)}
s

and X(s) = log f eSXl Jjj-@a) . we will prove this later.

We consider a quadratic v , with diagonal form

v(m) = kéX v,K m,E wi th with I;séj)? |v|.( I < ® (5.9).



Hence the Hamiltonian is of

Ji>j = kix Vk

Then the couplings J. _. are
11j)

dependent; we cannot obtain

non diagonal quadratic form

the form Vy () = £
n J

a*

non correlated,

*kK(Vi) *k(yJd}

but J. .
Nt

and J.

(5,10)

are

1>J2

independent coupling from (6.7).

v,

we can obtain correlated J.

1

» J

Using a

and Js s =

a4 *J 2

From the definition of P9 any m satisfies to the mean field
equation
ml = a2 J X"(-2 Z vk mk ~k) $1 dv VIEX (5.11)
keoc
which is obtained in differentiating v+L* in the form (5.8,9), using
(X*)"= (V) -1 and the oddness of . But (5.11) implies that
t = (’2vkmk™k satisfies to L°(t) = nm (5.12)
Notice that -m lies in a too, with conjugate variable t = Qvkmidk *
We are now in position to study some simple equilibrium situations ;
a) The ferromagnetic phase :

Assume * = { m*, -m+} with

- which will still
Then, from (5.12),
do not depend on y

has mean #m . Furthermore,

M+)k= 0

y_
r + (Ix®d) = e
im

(we then drop superscript yl

f°r k# 0

denoted by m+ -.

and positive

in this notation) ,

M=)

+2vrarm+x1 - X(2v a”™m+)

ti(dx1)

and

the symmetry of x~ under Qy shows that

EcaxA = 0 ; hence, any limit poim& in iii), theorem V , is such that

m+r(m¥) - mMTi-m"*-) = 0 ,

n e

and then

2 \i1 m7T i -nT

(5.13) .



60

The thermodynamic limit completely forgets the randomness of the
interaction, and is the same as that of the usual mean field model

where we merely suppress the random part in Ji tJ

Vv N* =
Notice that the paramagnetic phase = {0} leads to (QE => ® ||
and the same conclusions.
b) A spin glass phase
Assume = {mh , -m" > with positive and ma>k= © .
i i H H %% *
we Nave ryl (dx-) = eT2\/<)§ﬂfﬂ3‘°l'§(Vi Xi- (yﬁD jIL(dxlf",
- ma v
which has mean =X' [2v~a”“m” i again, A(Yi) N nxi “ O » and then

1
r(m~) = r(-mjj) = — if d*(yj)" for r as in theorem V -iii). But

rylz ryI if ~¢(yT)=0 i so the so the theorem states here
-mA
i - -
w.p.1, Qy Lol +e i) (5.14).
n-*» 2 i m i -mn
This means that, in allmost every experiment, the Gibbs measure

converges to the average of two inhomogeneous product which are sym-

metric from each other; in each one of the two components, the law of
x~ depends on the randomness y~ of the interaction at site i, and the
- - - l 1 -
mean magnetization per site — £ Ex® = + — £ X'[2v™a™m”™ Ni(y-M)] is
n i<n n i~n
non zero in general, but goes to zero in the limit with celerity \n
if EvX[Ci>ii(y1)3*& VC efi. ,
Example 1: Let Vbe Lebesgue measure on the D-dimensional torus

[0,1]D, X = ZzD, = 72 cos 27tk.y”™ if k>0 in the lexicographic order
o . . . _ 2 02

4n= \J2 sin 2jck.yl if k<O and “~g—l =+ Assume ykagk = ka-k f°r aH k.

Then ,

v(m) + L*(m) = - f J*u u du + / X*(u) d/ (5.15),



with u = ﬁ (mk/ak) @k S L2W), J = -( vOaz +k£02vkak cos 2**An )

and * the convolution. This is the rate function of a local mean field,
where a large number of particles located in [0,1[” interact with couplin
function J [8]; our model consists in picking n of these particles

(those located at y”, e *yn) independently with uniform distribution on

[o,1]D.

The ferromagnetic phase a) occurs for instance if J>0 and —2v0a%>l/XM(0),
and b) if v*= 0 , kNifl , and -2v”a2>1/Xn(0) . The set a may be studied

in general with bifurcation techniques [4].

Example 2 : a classical spin glass model [16].

Let X = {+1,-1} [resp. ~ = {+1,-1}2], and fi [resp. V]

the uniform distribution; we put yi=( ,2)Vi) « Then, 70=1,4"1»"2»
AZ=N1N2 *s an orthonormal basis of I2(v) ~ KA. In [16], the J"s are
given by N J = vQ + vl AM(y™) ~(yJ) instead (5.10). This
correspond to v(m) = vQmO + v~~™mg . One can rotate the axis in the
plane €1>"2 *n order to obtain a diagonal form for v; since (4" is
transformed into an orthonormal basis, we cover this situation. In the
reference, point i) is proved, and the existence of different phases
is studied with vQ»vl as parameters; notice that we generalize in (5.8)

the trick used in [16] to compute L*.

Example 3 : HOPFIELD model for neural networks [23] .

This describes the equilibrium distribution of a large number n
(in the order of magnitude 10*") of neurons of a certain type. The
firing activity x*=xl characterizes the neuron located at i; they are

connected in a complex way, with intensity depending on learned patterns
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Q@EI-+1,-1>n, k=1,2,...K. In this classical model, the neural networks

is governed by an Hamiltonian V () * - n £ J. . X*_. Wwith
i,j *3 3

= k<K< > K) ]
according to HEBB"s rule. Let y-<[(<(Gj<) S {+ -1>K. When the y~"s

are independent, the model 1is of the form (56.7,9 and 10).

O We prove (5.8). Denote by C>0 the supremum of the support of

distribution /i. Let m with L¥(m)<» ; we First show (mk/ak~k ~ ** «

Since lim X(s)/s c < oo and since X is convex symmetric with X(0)=0,

S>+o00

there exists ccoo such that X(s) < C"s2 ;then, for all t in 12,

L*(m) > t.m - / AC Z aktk™k ™~ dv > t-m " C*f (g aktk>K2dv

- t.m - C* Z (aktk)2

Then, for any finite sequence s, k<K , ﬁ s (mk/Zak™» ~ L*(m) + C© )Ié SE

0
a classical argument shows this implies (mk/ak”~k ~ now Prove that
| E( (nk/ak) Il < c *u-p-s.

2
Let bGIR and tGl such that E tkak*k ~ N v-p.s. . Since X is convex

symmetric with X(0)=0 and 1lim X(s)/s = C , we have X(s) < C|s| ; then

S—>+00
Lx(m) > b z t~rk ~ f bz trark ) dv
k k
> IbI[sign (b) Z tkmk “ C < Z tkak'fk » *o ~

where <. ,.> denote the scalar product in EL2(u) . Letting b--m , we obtain

for =t -1 < £ tkakjk * 1L g Ck~"k~Ak - C *a > < o (5.16)
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Now let t"in 12 with £ tk<k>0; approximating t* in 12 by a finite
/
sum ﬁ ~kak™"k ™~ 0 > we see that (5.16) holds for ﬁ * and then

*1E (nk/ak”~k ™ c N 0 wp.s., which is the desired result,

If II£< (nk//&k "~k 1~ c »the integrant in (5.8) is infinite on

a set of positive u-measure, and the integral is infinite. So it Iis

enough to prove (5.8) when the converse inequality is satisfied.We have

L*(m) = syp / { (% tkak”™Mk)x K (nk/ak ) Jk* “ K tkakFK) * dv =

The quantity between {.} 1iIs maximized with

‘I< tkak "k = (X'r 1 K (nk/ak”~"k”~ = f(yi) > therefore L*(m) is not more

than the integral in (5.8). We begin to prove the equality when

1 Z (miak”*"k Ilo< C : f € D°°v) C I2@W) . We may approximate

f with a finite sum T = E tkak™ k ’\2( v )» and because X is lipschitz
continuous with constant C, /7 { fx(S (@mk/Zak)<dk) * * dw is close
to /7 { (mk/ak~ "k~ ~ Mt) ~ dy > wh~ch is the second term in

(5.8). If the strict inequality is not satisfied, we truncate f in

fb = (-b)vf b for b>0 . Since ff lies between 0 and T,

fox{z (mk~ak~k”~ 7 ~("™b™ *s non negative; from Fatou lemma, we derive

lim inf /<fbx(Z (mk/ak Xik) - X(ff)} dv > f{fx(Z (k/ak)*k) - MF)> dv

Since the previous point apply to f& , this ends the proof of (56.8).D

We now prove the theorem, making use - for convenience - of theorem
11l1.1: nevertheless, there exist shorcuts using large deviation esti-

mates on a lower level.
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1 Proof of theorem V

Let O be the bounded continuous map, O : 37(0) -—) 10,
o(Q) = \JM(xl,yl) dQ . We use the contraction principle in 8§ Il for
Oand the large deviation principle in theorem 111.1) with An= [Il,n];

we obtain another principle for the conditional law of mn(co) under
Pjjlow £iven y with sequence n and rate function 1™ on 12,

|1(I'T)I= inf { 1(Q;Pm2u) ; Qens(Q) , O(Q) == m > , for allmost every y.
The previous condition on Q concerns only with the one dimensional
margin : by definition of | in theorem 1I11.l, we have:

I"m) —inf { h(q;/i®Vv) ; gEtfAXxtf) Kq: v ,/ Mdg = m } with Kq

the margin of g on

Because of theorem 3.1 in [5], I~fm) is achieved with
qidx™jdy”n) = erI (dx~) vfdy”~) , with r~ as in iii) , whenever I”m) s
finite.
P
Since Zy = E N exp-nv{mn(o)} , the conditional large deviation
principle for mn(co) shows that lim n"1 log Zy = p holds with P”-pro-
bability one: this is point i). To prove ii) , one can easily adapt

the proof of theorem 1V.2

We now prove iii). We first establish for suitable y's, that any
l1-dimensional margin <@ n of (Q is tight, with limit points

| y e
/® rinl rj(dm) for some rl1l6”(CA). Fix some 1>1 ; from (5.4,5), (@ n

is given by
dQy

Ln (x1,...x1) = (2y)_1 f exp[-nv{mn(co)}] /m(dx1+1)... (dxR) (5.17)
dpi®1 J

We intend to omit < in our notations from now on. Define
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I n 11
S n= —- ,tl M(X; and m, = - M(xi ,yi 5.18
1,n n-1 i1=T+I ( 11 1 1 1=l ( 1 yl) ( )
Then, mn=(1/n) + (n-1/n) m2 n . From Taylor formula and (5.3),
v(m) = v(mpn) + (1/n) (mi>n)e + 0,(1/n) (5.19)

Combining this with (56.17), we obtain

LIS = (Z™)"1 Zy n A~n(ml) (5.20)
dp® 1

vith AL, (n) ~ (Zi, )= ) exP{"av(nl,n ) bl (nl,n) (n-nl ), (1))}
M{dxI+1)..._.M(dxn)

and z¥ n such that

@™ n)-1 exp{-nv(niln)+lv (m1)n).mlin)) n(dx1+1).._ji(dxn) 1is a
probability measure. In the same way as in ii), we can show that the
laws of m n , n>1, under this measure satisfy a large deviation
principle with rate v+L*+p for y€¥~ for some in VvV with full P/
probability. We fix y in ¥ , and 99 :[NHN*an increasing function;
because of tightness, we can find an increasing <" such that the
subsequence of the laws of with index .= @o<p™M(n) converges

to some pj € 9(*) . Of course, p™ and do not depend on X", .._X".

Then, for any m in 1 , we have

lim

i A¥,<p o0 (M m - JI exp{-lv"™ (M .ir> p,(dm) (5.21),

Integrating both sides of (6.20) with respect to x1,...XjL, we
derive from this and Lebesgue theorem that

zV = lim Zy ( Zy V 1 exists , and is equal to
o n— cPoOtPiin) V 1 .«Pq0dI(n) J

Jf_ﬁl exp{ Lyi[—v'(m)]} p,l(dm) because of (5.18) and Fubini theorem.
1=
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Combining this with (5.21) and Lebesgue theorem,

converges
1 .«Pq 0«?! (n)

we see that

in the sense of probability measures to

(Z]. <p)_1 J eXp*'IV/ ,ml*= PICdm)  M(dx1) . ..~¢dxi)

= (21 @)

because of definition (5.18) of

We now prove that L/Z[-v/(m)] " m

tion of v+L* achieves 1its minimum at

to the subdifferential 9L*(m)

convex (as an integral

implies that ([9], cor. 5.2)

- v'(m) = t(m), with t(m) as in iii),

Let ri(dm) = exp{ TZ

f zy 1 *
1 1,ij =

from the expression of Zy
1.,<p

Vye¥ , <y -

1.7200"! (n)

The Borei set ¥M = fl ¥j

procedure,

o " &

we can find a subsequence of

' raCdm)  for all 1>1 and all

Since £ is compact, ~(J

of <*1 1>1 f°r such a y. Then the previous measure on IP(X®)

0

00 y -
restriction of _®I r 1 r(dm)
i= m

of convex Tfunctions Ly) and differentiable,

m £ 9L(-v*"(m)) =

n— X»

has Pu~probability one.

is compact too;

JA g Ay} A di plin)

for all m 6 &« . By defini-
m£ & , so - v (m) belongs
of the convex function L* . Since L 1is

this

{ L*C-v*(m)) 3} Then,

theorem V.I.

LVi (t(m)) > p,l(dm) ;

,we know that rlei’(®), which yields

> f ®
J

r*1 r, (dm)

Using a diagonal
¥ in
W (n)

y in

converging (XN

let r be a limit point

is the

. This ends the proof. O
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Abstract.

We study the dynamics of a geometric spin system on the torus with
long-range interaction. As the number of particles goes to infinity,
the process converges to a deterministic, dynamical magnetization
field that satisfies an Euler equation (law of large numbers). Its
stable steady states are related to the limits of the equilibrium
measures (Gibbs states) of the finite particle system. A related equa-
tion holds for the magnetization densities, for which the property of
propagation of chaos also is established. We prove a dynamical central
limit theorem with an infinite-dimensional Ornstein-Uhlenbeck process
as limiting Ffluctuation process. At the critical temperature of a
ferromagnetic phase transition, both a tighter quantity scaling and
a time scaling is required to obtain convergence to a one-dimensional
critical fluctuation process with constant magnetization fields,
which has a non-Gaussian invariant distribution. Similarly, at the
phase transition to an antiferromagnetic state with frequency p ,
the Tfluctuation process with critical scaling converges to a two?
dimensional critical fluctuation process, which consists of fields
with frequency p and has a non-Gaussian invariant distribution
on these fields. ginally, we compute the critical fluctuation pro-
cess in the infinite particle limit at a triple point, where a fer-

romagnetic and an antiferromagnetic phase transition coincide.

1. INTRODUCTION.

In this paper, we study the nonequilibrium behaviour of a
geometric spin model with weak interaction in the infinite particle
limit. For Tfinite nON, the n-particle model consists of particles
located at the sites 0, 1/n, 2/n..._. n-1/n of the unit circle
T = Rmod Z. A one-dimensional spin value a(i/n) is associated to
each particle, and the spins interact via a mean-field potential de-

pending on the distance between the particles.

In the equilibrium theory, the thermodynamic limit of these
geometric models has been studied recently [8,2], and has shown
a variety of interesting phase transitions. Depending on the para-
meters, there exist phase transitions to ferromagnetic states with

constant magnetization or transitions to anti ferromagnetic states



with wave-like magnetization functions of any frequency p. Moreover,
secondary phase transitions of first-order occur too (see e.g. the

phase diagram in [7])- We find metastable states near these secondary
phase transitions. The nucleation behaviour of the system can be des-

cribed, as it switches from one (meta-) stable state to another stable

one ([1D-

Here, however, we are interested in the dynamical laws of these
models. We start with a Glauber-type dynamics®((13]) for the n-par.ticle
system, where the spins flip from time to time to another value with a
jump intensity depending on the gradient of the Hamiltonian felt by the
particle. Next, we establish the asymptotic dynamics of the magnetiza-
tion Tfield in the infinite particle limit (Euler equation). We obtain
a similar equation for the density Tfield of the magnetization and show
that a propagation of chaos result holds. Our main results are the
infinite particle limits of the non-critical fluctuation process and
at the critical fluctuations, which -besides an appropriate scaling
of the spin values- require a rescaling of the time in order to keep
track with the stiffness and long time Tfluctuations of the critical
structure ("critical slowing down®"). As a result, only the critical
structure survives the critical scaling, and in the limit, the criti-
cal fluctuation process is a low dimensional process (of the dimension
of the eigenspace of zero of the infinitesimal operator at the critical
point), in contrast to the infinite dimensional non-critical fluctua-
tion process. In fact, the critical fluctuations are of dimension 1
at the critical point of a ferromagnetic phase transition, while they
are of dimension 2 at an antiferromagnetic phase transition, and of

dimension 3 at a ferro~-antiferromagnetic triple point.

Asymptotic dynamics, propagation of chaos results and non-
critical fluctuation processes for weakly interacting systems have
been extensively studied (see e.g.- [19, 23, 24, 25, 27, 28], to men-
tion just a few). Dawson [4] also obtained a critical fluctuation
process of dimension 1. All these models have a space-independent
weak 1interaction, and therefore lack a rich structure of phase tran-
sitions. In a recent paper, Fritz obtained the Euler equation for a

continuous spin model on a lattice with nearest neighbour interaction

[12].
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We are now going to describe our model and the results of the
different sections in more detail. For simplicity, we restrict our-
selves here to the case of one space dimension (d=1), though all
the results in the later sections are formulated for arbitrary dimen-

sion d.

For the system consisting of n particles, located at the points

of the lattice T = {i/n, i=0_....n-1}, a spin configuration
n

n -1
a =n E a5 has the internal energy

XET X

n
H @ )= - I/2n E ?(i-j/n)ai/n)a(g/n)
iJ =1

= - n/2 ) ?2(x-y) 9 (dx)a (dy)

n
= -n/2 <a .70 > = n H@ ). (1.1

Here 6 is the Dirac mass at x and * denotes convolution. The
single )s(pin distribution, denoted by [, is a probability measure on R
with compact support. (Only in the last sections of the paper, when we
deal with the specific situation at the critical point of a phase tran-
sition, do we impose Tfurther conditions on p ). The dynamical pro-
cess of the n-particle system is a spin-flip process where the inten-
sity of flipping the spin a(x) at x6T to the new spin value m

is equal to "

-]an 0/3a(x) H (crn ) = " 0, a.2)

with J30 as the inverse temperature. Therefore, the infinitesimal
n
generator L of the system is

Lnf(a) = ET [fal m - f(@]1 exp{Om 7*0 (O} p(dm), (1.3)
x€T , X
n

where f 1Is a continuous function on the spin configuration space

n
and a|] m is the flipped configuration which is equal to a except
X
at x where its value is rm It is easy to check, that the unique
n
invariant distribution for the infinitesimal generator L is the

n n
n-particle Gibbs measure Q with the Hamiltonian H , given by



5

An(d<M - exp{-|SHa(cn)} n_P(d<r(x) J/z*, (1.4)
XET
n
n n
with normalizing constant Z . Q lives on the n-particle confi-
guration space, which is a closed subset of the set 1 of bounded
(w.r.t. the total variation norm) Radon measures endowed with the
weak-* topology. The cumulant generating function of the single spin

distribution p 1is defined by

r(r) - log exp(rn)p(dm). (1.5)
R

Now, we can state the asymptotic dynamics of the spin-flip processes
n n
a , generated by L , in the infinite particle linmit,

Tt
THEOREM 1% .
n
The orocesses a converse in law on the Skorokhod soace
t
D([0,T],JH) to the magnetization process u X, where X s the
t
@
Lebesgue measure on T and the density u €1 (T) satisfies the
t
deterministic evolution equation
d/dt u ) = exp(r(0?*u )}[r-(0?*u ) - u ]- (1.6)
t t t t

As is to be expected, there is a close connection between (1.6)
n
and the Gibbs states Q . Indeed, it has been shown in [8] that the
n
Q satisfy a large deviation principle on 1 with a rate function

V(i) = 1Y + OHQO @a.mn
with
J 1 (dp/dX(x)) X(dx) if n o« X,
UP) - { T ) (1.8)
+ « otherwise,
where i(q) = sup(q.r - r(r)} (1.9)
rER

is the Cramer transform of p. The large deviation means heuristically
that for a small weak-* neighborhood U(¢0 of 764

n
"Q (U(¢0) behaves asymptotically like exp(-n[V{Z0-inf V(y)1}"- (1.10)
v
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Dut the Frechet derivative of u h» V(uA) in the |.| -norm is by
@®

(1.8) and (1:.2)

WCud)(x) - 1"(ux)) - (S?*ux) (1.11)

- @) W) - ISTUCO

but if r*(@) = 0, i.e. p has mean =zero,
sign(7 "O0?*u(x)) - ux)) « sign (-WQU,i)x)), a-.12)
since i” is the inverse of ' by (1.9), and since r"(0) =0

implies sign r*(r) = sign(r). This means that the right-hand side
of the evolution equation has the same sign as -W(u-i). In particular,
its paths go downhill with respect to the potential V, and the stable

steady state solutions of (1 .6) are exactly the local minima of V.

In Section 4, we study the asymptotic dynamics of the density

process
n -1
r =n E & _ -
t XGT (an(x) ,X)
n t

(1.13)

which is a probability measure on IRXT. Again we give the space
SMFUT) of all such probability measures the weak-* topology. Notice
n
that since for each x£T , % (dm,(x}) = n 6 is a one-point
n t (an (x))
Tt

n n
measure on K, k and a contain mathematically the same informa-

tion. This is however no longer true in the infinite particle limit.

THEOREM 2*°.
n
k converges in law to the magnetization densitv process
T

h (m,x)pddm)-?(dx) , where h satisfTies the deterministic density
t t

evolution eouation

dzdt h (m.x) = exp{mi3?*u (x))-h (m,x)exp{r(i5?*u (x))} - (1.14)
Tt Tt t Tt

(1.14) is a desintegrated version of (1.6). In fact, multiplying
both sides of (1.14) with m and integrating with respect to p(dm)

gives exactly (1.6). In a similar way, we define the higher order



correlation densities for different sites of TI. It is then easy
to show that in the infinite particle limit, these correlations

densities satisfy a propagation of chaos property. (See Theorem 3

0f section 4 for detairsy .This result itself implies the usual result of
propagation of chaos ( see theorem 3 bis).

Next, we look for a first order approximation to u ; we define

t
the (non-critical) fluctuation process
n 1/2 n
c =n {a -uX). (1.15)
t t t

In order to establish a central [limit theorem for these fluctuation
processes, we have not only to work in the space f' of distributions
on T, or at least in a Sobolev space H with sufficiently Ilow

ro
negative index (see section 5 for technical details), but we also need

first a law of large number result for the second moment magnetization

fields
n 2 - 2
0> =n | 0 6 . (1.16)
t xi7T t X
n
n n 2
In fact, like a . also (@ ) converge in law on IX((©,T] ,H) to the
t t
second moment magnetization process v A, where v satisfies the de-
t t
terministic equation
" 2
d7dt v = exp{r(0?*u YHr=(o2*u )+(I') F@u v 1, 1.17)
t t t t t
with u from (1.6). Now, we can state the central limit theorem
t
for the fluctuation process
THEOREM 4%m
n
IT 3 is sufficiently smooth and C converges in a Sobolev-sense
o]
n L]
to some C ", then the processes < converge in law to a f'-
o t
valued diffusion process C , given bv
t
2
d< - dexp r(B3*u )d V(u K dt
t t t t t

2 1/2
+(exp r(03*u HY(r"(3?*u Y+(r") (0?*u )-2u U )+v ] dw . (1.18)
t t t t t t
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2
Here, d V is the second Frechet derivative of V from (1.7), 1i.e.
2

d V¢ = i"(uk - O»*g, (1.19)

and W is the f"-valued Brownian motion with covariance
T
E< W ><y,W >= (SAt) < > (1.20)
s t

for p.ipe'B ().

To get a better understanding of (1.18), let us suppose that u

e
is a stable steady state solution of (1.6) and that we are not in a
critical situation of a phase transition. This means that u is a
e
2
local minimum of V and that the second derivative d V is a non-
degenerate, positive definite operator. Then also v converges to
Tt
2
its stable solution v = r"(J3J*u ) + (7") (O<r*u ) such that with
e e e
u = r (/32*ii ), (1.18) reduces to
e e
2
d? = u dexp r(J32*u )d V(u )£ dt
t e e e t
1/2
+ [2 exp t(P?*u ) r"(03*u )] dw . (1.21)
e e t
Thus, C is a gen*r*lifccl Ornstein-Uhlenbeck process and its unique
stationary distribution is the Gaussian field with mean zero and
covariance
2 -1
E< 9.6 > <t.K >- <9, dVvVQu ) =* > (1.22)
t t e
On the other hand, it is a consequence of (1.10), that the condi-
n
tional fTluctuation fields of Q , restricted to a neighborhood U(u )
e
n n 1/2
of u , Q @(f -u /n YW@ )) converges to the mean zero Gaussian
e e e

field with covariance (1.22) (see also [10].



In order to investigate the situation at a critical point of a
phase transition, we must specify our assumptions in order to make

sure that a phase transition indeed occurs.

First, we assume ) to be an even probability measure on R
with compact support and that the GHS-inequality hold (cf. [9]),

a consequence of which is that for some K >2
o]
=7(0)-r"(0), 17(0)>0, 07 (0y=...=2 0™ (0). 70’ (0)<0. (1.23)

Again, ? should be sufficiently smooth and symmetric. For a ferro-

magnetic phase transition, we want its Fourier coefficients to satisfy
5(0) - ?2() >SS >0 for all p€z-{0}. (1.24)
0

From [8] or [2], we know that a phase transition indeed occurs at the
critical inverse temperature
-1
Ib = @70 300 - (1.25)
Here, the potential V =V has a unique minimum at u «O0, but
0
0
2

d V(uo) has a one-dimensional kernel spanned by the constant func-

tion 1. (1.24) requires that the remainder of the spectrum is positi-
ve, bounded away from zero by PB 6 . We define the critical fluctua-
0o0

tion process by

n 172K n
-n 0 a . (1.26)
t 1-1/K
tn 0
1-1/K

where the new time scale tn 0 compensates the effect of critical
n

slowing down, mentioned above. We decompose £ into its ferromagne-
t

A
n n n n -1
tic component 0 - £ (OM , where X = n £ & is the discrete
t t X€ET X
n
-1 n

Haar measure on n Z/Z, and its complement n .,

t
n n n
t =0 + 7D - 1.27)
t t t
2 n

Since d V(0) is not degenerate in the direction of 1) , the stronger
t



) 1/2K 1/2 o )
scaling n °, Instead of n at the non-critical fluctuation,

n
has the effect that the processes 7 collapses to the zero process,
t
. n . . . . 2 .
and the dynamics of 9t, in which direction d V(0) is degenerate,
n
has to be expanded to higher order terms of 9 . For the following
t
result on critical fluctuations, we need in addition some more compli-
- - - - n -
cated assumptions on the starting configurations f , for which we

0

n
refer to Section 6, mainly to insure that 7# already collapses
0

sufficiently fast.

THEOREM S .
o ) n n n )
The critical fluctuation process £t =9 4+ Pt converges 1in law

to the one-dimensional process £ = 0 (OM with
t t

de @ - r(ZKo)(o)f(zKO- 1 (r--(O)ZKo'Il QKo'l (0)dt+(2r(0)) 1/2dwt,(1.28)

and with w as the standard Brownian motion,
t

The stationary distribution of the process 9t(0) is given by

the non-Gaussian distribution

X)) r 2Kj X
exp{fr 0 (0)1 22K HYI(r”(©)) J’|6 °} dfi/zn, (1-29)
with normalizing constant Zl. Notice that the surviving process 9 (0)
in (1.28) depends only on quantities coming from the cumulant genera-
ting function r of the single spin distribution p. It is invariant
from the specific interaction function 3, except for the implicit
assumption that we are indeed at the critical point of ferromagnetic
second-order phase transition. This phenomenon 1is called universality.
This kind of result on critical fluctuation processes was first
obtained by Dawson [4] for a non-geometric model with mean-field inter-

action, with a one-dimensional kernel of the second derivative of the
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large deviation potential V at the critical point, this proof is
based on a semi-group perturbation theory. Our proofs use martingale
decompositions and martingale inequalities, which allows us in Section
to treat also critical fluctuations at an antiferromagnetic phase tran-
sition, where the kernel of d2V(0) has dimension 2. However, we have
to strengthen the assumption (1.23) by requiring

(€) i
7 © <0 ;i.e. K =2, (1.30)
(0]

and instead of (1.24-25), we now have for ?2(p ) = ?2(-p )
o] o
3(p ) - 2(q) > 6 >0 for all q€z2\(zxp ), (1.31)
0 0 0

o - @O 2(p N"
P o]
0
These conditions assure that we are at the critical point of a second-
order phase transition to an antiferromagnetic state with frequency
p (cf. [2])- This time, we split the critical fluctuation process
1/4 n
£ =n a into the two-dimensional p -antiferromagnetic
t 1/2 o]
tTn
components
A A

wn:[z 11e(£n(p ))cos(2;r p x)+2 Im(£n(p ))sin(2jt p x)]Alj(dx) (1,32)
t to 0] to 0]

and its complement B :{ =9 + .
t t t t

Here, we again omit the assumptions on the initial configurations

THEOREM 6".

At the critical point of an antiferromagnetic phase transition

n
of frequency p , the critical fluctuation process £ converges in
o t
law to the two-dimensional antiferromagnetic process of frequency p
o]

¢ (@) = 2[fle(p_ (P ))cos(2;r p x) + Im(p (P ))sin(2* p x)]>?(dx), (1.33)
t to (0] to (0]

where 9 (p )€C is given by
t o

A
(G)) f . 5|'* « 2 ", 172 C
dp @ >)=r  (Or2 r*(OMl<p (@ Il & (p ddt + @r7(0)) dw , (1.34)
to L J t o] t o t
C
with w the complex Brownian motion,



Again, the stationary distribution of <9 (p )€€ 1is non-Gaussian
-1 t o
(4) r 4] 4
exp(r (0)Jie(r"(0))j 1z} ) dzsz» (1.35)

with normalizing Z .
2

Finally, we calculate in Section 8 the limit of the critical fluc-
tuation process at a triple point, where a ferromagnetic and an anti-
ferromagnetic phase transition fall together. This means that for some
p #0

° 2(0) =2 )=72(-p ) and 2(0)-3(q) > 6 > O (1-36)
0 0 0

for all qg£z2\(0,+p ) and
o]

-1
B = (7@ 20)) . (1.37)
o

Now in the infinite particle limit, the critical fluctuation process

has the form

A
B @)= @ +2 0.e{8 (@ ))cos@tp x)+2 Im@{/ (@ ))sin@/rp x)I<i(dx), (1.38)
T T to (o] to (o]

and (1 (0), i (p ))§ R xC is driven by the coupled stochastic
t to

differential equation n

@ r 5 .2 - 2 1/2
dd (0)=r  (0)13!(r"(0)) hfl (0)+6)i (p )| ) R (0)dt+[2r"(o)] dw
t | J t t 0 t t

(1-39)
[0)) r if .2 ) 2 . /2 C
dd (p )=r  (0)f2(r"(0))J(i (0)+|A (p ) ) N (p )dt+[2r"(0)] dw
to l. J t t o] t o t
C
with w and w independent real, resp. complex Brownian motions,

In the appendix, we add a useful proposition on collapsing pro-

cesses, which is of iInterest in its own right.
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2. NOTATIONS AND MAIN EXAMPLE.

d
Let T be the d-dimensional torus (R/S) For any natural
-1 d
number n€N we consider the lattice torus T = (h Z2/Z) with
n
-1 d
spacing n , consisting of the N = n sites x = (k /n,...,k /n)
1 d
where k =0....n-1 for Jj = 1__.._. d.
]
To each lattice site x6T , we associate a real-valued spin
n
a(x), whose ensemble defines the magnetization field
n -1
c =N L i) S 61 .1
X6T X
n
with 6 the Dirac mass at x and 1 = ill() the set of Radon mea-
X
sures on T. We endow 1 with the weak-*-topology, which makes 1

n
a metrizable space. Let |1 be the set of all measure of the form (2.1)

n n n
1 = @61 . Jax)|<b for all x6T 3}, and 1 = {//61, |pl<b>, where
b n b
) n n
M means the total variation of t. 1 and H are closed subsets
b

of I, resp. 1 , and H is compact iIn the weak-*-topology.
b

We assume the single spin distribution p to be a probability
measure on R with compact support, say contained in B = [-b,+b].

(In Section 5, we shall impose further restrictions on p). Let

r(u) = log exp{mu} p(dm) .2)

be the logarithm of the moment generating function, I 1is a convex

function with r(0) = 0. Note that
m exp(mu) pddm) = r*(u) exp riu), 2.3)

r 2 2
j m exp{mu} p(dm) [r'(u) + (r'(u)) Jexp r(«)- (2.4)

[
Let ~ k™ the Lebesgue measure on T and

n -1
A =N 1 6 (2.5)
XET X
n
its discrete analogue on 1 _ Finally for agiH, mOR, we define

n



n
S\ m(.)=a(.\C Q) +m/N 6 (.), (2.6)
X n X

where C &) = & -I/2n, x +1/2n] x...x (& -1/2n, x +1/2n] C T 1is the
n i 1 d d

cube in I with centre x and edge length 1/n.

n
Now we define the operators L on "6(F) by

n n n n
L f(a) [fa] m) - f@)] N A (m,x,cr) pddm) X (@x) @.7)
BxT X
with
n n
A (MmXx,<5) = exp{G (x,a) + m G (X,£) + G (m,%x,<r)}, (2.8)
o 1 2
G , G e€(T x A, (2.9)
o 1
and
n
G —-—— * 0 (2.10)
2 no®

in a sense to be made precise in the following sections.

We set
A(m,x,a) = exp{G X,<r) + mG (X,<;)}- (2.11)
o 1 .
Clearly, there exists a unique Markov process P on the Skorokhod
space 0 = $(IR+,1), the space of right—co_ntinuous, 1-valued func-
n

tions with left-hand limits, with L as its infinitesimal genera-

tor, 1i.e.
r n n n
f(a )-f(a@ )- L fF(« )ds = M () is a P -martingale (2.12)
t o J(.11 S t

for all f€°6QJil). This martingale can be written in the integral form

Mn(P = f f (F<r Inm) - f(«r )JAn(dm,dx,ds) , (2.13)
t J (0, tPIBXT S- X S-
where for 0

n n n n
A (dm,dx,ds)(@) = A (dm,dx,ds)(@)- N A (m.x.a )p(@@m) ~ (dx)ds
s
n
with a pure point process A (dm,dx,ds)(o). The corresponding increa-

sing process (see (16], 11.3.9) is

n n r t p n 2 n n
<M (F),M (F)> = [F(FF | m)-F(@ )] N A (m.x.FF Hp(dm)”~ (dx)ds. (2.14)
s X s s

tJo Jear



Example.

The general q-body long-range interaction between the spins of

a magnetic field has the internal energy

HCF)— 2 1/01 3 (X -...x da@dx )..... a(dx )=-£ < 3 ,a * > (2.15)
J-1 NI j 1 J j-1 3

J
where 3 0e(T ). Its Frechet derivative is

] c J ®i-1 j-1i
WHED) ) = - £ 1/j'L < 3 ,a ® 50 > 6 «(T). (2.16)
J-1 i-1 J X
Now, let G be any continuous function on T x I, with
o]
n -1
sup G fH - 6 (x,a] o) = O(N ), (2.17)
n o o X
X <<€l
b
and
G X, = -G VH(@(X), (2.18)
1
where |30 1is the inverse temperature. We set
n n n
G (mx.fF) = G X,<L o) - G X.FF) + O{NH(<;) -NH («] o)
2 o] X o] X
(2.19)
n n
- a(x) VHCal] o) + m(VH(a) - VH(r] o))}-
X X
By (2.15-17), it is easy to check that
n -1
sup IG_(m,x,fH] = O(N ). (2.20)
mgB ,xXET 2
n n
aei
b
The detailed balanced condition (see [29]) shows that the unique inva-
n
riant probability distribution for the process P with infinitesimal

n
generator L , given by (2.7-8), is the Gibbs state

n n n n
Q (dor ) = exp(-|9NH(T )} n p{da(x))/Zz (2.21)
X6T
n
n n
with a from (2.1) and Z as normalizing constant. The thermo-

dynamic limit of (2.21) has been investigated in [8].-
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3. ASYMPTOTIC DYNAMICS OF THE MAGNETIZATION.

Besides (2.9-10), we assume that

G and G are Lipschitz-continuous in I in the total (3.1)
o] 1 b
variation norm, and that
n
sup [6(m,x,ff)]=o0(l). (3.2)
mé6B,x6T 2
n n
<6l
b
n 2 -1 2
Set @ ) () =N £ a ) 6 (dX). (3.3)
YET y
n
THEOREM 1.
n n
(i) Let a 61 converge in law to u X, i.e.
o b o
u €L = {ufL Tul] < b).
[0} b ®
n
Then the process ((r) converges in law to @ ) , Where
t t<T t t<T
) ) ] ) ] W
u 6L is the unique solution of the nean-field evolution equation
t b
d/dt u = GQ ), @G3.49
t t

starting at u , and
o

GuHx) = eXlo{GO(x u) + r(Gl(x,U))}[r'(Gl(x ;u))-ux)]. (3.5)
n 2

(ii) Moreover, let (a ) converge in law to some v X,
o] o
(e s} 00 2

v €L = {afL ; 0 < ess iInf d < ess sup a < b ).

o [0,b2]

n 2 ®
Then, @ ) converges in law to v , where Vv £L . is the
—_— T e e t - t [0.b2] -—-—-—-
unique solution of

d/dt v=F(u,v), (3.6)
t t t

starting at v , with
0

2
F(u,v)(x)=exp{G 0 O, u)+r (G . CGudd T (G1 x,u) +(r (G . x,u)))-v(x)1-@B.7)

in fact, this convergence holds (in probability) with an exponential
rate (see [1] in the case of Ising spins).
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Proof. The Lipschitz properties of G and G imply that (3.4)
o 1

and (3.6) have unique solutions. Since r"(y)€(-b,+b) and

2 2
f (y)+(F") &E@,b ) for all b£R the solutions u , v , satisfy
t t
2 n
-b<u <b, O<v <b . In order to show the tightness of (a ) , hotice
t t t t<T

n n n n n
that a 61 implies +61 cl for all t©0, P a.e., and that

o b t b b

1 is compact in its weak-*-topology. It suffices therefore to show
b

uniform continuity in the following form

For any (M), ji, e>0, there exists n ON and <50 such that
o
n n n
sup sup P {l< gic >-< g, <x >] > i) < e, (3.8
n>n O<r <t <(r +5)T t r
0 12 1 2 1

where r , r are stopping times (cf. [18], 1.3.4). From (2.7-13),

n n -if p n ,, n
< gffF >< .0 >=N g(x)(m-a (x))A (dm.dx.ds)
r VA J(r ,r ]IBxT =
12

X r n n n n
+ 2 g(x)(m-<7 (x))A (m,x,<r )p(dm>? (dx)ds (3.9)
Jr JBXT S S

with the last term being in absolute value less than 2b]g|] |A+1] .6
® ®

for n sufficiently large, using (3.2). Therefore, by (2.14)

n n n __ -2n n n 2
P (< Z.o ><g,0 > >ip <P E ((<g,0 ><g,0 > )
r t r r
2 1 2 2

2 2 1

2 2 2 - 2 2 2
<8 gl IA+1] .6 If] + N 8b |g|  |A+D |.6/ri (3.10)
00 00 dQ

00

which 1is less than e fTor all nQN, if 6 is sufficiently small.
Furthermore, the jump sizes go to zero uniformly, so any limit law
is concentrated on continuous paths.

n 2

The tightness of the processes {a )} is shown similarly.
t t<T

As iIn (3.10), we get by Doob"s inequality

n -1 str n N _-1/3 -1/3
P (sup IN g (m-<7  (x)) A (dm ,dx ,ds) N 3=Q(N ). (3.11)
t<T 0J BxT S-
n
Hence, outside of a set of very small P -probability, we have



n n rt n n n n

<l,a >=<(.C >+ g(x)(m-<; (x))A (m,x,a )p(m)/? (dx)ds+o(l)
t 0 .0. BxT S S
n n
- < g.0 >+ g(x)exp{G (x,cr )+r(G (X,a ))}
2.3 0 T 0 S 1 S
3.2,

[r'(G (xa DK (dx)-a (dx)]ds + o(1)
S S

But the maps N G (.,mEE(T), 1=1,2, are continuous on the
(compact) set H ; then, Ifrom Ascoli's theorem, their range is a
uniformly equicor?tinuous family of g(1T), and the Riemann sum Xn
in the last term converges uniformly to the ¢-integral. Combining

this with (3.5), we derive that with large probability

<eff >=<171.9 >+ f <eG(ff )>ds + o(1), (3.12)
t 0 0 S
and so any limit process of (a ) must be concentrated on the
t t<T
n 2

solution of (3.4), which is unique however. In the case of (a )

we obtain
n 2 n 2 rtr 2 n 2 n n n

<e.(* ) >=<g.(<7 ) > e(x) M -{a (X)) A (jax,<T Ip@@m)A (dx)ds +o(l)
t o] JOJBXT S S

1t <g-(F ) >+f | g(x)exp{G (x,<7 )+r(G (x,<r ))}
(2.4) 0 JOJT 0 S 1 S

CG”(GI(Xéa ) +(r’) (G|(X'sﬁ ) (dx) - (as) (dx)1ds + o(1)

n 2 rt n n 2
<g. (&7 ) > + <g,F(<r ,(a ) )> ds + o(l). (3.13)
o] JO S S

This completes the proof of the Theorem.






4. ASYMPTOTIC DYNAMICS OF THE DENSITIES AND PROPAGATION OP CHAOCS.

n n
To a magnetization field a £H , we associate the empirical
b
magnetization density
n -1
n - N E & 6 f(B x T) (4.1)

X6T (@ (x),x)
n
where 1°(BXT) denotes the set of all probability measures on BXxT.
IP(BXT) is compact in the weak-* topology.

n
We first show that the density process k converges to a deter-

ministic density, governed by the asymptotic magnetization process

THEOREM 2.

n
Assume (3.1-2) and that n converge in law to

[0}
00

h (m,x) pdm) ¢(dx) 6 F(B x T), h 6 L (B x T). Then the empirical
o] o]
.n
density process It converges in law to h (m,x) pddm) ¢(dx)t where
t t
00
the density h 6 L (BxT) is the solution
t

dZ/dt h (m,x) = exp{G (x.u )tm G (X,u )}
t o t 1 t

-h (U, x)exp{G (x.u )+r(G (x,u )} (4.2)
t 0 t 1 t

starting at h ; and where u () = I m h (m.x)p(dm) is the solution
o t JB t

of_(3.4) with u ¢ = I mh (mx) p@dm).
o JB o]

Since by (2.9-10)

sup exp(m G (x.a) - r(G (x,a))) = C < «, (4.3)
m€B ,x(ET 1 1
b
@®
0 < h (mx) < C, if this property holds for h . Therefore h gL (BxT)
t o t
for all t. Moreover
(m,x)p(dm)=1. 4.4

Y,



Proof : Since (4.2) 1is linear in h, it has a unique solution in
00

L B x T) satisfying (4.4). Let (C"eiB x T). Then

n n
<g_*t> - <£_*O>

B g(m,x/-g(a (x).x) An(m_x.an)p(dm)Xn(dx)ds
XT S S

ftp -1 f n |

+ N g(m,x)-g(<7 (x),x) A (dm.dx.ds) (4.5)
JOJBXT L s

The uniform continuity can now be shown in the same way as is (3.8-10).

n

By the compactness of $(B x T), the sequence of processes N is
t
therefore tight.
Doob®"s inequality implies again
-1 -n ul/3” -1/3
P <sup] N [g(m ,x)-g(ff (x) ,x)]JA (dm,dx,ds) |>i/N >=0(N ). (4.6)
\t<T BxT S /
which gives outside a set of uniformly small probability
n n re r n n n
<g.K >=<g.rc >+ exp{G x.FF )+mG (x,<7 )}g(m,x)p(dm)Z (dx)
t o JOjjBxT o] S 1 S
i n n n 1

exp{G (x,a )+r(G ,<r ))}g(m,x)jc (dm.dx)
BxlI o S 1 S s J

:<g_k >+f F exp{G (x,u )+mG (x.u D}g(m ,x)p(dmM(dx)
o JOjjBxT o s 1 s

exp{G (x,u )+r(G x,u )}g(m,x)/c (din.dx) ds+o(l)
? o] S 1 S S '

Bx

n n
+Q(sup sup(IG (x,u )-G (x,a )|+ G X,u )-G (x,a HD)- 4.7
s<T XE£T o s o s 1 s 1 S

Since, by Theorem 1, the last term converges to zero uniformly iIn pro-

n
bability, we find that any limit N of the processes k satisfies

S S

the following equation, which is deterministic except for it
o}



a

<g.Jt >=<&.* >+ exp{G (x,u )+mG (x,u )}g(m.x)Ip@mIX ([@x)
t o Bxf o s 1 s

exp{G (x,u )+r(G (x,u )))g(m,x)k (dm,dx)]Jds. (4.8)
BxI o S 1 S s

But the solution of (4.8) is unique, and if N = h dpd,i then also
o] o

t has a density h (n.x) with respect to dpd-i, and h is the
t t

solution of (4.2). This completes the proof.

Notice, that if h 6 ~(B x f), then h € ~(B x T) for all t>0.
Since the right-hand sige of (4.2) depends (1):nly on the single site X,
it Is obvious that results of the type of "propagation of chaos®" should
hold. In fact, we shall derive two versions of propagations of chaos.
The first one will be at the level of empirical measures. In analogy
to the weak-* topology on WPB x T) , used in Theorem 2, we shall

obtain only a weak version at this level.

The second result is the usual “propagation of chaos®™ for the
random spin variables an(x). It says that, if the spins at distinct
sites are independently gistributed at t=0, then in the limit n =*
they continue to behave independently at any time >0 according to
a distribution which satisfies (4.2), 1i.e. they constitute a sample
of the empirical density. OF course, this is not true for finite n,
where the spins are dependent. We shall see, that this is a conse-
quence of the first version, yielding here a new proof of the stan-

dard result.

Let Xx ....X be distinct sites in T.
1 K
Let e be a sequence of positive numbers with
n
-1 -2d
e N0 and N € —» 0 as n- » &> . 4.9
n n

n K n K d -1 1
X =n Fu.)=n (N£) E 6 (4.10)
t i=l t i = n y £ & Dni My )
i e i n t i
K n
as a positive measure on B , where C ( ) are the cubes with
e i
n

center x and edge length e .
i n
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THEOREM 3.
n
Assume (3.1-2), that a converges in law to u X, and that
o] o]
_n K n
k converges In law to fl h (m ,x ) p{dm ). Then, Ffor >0, [
o] 11 o 1 i i t
K
converges in law to n h (m ,x ) pddm ) with h satisfying (4.2).
1-1 €t 1 i i t

Proof. First, notice that it is enough to prove the Theorem for K=I,
_n n
since Kt =n* (x ) and h(.,x ) dp is deterministic,
t i t i i

Now, for gOe(B),

<g.-ff (X)>=<g,? (X)>
t o

tr -d n n n n
i 1 W«  (@m-glcr (YN HA (m,y,a pdm-1 (dy)ds
0jBxf C () n S S
n 6”
+ M , (4.11)
Vv
where
n rc
M- 1 DN e )  (@m-g(Ff (y))A (dm.dy.ds), (4.12)
t R BxfF C & n s-
£n
n n 2 -1 -2d
implies E ((M ) ) = O(N e ) ——» 0 by (4.9).
i n

By the same argument as in the proof of the last theorem, we see

n

that N (X) converges in law to a positive measure X on B, which
t t
satisT ies
<g.K (X)> = <g,K X)> +I gf g(m)exp(G +mG HY(X,u )Hp(dm)
t o 0 B o 1 s
<g.Jjt (x)>exp{G +r(G )} (x,u ))ds. (4.13)
S 0 1 s

(4.13) is linear in it, and therefore, has a unique solution, which
is it & =h (..,x)dp by (4.2) and the initial condition
t t

it < = h (.,x)dp. This proves the Theorenm,
(0] (0]



As a consequence of the last result, we get the propagation of

n
chaos for the random variables a &)
t

n
corresponding to the distinct x ,...,x CIT, let x be sequences with
1 K i
n n
X 6T and lim x = x for 1 = 1_...K. (4.14)
i n i. i
THEOREM 3 W s.
n
Besides (3.1-2). (4.14), assume that a converges in law to
o]
n n n n
u X and that the distribution of (a X )----a (x )) converges to
o] o 1 o K
K
M h (.,x )dp as n « . Then, for 0, the distribution of
i=l o i
n n n n K
(a X )----a (X )) converges to [Fh (.,x D)dp with h (.,x )
t 1 t K i=l t i t i
from 4.2).

Proof. Without loss of generality, we may add the assumption that
n K
Nt (x ) converges in law to M h (.,x )dp : indeed, this assumption
i o 1 i=1 o i
may be achieved via the change in the initial distribution of particles
d
in proportion Q(e ), then being without any influence on the asymp-
n
n n n n
totic distribution of (8 x )....a ( )).
t 1 t K
First, we regard the case K=1. Let g 6 *6(B).
n

n
Using (4.11) and a similar expression for g(a (x )), it is easy
t 1

to get the following inequality

n n n n _ n n n n n _ n
IE g(@a (x )-E <g,0 x )>|] < |E g (x )-E <g,jr x )>|
t 1 t 1 o 1 o 1

«t n n n

Clal sup A C..x ,-.)-A Ly,
0 « ygC X ) 1 @

e 1
n
n n n n n n
+ JA I 1E g7 (X ))-E <g,i (x )>|)ds. (4.15)
« S S i

Hence, Gronwall®s lemma together with the assumptions on the initial



distributions and Theorem 3 implies
n n n n _n
lim E g(a (& ))=1lim E <g,h & )>= g(m)h (m,x D)p@dm). (4.16)
n t i n t 1 t 1
For the general case, we take g -....g 6 6(B) and n so large that
1 K
C (X )-.--.-C x ) are all disjoint. Similar to (4.15), we get
e | e K
n n
n K n n n K n
IE Di (& )-E n <g .* (x )
=t j ot ] i=1 J t 1]
n K n n n K n
<JE D g (@ xMNE n<s  (x )
=t 3 o ] =l § o ]
K rt K n n n
2_“ Ig_l sup IA (- ’X_ ’- ')_A (- 7y1'-) I
jii J i=l 1« yeC (x ) J «
n n n n n
+le 1 IA 1 IE De (@ X ))-E n <g ,k&t (x )|
JOO @ ijfcjisi 7Y i s 1
n n n n n n
+1A 1 |JE n € F (X ))-E n <g .if (X )>| ds. “4.17)
@® i i s 1 [ i
By an 1induction hypothesis, the second integrand goes to zero uni-
formly in s, and we conclude by the same argument with Gronwall®s
lemma as above, that
n K n n n K _n
lim E g (@ <)) lim E il <g .k (& )>
n =1 j t ] n j=1 ot ]
K F
Nl g (m)h (m x )p(dm ), (4.18)
=3 g t ] ] J

which proves the Theorem.



5. NON-CRITICAL FLUCTUATIONS.

For r>0, we introduce the Sobolev space

2
H - {geL U) ; \g\ < +0%. (5.1)
r r
2 2r . 2
where lol = Z (1+11 ) g | 5-2)
r p€zd

with the Fourier coefficients

d
g(p) » < exp(27tip. ), g.” > , pez . G-3)

Let
H = H* (5.4

be the dual space of H under the duality product <.), with the norm
r

M - L (+PL ) r IE(P) 1 - (5.5)

For each rfIR, we have the scalar product on H , given by
r

2r. 1
<YV > = Z @+1p1) li(P y@ eRr, (5.6)
r p6Z
which makes (H , <,> ) a Hilbert space,
r r
Obviously, for r >r >0,
2 1
@ 2 @®
€ (MH=H = H H CH cH CH=1L C_H C_H CH =€ (M-, (6.7
» rtorr r r o -r -r -»
2 1 1 2

and the embedding Hc H for any r>s is Hilbert-Schmidt, whenever
r s

r-s > d/2, due to the fact that

r

2 -
c, pézd. (1+1p] ) < » if and only if r>d/2. (5.8)

In particular,

1 -EGtHpl )r=c
X -r p -r

n 1/2
so that I «c_ @@igH | < C b) for r>d/2, (5.9
b -r -r -r
d
an n 2 2
= L H@+IPL ) IN £ expQ«ipx)=<s (I
-r p£2a XET o]
n
2-r
L_ A (L+|P] )
p6(nz)d\(0)
/ -2r
<C n , (5.10)
-r /

for some constant C



et i = D((0,-) , I ). For r>d/2, the H -valued Brownian motion
-r -r -r
w with covariance
t
E(<g W ><g W > - (@ At ).<g .g > (5.11)
I t 2t 1 2 12
1 2
g , g £H , is well-defined on O (cf. (14] ch. 3, th. 3.1).
1 2 r -r
We shall use the following tightness criterion on Q , r>d/2
-r
n n
a sequence of processes ? with laws P on $((0,T],H ) 1is
t -r
tight, if
©O) for each e>0 we find K>0 such that
n n 2
sup P {sup |< | > K} <&, (5.12)
n s<T s -r
and

(an for all gf£H , e>0, I’}>0 there exists <50 such that
r

sup sup P {I< 9, >< g,E >1 > n} < e. (5.13)
n O<r <(t +5)aT r r
12 1 2 1
These conditions are an iIimmediate consequence of Mitoma®s result
(see (22] Theorem 4.1 and Remark 1, and notice that (5.1,$) implies the

n
uniform r-continuity of P ).

Finally, we strengthen the assumptions made in (2.9-10)

00
a There exists r >d/2 and a map dG from L flH into the
o] b r
o]
space of continuous linear operators on H such that for g€H ,
_r r
® o o
UL N H -
b r -r
o] o
I< g-G(ii) >-< g.G(uJ) >-< g,dG)(-uA) >| = Jgl -.o{\n-u.X\ ) (5.14)
r -r
o o
and
sup sup  |dG(u)/z] / Iy < + ® . (5.15)
® -r -r
u6L OH *t6H o] o]
b r -r
o o

Here, G(RB) is the natural extension of G from (3.5) to a H
-r
o
valued function by

G(/0 (dx)=exp(G (x,/0 +r(G (x.fi)))[r G ,f)); @x)-fi (dx)]. (5.16)
o 1 1
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(i) G and G are bounded continuous functions from
o 1
I H GifH = V/40 < bC } into H
b -r -r -r r
o] o] o o]
n
and 62 satisfies
n -1/2
sup IG (i, .,iD] = o(N ). (5.17)
m6B, J<61In 2 r
b o]

Notice that by the interpolation theorem and Sobolev"s Theorem

for r >d/2

o}
tgen] < C (fol [0l +lgl [0l )< o] [n] (5.18)
r r » r r « r r r
o o o o o o o
so that H is an algebra (cf. [26] 11, 2.1).
r

o]
In (5.18), we used that for r0>d/2

1/2
ul < E U(p)l <c lel (5.19)
@® p r r
o o
which also shows that H C_<g(T).
r
o]
®
Moreover, for any " -function on p on R, ?>(g)6H for g£H
r r
o]
with
@I LS <Mlgl - ) (5-20)
o] o
for some continuous function $. In particular,
@ )<P@ D1 < C g -g_I (5-21)
1 2 r M 1 2r
o] o]
for all g , g with lg | , lg | < M.
1 2 1r 2 r
o] o

As a consequence of (5.17-21), we get for our functions G and F

00 00
from (3.4) and (3.6) that for uGL OH , VEL RH
b r [0,b2] r
o] o]
IGUW)I < C@ ¢ Ju ), (5.22)
r r
o o
IFQu,v)| < CcQ@ + i )- (5.23)
r r

(o] (0]



Therefore, if UuCLOH , Vv CL HH then the solutions u of
obr o(0,b2]r t
o] o]
(3.3) and v of (3.5) satisfy
t

uCL nii , v CL HH (5.24)
t b r t [0.b2] r
(o] (o]
+

for all tgR

Now, we are ready to study the asymptotics of the non-critical

fluctuation processes

n 1/2 n
C - N (a -a )6H ] (5.25)
t t t -r
o
THEOREM 4.
n n hat 00]
We assume (5.14-17) . 061 , u £L fIH , v gL OH and that
0 b 0 b r 0 [O0fb2] r
0 0
n 1/2 n
C « N (0 -u ) converge in law to ¢ £H with
0 0 0 0 -r
0
n n 2
sup E |C 1 < « . (5-26)
n 0 -r

0

n
Then on D([O0,T], H ), the fluctuation processes K (5.25) converge
-r t

0
in law to the Drocess £  satisfying

t
1/2
d< = dGQ )¢ dt + (B(u ,v )) -dw (5.27)
t t t t t t
with the H -valued Brownian motion W from. (5.11) and
-r Tt
0
B(u.v)(X)=exp{G (x,u)+r(G (x,u))}
0 1

2
[r"(<] 1(x,u))+(r') (Gl(x'”) )-2u(x)-r (G 1(x,u) Fv(CeO] - (5.28)

Proof : We first notice that (5.27) implies
* 1/2
d< ¢g.¢ > = <(dG(Q )) B(C >dt + < g.B(u ,v ) LdW >, (5.29)
t . t t t ot t
Therefore, if T is the semigroup on H with generator dG(u )
s,t r t
0
the adjoint of dG(u ), we have for 0O<s<t<T
Tt

.t * * *

P(<g,C >6dyl1C Dd«p( <T g,B(u ,v ).T g>dr,y-<T g,C >)dy, (5.30)
t S sr.t t* r,t s, t S
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where p(t.y) = (att) exp(-y /21) is the heat kernel.

This shows that the process C is uniquely determined by the
s
2 k
following martingale problem : for ¥ (R ) and g £H for
b i r0
i = 1_....k, kéN, we have with Ff{) *f(< g ,( >..... < g ,? ) that
1 k
re
f(< L(u ,v )Ff(C )ds 1is a P-martingale, (5.31)
0 S s S
where
k r\J Kk
L(u,v)f(C) - Z a f(<) <g ,dG(u)C>+1/2 Z aa.l f(i)<e ,B(u.v)g > (5.32)
i=l i i [ i J

(cf . (15] Theorem 1.4)
From (2.12-13) and (3.4), we obtain the martingale decomposition

ft 172 f
<g.C >=<g.< >+ N gt
t (o) 0 JT

An (ra.x.an )(m—an C))p(dm)A  (dx)-G(u )(dx)]ds
B s s s

«1/2 -n
+ N goO@m-<r (x))A (dm.dx.ds). (5.33)
BxT s"
n n 2 2
Set c = inf{t ; |c | > M ). (5.34)
K t -r

Then, for € <t <r , Ito"s formula yields

1 2 M
n 2 n 2
K | - K |
t -r t -r
2 o 1 o
t
1/2 m 3 n
+ 2N <C. A WM,.,a)d)m (D)-a CNDp@m-G )> ds
Jt B S S s -r
o
t
r In n 2 n n n
* Al (xX))5 | A (n.x.FF Hp(dm)-i (dx)ds
Jt\ S X - s
0
T
r2r n -1/2 n 2 n 2 .n
. I(K +N (n-a &x))5 1| -1C | JA (dm.dx.ds). (5.35)
sS- X -r S- -r

(0] (o)



The second term of the right-hand side of (56.35) gives

t

1/2 *2 n n
|second term] = 12N < C ,C(ff )-G(u )> ds
t s s s -r
1 o]
t
l/2r2nrrn n n n n n \IL\ |
o 2N <C . 1A (n,.,a ) ()-FF (.))-A(n,.,a )(mr( .)-Ff (Gjup/ ds
Jt s Jnl S S -r |
2 n n n 2
< 2 f "|<C .dC(u K > | + o(|C | +1)ds
(5.14-17-21) Jt s s s -r S -r
1 o] o
t
172 n 2 n n n
* N Bt -l 2 K | | A (m,.,0 dm p{dra)] ds
-r t S -r B S r
o 1 o o]
t
p 2 n 2
< C /2 (K ] + 1)ds (5.36)
(G .10-15-17-21) 1 Jt S -r

Also the integrand of the third term of (5.35) is bounded, by C /2
1
say. Therefore n
tAr
n 2 H n 2
K J 1C C + 1)ds
tat -r 1 30 S sl 2
H o o]

is a submartingale, respectively a supermartingale. Taking expecta-
tions of this supermartingale and using Gronwall"s lemiua together

with (6.26), we get

C t
n n 2 n n 2 1
E (IC 1 ) - Iifl E (K I ) <Ce (5.37)
t -r tat -r 2
o H o
for all t©T and n>n , where n depends only on the values in (5.9)
o] o

and (5.13-20). By Doob"s subnartingale inequality, we get

n n2 n n2 ft n 2
P {supli | > K <P (sup(CIC | +C ac | +Dds) > K }
t<T t -r t=<T t -r Ijo s -
o o o
-1 n n 2 rT n 2
< K [E {IC_I )+C (E(IC 1 )+1)ds]
T-r 1 J0 sS-r
o o
CT
-1 1
< K [202e + CT] < £ (5.38)
1

for K large enough. This shows (5.12).

Next, let r <t <(t +5) a T be stopping times and g€H
12 1 r
o]
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Applying similar 1inequalities like in (5.36) to (5.33), we find
r

a.c" -?" >=Ff (<g,dG(u ) 0 + gl o(JCc"1 +)*o(l))ds
Jr s s r S-r

rr
2 1 1 o o]
r
-1/2 2 n ,N
¢ N gOQ(m-<7 () A (dm.dx.ds). (5.39)
Jr S-
1
z
n n n 2 n 2 2 n 2 2 n2
E (<ke.< C > )<6E ((r -r ) C 1lal IC 1| +lgl oC]JC ] +D+o(l1))ds]
r r 21 jJr 3 r s -r r S-r
2 1 1 o o o o
r
n 22 n 2 n n n
+2E ( g O(m-a x)) A (m.x.a Hp@m)™ (dx)ds]
r s s
1
CT
2 1 2 2 2
<C gl (¢ +1)5 ¢ C |g] b S, (5-40)
4 r 5 L=
o]
which implies for 5 sufficiently small
n n n -2n n n 2
P (kg < > >U) <1IL E (g.C -C > )<e (5.41)
r r r r
2 1 2 1
ne
This shows the tightness of the fluctuation processes C
t
n
In order to characterize the limit process of C by the martin-
t

gale problem (5.30), we apply Ito"s formula to

f(<n)=F(<g . 0 ....<g .c“>). TE€e2(Rk). g GH for 1 =1 k.
t 1t k t b ir

o
n 1/2

n
We write H for M (f(...,N <g ,d -u >,...)) form (2.13) and use
t t i

estimates similar to (56.36).
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n . n
ne )-f(¢c :
t (¢}

t K n 1/2
.E\Q.f(C ),_e_Gon [fA (n.x.a d{m-a P (@) (@x)-6(u HIN)]
ni-Vi*si7i JB s s s

n -1/2 n n n -1/2 n
(f(--<g_C >N_g GO (Mm-a (X)).)-F(C ) 3 FC IN_ g CO(M-<7 (X))
BxT 1 S 1 S S 1 S 1 S

a n
NA (m.x.FF )p @m)A"(dxdstii"

t kK n n
f(< ) L a f(< ) <g ,dG(u ) ¢ >ds
o i=l i s 1 s s
< - n n 2 n n n n
. 1/2 Z 33 f(C) S_(x)g_(x)(m—<t ) A (m.x.a )p@dn)” (dx)ds+H
O aj 1] s ,,BXT 1 ] S S t
"t n 172 n
[(IC | +1) ¢ QN  x -JDI]ds
0 S -r -c"
O o
n t k n n
(GG ) + L 3 f(C )< g .dG(u 3} =>ds
o oi=l i s 1 S s
rr k - " n n n2 n n
102 2 3.af(c ! g 0Og OIBCFF ,(a ) ¥, (d)ds + H
o0 ij=1 1] S - i ] S S t
t -1/2 n -r/d+1/2
(o(N ¢+ 1 + 1D +QN )1ds
0 s -
o
n mt n n
fU ) e Iu ,v )f{ dds + M
o 0 S s S t
rc 172 n -r/d+1/2 n
(O(N +]C | +1) + QNN +c( L 16 (2 )-6 (u )I
0 s - i*=0.1 1 s i s r
o] o
+ I<g | exp{G (u )*r(G (U N3},v (¢ ) ><r -u ;( d1ds. (5.42)
i,j=I ij os I s S S SSsS-r

o]
The last integral vanishes iIn the limit n*«, and so any limit process
n

C of C satisfies the martingale problem (5.31), which has the
t t

unique solution (5.27). This completes the proof of Theorem 4. B

We review the example of Section 2 in the light of the Ia°st

theorem. Let

G xfH) - f @ *a(XxX)-.--g *a(x) ) (5.43)
o o 1 k



o] k
with f zQ (R ), g 6H . We also assume that in (2.16)
0 ir

o]
364H (T ), Jj=1....q9.- Then both G and G are continuous boun-
J r o] 1
o]
ded functions from 1 H{"6H NV/{| < bC ) into H
b -r -r -r r
o] o] o] o

n
Then Gz, given in (2.19), satisfies

n -1
sup IG ¢, -/ =0QN ). (5.44)
m(:B,/z€In 2 r
b o]

Thus Theorem 4 applies to our example.
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6 . CRITICAL FLUCTUATIONS AT THE- FERROMAGNETIC PHASE TRANSITION.

Here, we consider the special case of a translation invariant,
two-body interaction without external Tfield. In the context of our
example of Section 2, this means

qg =2, 7 - 0. 1 (xy) « I"(x-y) . (6 .1)
1 2

vin(@a) (x) = - 7<t(x) = 2(x-y) 2(dy)
|
with the symraetrization 3 (X = @B"(X) + ?27(-x))/2.

We know that if p is symmetric and satisfies the GHS-inequality
(see below), if (56.1) holds, and
d
300) - ?2(p) > 5 >0 for all p£zZ \{0), 6 .2)
o]

then the Gibbs states to the Hamiltonian (2.15) have a second order
phase transition at the critical inverse temperature

0 = ("0 20 \ (6-3)

o]

This 1is the first phase transition as the temperature decreases from
the high-temperature region. The new phase, which appears immediately
-1
below the critical temperature 0 , is ferromagnetic, 1i.e. it has
o]

constant non-zero magnetization. In order to study critical fluctua-

tions of the dynamical model, we make the following assumptions

(Al) Let p be a symmetric measure on R with support contained

in [-b,b], b>0, and let p satisfy the GHS-condition

©)
7 ) < 0 for x€[0,«>). (6.4)

Since 7 is convex and symmetric with 7"(0) > 0, (6.4) implies that

there exists K > 2, such that

(©)) K -1) K )
7(0)=7"(0)=0, 7"(0)>0. 7 ©=...=7 0 (0)=0, 7 0 (0)<0. (6.5
(A2) Assume
G -0, G (x,a) m-p VHlonN(xX) - 0 ?2*=x(X) (6 -6)
0 1 0 0

with 8 from (6.3) and ? satisfying (6.2).
10



Moreover, we require
?6H for some r > d(I-1/K ) > d/2, 6.7
(] 60d o] o]
C
which yields by (5.19)
2r -r
2 o . 2 2 o . 21/2
|7*o] , <C < [Z a+PEr ) U 1 A +]pl ) I<f@I 1
r r r p
o] oo
< C I*l \a\ s (6.8)
r 2r -r
o] o o]
such that G is a continuous bounded Tfunction from
1
AnyY/ ,MM <boc ) into H ,
b -r -r -r r
o] o] o o]
and
n -(1-1/K )
sup IG (m, -,*0] = o(N 0 ), (6.9)
2 r
b o]
n
which 1is satisfied if we define G by (2.19) (see 5.41)).
The critical fluctuation process is defined by
n 1/2K n n
€ -N "0a €H nt. (6.10)
t 1-1/K -r
t™N 0 o
n
We split £ into its ferromagnetic and non-ferromagnetic components
/\ A
n n n n n n n
o -t (o) * n =« - HOWM 6.11
T t() t t Tt (¢ )
n n n n
0 and 1] are orthogonal in (H , < . > ). Notice that a 4ll
T Tt -r -r
o] o]
implies /X N\
n n d
0 (p) m a (p+tnq) for all p, g 6 Z , (6.12)
~—n "An n d
and 70 X (@ -~ IX () a p), p62Z (6.13)
THEOREM 5.

Besides assumptions (Al) and (A2), we suppose for the starting

n

configurations ( that
0
n n n
0) ucl ,t
o b o
non XK
Gi) E 1§ 1 <
o -r
o
where c>«">K -1 and a

[0} n

converges in law to some 0 X ; (6.14)
o]

C a for all large n, (6.15)

2 n

an increasing (to infinity) sequence with



(1-2/K )+(1-1/K )/* (1-1/K
o o] -1
N a — > o, and a N 0 ; (6.16)
n n
n n 2 n 2k k
ain) E (@ (¢.)) -7"OM 1 )<C 5 (6.17)
o -r 3 n
0]
where k > 1 and a a sequence with
n
(1-1/K )/« 1-1/K
0 -1
N a 0 a N —) 0. (6.18)
n n

Then the critical TfTluctuation process £ converges in law on
t

5([0,T], H ) to the ferromagnetic process { =5 (0)», where
m2r0 t t

0 (0 6 R is given by

K ) 2K -1 2K -1
o o . o 1/2
66 (0)=7 O [(CK -1) 'r*(0) 10 (0) dt+ (2r" (0)) dw , (6.19)
t o] Tt t
starting at 0 , and where w is the standard Brownian motion.
o t

n
Proof : We start with the semimartingale decomposition of <g,£ )
t

with g€H

n n n
<g.f > - <g 0 >+<g N>
t t t

1-1/2K
n n n n n
- <e.£ >+ N g(x)A (ai,x.d d(m-<r ))pddn)”  (dx)ds
0 BXT 1-1/K 1-1/K
SN 0 sN 0
-(1-1/2K )  1-1/K
tN 0 n -n
N gOOm-<;  ())A (dm,dx,ds) (6.20)
0 BxF s-
n n
By Ito"s formula, we get for t <t <t =inf{t, |i | >H}
1 2 H t -r

(0]
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n 2 n 2
| |  -h |
lt -r t o -r
2 0] 1 0]
t 1-1/2K
r 2 n o n n nn
2 i N 3 ) (0 3*0 YU -
e (Y expr 1k O kYT ko
1 sN 0 sN 0 sN 0
+ 0(D)|7,n] [in] Ids
S -r S0
n n 2 n n g nd g
m-a X)) & -A A (mx,a mM X)ds
BXT|( L1/K (x)) ¢ § )I_r ( UK )p( (dx)
sN sN
+ M (6.21)
t 1
1 2
where
n
M
t 1
1 2
1-1/K
t N 0 (1-1/2K
>2 ) 0 n n 2
[]) N (n-ff (X)) (S X )|
1-1/KJ BXT -(1-1/KJ S- X -r
t N 0 sN 0
1
n -n
A (dm.dx.ds). (6.22)

77 -(1-1/K )*-r J
sN 0

W estimate the first integral of the right-hand side of (6.21), using
(6.6) and 2K -1

r(z) =r"(0)z v+ 0(z ° ),
first integral of (6.21)

t 1-1/K
N % n Ho) an H ©(|an2-|nt2| -1/K
<) ,rHo -n> o+ n °n
(5.18-20)(6.8) t [ Js po S S -r S -r s -r
0 0 0
K -1
Unl I'nl ° | nI I\;I1
‘ I +0 u ds
Q(ls-r S -r ) ()ls-rls-r
0O o 0O o
t  1-1/K
r?

2 N °( Z (L+1P| ) reh™(p)| (r"(0)0 i/(p)-1)
t d S 0
1 pg(nz)
-1/K

n
+0 (n hi  \ti )
S r

n n 0 n n
+0(1 | li |1 +o(D)|u i ds 6.23
(>>S UL )+o()] S[_r | S|_r ( )

0O O 0 d
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A
n d
since 7} () = 0 for ald pE(nZ)
s
/Nn
By IX (® = E j 3(p+nq), we get by (5.19) and (6.2)
q€zd
/n . d
-iX @ <3 -S /2. for all pEnz and n>n ,

(0] (0]

which implies by (6.3)

"'An d
r’@o IX ) -1<-2/3 r*(0)0 & , pinZ , n>n .
0 00 0
-1/K
o 2
Therefore, assuming G(N M )< 1/3 r”(©/3 S for n large,
oo
first integral of (6.21)
t 1-1/K
(-N r'(0)0 6 1v | +C M 1 )ds (6.24)
t 00 S -r 1 S -r
1 o] o]

for n > n (M). The second integral of (6.21) is bounded by
o]
n

C (t -t ). With C (M) = C (M).M+C , we have for t <t <r , n>n (M),
2 2 1 3 1 2

1 2 M o
t 1-1/K
n 2 n 2 ' o) n 2 n
\n 1 <h | (N cini -C (W) )ds + H . (6.25)
t -r t -r t os - r 3 t.t
2 o Il o " 1 o 12

The drift term in the last member is strongly attractive to zero.

To (6.25), we apply the proposition on collapsing processes, given
1-1/K

o]
in the appendix, with m = N . (6.16) and (6.15) imply (A.2)

and (A.3) and since here Y = B x T and

-(1-1/2K )
n (0] n n n
f (m,x) = 2N < T . (ma oNDE5 -X )
t t (1-1/K ) X -r
tNN 0 o
-(2-1/K )
+ N | (m-FF NG X )| , (6.26)
(1-1/K ) X -r
t™ 0 o
2- 1/K )
n 0 n n n
g (dm.dx) = N A (m.x.a )p(dm)X  (dx), (6.27)
T

tN 0



to check that
-(1-1/2K ) -(2-1/K )
n o n 2 o
supIf (m,x)] < 4bN C lg | + b C N
t -r t -r -r
o o

it iIs easy

-(1-1/72K )
< C4 M N 0o , (6.28)
-(2-1/K )
n 2 o
+ N

n 2
IT (m.,x)] g (dra.a) < C (4 | ), (6-29)
T T T 5 t -r

Bx
o

which are both sharper than required by (A.5) and (A.8). Therefore

(1-1/K )/*

n 2 o -1\
a \<e (6.30)

n
P{(sup 1 >c Q0N
n/

Tt<TAr t -r 6
H o
(1-1/K HY(1/«*-1/c)

o
for large n,

for all large n. Since C (M) < N
6

we TFind that the sets
(1-1/K Y/**
[ n 2 )
A =1 sup 17 | <N 1> (6.31)
n \ t<TAtn t -r n /
M (o]
1-e for n>n (M.e).

n
have P -probabilities greater than
o

investigate the ferromagnetic component

Similarly to (6.21-23), we

n n
0 in t <t <Tac , using (5.20), (6 .8) and the expansion
1 2 M
@K ) 2K -1 o 2K
r(z)=r"(o)z+r 0 (o)z 0 /(2K -i)i + G(z °).
0

r 2f 1-1/K n nn n
1 =]0 1 +2 Q(N °l16 1 [r”(@Rr 1*0 X -6 | b}

t -r t -r Jt L s -r 0o s S -r

o o

n (2K ) n n
+<0 0 sk -1y (B ) 0 X > +0()10 [
s o] o s -r s -r

oo o

nn H7.

))-D (r*@o 2*n X -X 1\
1 o S

x>

|
-r

1-1/K n n
+N °<0 ,(exp r(fR ,
S o 1

sN

n 2K +1 -1/2K

-1/K n
| 0 )+O(N 010 |

QN i L e
S

n n2 n n n -n

| (m-a OM 1 A (m.x.cr dp(dn)”™  (dx)ds+M ,(6.32)
T 1-1/K -r 1-1/K t .t
sN 0 12
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where
1-1/K
tN 0
-n r 2 r n -(1-1/72K ) n n
M (10 +N 0 («-a (OOM |
t .t | 1-1/K , Bxl -(1-1/K ) S- -
1 2 tN 0 sN 0 o]
1
n 2 " .n
-10 1 JA (dm.dx.ds). (6 .33)
-(1-1/K ) -r
sN 0 o

By (6.3) and (5.10), we have the estimates

1-1/K m—n n ~n n
N 01T (0)j3 7*0 X (0)/t -0 (0)/t |
0O s S -r
1-1/K ~n . n °n
= N e o) (7X (0)-2(0))1\e (0); |
(o] S —ro
1-1/K n n -r +1-1/K n
<N °r” (19 1?7] \X -/f N0 | =0(N o 016 | ), (6.34)
or -r s -r S -r
(0] (0] o (0]
1-1/K . n 2 n 3 nn n
n °<0 ,(exp rif 1*0 m))-D(r"(0 X -n )>
S(p o 1—1/K()) ( ()os S)—r
sN 0 o
1-2/K n n n 2
- 0<n °lo | I M Ini ), (6.35)
S -r S -r S -r
(0] (0] (0]
and
n (K ) n 2K -1 n
<0 ,r 0 (0)/(2K -1)Y (© 7*Z ) o X >
S (0] (0] S -r
(0]
K ) 2K -1 n n_n 2K -1 n
=T 0 (0)/C2K -1). kB 0o <0 ,(7*9 +7*1) ) o X >
(o] (0] S S S -r
(0]
(2K0) 2KO-1/7nk  2KO-1"/n* 2KO n 2
- r 0 /2K -1 R X (@©) 6 ) M |
(6 -8) o o] s -r
(0]
n 2K -2 n 2 n n 2K -1
+0(J0 | 0 1 +]0 | 1 0 ) (6.36)
S -r S -r S -r S -r
(0] (0] (o] (0]
" / \
nn n n n n n
since 7*) X () =7X (@ § () = 0 implies <0 ,7*n &> = 0.
S S S S -r
(0]

The second integral in (6.32) is again bounded by (t -t ) C with
2 1 7

C independent of M. Hence



t /\ /N

n 2 n 2 "2 (2K ) 2K -r n 2K -1 n 2K n 2
[0 | <0 | *2 r 0 (0)/(2K -1)10 0 @© 0 00" 01~ 1 ds
i -r T -r t (0] (0] S -r

2 o 1 o’ 1 o
t
2r -r +1-1/K 1-2/K n 2 n 2K -1 -1/K -1/2K 2"
O (N O °+ (N °+1)19 | Hlg | 0 +N °+N ) +o (1)H
t M S -r s -r
1 0 0
-n
+C (-t )+ M ; (6.37)

7 2 1 t .t

12

where the constants in the terra O depend on M. The Ffirst condition
M

of (6.16) shows that we can find n (e,M) > n (e,M) such that on the
1 o

sets A from (6.31), the second integrand in (6.37) is less than 1
n

for all n>n (e,M), and the first integrand is non-positive, thanks
1
K ) n n 2
to r 0 (0 <0. (6-14) implies P (O | > C }<e for C large
o -r 8 8

o]
enough and for all n, by which, together with (6.37), we obtain for

nEn (e ,H)
1

n 2 n 2 5N

{[0 1 <C JPIA n( sup [0 1 >T(C +1)+C +C }C( sup M >C }. (6-38)
o 8 n t<TAtn t -r 7 8 9 t<TArn t 9

o M o M

But

n LN -2 -n 2 -2
P { sup M >C }<C EW )<C C < e, (6.39)
t<TArn t 9 9 Tatn 9 10
M M
1/2
where C is independent of n and H and C > (C Ze) . By
10 9 10

(6.31) and (6.38-39), we finally get for M>1 + T(C +1) + C + C
7 8 9

{At} - { sup 1 fV SK}C{ sup 1tjVv >1)UQ\A U{ | 2 >C }
M t<TAtn t -r t<TAtn t -r n o] 8
M o] M o] o]

U{|/]12 <c )n an{ sup lon|2 > c +t(c +i)},
o -r 8 n t<TArn t -r 8 7
o M o]
n n
which show P (r < T) < 4s. (6.40)
M

The condition (56.12) is satisfied. |In order to establish (5.13) for

n n
£ , it is enough to show it for ( , since (6.30) and (6.40) show
t t

n
that the sequence of processes 1§ is tight and converges in law to

t
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i} - 0. Thus, let 0 < r < X <(r +5)aT. We have
1 2 1

T
n n
<g.0 -0 >
r r
2 1
/\ r
.n r 2 1-1/2K n n n n
“gA ©) N 0 (m-ff ))A (m.x.FfF dp dm)” (dx)ds
r -1/K 1-1/K
1 sN 0 sN 0
.n
+ H (6.41)
t ,r
1 2 1-1/K
with r N
-n . n r 2 -(1-1/72K ) n -n
M :gA (0] N 0 (m-a (X))A (dra.dx.ds). (6.42)
r.r J 1-1/K s-
12 t N 0
1

After the same expansion of the first integral as in (6.32-37), we

have for large n

n n 2 2 _n 2
1 < S.0 - > < C (M(t ) + 2(M ) ., (6.43)
n r*r 9 21
r >T) 2 1 12
M
such that by (6.40)
n n n n n n
P {1<&.0 -0 >] > 73 < 46 ¢« P {|1§,d -8 >Pp»pD
r r n r r
2 1 r >T> 2 1
M
2 2 2
<4e +C (n)5 /i +C <A < 5e (6.44)
9 10

for n>n (e ,M) and & sufficiently snail. This conpletes the proof
2

n
of the tightness of the critical fluctuation processes £
t

n
Before we can characterize the limit process of £ , we need the
t
following result
Let x" - ((@" (-))2-r"(on/eH - (6.45)
t 1-1/K -r
t™N 0 o
We claim that for some n(e)
n n 2 1-1/K )2k -1/2
sup P { sup X | > N 0 a } < e. (6.46)

n>n(«) t<TAtn t -r n
M o]



Ito"s formula shows for t< t<r

1 2 M
n 2 n 2 1-1/K r 2
IX 1 = X 1 + 2N 0
t -r t -r It
2 o] 1 o 1
2 n 2 n n n
<X Ll S (m -(a o)) DA (m.x.a dp(dmM (dx)> ds
Vi X -1/K 1-1/K -r
OxT sN sN o
t
r2 -1/K r 2 n 2 2 n n n
N I(m -(a x)) )6 1 A (m.x.a p(dm)/i  (dx)ds
BxT -1/K X - -
1 sN 0 sN 0
n
" (6.47)
t .t
1 2
where
n
M
t .t
1 2
1-1/K
t N 0
r 2 n -1 2 n 2 2 n 2
IX N Mm-a & I -1X |
_ -(1-1/K ) - X -r -(1-1/Ko) -r
‘Jt Nl l/KB sN 0 o] sN o]
1
A (dm,dx ,ds). (6.48)
Using Sobolev-norm estiaates as above, we get
n 2 n 2 p2 1-1/K n 2 -(1-1/K ) -1/K n 2
IX 1 =X 1 - 2N o]x 1 1+o(N 0 )+Q(N i ) ds
t -r t -r Jt s -r s -r
2 o 1 1 o
~1/KO n
+ O(N (T -t ) + M7
2 1 t .t
1 2
t
n 2 rz2 1-1/K n 2 n
< X 1 - (N 01X 1 +1)ds + M (6.49)
t.-C Jt ‘ t .t
i 1 s 172
n
for t<r and n > n(M). Applying the proposition on collapsing pro-
2 M
n 2
cesses to |X with a from (6.18), we see that (6.17) cor-
tArn -r n

M o
responds to (A.3) and (6.49) to (A.4). Here

n -1
f (m,x)=2N

2
x)) )& >
t X

n 2 n
<X .(m -(a
t - -r

™
2

N

2
I(m -Ca

N

n 2 2
D )1 -0
X

0

o

(0]

(N )
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and 2-1/K

n n n n
g (dra.dx) = N °A (m.x.ff Yp(dm)4 (dx).
t -1/K
N
such that (A.5) and (A.8) are also satisfied. Therefore, the propo-

sition on collapsing processes implies (6.46).
Finally, we compute the limit of
wa" k0" 1@ A" 00" ©)
= + =
t t t g1 t

waw

N n n n
+<gi-F A (0),1jt>___ giX (0)0 t(0)+<g e-g[X (0).Jit>) (6.50)

, 2 £
with ngb(R ), g _6H for i=1... 1, and for t<TAf, where
jor

0
n . n 2 (1-1/K )Y/« -1
r=r a inf(e;lnp | >N 0 a )
M t -r n
0*
) n 2 (1-1/K )Y/ 2c_-1/2
a inf{t;[X | > N 0 a } (6.51)
t -r n
0
n «
with P {r < T} < 6e by (6.30-31, 40, 46).
Setting
1-1/K
t N 0
f.n 2 n -(1-1/2K ) n
M = -g_>*N 0 (m-a (x))g_0),-)
t .t - 1*1/K -1-1/K) j S. j
1 2 tN 0 SN__ 0
1
-f(£ )JA (dm.dx.ds) (6.52)
-(1-1/K )
S\w 0

A
we get for t <t <t, using the same estimates as above,
1 2



t
n n r 2 nr
Hi = fu 3. f m-a X
Y M BT M g 2D
1 1 SN
N1—1/2K0 An( n Yo (d )"n(d )
ra.x.a n x)ds
1-1/K P
sN
f £n \ -(1-1/72K )
._< y >+ m- X X ’
LR ] 0T 099, (0
I f 1 SN 0
-n re n n -(1-1/72K )
Hi )- Ea f(e )y (x)U-ff (x))n 0
S 3 1] S ]
sN 0
N2—1/K An( n o {d )"n(d yd Mf.n
° m.x.a m X)ds +
1-1/K P t .t
SN 0 12
n r 2 s\l n f 1 1/K . n .n . n n
Bta o u uj-e x (omrmp ?*g, ui x <k)-n (dx
t Jt j i S L JT ] j 0 S
-1/K n 2 (2K ) n n 2K -
(1+0 (N °(fl (0)) ))*r 0 (0)/(2K -1)! g X (0)0 (0)0 (0)) 0O
S 0 j 0 S
1-2/K n 2 -r +1-1/K n 2K -2 -1/2K 2K
+0(N 0ln I M)+O0(N 0 0 M+0( 1% M 0 )+O(N °N°)
S S
-1/K 2K +1
+0(N °M 0 ) ¢ o0o(l).M ds

t
+1/2th IiEjri’\jf(fg)(i>o(i))2r"(O) .gll(o)ejA 0) +Jf| (el(x)-gll (0))
(9 (x)-g a”(0))An(dx) ds
J J

-(1-1/K ) -1/K 2 n f,n
+o(N 07" )+Q(N °M )+0( sup X ) +H . (6.53)

t <s<t S -r t .t

2 0 12

n
Here, we can even replace X by A everywhere making additional
n -r
errors of the order |A -J( =0(N °), which however become arbitra-
-r

0
rily small for large n, since r >1—1/K0. By (6.16), (6.18), (6.51)
0

and the fact that
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1-1/K r n nn n -1/K 2
N 0 (@ CI-g 5 (OO0 ?*V A (@)-rj (dx))(1+0 (N °M )
JT  j | o s s
1-1/K n "~"n® -1/K 2
=N ° 92

ps’(z'/nz')if{“{o) j" (P) >1S(P )(r"(o)Po?X ¢eH)-1)@a+ oW °H ) (6.54)

ol -1/K 2
has coefficients ") M-D+0(N °M ) < -7"(0)0 5 /2
o] 00
d d
for large n, uniformly in p€zZ \(nZ) , we see that any limit process

n

£ =0 + 7 of { satisf ies
t t t t
D -0, (6.55)
t
and 0 =0 (oM solves the martingale problem
t t
re K ) ; . 2K -
f(0 )-f(O )- I 3 £(0 ) 0 (0)/(2k -1)! g (@ 7(0)9 @) = ds
t oJ O j jJ s 0 ] 0 s
at

£ 3 @O )2r*"(0)g (0O)g (0O)ds is a martingale, (6.56)
0 i, ij s i J

with Ff from (6.50). But (6.56) is equivalent to (6.19).
This completes the proof of Theorem 5. §

The unique invariant probability measure of the process 0 (0)€R
t

from (6.19) is

K ) 2K 2K
vo(dx)-exp(r 07 (0)/(2(2K Yr¢re(o)) °] X °)dx/z (6.57)
1 0 1

where Z is the normalization constant.
1
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7. CRITICAL FLUCTUATIONS”AT AN ANTI FERROMAGNETIC PHASE TRANSITION.

Instead of the critical fluctuations at the ferromagnetic phase

transition, we now study critical fluctuations at the point of an

antiferromagnetic transition with frequency p » 0. This means that

o]
instead of (6.2) and (6-3). we now have
d
?2(p )?(-P )>0 and ?2(p )-?2(@><5 >0 for all q€Z \{p ), G.1D)
o] o) o o] o
and
B = (r"(0)?2(p )" . (7.2)
P o]

0]

In addition, we strengthen assumption (Al) of the last section by

requiring

Q)
r-(0) <0 (7.3)
i.e. K - 2 in (6.5). For example, this is true for Ising spins with
o]
Q)
p - G 4+  )/2, where r<d) « 1 and I © =m -2.
1 -1
We fceep the assumption (A2) of the last section with K =2.
o]

We now split the critical fluctuation process

1 =N a (7.4

into the p -antiferromagnetic component and its complement
o /~* /N
n n n n
P (dx) w 2[Re(E (P ))cos@xp xX)+Im(E (P ))sin(@2;p x)]-i (@x) (7-5)
t to 0 0 0

Mdx) ~ Mdx) - /(dx). (7.6)
t t t
THEOREM 6 .

Let (7.1-2), (Al with (7.3) and (A.2) hold. For the starting

configurations, we assume

n n n 174 n

1 a €H ,and ¢ (p )- N a (p ) converges in law to some
o b oo oo
' 7-7
0(po) @-7



(ii) for some k>1 and an increasing sequence a  Wwith
n

172k -1 -1/2
N a - a0, and N a - > 0, (7.8)
n n
we have
non XK K
E I M < Ca ; (7.9
o -r In
o
and
n n 2 n 2/
E AWFF (=)) - 7"(0))X 1 )<C a (7.10)
o -r 2 n
o

for all large n. Then the critical fluctuation process converges

in law to the p -antiferromagnetic process
o]

9 (dx) = 2(Ke(p ( ))cos@>tp xX)+Im(p ( )sin(2sp x)jN(dx), (7.11)
t to o t o o

where p (p )EC satisfies the complex diffusion equation
t o

(C)) 3 . 2. 172 ¢
do (p )=7 ©@7€r"® 1 P eIl ¢ ( Hdt + (2r"(0)) daw . (7.12)
to t o t o t
C
starting at 9 (p )- Here. w denotes a compl ex-valued Brownian
0o t

motion.

Proof. Since the proof follows the same lines as that of the last
section, we will give only the main estimates. Like in (6.21-25),

we obtain for

n n
t <t <r = inf(t ; K | > M
1 2 M t -r
o}
t
n 2 n 2 r2f 1/2 n nn n n 3
= 1 -1 1 42 N ,rM(0)0 X i~ +o(* 1 M)
t -r t -r Jt[ s p s s -r -
2 o 1 o] 1 o] o] o]
+ o(i)| M | M ds
s -r s -r
o o}
¢ Q(1)(t -t ) + Q , (7.13)
2 1 tt
1 2
with the martingale
1/2
t N
_ % % T -3/4 n n 2
i = f |4 +N (n-cr (x)) (& -2cos(2sp (x-.)0 |
t ot J 1/2 JDxTI -1/2 s,, X o -r
1 2 "t N sN 0
1
n 2 -n
_1* | A (dm.dx,ds). (7.14)
1/2 -r
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Using (7.1-2), we have

n d
r'(0)o 7A (@-1 < - 1/2 r*"(©)0 & for all g€(Z/nz) \(*p }. (7.15)
p P 0 0
0 0

and

n 2 n 2 2 1/2 ) n 2 n
10 | < J]0 1 + (-N r*'(0o 0 |y 1 +C (M) )ds +Q (7.16)

t -r t -r t p os -r 3 t .t

2 o 1 o 1 o] o 12

By (7.8-9) and estimates, similar to (6.28-29), we see that the assump-

1/2
tions of the proposition of the Appendix with h= N are satisfied,
so that
n n 2 1741 -1/2 n n 2 1/2c -1
P (sup 0] >N a <P {{sup JO | >C (MN a e (7.17)
t<TAtn € -r n t<TAtn t -r 4 n
M o] M o
for all n>n (M.e). For the p -antiferroraagnetic component and
o] o
n
t <t <c , we get the estimate
1 2 M
n 2 n 2
It 1 - 1P 1
t -r t -r
2 o] 1 o]
-r +1/2 n 2 n @ n3n
O{N © 1 Yt<F , r ©)/31¢(0 ?*p ) A >
s -r s p s -r
o o o
n n n 2 -1/2 n nb5 n
(1> i I'M M )+Q(N [< | U | Y+to(D)|* | M Lds
s -r s -r S -r S -r S -r S -r s -r
o o o o o] o
¢ O()(C -t ) +Qn , (7.18)
2 1 t ,
1 2
1/2
t N
-3/4 n n 2
Q f \9 +N (M-<7 () )2cosQap (x-.))X |
* _t_ 3] 1/ 2. BXT -1/2 s 0 -
1 "2 " tN SN
1
n 2 ".n
A (dm.dx.ds) (7.19)
1/2 -r
sN ag
We calculate
@) 3 n n 3 n
r @)y3ro <9 ,(3*9 ) A >
p s s
0
C)) -n
-r @3t o X @) 1o @I ¢ A+lp +q|2)7r®
p o] s o0 g€(n2)a o]

<0 (7.20)
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4
Since t( ){0)<O. Therefore, using (7.17), we find that for n>n (e.M)

o]
n 2 n 2 5N
1?2 1 < W ¢ C *DHt +Q (7.21)
t-r O-r 4 0,t
o] o
n
with C independent of M and t < r . Reasoning in the same way
4 M
as in (6.30-40). we conclude from (7.17) and (7.21) that
n n
P {t < T < 4e (7.22)
M

for M large enough and n>n (e.-.M). The modulus of continuity of
1

n
33 is shown to be uniform in probability in the same way as in
t
n

(6.41-44). Thus, by (5.12-13), the sequence of processes { is
t

tight. OF cours,e, (6.46) also holds here. Thus, it only remains to

n
identify the limit process of the critical Tfluctuations { . Thus, let
t
p ,n n n
g 0 O = 2[Re gX (p Ddcos@?tp X)+Im gX (p Dsin(@xp x)] (7.23)
o] o o] o
2 t
with g£H ,and for fee (R ), g €H for j**I,...,£ set
r b 5 r
o] o
n p,nn p,nn p,nn p,nn
(e )=f(<g 0 9 >+<g -g 0 J >.-.<g 0 <9 >+<g -g 0 B >)= (7-24)
t 1 t 1 1 t t t 1 t t
Again, we may restrict ourselves to t <t <r with
1 2
-n n 2 n 2 n 2 1/74* -1/2
c-c Ainf(t,|* | vi(a ) -r"(0)u 1 >N a Y (7.25)
M t-r 1/2 -r n
tN o]
and
P {r < T} < 6e Ffor n>n (e.M). (7.26)
1
f,n
Now, with M from (6.52), we get
t ,t
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t

.n .n r 2 n 1/2 p ,n nn n
fu )=fu M E3 f(i )N <g -g. 0 ,r(0)u >
t t  Jtj | s i pQ s s
2 1 1
(@) 3 n3n n 2
+r T (@©)/3' 0 <g ,(3*9 ) O +0(10 I M)
pg J S 1 "rg
-r +1/2 -1/2 5
+O(N 0 M)+O(N M )to (DM ds
t
2 n p ln p ln p 7n p’n
+1/2 | 3 f(£ )(1+0(1))2r“(0) <g 0 .g 0 >+<g "g 0 .g -g 0 >
Jt 1.] 1ij S o0 J i i J J
-1/2 -1/2 2 1/4C-1/2 f,n
+o(N )+O(N M )+O(N a ds+M (7.27)
Tt ,t
1 2
Now
n3n ZXn - n 3Xn
<g.(?*¥ * >» E , %4>
9.( ) 4EZInZyd (a)( ) A (a)
/\ 3 /n
I gk @ +a_+a ) 1 (@) (a)
I 2 3 i=i i i

q_.9 .q_6(ip )
12 3 o

n 3 . 2 O i ' 3
N (pj 3® CH 1 Re@/l @ Ip (P I)+2Re(@” Gpg 9 @y

n 3 n 2 p ,n n p,n n 3
=1X (PO) 3¢ (®» )] <g 0 ,9 >+<g-g O ,2[Re (9 P Ncos RIP )
n 3 n
+li'®  (PA)) sin(2«3pQ.) H > (7.28)
and therefore
- n n - n n
(9 +0 > +0
(t t a t ot )
2 2 11
t
f2f M n n 1/2 pO ,n nn n -1/2 3 n
+ % 3 £(9 +0 )N <g -g ,r'@OJ3 3*0 X -0 +O(N M X
J s s J ] Py S s
n n p .n . P,,.n
+1/72 1 3 F(9 +0 )2r*(0)<g -g 0 .g > ds
i.j ij s s i J
t /N
A n n @ n 3/n -
E 3 H<p +0 Dr ©)20 3A (P ) 19 (pJI <g 0 ,9 >
t J J S p ° S ° ] s
1
n n p .,n p ,N

+1/2 E 3 f(p +0 )2r"(0)<g 0 ,g 0 >ds
i j ij s s i j

f,n
+M
t .t
1 2
n 2 -r +1/2 -1/2 5 1/4« -1/2 -1/2
+O(sup]O0O | H +N O H+N H +N a )+o(M+N ). (7.29)
t t -r n

0
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where we know that for large n

172 p.n nnn -1/2 3 n
N <g -g 0 .r"(0)0 X <l +0(N MM >
J 3 pQ_ s s
1/2 p,nn p,n
<- N rQs3 &/2<g -g 0 H>C 1g -g 0"l .
Pn o i i S « j 3 r
n
Hence, by (7.17), any limit process £ =P b of £ has ~ - 0,
t t t t t
and (¢ satisfies the martingale problem
t
r 2f (@) -3 . p
t(9 H-f9 )- EaflO )r @)/2 (") I* (pJd l<e_ °.¢c >
t t Jt ] S s 0 j S
2 1 1
PO PQ1
+1/2 £ a Ff(p ) 2r"(©) <g ,g >lds, @ -30)
i.j ij s i i J

Pn n
where g 0 is defined as in (7.23) with X replaced by X. (7 .30)

is equivalent to (7.12). This completes the proof.

The unique invariant probability measure of the process 9 (pjec
t O

@ 4 4
Vz(dz) = exp(r _ (0)/£16r"(0) J |zl }olz/z2 @ .31)

with normalization constant Z .
2
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8 . CRITICAL FLUCTUATIONS AT A TRIPLE POINT.

Let us suppose that we are at a triple point where a ferromagnetic
second-order phase transition and an antiferromagnetic one of frequency

p occur simultaneously. This means that

o]
5(0) - 5(p ) - 5(-p )>0 and 5(0)-5(q) > 6 >0 (8.1)
0 0 0
d
for all g€z \{O.xp }, and
o]
-1 . -1

i0 - (@"()?0) = (r“(O)?(po)) - ®.2)

We continue to let assumption (Al) and (A2) from Section 6 hold,

with (7.3), i1.e. K = 2, like in the last section. The surviving
o]
n
component of the critical fluctuation process £ from (7.4) is now
/A t
n n n n
It (dx)=F (OM (dx)+2(Re(E (p ))cos(@xp X)
t t t. o o
/n n
+1F{ (@ ))sin(@xp x)]; (@) 8.3)
to o]
V @) = { (@) - ji (@dx). (8.4)
t t t
THEOREM 7.

Let (8.-1-2), (AD) with (7.3). and (A2) from section 6 hold.

Assume

(i) a ,and ([ converges in law to ji ; (8.5)
o b o] o]

(i) (7-8) and (7-9) hold, together with

n a2k -k
G \v | <Ca . @ .6)
t -r In
o]
n
Then £ converges in law to the mixed-phase process
t

i (dx)  (OM(dx)+2(Re(fi (p ))cos(2jp X)
Tt t to o
+Im(p (@ Nsin(xp x)]-I(@), 8.7
to (0]

where [n @), P ( ) satisfies the coupled stochastic equation
t to
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(4) 3 . 2 2

dn (0)-r (o) (31(r"(0)) 1 u (o) +6[~ (p )| )n (o)dt
t t t 0 t

1/2
+(2r"(0)] dw
t

©) 3 2 2
dH @ )=r ©)/[2(r")) 1 IH © #H\'n P Ol ) (P )Hdt
to t t 0 t 0

1/2 C
+(2r*(0)] dw
t

C

8 .8)

(8.9)

starting at (n @), n ¢ ), where w and w are independent
o o o

t t

real, resp. complex-valued Brownian motions.

Proof : Again, we give only the main estimates and formulas, the ar-

guments being the same as in the proof of Section 6. For
we have
n 2 n 2 rl/2n nnn n
v | =1* 1 N <u ,rr@/s3 1*v X -v > +0(Ji/ 1
t -r t -r s o s s -r s
2 o 1 < 0
n n
+o(D\WV 1 M ds+Q(1)(t -t )+R
S -r 2 1 t ,
o 1 2
with 1/2
t N
n r? r n -3/4 n n
\v _+N (mcr (X)) -X -2cos(2sp
Rt ,t ”J 1723 =1/2
1 2 €N BxT sN
1
n 2 -n
- > | A (dm,dx,ds).
-1/2 -r
SN 0
//"n
Since r*(0)o IX (@ - 1< - 1/2 r”(0)0 6
0 00

for all q£(Z/nz) \(O,ip ), we get
0

T
n 2 n 2 p2 1/2 n n
woo | =|u | (N r“@©j9 \v I + (M) ds+R
t -r t -r t 00 s - 3 t .t
2 0 1 0" 1 0 12

for which the proposition of the appendix yields

n n 2 1/4« -1/2
P (sup \v | > N a ) < e
t<TArn t -r n
H o

for all n>n (M,e). Similarly,
o]

[ |
t <t <r
1 2 M

M)
-r
0

B .10)

n 2
(x--))X 1

(8.11)

(8.12)

(8.13)

(8.14)
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-r +1/2
n 2 n 2 2 n 2 n @ n 3 n
W 1 \vV 1 +2 0N \U 1 <V o.r ©)/31 (0 3/ ) X >
t -r t -r s -r s o] s -r
2 o 1 o 1 o)
1/2 n n5 n n 2 n n
¢O(N Mo I£ | )Ho(li< | ly I M H)to(DIIE | £ 1 ds
S -r S -r S -r s -r S -r s -r
o] o) o] o] o] oJ
+0 (1)(t -t )+R (8.15)
1 ,t
1 2
with 1/2
tN
n 3/4 n n n 2
re -f2 r \It N ra<; (X)) +2cos(2;tp (X-D™ 1|
t ,t J 1/2J3 BxT S1/2 s_ -r
1 2 €N SN_
1
n 2 1.n
A (dm,dx,ds), (8.16)
-1/2 -r 1
sN _ 0
and
@ 3 n n 3n
r @731 0 gi ,(xiz ) 4 >
os s -r
@ 3 . 3 -.n . .n
=7 @©@7/31 0 £ i (@ vg g )n IX @ )i (@ )
1 2 3 i=l i s i

oq .9 ,q 6(0,ip ) s
12 3 0

2 -r
(Q+]g +g +g +q| ) O

q€?nz)d 1 2 3
@ 3 n3 % 4 “n " n 2 A 2  Ap 2
-r ©7s3r0 (@33 ©p ©+6 1X (0)33 (¢ )p O®IliE ¢ )l )
o | s 0 s s 0

2 -r n 2 ""n An 2 'a A
+lal ) °+(6 IX @31 @ ) )G ¢ I
gefnz)»~n 0 s s 0
/~n 3 4 2-r
+6 1X  (PO)U (PO)I ) E d (I+]POKIl ) 0
S qe(nz)

< 0. (8.17)

n 2 .n 2 _n
Hence \n | < \ii | + (C +Dt + R , which implies, like in

t -r o -r. 4 o,t

jel (0]
n n

n
(6.38-40), P (r <T} < 4e for large M and n>n (e,H). /#/ is
M 1 t
shown to have a modulus of continuity uniform in probability, such

that by (5.12-13) £ is tight. Since (6.46) still holds, we only
t

n

need to calculate the limit of £ . For g€H , define

t r
(o)
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n n p -n p -n
g o =0 (@ +9g0 @ with g o0 from (7.23). (8.18)
2 £
Thus, tGH (R ). g £H for j=1.... £, have the decomposition
b ]
i
n n n n n _n n n n
f{ > T(<g >t<g -g ,V >....<g (i >+<g -g ,V >). (8.19)
t 1t 11t it £ £ t

n n
We define r as in (7.25) with W replaced by V , such that (7.26)
t t

still holds, because of (8.14), and we get for t <t <r

1 2
n n t n 1/2 _n nn n
fte ) - T )e iafu :N <g -g .r<@3 3*v X -v >
t t t 3 ] S I | 0 S S
2 1 1
(@) n 3 n -r +1/2 n 2
* <g I ©)/3r 0o (711 ) X >+o(N M +Q(C v | H )
J o s S -r
-1/2 5
+ O(N M )+o(1)M ds
2 n _n _n n _n
+1/2 Il a fu )(i+o( i) )2r" (o) <g.,g.>+<g.-gi.e.-g.)
tli,j ij s I i J J
1/2 -1/2 2 1/4« -1/2 f.n
+o (N )+O(N M )+0(N a ds+K (8 .20)
n t .t
1 2
f.,n n 3n
with M from (6.52) with K =2_. We compute < g ) X >,
t .t 0
1 2
similar to (8.17), and obtain
Q Q ~ /N
n3n n on 3 n 3 n n 2 n 2'n
) x >=eX (o)(»j (o) n (o) +6 IX (ojju (p ) (p )l n (0))
o] o
n n 2 n n 2 n " n Sh 75n
+6Re i (p )(?™ (0) G O N eI EOFE EI N e P
0] 0 0 0 0 0

& /\ ~
n n .n 2 .n n 2
+6Re X p )IX O'IX @ > i (0)n ¢ )
(0] (o] (0]

r/Nn 3 3
+2Re X (3p )?; @ ) i @ ) (8.21)
o (0] (0]
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This shows

a n
R V)
t t
2 2
n n ‘ n n 1/2 n nn n -1/2 3 _n
if (5 > )+ E3 f(fi *u )N <g -g ,r"(0)o 7*v A -v +O(N M)A >
t t Jt _J 13 ss T | o s s

/~" . n n n n
+1/2 E 3 tin +#/ )2r"(0)<g -g., § -g > s
s i T

t 1.J7] S jJ
n n @ - -r 3 3
217 3¢ S (0)731 (0 2{0)(1+0(N °H ))) .
t J j s s o)
Jr
i Zﬁ 2 n An Aﬁ 2 n 2 p ., n nzl*
i @6 @) )J A (Ov (3@ (© +IiL ¢ ) )<g 0 ,n >
s s o} j s s s o j s
n n n n f.n
+1/2 7.3 Ufi )2r”(0)<g . ,5 > ds + M
1,] 1] S S i t ,t
1 2
n 2 -r +1/2 -1/2 5 1/4« -1/2 -1/2
+9(supdy | M +N O M+N M +N a )+o(M+N )- (8.22)
t t -r n
(0]
Taking the limit n — » we get a limit process § ~ ji +u with

t t t

Ve 0O by (8.14) and n given by (8.7-9), since this is the only
t t

solution to the martingale problem

tint )—t(nt )
2 1
rv. A (4) 2. -
-jtoa rss)r (0)/[31(r"<0)) 1 [(MO) +6]#1 (pJJI| )g,)§0)i£s(0)

. 2 2 D
+3Gt_(0) +£ (p )| )<g.Q.fi >
S s 0 ] S

+1/2 E 3 _t(0 )2r"(0){g_(0)g_(0)+2Re(g (P dg_(p ) ds. (8.23)
i.J ij S \ i b i o jJ o ,

The proof of Theorem 7 is complete.
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AP PENDTIX

A PROPOSITION ON COLLAPSING PROCESSES

PROPOSITION.

m
() Let X >0 be a sequence of positive semimartingales with
t
m m
dX = S dt + f (&) [A (dt.dy)-g (dy)dt]- (A.D)
t t T t
m m A
Here S and F are adapted processes, A is a point process on
t t

*

a
some measurable sDace Y with compensator e (dy)dt. Let k>1 and
t

let be an increasing sequence with
1/k -1 -1
m a - > 0, a .m - > 0, (A.2)
m m
mm « -k
E X ) <Ca for all m. (A.3)
o] Ira
m m

Furthermore, r are stopping times such that for t£[O0,r ], m>l,

m m

S < -mbX + C , S>>0 (A.5)
t t 2
m -1
sup If | <C « (A.5)
YEY ,t<rm t 4 m
<f (y)) g (dy) <C . (A.6)
t t 5

(Here, and in the sequel, C  are constants independent of m and X
i

Then for any £>0, there exist C >0 and m such that
6 o
m m 11k -1 -1
sup P ( sup X >C (a a vam )} < e (A.7)
m>m O<t<TArm t 6 m m
o

(ii) If Instead of (A.6), we have even

m 2 m -1
F ) S @y) <Cc X +m ). (A-8)
Y t t 5 t
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then we get instead of (A.7)

m m 1/c -1
sup P { sup X >C m a 3} < e. (A.9)
nHa O<t<TArm t 6 n
o]
Proof : (We drop the superscript m everywhere). Let h be a smooth,

positive, increasing, convex function on R with

¢ ) <h@y)<a+ ) . (A.10)

and

sup sup h"(y vy )/h"(y ) - C < « . (A.11D)
y @R ly |<C 12 1 7
1 2 4

2

(A.11) implies h(y +y )-h(y )-h"(y )y < 1/2 h*(y )XC y for all
12 1 172 177 72

ly | <C and all y €R. | (A.12)
2 4 1
Now for £= 1_....(0m] + 1 and t < (E/m)ATAr, let
£ .
2 =h(X )
t t
S(mt-2) rt 2 2<5(ms-£)r 2
:=h(a e X -C /<5m-C  a e IF WIS (dy)ds). (A.13)
m t 2 730 m Y s S

Ito"s formula gives

4 rsJ 5 (rat-1)
dz =h"(X )a e Mm<BX -C +S )
t t m t 2 t
A 5(mt-£) 2 25(ras-£) 2
h(X +F )-h(X )-h"(X )( e f +C a e @ ) DS @y
T Tt T T m t 7 m T T
+1 [h(X +F )-h (X )J(A(dy.dt)-g (dy)dt). (A.14)
Jy t t t t

Using (A.5), mt-KO and (A.12), the first two terms in (A.14) are

non-positive, such that Z are positive supermartingales on
t

t < (E/m)ATAr. Doob"s inequality and (A.3) yield

[mT]+1F £ -\ -1 [Tn]+
PC Q < sup Z>rj >)<m § £ E@ )<>j(T+I)(a+C )<e (A.15)

1=1 \t<(£/ra)ATAr t / £-1 o] 1

£ -1
for r, sufficiently small. But sup Z < mr is equivalent to
t<(£/m)ATALt t

S(mt -£) -1 -1 pt 2 2i(ms-£) I 2

e X -C /<5m)<h (i) )H+C a e If (W1 g (dy)ds (A.16)
n t 2 730 m Y s S
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for all t<(i/mJaTat. Ifwe restrict t to the interval

((l-l)/m,{t/m)aTat]. we see that by (A.10) and (A.6),

(A.16) 1implies

resp. (A.8),

-1 -1 6 -1 -1 -1
X< C& m + h @Mm] )a
t 2

2 25(mt-£) -26£

+ e Ca sup I iy)l g (dy)[e -e 1/4<5m
7 ms<t Y s S

ri
-1 -1 I/t -1 -1 -1
<C(5m+Cnm a + C am sup X + m (A.17)
8 9 m s<t s

where the Tfirst component in the last bracket refers to the condition

(A.6) and the second to (A.8). Thus by (A.2)

[mT] +17/ £ -
0 sup Z <mi)
4=1 \t<(i/m)ATAt t J
( -1 -1 /e -1 -1 -1
C<sup X <C 6 m +C m a +C am  supX +m
Is<t s 2 8 o] 9 n s<t s
1/i -1 -1
=] a_ v«.m
CI sup X <C m m
H<TAT s 10 /e -1 (A.18)
m a
m

for m sufficiently large. (A.15) and (A.18) prove (A.7), resp. (A.9
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Nucléation for a long range magnetic model

by

Francis COMETS

UA 743, CNRS, Laboratoire de Statistique Appliquée,
Batiment 425, Univ. Paris-Sud, 91405 Orsay Cedex

Abstract. — We arc interested in a local mean-field Ising model on
the torus which exhibits two stable equilibria at low temperature and in
the limit of infinite number of particles. Using large deviations techniques,
we analyse the behaviour of the system during dynamical transitions from
one equilibrium to the other: it is shown to be crucially dependent on
the temperature and the interaction structure; symmetry breaking may
occur, as in the asymptotic behaviour of the Gibbs measure.

Keywords: Mean-field, ising model, large deviations, nucléation.

Résumé. — On considere un modeéle d’Ising de champ moyen local
sur le tore, qui présente deux états d’équilibre stable, dans I’'asymptotique
d’un nombre infini d’aimants et a température suffisamment basse. A
I'aide de techniques de grandes déviations, on décrit le comportement du
systeme lors des transitions dynamiques d’un de ces equilibres a l'autre :
il dépend crucialement de la température ainsi que de la structure fine des
interactions, et peut présenter une brisure de symétrie analogue a celle
de la mesure de Gibbs.

I. INTRODUCTION

We are interested in long-time behaviour for a magnetic system, consisting
in a large number N of Ising spins with fixed sites, and weak pair interaction

(depending on distance between particles).
In the case of a ferromagnetic mean-field model without external influence,

Annates de r/nstitut Henri Poincare - Probabilites et Statisiiques -0246-0203
Vol. 23/87/02/135/44/S . /© Gauthicr-Villars
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the Gibbs measure .is concentrated on the neighbourhood of two stable
steady states u*, —u+, at low temperature [//]. We consider a dynamic
process, whose invariant probability is the Gibbs measure; on finite lime

intervals, it behaves—in first approximation — like the solution of an
ordinary differential equation (the bigger N the better approximation)
with u*. —u* as stable equilibria. Because of ergodicity, the process

starting near u* leaves the domain of attraction of u+ in a finite time.
Through this paper we study this type of dynamical phase transition and
establish results conjectured by G. Ruget [24]. Such transitions can be
studied using the theory of large deviations: one can refer to [2] (/5] for
finite dimensional processes. A quite recent reference to large deviations
for distribution-valued processes is [5], with an application to the empirical
distribution of a system of N weakly coupled diffusions; however, their
model is quite ~different from the one studied in this paper.

Using large deviations estimates, we show under some conditions that
the transition occurs at the neighbourhood of one of the « lowest saddle
points » separating the two domains of attraction. We then give an example,
where these saddle points can be found explicitely, and show how these
results yield an explanation to nucléation [23]: at low temperature, the
decisive step during a transition is the constitution of nuclei (of macroscopic
size) in which local magnetization approaches that of the new equilibrium;
these nuclei will later agregate as the whole system tends to the new equi-
librium. The structure of the nuclei depends on the interaction function.

To make this more precise, we first define the static model.

For every integer n, we consider onT = (R/2)*, the ¢-dimensional torus,

N = nf magnets located at each point jc of a square lattice with mesh —
n

the magnetization at each point is represented by aspin rj”"(xX)e { — 1, + 1}
(e
Let S™M= |x GT; x= ri*eeeosr*e {0.1, ee>w—1}| be
\nn nJ
the set of N sites, and £ = { — 1, + 1} the set of configurations

tf - (nnx))X y~.

These magnets undergo an external field, represented by an element h
of C(T), the space of real continuous functions on T, and interact according
to a symmetric translation-invariant coupling represented by a symmetric
function JeQT). In statistical mechanics (cf. (25] [26]), one defines the
internal energy of a configuration tj* as:

H/Y= - V Mxh'M - A~ V J(x- Y)7"M7'¢)  (L.1)
<y™* xX.yty

Annates de t'Institut Henri Poincaré - Probabilités et Statistiques
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and the Gibbs measure on 6* as:
g'™ =" or*" aly) *2)
where fi is proportional to the inverse of the temperature, and where the

constant ZJ makes G'" a probability. The multiplicative coefficient ™ in

the interaction term in (1.1 )ensures the existence of asymptotics when n goes
to infinity. Notice that the interaction is long range, wherefore this model
is qualitatively different from nearest neighbour ones (for example see [26])\
but interaction intensity depends on the distance between particles, thus
being more general than the Curie- Weiss model, in which hand Jare constant
[12] [13]. This is a local mean field model (or long range model).

Let us describe now the dynamics.

For each N-particles system, the configuration will evolve with time,
according to a stationary and reversible Markov process, whose invariant
measure is the Gibbs measure G"; spins are allowed to flip, at most one
at a time (Glauber’s dynamics, see [77]).

Forxe lettxe£* = {—1, + 1 ~% ¢""'the operator offiip at site x:
|
un-ly) - + X
y) I -I’t*)’» y: *
and Ax operating on functions / :£* — R,
Ax/ =/

The configuration being rjHat time i, we imagine for each site x a clock
delivering a random time rx with exponential law with intensity parameter
<X, -

All these variables are supposed to be independent of one another, and
of the past. Let x0 be the site with shortest time rXo; at time t + r”™, one
flips the spin in x0, and the previous mechanism is restarted. The resulting
random process of configurations is denoted by *'; its infinitesimal gene-
rator is

L"/fa") « c-(x, f")AX/(fI') (1.3)
Xty *

In order to obtain the previous properties together with asymptotics
as n goes to infinity, we will restrict to jump parameters ¢ of a suitable
form given below in (1.9 to 1.11). Our purpose is to establish large deviation

Vol. 23. n* 2-1987.
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results for the configuration process: these being closely related to the
large deviations results for Gibbs measure, we recall now the latter ones.

As the set &" of configurations depends on n, we will represent the state
of the system by a measure ¢"

1
"N Z n(x), = n"2" (1.4)
N
xes™
. . LI | .
where &, is the Dirac mass at point x,and 7 = N Z d,. As in [/7], we

xe ™
could as well consider the density of magnetization

- Z PO, o (1.5)

xey "

l 4
which is constant on the cubes x + [0, -—[ ,Xe "
n

It’s easy to transfer properties obtained for one of the representations
to the other. We will use (1.4) for calculations, which can be written for-

. . . 1
mally in a simpler way: for instance, HYn") is equal to — N <h + 3 J*a", o >

where = denotes the convolution and {, ) duality brackets. Nevertheless,
in § 8, 9, we will consider £* which is more suggestive.

Then " belongs to the set M, (T) of all bounded measures u on the Borel
field of T with total vanation norm || || £ 1. M(T) will be furnished with
the weak-* topology t* (weakened by C(T)); since ln.:':; /. the Haar pro-
bability measure on T, the states of the system will be represented in the
limit n — oo by measures ul, with density ue€ B the closed unit ball of
L2(T) = L=(T; A).

The following results are due to Eisele and Ellis [//], for general spin
distribution; see [5 ] for the lower bound; the techniques of [/6] also extend
to this situation.

THEOREM 1.1. {

Lhad--]

where the specific free energy F, is given by the variational problem
F,,=inf{ V’.(u);uEB} (1.6)

Annales de I'Institut Henri Poincaré - Probabilites et Statistiques
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The potential Vh is the r*-lower-semi-continuous (l.s.c.) functional

1
Vkiy) uh o &uxA xif M forsome 067 (1%7)

VAp)= 00 otherwise
and $denotes the Cramer transform ofthe single spin distribution —«{<& +<5_t):

_ 10w _ 1—W
"> W= ——-— log(i + W)+ —-— log (1 - W), We (—»11-

X A»

2) For all A < M”"T),

Fic—inf V*(/i) » lim -j- log G"(A)  lim log G"(A) < —inf V*(/X) + F*
/i Np X

(here, and in the following, we identify G" and its image by the application
n” - O-

Therefore the support of any accumulation point of the sequence of
probabilities G" (on M,(T)) is contained in the set of all the solutions of
the variational problem (1.6). We will call stable equilibrium (or phase)
any global minimum of \*, metastable equilibrium any r*-local minimum
of V,, and more generally equilibrium any zero for the gradient (I)

-dVhu) = —h —J *u + - tan h-1u (1.8)
P
Notice that an equilibrium is ¢-equivalent to some element of # (T;
3 1 iD-
If h=0 and J * 0, the model shows a phase transition (see previous
references); for fi greater the critical value fie= (< 1,J >)~I, there are

two stable equilibria, with constant densities u+, and —u+, where u*
Is the unique positive solution of the real equation associated to (1.7):

tan f > u- —u
Now we define the jump parameters

<"(*, ") = dx, O exp { - tIHX)p{h + I * <I)(X) } (1.9)

(*) V* is differentiable on {u;||u||9 < I } with respcct to uniform norm with diffe-
rential v. =+ <dVAu), r ). In (1.8), tanh“ 1 denotes the inverse function of tanK

Vol. 23. n* 2-1987.
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with ¢ a continuous function on T x M(T) (set of all bounded measures
on T, furnished with topology t*) to ]0, + x[. We furthermore assume that

VxeT, V/ieMt(T), cv,/l - y{&} = dx, fi) (1.10)
and that there exists some Co (capital C will denote constants) such that
llc<u.) - cfu2)H g CO|luj-u 2], V«,, u2e LY(T) (1.11)

Relations (1.9, 1.10) imply that « detailed balanced conditions » are
fulfilled with respect to G" (see [25]); the form of the multiplicative factor c
of the exponential in (1.9) ensures us with the existence of asymptotics
and (1.11) with the uniqueness of the limit process.

The simplest case is c(x, //) = 1, which is the situation considered in [5J.
Other examples are given by c(xtp) = f(6i * . EEK* (X))

T) and 6k0) = 0 for k = 1, ,K, and f a Lipschitz continuous
function on RK

For any sign e {—1 + 1} let

(X, /i) = c(x, fi) exp {—f]0(h+.J *}J)X) } (1.116)
Then «uUfl. g ' Z”X() e (1.12)

Let g be a bounded measurable function on T, Fe:n -* <g,n >;

applying (1.3) to f{rjn)——l~\I c/_l g(X)Tjnix), we derive the infinitesimal

Xmy~
generator (2) of the measure-value process <f, restricted to such linear
functional Ft:

L-Ft{fi) = - ~  <ii+  gcnix) > (1.13)
*1}

Because the particles are weakly interacting, it turns out that this process
converges uniformly on finite time intervals to the solution u, e B of the
ordinary differential equation

AuL,=Eo- A (u, + then(u,) (1-14)
¢+ il

= - 2N | —uf sinh(idVk(ut) (M. E)

(2) still denoted by L™
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the mean evolution equation (3); the right hand side of (1.14) is obtained
in taking the limit n —* oo in (1.13). In the simpler case of Curie-Weiss
model, this law of large numbers may be found in physical literature (see
[75]), and in [22] for a global mean field on 27.

Notice that the equilibrium are the stationary points for equation (1.14).
Furthermore, one can show that V*is a Lyapunov function (*) for the dyna-
mical system (1.14), in the sense that Vkis decreasing along its trajectories.

Hence, the transitions from the neighbourhood of a stable equilibrium
to another are large deviations from the law of large numbers: we need
estimates for the probability of such an event. We will obtain the following
result:

let T >0, uoe™(T; 1-1, ID. °0 a sequence of initial magnetization
measures such that t* —Ilim a% —u0, and Ac: 3 {[0,T];Mj(T)} the

space of all right-continuous left-limited functions on [0, T], with values
in (Mi(T); «%).

Let (A) be the set of interior points of A with respect to the uniform
convergence topology, [A] its closure.

Theorem 1.2. — There exists a functional 10T such that the inequalities
- inf { I0t<<P); e (A), O = u0 } » Iim(i}gf’]‘N Log P;g{<e A} "

< Iim_:itojp 19 Log Plg{o*e A} ™ - iInf{I0OT(<P); PPe (A], g0 = u0}

hold whenever { <'e A } is measurable for all n(P£o denotes the law of the
magnetisation process starting at <lg).

The action functional I0t. or « energy », will be defined in section 3.
It is such that lotOp) ™~ O» with equality if and only if 9 satisfies (1.14);
furthermore, the least energy trajectories which leave a potential wells
are time-reversed solutions of M. E., this least energy being related to the
potential Vh

In section 3, we also give some properties of 10T, which are proved in
appendix. We establish the Vent’sel-Freidlin estimates for large deviations
in 84.5. Technical difficulties essentially arise from the lack of regularity

f1) From (1.11), (t. 14) has a unique solution in L'(T); a prccise study on the of B shows
that || u,|jlw < 1for all r> 0.

(*) Use inequality : sinh r i r* r real (notice that the vector field is not a gradient field).
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of various functionals at the boundary (local magnetization equal to +1
or —1). this boundary not being rare enough (in the sense of large deviations
probability) to be negligible. The lower bound for the large deviations
probability is obtained in a manner slightly different from [27] in the
finite dimensional case (another problem being the structure of neighbour-
hood of 0 in the weak topology); as for the upper bound« we first show a
local estimate, then extend it similarly to the proof of Sanov's theorem [5].
The law of large numbers is a by-product of theorem V. 1: it justifies intui-
tively some further choices, but will not be used in the proofs: therefore
we do not give a more precise statement of it Theorem 1.2 is a straight
consequence of theorems IV.1 and V.l (sec 7.6 in [2] for the proof).
In §7, we solve the problem of exit points from a basin of attraction; the
result extends the well known one in [A5]. The quasi-potential W (u,, u),
which represents the minimal energy to go from an equilibrium ue to u,
is a lower semi-continuous function of u; but this doesn’t change anything
compared to the classical situation, as we can guess from the result of [14].
As an application, we study nucleation in a simple model.

Il. BASIC PROPERTIES AND PRELIMINARIES

Since Sfnis finite, there exist a probability space (EIF FF, P")and a process 1"
on Q" with generator L given by (1.3). For will denote the
law of the configuration process (rtf),*** starting at rjo, or, equivalently,
of the measure value process (erf)frfl*. Let F, be the a-field generated by the
variables rjJ, s < t.

Let g(t, &) be a bounded measurable function on R+ x T, such that the
set {te R+;3xe T,s -» g(s, x) is discontinuous at point t} is discrete.
The process 1" is of bounded variation on every finite interval of R+ with
probability 1, so we can define as Stieltjes integrals the quantities

1
<N AN > = N 8(3"’l )dn.l(X)‘
«y—

In the following, we shall use the following probabilistic results (see [j9]
or [20]), and use (1.12):

0 Mtg) = £ < da: >- JQFjefys
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is a (P\ F,)-mariingale with increasing process

<M"U)>, =i £ <A'+ ne*gUn«) >as. (2.1)
*«(- 1.+ 11

ii) For /xeMi(T) and h' bounded measurable function on T (so-called
because it is formally an external field) let’s define
rn

rCE= " e ) @

Then  RM®=expj NE ~<g, dat>- £ [ £)<fs] (2.3)

is a (P, F,)-martingale.
Let’s define the probability P", by its restriction to gz

dpP
< O
Denoting by c¢?, LJ for t < T the analogues to (1.3, 1.12) with

*«« = <VexP - nPg, (2.4)

instead of c,, L? is the infinitesimal generator of the process P". In parti-
cular, the analogue of property i) is valid for this last process.

Because o f(1. 12, 2.4), P"is the law of the magnetization process evolving
under external field h negt. This fact is the counterpart of the duality
relationship (1.6), in which F* is written like the Legendre transform of VO
(i.e. V* for h = 0): magnetization u and external field h are conjugate
variables. We will prove that the law of large numbers remains valid
— with the coefficients c— for a large class of such (non stationary) pro-
cesses P (see (4.7)).

We need some topological properties of the space M t(T), that we state
here for convenience:

Proposition Il.1 — (Mj(T), r*) is a metrizable compact space.

M j(T) is the closed unit ball of M(T), so it iscompact for weak-* topology.
*if(T) is a separable space according to Stone-Weierstrass theorem, and
M ,(T) is strongly bounded; so [21] r* is metrizable on M ,(T), and defined
by the metric p

p(n, v) = sup {L + m|)_1|<n-veliKm*>|}
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Notice that peB is equivalent to 0 < —-— ~ A and therefore B is
r*-compact too.

Let Pot(m*Vv) = sup { p(p,, vr): te [0, T ]} be the uniform metric on the
finite time interval [0, T ]. By computations similar to those of the end of §4,
we can show that u0 -+ u the solution of (1.4) starting at u0, is continuous
on (B, t*) to~([0,T]; B).

Through this paper, sf = (Ak&R= 1,2 ... K.} will denote a parti-
tion of T in rectangles (i. e.: product of connected sets of R/Z) with non-
empty interior.

Let #* the projection operator associating to a measure p the Radon-
Nikodym derivative of its restriction pjs/ to the algebra generated by si
with respect to X/s/:

_dpfsi _ V* p(At)

nodXIsl g jsiAK) 29

For s/,, the algebra generated by the cubes x + 0, — ,XxeS?*, one sees

that = jt~V. In 81V, V, we will use operator «* to define sets that are
approximately neighbourhoods of 0:

Proposition 1l.2. — i) Given such a partition s/Q and a x*~neigh-
bourhood "V of 0 in M(T), there exist a finer partition s/ andt > 0 such that

V/i, ve Mt(T), Hic*(p - WVH <c¢c = p —ve

ii) Givensfande > 0, there exist and integer n0Oand a weak neighbourhood
ir of 0 in M(T) such that for all u€ B, n ™~ n0 and a"e

a*—uef = | —ull, < e.

To prove i) use uniform approximation of continuous functions by step
functions on si, then recall the inequality Hp. j| ™ 1; for ii) notice that a

strip of width a on the torus contains at most + -~N points of S*mlattice.

Il. THE ACTION FUNCTIONAL IOT

In this section we state some standard properties of the action functional
lot-The proofs of the results 111 .3, 4 and 6, somewhat technical, are carried
out in the appendix.
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First of all, wc anticipate the demonstration of theorem 1V. 1 in order
to introduce the action functional in a heuristic manner. Let’s fix some
time T. and consider a smooth enough trajectory < defined on (0, T] with
values in B; let’s try and estimate the probability for the process <" to be
uniformly close to pon [0, T], following the idea of [27].

We look for some exponential change of probability making ¢>the central
path; since magnetization and external field are conjugate variables (see § 2),
it will consist in an adequate choice of some extra external field h,, under
which <p satisfies the mean evolution equation M. E.: let P be the proba-
bility law on (Q\ R) of the magnetization process with external field h + h,

dP’

= R- = exp N N < h,dot>- £ r;(<r;, h)dt 3.1
4§ pN | (<r; h)dt| - (3.1)
We then require the analogue of (1.14) for P"

= - N (<P. + n)crispt) (3.2)
>
with ip, the time derivative of 4 and c,., given by relation (2.4). Using
(1.11 3, we derive the following expression for h,:

h = —h —Jeqt + fi~ltanfc" Vi + 1sin fis " --------- N (3.3)
2<K<P,)VI-<P«2

where tan h~ 1, sin 1 denote the inverse functions of tan Ji, sinK
Formally, the computation will consist in writing P'(<r" ~ <) as

E'{1,,,-«, (Rt)" 1}, with E' the expectation for P". For trajectories <,

close to < we replace approximately F(<IT, ht) with r;(<,, h,) and

r< !"(;<7?> with r< h,, ipt > dt using the law of large numbers for P"
We now recall that is the central path for the process P, and obtain the
estimate exp —N {(kh,,<p,") —r*(<p,, h,)}dt for the previous pro-
bability. This justifies the

I11.1. Definition of the action functional 10T
Because of (1.11 b, 2.2), we define for ue B, ae R and h'e L”(T)
r~ua x) = o< " 1* ~ ek g - 1XX)

*«i-i.+ U
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and

re(«,h) = | Hu, h'(x). x)dx. (3.4)
For an evolution speed ve L‘(T) of the magnetization, its Legendre trans-
form is

u) = A—?xliP{I‘) j(./2\ <v,h"'>- T*Qu, h'); (3.5)

r*(u,.) is a convex differentiable function on L®(T). If Hull« < 1, the
supremum (3.5) is achieved for h' given by the right-hand side of for-
mula (3.3) with u instead of ¢, and is equal to

J_+tyi — + W2y
v - JTr- Log-—-memmmm- e

pAU/I+ JeU)+ Ciui| -y i - ul+ (j72c(u))l
+ cosh/7(fi + J « u) —usin h/if/i + J u)j ~Jjoax (3.6)

Troughout this paper, we furnish ~([O.T]; B) with metric pOT defined
in §2; for an element <pof this space, we denote by (D) the following diffe-
rentiability condition:

3P€ L([0, T] x T) such that for all t < T,

<p,(X) - <po(x) = J Mx)ds ;@ S.

We will then denote <p(s, X) — I5(X).

Definition 111.1. — The action functional 10T is

Jf* <p)dt if opsatisfies to property (D)
10 ¢(<P

00 otherwise

We shall say that an element < of'€1fO,T]; B) is absolutely continuous
if for ail t > 0, there exists some A > 0 such that for all integer i0 and all
rectangles Aj, ..., Aioof T, and all real numbers s|, t,, ..., s,0, th satisfying
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to 0N5 < r~"T, the inequality y 1t{—5,|™A)) < A implies

I<<u- Vi.lad>l < «
bz o

Proposition Ill.2. — <pe”([0, T]; B) satisfies (D) if and only if 9 is
absolutely continuous.

The proof of the proposition is standard (see [/0]), and is not carried out
here.

I11.2. Some properties of the action functional.
We first notice that if psatisfies to (D), we can find a modification of
such that (pip <0 at all points (r, x) such that | | *= 1. We will then sup-

pose this condition fulfilled by functions u, uin the following of this section.
We need some technical results for obtaining usual properties of I10T:

Properties 111.3.

a) lot(<p) = | [2</(t 9, ®>-re(<p,, F{t )it ]

su
/o«_—((OF?TTKT) {(J
<p,(x), x)dtdx

I bo.Ti=T
with
Jf{u, t\x\x) = sup itx)a - T(u, a, X) j (3.7)
b) Ut(?) < 00 if and only if oLog || P Log—-— ¢ >0 and
1_<P

1
P Log --———are elements of L*([0,T] x T).

c) There exists some constant K such that

J2u, v, X) £ Log M+1b0Log—1— + Log —*—hKj(x)+ K
( ) 2 | g g1—u | g1+u j()

(here, and up to property e) we write v for v(x), no confusion being possible).
d) There exists some constant K > 0 such that

Jf(u, v,x) £ - 1v| [Log |v] - K]- K
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e) For y > 0 we have

| If(u, v,x) —JIT(u,, t\'y) |
=+ WO){ 9y(uv) - «() ]+ M-yl + PUu) 1}
for all u, u, such that ||[uHk,|Ju, IL ™~ 1—y, all x,ye T and ye R.

The property a) shows that one can reverse the order of the supremum
and the integrals; b) is a characterisation of finite energy trajectories. With
upper bound c) one can limit to consider magnetization densities avoiding
the boundary points —1, +1. The continuity property e) is somewhat
similar to condition (Q in [27]; « outer » speeds being forbidden at these
boundary points, it only holds for non-zero y. The regularity in the x
variable is a (new) property that enables us to replace magnetization u
with asmooth function on T in proposition 111.6 d)shows how Jf increases
at infinity; it is an usual property for Cramer transforms.

Furthermore one can notice that the condition required in [2] is not
satisfied here, because the set of possible speeds is discontinuous at the
boundary points —1, +1.

Theorem 111.4. — 1) Du {<p; Ior ?)< lo}is compact in#([0,T]; B)
for all non negative —"

2)'The functional 10T is lower semi-continuous on [0, T]; B).

This result ensures us with existence of solution to variational problem
min { lo-ri'P); <PE A } for closed subset A of ~([0, T]; B).

Remark. — Whenever tp satisfies to (D), gis continuous on [0,T] with
values in B furnished with || . It norm; but this topology is too fine to
make D,0 compact.

In the proof of theorem IV. 1, we will need a large enough class of smooth
functions: piecewise ™ I,° functions.

Definitions I11.5.— We define $fP|X°s the class of all pof#([0, T] x T;
]—1, 10 such that there exists a subdivision S = (rt)ksto of [0,T] with:

Vk ~ —1,d—<Pexists on [rt, ft+.,] x T and is continuous.

Then < satisfies to (D), and 9 = T

Proposition 111.6. — Ler < with 10r(<p) < 00, <Po€*&(T\ 1—1,1]), v,
%> 0.T hen, there exists e~ P 1-0 such that
- R. potop. P <S and [ 10T(<P) - 1ot(£) 1< ) (3.8)
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IV. LARC LARGE DEVIATIONS: LOWER BOUND
FOR THE PROBABILITY OF PASSAGE IN A TUBELET

For (pe<”([0, T]; B) and S > 0, we define the [0,T]-tubelet with axis 9
and radius $as the set of all p.: [0,T] - MjfT) such that Pot(/* ¢) < &
We shall denote it shortly by { 9}~

Theorem 1V.1L — Let 8>0and<p €<£([0,T]; B)with<pOe &(T\ ]—1,1]).
For all y > 0, there exist an integer nQand 5, > 0 such that n  nO implies

P {Pot(*". 9 < S} £ exp - N{IgH®P # y}
on the set { p(og, F0) < (1 }o
0 Proof. — Suppose first «<pe”™Pi'0 (sec def. 111.5).

We can define the extra external field h, by (3.3) and the probability P*
by (3.1); as written in the beginning of 8§ 11,

(4.D

¢pbeing asmooth function, there exists a finite subset S of [0, T ] such that
the family { h,; t# S } be equicontinuous on T ;so is {c,(ji); ife { —1, +1 },
iis M,{T)}. Then, the Riemann sums in T ht) converges to the /.-inte-
gral, uniformly for f£S and /ieM,(T), and this last quantity converges

uniformly to
F*0% s )<y 2”“ | -~ i)c (4.2)

n«l- J.+ 1)

which is an extension of (3.4). Recall that the generator Lf of the process P*
is given by (1.13) with c,4= c,.exp —rjfih, instead of c,: in particular,
M*(l) = < h,, do*t > —j*I'Lj'iFs.Xoi*r (notation Ft being defined just

before (1.13) is a random variable with mean 0 for P" and variance less
than Q N -1, relation (2.1) showing that the constant C, depends only
on (p. Using ChebichefTs inequality, we choose some integer n, such that

Vnssn,. \WD0e«r, P~ { < vi6 } £ 3/4 (4.3)

As above, we notice that LT(FsXm) converges informly to Lf(Fj,XM)> with

U(Frxa) = -~ <n + ni gc,Af*) > (4-4)
=fg(- 1+ 1)
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wc then choose n2such that, for n > n2, we can replace on { mt(si) < y/6

up to an error of magnitude y/6 for each operation, J* < h,, do"™ > with

J* L"(Fj;eXtrfMi.  this last term with L,(Fj,Xo'rMi» and TJ with T*;

we obtain:

wr o~ Mpnf [N k> P<SH+1- <9

We need the following result, where Lv denotes the operator given by (4.4)
with h' instead of h, (i.e.: ¢, exp —rjfih* instead of c,.,):

Lemma 1V.2. — Let Q be a compact subset of ~?(T). ~\he family

{H —=* h'), n —=* Lft*(F*-X/i); h* € Q } is equicontinuous on (M ,(T), p) .

We go on the proof of the theorem: since ¢>is smooth, Ascoli’s theorem
shows that { ht;t$ S } is relatively compact; the lemma yields some S’ < 6
such that:

F iy 2 <IMIT) A f |L,(FifX/il)-L,(Fs,X/i2)|<(3/rr)-1y

. We ]-s
I PU*I, A2) < 5° ~ 11 £)- r*x(~2,h)\< (6T)_ly 6 1’
(4.6)
Now, we claim it’senough to find n3e ftJ ™ >0 with:
3
p(oo, <o) < ¢i, n"™ nd3 = PN({9}P) £ 4 (4.7)

Indeed, for n> n, V n2V n3, relations (4.4, 8, 9) imply:
pis<{«.})> é ! -i{IM, 1) 17|}}

[7

exp - n(TTA" L(FsX) - r*(v,,A)]* + 5]\

\
{<P} IMT h)

Combining (4.3 and 7), we see that the last probability is not less than 0.5.
< being the central path for P\ Lf(Fs,X<Pi) = < h,, tp, > holds for all t4S
(one can compute it from (3.2) and (4.4)): recalling then that h, is the solu-
tion to variational problem (3.5), we see that the term between brackets
in the last exponential is equal to <), this yields the desired result.

We now prove (4.7). From proposition 1.4.i) we first fix some parti-
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lion ssf of T in rectangles with non empty interior and positive ¢ such that
V* vEM(), |it*{p - vi|, <c ~ pilt, V) <. (4.8)

Let’s consider a finer partition <®—{ Ak;k£ KO }: forrje { —1, +1 }*°,
K>

we set /iN= We recall property i) in section II:

M;(2)= <<¢ - 00. /> - £ 1;(F*;X<n

are (P —F,) martingales, which increasing process is uniformly bounded
over (0, T Jwith C2/N for some constant C2depending on <p. Since equality
LAFjXN*) = < g, st > holds for all bounded measurable function g on T

and all s$ S, and since <p, it*°f > = < > for [ €*MN0, we
derive:
Mrin) = < - <PK > - < - <Po), K >

- £ Xds - £ [LAF*.XN) - WFE.-XMIN  (4.9)

with X, = L /F ™) - WF*X<p,).
We state it’s enough to show:

VSES  Ix, I~ C3|| TCGt —<w) |j + £0 (diam js/0)  (4.10)

where diam s/0 denotes the diameter sup {|x—y |;X, ye A*, k=1,..., KO}
of partition s/0, £0 a function with limit zero, and C3some positive constant.

Indeed, we then fix partition s/0 finer than s/ such that last term in (4.10)
be less than (e/4T) exp — C3T. As above, we can suppose the last integral
in (4.9) to be bounded with (e/4)exp — C3T for all-n superior to some nA:
this time, the functions to be integrated with ).Hare equicontinuous on the
rectangles A*. At last, using property (2.1, ii) we can choose SXx > 0 and n5
such thatn » n5,p{ctq, <p0) < & imply JJic**0q - <Po) ||t < (c/4)exp - C3T.
Then, (4.9) yields

I<TT-"o« - <t), b >1£ IMr(ff) 1 + (3e/4) exp - C3T

+ C3J | - o) |t (4.11)

Using Doob’s inequality for each martingale Mr(n), tje { —1, + 1J1,
we can control the probability of
SCH= { max roax | Mr(rj) | ™ (e/4) exp —C3T }
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with
P:32T") £ 1- 2Ko(25C2/c2N) exp 2C3T,
N 3/4 whenever n is more than some n6.

Notice that || jri/o<@™ — <p,)|li *= max < — <p\, in> :  for
n~ n3= nAV ns V n6, relation (4.11) shows that

Il - <)l ~ C3 lit=0« - tW|].<fc+ sexp - C3T
holds on the set ST'r\ { p(oo, <Po) < ¢i }» Using Gromwall’s lemma, we
derive sup || —Vr)||]i ~ c; since Js/0 is finer than s/, Jensen’'s ine-
IST

quality and (4.8) imply (4.7).
Now, let’s prove (4.10): denoting the random function

2c(<ri) cosh fi(h + hs e J*erj) by
we have:

iX, i «i<<p,~ >i+ 1 *(.<£ - >
r A s *
) <l<s+ n! <*>)]« -5 -0-11

+ 1<<7) —c(7r™°CT) | + | c(7r*0<ri) - c(a?) | >.
The first bound is not more than || tfMl« || 7T%°(<«rJ — <) ||, ; the second one
can be controled with the continuity modulus of the (equicontinuous)
family (c(/x); //eM ,(T)}u{ir;tiS}u{J,/i}. For the last one, we
use mean-value theorem for the derivative and inequality
IV [(X) NI TGV, + 1&XI|J, - TCQJ, IU

(denoting by Jx:v —= J(x —vYy)): | — 11 is bounded with
| — <) |li + «i (diam s/0) for some function e, with limit zero.
Next we use relation (1.11) to get
Il <*<Ps) ~ [li ~ CO{]| <ot - Hi + 1l - <P |li }

At last, || c(/i) —c(v) ), goes to zero with v); but for ail continuous
function / on T and all measure /xeM,(T),
I<n - n"°n, /> | = |</*,/- |
£ <IMU/ - *-"efI>
<Ul/ - n*°flU
then sup { p(/i, P€M,(T)} goes to zero with diam s/0. All the

considered functions being bounded, these estimates prove the statement
(4.10).
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In the general case, we suppose lotlV) < °°. the opposite case being
trivial. Then proposition 111.6 for g y. G2 yields a smooth trajectory ip,

for which the previous computation apply. 0
O To end, we prove lemma 1V .2: the functionals T* and L* are
composed of two kinds of terms.
S'@) = <A 0exp > and S2(@*) = < Gc(n) exp repT*-j*>
with
6 exp —rjfih — 1, exp or h' exp tiOh".

Since /ieM ,(T) -+ c(fi)e~(T) is equicontinuous and bounded, equi-
continuity for the first kind term will result from that of// —» J*fi. According
to Stone-Weierstrass theorem one can uniformly approximate J with some

trigonometric polynomial f(x) = ~ ~aqgexp 2inqg.x. Furthermore

«KZ-
Ifls*

M- vlleo™ 2113- /7 IL + ~  la, 11<a - v,exp 2ing.x >|

forpy v€ M J(T), where the last duality brackets are linear continuous forms:
one easily derive that |<F(pi) — &i(v)\ *=eipif® v)) f°r some function e
independent of fd, v, with limit zero.

Using this to control | 32@0 ~ ZTa(v) I. onc sees that the only extra work
necessary iK™ to bound |<p —v, Oc(/i) exp T\fiJ*pi >|. Because of Ascoli’s
theorem, the family dc(ft) exp is equicontinuous and bounded on T,
then totally bounded: taking a finite covering of this set with || — IL-balls
centered at points gke™(T), k ™~ K, and radius 5 > 0, one can see that the

previous quantity is some &[5 H_W hich ends the
proof. 0

V. UPPER UPPER BOUND
FOR LARGE DEVIATIONS PROBABILITIES

Recall that Dlo = {<peV{[0,T]; B); 10<p) <: Ic }*

Theorem V.1 — Lety > 0,c> 0, 10> 0. There exists an integer n0
such that for all n > n0 and all Oq,

PJa { Dlo)~ e} ™ exp { —N(10 - y) }.
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In order to prove theorem, we need the two following results: the first
one is a local upper bound, and will be obtained from Markov exponential
inequality; the second one is a (very) rough global estimate.

.Lemma V.2. — For all TJ; B), and all I < lot(V>) there exist
S'> 0 and n, € N such that

Vi £ n,, P23{ poTia", 9 < 5'} < exp (- NI).

Lenna V.3.— Foralla” 0, there exist a compact subset A of *6 ({0, TJ; B)
with following property: \& > 0, 3n2 such that Vn ~ n2.
Pig { Po-ti*** A) ~ &} ™ exp (- Na).

0 We first prove theorem V.I:

Choose a compact set A from lemma V.3 with a = 10. Then A r\ { <
Pot(<P. Du,) ™ ¢/2 } is compact; for each element ¢ of this set, apply
LemmaV 2with | = Ig, and obtain some integer n,(<p)and some <5({), that can
be supposed less than t without loss of generality. Then make a covering
of the; previous compact with a finite number K of open neighbourhoods

|
Pot@. Pl 0'((pk  where the gk belong to this compact.

Let &= "min { S«K); k< K }; p0-t(0J, A)<5 and Poiio*, Dlg)”~c imply
Po-rinty <Pf) < ¢'(<Pk) for some k ™ K; hence
PT-{p0~c\ DJ > e} < P:3{p0T{a”, A) > &}
+ A {Pot(gh ) < SR},
kS K
which is less than (K + 1)« NI°, when n  n2V maxn,”); finally, for

large n the last bound is less than e ~Ndo~r). 0

0 We now prove lemma V.2:

a) Ifopis absolutely continuous, let I < lotOp) and y >0 with 1+3y< lot(<p);
according to property I11.3a, there existssome / eL“([0,T] x T) such that

I< prAn AN T

Jo 3y ¢

The functions h, J and f being bounded, Lusin’s theorem shows that we
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can suppose f to be continuous with respect to (t*x). and even /e # 10,
using a density argument.

Let P be the probability on (Q", FT) defined by its Radon-Nikodym
derivative with respect to the restriction of P to FT:

= R7 = exP N re t - £ ri(sxr. [,& (5.0
Then, we have
Pl, {Pot<" *)<*")- E([R-t]-".1,»"..,« ). (5.2)

As 1j""(x) is P""-almost surely of bounded variation on [0, T] for every xe
we integrate by parts:

fT<y;, "> =r <f,i,>dt- rcar-«*,.;:)*+ [<<*;-*_,/>]5
Jo Jo Jo 573

Like in the proof of theorem 1V. 1, we have for large n:
|J [r?2«7.f) ~ f)]dt ~ y for all path a”.

According to lemma 1V.2, the family {fi —= r*(/i, f,)\t < T } is equi-
continuous on the compact Mj(T); furthermore, { t~ T} is totaly
bounded in <<f(T). Therefore we can choose S > 0 such that Poxio™"’) < §'
implies the inequalities

ir[r*«, ) - r{<q,fS\dt <y

and -
Ir<< oo/ >* + [<< - Poft>]o < Y-

Then, the last three inequalities, together with relations (5.1 to 3) yield
for large n:

PEg{Pot", P< S I exp| “ NIAA <f> P>~ r*V../)I +3yN j

<exp(—NI).
b) In the case of a non absolutely continuous function ¢, let’s fixy > 0
such that for all A > 0 there existshr,e [0,T],i= 1, ...,10,s, < tf,and /0
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rectangles Af of T with positive /.-measure, satisfying both inequalities
1Q »0
iI)AAD < Aand  j<(pt- <>, 1A >] > .
i« 1 i- |1
By parting some AJ,s, then modifying them at the boundary, and
increasing i0t we can suppose without loss of generality that { A-;i <; fo }is

included in some partition of T in rectangles with non-empty interior.
Let b a positive real number, /- the sign of

<Pt —<x 1a, > and /= b~" 1
Let’s define probability P by (5.1) and this function /; we have:

1 p V
- —LogRt=-j& > "<1A.<R,~ <P,>

I » |

-y % )-{°:-<P.O>£fr{o:tf)d (5.3

i«
In the right-hand side member of this equality, the first term is not more

than — y, the second one not more than ’\2 i0 sup 100 — <) |j,-
ist

For the measure 2m+ rjal is positive

0 n«a7
r:k,plIA<c, » n “1) e ATAN 6-

oH— . b

with constant Cj = max {c,(x, n);tje{ —1, + 1}, xe T, fie M,(T) }; so
last term of (5.3 b) is less than C,(e*b— 1XA + 0T || ic*Xn— 1 []t>

We now choose b = 8I(/?y)-1 and A = I(Cxe*b— 1)J-1 .Proposition
I1.4.ii) for partition sf and c¢ — 2\(iOfib)~I yields 5" > 0 such that, for
large n, pOI(@", 9 < 5 implies || 7C<? — ) ||, < e for all t ™~ T.
|| it*)? — 1|, < A(i0T)-1 for large enough n, so that (5.2) leads to

PS8 { Po-rin, <P) < ~Nsup {[Rt]"1;Po<P) < &}
< exp — NI Q
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0 We next prove lemma V .3:suppose a > 0 (the case a = 0 is trivial).
First of all, fix a sequence AJtj = 12, ... such that T/A(6 N,

A £ {a+ 1/C, (exp [2p(a+ 1/] - 1), A/Ai+,eN - {0 1},
forj = 12 these conditions imply in particular that T/A~eN and
jAj is decreasing. i
For ¢ [0, T] -* B, let A*(J)= sup%A" 0; sup || p—r |Ix< Jt )> be its

|«-r'U A
».i'«(0.TJ

modulus of uniform continuity for ||. ||t norm. Let’sdefine A'—{ 0,TI;
B); A*(j) ™ AoV /™ 1}; because ||. ||t norm dominates metric p Ascoli’s
theorem proves that A' is relatively compact in space (#([0,T ]; B), pOT);
So its closure A is compact.

Given O > 0, from proposition 1.4.j) we can choose a partition s/ = { Ak;
k < K} of T in rectangles with non-empty interior and ¢ > 0 such that
for every //leMi(T), the ¢-neighbourhood of p in metric p contains all
veM,(T) satisfying to ||[i*{p —V)||, < e Let’s fix now 0O=[Ze]+I,
tm= mAjiim — 1, 2 __mo=T/Aj0. Forb > Oand tje { —1, 1}Kwe define

K o*

hh = Then,

MEm, ,) = expN{< bhT £ ri(<r:, bhyds|  (5.4)

is a P"-martingale for t ~ tm Recall inequality r;(tr;, fc/t') ~ Cife*6— 1)
from the proofoflemmaV. 2 (part 6); since (h'T of—o/_>=</iy *r-<0
is equal to || of,J||, for at least one choice of rg
; sup  hizM<M- o7 iij ™~ 1
\'us: i Jo J
<IJ { sup M~m, tj) > exp N {(bjjo) - AJCi(efb - 1)} }.
n

For each tj, we bound from above the conditional probability of this

event using Kolmogorov’s maximal inequality [7] by -«

exp - N {(bfj0) - Aj.Cde» - 1)}.
Take b = 2(a w lj/of this term is not more than exp —N(a 4- 1), because
of the properties of the sequence A].
As a conclusion,
RC/0)'} ~ 2Kmoexp —N(a + 1) (5.9
where R(/0) denotes the event { sup sup || nM@ —<rM)||i < Vj}.

S S In«y |
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Let /' be the random polygon on (0.TJ, ja™-measurable valued, with
vertices at the points (/m ir~*cO* Of course, on R(JaU Pot”™ - I") < SO

P:3{ Pot(<A A) £ 6} < PMRCyOr)+ P:8RC/0)*i  A'}) (5.6)

In the following, we bound the last term of (5.6).
On RClo)» the slope of /" satisfies

IC—C1t- t'\ < COAX)-1 UAj)-" if j * jo

(see remark at the beginning of the proof).
We derive from this A™(/) ~ Aj forj ;>yo Fory < Jo* we show first that:

‘max HC —CH « max | - £ 1],. (5.7)

t [resp. t' ] belongs to some interval [tm tm+1 ] [resp. [t®6tr+x]J

Forse (rmV (r + tr- O0,tml A (f + £p+l - f)]?5 -* - £+,*-,isan
affine function; u — |[|u|li being a convex function, so is the product
function: this one achieves its maximum value on the boundary of the

interval. Thus, it’s enough to show that || C ~ C.||i is not more than the
right-hand side of (5.7) when te Jtr, tr+t[and | r —tm| < Aj. In this situa-
tion, A;/AD being integer implies that |r, —tm\V |rr+, — | < A}l

Combining this with the convexity of s — || C —/T,,||i yields the desired
result.
From (5.7), we derive the inclusion

{A"J) < A} <« {I - <)l > Ifj L

(m.r)
where the union extends to all couples (m, r) such that
O<sm<r”~m0A M+ AXA]j).

For such a couple and bj > 0, { —c?, |[|[x> 1/j implies for at least
one Ig:
Mr;Mm, 1) £ exp N {(bjfd) - A/Z7Ne**' - 1)}.

We now choose bj —2(a + 1)/, we apply Bienaymé inequality to the
positive variables M"i(m, tj) with expected value 1:

Ps. -0 il. a Itf} S 2sexp - N + 1).

Annales de I*institut Henri Poincaré - Probabilités et Statistiques



158

NUCUIATION FOR A LONG RANGE MAGNETIC MOOEL 159

Next, using the rough upper bound mOAj/Ajo of the number of couples
int. r). we get
jn—I
PO {a"o) < n m(/\j op ~ + 0-
1< j-1

NG)
Combining this with (5.5 and 6), we find

Jo
p*5 { Pat{g™A) > 5} < 2KmO(~ y ' AjfAjAj exp — N(<a 4 1),
J-t

so we can choose n2 (depending on 5) such that the last bound is less than
exp — Na for all t ~ n2. Q

VI. PROPElI PROPERTIES
OF THE QUASIPOTENTIAL W((ue, u)

The quasipotential W(ue, u) is the least energy necessary to join an
equilibrium ur to some point ue B:

W(ur, u) = inf { I0T(<P); cpe™([0, T]; B), 0=ur,gr=u, Te R+} (6.1)

Before studying the exit points of an attracting domain, we show some
properties of the quasipotential. We say that u is attracted by ue (or u is
in the basin of attraction of ue) if the solution it, of (M. E.) starting at u
goes to ue as t tends to oo (r*-convergence implying here convergence in
norm ||. ll<* see (5]).

Hamilton-Jacobi equation corresponding to the free-time variational

problem (6.1) is P~u, "¢(Wj = 0 where (W denotes the gradient of

W (u,, u) with respect to u. Combining (1.6), (3.4) one computes that
r*(u, 2d V*(u)) = 0; this shows the relation between large deviations results
for the magnetization process, and the ones for the Gibbs measure we
recalled in § 1L

Proposition VI.1 — a) Vue B, W(u,,u) S© {Viqu) —VKu,)}.

b) Ifu is attracted by ut, the equality holds in a).

c) If P is the line segment [u, u'] covered in the time T = ||u—u'||2
with constant speed, 10t(<p) = &(\\u —u* H"2**) for all e > 0 and u, u'e B.
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We just give the sketch of the proof: refer to [5] for more details. Using
the above remark, we have

ip) 2LA<v,.2dVvHm)>- r<p,2dvhiQ)>" /2<<>.<vH(<?)>,

Integrating over (0, T), we obtain the first inequality.
The path < described in ¢) is g, = u+ ~ {U* —u). Let’s fix jce T, and

suppose that u'{x) > u(x). the other case being treated similarly; we shortly
denote tf(jc) by u, u'(jr) by u'. From property 111.3.<), we derive

@ 9)dx < - (log(u* - ) - logT] + [0(log0 - 1)Ji_:*
10 u

4-y(u' - u) + KT (6.2)

f{0) = 0log 6 being a convex function on [0,2],0 < Q' < 6 " 2 implies
I#) ~f(0) ~/(0) ~fW — 0)= —f{0 —0O); the second term of (6.2) is
then bounded from above by —(u' —u)log (U" —u) + (u" —u). Using
Holder’s inequality together with the boundedness of 0*log 9 on [0,2],
we can easily prove c).

In order to show b) let’s notice that there exists a unique function on ]—co,
0] in B such that 90 = u and the field h* maximizing (3.5) along the tra-
jectory be equal to 2dVh(<t): because of (3.2), it is the solution starting
at 90 —u of the mean evolution equation time being reversed

L P = 20X —2sh fid Vi(<p). (6.3)

Such a trajectory < will be called and extremal. Since <p converges to u,
in L2(T) as t goes to — o0, b) is a consequence of c).

The previous results are valid in general finite dimensional situations [15].
But, in our case, the potential V* (and dVh too) is not continuous in the
weak topology. We then need some extra results:

Proposition V1.2, — There exist positive constants K, K' such that
for all trajectories ¢>on [0, oo [ with values in B, and all T > 0

loricp) > - K+ K'£ | 1a }dV,{<pt)|Hi*.

In particular, whenever °5, there exists a sequence tm -* 00
such that <g@m converges to an equilibrium in I2(T).

Annaies dc /'fnstitut Henri Poincare - Probabilitcs cl Statistiques
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By an easy calculation, one sees that

Hu, dVh{nl x) = titJ '*2 . oI\
e+ 1.4 11

the last quantity being evaluated at point x.
On one hand we see that

r(u,</V,,(u), x) < c(U)[—K" 4+ yj\ —u2] (6.4)

with constant K" = exp —/?(|hH. + ||JID < 1 On the other hand,
Hu, dWk(u),x) = —2c(u)x/1 —u2sh2” dVk(u)
< - 2ciu)dl - u2\t dV*u)J (6.5)

because of the inequality |shz| > |z| for :sR.
Combining (6.4 and 5), we deduce that r*(u,rfVi{u))< —K'|| 1. |</V*(u)| ||8
for some positive constant K' depending on K" and "Qi,\ﬁ‘ c{x, u). We have

lotiP > | o <dvhi<P)Y* <R > - r*(<p,.rfVi<p,))Jjr
>\ rvidpl) - vi(<p0)] + C £ i a Idvk)]| ||iI™;

since VEis bounded on B, this yields the desired inequality.

Suppose now that We can find some sequence tm — 00
such that || 1. [<IV*(SEJ|||! = ¢(AN) 4 || dVK{st) . IAJ|8 goes to O,
Amdenoting the subset {jdV*(<plm| < 1} of T.

Then, write gdmas tanh {O0(h + J*<pwm+dV k() . #Am}. iA,-I-<p,m 8XY;
I </, llm”™ 1implies that the second term tends to O in L2(T); considering
a subsequence of (f,,)m we may suppose that gmconverges in the weak
topology to some ue B;then, J » ,_goes to J* « uniformly, and we easily
deduce that the first term converge in L2(T) to tanh P(h + 3 *u). To see that u
is an equilibrium, write

tanh pfh «J*u) = || . ||2— lim (pn = r* — lim gm= u.

Vol. 23. n* 2-1987.
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VIl. THE THE EXIT POINTS
FROM THE ATTRACTING DOMAIN
OF A METASTABLE STATE

In the next two sections, we will consider the magnetization density
given by (1.5). Obviously there exists some function ¢ with IIinng(n) =0
and: for all configuration

PiC.tnZeCn). (7.1)

Hence theorems IV.1 and V.l are still valid for the process For a
subset Z of B, we will denote by 3Z, Z, _ [resp.d2Z, Z2,... ] the boundary,
the closure,... of Z in t* topology [resp. in the || . [[2norm topology on B];
for positive <56,1"'t(Z) will denote the (closed) ¢-neighbourhood ofZ in metric
p: yNZ) —{ue B; p(«.Z) £ &}.

In this section, we make somewhat general assumptions, which are
satisfied in the example of 8 VIII: we consider an equilibrium ue, -~-asymp-
totically stable in the Lyapunov sense for the mean evolution equation
(M. E.). Because of the continuity of u0 — u (see § 2), its basin of attraction
& is a weakly open subset of B. We are interested in the situation where
there exist at least two locally stable equilibria, so we suppose ¢9, ~ B.
Let Ex be the set of the « lowest saddle points » on the boundary:

Ex = {uf=d3St\V,(u) = min { V*W); 1} (7.2)

V* being I.s.c.,, Ex is weakly compact; since u0 -* u is continuous, and
since V*is a Lyapunov function for M. E., its elements are equilibria.

Throughout this section, VWEXx) will denote the value of V* on Ex, and
A = P {V*(Ex) —V,(ur)} the height of the potential barrier.

We require the following hypothesis (H):

i) Ex >d2&t 2¢0; let be one of its elements.

H) Exo d2[(&.Y].

There exists positive 5Qsuch that

i) YNJEX) r\ {ue d&€ — Ex; dVhu) = 0} =0

iv) 1'So(dm,) o {u€B;dV,(U - 0} o0 d&t.

Theorem VII. I. — Let x be the exit time for from the basin of

AnnaUs de I'Institut Henri Poincare * Probability ct Slausiiques
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attraction j&. Under assumptions (H). we have for all weakly closed subset F
of and all 5> 0

lim _inf PJ, {g e t'jiEar) } = 1
IS**

where P~- denotes the law of process  starting at

The theorem states that, for large enough n, the process leaves the basin
of attraction of such an equilibrium at the neighbourhood of one of the
« lowest saddle points » on the boundary. It extends Vent’sel-Freidlin
result ([15] [/]) about the exit point of a compact set strictly contained
in an attracting domain, under the assumption that the vector field at the
boundary be transverse and pointed inwards.

The technical assumptions (H) i) ii) cannot reduce to only local condi-
tions holding at exit points; they are satisfied whenever the frontier d33e
is smooth, for example a one dimensional Banach manifold. The hypo-
thesis (H) iii) iu) concern the accumulation points of equilibria at the
neighbourhood of d&e.

As in the previous references, we will study long time behaviour using
finite time estimates of theorems I1V.1 and V.l together with the fact
that the magnetization process restarts afresh from Markov stopping times.
The structure of the stopping times we use is quite different from the one
of [75] [7], because the quasipotential W is not continuous in the weak
topology, but only in a strong one; we must furthermore take into account
the equilibria located in d£Se.

We will outline the proof after relation (7.5); we first reduce the analysis
of the random path to its final part.

0 It’s enough to prove the theorem for 5 < SQa p(u, Ex). Recall

definition (7.2); since Vkis lower semicontinuous, and d&S, — Y/(Ejc) is
r*-compact, one can find positive numbers a and <& < <&2 such that (5)

Vue ©,,.(NEjc), f3Vh{u) 2: pWK(EX) + a (7.3)

where NEjc stands for —"il5(EX).
We consider (small) neighbourhoods Y'T(u,), Y~JfEX), and (large) time T.
We first carry out the proofwith initial condition in ™ (u,) instead of

(*) Subscripts 1will be used for NE.t, subscripts 3 for E.v. e for urand 2 for points outside
of 3tr. (NE.r is defined after ne*i relation (7.3)).
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Lei's define the slopping limes:

™=0

re = the entrance time of I in y'y,(E\*). and for k = 0. 1.. ..
tf71 = min Jf a (rE+ T);i"e W\T(uw,)}

W = min {/ 2, r'*1; e Y'Y} R

tj = the entrance time iny j,(NEvV). *

Let v, be the last integer k such that r* < t,and = {vr = k }
It is enough to show that, forio e an<i sufficiently large n:

VAc, er'JeEx);Rk} 22 q2P™ { Rt} (7.4)

with ¢ — 1 —2exp —Na/6: indeed, summing this relation over all k
provides us with the theorem.
Using strong Markov property on the set { < t«}, we obtain:

PB{” e Y"(Ex); R*} = E3{ P;3{ e YNEX);t </ *»/F*}}
- {I,.<t.RS- l«e * (E*);ts X }J.
Vs-

The same computation for the right hand side probability in (7.4) shows
we only need to prove this inequality for k —0. We now decompose RO
according to

"= {TATJATj> 2T u{tj <1ATj A 2T}
U{:<rja2T,t<ti1}vr{t3<tati a 2T} (7.5

The main contribution in decomposition (7.5) to the probability of RO
is given by the two last terms. The contribution of first term will be negli-
gible, because the process cannot spend too much time far away from the
equilibria (lemma 4). The trajectories close to the second set hit

- tM(EX)),

so they have a large action functional value (lemma 3); this set will be negli-
gible too. On the third set, we have <'e'/'¢(Ex) for large enough n. To
bound from below the contribution to P~iRo) of the last set in (7.5), we
shall look for some tubelet in it; but we also need to study the random
paths starting close to Ex which leave S before returning near ut:

temma VII.2. — There exists y3 such that for all yr< y', = p(i4, '/"'¢(EX)),
the inequality Pi-{ e 7"%(Ex), t, >t }> <P8{t, > r} holds on the set
{ e~”,(Ex) } for all sufficiently large n, where t, denotes the entrance
time in "ym(uc), and q is the same as in (7.4).
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From now on. the radius ys is fixed as above. As for yr. we use it for
controling the energy value of some trajectories.

Lemma VI11.3. — There exists y” > 0 such that for all T > 0.
e <X[0, T ]; B). the conditions

$oe $+6 "WNEX), <P[0,T] & - NyilJ(EX)

imply 10T(<P) ~ 3a/4.

These two lemmas will be proved further. In order to fix ye, we now look for
a tubelet included in the last set of (7.5). According to the assumption (H) /),
and to the |[.lk-continuity (*) of VMwe can pick some u3es0rr\
with V*(u3) ™~ V*(Ex)-f-a/5; using proposition VI.I.fc) we can find some
trajectory g on [0,TS] joining u, to u3 with energy 10.ry<p) ™~ A 4- al/4;
in particular we derive from (7.3) that 7pdoes not enter  2JI(NEX). Further-
more, we can assume that pdoes not return to u, on ]0, T3]. We can therefore
choose y < ¢i a (y3/2)such that the random paths  with Po.Tjif"»") < Y
don’t return in i'y{ue) after reaching </*',,(Ex), and enter ™, (Ex) before
time T3 and before hitting Y AN Ex). Applying theorem 1V. I, we obtain [1),
for some y, <y,

P3{Po.t,(i".V) <y} exp- N(A + al3) (7.6)
for sufficiently large n and f£ € V'r9(ue). Of course, we can impose the condi-

tion y, < >; a y"
At last, we need the following

Lemma VII.4. — Let , 3*\ be weakly closed subsets of B such that
= and no equilibrium liesiny . Then for all positive I there existsTO
with P g{ €& x:\Vf < T0} < exp —NI for all sufficiently large n, and
all Cj.
Because of (H) iii)and iu), we can apply this result to
= "No(™) - ~ n i/2(Ex) - tTJi/2(NEX),
- St~ - YNEX) - ~.(NEX),
and I = A+ a/2. We now fix T = TO V T3, and come back to decompo-

sition (7.5).

®) See [65] 1.2 lemme 1 Or. for this particular point, use proposition V1 .1 together
with T*-lower semicontinuity of V.
() Recall that every equilibrium belongs to ~(T; ]- 1 1.
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Sincc {tat, a t° > 2T }r\ ROiscontained in | " e .-F, :\fe [T. 2T]
we bound its probability using the Markov property and the previous
lemma.

Because of lemma VI1.3. trajectories < such that

Po.2t(<P. £") N (<50/2) a <5 a yr a (y3/2)

for some
i*e{tiSt at? a 2T } n { Qe 1'r.{ue) }

satisfy lo.itQ) 2: A * 3y/4; theorem V.l provides:
PI{tj x At® A 2T;R0} ™ exp - N(A + a/2) on e™(u,).

At last, {r®< t a tj a 2T, RO} contains the tubelet {Po.Ts(i". V) < y 3
Combining (7.6) and the two last inequalities, we obtain for large enough n
P;,{ < tazt a2T;R0} 2:2"1exp (Na/6)
Pp<s({TATIAt?>2T}u {I' &4 T At? A2T}] n Ro).

Recalling that {t ™ t®t < Tt} cz {f"e t*(Ejc) }, we then derive from
(7.5)

<r,pi3i t° < ta t>A 2T-Ro}
4. P3{« €NM(EX), TE t?; R0} > PR0). (7.7)
Furthermore,

P3{r§ <+ AT, A2T;Ro0} = {1~ tAt| A2T-P"3W ~ t/IF*) (7.8)

Applying the strong Markov property on the set (t® ™ r }, we see that

Pi8(t¢, > x/Ftj)) = P/~ (t,"™ t) with xe as in lemma V11.2; from this lemma
we deduce that (7.8) is not more than

9' ‘Eigi1l A, A2T-P~s(Te ~ t, e ”~(Ex)) }
< ¢-1P'3{tS < ¢, € VIEX); RO}
The#t(7.7) yields
¢-2P<X{i;ey™(Ex);R0} P<{Ro}

which is the desired result.
We end with the case e & :denoting by r®the entrance time in i T/(u(),
we must show Im inf P%(t? < r) = I. This can be carried out in the
« 1z*x* 7 -

same way as in [15]. (Lyapunov stability implies that ~38%, &) > 0, where
iIF denotes the set of all points visited by the solutions of (M. E.) starting
from IF) 0
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Q Proof of lemma VI1.2. — Let V3. T' > 0 and yr < y*» We define
stopping times t, as above, and

= 0. *= min {t > 4-T ":Z"e Y'y,(Ex)}.
Let v3 = max {k >0;T3< ¢t } and RJ = {r < tr,v3= k }
Using the same argument as above, we see it is enough to show that

Pr, {£ e(Ex), RO} ;> gP" "R") (7.9)

holds for £0e 7", (Ex) and sufficient large n.
This time, we will decompose R{, according to

Q"= {tAT,>2T"}u {T, <2T"at }u {t< 2", t< t,} (.10

To show that the most important contribution to P*s(Ro) comes from
the last set in (7.10), we look for a family of tubelets included in it. Using
hypothesis (H) 11) and proposition VI. l.e. we find for each ueE x some
u2[*Je (~newith » 2Julw) < <5/4 and some line segment <p[u\ with end-
points u, u2[u] on the time interval [0, T2[u]] such that 10.2m (<€ [«]) * a/6.

Let'®[u] "'6x2 with """ («”~[u]) <= (We)e; then,
n*.,<*M [0,T 2Jii]]) ¢ 1'it2{Ex). (7.11)
Since u is an equilibrium, we apply theorem IV.1 and find some
¢3 [u] < S2[u] such that for large enough n
P«<3{Po.wr, <pMX<52(u]} » exp —Na/3
on {p(Co,u) < S3W]}. (7.12)
Ex being compact, there exist=3 >> 0 and a finite number K ofelements uk

of Ex with "i“"EXx) fihkUrer We now claim the analogue to
lemma V11.3: Fxx

Lemma VI1.5. — There exists y3 > 0 such that for all T ~ 0 and
e #( (0, T ]; B) the conditions ¢0e fr27)Ex),

<Pre  2a,(NEXx) and P[0, T] < tT3o(#r)

imply 10t(<P) ~ 3a/4.
We fix y3;o0fcourse we may suppose y3 < ¢ 3. Recall time TO we obtained

from lemma VI1I1.4: from now, we set T' = Tc V max T2Juk],
We now come back to thedecomposition (7.10). The set {tat, >2T'}r\Ro
being contained in {ife ,Vre [T, 2T]}, we derive an uniform upper

bound for its probability from lemma VII.4.

Vol. 23. n* 2-1987.
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The trajectories <«on [0. 2T'] uniformly close to the set {«. < r a 2T’

€ V%,(E.v) } up to a distance (50/2) a ¢§ a y* have action functional
value not less than 3a,/4. according to lemma VI11.5: thus, theorem V.|
for D 2-/3 yields for large enough n

PI( ™ 2T' A TR0} ™ exp —Nal/2 on {fte Y TEX)}.

At last, whenever ££e *'rj(Ex). 'o lies in some but (7.11),
and the conditions on <5, | (u*], T' show that the tubelet with axis <p[uk\
and radius ¢2[uk] is included in {t ~ 2T\t < X, } o RE> thus, the P~g-pro-
bability of this set is not less than exp — Na/3 because of(7.12), and combi-
ning the three last estimates:

PI3{r<2T\r < x,;Ro} ™ 2~1exp —Na/6
a r, > 2T R{} + P;s{t, » 2T" a «; R*}].

Because of (7.10), the term between brackets is equal to
P«<Ro0) ~ P<3{t ™ 2T", t < X,;Ri, };

then, relation (7.9) easily follows from {t < t, }<={£"€ 7"¢(Ejo }. Q

Q Proofof lemma VIII. 3. — Suppose the results is false: then, there
exist time Tk trajectories <k with r*—Ilim R = ue, e '1"23UNEX)>

9K[0,1*] = - Y'Y, (Ex), I0TH<PK) £ A + 3a/4  (7.11)

We may suppose— shortening T* if necessary— that T* is the entrance
time of gkin 'i"2j,(NEj:). If (T*)kwas bounded, say with T® e R+, we would
extend gkon [T*, T®] as being the solution of(M. E.) starting at (without
changing action value); according to the theorem 111.4, there should exist
some accumulation point <p® with <o = ue, I0T«(<p®) N A 4- 3a/4 and
¢T ei 2ai(NEx) for some accumulation point t of (T*)*, which would
contradict (7.3).

So we may suppose that the times T* increase to infinity. Let’s shift gk
in \fk: = <SHI*RwFe (~ 0]. Using the same argument as before for all
Ke N*, one can find a subsequence—still denoted by tfk— uniformly
converging on [—K,0] to some \j/ksuch that

I-k.0(E) A A + 3a/4, ~~ e~ 2SI(NEX),
i, K[- K,0] < Y'io(£8e) - f'r,(Ex) - W(N E x) (7.12)

By a classical argument, we then find a subsequence— still denoted

Annates de Vinstitut Henri Poincare - Probabililes ct Siaiistiques
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by #*— uniformly converging on [— K. 0] to \jfK for all K: of course,
the \j/K are the restrictions of some iff defined on ]— oc, 0] with
1-*.0('P) ~ A 4 3ot/4; thus, using proposition VI11.2, there exist times
tl1< 0 such that jj/, converges in ||.||]2 norm to an equilibrium which must
be u, because of (7.12). For large enough /, hence we derive from
proposition V1.1 that W(ur, 4/,i)) —P {Vf(0ti) — Vf(u,) } goes to zero;
for large /, we can find a function < on {0,5] with g0 — P — OV>»
los(<P) < a/4: making a trajectory < from pieces $ on (0,s] and jjr on
[s,s —r'], we would obtain <t-tte f W|(NEx) and

A+ a> |0j-A<P) > P{ - Vh(ur) },
which contradicts (7.3). 0

The proof of lemma VII1.5 is carried out in the same way as the
previous one: if the result was false, we could find an accumulation point ij/
of some sequence satisfying to I-«.0(iO ~ 3a/4, \l0e ¥ 14|(NEX); this time,
there would exist a sequence of times tlsuch that ij/t>converges in the |]. |2
norm to ueor some element of EX. In both cases, we are lead to a contra-
diction. 0

The proof of lemma VII1.4 is much simpler here than in general
frameworks; a>-limit sets (8) consist in equilibria. First, notice that
min {1 a |dVAu) 112;ue } > 0: otherwise, an argument we used in
the end of the proof of proposition 1V.2 would conclude to the existence
of some equilibrium in

This proposition therefore shows there exist constants C, C' such that
lot(*P) ~ CT — C'forall T > 0 and trajectory ¢pon [0, T] with values in

So the lemma is an easy consequence of the theorem V.I. 0

VIiIl. AN EXAMPLE.
NUCLEATION PHENOMENON

Studying the equilibrium equation <iVfu) = 0 is difficult in the general
situation; it requires techniques of bifurcation (parameter P varying in R +).
In the case h ™ 0 one can hardly derive a few quantitative results [5].
If h = 0 the energy landscape defined by VO only depends on P and the
Fourier structure of interaction J: somewhat general results about bifur-
cation branches in the set of equilibria are shown in [6].

(*) For ihe mean equation (M. E.).
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We consider here the simplest example exhibiting nuclcaiion phenome-
non. which is the (ferromagnetic) case

Jt) =1+ 2bcos 2np.x, h=0 (8.1

with pez* —{0},0<b<, V2.

Then, all the equilibria are (see [5]) u = 0, constants u*. —u* ifR > Rc—1
(given in the end of section 1.1), and up™9, x0eT if 8 > Bp~ [JI(/?)3~m(b~*,
where uPXo is given by

Up.Xo(x) — tanh { 2Bba cos 2np.{x —x0)} (8.2)

and a is the unique positive root of a — < tanh {2Bba cos Inp.x },
cos 2np.x)>\ a depends on [, and is equal to upO{p).

At critical value the branch of constant solutions = u+ bifurcates
from the branch of null solution, with some stability transfer: £ u+ are
stable equilibria for 3 > R3¢ while 0, being stable up to Re becomes a saddle
point and Ejc = {0} for Be ]Bc RBp];thisissymmetry breaking. At value 3p,
the branch {upXo;xQe T } bifurcates from zero solution branch with
stability transfer: as in [5] we can compute that the relation

Vo(u) = (2/3)-* <e(u), 1>,

6 being the concave function u tanh-lu + log(l —u2). holds for all
equilibrium u, and therefore Hr = {u@o;x0eT } as soon as 8 > RBp.
It’s easy to see that the assumptions of section VII are satisfied with the
stable equilibria £ u+.

For the sake of simplicity let’s assume d — 1. If 8 > Bp, theorem VIII. 1
shows that the magnetization process when leaving the attracting domain
of it* must pass the potential barrier close to one of lowest saddle points
Up.*,}these states exhibit p areas on the torus— « nuclei »— where local
magnetization approaches the new phase —u*.

In this simple example, it seems to be difficult to study the extremal
trajectories from u* to up™a (recall these are the solutions to (6.2) with
f_Ii[noeq>, = u+, I_Iir+noo <P —u,, XA which are the exit paths from the attracting

domain of u* for the process (see [/] [/5]). Nevertheless one may conjec-
ture, with a slight act of faith, that, during such a dynamic phase transition
and for B > Rp, small clusters initially appear, among which some, very
small, are due to stochastic fluctuations; they next order in p main nuclei,
and grow untill they attain approximately the structure of some upxQ
At last, the process is attracted by — u+, the nuclei go on spreading till
they occupy the entire space.
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For fie ]fif, fip) the only one exit point is 0. so nucléation phenomenon
does not occur. In the Curie-Weiss model (J = 1), every equilibrium is a
constant function, and so nucléation never occurs. For more general ferro-
magnetic interaction function J, a bifurcation temperature is given by
Pp= [1(/?))~1with J(p) —max [J(Q); q# 0, £ p }, and, under additional

assumptions, (8.2) still defines saddle points when fi > fip (see [5]).

IX. APPENDIX: PROOFS OF 111.3, 4 AND 6
0 We begin with properties 111.3:
a) We show the different formulas for 10t- Let's denote by 1I,, 12 the

second and last expression in the desired equality. We have clearly
li iS lotOp) ™ 12- Let’s define for all t, x, a0(t, x)eR maximizing (3.7):
a0 is the (measurable) function given by (3.3) if | <p{X)| < 1, and, if
<Ptx) = 46 { — 1, + 1} by —hXxX —JI*<p{x) —rjP~ log TR

\2.c\Cpfy

with the convention logy = — oo for y ™~ 0. Then, for fixed (t, x),
am = sign (a0) x [|la{]| a m] converges to a0 in R as m — oo, and

bm(t, x) = P <p,(x).amn(r, X) — r(<p,, amt, x), X) converges to g>{xX)y X)
in R*. As a —=* r(<p,, a, X) is convex and am(t, x) is between 0 and aQt, x),

bmis non negative. Fatou’s lemma then shows that 12 ™ lim
Yo-*« Jloti*t
this last term being less than 1,, we obtain property a).
Proofofthe lower bounds) of Jf': using the inequality 1 l.we
obtain for T(u, a, X) an uniform upper bound A(e*,a —1) with constant A,
whose Legendre transform in the sense of (3.7) is

M \v\

( .
max | -A.O h
o on >

To show the upper bound c) for Jf, we notice that

v = + V 1—w2+ (u2c)3

Oc(w, v) = - lo
( ) 2 J 1—w

(with parameter ceR +) is an even function on R2; we restrain to v > 0,
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and see that \Of\' < ~| 151log 2 + e~1+ “log 4- log --—--—-—-- Then.

the result can be easily derived.
The conditions mentioned in b) are sufficient because of c): the first one
is necessary because of d). Inequalities

V. Vv \'
0«(H\ v) - 5 IOgZ_c >

hold for positive ¢, so the last two ones arc necessary too.
In the proof of the regularity property e) of Jif, the most difficult bound
to get is for

1oc,(wj. u) — of(w. y)lI

fl 1— ™ C | V+ vidc,(l — W) + V211
log--------- + log- + log-—-- Vv D I >;
(J 1— Wj Ci v+ Mic(l —w ) -fv 1d

we use inequality log 1 + r < z to bound the first two terms, and control
the derivative ofa — log v -# ~Ja + v2 for the last one.

Q Proof of the theorem 11l .A. — We show first that D”, is relatively
compact. Let gmbe a sequence in D?,; because of property I11.3. <) (" )m(v
is uniformly integrable on [0, T] x T. According to Dunford-Pettis’
theorem [9], there exists a subsequence that we still denote by (pm such
that ipm converges to some <"®e L‘([0, T] x T) in the weak topology
0iV([O0,T) x T);L-([0,T] x T)).

Since || " —<g"|i Jun* | (p?{x) | dsdx, uniform integrability shows
t

that (<gom) is equicontinuous on [0, T] in the || . ||, norm, and then so it
is in the metric p; B being r*-compact, Ascoli's theorem in the space
(*4([0, T ]; B), pQT) yields the relative compactness of Dlo.

Let o be an accumulation point of (fm): we now show e D”. Without
loss of generality, we may suppose that ggmgoes to ¢ in metric pOT, and
that <{om goes to some <® in weak topology otH1; L®).

Fort < T and ge”(T), we have

<g*4:)1- Fo> = Km<ga<pT- <o >

= lem | P’ (x)g{x)dsdx

JO.J*T

. <p?(x)g(x)dsdx,
- lonr
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since 1(0,] x ge L’ifO. T] x T). So ¢* satisfies to the differentiability
condition (D) with = ip*.

Let’s suppose I0t(<p) = | < oc.Fort > 0, property 111.3.a) yields some
/6 L*N[0, T] x T) such that

| <pf ~ Hip, /, ~Nl- . 9.1
JO.TI*TL*™ P 'P J ¢ (©.1)

Because of the convergence of ipmto ip = <p® we have

lim ipmf = ipf.
Rk JIOLTIXT J(O.-n*T
We then study the convergence of | F(<pm f, x)dtdx. The difficult
point concerns terms of the type JOT*T
a(<pm) —a(<p) with = cipAexp fi(h F/ + J e \f/);
using Lebesgue’s theorem, it’s enough to show that bm 0

Jio.n * ¢
where bm= (P — pm)c(<p)eeil’*f *,* M cp? being uniformly bounded, we
may suppose fit,.) to be a continuous function according to Lusin’s

theorem;then we derive f bm -* 0, and, together with Lebesgue’s theorem,

f bm — 0.
JI0.T)«T
We have showed r
b>m R? ipmf ~ {(pm f, jr)|«fofcr > 1 - c,
oo JGOT)* TL2 J
SO
lim lot(<P™) ~ | —e.

The case 1ot(<P) = 00 is impossible, because (9.1) would otherwise be true
for all 1, and the previous demonstration would conclude to 10 > I. So we
showed the first part of the result. Since 10T([0, I€)]) is closed, 10t isa 1s. c.
function. O

0 At last, we prove the result 111.6 of approximation by smooth tra-
jectories: we first show that (3.8) is satisfied by some trajectory <p staying
far away from the boundary points —1, + 1;then by a polygon in t variable,
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with vertices on the previous trajectory:to end. by a lasi one which is further-
more continuous on T.

Let cpT = (Po+ (I - ~ <X For ¢ = 1~ l<ol'»» wc have

nh<P?|U ~ 1 ——; furthermore gm -* <pand ipm= (\I -—--—-— ip for all
m mJ
(t,x), one can notice that, for all (f, x) such that <p,(x) = tje { —1, + 1}
1 O "/2c0i>->] + s/i (*w )f \Vm\, vV~
VvV  log 17=1 ~ — 'B-n2«P)
with the previous notation loga = —oo for aeR"™, so that
Mvr. <PAX), x) — <p.(x), x).

In order to apply Lebesgue’s theorem, we look for an upper bound of
g>T(x), .r) using property 111.3.c): remark that, on {gm~”™ | — &},
P—< Oand 1 —pm”™ 1 —<pwhich is (t —x) a. s. non zero on the set
{V>0} = {0, >0}. We then obtain the following bound, independent
of m:

JfivT, V?,Xx)

NKEBN ipj{log| |+ 1}+1 4- E AMw>0  1—<*e*<11 I $llog

<xf-1-+n A

Property 111.3.b) and hypothesis 10t(<P) < oo imply that the bound is
integrable; then ml_i,[nm loT(<Pm) = lot(<P)- As gmclearly goes to pin metric pOT,
we can fix some m such that gmsatisfies to (3.8).

We will prove further on the following

Lemma A.l. — Let X satisfying to (D) and y > 0 with 107{i//) < o0,
sllég | tf/, U« ~ 1 —y. For all subdivision S= {i0o=0 < fx< ... < lto=T },
we define the polygon Is with vertices at points (tic ~Ho. >45 S becomes finer,
I0T(/S) goes to lotOA) and Is goes to tif uniformly on (0, T] in || .||, norm.

Applying this to \¥ — <gm we find a polygon | satisfying to (3.8).

To end, we make /smoother in the x variable, using a kernel ame” (T ; R+),

with support contained in — — — _ and integral equal to 1:
L mmj

Lemma A.2. — Let iff satisfying to (D) and y > 0 with Iot(<A) < °o,
sup || *J,IL < 1 —y and \f/0e ~(T). Denote by */m the function
M) - tH0(x) + am* (ijl, — <it0)(x).
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Then.asm — o —* ¥ uniformlyon [0. T] in||. H norm. | —= |ot(</0
and rr!I_rg (syp [i/C|Ix) < 1- .

Wc apply this lemma to ~ = /.and find some m such that (3.8) is satisfied,

and sup |j C Ik« ~ 1 —y/2:we show in the proofofthe lemma that "12—am+lIt,
1ST

which is a stepwise function on [0, T]. with values in ~(T); so re™~PyQ0,
which ends the proof. 0

0 We now' prove lemma A. 1; we will forget the index S in notation I5.
| satisfies to (D), with

J = iilLU----- ili, for relk= Jik rt+, [, and sup ||/, H* ™ 1- .
~ K «ST

Applying Jensen’s inequality to the convex function a — Jf?(ltk,a %)
aocl fo we derive

(i*+1 1*U), *) ~ x)dt — a.s.

Next, we integrate this relation on T, and use property 111.3.e) with
y = X! we obtain:

| i(x), X)dx A 1 JF(4/,t/,(x),x)dtdx + Ak (9.2)
JUu* T JuxT

where

Ak=Jd  {( + |AM)IX<MI<I. - "IM | +
Ju*T +(+ ] 1[I - 1) @)]+ c (>(*. 13 1} dtdx.

Let’s denote r = sup {| ij/, — [[t; reI*, k" =0,.. kQ—11}; then
[/(— Dx~ r if relt. Metric p being dominated by |[|.|/t norm and

M«»MI being bounded from above by |fk+1 —ik]|-1 \if/t(x)\dsdx, we
see that *u

A* < c'(r) | @+ | |)dtdx + K,A; (9.3)
JU*T
for some constant Ky depending on y and
Ai = | | A—/ik 1l A\dtdx + (tk+, —iK)_1j |/,—/J | |dtdsdx .

Ju*T JI,*Uu*T
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Recall lhat |/, —Ik|, 11j/, —/lk| ~ 2. For any C > 0 we have
AL < ANCr(it+, —/*) + | A | ®il+[>C:M-v] »
Combining this with (9.2 and 3) we finally derive

IoT(N)EIOT («A)+<.c(r)[l+ 1 |<A|Jt<fx |+4KrL
L JIO.TIXT J J(|*|>

A*\dtdx (9.4)
Cj
where e c depends on y, C and goes to 0 with r. According to the remark
after theorem 111.4, r — \pt is continuous in || . |]j norm; so | goes to if/
in<g( [0, T], LXT))as the subdivision S becomes finer, and then theorem 111 .4
implies lim lot(0O St lot(”)- On the other hand, the integrability of ji/ and
(9.4) shows that lim ICG(0 ™ lot(iA); so the lemma is proved. Q

0 At last we prove lemma A .2:

1) Note that || H* N ||a™ * Al®+ ll<fo— * «A0 lI®. <A being conti-
nuous, the last term converges to 0; the first one being less than 1—y, we

derive the last part of the result.
In the following, we will suppose m large enough so that

sUp llw lI®<d - |-

Notice that i//f = ipQ He  a" *iff,ds. As 0™ *ij/sgoes to i}sin || . H norm
Jo r
for a.e. se [0, TJ, the inequality Jtp"— ||, ™ [a™ « I, - pt\dsdx
JOM =T
shows that lim <A"™=Ain <&([0, T]; L(T)); in particular, lim lorC7™) " lo-K'A)-

2) First apply Jensen’s inequality to the probability o"(a- —y)dy:
oT « ¢,(x),x) ~ J ar{y)JFW,, x)dy for a.e. (f, x).
Combining the relation

| any) )f(", U/,(x - y), x —y)dydx = f tj/,(x), x)dx ,
JT

JT«T
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and the property Il .3./) we obtain for a.c. t:
.#**(»%i?) - sHEFEE(* L)

Birf 1l -<r| w1+ og )i (1 e ()X

1 o {& DX - §.(x-y) 1]+ 2y 1)} (I + 1Ae-y) 1)dxdy
2 2 (9.5)

the first bound in (9.5) can be studied as we did in the proofof Lemma A. 1:
Oifmm being convergent in L*([0, T] x T), is uniformly integrable on
[0, T] x T; as for 11/, — |, it is less than 2 and goes to 0 in space L*(T).

In order to use the same arguments for the last term of (9.5), we only

need to show that z —+ aT(x —z)\ tf/{x) —\f/,(z) | dx goes to O in LI(T)
T

(we set z = x —y). Denoting by &-Ty, :x —» \i/,(x —y), we have

aT(x - 2) 1A - IA@Z)1dxdz = f a"(y) |l — 2Tr™, ey ;
t*t Jt
but translation operator is continuous in space L!(T), so this last term goes
to 0. We then showed r{ﬁIanT(Om) N lot(@d* which ends the proof. Q
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ON SECONDARY BIFURCATIONS FOR SOME NONLINEAR
CONVOLUTION EQUATIONS1

F. COMETS, TH. EISELE AND M. SCHATZMAN

ABSTRACT. On the d-dimensional torus Td = (R/Z)d, we study the nonlin-
ear convolution equation

u(t) = g{A *w *u(£)}, t€ Td, A> 0.

where * is the convolution on Td, w is an integrable function which is not
assumed to be even, and g is bounded, odd, increasing, and concave on R +.
A typical example is g =th.

For a general function wt we show by the standard theory of local bifur-
cation that, if the eigenspace of the linearized problem is of dimension 2, a
branch of solutions bifurcates at A = (~(OJtDfp))*“ 1 from the zero solution,
and we show that it can be extended to infinity.

For special simple forms of u/, we show that the first bifurcating branch has
no secondary bifurcation, but the other branches can.

These results are related to the theory of spin models on T d in statistical
mechanics, where they allow one to show the existence of a secondary phase
transition of first order, and to some models of periodic structures in the brain
in neurophysiology.

1. Introduction. The aim of this paper is to analyse the branches of solutions
of a nonlinear convolution equation on the d-dimensional torus Td = (R/Z)~. The
equations are of the general form

(1.1) u(t) = gf{Xw *u(e)},

wheret € Td, A£E R+, *is the convolution operator, w a given integrable function
on Td, which is not assumed to be even, and g is a bounded, odd, increasing
function, which is concave on R +. The positivity of Adoes not reduce the generality.

There is a large number of models where equations of the above kind appear, in
particular within the theory of statistical mechanics and some mathematical models
of biology. In statistical mechanics, (1.1) corresponds to the mean field equation
of an interacting spin system (see [20, 2]). In the thermodynamical limit, the free
energy ~>(/3) of the system is given by a variational principle

(1.2) —/30(/3) = sup B Tj w(t —s)u(s)u(t) dsdt — I ip(u(t))dt
uel7(Td) " J3 JTd
L (Té)2
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where w(t —s) represents the interaction potential between a spin at site t and a
spin at site s, w is assumed to be even, but not necessarily positive, and ip is the
entropy function of the single spin distribution p:

(1.3 ifi(x) —sup jxy - InJexp(yz)p(dz) j

(see also 82). If uo is a (local) maximum of the variational problem (1.2), then the
first Frechet derivative of 0OF —I must vanish; i.e.,

(1.4) OF'(uo) - J'(tio) = O,

or equivalently,

(1.5) Ow*uo(t) -tp(uo(f)) =0

almost everywhere. This mean field equation is equivalent to (1.1) ifwe set i'p = p-1
and replace the inverse temperature 0 by the parameter A The global maxima of
(1.2) correspond to equilibrium states, while local maxima represent metastable
states. Both are stable solutions of (1.5) or (1.1) (see 86). Moreover, in the theory
of nucleation (see [15, 23)), one is interested in solutions of (1.5) which are saddle
points of the potential OF —I. They are unstable, or more precisely hyperbolic,
solutions of (1.5) in the sense of dynamical systems.

Phase transitions of the spin system are nonanalytic changes of the global max-
imum uq of the variational principle. They are in general linked with a bifurcation
of the solutions of the mean field equation (1.5) and simultaneously with a change
of the stability of the solutions of (1.5). In [2] it has been shown that there are
primary stable bifurcations of the solutions of (1.1) not only for the nonzero con-
stant solutions (Curie-Weiss model), but also for periodic solutions of (1.1), which
appear in the antiferromagnetic case.

Beside these models, in which equation (1.1) appears literally, there are a number
of models where one gets equations of a similar type. We like to refer especially
to the spin-glass model of van Hemmen et al. [10], since in particular one studies
there secondary phase transitions—corresponding to secondary bifurcations of (1.1)
here—which establish the existence of so-called mixed phases. The similarity of
the equations mentioned in this reference and (1.1) will become even more obvious
after we have transformed (1.1) into the corresponding equations for the Fourier
transforms in 82. The methods developed in this paper, and in particular those of
the associated dynamical system (88) allow one to understand better the results of

10].

: ?\Ionlinear evolution equations involving a convolution term appear also in some
mathematical models of biological systems. We shall mention [0, 1, 5, 6, and 16],
where further references are quoted, but let us give more details about the problems
addressed in [16] because they are the closest to the ones we consider here.

The adult brain of higher organisms such as mammals displays a remarkable
mixture of highly specific connectivity patterns with large amounts of randomness.
The cortex is the external part of the brain; it is an envelope about 2 mm thick,
with many folds. The visual cortex, which has been extensively studied, is located
in the occipital region, and it receives indirect projections from the two retinae. The
existence of ocular dominance stripes is among the striking organization patterns
uncovered in the sixties: in the brain of adult animals, the cells are segregated into
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stripes which are sensitive either to left eye or to right eye stimuli; but this is not
true in newborn animals.

It is a major problem to understand the rules which guide the formation of this
circuitry during pre- and postnatal development. A theoretical explanation should
show how microscopic mechanisms governing the growth and decay of synapses—
the individual contacts between neurones—yield the observed macroscopic behav-
ior. Models of development of ocular dominance stripes stipulate that growth of
contacts at points x depends on the density of fibres or contacts not only at x, but
in a neighborhood of x.

Two alternative types of mechanisms may be invoked. In the first, afferent fibres
carry chemical markers which diffuse laterally within the cortical tissue; at point x
in cortex, the rate of growth of synapses of a certain type—i.e., coming from either
the left eye of the right eye—is governed by the similarity between the marker
carried by the fibre, and the concentration of this marker at x [13]. In the second
type of model, synaptic growth depends solely on short-term temporal correlations
between pre- and postsynaptic activities: this is an application of the Hebb principle
of synaptic modification [8]. According to this principle, the strength of connections
between two cells grows proportionally to the correlation between the activities
of the two cells. Activities in fibres of different origins—right and left eye—are
assumed to be uncorrelated, and correlations or anticorrelations are carried through
the cortex via a pre-existing circuitry [22].

It has been pointed out [18] that, in spite of different mechanisms, the two models
are theoretically equivalent; both are conveniently summarized by an evolution
equation with a spatial convolution term of a particular type: the central part
of the convolution kernel is positive, the outer part negative. If the variable tt
designates the difference between the density of left-eye and right-eye contacts,
the evolution of u is described by the following equation [18], where w is a given
convolution kernel depending only on space and * is the spatial convolution:

1.6) dusdt = (w *u) mf(u).

The nonlinearity / serves to express a saturation or constraint; a modification of this
equation, which has the advantage of exhibiting better the effect of the constraints,
if for instance there is a physically maximal density of contacts, is

1.7) du/dt = w *u — hQu),

where h is an increasing function of u, which can be taken multivalued if sharp
constraints are desired. We would like to study the behavior of (1.6) and (1.7), as
time increases infinitely.

It is shown in [16] that the nontrivial stable solutions of (1.6) when f(u) = 1—u2
satisfy, under a suitable functional hypothesis on w,

(1.8) u = sgn(u> *u),
and that the nontrivial stable stationary solutions of (1.7) satisfy
(1.9) h(u) = w *u.

Clearly, if g is the reciprocal of the signum function, which means that, in (1.7), u
is constrained to stay between —1 and + 1, problems (1.8) and (1.9) are identical.
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If we write (1.9) as
(1.10) u=h-1(w *u),

it is natural to imbed (1.10) in a family of similar problems depending on a pa-
rameter u = h~1(Xw *u), which is precisely problem (1.1) considered above in a
statistical physics setting. If, in particular, we take g = h~x = th as in (2.10), we
obtain

(1.11) u = th(Atu * u).

Observe that as Agoes to infinity, problem (1.11) resembles more and more problem
(1.8). We expect to gain some understanding of problems (1.6) and (1.7) through
a careful study of the set of their stable stationary solutions, which are the main
candidates to be asymptotic states of (1.6) and (1.7) as time grows infinitely. Thus
we are interested in a rather complete description of all solutions of (1.1), at least
for some natural choices of the function w.

This paper contains

(@) The proof that if A€ (0, ("(OJItuKO))-1), the only solution of (1.1) is zero.
Here and below, f(p) = fTd f(t) exp{—=2iript} dt denotes the Fourier coefficient of
the function / on Td, p € Zd.

(b) A description of the primary bifurcation picture. Assuming w(p) real and
w(g) ™ w(p) for all g ™ *p, we obtain in some cases a branch starting at Ap =
(g’'(0)ti(p))_I and extending to infinity. We do not presently cover the cases when
w has symmetries in Td,d > 1, i.e,, w{p) = w(q) for some q ™ £p, because this
would lead to bifurcation kernels of dimension larger than 2.

(c) A description of secondary bifurcations for some special choices of w. More
precisely, if we assume that

(1.12) w(t) = acos(2npt) + /?cos(27rqt) + wg(E)
with a, i3> 0
two(r) =0 forr€ [(2Z + 1)p +22q) U [2Zp+ (2Z + 1<
and p, q satisfying either the noncollinearity condition
(1.13) p=0 qa or (PO - (pa)2 >0,

or in the collinear case, the arithmetic condition
(1.14) qgf (2Z+ )p and p <£(2Z + l)qy

then we are able to give a rather complete picture of the secondary bifurcations in
Theorems 5 and 1. In particular, no second bifurcation from the first-appearing
branch occurs, but some may occur from the second branch. This secondary bifur-
cation is connected with an exchange in the stability of the primary branch. In the
noncollinear case, this branch is unstable, or more precisely hyperbolic (see 83 for
the definition), until the appearance of the secondary bifurcation, but it is stable
after the occurrence of the secondary bifurcation. The solutions on the secondary
branch are, in general, hyperbolic.

In an example we show that the mentioned exchange in stability on the second
of the primary branches, which goes together with the secondary bifurcation, is
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of physical relevance in some models of statistical mechanics. It gives rise to a
secondary phase transition of first order, where the equilibrium state jumps from
the first primary branch to another stable solution.

The stability analysis of the different branches is done by reducing the prob-
lem to a finite-dimensional one on the Fourier coefficients u (dtp) and u(x<?) and
by studying the geometric properties of an associated mapping. When the non-
collinearity condition (1.13) holds, the set of solutions can be completely described.
Moreover, in this case we characterize the fixed points as stable, hyperbolic, or
totally unstable.

Of course, these results depend heavily on the oddness of g. Small perturbations
from this condition would lead to nonconnected manifolds of solutions, which show
turning points and so-called two-sided bifurcations. They appear, for example, in
the spin model of the beginning of this section if there exists an additional external
magnetic field h = /i(s).

Also higher-dimensional spin variables may be treated similarly: for example,
X-Y spins or Heisenberg spins with values in S2. Their mean field equations have
the form of systems of nonlinear convolution equations. However, these generaliza-
tions will not be discussed in this paper.

2. General assumptions and preliminary results. Let Td = (R/Z)d be
the d-dimensional torus. By dt we denote the Lebesgue measure on Td. We are
concerned with the nonlinear convolution equation

2.1) u@) =g{\-w*u(t)}, te Td,

where A€ R+ = [0, +00). Here, for a given Lebesgue-integrable function w on Td,
we define the convolution operator

2.2 w*ru(t)= f-I- (t —s)u(s) ds,

(2.2) "

and we assume g: R — R to be an odd, increasing, bounded function which is
(2.3) concave on [0, 00).

Here and in the rest of the paper, we understand increasing, decreasing, etc., in
the weak sense of nondecreasing, nonincreasing, etc., respectively, and similarly for
concave. Otherwise, we say strictly increasing, strictly decreasing, strictly concave,
etc. Of course, we exclude the trivial cases g = 0 or w = 0.

REMARK. In principle, there is no restriction in having A > 0 instead of AGR,
since the pair (—Att;) gives the same equation (2.1) as the pair (A, —w). However,
the formulation of the theorems is much simplified by considering only A£ R +.

In the examples from statistical mechanics, the interaction potential is given by
the function w, and a thermodynamical state u on Td has internal energy

1T
-iju(t) ew *u(t) dt.
On the other hand, the nonlinear function g reflects in some sense the entropy of

the system. To be more precise, let us recall (see [12, 2], e.g.) the definition of the
«"-function for a measure p:

(2.4) E = —%(u,w *u) =

(2.5) <p(x) = In / exp(xy)p(dy).



184

666 F. COMETS, TH. EISELE AND M. SCHATZMAN
The entropy function ip of p can then be calculated as the Legendre transformation
of ¢p:

(2.6) ip{y) = sup{xy - ¢p(x)}.

Now, g is the derivative of the function §p or, equivalently, by (2.6), the inverse
function of the derivative of the entropy ip:

(2-7) g(x) = #(x) = (t'p)_1(s)-

In examples with Ising spins, we have

(2.8) po = (5+i + S-i)/2
such that

(2.9) H0(x) = Incosh(x),
and

(2.10) 90(x) - 4pd(x) = th(*).

Obviously, go satisfies the desired properties (2.3). It is even real analytic on R and
strictly concave on (0, 00). In general, the concavity condition for g is tantamount
to the GHS-inequality for the measure p (see [4, 2]).

For a one-dimensional problem and in connection with a quadratic internal en-
ergy, this inequality guarantees that there is exactly one higher-order phase tran-
sition for the equilibrium state (see also [3], in particular the remark at the end of
§5

Me note some simple consequences from our assumptions on g: g being odd, we
have

(2.11) ff(0) = O.
Because g does not vanish identically and is concave on R+, we find for x ~ 0 that

(2.12) 9(x)/x is strictly positive and decreasing with respect to |x|.
Therefore,

GOy = [ A
(2.13) a'io) : Illkgl | >0
exists and is positive. Until 84 inclusively, we allow g'(0) = +00. Set
(2.14) 7= X_IL@OOg(x) € (0,00).

By the concavity condition, g is necessarily continuous on R\(0}, possibly with two
symmetric jumps at zero. Finally, we set

2.15 ' = limsu N > 0,
(2.15) g'(x) i«L_OIO
and

‘Y = [irn . _
(2.16) S'(x) “i‘raT—l?)fg( +$£ xRE > 0.
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g' and g' axe symmetric, decreasing in |x|, and

(2.17) ff(0) = 9.(0)=£'(0).
We mention in particular, that if g is strictly concave on (0, 00) then
(2.18) g'(x) - g'(x) <0 and g'(x) - g'(x") <O

for all x,x" € R with |X'| < x.
We study naturally our equation (2.1) by considering the Fourier coefficients of
u: Forp€ Zd let

(2.19) u(p) = 3 u(i) exp(—=irip 1t) dt.

The inverse transformation is given by Parseval’s formula

(2.20) u(t) = u(p) exp(27rtp «i).
pEZ*

Here and in the sequel the equality is understood in the sense of L”~(Td). Since u
and w axe real functions on Td, we have

(2.21) «(-P) =0(p) and w(-p) = w(p)\
in particular,
(2.22) a(0)€ R and td(0) € R.

By the convolution rule ttf*u{p) —w(p)a(p), (2.1) can now be rewritten as

(2.23) ut) = gJA”™ HDO(?) exp(27rtci) 1, te Td,
J
or
(2.24) UP) = 91 A5Z G(v)G(v) exP(Zriqyy >  (p)
I -jez J.
for all p € Zd.

DEFINITION. We say that a solution u of (2.1) is p-atable, p € Zdt if
(2.25) Auw(p)a ¢ {Aiu*u(f)} dt < 1.
It is called p-unstable or critical if

(2.26) AJwp)| y*g' {Xtv *u(0) dt > 1.

We conclude this section with some simple results about solutions of (2.1):
(i) Set

(2.27) G(Ati) = u —{Au; *u}.
Then
(2.28) G(A,0) = 0 forall A
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since (2.1) has always the trivial solution u = 0. If €(0) < +o00, the linearized
operator at u = 0 is given by
(2.29) DUG(A,0) ev = v —N(OjAtu *v

with v € L2(Td). The operator v —+ w *v is compact in £2(Td), so that the
spectrum of DuG(A,0) is

(2.30) spDuG(X,0) = {1} U (J {1 - g'(0)\w(p)}-

pE€zZ*
Therefore by the implicit function theorem, there is no bifurcation for A not in
(2.31) AN(MN(Olwfp))'l, pe Zd with w(p) 0}.

(i1) There are two kinds of invariance for the set of solutions of (2.1): First, (2.1)
is translation invariant; i.e., if u is a solution of (2.1), then so is

(2.32) u,(f) = u(t + s)

for all s € Td, since

(2.33) G{A ua)(t) = G{u, A{t + s).
Recall that

(2.34) «7(p) = u(p)exp{27Ti'p3}.
Second, if u is a solution of (2.1), so is —4, since
(2.35) G(A,-u) = -G(At2).

Theorem 1. (i) Letj'(0) < @ and A€ (0, (ff'(0) «IM111)-1)- Then (2.1) has
only the trivial solution u = 0.
(if) Let ty(0) > 0 and

(2.3%) =0 1 Gferise

At Xg a branch of constant nontrivial solutions u\ = +u,\(0) bifurcates from the
trivial solution, where u\(0) = ¢(0) > 0 ¢5 the unique positive solution of

(2.37) ¢ (0) = 0{Ati(0)ti(0)}, A6 (A0, 4-co).

If moreover, w > 0, then this branch does not have secondary bifurcations.

PROOF, (i) g being odd, we have for any solution u,
sup|u(£)| = supg{Alu/ *u(01} < 9 j*"MMIi,1supfu (i) ,

which for A < (9'(0)||tx;||~) "™ 1 implies sup£|u(i)] = 0.

(i) The first assertion of (ii) is well known (see, e.g., [2, Appendix B],). If
w > 0, w ™ 0, then w(p) < ti)(0) for all p € Zd —{0}. If g is differentiable on
(0, +00), the spectrum of the linearization at u\ = u(0),

D uG(Xye (0))u —v —Ag{AIZ)(0)ti(0)}ii; * v,
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consists of the values 1 and 1 —Aty(p)3/{AtD(0)u(0)}, p 6 Zd. But

(2.38)  Au>(p)g'{Aiu(0)u(0),} < Au>(0)ff'{Atu(0)u(0)} = -~-g{Axtu(0)}1=i(Q < 1

and the branch u = irit(O) cannot have a secondary bifurcation. For a general
function g, a simple approximation by a smooth function g shows that there are no
secondary bifurcations on +tx(0) for g either. 1

REMARK. Let again iu(0) > 0. We axe interested in the behavior of u\ (0) for
A\ Ag. Assume first that g is linear in some interval [, +a], 0 < a < +00; i.e.

(2.39) 9{x) = g'{0)x, 0 < g'(0) < +oo,

for x G [—o:;, +a]. Of course, we suppose a to be maximal with this property. Then
at A= Ao = (g'(0)ti)(0))_1 we have in addition to (2.37) the constant solutions (see
Figure 1)

(2.40) u\0 = x with x 6 [—a, 4-a].

Conversely, if g is not linear in a neighborhood of 0, then the concavity of g implies

that either
Ao = 0 and then g{Aoti’(0)x} = 0 for all x,

or
Ao > 0, and then 0 < ;(0) < +o00

and

(2.41) <7{Aot«(0)x} < <7'(0)Aoti>(0)x = x for all x 6 (0, 00).

In both cases there are no nontrivial constant solutions at Ao- This shows that
we have, in addition to Theorem I(ii), nontrivial constant solutions of (2.1) if and
only if g is linear in a neighborhood of 0. (2.37) and (2.40) are the only nontrivial
constant solutions of (2.1).

We set the maximal a from (2.39) equal to 0 if g is not linear in a neighborhood
of zero. It is then easy to see that
(2.42) lim ¢ A0) = lim g(x).

A\, Ao x\,a

In particular, if g is continuous at 0, but not linear in a neighborhood of 0, then

(2.43) lim wa(0) = 0,
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and graphically the nontrivial constant solutions branch indeed from the trivial
solution.

Finally, we note some simple properties of the function A —»«a(0) if i&0) > 0.
For A€ (Ao, +00) we set

(2.44) 0o(A, x) = fH{AE»(0)i}
and
(2.45) O<o(AX) = At&IOJg'IAL&IOjz}.

On (Ao,+co) the function A—*; a(0) = (Eo(A,0a(0)) is continuous and increasing
with

(2.46) Alizgoo Ua(0) = 7,

where 7 stems from (2.14). The solution u\ = +0a(0) is O-stable since
(2.47) 0 < ~ o(A,0a(0))< 1.

Moreover,

(2.48) A Jim, <Wo(A,aa(0) = 0.

To see the last'equality, we fix 0 < T < 7 and A > po with tto(®™) > x by (2.46).
The concavity of g on R+ shows for A> A that

(2.49) 0 < S (A,0a(0)) < (g{Xw(0)a\(0)} - s{Aw(0)x})/(ua(0) - x).
By (2.14) the right side of (2.47) goes to zero as A—*+00.
3. Some invariance results for the Fourier coefficients. In this section,

we show that the conditions on g imply the existence of classes of functions u,
characterized by their Fourier coefficients, which are invariant under the operation
u —*g{Xw *u}. Therefore, solutions of (2.1) can be studied independently in each
of these classes.

Let us define, for p € Zd and A C Z,

(3.1) Ap = {kp, k€ A).
PROPOSITION 1. Letp,q &Zd and m be an integrable function on Td. Then
®

(3.2) m(r) =0 forallr£ Zp

if and only if

(3.3) m(- +s) =m(-) for alls6 Td withpes =0 mod L
)

(3.4) ra(r) =0 forallrf£ (2Z+ 1)p

if and only if

(3.5 m(- +s) = —m(-) for alls€ Td withpi1sz =5 mod 1.

(iii) Assume thatp 0 and g~ 0 are not collinear, i.e.,

(36) (E(<=<7) - (pg)2 > .
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Then
(3.7) m(r) =0 forallr€(2Z+ l)p + 2Zqg\U [2Zp + (2Z + I)g]
if and only if
(3.8) m(- + s) = m(-) for all s GTd with ps mod 1= gs mod 1= 5.
(iv) Assume that p,q € Zd\{0} are collinear, i.e.,
G.9 nip=n2q # 0

for some ni,n2 € Z\{0} with gcd(ni,n2) = 1. Here, gcd denotes the greatest
common divisor. Set tq = p/n2= qg/n\. Thentq 6 Zd, and

_ A if ni *7i2 gyen,
(3.10) |(2Z+ Dp +2Zg\U[22p+ (22 + 1),] = { + £ i +7i2 odd.

Now, if ni en2 is odd, then
(3.7) is equivalent to (3.8).
But if ni *«2 is even, then (3.7) is equivalent to
(3.11) m(- + @) = m(-) for all s GTd with ps mod 1= gs mod 1= 0.

PROOF, (i) (3.2) and (2.20) imply (3.3) immediately. Conversely, by (3.3) and
(2.34), we get for all 3G T4 with ps = 0 mod 1 and r G Zd that

(3.12) m(r)[exp{27riTs} —1] = 0.

Let r = (ri,..., rY with rn(r) ~ 0. Then

(3.13) res=0mod1 forall sGTdwithps= 0 modL

Considering, in particular, s = (0,..., 0,...), we have rSk G Z for all Sk with

PkSk G Z, which can only hold if r* = np/c for some n* G Z. Moreover, if ti* ™ n/
for k land PkPi # 0, we takes = (0,..., Sk, ..., sj,0,...) with Sk = \{nk —ni)Pk
and si = —4\rife —ni)pi, which satisfies ps = 0 but rs = We have a contradiction
to (3.13). Therefore, njt = nj and r G Zp.

(if) Obviously, if (3.4) is satisfied, then so is (3.5).

Let (3.5) hold. Then (3.3) holds also, and we get m(r) = O for all r £ Zp. But if
r=2np ™ 0withn GZ we take s = (0,..., 1/2pk, 0,...) for some k with pk ”~ O,
such that ps = 5. By (3.5)

0 = 7h(r)[exp{27rzrs} + 1) = m(r)2,

which shows m(r) = 0. Thus (3.4) holds.
(iii) Evidently, (3.8) follows from (3.7). Conversely, assume (3.8). First, one
checks that the set of all s satisfying ps = gs = \ mod 1 is given by

(3.14) s = H(pp)(qa) - (pa)2)-1

X (PI(2A: + 1)(qa) - (2L + D(PM] + of(@l + D(pp) - A+ D(pP<)]} + a
with fc,/ GZ and (sp) = (sq) = 0. (3.8) says that if m(r) ~ 0 then ras = | mod 1
for all 3 from (3.14). Setting r = ap 4-0q + f with fp = rq = 0, we find for all such

s that
rs = ~[a(2A+ 1) + (3(21+ 1) + fS= ~ mod 1
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for all k, 1 G Z and all s. Hence, f —0 and
(3.15) (a,0) EI1(2Z + 1) x 2Z] U [2Z x (2Z 4- 1)],

which isr C ((2Z -I- )p -I-2Z¢] U [2Zp 4- (2Z 4- 1)¢].
(iv) Since gcd(ni,ri2) = 1, there exists ki,k2 € Z with

(3.16) kini 4- kirii = 1.
Therefore
(3.17) kig + kip = r0 € Zd.

Now if ni and n2 are odd, then
(3.18) /iJij 42”2 G (22 + 1) iff (¢i, k) G[(2Z + 1) x 2Z] U [2Z x (2Z + 1)],

which by hq 4 hp = (¢ini 4- hn”~ro shows (3.10) for nx +712 odd. On the other
hand, if ni en-i is even—i.e., (ni,n2) € [(2Z + 1) x 2Z] U [2Z x (2Z 4- 1)]—then

hg + hp = {h + n2)q4- (¢2 - nx)p = (/ini -I-/2n2)r0
shows
(3.19) [(2Z 4* 1)p 4'2Zq] U [2Zp 4 (2Z 4" 1)9] = Zp 4" Zq = Zro*

Now, let 7ii *ri2 be odd. Then, since (¢ 1,72) £ [(2Z -1-1) x 2Z] U (2Z x (2Z -1-1)] by
(3.18),
ps =qs=5mod1l iff ros= 5 mod 1,

and (ii) shows the equivalence of (3.7) and (3.8). It is clear that
ps =gs =0 mod1 iff tgs = 0 mod 1.

If ni 1n2 is even, then (3.19) and (i) show that (3.7) and (3.11) are equivalent. 1
DEFINITION. We denote by ?p, 7p and 7pq the sets of integrable functions on Td
which satisfy (3.2), (3.4), and (3.7) respectively.
We note some immediate consequences of the proposition:

COROLLARY. Ifw C ?p,w G 7p, or w € 7pq for noncollinear p and g, then all
solutions of (2.1) are in 7P, 7p, and ?pq, respectively.

Remark. For pe Zd\{0} set

(3.20) wp{t) = w(r) exp{2irirt}.
rE(2Z+1)p\{£p}

Ifw = wp, i.e., if

(3.21) w(r) = 0 for all r € (2Z 4-1)p\{4-p, —p},

then any function u G is a solution of (2.1) if and only if
(3.22) u(i) = ~1a w(r)a(r) exp(27n>£)| .

Of course, the last statement also holds trivially for p = 0. 7q = 7¢ consists only of
constant functions, and u = G(0) is a solution of (2.1) if and only if G(0) satisfies

(3.23) a(0) = g{\w(0)a(0)}.
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Similarly, for p,q€ zd, p ~ g~ 0, we set
(3.24) wpg = N N(r)exp{27nr£)

r=+p,*<j

+ w(r)exp{2irirt}.
rg((2Z+1)p+2Z<?ju(2Zp+(2Z+1)<j]

Ifw —wpq, i.e., if
(3.25) wu>(r) =0 forall r€ ([(2Z + Dp + 2Zq]l U (2Zp + (2Z 4 )g])\(xp, £?},

then any function u G fpqg is a solution of (2.1) if and only if

(3.26) ut) =gf A w(r)a(r) exp(27xirt) >.
| =2 J
The simple forms of (3.22), (3.23), and (3.26) lead to the following definitions.
DEFINITION. A function u £ Tp is called a p-primary solution, p G Zd, if

(3.27) a(p) O
and
(3.28) u(t) = g{Xwp *u(£)}

with wp from (3.20). u £ 7pq is called a (p,q)-secondary solution if
(3.29) n(p) # 0, (a) = 0,

and
u(t) = g{Xwpqg *tz(£)}

with wpg from (3.24).

Note in particular that p-primary solutions and (p, -secondary solutions are,
in general, not solutions of (2.1) unless w = wptw = wpqgi respectively, p-primary
solutions and (p, ¢)-secondary solutions are nontrivial by definition. Only for p = 0,
the O-primary solutions are always the nontrivial constant solutions of (2.1), which
are treated in Theorem 1.

For p~O we investigate p-primary solutions in the next section, (p, 9)-secondary
solutions are studied in 8§85 and 7.

4. Primary solutions. For p € Zd\{0} we shall study the existence of (non-
trivial) p-primary solutions in i.e., solutions of (3.28). This means implicitly
that we assume w = wp with wp from (3.20) or that (3.21) holds. Let us define
(assuming for a moment that g is a function on C)

(4.1) $PA,2p,z_p)=] ~la Y2 w(q)zgexp{27n'gi} | exp{—27npi} dt,

(4.2) (A z) = Re$p(A 2,2)

J g{X2Re(w(p)zexp(2iript))} cos{2npt) dt,
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and its ‘formal’ symmetric derivative
(4.3) dep(\,z) = i(dSBp4-a*_pO_p)(A,z,2)
AReiir(p) 3 g'{\2Re(w(p)zexp(2iript))} dt.

Note that even if w(p) = w(—p) € Randz=z€ R,

(4.4) dPp(\,z) # Jep(\,z)
= Avb(p) | g {\w(p)z2 cos(27rpi)}2 cos2(27rpt) dt.

The following result is generalized in 85.
THEOREM 2. IfImw(p) 0, then there do not exist p-primary solutions in 7p.

REMARK. We know already from (2.31) that the condition of Theorem 2 is
necessary for local bifurcations from zero. The theorem and its generalization in
85 is more interesting as a gobal result. It has nothing to do with our restriction to
A€ R+: If Imu>(p) ~ 0, then there axe no p-primary solutions even for all A€ R.
However, the restriction to A€ R+ makes it necessary to have w(p) > 0, since we
must have Atb(p) > 0 for the existence of p-primary solutions, as can be seen from
(3.22).

In this context we want to mention that in [2] the assumptions of Theorems
1.2 and 2.3 have been formulated somewhat sloppily. Instead of simply supposing
v N 0, we must demand t/ > 0, as in the proof there (see also {2, p. 336]). Thus, we
get the following assumptions for the existence of p-primary solutions in 7p with
Af R+.

Theorem 3. For pe Zd\{0} let
(4.5) 0<w(p) € Randw(r) =0 forallr£ (2Z 4 )p\{+p, —p}.

Define

P& M l& orem)-1 8 OT05Y oo,
With exceptions for A= Ap, the functions
(4.7) tip(Ai) = Y{AG>(p)|0.v(p)[2cos(27rp(t + 5))>,

A€ (Ap,-l-00), s € Td, are the only p-primary solutions of (2.1), where |u(p)| =
i-ca(p)| > 0 is the unique i)ositive solution of

(4.8) [G(P)] = 1 g{Xw{p)\U(p)\2 cos(27rpi)} cos(23rpi) dt.
A—|QG(p)| is continuous and increasing on (Ap, +00) with
(4.9) A, 0@) = 4

The p-primary solutions (4.7) are p-stable; we even have

(4.10) dep(\, [a(p))) € (5.1), A€ (Ap, +00),
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and
(4.11) lim 30p(A,|u(p)l) =
A—*00

REMARK. At A= Ap there are (nontrivial) p-primary solutions if and only if g
is linear on some interval [—a, +a], with a maximal (see (2.39)). If the latter is the
case, all p-primary solutions at A= Ap are of the form

(4.12) Up(Ap,i) = y2cos(27rp(i + s))

with y € (0, a/2], s € Td.

PROOF. For z > 0 the function <P(A,-) is positive and concave. Excluding
the case A = Ap, treated in the remark, there exists a unique positive fixed point
[u(p)| of &p{A, ¢ if and only if A7 (0)u>(p) > 1, or, equivalently, if A> Ap. |u(p)| is
increasing in A

(4.9) is evident. Obviously, (4.7) is a p-primary solution. Conversely, if v is
any p-primary solution at A with v(p) ™ 0, then |u(p)| is a positive fixed point of
<P(A,-). Excluding A= Ap, we must have A > Ap and [t)(p)] = |u(p)| such that v
has the form (4.7). To prove (4.10), we first show

(4.13) Aty(p)j g'{Aty(p)|ti(p)j2cos(27rpi)}sin2(27rpi) dt =

For this purpose we approximate g uniformly by a differentiable function g with
the same properties as g. Assuming without loss of generality that pi 720, we get
by partial integration that

(4.14) AtD(p) T g'{Aio(p)lu(p)j2cos(27rpi)}sin2(27rpi) dt

Jtd
= ~ JfT . [?{s e} sin(27rpi)/2|u(p)|27rpiltjif d(t2,..., td)
1 .
2Ad{p) H.. jrpt) dt.

The argument of the {* <<} is always the same as in the first line. Since the second
term in (4.14) vanishes and the last term tends to 5 as g tends to g, (4.13) is proved.
Now the concavity of $p(\,z) for z > 0 yields, with (4.4),

(4.15) 57p(Ai(p)]) = | (l+ JUp(A.fi(p)D)) e (»..) .
which is (4.10). For (4.11) we have to show by the last equality that

(4.16) Aim_g</>P(A, Ju(p)]) = 0.

Fix zg E (0,27/ %) such that?by (4.9), |ti(p)] > zq for all sufficiently large A. The
concavity of $9{A z) for z > 0 implies

(4.17)  0< J U p(A,Ju(p)])
~ oyt i{"(p)1™(p)2cos(27rpi)} - g{\w(p)zc,2 cos(27rpE)}]

x cos(27rpt) dt/(\u{p)\ —zq) —»0 for A — oo.
This shows (4.16), and the proof is complete. 10
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5. Secondary bifurcations for p,q noncollinear. For the rest of the paper
we assume that

(5.1) 0 < g'(0) < +o0,
and
(5.2) g is strictly concave on (0, +00).

This does not allow g to be linear or constant on some interval. In particular, g is
strictly increasing. For convenience we suppose, moreover, that g is differentiable
on R, though this condition is not really necessary and can be overcome by approx-
imating g suitably (see the proof of Theorem 4 for such am approximation). We
study the following problem: In which cases do there exist secondary bifurcating
branches of solutions from branches of primary solutions? We restrict this prob-
lem to the investigation of (p, q)-secondary solutions. Moreover, we assume in this
section that p, g € Zd are noncollinear in the sense that

(5.3) eitherp=07q or (pp)(qa) - (pg)2 > O
Secondary bifurcations for collinear p, q # 0 are studied in §7.

In the following theorems the formulas for (0, g)-secondary solutions, ¢ 0, and
for (p, ¢)-secondary solutions, p,q 6 Zd\{0} noncollinear, sure different. The proofs,
however, follow the same lines. If necessary, we use square brackets containing two
lines, the first of which corresponds to p = 0 and the second to p  0; for example,

W
(5.4) 2 *(r)exp{2«ri}= 5te(ti>(p exp{2, ipi})

We prove the following generalization of Theorem 2.

THEOREM 4. Letp,q € Zd satisfy (5.3), let (3.25) hold andw(p) ™ 0, w(q) 0.
There exist (p,q)-secondary solutions only if
(5.5) Imti(p) = 0, Imix<?) =0, and w(p) >0, tv(q) > 0.

PROOF. Let v be a (p, g)-secondary solution. By assumption (5.3) we can find
s € Tdwith

(5.6) S arbitrary

2irsp = —arg(t/>(p)0(p)) 27qu = —arg(tV(q)V(q))-

After a rotation of U by S, we have

_ i [00¢0) A
(5.7) va() = 9 oy i ez cos(zrrpiy AT ED@)12e0s(27ren
such that vs is even and therefore vs(p) € R\{0} and v3(q) € R\{0}. Since v3is a
(p, g)-secondary solution, too, and g is invertible as a strictly increasing function,
we find for all t GTd that
w(0)63(0)

v3(p)2 Re(0?(p) exp(27ript)) + v3(q)2 Re(w(q) exp(2iriqt))

w(0)v(0)

u>(p)0(P)[2 cos27rpE) |t ((7)a(c)|2c0s(27rgE),

and therefore w(p) € R, w(q) € R.
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We know by Proposition I(ii) that

1
IAEXPIN3R) 0o (9)=0
and
[V{AG;(9)1)3(9)2 cos(27r<7H)}]A (p) = O.
Therefore
0 v3(p)
X 1
f 9 { Xw(p)vs(p) 2cos(27rpi)
(5.8) + Xw(qg)va(q)2 cos(27rgE)
—g {Xw(q)v3(g)2 cos(2-n:qt)} | cos(2irpt) dt,
0: U0s(?)
1
~ l) '
I \>G?)V (P) 2cos(27rpE£)
(5.9) +\w (q)Vv3(q)2 cos(27tqt)

1 .
-g{ *w(p)vs(p) 2 cos(2tXDi) cos(27rgi) dt.

But both equations can only hold if Aw(p) > 0 and Aw(q) > 0. By our restriction
to A > 0 we find the second part of assertion (5.5). @

If we now assume (5.5) in addition to (3.18), we know by Theorems 1 and 3
that on (max(Ap, Xq), -foo) we have both p-primary and ~-primary solutions. On
secondary bifurcations we get the following result, which will be proved at the end
of 88. By |u(p)l = [|Ea(p)] denote the unique positive solution of (4.8), and
(2.37), respectively, on (Ap,-foo).

THEOREM 5. Let p,g G Zd satisfy (5.3), and let (3.25) hold with w(p) >
0, <) > 0.

(i) 1If ~ > U)(gfw{p) > 0, then in Jpg there is no secondary bifurcation on the
branch of p-primary solutions or on the branch of g-primary solutions.

@iy 1f 1> w(q)/w(p) > then in 7pg there is no secondary bifurcation on the
p-primary branch, but on the g-primary branch there occurs a secondary bifurcation

of a branch of [p,q)~secondary solutions at

(5.10) Xgp = inf{A > \ q;d<t>g{XA\u\'{q)\) < w{q)/w(p) for all A" > A},
with

(5.11) 0< Ap< \g<\gp < 4-oc.
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IU (o)
Reu (q)
a — /v
>/ \xo rq *qo 11

Imu(q) \\AJJ

FIGURE 2. Bifurcations for 2w(q) > u>(0) > w(q) > 0. The nu-
merically exact picture is given in Example 3.3 of [24]

ey
Reu(q )

*q | * 0 *Oq

Imu (q)

FIGURE 3. Bifurcations for <) > t&0) > O

This branch exists for all A€ (A5P,+00) and consists of (p, q)-secondary solutions
of the form

+1
u(® =3[Aty(PIA(P) 2cos27rp(e + 5))
(5.12)

+ ty(g)lv(¢)|2cos(27rg(t + s))

with s G Td (recall |0(p)| # 0 and [t)(<7)| 720, by definition).

(iii) Ifp =0 and 1> w(0)/vu(q) > 0, then in Tog there exists no secondary bifur-
cation on the branch of g-primary solutions, but on the branch of nontrivial constant
solutions there occurs a secondary bifurcation of a branch of (0,q)-secondary solu-
tions at

(5.13) X0q — inf{A,d<£o(A", Gv(0)) < ty(0)0>(<7) for all X' > A}
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with
(5.14) 0< A < A< Ao < +oo0.

This branch exists for all A€ (Ao,,,+00) and consists of (0,?)-secondary solutions
of the form (5.12) withp = 0.

We want to clarify the bifurcating situation by the following two figures in the
case 0 = p 7q. In order to take care of the rotational invariance of u(q) € C, we
superpose the real axis of u(g) on the «(O)-axis. At the bifurcation points it will
be clear from the context in which direction the branch bifurcates. (See Figures 2
and 3.)

REMARKS. (1) Note that in the theorem the case uXq) > u/(p) for p ~ 0, i.e.,
(pp)(qg) —(pq)2 > 0, is covered by (i) and (ii) with p and g exchanged.

(2) By continuity we get from (5.10) and (5.13) the bifurcation conditions

(5.15) weafA @D = wW(a)!w{p) at A= Xp
(5.16) <9<£o(A|u(0)]) = w(0)/w(q) at A= XOq.
We know from (2.47) that

(5.17) 0 < aN\A [fi(0)]) <1 for A€ (A0, +00),

where the upper and lower bounds are approached for A\ Ao and A —* -foo,
respectively. Similarly, by (4.10),

(5.18) <™ (A lu(g)) <l

for A6 (A9,+00), and again the bounds are approached for X \ )@]and A —*-foo.
But unfortunately, the functions dM{\, ju(g)]) and dW|£(O)[) are, in general,
not decreasing. Therefore, the sets

(5.19) A.p={A> Xqdi>q(X [ti(g)]) < ti/(g)/io(p)} D (A™+00),

(5.20) AGT= (A > A03<Eo(A, [u(0)]) < B{0)u>(<7)} 3 (X0 4-00)

may be composed by several nonconnected intervals. It is now easy to generalize
the results of Theorem 5, such that for each A€ A<p, A€ Ao, respectively, there
are (p, g)-secondary solutions, (0, <?)-secondary solutions, respectively. Thus, if we
have strict inclusions in (5.19) and (5.20), we get secondary bifurcating branches,
which again vanish. Schematically, we get the bifurcation picture in Figure 4.

As a common phenomenon (see e.g. [7, Chapter 11.11]), the appearance of the
secondary bifurcations is followed by an exchange of stability. Here, we note this
stability behavior only in terms of definitions (2.25)-(2.26). The results are conse-
guences of more detailed stability investigations in 88.

THEOREM 6. Let the general assumptions of Theorem 5 hold.

(M) 1f 5> w(q)/w(p) > 0, then the p-primary branch is p-stable and g-stable,
while the g-primary branch is g-stable but not p-stable.

(i) If 1 > w(qg)/w(p) > |, then the p-primary branch is again p-stable and
g-stable, the g-primary branch is g-stable on (Afl,+00), but at the bifurcations it
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Figure 4

changes from a p-unstable or critical solution on (Xgj +00)\Aqgp to a p-stable solu-
tion on A”™p.

(iii) Ifp = 0 and 1 > w(0)/w(gq) > 0, then the g-primary branch is g-stable
and O-stable, the O-primary branch is 0-stable, but it is g-unstable or critical on
(Ao, -foo)\Ao< and g-stable on Aog.

6. An example: A secondary phase transition of first order. In this
section we give an extension of some results from [2]. There, for different interaction
potentials J, the equilibrium state in the thermodynamic limit for some mean-field
models from statistical mechanics on the circle T are studied.

It is shown that in the ferromagnetic, but also in the antiferromagnetic case,
there exist phase transitions of the equilibrium states. In particular, the phase
transition for the antiferromagnetic circle is linked with a breaking of the continuous
symmetry group T. In the context of the present paper, the phase transitions
of the ferromagnetic and antiferromagnetic circles correspond to the bifurcations
of O-primary, respectively, p-primary, solutions of (2.1) from the trivial solution
u = 0, which represents the paramagnetic state. The secondary solutions, which
we have found in the last section, cannot, however, represent equilibrium states
of the corresponding models of statistical mechanics, since the secondary solutions
found are not stable. Nevertheless, in an indirect way, the secondary solutions
are of physical relevance. Though they do not appear directly, they give rise to a
secondary phase transition of first order.

The secondary bifurcation of the secondary solutions is linked with a change of
the stability behavior of the primary solutions; in the words of Theorem 6(iii): if
w(qg) > u>(0) > 0, the O-primary solutions are unstable on (Ag, -hoo™~A", but
are stable for A€ Ao? 2 (Aog,+00), while the p-primary solutions are stable for
all A > Ap. Therefore, for A E Ao”®, both primary branches are stable. Now the
equilibrium state has to make its choice between these two possible candidates by a
variational principle. For A between Xq and Ao the equilibrium state will certainly
be one of the g-primary solutions, since these are the only stable solutions there. By
continuity, the equilibrium state will remain a g-primary solution even for values
A, which are little greater than Ao- But for very large A it is possible that the
newly stable O-primary solutions win the variational principle. If this is the case,
there must be an intermediate value A* where the equilibrium state jumps from a
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7-primary solution to a O-primary solution. We have a secondary phase transition
of first order.

The following example shows that this phenomenon may really happen. In order
to make things as easy as possible and to have a close connection to the represen-
tation in (2), we restrict ourselves to the case d = 1, though the results hold for
general dimension d.

At the sitesa/n € T, a = 1,..., n, there are fixed magnetic spins X”. Without
interaction, the X£ take independently the values +1 and —1 with probability 5;
i.e.,

(6.1) po = (5+x4 5-1)/2.

We let the interaction potential have the form

(6.2) J(s,t) = io(s —i) = 14 26cos(27rq(s —t))

with g€ N, and

(6.3) 1<6 <7214,

The Hamiltonian of the interacting system is then given by

(6.4) *»(*1>-" S t J (e aan Y8 «s,.
ai,aj=1

and the common distribution of (X”)Q=i n is the Gibbs state to the Hamiltonian
Hn:

(6.5) Prob,,a(;C € dxa, a= 11..,n) = rK - *<**),
¢710
where x = (Xi,..., xn) and Znp is the normalizing constant
(6.6) Zn0 = f exp(-0HnN(x)) TT p(dxa).
J*n 0-1

In [2, Theorems 1.3 and 2.1] it is shown that in the thermodynamic limit the free
energy ip((3) is given by the variational principle

(6.7) -M0) 1= nlfrgo«-l N Zn0 = ;g\ﬁ[/?F(/) - 1(H)}.
Here the functionals F and | are defined on U = L2(T) by
(6.8) F(f) =\ J(s,t)f(s)f(t) dsdt = £(f,w */),
Ta
and
(6.9) (/) =3 i(f(t))dt
with
(6 10) zfu) = | Ki+tt)in(l + u) + (1 - u)In(l - u)\/2 for ’u‘ <1,
7 v; \ +00 for |u] > 1

(See formulas (1.16)-(1.22) in [2].)
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By [2, Theorem 5.1] the supremum in (6.7) is always achieved, and any maxi-
mizing function / satisfies the mean field equation

(6.11) —o0{F'f)(t) foralmostalltf T.
In our example we have from (6.8) and (6.10) that
(6.12) th- 1(f(t)) = 0-w*/(t),

or, equivalently, (2.1) with A—o and g = (t')-1 =th (see also (2.10)).
Next, we make use of Fenchel’s duality (see [2, Appendix C]).

(6.13) SUE[OF(]‘) - /(] =sup[/*(/) - (0FYU)I
/e feu

where /* and (oF)mare the Legendre transforms of / and oF, respectively. In our
case we get, by [2, Lemma 3.6 and the remark thereafter],

(6.14) (1) = () = 1) = | tnumat,
where 4Po is given in (2.9), and 4po = g (2.10).
On the other hand, we find by easy‘calculations that

(6.15) tfiFYU) e=sup«/,/1) - 0F(h)}

_ (oF(fo) if/ =ow *fo for some f0 € X,

\ -loo otherwise.
Note that (6.15) is well defined, since / = ow */i = ow */2 implies
OHh) =\{h,0w *h) = \{h,0w *h) = 0F(f2).

Thus, we can rewrite (6.7) as
(6.16) —0i>{0) = nli_rgo n~lInzn = ;Sé,lp[l’(/3ty*/) —OF{f)\.
Now, if the maximum of (6.16) is achieved at /, then / has to satisfy the mean
field equation, which is now written in the form
(6.17) (g{Ow *f}, 0w *h) - {f,ow *h) = Q

for all h € Note that by (6.15) we have reduced the variational principle to the
space w * H But, moreover, / must satisfy the second-order condition

(6.18) (g'{Ow */} «Ow *h,0w *h) —{h,0w *h) <0

for all h € u. By the form (6.2) of w, (6.18) implies, in particular (by calculations
analogous to (4.18)), .

(6.19) ous() | g tow */(f)} ot < 1

for r = 0,q. This is the stability condition (2.25) with < instead of <. For0 < o0 <
1/6 = 0q, the trivial solution u = 0 is the only solution of (6.17) and

(6.20) -/W ) =0, 0 € (0,1/6].

By (5.16) the bifurcation point 0oq for the (0, €)-secondary solutions satisfies

(6.21) b0Og{1 - th2(/20,u/Jo,(0)) = 1
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and 0og > 0o = 1> 0g= V6. For0 G(0q,1) the ~primary solutions ug (4.7) are
the only stable solutions, and

(6.22) = o b\up(q)\272 —J i(th(o b\uo (g)\2 cos(2irqt))) dt > 0.

So we have a first phase transition at g = 1/6. The phase transition is of second
order, since Uff(d) =+ 0as 0\ 0g. But for 0 > 0oq there are at least two different
types of stable solutions: the ~-primary and the 0-primary solutions. For 0 —* +o0
we find by (2.46) with 7=1,

(6.23) OF (= ¢™O)) - / (= MO)) = 0uo(O)7/2 - i(uo (0)) « 0/2,
since i is bounded by In2 for |it/?(0)| < 1, while
(6.24) O0F{ug{0, *)) - I(ug(0, ¢)) = Ob(uo (q))7/2 - I(u’(0, ) * 0b2/~

by (4.9). Now (6.3) implies that (6.23) is greater than (6.24) for 0 large enough.
The maximum of (6.16) is not attained any longer on the ~-primary solutions. But
by Theorem 5 the g-primary solutions do not have bifurcations. Therefore, there
exists ao *€ (1,+00), where the maximum point jumps from a 9-primary solution
to another solution of (2.1). We have found a secondary phase transition of first
order, as claimed at the beginning of the section. For 0 large enough the new
maximum is attained by a constant nontrivial solution, which corresponds to a
ferromagnetic equilibrium state.

7. Secondary bifurcations for collinear p,g. As one may expect, the be-
havior of secondary bifurcations is different if p and q are collinear; i.e.,

(7.1) n\p = nig 720 for some 711,712 € Z
with gcd(7i11,712) = 1 As in (3.9) we set
(7.2) r0 = p/n2= q/nxG Zd.

Of course, we assume that w again satisfies condition (3.25), which by (3.10) can
be rewritten as

(7.3  WEs O feralijreel| pZd<dhréthepoy IRl cAZSYEY

and that

(7.4) tE(p) > ~(9) > O*

In the noncollinear case (3.25) implied condition (3.21) for p and for q (instead of
p). Therefore, we could consider the p-primary and the ¢-primary branches in the
last section. To guarantee this also in the collinear case, we must assume

(7.5) pN(R2zZ+ 1)< and q (2Z w1)p.

Now, we get the following result about secondary bifurcations which is proved in
89. The assumptions about g from the beginning of 85 are still valid.
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THEOREM 7. Letp, g€ Zd satisfy (7.1) and (7.5), and let (7.3) and (7.4) hold.

(i) There are never in Tpq bifurcations from the p-primary solutions.

(i) If5 > w(q)/w{p) >0 andp £ Zq, i.e.,, nx” 1, then the branch of g-primary
solutions does not have a secondary bifurcation in 7pg.

(in) If 1> w(qg)/w(p) >\ andp ™ Zq, then

(7.6) (A,, +00) D A,,, D (Ap,+00) ? 0

with A,p and Xgp from (5.19) and (5.10), respectively.
For A€ AqP there are the following branches of (p, g)-secondary solutions, which
bifurcate from the g-primary solutions:

(7.7) V\ (E) = g{Ati/(p)[t)1(p)|2sin(27r(pi + (n -fJi)/ni + h/2))
+ AuU/((j)|vi(g)|2cos(27r(gi + (r* 4- &i)/n2 + mi/2))}

and

(7.8)  v2(f) = V{AtO(p)|02(p)|2cos(27r(pi + (r2 + j2)/ni + 2/ 2))
+ A(<INV2(Q)|2sin(27r(gi + (r2 + f2)/n2 + m2/2))},

i € Td, with the parameters ri,r2 € T; ji,j2 G{0,...,ni —1}; ki,k26 (O0,...,
n2- 1}; h,12,rni,m2 € {0,1}.

(iv) Ifp € 29Z, i.e,, nj = 1 and n2 even, then there exists always a secondary
bifurcation in Tpg. It takes place at

(79) Ap=inf|la > A, A'0Mfg) I y{AW(<T)|0(<7)|2cos(27ra)}
X (I —cos(47rn2s))ds < w(q)/w(p) for all A' > A~

with
(7.10) A, < Ap< +00.

For AG (Agp, +00), we have branches of (p,q)-secondary solutions of the form vi
from (7.7) (vrith ni = 1).

REMARKS. (1) Mutans mutandum, remark (2) after Theorem 5 also holds here:
On some intervals there may be bifurcating branches of the forms v1or u2 described
above, which appear, disappear, and reappear according to the conditions appearing
in (5.19) and (7.9), respectively. We define

(7.11) A*p= |a > AgAtr(<) a3 g {Xw(q)\G(g)\2 cos(27rni5)}

X (1 —co0s(4;rn2s)) ds < w(q)/w(p) | ,

(712) Agp= |a > AAI<D) I Y{AU(<7[0(<7)|2sin(2Tn1s)}

X (I + cos(47rn2s)) ds < w(q)/w(p) >.
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If <2 @niZ, then by Proposition I(i), we can cancel the last cosine term in (7.11)
and (7.12) and get

(7-13) = Aj, =

So we may have A*p D (~p)+o0) ™ 0 with strict inclusion. In the case p G 2¢Z,
i.e., ni = 1land n2even, A|p is always a bounded, possibly empty region in R+.
If A€ AgP 0, we have secondary bifurcating solutions of the form v2 from (7.8)
with ni = 1. However, these solutions disappear again as A—++00.

(2) In (7.7) and (7.8) let us disregard the rotation group r G T for a moment;
i.e., put r = 0. Then since g is invertible, ul and v2 represent 8 *ni *n2 different
secondary solutions if ni *n2 is odd. If ni *n2 is even, let ni be even, for example;
then the parameters i'i = ni/2, k\ = 1, and ii = Ai = 0 give the same solution.
Similarly for i2 and k2. Therefore, we have only 4 ¢ni ¢n2 different secondary
solutions if ni *n2 is even. This fact corresponds to result (3.10).

(3) We refer to the end of 89 for some considerations concerning the stability of
the solutions in the collinear case.

8. The associated dynamical system for noncollinear p,g. We continue
to let g satisfy the additional conditions from the beginning of 85, let p and q be
noncollinear in the sense of (5.3), and let (3.25) hold with w(p) > 0, tv(q) > 0. To
prove the results from Theorems 5 and 6, we need a good knowledge of the fixed
point problem for z = (21,22) ~ R2:

(8.1) 2= B = {<j>i(zi,22)<t2(zi,22)),
where
; 1
4i(z,y) = AW(p)X 2 cos(27rpi)
(8.2)

4- Xw(q)y2 cos(27rqgt) ~cos(2npt) dt,

(8.3) <fo(x,y) = \]g{-l }cos{2irqt)dt,

where we have in {* «¢} the same argument as in (8.2). Of course, all fixed points
of 4 are contained in

(8.4) n= Nanr2),

n>0

where $n = $0 «e*0 (& (n times). We shall see that here Q is exactly the set of all
fixed points: There are no periodic orbits or more complicated variant limit sets.
It turns out that <£(R2) is a very nice compact convex set, independent of A w{p)
and *(<7).
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Theorem 8.

jiTc.-yy); M < | es(~) , Ixl<I1j forp=0~q,

Vi 8 f 1/4 tsin2(27rr)
72:1.722); |*»| = -/ -= =5 == < = dr
{ v JO v "—M cosJ(27rr)
@5  ¢R2= 8 rif*
|zs_,| < — | \/T —n2cos2(27rr) dr,
Jo

O<M< 1 t=121

for (pp){aq) - (pg)2 > 0.

PROOF. First assume p = 0"~ ¢ For 0 ™ |z] < 1 we set m(z) = l/sin(7x/2)
and check that

(8.6) sign{l + m(z) cos(27rr)} = sign(z) -(2 - 1[o,(i+x)/4|(M) - 1)
for |[r| < 5 and 4jr| ™ 1+ i, 0. Then

] - oexm(x) \
@ a"—”&o“btvv'mi\‘ 2w (g) )

7 (/1 sign{z(l £ m(z) cos(27rgi))} dt,

J sign{z(l £ m(z) cos(27rgi))} cos(27rgi) dtj

'+1/2
= 7 esign(z) [ / sign{l + m(z) cos(27rr)} dr,
12
Ir+1/2
ol sign{l + m(z) cos(27rr)} cos(27rr) dr
J-1/2
, 2 ~ 20 (1
= 7- X, £ —=s
m 4

ni—Tr }0S 2 ) ) R
Since <£(R2) is simply connected, we have
0(R2)2 {(71>72). |y| < (2/7r)cos(7rz/2)} .
If we had strict inclusion in the last line, there would exist (zo,j/o) € R2 with
0(zo,Ito) = (7A1 772)

and
€ = (2/7r) cos(7r<Nif2).

The curve y = (2/7r) cos(7rx/2) has in (</>i,02) the outer normal direction n =
(sin(7r<£i/2), 1). For a € R+ set

h(a) = n14>xo + (a/Au>(0)) sin(7r</>i/2), y0 + a/2\w(q)).
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Then, for alla e R+,

d f

— h(a) = 1 g'{Aui(0)zo + asin(7r<”1/2) + (A2iu(<7)y0 + <¥) cos(27rg£)}
x(sin(7n£i/2) + cos(27rg£))2dt > 0.

But, as in (8.7),

AUm”™a) = 7 on ¢ (J sign{sin(ir<£i/2) 4- cos(2nqt)} dt,

J sign{sin(jr~"1/2) + cos(2irqt)} cos(2irqt) dt)

= 7 'n «(0i. (2/ w)cos(7B x/2)) = /i(0)

gives a contradiction.
For (pp)(qq) = (pg)2 > 0 and 0 < y. < 1, we calculate

(8.8) Ollngo <f>(afij2\w(p), ta/2\w(q))
J sign{/x cos(27tpt) = cos(2<r”i)} cos(2?rpt) dt
J sign{/zcos(27rpi) + cos(2irqgt)} cos(2irqgt) dt
Set Bgp = {(r,3), r=ip, 3 =tq, £€ Td}, and the last expression equals

f ' I{/icos{2wr)+c08(27rj)>0} cos(27rr) dr ds
(8.9) 2VvIB 4 r
\B) A{IxcO3(2jrr)xcos(2jr.s)>0} COs(27T3) dr ds7

/ r+1/2 r+1/2

| I I{|s|$arcco«(TMC®s(2jrr))/25r} COs(27Tr) dr ds
2v. 3 ~1/*3 -1/2
r+1/2 r-1/2

;| | 1{|3]$arccos(T~cos(2jrr))/2w} COs(27rs) dr ds
\J -1/27 -1/2

/ {-IHS _
+ arccos(=f/z cos(27rr)) cos(27rr) dr
—72/n I
| * sin arccos(“F~ cos(27rr)) dr
J .12
I1/4
/ (it —2 arccos(/Jcos(27rr)) cos(27rr)) dr
= 74177 yf I(/)A
| + 2 sin arccos(/z cos(27rr)) dr
y O
foza gisin (r1r)
/ dr
- el TT \/l — cos2(27rr)

: // VvITT /i2cos2(27rr) dr
Jo

by partial integration. For a — —o0 or /z = I//i'* G (iT-f-00) we get the other
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boundary points of the right side of (8.5). Thus gXR 2) contains the right side of
(8.5). The converse inclusion is shown by a similar argument as in the first part of
the proof. 1

REMARK. Thanks to Theorem 8, it is sufficient to regard <¢as acting on the
universal set <£(R2), which is independent of A, ti)(p), and u><7). Moreover, the
geometric form of <£(R2) can be used to analyse the behavior of the equilibrium
states and their phase transitions. In particular, the ground states can be nicely
discussed with the help of the set <£(R2). See also [10, §8VII and VIII], where the
ground states of a spin-glass model are studied in detail.

The essential step for determining the fixed points of §is to analyse the fixed
points of the components <\ and €2 separately. We note the following easy facts:

(i) (x,y) is a fixed point of <if and only if x is a fixed point of $i(-,y) and y is
a fixed point of €2(™ )-

(ii) 0 is a fixed point for 4>\(*,y) and €2(2,% for all y 6 R, X 6 R, respectively.

(iii) 1f (x, y) is a stable fixed point of < then so is x for <i(-, y) and y for $2(x, ).

However, the converse of the last statement is not true, as we shall see later.

In contrast to g>the functions <$i(*, y) and €2(2, *) need not be concave on (0,00),
in general. Instead of concavity, we use the following result.

LEMMA. Under the conditions from the beginning of this section, <£i(x,y) is
strictly increasing and odd in x but even iny. For x G R\{0} fixed, |0i(x,-)I ~
strictly decreasing in |y| with

(8.10) |y||iLnoo|<£i(X’y)| = 0.

The same assertions hold for 2 with x and y exchanged.

PROOF. Similarly to the first equations in (8.8)-(8.9), we get

[o+1/2 r+1/2 r

. _ 1
(8.11) 4>|(x,y)—j_1/2 y/-1/2 g<|\w(p)| 2 cos(27rT) + \w(q)y2 cos(27rs)

dr <5,

cos(27rr)

le-f-1/2 /*+11/2

(8]12) 4)2(X,y) = / / g{ "}cos(Ztts)drdS,
J-12 J-12

again repeating the argument in {*e¢} from (8.11). The first assertions are then
easily verified by the properties of g. For the second assertion we can assume
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x>0, y>0. Then
(8.13)

Woll>yy 20 orpey dxfa ()

r+1/2 r+ 172 (

= 2\w(q) I / g' ™ Au>(p)a

+ Au>(g)t/2cos(27rs
J-1/2 J-1/2 I 2 cos(2?rr) (©) (27rs)

cos(27r1) cos(27rs) dr ds

F4i/2 r+if2 (O f

4- AtD(<j)y2cos(27
Ty foe 1T ?aTM(p) 2 cos(27rr) (<Dyzeos(z7rs)

Xw (p)a —Aiy(g)y2cos(27T5)

2 cos(27rr)
! cos(27rs) dr ds
cos(27rr)
< 0,

since the integrand is a.e. negative, as seen by cases.

Finally, 4>i(x,y) —|y|_0Oo 0 and 4>2(x,y) -+|i|]-.oo 0 follow from (8.11) and
(8.12). 1«

By the lemma, we can now describe the fixed points of (F\ and 02 separately.
Recall the definition of Xp,\q from (2.36) or (4.6) and of |u(p)|, |u(<7)l from (2.37)
or (4.8).

THEOREM 9. For A & (0,Ap], x = 0 is the only fixed point of 4>\(-,y) for
all y. For A € (Ap,+00) there exists a unique, positive, symmetric, continuously
differentiable function

Ni- ((l«(p)l.+l«(p)l) -*1 (0,00)
with
(8.14) 4>i{x,xI}i(x)) = 4>i(x, -"Ni(x)) = X

for all x 6 (—u(p)], +|u(p)]). We have

(8.15) ~lim 4)i(x) = 0.
[i]-*u(p)l
01 (0) > 0 is uniquely determined by
(8.16) AtE>(p) J g {\w(q)xi>i(0)2cos(2Trqt)} dt = 1

Similar assertions hold for <fo(x, ¢) by a function

M2 : (~lu(g)l, +lu(7)) 0,00,
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where p and g,x andy are exchanged everywhere. Here, ©2(0) is uniquely deter-
mined by

(8.17) AN G| ADR20) peoprmy | 9= T

REMARK. We want to point out that the strict concavity of g is essential for
Theorem 9. If g were linear on some intervals, then as in the remarks following
Theorems 1 and 3, we would not have uniqueness for the values of #3 satisfying
(8.14). The points of a whole interval would then satisfy these equations, and
equally the set of fixed points of $>in (0,00)2 could then have a two-dimensional
subset.

PROOF. For A€ (0,Ap] and x > 0, we get by the lemma and the definition of
Ap that

(8.18) 0 < 0i(x,y) < T¥x,0) = f gi™"Xw(p): 2 COS(2TDE) cos(27rpi) dt < x

for all y € R. <& being odd in x, x = 0 is thus the only fixed point of <f>i(-y) for
all y.
Now let A€ (Ap, +00). 0i(x,0) = $p{A,x) from (2.44) or (4.2) is strictly concave
in X > 0 with jua(p)| as the unique positive fixed point. Thus
(8.19) 1%i(x,0)] > |x| for [x] € (0, |u(p)]),
0i(x,0)] < [x] for[x] 6 (|tt(p)|,+00).

Hence, by the second assertion of the lemma, exactly for |x| G (O, |u(p)|), there
exists a unique y = ipi(x) > 0 with

(8.20) <f>i(xy) = <Mx, -y) = X

Since 01 is odd in x, Vi is symmetric in X. By the implicit function theorem VI is
continuously differentiable and

d . ._ 1-dz0i(x,»i(x))

(8.21) dx 11 dv<f>i{x,tpi(x)}

where d x$i (resp. d y<p denote the partied derivatives of <+ with respect to x (resp.
y). Next, we show that is bounded on (0, [n(p)|). Set

(8.22) g'(v) = sup”™'fv + 2Atu(p)x); 0 < |x| < u(p)[}.

Since f g{Xw(q)y2 cos(2irqt)} dt —»ly”~*oo 0, we find yo > 0 with

(8.23) Atu(p) Jg'{Xw(q)y02cos(2irqt)} 2cos2(2Trpt) dt < 1
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y
2r/v
+<IRZ)
L t
C (,—zz2z , > o

FIGURE 5. The function ipi and the action of 4%¥(-,y), y fixed,
P=0"aq.

Therefore, by the mean value theorem
(8.24)  Mx,yo0) = f Tla«>(p)i * cos(2irpi)

4- AiG(g)yo2cos(27rc¢i)| cos(27rpi) dt

< \Ww(p)\Wx\J g'{\w(qgq)y02cos(2nqt)} 2cos2(27rpf) dt

for ail |x| < |u(p)|, and
(8.25) ipi(z) < yo for all |x] < |u(p)l.

Since by definition of |u(p)|, (dh|*Ei(p)[,0) = *|u(p)|, the boundedness of im-
plies (8.15). Since gf is strictly decreasing on R +, so is dx(f>i{0, ¢)» Ifdz0i(x,y) § 1
for (x,y) = (0,yo)i this inequality also holds in a neighborhood U of (0,t/0) in
(0,00)2. Since <£i(0,t/) =0, we find 4>i(x,y) $ x for all (x,y) € f/tand (0,yo) can-
not be an accumulation point of (x, *0i(x)). Hence, V>i(0) is uniquely determined
by

(8.26) dxM0,M0)) = 1,

which is equivalent to (8.16), since p and q are noncollinear. The analogue of (8.21)
for me is

d M _ 1 dy<h(rh(v)y) .
(8:27) Tyry)~ dM MVU% °

For p = 0 ™ g we get the picture of shown in Figure 5. The arrows indicate
the action of y) for y fixed.

The proof of Theorem 9 and fact (ii) preceding the lemma give the following
complete description of the fixed points of ¢
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T heorem 10.
(8.28) F = [{o}xRu{(i,xiiii(i)), Ix| < [E(p)I}]
n (R x {0} u {(£V»2(y),y), Iyl < T<(9)]}]
is the set of all fixed points of £
To formulate the following relations between 0i(O) and j¢(<7)j and between 02(0)
and |0(p)|, we recall the dependence on Aof 0j and 02 >though not made explicit,

and the definition of A,p and Ao, in (5.19)-(5.20). For A < Ap we set, for conve-
nience, |a(p)| = 0 and 0i = 0, and similarly |0(¢)| = 0 and 02 = 0 for A< A..

Theorem 11. (i) If\> w(q)/w{p) > 0, then

8% W AL
@i) 1f 1> w(q)/w(p) > 5, then

(8.31) lu(p)| > 02(©O) for AG (Ap, +00),

(8.32) 0,(0) > [a(9)] for A€ (Ap,A),

but

(8.33) 0i(0) < |G(¢)| exactly for AGA D (A,p, 4-00).
(iii) Ifp = 0 and 1> t0(0)/ti>(¢) > O, then

(8.34) 0i(0) < |0(g)| for A€ (A, +00),

(8.35) |0(0)] < 02(0) for A€ (A, AD),

but

(8.36) |G(0} > 02(0) exactly for AG Ao, 5 (Ac<, +00).

PROOF. First, remark that (8.32) holds trivially since 0i(O) > 0 = |G(g)| for
AG (Ap, A,)). Similarly for (8.35). By (2.47) or (4.10) we find

(8.37) AR(T), 1 g3 { Aty(p)IE(P)] ;COSQ?HOD dt G w{a)/w{p) 1(0.1)
for A > Ap, and
(8.38) Aw(p)j g'{Aw(g)[ti(9)|2cos(27rgi)}iii G w(p)/u>(q) *(5,1)

for A> Ap. Thus, for A> Ap, (8.17) implies [u\(p)| > 02(O) if w(q)/w(p) < I, i.e,
(8.29) and (8.31); and for A > Xq, (8.16) implies 0i(O) > |6 ()| if w(p)/2w(q) > 1,
i.e.,, (8.30), or, for p —0, 0i(O) < |uE?l for u>(0)/u>(<7) < 1, i.e., (8.34). But if
1G u>(p)/w(g) (5,1), then by definition (5.19),

(8.39) Aitr(p) J g'{\w(g)lu(g)\2cos(2nqt)} < 1
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IG'(q)p\- +(R2)

f yin »N N~ Mp (p)llv(g)l )
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FIGURE 6. The functions ~i(x) and *02(y) forp = 0 ™ e w(q) > w(q)
> u>(0) > 0, and A G (A0, X0q, X0qg) in (a) (resp. A > A0g in (b)).
The fixed points of g~are noted by a small circle.

if and only if AG A?p ™ 0 t such that (8.16) implies (8.33). Similarly, for p = 0
and 1 Gw(q)/w(Q) <(0,1), we have, by (5.20),

(8.40) Atiu(g)p/{AJu(0)]ii>(0)} < 1

if and only if AG AG, i.e., (8.36). 1T

REMARKS, (i) Remark (i) after Theorem 5 also applies here.

(i) The proof of (8.29) verifies just the branching condition: there are no bifur-
cations on the p-primary branch of solutions into the direction of (p, g)-secondary
solutions. Conversely, (8.32) and (8.33) prove that indeed a secondary bifurcation
occurs on the branch of (®-primary solutions, and similarly in case (iii) with p = 0
and g exchanged. In case (i) there does not exist a secondary bifurcation on either
branch of primary solutions. Nevertheless, to know, in this case, if there are no
(p, 9)-secondary solutions at all, one has to compute the functions and t;2 <nd
to see if their graphs intersect as in Figure 6.

We like to note that Figure 6 is a little optimistic, since for general g one can-
not prove without additional assumptions that the graphs of Xd and il5 have 110
intersection in case A < Ax (a), and exactly one intersection point in (0, 00)2 in
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case A> \oq (b), though this is what we expect in most examples. The results of
Theorems 10 and 11 have the following immediate consequence according to fact
(i) preceding the lemma.

COROLLARY. If(ii) 1> w(q)/w(p) > j and AGA ,p, orif(iii)p=0 q, 1>
w(0)/w(g) > 0 and A G Ao09, then there exists at least one fixed point of 4 in
(0,00)2HO0(R2). By (lw(p)|, |[v(?)|) we denote that fixed point of ¥in (0, 00)2, for
which |u(i7)| in case (ii) (resp. |t)(0)| in case (iii)) is maximal.

The results of this section enable us to prove Theorem 5 of §5.

PROOF of Theorem 5. (i) If 5 > w(q)fw{p) > 0, then the expression in
(8.37) is less than 5 for all A> Ap, and the expression in (8.38) is greater than 1 for
all A> Aq. So in Tpq there are no secondary bifurcations either on the p-primary,
or on the 9-primary branch.

@i) 1f 1 > w(q)/w(p) > 5, then the expression in (8.37) is still less than 1 for
all A> Ap, and in 7pgq there is no secondary bifurcation on the p-primary branch.
But (4.11) for q shows that Agp, defined in (5.10), is finite and Agp D (AgP,+00) »
0. Ag < Xop follows from |u(g)| -+a\x, 0. By continuity (8.31)-(8.33) and the
corollary show that there exists a bifurcation of (p, g)-secondary solutions of the
form (5.12), which branches off the ~-primary solution and exists for all AG A9P.

(iii)) Let p = 0 g and 1 > w(0)/w(g) > 0. The expression in (8.38) is less
than 1 for all A> A9, and in ?0q there is no secondary bifurcation on the branch
of g-primary solutions. Here, (2.48) yields Aog < +00, and (8.35)-(8.36) show the
existence of a secondary bifurcation in ?oq on the branch of nontrivial constant
solutions. The (0, g)-secondary solutions axe of the form (5.12) with p = 0 and
exist for all A€ Ao<. By (2.43) we have Ao < A09. [

We finish this section by describing the stability properties of the fixed points of
£ We use the following terminology:

DEFINITION. A fixed point z of 4 is called stable if all eigenvalues m of the
linearization d(p of $at z have modulus less than 1: |/i,| < 1 for all eigenvalues

z is called a hyperbolic fixed point if for some eigenvalues /*»,,/¢itl of df>at z we
have |“tol < I"tj > »and 17 ™ 1 for all other eigenvalues, z is called (totally)
unstable if [/z] > 1 for all eigenvalues /z, of dt>at z. z is called critical if iy = 1
for at least one eigenvalue m of dj>at z.

THEOREM 12. The fixed points of §$>have the following properties:
(i) 1f\ > w(q)/w(p) > 0, then

table for A€ (0, Ap),
8.4i; (0,0) hyperbolic for AE (Ap, A,),
unstable for AG (A,, +00);

(8.42) (£]u(p)|,0) is stable for AG (Ap,+00);

(8.43) (0, £|u(g)]) is hyperbolic for all AG (A,, +00).
(i) If 1> w(q)/w(p) > 5, then (8.41) and (8.42) hold again, but

hyperbolic or critical N o '
(8.44) O, £[u()]) U { stable for x€ Aqp; f°T" " (A""+0°)XAS,
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(8.45) (x|ti(p)|, Ht>(<7)|) is hyperbolic or critical for all A€ A™p.
(iii) //p=0~ gand 1> w(0)/w(g) > 0, then

table for AG (0, A)),
(8.46) hyperbolic for AG (A,, Ao),
unstable for A G (Ao, -Hx>);

(8.47) (0, x|tt(g is stable for AG (Ag,+00);

(8.48) (+lu(0)l 0) m i hyperbolic or critical for A€ (A0,+co)\A (],
' * J | stable for A€ Ao,;

(8.49) (£|v(0)|, £lu(<7)|) i3 hyperbolic or critical for AG Ao,.

REMARK. %|t)(p)| is a stable fixed point of <$i(*, £|0(g)|), and %|t/(<7)| is a stable
fixed point of 02(x|v(p)|, ), since they lie on the graphs of ipi and V'ii respectively,
which represent stable fixed points for <£i(-,y) and 4>i{x, ¢), respectively. This im-
plies that the corresponding solution (5.12) is p-stable and ~-stable. However, with
regard to & (|u(p)|, £jt)(<7)|) is not stable. See also the remark at fact (iii) pre-
ceding the lemma.

PROOF. The linearization of 4 is given by

(8.50) a* (aj)zs E

where

(8.51) dx<ti(x,y) = \w(p)J ¢ J Ail(p) + Atl(g)y2cos(27rpi)|

2 cos(2pi)
2 €0s2(27rpi) t
(8.52) dya>i.x,y) = Xw(q) \] y'{-+-}2co0s2(27rgi) dt,
and
1/w
dy4>l{x, y) = 2w(q 120 S) (x.y)

is given in (8.13). By a calculation similar to the first equations in (8.8)-(8.9), we
get

(8.53) dy4>i(x,y) = dxt2{x,y) = 0 ifi = 0ory=0.
(8.41) and (8.46) are obvious from the definition of Ap, A, in (2.36) or (4.6). (2.38)
or the concavity of $g{X,z) show

d*0i(£|a(p)[.0) = ~ 0 P(A [aG(p)]) G (0,1) for AG (Ap,+00)

and
3y#2(0, £|G(c)|) = -QM>g{K |G(g)|) G (0,1) for AG (A,, +00).



214

696 F. COMETS, TH. EISELE AND M. SCHATZMAN

By (8.37), (8.38), and the noncollinearity of p, g, we get
dy<fo(x]|6(p)I,0) = Xw(q) I g { £Au>(p)|«(p)] 2008(27rpi) 2cos2(2mon) dt
€ w(q)/w(p) 1(0,1),

and
dx<£i(0, £|£(g)|) Gw(p)/w(a) * (¢, 1).

Thus, ifw(q)/w(p) < lin case (i) or (ii), then (x|u(p)]|, 0) is stable for A G (Ap, 4-00).
If w(p)/w(q) > 2 in case (i), then (0, £|u(g)]) is hyperbolic, and if w(0)/w(q) < 1
in case (iii), then it is stable for A G (A,j,+00). If w(p)/w(q) G (1,2) in case (ii),
then by (5.19) and (4.3) we obtain

|
5xA(0, £|u(9)]) = :VV{Z)) Alc@)) < 1 iff Ae Ay

while in case (iii) with t&(0)/tE>(g) < 1 by (5.20),

&02(x|u(0),0) = ||~ ™~ o(A,|lu(O)])<I iff Ag AQO,.
This shows (8.44) and (8.48). For assertions (8.45) and (8.49), we have to calculate
the eigenvalues
(8.54) = (dx4> + dy<t>2)/2 + ((<9x01 + dy<+2)2/4 + dy<j>idxfo - 3x<z>3y02]1/2
at (x|u(p)|, zlv(g)]). The maximality condition in the corollary says that in case
(ii) the graph {(02(y),y);y G (t>(<?)|, [u(<?)|)} lies above the graph {(x, 0i(x));x €
(0, |t>(p)])}, while in case (iii) the graph {(x, 0i(x)); x G (Ju(p)|, lu(p)])} lies above
{(02(y)>y);y € (O, lu(<?)|)} (see Figure 6). Both cases imply that
(8.55) [0%i(|t>(p))1 < M|~ (]*fo))].
By (8.21) and (8.27) this shows that at (|E(p)|, [v(<7)]),
(8.56) 0< |(1-5,00(1 - dy#2)| < dy<t>idx<$2.
Assume first that (1 —dx<j>i){l —<Q<fo) > 0. Then in (8.54) we have

dy<jmidx<t2 - d x<t>idyg2 > 1- (dxO0i +dy<2)

such that with a = {dx4» + dy<fo)/2 > 0, we get fi1 > a4 (a2 + 1 —2a)l/2 =
a4|1l—a > 1, and//2< a—|1 —a] < L

If, on the other hand, (1 —dx<¢0(1 —dy02) < 0—i.e, 0 < dx<gi < 1< Q<L or
0 < dy#2 < 1< dx$1—then, since

tDO) {dyly _,

dyPAXL2 =" onp)  2w(g)

we get

Mi > {dx45 4-dy02)/2 4- |cx0i - dy02]/2 = max(dx0i,dy<+#2) > 1
H2 < (dx#1+dy<t>2)/2 - |dx0i - dy<t>21/2 = min(dx0i,dy02) < 1-
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To finish the proof of (8.45) and (8.49), we need only show that n2 > 0. But at
(I*(p)1.1«fo)l)

2 ]
0< 9y01 9x02 4\ wpw(a) x g' { Atw(p)[t)(p)I 2 cos(27rpi)

+Aiy(<7)|6 (g)|2 cos(27rgi)

x| cos(27rpt)| | cos(2irgt)j dtj

< d x <t>idy<t>2
such that
= (<9*%01 + 5y02)/2 - {(dx4 - dyfaj2/* + dy<tidx<t2)1/2
>a—Ja|l = 0.

This completes the proof of Theorem 12.
The proof of Theorem 6 is now an immediate consequence of Theorem 12. We
only note that for primary solutions, the linearization &> has diagonal form by
(8.53). The definition of p- or ~-stability is then by (4.14)-(4.15), and the non-
collinearity of p, g equivalent to the fact that d x4>\ (resp. dyfa) is less than 1.

9. The dynamical system for collinear p,g. We assume the collinearity
conditions (7.1) and (7.5) for p,q, and (7.3) and (7.4) for the function to. In order
to get in 7pg a secondary bifurcation from the p-primary solutions, one of the
following bifurcation conditions must be satisfied:

(9.1) 1= Xw(g) f g'{Xw(p)2Re(u(p) exp(27ript))}2 cos2(2nqt) dt

ri/2
—Xw(q) J/ 1 g {Xw(p)\u(p)\2cos(27rn2s + arguA(p))}
X (1 + cos(47rnis)) ds
or
I*
9.2) 1=A 1o g*{Xw(p)\u(p)\2 cos(27r7i25 4- arguA(p))}

X (1 —cos(47rni5)) ds.
But we claim that the right expressions of (9.1) or (9.2) are always less than
w(g)/w(p) < 1. To verify this, set iz = 2AtZ>(p)lzi(p)) > 0 and a = argu(p) for
A > Ap. First consider the case ni £ n2Z. By Proposition I(i) we have
(9.3) y* g/{/iCOs(27rn23 + a)} cos(47mis) ds = 0,
and (4.3) and (4.10) yield

(9.4) Xu>(q) V g'{p,cos(2irn2S+ a)} ds € w(q)/w(p)(", 1),
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which proves our claim in this case. On the other hand, assume ni = /e*ri2 G
Tm2Z, 1> 1 We note first that for all 3G T and z G (0, 5)

(9.5) J  (cos(27ts) = cos(27r(/s —j3))] da

—(/7rN)[isin(27rz) £ sin(27rZz) cos(27r/?)]
> (/7rN[Zsin(27T2) —|sin(27rZz)[] > O.

Since @' is decreasing on R+, we can define / dg'(y) as a Lebesgue-Stieltjes integral
on R+ with

(9.6) Jf dg'(y) <0 forail0< a< 6
and
(9.7) g'{n\cos(irs)\} = g’(0)+ J [, /Mi](l cos(irs)|) dg’(y).
[o]
Then by (9.5)-(9.7),
4-1/2
(9.8) JI o g'{fiLcos(2irri2zs + a)}(cos(47rn2S4- 2a) £ cos(47rni™)] ds
1/2
= JI Q{IA cos(7T3)|}cos(27rs) = cos(27rls —2/a)] ds
-1/2
ft* i*SLrocoa(ytA)/ir
= | dg*(y) I 27rs) + 27ds —2/a)] ds < 0,
+ g*(y) 3 erccoBlyNyTr [cos(27rs) + cos(27ds a)]
or, by (4.13),
[e+1/2

0 < Aw | [{~cos(27rri23 4- a
(@) I yi~eos( )

X [2sin2(27rn23 4 or) —(1 + cos(47rnis))] ds
A A2

= .:: —AD() / Ixcos(27rn23 + at)}(l £ cos(47Tiis)) ds,

Vi) (9) 1 9{ ( )X ( )
which proves our claim, following (9.2). Therefore, under the assumptions of The-
orem 7, there exists in 7pg no bifurcation from the p-primary branch of solutions.

To prove the existence of secondary bifurcations from the g-primary solutions,
we use the same technique as in 88. Here we look for nondegenerate fixed points
(x,y), i 30 t"y, of the following pair of operators:

(9.9) H(xy) = {#\{xy).<f>\{xy)) and 02(x,y) = (0?(x,y),02(x,y)),

where

4>\{x,y) [ <7{Au>(p)z2sin(27rpi) -I- Au>(<7)y2cos(27rg£)}sin(27rpt)iit
r+1/2"
J| P O{AuU>(p)x2sin(27r7i2.5) 4- AtE>(<7)y2cos(27rni3)} sin(27rri2s) ds,
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and similarly

r+1/2
02(z»y) = J| U J{ALt) (p)x2sin(27rn2s) + Atu(g)y2cos(27rni3)}
X cos(2jrnis) ds,
r+1/2
(ay = |1 g{At&(p)x2cos(27rn23) + AtD(g)y2sin(27rni3)}
1/2
X €0s(27rn23) ¢3,
[*+il2

02(®>y) = JI " 9{Aty(p)x2cos(27rn2«) + Atw(9)y2sin(27rni3)}

X sin(27rni3) da.

For the pairs (0},02) and (01,01) we Set the same results as in the lemma and
Theorem 9 of 88.

THEOREM 13. The functions 0* and Of are strictly increasing and odd in x
but even iny. For i ~ 0 they are strictly decreasing in |y| with

(9.10) lim [0l(x,y)| = lim |0i(x,y)| = O.
ly [—*00 ly| —oo
For A£ (0, Ap], x = 0 is the only fixed point of <£i(*,y) and 4>\(-,y) for all y, while

for A€ (Ap, 4-00) there exist unique, positive, symmetric, continuously differentiable
functions rp[ and on (—6 (p)|, 4-lu(p)|) with

(9.11) 0}(x,x7i(x)) = Of(x, iV'i(x)) = X
for all x € (-Ju(p)], +]ii(p)]), and
9.12 lim V4(x) = 0, ,=1,2.
(5-12) -2 1 cpy VA ¢
TTie same facts hold for and <\ with functions *02 and ~2 071 (HE£i(")], -f|6 ()I)
if we exchange x andy and p and g everywhere. At zero and are uniquely
determined by the equations

r+1/2
(9.13) 1= \w(p) / N{ALI(<7)i/?1(0)2cos(27rni5)} (1 —cos(47rn25)) ¢3,

7-11/2

r+1/2 . .
(9.14) 1= 1\w(p) / H{At& (™)™2(0)2sin(27rni5)}(I-f cos(47rn25)) ¢5.

y-1/2

Analogous equations determine #2(0) and $ 2(0) uniquely.

The proof of this theorem follows the same lines as those of the lemma and
Theorem 9 in 88. (8.13) is now replaced by

(9.15) dy4>\(x,y) = w(q)/w{p)dx<t>i{x.y)
r+1/2
= Atb(q) JI 0 (g/{Ati)(p)x2sin(27rn23) + Ati’(9)y2cos(27rni3)}

—g "' {—Aty(p)x2sin(27rn23) + Aty(<7)y2cos(27rnls)}J
X sin(27rn23) cos(27rnis) ds,
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which is less than 0 ifz > 0 and y > 0. Similarly to (8.24), the boundedness of i>\
follows from

(9.16) <i>\(x,y) < Au>(p)|z|J <j'{Au>(g)y2cos(27rnis)}(I —cos(47rn2s)) ds,

which is less than |z| if y is only large enough. Here, g' is taken from (8.22).
For the following result, recall the definitions of A?p, A*p, and A2p from (5.19),
and (7.11), (7.12), respectively.

THEOREM 14. (i) Assume p £ qZ. Then
A\p = AP = 2 (Agp,+o00) M 0 iff 1> w(q)/w(p) > U 2.
(ii) 1fp € 2gZ, then for all w(p) > w(q) > O,
A‘pD(Ajp,+00)#0,

but Agp is a bounded (possibly empty) region in R + .
(iii) For i = 1,2 we have
[tt(p)] > 02(0) for A€ (Ap,+00),
01(0) < |tz(g)| iiffAB6 A*p.

PROOF, (i) follows from (7.13) and (4.10)-(4.11). Now, let p € 2<jZ; i.e.,, ni = 1
and rt2 even. We consider the positive measures on T:

(9.17) f*i(ds) = A*ii(g)g/{Aii>(<?)|u(<7)|2cos(27r,s)} ds,
and
(9.18) f*2(ds) = Au/(<7T)<7T'{Au/(g)|iE(<7)|2sin(27rs)}<is.

For A\ A, we have |ii(g)] = 0 and Xgw(q)g'(0) = 1 such that
(9.19) m (ds)—*ds in the weak sense, i=1,2.

For A — o0, (4.11) shows T) — 5, but fi\(ds) — 0 for all 5 » and
M2 (ds) -* 0 for all s + 0, |. By the symmetry of {¢i on 0 and the symmetry of ¢2
on we get

(9.20) = \{Sil4+ ;3/4), Jim fi2 = 40+ (Y 2)-

lim (ii
A—*00

Now the positive functions
(9.21) hi(X) =y (1 + (—I)*cos(47rn2s))/xt (ds),
which by the assertion following (9.2) with p,q and n 1712 exchanged are always
less than |1, satisfy
(9.22) lim hi(A) = 1 fori = 1,2,

A\A<j

"4nno 4nri23
(9.23) ¢~M A) =\ (2 - cos A - cos . = 0,
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and
(9.24) NI h2(X) = A A2 + 1+ cos ' 47T2712 ) = 1
Therefore
(9.25) Abp = {Afcf(A) < w{q)/xb{p)} D (A$p>+00) ™ 0,
while

A2P= {A. MA) < w{qg)/w(p) < 1}
is a bounded, possibly empty region in R+. This proves (ii). Now, the equations
uniquely determining 0/(0) and t/>?(0) in Theorem 14, the assertion after (9.2), and
the definition of A*p yield (iii) immediately. 1@

PROOF OF T heorem 7. We have already seen at the beginning of this section
that the branch of p-primary solutions does not have a secondary bifurcation in 7pqg.
Similar calculations as in (9.3)-(9.4), with p,q and ni,ri2 exchanged, show that if
1 > w(q)/w(p) > 0 and p £ Zq, then there are no secondary bifurcation from the
g-primary solutions. But if 1 > w(q)/w(p) > ™ and p £ Zq, then Theorem 14 and
the symmetry properties of 44,452 give us the existence of eight nondegenerated
(IN«(p)l ¥a 0 # IN<?)|) fixed points
(9.26) (iluiipJdl.ilvifa)!) and (x|v2(p)|, £|t/2(q)|)
of 4 and 42, respectively, which branch from the fixed points (0, £|u(g)|). The fixed
points (9.26) establish the secondary solutions vj and v2 of (7.7)-(7.8) with r, =
ji = kx = 0, i —1,2. Rotating these solutions Vi by tg*(t+ jin2+ Ktni)/nin”iroro)
with

y'n2 = ji modnj and k™l= A modn2, i= 1,2,
it is easily proved by the invariance of the set of solutions of (2.1) under rotations
in Td that ui and u2 given in (7.7)-(7.8) are indeed secondary solutions by any
choice of the parameters.

In the same way, part (iv) of Theorem 7 follows from the results about A ‘p in
Theorem 14. [

Let us conclude with some remarks about the stability of the solutions. The
fact following (9.2) proves that the p-primary solutions are p-stable and stable with
respect to all directions u{q) G C. Similarly, the ~-primary solutions are g-stable.
In the case p £ qZ they are also p-stable if and only if A€ A,p D (Xgp, +00), i.e.,
if 1> w(q)/w(p) > ™ and hi(X) = h?(A) < w(q)/w(p). If, however, p G 2Zq, then
one can show that the g-primary solutions are stable with respect to all directions
u(p) G C only if A6 A*pn A2p, which is bounded in R +. It is hyperbolic or critical
otherwise. If, for A G Aqgp, we denote by (Ji)t(p)|, [6»(<7)l) that fixed point of 4%
in (0, 00)2 with |ut(g)] maximal, then we have a hyperbolic or critical fixed point

of 4%, which also gives hyperbolic or critical secondary solutions v», i = 1,2, by

(7-7)—7.8).
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