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SOME PROBLEMS RELATED TO THE LONG
TIME BEHAVIOUR OF DISSIPATIVE
EVOLUTION EQUATIONS.

Abstract : In this work, we consider the long time behaviour of dissipative evolution
equations. More precisely we study the existence of attracting sets such as attactors and
inertial manifolds.

In the first part, we describe a general method to construct inertial manifolds for a
nonlinear parabolic equation. We obtain an existence theorem under the same type of
assumptions as the methods that already exist. Our method is based on the resolution of a
hyperbolic partial differential equation (the Sacker's equation) such that the graph of its
solution is a positively invariant manifold.

The second part is devoted to the existence of approximate inertial manifolds. These
are substitute to inertial manifolds when their existence is not known. We prove in two
cases (the reaction diffusion equation and the Cahn-Hilliard equation) the existence of an
infinite family of approximate inertial manifolds with increasing order of approximation.
Our method is general and can be applied to other equations.

Finally, in the third part, we study a singular perturbation of the Cahn-Hilliard
equation in space dimension one obtained by adding a second order derivative in time
whose coefficient € is small. We prove the existence of attractors for the perturbed
equation. Moreover, the Haussdorf semi distance from these attractors to the attractor of the

unperturbed equation converges to zero when € goes to zero.

Key words: Inertial manifold, Sacker's aquation, elliptic regularization, approximate
inertial manifold, Cahn-Hilliard equation, reaction diffusion equation, attractor, singular
perturbation.
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INTRODUCTION

Dans cette thése, nous abordons certains aspects de 1'étude du comportement pour les
grands temps des solutions des équations d'évolution dissipatives. Ce domaine a connu un
essor assez grand depuis quelques temps. Ceci est dii, entre autres, a l'apparition
d'ordinateurs de plus en plus puissants capables de travailler sur de tels probleémes.

Une fagon d'aborder ces équations est de les considérer comme des systeémes
dynamiques de dimension infinie. On peut alors essayer de généraliser les concepts qui
existent en dimension finie. C'est ainsi qu'est apparue la notion d'attracteur. Un attracteur
associ€ a un systeme dynamique est un ensemble invariant qui attire toutes les trajectoires
de ce systeme. Si le semi-groupe associé a 1'équation d'évolution possede certaines
propriétés de compacité et si on sait qu'il existe un ensemble absorbant borné B alors on
peut montrer que 1'ensemble oméga limite de B est un attracteur. Cette méthode générale
s'applique & de nombreuses équations (voir [1],[2]). L'attracteur parait donc étre 1'objet
idéal pour décrire le comportement asymptotique des solutions, malheureusement c'est en
général un ensemble dont la structure peut étre trés compliquée (voir 'attracteur étrange de
Ruelle et Takens [3] ou le "Smale's horseshoe" [4],[5]), ce qui empéche son étude
pratique.

Pour cette raison, C.Foias, G.R.Sell et R.Temam ont récemment introduit la notion de
variété inertielle qui généralise celle de variété centrale. Une variété inertielle est une variété
réguliere de dimension finie positivement invariante qui attire les orbites du systéme a
vitesse exponentielle. Quand elle existe, une variété inertielle permet de restreindre 1'étude
du systéme de dimension infinie & sa projection sur cette variété: la forme inertielle. Les
techniques classiques de construction de variété centrale (méthode de Lyapunov-Perron,
méthode de Hadamard...) ont pu étre généralisées pour plusieurs équations.

Toutefois, I'existence de variété inertielle n'a pas €té établie pour certaines équations
tres importantes. En général ces équations possedent des variétés inertielles approchées.
Une variété inertielle approchée est une variété réguliere de dimension finie telle que toutes
les solutions du systéme entrent dans un voisinage trés mince de celle-ci en un temps fini.
Outre le fait d'exister sous des hypothéses tres larges, les variétés inertielles approchées
présentent 1'avange d'étre données par des formules explicites.



Cette these est composée de trois parties dont nous exposons maintenant le contenu.
1£L€ partie: Variété inertielle et équation de Sacker.

Dans cette partie, nous proposons une nouvelle méthode de construction de variété
inertielle. L'idée est de résoudre une €quation aux dérivées partielles hyperbolique dont la
solution posséde un graphe positivement invariant (I'équation de Sacker).

Plus précisément, supposons que l'on étudie I'équation parabolique suivante

du/dt + Au +f(u) =0, 1)
que l'on suppose bien posée dans un espace de Hilbert H, ou A désigne un opérateur du
type (- A)f et f une nonlinéarité. On cherche une fonction ®:Hy--> Hy , ot H=H+ Hj et
dim Hj < oo, telle que son graphe soit invariant pour le syst¢me dynamique associé a (1).
On note P; le projecteur sur H; (i=1,2). En projetant (1) sur H; et Hy, on voit que si
p(t)+P(p(t)) est une solution de (1) sur la variété inertielle, on a

dP(p(1))/dt +AD(p(1)) + Pof(p()+P(p(1)) =0,

dp/dt + Ap(t) + P1f(p(t) +®(p(1))) =0,
et, en éliminant le temps, ® doit vérifier I'équation introduite par R.J. Sacker [6]

-DO(p)(Ap + P1f(p+ @(p))) + AD(p) + Prf(p+P(p)) =0, 2)
(P et Py commutent avec A). On cherche les solutions de (2) dont le support est inclus
dans une boule de P{H.

Pour cela, on résout d'abord une équation approchée obtenue en remplagant H par un
sous espace de dimension finie m et en ajoutant une viscosité artificielle de coefficient €.
Cette équation approchée est une équation elliptique nonlinéaire que l'on résout par une

méthode de point fixe dans W1°°, Les estimations sont obtenues 2 partir de principes du
maximum. Une grosse difficulté vient de 1'application de ces principes du maximum aux
dérivées de ® dont on ne connait pas le comportement a la frontiére de la boule. On obtient
des estimations suffisantes pour passer 2 la limite E—>0 et m-->co sous une hypothése
assez forte sur 'opérateur A (hypothése d'écart spectral). Cette restriction est commune a
toutes les méthodes.

a€me partie: Construction de familles de variétés inertielles approchées.

La deuxiéme partie est consacrée a la construction de familles de variétés inertielles



approchées. Ce travail a été fait en collaboration avec M.Marion et fait suite a deux de ses
précédents articles [7,8] dans lesquels étaient construites deux variétés inertielles
approchées pour 1'équation de réaction diffusion et six pour I'équation de Cahn-Hilliard.

On montre pour ces deux équations que la construction peut étre généralisée afin
d'obtenir une famille infinie de variétés inertielles approchées dont 1'ordre d'approximation
est croissant. Le principe de la méthode est de décomposer la solution u de 1'équation en
u(t) = p(t) + q(t) ou p(t) représente les grandes structures et q(t) représente les petites (on a
encore décomposé H=H;+ Hy avec dim Hy < c°). Pour le cas de la réaction diffusion, on
obtient en projetant I'équation

dp/dt +Ap = P f(p + ), (3)

dg/dt +Aq = Pof(p + q), 4)
ou A= -A muni de conditions aux limites, et f est une nonlinéarité a croissance
polynomiale. On montre qu'a partir d'un certain temps q, ainsi que toutes ses dérivées, est
petit. Ce qui légitime I'approximation de (4) par

Aq = P,f(p). (5)
Si on fixe p, on note ®(p) la solution de (5). Le graphe de @ est la premiére variété
inertielle approchée. On peut améliorer l'approximation de (4) en introduisant une
approximation de dg/dt obtenue en dérivant (4) et en négligeant d2q/dt2. Pour obtenir @,
dont le graphe sera la deuxi¢me variété inertielle approchée, on résout successivement

pl + Ap = P, f(p+ ®{(p))

Aql =P,f(p)(pY),

ql+Aq =P,f(p+ @1 (p)),
et on pose

@, (p) =q.

On peut répéter ce procédé, la ki®ME variété inertielle approchée est construite en
introduisant une approximation de dk'lq/dtk‘1 obtenue en négligeant qu/dtk. On montre
que les solutions de 1'équation de réaction diffusion entrent en un temps fini dans un
voisinage de la Ki€M€ yariété inertielle approchée de taille Kk8k, ou Ky ne dépend pas de
m= dimH/ et  est proportionnel 2 la (m+1)iéme valeur propre de A. Pour I'équation de
Cahn-Hilliard, on procéde de la méme maniere, mais pour des raisons techniques la
construction et les démonstrations sont légérement différentes.



31me partie: Une perturbation singuliére de 1'équation de Cahn-Hilliard.

Dans cette troisieéme partie, on étudie une perturbation singuliére de 1'équation de
Cahn-Hilliard obtenue en ajoutant une dérivée seconde en temps dont le coefficient € est
petit

£ d2u/dt? + vAZu - Af(u) =0, 6)
ot f est un polyndme de degré impair et de coefficient dominant positif. On s'intéresse plus
particulierement a l'existence d'un attracteur pour cette équation et au comportement de
celui-ci lorsque € tend vers zéro.

L'équation de Cahn-Hilliard (¢ =0) a déja été étudiée dans [9], il y est montré qu'il
existe un attracteur pour la topologie forte dans {ue L2: Im(u)I< a}. Dans ce travail, on
montre en utilisant la méthode classique mentionnée auparavant que (6) posséde des
attracteurs au sens de la topologie faible dans les espaces VS={ue HS x HS—2 .
Im(u)+im(du/dt)l < o} pour s=1,2 ou 3 (m(u) désigne la moyenne spatiale de u). Pour des
raisons techniques, nos résultats ne s'appliquent qu'en dimension d'espace n=1.

On montre que les attracteurs de (6) dans v3 que l'on note Ag sont bornés
indépendamment de € dans V3, ces bornes sont assez longues a obtenir et sont issues
d'estimations a priori fines sur les solutions de (6). Ensuite, on définit une injection de
l'attracteur de 1'équation de Cahn-Hilliard (qui est un sous ensemble de L2) dans V2 que
I'on note A et on montre que la semi distance de Haussdorf de A a2 Ag tend vers zéro
lorsque € tend vers zéro

lim sup inf  |ly-ugligeHiv-veliz =0.
€0  (ug,ve)e A (uv)eA

En d'autres termes, 1'attracteur de (6) est semi continu supérieurement en €=0.0On emploie
le méme genre de techniques que dans [10].
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INERTIAL MANIFOLDS
AND SACKER'S EQUATION

Arnaud DEBUSSCHE

Université Paris XII and Laboratoire d'analyse numérique,
Bat. 425, Université Paris-Sud 91405 ORSAY, FRANCE.

I. INTRODUCTION

Much progress has been made in the study of dissipative evolution equations because they can be
considered as infinite dimensional dynamical systems. For instance, the notion of attractor that
existed for finite dimensional systems has been extended and many equations have a global attractor
which is compact and connected (see e.g. R. Temam [1] or J.K. Hale [1]).

If (S(t))o is the semigroup associated to a dynamical system in a Banach space E, the global
attractor is a compact subset of E that attracts all the bounded sets of E :
(1.1) V B cE, B bounded :
d(S(t)B,&) -5 0 when t — 4o,
moreover it is invariant :

(1.2) Vt20 , S8 =4.

Such a set is interesting in order to describe the behaviour of the orbits of the system for large time.
Indeed, we know that in numerous cases the attractor is finite dimensional and we have very good
estimates of its dimension that correspond to the physical situation (see R. Temam [1]).

But attractors are not well adapted to practical purposes (especially numerical utilizations) for two
reasons :
- they can attract the orbits very slowly ;



- their geometry can be very complicated (perhaps fractals) and they are not regular object.

For those reasons, the notion of inertial manifold has been introduced by C. Foias, G. Sell and R.
Temam [1],[2]). It is defined as follows : let (S(t)),5, be a dynamical system in a Banach space E,
aset M is an inertial manifold for this semigroup if :

(1.3)

M is a Lipschitzian manifold,
M is positively invariant :
Viz0 , S®McM,
M attracts the orbits of (S (D))o With an exponential speed,

M s finite dimensional.

When an inertial manifold exists, the system is very well approximated by the inertial system that we
obtain by restricting (S(1))5q to M.

We are interested in an equation of the form :

%;1—+Au+R(u)=O,

u(0) =uo,

in a Hilbert space H; here A is an unbounded linear operator (for instance A = (-A)', r >0, with

(1.4)

boundary conditions) and R is a locally Lipschitzian non linear function from H to D(A™) (0<¥y
1

< 4

<5 ).

(In fact, we are not able to prove the existence of an inertial manifold in that case, we will have to

modify the function R to avoid problems for large values of the norm of u).

There already exist some methods to construct an inertial manifold. They all look for it as the graph
of a Lipschtzian function and the main necessary hypothesis is a spectral gap condition on the
operator A ; for instance, we do not know if there exists an inertial manifold for the Navier-Stokes
equation (see C. Foias, G. Sell and R. Temam [1],[2] ; C. Foias, B. Nicolaenko, G. Sell and R.
Temam [1],[2] ; P. Constantin, C. Foias, B. Nicolaenko and R. Temam [1],[2],[3] ; J. Mallet-Paret
and G. Sell [1] ; S.N. Chow and K. Lu [1]). When that spectral gap condition is not satisfied, there
often exist approximative inertial manifolds, that object has been introduced recently by C. Foias, O.
Manley and R. Temam for the Navier-Stokes equation and has been extended to others (see C. Foias,
O. Manley and R. Temam [1],[2] ; Temam [2] ; M. Marion [1],[2]).

In this paper, we are interested in another construction of inertial manifolds based on an equation of
R.J. Sacker [1]. In that paper it was observed that if an invariant manifold is the graph of a function
@, then this function must satisfy an hyperbolic equation. Although the article is devoted to finite
dimension, the method applies as well in infinite dimension (with a function @ taking its values in



infinite dimension). Our aim in the present article is to show how one can construct an inertial
manifold for a broad class of equations by solving this hyperbolic equation .Classically the
hyperbolic equation is resolved by elliptic regularization. We are able to derive inertial manifolds in a
constructive manner for the same type of equations as in the references quoted above, with the same
type of hypotheses. .

In a related work M. Luskin and G. Sell [1],E. Fabes, M. Luskin and G. Sell [1],[2] used this
method to construct an inertial manifold, but in their article, the condition on the existence are much
stronger than in the others references quoted above as far as the spectral gap condition and as far as
the type of equation are concerned.In this article we consider the same class of equations as in the
other references and recover the same type of gap condition, the method being furthermore
construstive.

Let us describe the construction of the hyperbolic equation ; we first modify equation (1.4) by
replacing the nonlinear term R by a truncated form Ry that has a compact support to avoid problem
with large values of the norm of u (this will be done precisely in the next section), we search an
inertial manifold for the system :

(1.5) %%+Au+R9(u)=o,

where u lies in a Hilbert space H.

Let P be a finite dimensional orthogonal projector and Q =Idy-P (hence we have H = PH @ QH).
We look for a function @ from PH to QH whose graph is positively invariant for the equation
(1.5). We project (1.5)on PH and on QH:

(1.6) D+ Ap+ PR (pra) =0,
(1.7) %L+ Aq+QRo (p+9) =0,

where p(t) = Pu(t) and q(t) = Qu(t) (we assumed that P and A commute, that will be satisfied
[see section II]).
If u(0) is on the graph of @ and if its graph is positively invariant :
Vt20 : q(t) =D(p@)).
Therefore :

dd(p)

(1.8) ot

+ AQ(p) + QRg (p+P(p)) =0.

Using (1.6), we have :



dd)(p) -Dd ()(

— DO(p) (- Ap - PRy (p+D(p)))
=-(Ap +PRq (p+®(p)) .V O(p) .

We infer from (1.8) that @ is a solution of :
(1.9) -(Ap + PRq (p+@(p))).V @ + A® + QR (p+®(p)) =0 .

Ry has a compact support, let p be given such that the ball centered at 0 of radius p/2 in H

contains its support, we will search @ with a support in the ball centered at 0 of radius p in PH
(this is natural since we will construct Ry such that its support contains an absorbing set of the
equation), thus we are lead to the Dirichlet boundary condition :

(1.10) ®=0 on JB(0,p).

This construction of a partial differential equation that characterizes invariant surfaces is due to R.J.
Sacker [1]. He was interested in a perturbation of a differential equation that possesses an invariant
torus, he used that equation to show that the perturbed equation has an invariant surface that is a
graph on the torus ; his result is restricted by an asumption that is similar to the spectral gap
condition. The method that we will use to solve (1.9) is similar to his but new difficulties appear :

- @ lies in an infinite dimensional space (R.J. Sacker only considered the finite dimensional case).

- The a priori estimates are based on a maximum principle that is very easy to use when the quantity
that we want to estimate has its maximum inside the domain, this is always the case on a torus but not
in our case where the domain (which is a ball) has a boundary. This difficulty appears in lemma 4.4
here after.

In the following sections, we will first give the notation and the precise asumptions (section II), then
we will give the existence theorem and a few remarks (section III) ; finally, in section IV, we will
prove the theorem.

II' NOTATI AND HYPOTHESE

Let H be a Hilbert space with the norm |.| and scalar product (.,.).
A denotes a linear closed unbounded positive self-adjoint operator in H with compact inverse ;
under these asumptions, there exists an orthonormal basis of H consisting of eigenvectors of

A: (Wis--sWy,...), We denote by (ll,...,lk,...) the associated eigenvectors :



]v ije N*:
(wi,wj) = 8jj ,
2.1

2.1 Aw; =A; w;,

and 0 <A <A< ... SAx > +oo.

Moreover we can define A’ for every s in R, the domain D(AS) when endowed with the norm
IAS.l is a Hilbert space.

P denotes the orthogonal projector on the space spanned by (w,...,wy) (N is to be chosen later).
P; denotes the j™ coordinate in PH :

2.2) YueH: Pju = (u,wj) .

Q (resp. Q. £ > N+1) denotes the orthogonal projector on the space spanned by
(Wr410--sWioeen) (T€SP. (Wpps---sWp ), £ > N+1). Hp=PH® QgH is the space spanned by
(W{;W,,...,Wp), itis endowed with the norm induced by the normin H.

Let us notice that :

S S
23 Vs>0 , Vpe PH:A, Ipl<IAPI<Aylpl,

S
Vs>0 , Vqe QH:Ay, lg<Aql .

R is a nonlinear operator from H to D(A™) (0 <y < 1/2), Lipschitzian on the bounded sets of H
and continuously differentiable. As we already said, we will replace R by a truncated form Ry ; in
order to do that, we make some further asumptions on the system (1.4). We assume that for every
u, in H, (1.4) possesses a unique solution in OR*,H)NL¥0,T;D(AY?)) for all T > 0.
Moreover the semigroup (S(1)),»o associated to (S) possesses a bounded absorbing set SBO in H
which is positively invariant (these asumptions are often satisfied, see e.g R. Temam [1] for
numerous examples).

Let us choose p such that the ball of H centered at 0 of radius p/4 contains 580, we choose a
C> function 0:

0:R*"—[0,1],

8(s)=1 for se [0,p/3],
8(s) =0 for se [p/2,+o[,
sup|0'(s)| <2 .

s20

(2.4)




We write :
Rg(u) =6(lul) R(u) , Vue H.

Ry isa C! function from H to D(A™) with a compact support ; thus it is bounded together with
its differential.

From now on, we will always consider the truncated equation in which R, replaces R, thus we

will omit the index 6 in order to make notation simpler (except in section II1.3).
Let us write :

(2.5) Ko = sup| AYR()/ ,
ueH

(2.6) K; = sup sup | AYDR(u)(v)| .
ueH veH

lvi=1

Q will be the ball in PH centered at 0 and of radius p:
Q= BpH (O,P) .

Now we define some functional spaces that we will need :

H},(Q,Qe H) is the space of the functions from Q to Qg H which are L2 together with their first
partial derivatives and which equal zero on 0Q, it is a Hilbert space when endowed with the norm :

1
2
@7 |(D|H(1)=(|A1/ 2<D|12.2+|V‘1’|i1) ’
where

|a2aff2= f |A12axp)f dp .
Q

(this norm is equivalent to the usual one : |<D|[2‘2= f |d>(p)|2 dp on L?(Q,QyH) since Q;H isa
Q
finite dimensional space ; of course, this is no longer true on L%(Q,QH))
and
N

Vol = f |D@m)f dp .
Q

i=1



N1
(p is a variable in Q which is embedded in PH ; we write p= Zpiwi, D®@(p) is the partial

derivative of @ with respectto p,).

L=(Q,QH) (resp. L*(Q,Q,H), L=(Q,QD(A!2))) is the space of the essentially bounded functions
from Q to QH (resp. QyH, QD(A!72)), it is a Banach space when endowed with the norm :

|® |~ = ess sup | D(p)|
peQ

(resp. |<D|Leo =ess SUPI(D(P)I
peQ

| A2 || = = ess sup | A2 (p)| )
peQ

Wh=(Q,QH) (resp. WI=(Q,QgH)) is the space of functions in L~(Q,QH) (resp. L=(Q,Q¢H))
whose gradients are in L=(Q,QH)N (resp. L=(Q,Q¢H)N), it is a Banach space when endowed with
the norm :

(2.8) I(DIWL‘”=|(DIL"°+ID¢,L°°,
where :

| h.D¢1p)|)

|D<D|L°°= ess sup sup( |h
N
pe heR

and for h = (hy,...;hy) in RN
172
N N
h.D®fp)= D, h; D) , |h|=( Zhi)
i-1 i=1
We will use the subspaces of W!=(Q,Q¢H) and W1=(Q,QH):

Ve ={® e W=(Q,QeH) : | @l < My and [DD|~< My},
V={®e WI=(Q,QH) :|®|~<M, and |DO|~<M,],

(M, and M, will be choosen later).

This section ends with the asumptions on the spectrum of A.
We choose M, such that :



-1
(2.9) Ko Ay Mo,

(let us recall that Ko = sup IA‘Y R(u)| ) and we assume that there exists N such that:
ueH

12 2
2.10) Aner - A 2 K22 F

(let us recall that K; = suplA‘Y DR(u)Igg(H) ).
ueH

This is a necessary and sufficient condition to the existence of a real M, such that :

M1>O,

and
Ky Ay M2+ M (xN+l - - KiA + )\KM)) -Ki M4 20,

that implies :

(2.11) ANe1 - AN - Ki(1+ M) AL >0,
2.12) Ki+MO My gy
\ANH - A - Ka(1+ My) A

We make the further asumption that we can choose M, such that :

N N
(2.13) (Z xi) 2K1(1+M1)(Z x?),
i=1

i=1

(2.14) M Ki(1+ M) < 1.

I MAIN RESULT

We state the main result, this is an existence theorem for the inertial manifold (the proof will be given
in section IV). This section ends with some comments on the results.

1) THEOQREM 3.1 : Under the asumptions made in section Il, there exists a function @ in
WL=(Q,QH) N L=(Q,QD(AY2)) solution of :



) _(Ap + PR(p +®(p))) .V® + AD + QR(p+D(p)) =0 in Q,
’ ®=0 on 9Q.

Moreover, if we extend ® outside Q by setting : Plppng =0, then its graph is an inertial

manifold for the system :

%‘:—+Au+R(u)=o.

2) (2.10) is a spectral gap condition, this is the most restricting condition among (2.10)-(2.14) ;
for instance if Ax ~ ¢ N® (this is the case when A = (-A)' on a n-cube in R™ with periodic
boundary conditions, then a = %_r (see R. Courant and D. Hilbert [1])), in order to satisfy (2.10)
we need o > ﬁ and (2.13), (2.14) are then easily checked. If we consider the Navier-Stockes

equation, we have y= % and o = % , thus our result is not sufficient in this case.
3) Theorem 3.1 gives the existence of an inertial manifold for the truncated system :

(3.2) %'EL +Au+Rg(u)=0.

Consider an orbit {u(t)},5, of the initial system :

(3.3) d—dltl +Au+Ru) =0,

as Ry and R are equal on the absorbing set of (3.3), there exists a time t;, such that :
Vit2ty , R(u(®)=Rgu(®),

thus {u(t)} is an orbit of (3.2) and if we denote by JYU the inertial manifold of system (3.2) :

21y
either ut) e M for t2>t,
or d(u(t),/M) decays exponentially.

4) (3.1) is an hyperbolic equation in the unknown @, it is quite natural to try the method of
characteristics to solve it ; we see the term -(Ap + PR(p+®)).V® as a directional derivative. We
introduce the curves :

/%‘2— = - (Ap + PR(p+®)) ,
\p©) = po.

on these curves, we have :

dq)(dpt(t)) + AD(p(1)) + QR(p(t) + P(P()) =0,

which can be integrated :
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t

D) =- f eA©) QR(p(0) + P(p(0))) do
%)

+ eAt) O(p(ty)) -

Letting t, goto -eo (assuming & is bounded) and taking t equals O:

0
D(po) = - f A5 QR (p(c) + D(p(0))) do .

-oco

And we can solve this integral equation by a fixed-point method.
This is the principle of the Lyapunov-Perron method developped by C. Foias, G. Sell and R. Temam
[1],[2] (see also R. Temam [1] chap. 8 and S.N. Chow and K. Lu [1]).

IV PROOF OF THEOREM 3.1

In order to prove theorem 3.1, we will first solve a Galerkin approximation of equation 3.1 (which is
an infinite dimensional hyperbolic system, whose unknowns are the coordinates of @ in the base
(Wp41o0 0 s Wpeoee))-

Let £ >N+1, we search @, from Q to QH solution of :

[- (Ap + PR (p +®e(p))). Vg + Ade + QR(p+De(p) =0 in Q,
\ ®p=0 on Q.

This is done by regularizing this system with a second order elliptic term that tends to zero. Under the
asumptions made in section II (especially (2.10)), we can find a solution of the regularized system
through a fixed point method in a subset of W1=(Q,Q¢H), in the same time we obtain a priori
estimates that enable us to pass to the limit to obtain a solution of the Galerkin approximation of
equation (3.1), then to make ¢ — +o and thus to have a solution of equation (3.1).

LEMMA 4.1 : Let \y € Vy, then there exists a unique @ in H})(Q,QQH) such that :

eAD + (Ap + PR(p+y)).V®D - AD - QeR(p+y) =0,

4.1
@1 =0 on Q.
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We write ®=T, V.
(Let us recall that Ve = {<b e WI=(Q,QeH) /| ®|~ <My and |DO|~< Ml} ).

Proof
Let a(®,,®,) be the bilinear continuous form on H%)(Q,Q?/H) defined by :

N
a(P1,P2) = GI > (D@, Did,) dp
Q i=1

[
-1 (Ap + PR(p+y)).V®,,®,) dp
Q

i
+ (A1/2<D1 , A1’2<D2) dp,
Q

and L the linear continuous form on H(l)(Q,QeH) :

L(®,) =- f (A‘YQ@R(p+\|I), A"Y(Dz) dp .
Q

We claim that a is coercive :
Let @ e HY(Q,QH),

N 2
a(<D,<D)=£f > |D@f dp
Q i=1
f ((Ap + PR(p+y)).VD,®) dp
Q

+I |Al20 dp ,
Q

We observe that :

J_ (Ap + PRp+y)). VO] ap

=- %fn (Ap + PR(p+V)) .V|(Dl2 dp

> aiv(ap+ PR+ | @] dp,

and this is positive since :
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N
div (Ap + PR(p+y)) = > D; (A pi+Pi R(p+y(p)))

i=1
N

= > A;+P; DR (p+y) (W;+D;y)
1;1 N

=3 4+ 3 TP DR@+y) (M(w; +Dyy)
1;{1 1—1

>3 4.3 | ATPDRE+w) (W wit D))
1;{1 i=1

2 z A'1 K1 z I}’l(w1+Dl\v)’

i=1 i=1
N

N Y
> > xi-KI(Z xi)(1+M1) i

i=1 i=1

(Let us recall that
K1 = sup | AYDRQ)|2.m)
ueH
and
N
2 hiDiy
|Dy| ~=e€sssup sup —————r 1
peQ  heRN h’ )
i=1
<M.
Thus :

a(@ @) > inf (¢,1) |<1>|fl(1) .

By the Lax-Milgram theorem, there exists a unique @ in H})(Q,QQH) such that :
a(®,®)) = L(P;) forevery ®; in H{(Q,Q¢H) .

Taking @, C> with a compact support, we have :

€ AD + (Ap + PR(p+y)).VOD - AD - R(p+Y) =
in the sense of distributions, that implies that @ is in H2(Q,Q¢H) and that (4.1) is satisfied almost
everywhere in Q.

LEMMA 42 (Continuity of “Ugy) .
If Vo is endowed with the norm of L=(Q,Q¢H), then
Tep : Ve — Hy(Q,QeH)

is continuous.
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Proof
Let (W )N beasequencein V, such that

Wn— Y in L=(,QeH) .
We write @, = Teg y, and @ = Tep y and substract the equations satisfied by @_ and @ :

£ A(@,-®) + (Ap + PR(p+y)). V(D D)
+ (PR(p+yy) - PR(p+)).VD - A(®,-D)
- (Qe R(p+yp) - Q¢ R(p+y)) =0.

We take the scalar product with ®,-® in Qg¢H and integrate over Q (by parts in the two first
terms, there are no integral over dQ since ®,-P is in H%,(Q,Qe,H)):

2
CI)n-<D| dp

ef ol V(cbn-(b)|2 dp - % ) o div (Ap + Pr@p+y )

+ fQ ((PR(P‘HVH) - PR(p+y)).VO,D - D) dp
1 2
) leA qbn'q)” dp

- f 0 GA'Y(QeR(pﬂvn) -QeR(p+)),A | ’n-<D)) dp
=0.
The second term is negative since :

div CAp + PR(p+\|Jn)) 20 (seelemma 1).
Thus :

2
<f_| V(o) dp+ J,|a" o) ap

< f ((PR(p+yn) - PR(p+)).VD,D,-®) dp
Q

- f (AYQeR(p+y) - QR (p+y)), A D,-d)) dp
Q

< x§ sup IA'Y(PR(p+\l!n) - PR(p+\y))| | V(I)|L2|(Dn-(b |L2
peQ

AN sup | AYQeR(pHy) - QR(p+Y))| (mes )72 | AV @,-)| 2
peQ

<K (‘ V(D‘Lz"' xgl-lr/lz mes (Q)lﬂ)|Wn’W|L°°IA1/Z((Dn'(D)|L2 .
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Therefore if hy -yl — 0 then

| AV ,-D)|2— 0
and

| V(®y-®)j2—0 .

LEMME 43 (L> estimate)
Let y in Vo and ®=T_, then ® e L*(QQH) and
(4.3) Dl ~<My .

Proof
y is a Lipschitzian function (it is in W1*(Q,Q¢ H)), hence it isin C%5(Q,Q¢ H) for all s <1
(C%5(Q,Qp H) is the space of Holderian continuous function of order s).

R is a C! function, thus the coefficients of equation (4.1) are in C%$(Q,Qg H), and thanks to the
classical results on the regularity of the elliptic equations (see D. Gilbarg and N.S. Trudinger [1]) :

® e C25(Q,QcH) .
We deduce that (4.1) is verified everywhere.

Let us take the scalar product of (4.1) with @, and use :

(4.4) (r0,) =% Aol -|vel,
(4.5) (Vvo,o) -1 viof.
We obtain ;

; A|<I>|2 - 4“’12 * %(IAP + PR(P+W))-V|‘I’|2

1/2 2 Y Y,
| a0 -(A QR(P+Y).A cp)=o.

At the point p where |<I>|2 is maximum, we have :
2 2
ANo@f=0 ad Veomf=o.
(p isin the interior of €, since ® =0 on 9Q).

Hence :

|AI2 o) < - (AT Qe RG+y(F)).AY O(F))
<

| A7 Qy R(p+y()) || AY D) |

-1/2 .
<Ko My |A2 D),

thanks to (2.5).



15

We deduce :
@l -=| @) < AT A2 o)

thanks to (2.9).

LEMMA 44 (W= estimate)

Let y in Vo and @ = ‘Ce,e y then ® e W=(Q,Q¢ H) and
D)~ < M, .

Using lemma 4.3, we have :
Tee Ve Vg .

Proof

We want to use the same method as in lemma 4.3 to obtain estimates on the derivatives of @, we
will differentiate equation (4.1) and use the same type of arguments. But two difficulties appear :

- we do not know wether the derivatives of @ are sufficiently regular

- the maximum of the derivatives of @ can occur on the boundary.

The first difficulty is easily overcome by approximating W with a sequence of more regular
functions.

The second is more difficult to overcome, it is done by looking carefully what happens on the
boundary if the maximum occurs there ; the arguments employed are hidden by technical calculous,
thus we will first describe the method in a simpler case.

We now begin with the proof.

We first assume that  isin C!(Q,Q¢ H) then we have :
4.7) de C3(QQH) .

(See D. Gilbarg and N.S. Trudinger [1]).

We differentiate (4.1) with respect to p; (1<i<N):

€AD; © +(Ap + PR(p+y)).V Di® + A; Di®

N
(4.8) + 2. P; DR(p+y) (w; +D; y) D;®
j=1
\- AD;® - Q¢ DR(p+y) (wj+Djy) =0 .

Thanks to (4.7), (4.8) is satisfied everywhere in Q.
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We choose h = (h,...,hy) in RN, multiply (4.8) by h,, make the sum for i=1,...,N and take
N
the scalar product with h.D® = > hD;®d, using the analog of (4.4), (4.5) :

i=1
(A h.D®,h.DO) -1 AhDof -|vhpof |
(V hD®hDO) =1 vihpof |

we obtain :
£ AhDof - ¢V hDof + %(Ap + PR(p+y)).V|h.DOf
N
+ (z A;i h; D; (D,h.D(D)
i=1
' N
(4.9) + ( 2. h; P; DR(p+y) (w;+D;y) D; @, h.D(D)
i,j=1

N
-|A12h Do - ( 2. h; Q¢ DR(p+y) (wi+Dyy), h-Dd’)

i=1
=0 .

We will consider two cases :

» 1stcase : Ih.D®? attains its maximum at a point P in the interior of Q, then we have :
(4.10) AhDO(P)? <0,
4.11) Vih.DO®)2=0.

We estimate the other terms in (4.9) at the point p:

(4.12)

N
2. h; P; DR(p+y) (W;+D;y) D; @, h.Dd))
i,j=1

N N
=(‘Z P, DR(§+\u)(Z hi(wi+Di\y))Dj o, h.Dd>)

=1 i=1
N N
< Iz Pj DR(§+\V)(2 hi(Wi+Di\|I))Dj(DI IhD(DI
j=1 i=1
N
< |P DR (p+y) (2 hi(wi+Di\|f)) | ID®, - |h.DD|

i=1

N
<AL Ky 1D hy(wi+Dyy)l ID®l, - [n.Do

i=1

<A Ky |hl (1+1Dyl;-) ID®I - Ih.Do]
<A%Ky Il (1+My) ID®|, - [h.DD| .
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N N
(4.13) (2 A; by DiCD,h.Dd)) < |3 A b D; 0 [h.DO

i=1 i;l , 2
5(2 Ai h%) ID®|; ~ In.DD

i=1
< Ay Il ID®I, « IhDD| .

N
|A12h DOJ? + ( > h; Q¢ DR(P+V) (wi+Di\y),h.D<I))
i=1
N
> |[A2 b DO - |AY Q DR(p+y) (2 hi(wi+Di\y)) | |AY h.DO|

i=1

N
> |A2 hD®I? - K, |3 hy(w;+Dyy)l |AT h.DO|

i=1
> |A12 h Dol - Ky A%ty Inl (1+My) [AY2 h.Do] .

it AY2|hDo| 2 % ALY h|(14My), as the function x2-Ky Al |h|(1+My)x  is
increasing when x > % lﬁ{zlhl(HMl), we have :
5 N
(4.14) |AZh DO +{ > h; Qe DR(+y) (wi+Diy),h.Dd
i=1
2
> Anet |RDO - Ky AL, [h](1+M;)| h.D®] .
(4.10) to (4.14) with (4.9) give :
2
Ans1|h.DO < An|h||DO|=|h.DD]
+ A% Ky |h|(1+M;)| DO =| h.DD|
+Ay; K1 |h|(1+M;)|h.Do|
(4.15) Aner [D®] < [h] (g D= + Ky A (14My) DOl + ALy Ky (14My)

-1/2
If A4 |hDo| < % A2 [hl(1+My), then Ansi |h.D®| < % AL, || (1+ M) and (4.15) is

still satisfied. As |h.D®I attains its maximum at P, we have :
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Vpe Q:
(4.16)

Y Y
Aoy |nDO| < |h|(xN+ K Ay (14M )| | DO| =+ Ay, Ky (14My) | -

* 2nd case : [h.D®I attains its maximum at a point p on the boundary.

In order to describe the arguments we will use, we first give a heuristic proof in a simpler case : we
replace Q by the N-cube [-p,p]N (the following arguments are not valid since we do not have
enough regularity in such a domain).

P =(P1,P2,--.,PN) is on the boundary if there exists i such that |p;| = p, we assume, and this is no
restriction, that p; = p.

@ is constant on the bounary thus all tangential derivatives are zero at P :
D, ®(p)=0 ifi=1,
|h.D®(p)| = |y D,0(p)|
< nl|Ds0@) .

We claim that |D1<D| cannot attain its maximum on the boundary, thus we can use the estimate
(4.16) of the first case with h = (1,0,...,0) :

— Y Y
Anu|Dy @0)| < (1N+ K Ay (14My)| | DD| =+A K1(1+M1)),

AnalhDO®)| < )"N+1‘h|l D (ﬁ)l

N

Y Y
A+ K A(1+M))| | DD =+ xN+1K1(1+M1)) .

And (4.16) is valid. We have to prove the claim ; assume that | DI(DI attains its maximum at p, on

the boundary, p, must be on the face Ip,I=p (otherwise |D1(D(p0)| =(), assume that Po1 = P>
then we have :
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D; O(po) =0 , ifi#l,
Dii(D(p0)=O , ifi#l,
R (po+W(po)) =0, since |po+y(po)|2[pol2p,
D(po) =0 , since pg is on the boundary .

Using equation (4.1) :
(4.17) € Dy,1 @(po) + A1 p D1 P(po) =0,

we take the scalar product of (4.17) with D1®(py) :
2 2
(4.18) £ D|D1®po)[* + M1 p[D1@GEOf* =0.

But |D1d)(p0)| is maximum, thus :
D120 >0,
Di|D1®(po)| 2 0.
This contradicts (4.18), hence |D1 <D| cannot obtain its maximum on the boundary.

The proof on that case is complete but it is not valid since @ is not regular enough.

Let us consider the original problem, the calculous are a bit tedious because on the boundary we have
to use local coordinates.

@ is constant on 0%, thus all tangential derivatives are zero on 0Q.

We note 1(p) =(ny(p),...,nN(p)) the unit outward normal at p € dQ and %‘2 the derivatives in the
r

direction n, we have :

N " 20D
h.D®(p) = 2, h; D; D(p) =(hii@) > (), when pe oQ.

i=1

We deduce :
od _
(4.19) |hDom)| < || %(p)‘ .
. . od _ . . od D . .
We will estimate y(p) . First, we claim that ar (which is define everywhere in ) does not

o . . oD
attain its maximum on the boundary. Indeed, if we assume that | —

or
the boundary. Let (T4,...,T,.;) be alocal coordinate system on 0Q near p,, then:

attains its maximum at p, on
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AD = z 82<D a’tk EE
ijk OTj 0Tk op;i 9pi
%0  N.1 0O
et
ij OT;or op;

9 7%
ij ot; api2

Thus, at p,, we have:

2,
(4.20) A@@w=%§mm+ﬁi§9@w

2 T p;
223 2L ) JH B
i,j OTjor dpi P
(the others terms are zero since they are tangential derivatives).

Moreover :
- od
(4.21) Apo.V®(po) = (Apo.ni(po)) = o),
(4.22) R(po+¥(po)) =0 , (po+w(po)| =Ipol 2p),
(4.23) D(py) =0 .

Using (4.19) to (4.23) in (4.1) :
0, 5 0 Oy p

N o
(4.24) o i onar OB P

- - 0D
+(e%+ApO.n)¥=O .

We take the scalar product of (4.24) with %(rg (po) :
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2 2
sg(@g( ez 2 22 6 )_a_ n
2 or\|or Po ~ ot \lor o1/ op;
(4.25) 2
+ ( eXl, Apoﬂ) 2 0| =0 .
p
(This is the analog of (4.18)).
o .
We assumed that S (po)| 1s maximum :
3 (oo 2) 9 (acp 2)
ar( ( ) > a ar (p )
acb 2
(Po)
2
and this contradicts (4.25). Hence S
[
point p, inside £ such that g(Pl) is maximum. We denote by m =
normal at p,;, then:
(4.26) —~<p1) = E m; D; ®(p1) .

=1

Let p be a point on the boundary :

N
2. m; D; D(p) ' - ‘(r‘ﬁﬁ(p)) 2 (p)’

o (p)I
a(D

(4.27) ;. D; D(p)| <

N
> m;D; <D(p1)’-

i=1 i=1

cannot have a maximum on the boundary and there exists a

..,my) the outward
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N
>, m; D; d(p)

i=1

We deduce that the maximum of occurs inside €, we can use the estimate (4.16)

with h =(m;,...,mn}:

’Vpe Q:

N
\lNH >, m; D; ®(p)

i=1

(4.28) . ,
< |m| ((Aan+ Ki(14Mp) AL | DB + AL, Ki(1+M)) -

Using (4.19), (4.26), (4.28) at p, and Iml =1, we have forall p in Q :

ANs1|h.DO®)| <Ayt |h.DOE)]
< 022 )

SKN+1|M}%(P1)|

N
< Analhl Z m; D; O(p,)

i=1
<Ih{(An + K (14Mp) AL) | DB + ALy Ky (14My))

And (4.16) is still valid, it is valid for all h in RN, we deduce :

|h.Do|
|h|

ANs1 | DD = Aoy sup sup
peB heRN

< ((a+ Ko (146M) ML) | DDl + AL, Ka(14My)
thanks to (2.11) :

Ay Ki(14My)
AN+1-AN - Ky (14My) A

ID(D‘L"" <

thanks to (2.12) :
|D@l~ < M, .

Thus the lemma is proved when y e CI(Q,QQ H) ; if ye WI=(Q,Q¢ H) we choose a sequence
(Wnpen 1N CI(Q,Qe H) NV, which converges to , we write @, = “Ceg Wy, then :

VneN : |D®f~ <M, .
(®,) is bounded in W1=(Q,Q¢ H), it admits a subsequence which converges in W=(Q,Q¢ H)
weak star, thanks to lemma 4.2, the limit must be ®, we deduce : ® € W1*(Q,Q¢ H) ,

|D®| = < lim inf| DD, |~ < M; .
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LEMMA 4.5 (fixed point)

i) Ve is a Banach space when endowed with the L™ norm.
i)  “Ceg: Vo — Ve is a strict contraction for that norm.
We deduce that ‘C&e possesses a fixed point, we denote it by ®gp, we have :

[eADep +(Ap + PR(p+De ). Ve g - ADg - Q¢ R(p+Pe) =0 in Q,

4.29
( ) \<D£,g=0 on 0Q .

Proof
1) Left to the reader.

i) Lety in Vg and ®;= Tepwy; (= 1,2).
We know that @, and @, arein C>5(Q,Q¢ H) (s < 1).
We denote by @ = @, -P,, we have :

eA®+{Ap + PR(p+y ).V ® + (PR(p+y ) - PR(p+y,) | VO,

(4.30)
- A® - (QUR(+,) - QR(+y)| =0 .

We take the scalar product of (4.30) with @ :

-zf' Al <D|2- »31V<1>|2 + % (Ap + PRP+y ) V] ‘D|2
+ ((PR(p+\V1) - PR(P+\V2))-V‘D2"D)

] |A”2<1>|2 - (A'Y(Qg R(p+y,) - Qg R(p+\|12)),AY<l%
=0 .

At the point p where |<D|2 is maximum (p is inside Q since ®=0 on 9dQ) :

|AYo@)| < (PRG+w) - PR+ 3) V0, 00)

A"(QerG+y) - QeR(5+W9),AY<D(B))
< MKyl \Ifl'\lleLwI DD, i~ | D(p)|
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+ K| \VI'W2|L°°| AY ()|

A A Ky My| yi-ys || AV20(p))|
+ 7»1:{::{2 K| \Vl-\lleuol Aln@(ﬁ)'

M Ki(14M) | w1y | A20(p)|

lo@)| < A AVZop)]

IN

IA

1

A Ki(1+M) [ Wiy - »
v-1

|01-®oli= < Mo Ki(1+My) | y1-y2 | = -

IN

Thanks to (2.14), “Ceg is a strict contraction.

LEMMA 4.6 : (limit € >0 and € — +oo)
i) The sequence (d)s,e)bo possesses a subsequence that converges when € — 0 in
W=(Q,Q¢ H) weak star to a function @, that satisfies :

- (Ap + PR(p+®p)). Ve + Adg + Qg R(p+d) =0 in Q,

4.31
( ) ®p=0 on Q.

ii) Let 5@ be the function from Q to QH defined by :

(0o wi) = (@ew)  if k<,

(@e.w) =0 i k>0,
then the sequence (53)62N+1 possesses a subsequence that converges when £ > 4 in
W1=(Q,Q H) weak star to a function ®, that satisfies :

-(Ap + PR(p+®@(p))).VD + AD + QR(p+D) =0 in Q,

4.32
( ) d=0 onoQ .

Moreover ® € L=(Q,QD(AY2)) n W1=(Q,QH).

Proof
i) For all € >0, we have, since <D£€ isin Vp :
Hence there is a subsequence (CDE- ..o Which converges in W1=(Q,Qg H) weak star to a function

®,, as the imbedding of W=(Q,Q¢ H) in L™(,Q¢ H) is compact, we have :
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€ ADgp —0 in WI=(QQH) ,
(Ap + PR(p+®¢ ¢)).V®e o — (Ap + PR(p+Dy)). Ve
in L(Q,Q¢ H) weak star,
(Adee + Qe R(p+®@c ) — ADe + Qe R(p+De)
in L°“(Q,Qe H) strong ,

Using those limits in (4.29), we obtain (4.31).
Moreover :

l¢€|WL°°(Q.Qe, H) < Mo+M; .

We take the scalar product of (4.31) with @y :

-((Ap + PR(p+®¢)). Ve, D) + | A2 g
+ (A7 Qg R(p+dp),AY Dp) = 0,

|A12 @ ? < [sup | Ap| + A Ko
pe
-1/2
+ M4y Kol A2 @],

| A2 @p |~ <

-12
M; AN A2 &y

-1/2 Y-1/2

sup | Ap| + A Ko| M ANs1 + Ay Ko -

peQ

Hence (®g)esns1 is bounded in W1=(Q,Qp H) N L=(Q,Qp D(A72)).

il) Wehave:
| dglwie =| Dplwie and |A12 Dple=| A2 Dy .

The sequence (CDQJ(,Z}LH is bounded in W1=(Q,QH) N L=(Q,QD(A'2)). Thanks to lemma (4.8)

below, there exists a subsequence (E)ek) and a function ® in WI=(Q,QH) N L=(Q,QD(A12))
such that :

5@,( N® in WI=(Q,QH) weak star,

5@1( — @ in L=(Q,QH) strong.

Then, we have :
(Ap + PR(p+;Iv>gk)).V53k A (Ap + PR(p+(D)).V(D in L=(Q,QH) weak star,
Acgek — A® in L=(Q,QD(A ")) strong,
QR(p+®z,) — QR(p+®D) in L~(Q,QD(AY) strong .
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We deduce that @ satisfies (4.32).

LEMMA 4.7 :
If we extend ®, obtained in lemma 4.6 ii), by zero outside K, its graph is an inertial manifold
for the system :

du , Au+RW) =0,

. d
(4.33) u(tO) =ug.

Proof
We still denote by @ the extended function.
Then we have :
_(Ap + PR(p+®)).V® + A® + QR(p+®) = 0,
almost everywhere in PH.
Let u, bein H and u(t) = S(t) u, be the solution in C(R*,H) N 1.0,T,D(A!?)) forall T>0 of
system (4.33) (see the asumptions on (4.33) on section II), we write :

p®) =Pu(v),
q(t) =Qu (1),
and (t) = q(t) - D(p(1)) .
We have :
dq
a+ Aq + QR(p+q) =0,
d®(p) _ dp
dt dt Vo(p)
= -(Ap + PR(p+q)). VO(p)
= -(Ap + PR(p+®)).VO(p)
+(PR(p+®) - PR(p+q)).VO(p)
= (PR(p+®) - PR(p+q)).VO(p)
- AD(p) - QR(p+D),
dr __(pR(p+®)- PR VO
@3 & - (PR(p+®) - PR(p+q)). VO(p)

- Ar- ((QR(p+q) - QR(p+®)) .

We take the scalar product of (4.34) with r(t) and use :
dr \-1 d |2
(dt )= g I

since 1(t) € L¥0,T;D(A!?2)) and %i—e LH0,T;D(A1/2)), we obtain :
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<_1|art|_2 +| A2 = - (PR(p+®) - PR(p+q)).V®,r)
- (A7 (QR(p+q) - QR(p+®)),AY1)
< | PR(p+®) - PR(p+q)| | DO|i=] 1]
+|A7(QR(p+q) - QRE+®))| | AY1|
< A K1 My |12 + Ky ]| AY1]

Y -1/2
< A% Ki My At 1] | AV2 1|
Y172

1
2

+Ki Ay 1| A2 ]
v-172
< ANer Ki (14My)|r]| AV x|

2y-1 2
20 KT (1M P {e2+ 2 | A2 [,

IA

2 2
LS W _dl(zjrt|1+|A1/2r|2
'Y.
< Ay K2 (14M)2 2.
Thanks to Gronwall's lemma :

(4.35) KR < 1) el l- K3 aMp)e

We deduce that if u,, is in the graph of @, then r(0) =0 and r(t) =0 forall t 20. The graph is
positively invariant.

If u, is not the graph of @, thanks to (4.35) together with (2.14), Ir(t)l (which is larger than
d(u(t),J) decays exponentially.)

Theorem 3.1 is proved, except lemma 4.8, used in lemma 4.6.

LEMMA 4.8 :
Let (d)n)neN be a bounded sequence in W1=(Q,QH) N L“(Q,QD(AW)) then there exists a
subsequence ((an) that converges in W1=(Q,QH) weak star and in L=(Q,QH) strong.

Proof

For the convergence in W1=(Q,QH) weak star, we use that L=(Q,QH) is the dual of L1(Q,QH) ;
for the strong convergence in L™(Q2,QH), we use Ascoli-Arzela theorem :

- (®,) is bounded in W1=(Q,QH), thus it is equicontinuous,

- (@,) is bounded in L{Q,QD(A!/2), thus for all p in €, the set {d),,(p) /ne N} is
compactin QH (indeed A1 is a compact operator).
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2éme PARTIE:

CONSTRUCTION DE FAMILLES DE
VARIETES INERTIELLES APPROCHEES.






On the construction of families of approximate inertial manifolds

Arnaud DEBUSSCHE(1) and Martine MARION(2)

0. Introduction

The aim of this paper is to present a general method for the construction
of approximate inertial manifolds (AIM). The concept of AIM has been recently
introduced by Foias-Manley-Teman [7] in relationship with several difficulties
arising in the theory of inertial manifolds. For a given partial differential
equation, an inertial manifold, when it exists, is a smooth finite dimensional
invariant manifold which attracts exponentially all the solutions as time goes to
infinity. The long-time dynamics can then be described by the solutions of a
finite system of ordinary differential equations. Existence results of such
manifolds can be found in Foias-Sell-Temam [8], Constantin et al [4], Mallet-
Paret and Sell [12], Fabes-Luskin-Sell [6], Debussche [5] (see also the
references therein) but there are still many dissipative partial differential
equations for which the existence of inertial manifolds is not known ; there are
even in some cases non existence results, see Mallet-Paret and Sell [13],
Mora and Sola-Morales [18]. Also, although inertial manifolds are much better
suited for computations than attractors, their computations remain a very
difficult task. These problems have lead to introduce the weaker concept of
AIM : AIM are manifolds which attract the orbit in a small (thin) neighborhood
exponentially rapidly. It is shown in [7] that the two dimensional Navier-Stokes
equations possess AIM while the existence of exact inertial manifold is not
known for these equations. Even for equations possessing inertial manifolds,
AIM can be useful, especially for practical purposes. Indeed these manifolds
are computable and numerical schemes well adapted for long term integration
are based on that concept, Marion-Temam [17] ; see Rosier [22], Rosier-
Temam [23], for numerical tests of these methods. We also refer to Sell [24] for
another definition of AIM.

The existence of AIM has been proved for several partial differential
equations (Foias-Manley-Temam [7], Marion [15, 16], Titi [26], Jolly-Kevrekidis-
Titi [9]). But in these references the authors restrict themselves to the
construction of a finite number of manifolds. Our aim here is to derive a method
for constructing infinitely many AIM providing better and better order
approximation to the orbits. We will present our techniques in the case of two
model problems that one of the authors previously considered in [15, 16] : a
reaction-diffusion equation and a fourth order equation borrowed from

(1) Université Paris XIl and Laboratoire d'Analyse Numérique, bat 425, Université Paris-sud,
91405 ORSAY, FRANCE.

(2) Département de Mathématiques-Informatique-Systémes, Ecole Centrale de Lyon, BP 163,
69131 ECULLY cédex, FRANCE.



mathematical physics, namely the Cahn-Hilliard equation. But our methods
are general and can be adapted to many dissipative partial differential
equations. Related results for the Navier-Stokes equations appear in Temam
[25].

The first part of the paper is devoted to the study of a reaction diffusion
equation. The precise assumptions are stated in section 1. The problem we
investigate can be rewritten as an abstract evolution equation in H = L2(Q) :

(0.1) %‘ti + Au+f(u) = 0,

where Au is the operator - dAu + u , d > 0 , associated to the appropriate
boundary condition (Dirichlet, Neumann, periodic). We consider the
orthonormal basis of H consisting of the eigenvectors of A :

AWj = MWj, j=1.2, ...
O<Ai<Az...; Aj>+o0 @S j>+0oo .
For a fixed m, let P = P, denote the projector in H onto the space

spanned by wy , ..., wpandletQ =Qn =1- Py . We write p = Pu, g = Qu so that
u is decomposed as the sum

Uu=p+q.

We introduce the coupled system of equations for p and q :

02 &

ar * Ap + Pf(p+g) = O

(0.3) %- + Aq + Qf(p+q) = 0

Then, in section 2, we describe our method for constructing a sequence ;, i

€ N, of AIM. The manifold IN; is obtained as the graph of a funtion ¢; mapping
PH into QH. We show that for large time any solution of (0.1) satisfies

dist (u(t), M) < ci A1/Ama1)T,

where c; denotes a constant depending on i but independent of m. Therefore .
the orbits enter a neighborhood of I.; that can be made arbitrarily small by

choosing m large enough. And, for iy <i» , if mis large enough, T, provides a

better approximation than ‘Tﬂ.i1 . Our method consists in particular in

introducing in (0.3) convenient approximation of dq/dt and of p+g. The
corresponding technical proofs are given in Section 3. Note that our results
hold in space dimension n < 4 , while the existence of exact inertial manifolds



for reaction-diffusion equations is generally not known for n = 3 and there are
non existence results for n = 4 [13].

We then address in the second part of the paper similar questions for
the Cahn-Hilliard equation

du
i A2u + aAu - bAud=0,a,b> 0.

This equation is a model for the spinodal decomposition that occurs when a
binary solution is cooled sufficiently [2, 3, 11, 21] . It contains a fourth order
dissipative term and a second order anti-dissipative term and can be rewritten
in an abstract form :

'cciTLtj'+ A2u + Af(u) = 0, f(u) = au-bus,

where A denotes the Laplace operator associated to the considered boundary
conditions (Neumann or periodic). The equation and its functionnal setting are
described in section 4. We recall there results borrowed from Nicolaenko-
Scheurer [19], Nicolaenko-Scheurer-Temam [20] , Marion [16]. We then
present in section 5 the principle of the construction of AIM. The algebra and
the corresponding proofs are different from the ones for (0.1) but the
underlying ideas are similar. In particular we again introduce approximations

to time derivatives. We obtain a family of manifolds T,; of dimensionm (me N
fixed) such that for t sufficiently large,

dist (u(t), Mi ) < ¢ (AoAms1)*+2,

where c; is independent of m and (A;) je N denotes the family of eigenvalues
of A. Section 6 contains the proofs of technical results concerning time
derivatives. Again, our results hold in space dimension n = 3, where the
existence of inertial manifolds is not known.
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Part I. Reaction-diffusion equations

1. i m r

1Tl : 1t .

We consider the following problem involving a real valued function u(x,t)
defined on Q x R+, where Q denotes a regular bounded set of R? (n > 1)

(1.1) %tl-{ d Au + flu) = 0,inQx R+.

The equation is supplemented with the initial condition
(1.2) u(x,0) = ug(x) INnQ,
and one of the three following boundary conditions :

Dirichlet u=0onTI=90Q,

du
(1.3) Neumann —=0on T,
dv

n
Periodic ~ Q = J]0,L[ and uis Q periodic.
i=1

Here, d > 0 is a diffusion coefficient. We assume that the nonlinear term f

is infinitely many differentiable from R into R and satisfies the growth
condition

(1.4) cilslr-ca<f(s)s<cplslr-c3, Vs e R,withr>2,

(1.5) f(s)=2z-c4,Vs e R,
where the ¢;'s are positive constants.

For the functional setting of the problem, let us introduce the operator Au
-d Au + u on H = L2(Q) equipped with its usual scalar product (.,.) and norm

|.]. Then Ais a positive linear unbounded operator on H with domain
D(A) = {ue H%(Q), (1.3) holds}.

As usual, we denote by V the space D(A12) endowed with the norm
|A122.| . We shall denote by Il.llpthe norm of LP(Q) , 1 S p <+ oo (llll2 = |. |),
while the norm of any other Banach space X is denoted by L.l .



Under assumptions (1.4), (1.5), for ug given in H , the initial-boundary
value problem (1.1)-(1.3) possesses a unique solution u defined for allt > 0
such that

ue C (R* H) AL20,T;V)AL ([0T]xQ),¥ T>0.

Furthermore, if up € V N L7(Q), then

ueC(R+ Vn L(Q)) AL20,T;D(A)), VT>O0.

It is useful here to recall several time uniform estimates satisfied by the
solution u of (1.1) - (1.3) borrowed from Marion [14, 15] . Let u, be given in a
ball B(0,R) of H of center 0 and of radius R. Then there exists a time t,
depending only on R (and of course on the data (Q,d,f)) such that :

(1.6) lAu@) | < ko, Vit
(1.7) lu®l. < ko, Vito,

where ko, denotes a constant depending only on the data. Alternatively (1.6)

(resp. (1.7)) expresses that the ball of center 0 and of radius ko, is an
absorbing set in D(A) (resp. L=(Q)) for the semi-group associated to (1.1) -
(1.3). We recall that the existence of an absorbing set in H means a dissipative
property of the problem. Also the existence of an absorbing set in a space
compactly imbedded in H yields the existence of the universal attractor
associated to (1.1) (1.3) (see [1], [10], [14]).

We will also need in the sequel estimates anolog to (1.6) (1.7) for the
time derivatives of u. Hereafter, we write :

. diu
(i) = — ‘
u 5 forje N.

Then, according to [15], there exists a time t; depending on j and R such
that

(1.8) lAuit)| < i, Vit
(1.9) lluO@)lle < ¥, Vixt,
where xj denotes a constant depending on j and on the data.

It follows from (1.7) that, fort > to , u = u(t) is solution of an evolution

equation with a Lipschitz continuous nonlinear term. Indeed let { denote a C=
truncation function such that



L(s)=1if 0<s<1 and {(s)=0 if s=>2.

Letf: R — IR be defined by

s2
f(s) = C(;z—) (f(s) - s).
o)

Then, fort > 1, , u(t) satisfies

u dAu+u+fu) =0
g = 0.

This equation rewrites as the following abstract differential equation in H

(1.10) %% + Au + f(u) = 0.

Since we are only interested in long-time behaviours, we will consider from
now on (1.10) instead of (1.1).

Remark 1.1 : All the results presented hereafter can be easily
extended to more general reaction-diffusion equations. In particular, they
apply to the reaction diffusion systems admitting a positively invariant region
considered in [14].

r m i

Let wj,j € N*, denote the orthonomal basis of H consisting of the eigen
vectors of the operator A :

Awj=Awj,j=12,.
O<A <A< Aj>+aSj— +oo.

We fix an integer m e N and denote by P = P, the projector in H onto
the space spanned by (w1, ..., wm) ; we set Q = Qq = | - Py . In order to simplify
the notations, we will write :

7\'=xm ,A'—'lm+1 ’
and we introduce the number
d= )\10\m+1 .

Applying P and Q to equation (1.10), we obtain the following coupled
system of equations forp=Puandq=Qu:



(1.11) dp

ar + Ap + Pf(p+q) = 0,
(1.12) %J;- + Aq + Qf(p+q) = 0.

Here, p represents the "large structures" of size larger lthan x;@ and q
represents the "small structures” of size smaller than 7‘;121 . In the following, we
will frequently use that foralla > 0 :

(1.13) |Ae+12 p|2 < A |Aep |2, V p e PD(A®+172)
(1.14) |Ae+12q |2 > A |Aoq|2, V qe QD(A®+172),

Hereafter, we denote by x any constant which depends only on the data
Q,dandf.

We now give an estimate of the size of q and of its derivatives for large
time.

Proposition 1.1 : Assume that (1.4), (1.5) hold. Then, for all j in N
there exists a time t)j which depends on the data (2, d, f) and on R when

luo | <R such that :
(1.15) lqiit) | < x&,Vtxt],
(1.16) A2 qi) | < x812, vixty.

Proof. Differentiating j times equation (1.12) with respect to t, we obtain:
(1.17) % qi) + Aqi) + Qf; (uuM, .., ud) = 0,

where we have set

%(f(u)) = fi(u,utm, ..., ul),

N dl
qq) = d—tl' a.



By taking the scalar product of (1.17) with Aq(), we have :

‘;' S—t |A12qi |2 + |AqD ]2 = - (f(uu™, ..., ud), Aq D),
< Ifuum, ..., ud) | [Aqd |
1 . 1 .
< 3 [fiuu)m, ..., u0) 12 +5 [AqD |2,

d | | .
ot |A2q0 |2+ | AqO |2 < [fi(u,u®, ..., ub) |2

From the construction of f, we see that f together with its derivatives are
bounded. Therefore, using (1.8) and (1.9), one easily checks that there exists a

constant K such that

HiuuM, ., ud) |2 < k2, Vt > max t.
j

1<ksj
This gives, thanks to (1.14) :
S IA12q0 |2+ A |A12 Q0 |2< 2.
Integrating this inequality between Tj = max txandt, we find
1<ksj
. K2 .
(1.18) | A172 ql)t) | 2 S+ |A12q0) (T)) |2 e- AET), Vi=T;.
Since
|A12q00(T) | < |A12u0(T) | <
we infer from (1.18) that
. 2x
| At2qt) |2 < — vtz
A 2
wheretj = sup max (Tj, T+ L Log =15
lm+1 K
me N

This shows (1.16). Finally, (1.15) follows readily from (1.16) by using
(1.14) with oo = 0.

Proposition 1.1 is proved.
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2. Construction of the family of AIM

The aim of this section is to present the algebra of construction of the

sequence T i,ie N, of AIM. These manifolds are closely related to
approximations of the equation for q. These approximations are obtained by
using Proposition 1.1, i.e. that g and its time derivatives are small for large
time.

The construction of the first two manifolds T, 4 and M, » follows Marion

[15]. The manifold T, 1 corresponds to the simplest approximation of (1.12).
Thanks to Proposition 1.1, we know that q and q(!) = dq/dt are small for large
time. Therefore, we guess that, in (1.12), q(1) is small compared to Agqand q is
small compare to p. We are lead to replace (1.12) by the following
approximate equation :

(2.1) Aq+Qf(p) = 0.

For p given in PH, the resolution of (2.1) is easy and we denote by q; its
solution:

(2.2) q1 = ¢1(p).

The graph of the function ¢1 : PH - QD(A) defines a smooth (C=)

manifold T, ¢ in H of dimension m. The orbits are attracted by a thin
neighborhood of T, ; as shown in the following proposition.

Proposition 2.1. Assume that (1.4) (1.5) hold. Then, for t sufficiently
large, t > t;", any orbit of (1.1)-(1.3) remains at a distance in H of M. ; bounded

by k162; k1 is an appropriate constant which depends on the data and t;"
depends on the data and on Rwhen [u,[<R.

Proof. Let u = p+qg be an orbit of (1.1)- (1.3). For every t > 0 , we define
g1(t) = ¢1(p(t)). Then, p(t) +qs(t) lies in M1 and

dist (u(t), Mq) = inf lu@)-vl < lq@t)-qit)].
VG‘ITL1

Therefore, it suffices to evaluate the norm of

x1(t) = qi() - q(t)
Substracting (1.12) from (2.1) with q = gy we find

Ax1 = Q(f(p+q) - f(p)) + q',

and
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Ay, < lf(p+q) - f(p)| + Iq'| .
Since f' is bounded on R , it follows easily that
|Ax1| < x |ql +'|q'| ,
which gives thanks to (1.15) forj= 0,1,
(2.3) |Ax1 | <x &, fort > max o', t1").
Therefore, using (1.14), we obtain :
lx1] < x82.

This shows Proposition 2.1.

Next, we give as an example the construction of T.2. Making use of

g1 = ¢1(p), we now approximate Qf(p+q) by Qf(p+q1). Also it follows easily from
the proof of Proposition 2.1 that we need now to introduce an approximation of
q(1). This is obtained by considering the equation for q(1) :

(2.4) 9@ + Aq) + Qf (p+q)(p(") +q1)) = 0.
In (2.4), p(!) given by (1.11) is approximated by

(2.5) py = - Ap-Pi(p)

Also q(?) is neglected and the nonlinear term Qf'(p+q)(p(") + g()) is replaced by
Qf'(p) P} ; the approximate value q] is given by

(2.6) Aq; + Qf(p)p; = 0.

Hence, (1.12) is now replaced by the equation :

(2.7) Q) +Age+Qf(p+qy) = 0

The manifold M. > is therefore defined as follows. For p € PH, we define
gq¢ by (2.1). Then we define p} by (2.5) and the resolution of (2.6) gives q} .

Finally, by solving (2.7), we obtain
Q2 = $2(p)
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The graph of the function ¢ : PH — QD(A) defines a C= manifold N, o of
dimension m in H. This manifold provides a better order approximation to the
orbits than TN, 4 and this is stated in

Theorem 2.2 @ Assume that (1.4) (1.5) hold. Then for t sufficiently
large, t = t2*, any orbit of (1.1)-(1.3) remains at a distance in H of I, » bounded
by k2 83 ; x2 is an appropriate constant which depends on the data and t>*

depends on the data and on R when |u, | <R.

Proof. The proof follows the same steps as that of Theorem 2.3 below
and is left to the reader.

In order to construct M. 3 , we will need in particular to consider
improved approximations of Q' and of p+q in (1.12). The approximation of p+q

is provided by p+g». Then, we introduce an approximate value q? of q(2) by

neglecting g3 in the second derivative of (1.12) and that enables us to
improve the approximation of (2.3) and to derive a better value for q'.

More generally, when we construct the manifold . , we construct two
families p,;,i=1, .., k-1andqi, i =0, ..., k-1 such that p,_, provides an

approximation of p() and qL_i of q() and that satisfy estimates of the form
2.8) lpi;t)-pO(t)| < wqdki,i=1, .., x-1,

2.9) lakit)- g0 | < w8+ ,i=0, .., x-1,

fort = t"¢ , where xx depends on the data and k, and t"x depends on the data, «

and R when |us| <R. In particular, at step x, we introduce approximations of
the time derivatives of p and q up to the order (k-1).

The manifolds M.k are defined recursively. For k = 1, Tl 4 is given by
(2.1). Assume that M. 1, ..., M k-1 are constructed (x = 2). We aim now to

construct T,k . We start by computing the sequence pL-i ,i=1,...,k-1.The

sequence is defined recursively for increasing values of i thanks to the
following formula :

. i-1 1 1 i- i-2
(2.10) Pii = - APikist - Pfit (P + Qkeict » Pria1 + Oiiveor Pryq + G

Pit + Gt )-
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Here, we have set for convenience

pp =p, VI>1,
Qo = O.

Note that p:(_i is defined explicitly and the right hand-side of (2.10) involves either

quantities known from the construction of M 4, ..., M k-1 , or the term pi‘;jm,

defined at step (i-1) of the recursive scheme. The formula (2.10) is obtained by
considering the equation (1.11) differentiated (i-1) times, that is

(2.11) pM + Ap(-1) + P fi.q (p+q, p(M +q(), ..., p) +ql-V) = 0.
Then we replace in (2.11) the time derivatives p(), g() by p'OL : qlB for convenient

values of o,B.

We then compute the family qL-i , i = k-1, ..., 1. The family is again

defined recursively, but now for decreasing values of i. At step i, qL_i , which is
an approximate value of q(, is given by the resolution of

(2.12) qik+.i1.1 +A qL-i + Q fi(p + Qk-i-1 » pll-i+1 + q;-i p::m + Q::i , PL-i +
A1) = 0,
where we agree that
a, =0, Viz1.

Relation (2.12) is obtained by considering equation (1.12) differentiated i times
and introducing approximations of the different terms. Note that in (2.12) all

terms except q,; are known either from the construction of M, 1 , ..., M or for

pL_i from (2.10), or for q:(*_:_1 from the step (i+1) of the recursive scheme. For the

first step i =k-1, we have qik+_i1_1 - q:j = 0 ; this expresses that the time derivative

of order k of q is neglected.

Finally, qk = qf( is defined by the analog of (2.12) for k = 0 that is

(2.13) k.1 + AGk + Q f(p+Qk.1) = O
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It is clear that gi is a function of t through p(t) :

ak(t) = dx(p(t))

The manifold T,k with equation
q = o(p). o : PH— QD(A)

is a ©® manifold of dimension m in H. This manifold provides a better order

approximation to the orbits than M,1 , ... M k-1 . This is stated in the following
Theorem which is valid in space dimension n < 4.

Theorem 2.3. Assume that (1.4) (1.5) hold and n < 4. Then, for t
sufficiently large, t > t¢* , any solution of (1.1) -(1.3) remains at a distance in H

of M x bounded by xi 6%+1 ; ki is an appropriate constant which depends on
the data and k and t,* depends on the data, k and R when Ju, | <R.

Remark 2.4. As it will appear in the proof of Theorem 2.3, we obtain in
fact a stronger result. We show that for any arbit u(t) = p(t) + q(t) of (1.1)-(1.3),
the induced orbit on the manifold M. :

Uk(t) = p(t) + ox(p(t)

satisfies for large time
|u(t) - uk(t) | < wy Sk+1 .

Remark 2.5. The constants kx and tx* are independent of m. Hence,
the orbits enter a neighbourhood of T,k that can be made arbitrarily small by
increasing the dimension m of the manifold T, .

For k and k' given, k < k' , and for m sufficiently large, the orbits are
closer from M.k , than from M, k. However since we are not able to compare
Kk and ,xx' , we are not certain that for k, k', m given, k < k', the orbits are closer

to M.k than to M.k .

Remark 2.6. For a fixed value of k, the schemes (2.11), (2.13) can be
improved and simplified by using the explicit forms for the derivatives of the
nonlinearity f.

Remark 2.7. The restriction on the space dimension comes from the
use of Sobolev imbedding Theorems in the proof of Theorem 2.3. It is easy to
see that, for small values of k, the conclusions of Theorem 2.3 hold in space
dimension n larger than four. For example, Theorem 2.2 is valid in any space
dimension.
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Proof of Theorem 2.3. _Let u(t) = p(t) + q(t) be a solution of (1.1)-(1.3).
We consider the families p:_i , ql'_i , q related to the manifolds TM,;, 1 <l <k. Our

aim is to estimate

%) = akt) - q(t)

We admit here that (2.8) (2.9), hold (the proof of these estimates is postponed
to section 3). Substracting (1.12) from (2.13), we have :

A X% = Q (f(p+q) - f(p+qk-1)) + GV - Qg
| A | < 11(p+q) - fp+ar1) |+ la®-qiq ! .

Therefore, since fis boundedon R ,
(2.14) lax| < xlg-aeal + lg®-qeql.
Now using (2.10) (recall that qk.1 = qp_,) , we infer from (2.14)

|Axk| < k&K Vi=t"kq.
Hence,

%] < x &+, Vi1t

This shows Theorem 2.3.

. Proof of th stim n_time derivativ

Our aim in this Section is to check the estimates (2.8) and (2.9). We will
prove by induction on k that

@) |p ) -pot)| < wedi, i=0,.., k1,

(3-2)k 1A@M) - a0 | < w8, i=0, .. k1,

for t > t"k, where xx depends on the data , k and R when |u,| < R . We recall
thatp) =p and q°= q;, VI21.
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i) Initialization of the induction (k = 1). The estimate (3.2), restates (2.3) ; while

(3.1) is olvious.

i) The in ion_argument. We now assume that (3.1), and (3.2); hold for
0 < | <k-1for k =2 given and prove that (3.1)x and (3.2)k are satisfied.

Hereafter, we denote by x any constant which depends on the data and
on k and "for t large enough” means for t > Tx where T depends on the data, k

and Rwhen |u, | <R,

Following the procedure of definition of pik_i and qL_i we will first derive

(3.1)k by induction on i with i increasing and then (3.2)x by induction on i with i
decreasing.

Fori =0, (3.1) is obvious. Let us assume that the relations (3.1)k are
proved up to the orderi - 1 for i = 1. Substracting (2.11) to (2.10), we have :

Pri - PO == A (Pt - PED) - P [fiy (P4t Priet + ki » -+ Pt +

Qhetr )- fir(p+q, PO + g, ..., p) + qiD)] .

Thanks to the relation (3.1)k at the order (i - 1) and (1.13), we obtain :

AL, - pED) ] < & Ipiq - pi | < kA 8+t < x5k
k-i+1 k-i+

We infer from (1.8) (1.9) that
p+q, p(M) + gV, ..., p(i+1) 4 q(i-1)

are bounded in D(A) and L>=(Q). Moreover, we easily deduce from (3.1), (3.2)
at the preceeding steps that p+Qk.i-1 is bounded in L2(Q), p;_m +q:(_i ) oee p{fm +

1

q'kz, are bounded in D(A) and p:('_i + q::H in L2(Q) for t large enough. Therefore,

Lemma 3.1 below applies and the second term of (3.5) is majori;ed by
k(a1 -al + [A (Praps - PO |+ [A@i-aM) |+ TAGRE,, - pt2) | +

|A@E - a@2) | + lpi-pEn | + gty -qin ),

for t large enough. Now, we use (1.13), (1.14) together with the induction

hypotheses to conclude that this is bounded by x 8K-i for t large enough.

Therefore (3.1)k is proved at the order i, and this concludes the induction on i .
Thus (3.1)k is shown.
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Let us now prove that (3.2)k is true by induction on i with i decreasing.
. k-1 . :
Fori=k-1,qy is defined by

AQ! + Qfkt (P, P2+ Q1 . P32+ Gy 5, PYT) = O

And, glk-1) satisfies
q(k) + Aqtk1) + Qfk-1 (p+q, p(M) + g1, ..., p(k-2) 4 qtk-2), p(k-1) 4 q(k-1)) = 0.

Therefore

|A@ -ak )] < |q® | + lfici(p.pa+ Gl s +a5 2, B )

- fie1 (p+a, ptD +q(), ..., pk2) + qk-2) | p(k-1) 4 qk-1) | .
Thanks to proposition 1.1, we have
[qW | < 3,

for t large enough. Next we use Lemma 3.1 below to estimate the second term
1 k2 k2 ki
[ fic1(P Py + Gty s Po - + Q7w P1 ) - fie1(p + G, PO +q), .., pk-2) 4+
qk2), pke) 4+ qk-M) | < x(lgl+ [APz-pM) [ + 1A@Q]-aM) | + ... +

|ARE2-pk2) | + [A@2-qk2) | + [py - plet) [+ [k ]).

and we infer from Proposition 1.1, (1.13), (3.1)k and the induction hypotheses
that this is majorized by k8§ for t large enough. Therefore

k-1
|A(@ - gk < «x8§,
for t large enough. And (3.2)k is proved for i = k-1. Let us assume that (3.2)x is

proved at the orders k-1, k-2, ..., i+1 fori > 0 . By substracting (2.12) to the ith
derivative of (1.12), we obtain

|A@ii-a®) | < gty - a0 | + [fi(p+Qkei1 » Preint + Qe s Prcie1 +
G+ Plei + Gii1) - fi(p+a,pM + ), .., pi1) + i, ) +q) | .

The induction hypothesis together with (1.14) gives
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Ll - g+ | < wki,

for t large enough. Similar arguments as above yield also that the second term
is bounded by K &k-i for t large enough. Therefore

IA(QL_I - Q(l)) I <K Sk-i,

and (3.2)k is proved for i and, thanks to the induction argument on i, (3.2)k is
true for all i . In the same time, the induction on k is finished and (3.1)k, (3.2)k

hold for all integer k. It remains to state and prove Lemma 3.1.

Lemma 3.1, Assume thatn <4. Then , for (u, uy, ..., Ui1, Uy ) in L2(Q2) x
(D(A) N L=Q))-1 x (L2(2) N L=(2)) and (v, v1, ..., vi-1, v)) in L2(2) x D(A)-1 x

L2(Q), we have :

lfl(u ’ U‘], ey UI-‘], UI) - f|(V ’ V1, ceey V|-1, Vl) | <
C(R)(Iu-vl + |A(u1 -v1)| + ..., + |A(U|-1 -V|-1)| +|U|-V||),

when [u R, Ivl < R, /u,-loos R, /Au,-/ <R, |Avil <R fori=1, ..., I-1,
R, lul < R, |vil < R where C(R) depends on the data, | and R .

<
and luil. <
Proof. The proof is lenghty and we omit the details.

We first decompose fjin two terms :

fi(u,ur,..,uk,u) = gilu,uq, ...,ukq) +f(U)u,

where g is a polynomial in uq, ..., u.4 whose coefficient depends on f(k)(u) for

k <1. Then, we write :
fiu,uy, ur, W) - fi(v,ve, o vier, vi) = giu, ug, .., Uq) -
ai(v,u1, ..., u1) + gi(v, U1, ..., U-1) - gi(v, V1, U2, ..., Uj-1) + ...
a V2, U1) - Gi(V, Ve, e, Vi) + T(U) U - F(V) vy

aiv,vq, .
., Ul-1 whose coefficients are

The first term is a sum of monomials in uy , ..
a constant times f(k)(u) - #(k)(v). Therefore since all the derivatives of f are

Lipschitz and uq , ..., uj.1 are bounded in L= (2), we have :

|g|(u,u1 y ooy UR1) = QI(V, Uq , ooy U-q) | < k(R) lu-v] .

The second term is of the type :

0Ll-1;k (ua1 K -
1

Y akg®(v) u‘;22k iy v k),
k

1
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Using hélder inequality and the boundedness of the derivatives of g , for Bik =

1 1 .
aj k pi and o1t tog = 1, we obtain
lai(v.u1, ..., uk1) - Qi(v, v1, Uz, ..., upq) |

a1k
LB1:k

a2k

I al-1;k
LB2:k

- U1 LBl1xk’

< Ylakl(suplg® |)lug-vql luz |
K

" a1;k-1 a2:k
< % lak | (sup 1g® [)(luq ILB1;k+ v I|_B1;k) |u2 I._ﬁz;k.

*-1;k
lurq |Lﬁ|j1;k lut - vq |LB1,k),

<x(R) |A@u1-v)l,

since, for all p, LP(Q) € H2(Q) and the H2 norm is equivalent to the norm [A].
We treat the other terms in a similar way except for the last one.

< [y -t ul + V) u-wl,
< x luvl lulw+xlu-vl,
< x(R) (lu-v| + [u-v).

[P (u) ui-(v) v

All these estimates prove Lemma 3.1.

Remark 3.1. We used n < 4 only in Lemma 3.1. If we look carefully at
the proof we can see that Lemma 3.1 is true forevery nif I=0or 1, forn < 8if |
=2,n<6ifl=3and n <5 forl = 4. Thus theorem 2.3 is true for larger values of
n whenk =1,2,3,4,5.
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P : hn-Hilliar i
4. The equation and some properties of the solution
4.1. The equation and the semi-group

We now consider the Cahn Hilliard equation whose unknown is a real
valued function u(x,t) defined on Q x R+ where Q denotes a regular bounded
setof RM(n<3):

3
(4.1) E“ +A2U-Af(U) = 0, in QxR+

Here, f is a polynomial of odd degree with positive leading coefficient
2r-1
fluy= > aui , az.41> 0,
j=1
and we assume that
rx2ifn=12 and r=2 if n=3.

Strictly speaking, the Cahn-Hilliard equation corresponds to f(u) = aud - bu, a,
b>0, see[23].

This equation is supplemented with the initial condition :
(4.2) u(x,0) = ug(x), inQ,

and with one of the two following boundary conditions :

0A
(4.3) Neumann : %: ?u =0 onl'=0Q,
n
Periodic: Q =]]10;Li[ and u is Q periodic
i=1

For the mathematical setting of the equation, it is convenient to
introduce the operator A = - A on L2(Q) equipped with its usual scalar product

(.,.) and norm |.|. Then A is a positive linear unbounded operator on H with
domain

D(A) = {u e H2(Q), (4.3) holds}.

Using this abstract setting, (4.1) (4.2) (4.3) rewrites :
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(4.4) %‘ti + A2u + Af(u) =0,
U(O) = UO‘

As shown in [19], for u, given in L2(Q), the initial boundary problem (4.1) (4.3)
possesses a unique solution u defined for all t > 0 such that

ue C (R+ L2(Q)) ~L2(0,T ;D(A)), VT> 0
Furthemore, if up € D(A) N L27(Q), then
ue C(R+; D(A) N L27(Q)) A L2(0,T ; D(A2)), V T > 0.

A patrticular feature of equation (1.1) is that the average of the solution is
conserved, forallt> 0 :

m(u(t)) = —l—gz—— jQu(x,t) dx = I;z_l Jl;)o(x)dx = m(uo) .

Thus, there can not exist bounded absorbing sets in the whole space L2(Q).
Therefore, following [19,20], we let the semigroup operate on the subset of
L2(Q)

He = {ue L2(Q)/ Imu)| <a},
for some fixed o > O.

We now recall some time uniform estimates borrowed from [19,20] . Let
Uo be given in a ball B(0,R) in Hy . Then there exists a time t, depending on

the data, on a and on R such that.
4.5) |Au)| < %, Vt2to

where K, is a constant depending on the data and a. This estimate provides

the existence of a bounded absorbing set in D(A) N Hy . Since D(A) N Hgy is
compactly imbedded in Hy , this yields also the existence of a universal
attractor in Hy, (see [19,20]).

The estimate (4.5) is extended in [16] to the time derivatives of u :
oiu

() = — j
u au.,JeN.

For every j > 1, there exists a time tj depending on the data, «, j and R
(when | ug | <R) such that :
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(4.6) lAavO®| <, vVt 2,
where x;j is a constant depending on the data and a.

4.2, Behaviour of small eddies

Let (wj)je N denote the orthonormal basis of H consisting of the
eigenvectors of A and (Aj)jc N the associated eigenvalues

Awj= Xjo, i=1,2, ..
0 =2M<A2 SA3... ;Ajo+, @S| oo .

As in Section 1.2, we fix an integer m e N and denote by P = P, the
projector in H onto the space spanned by wq, ..., wn ;wesetQ=Qm=1-Pmn
and for the sake of simplicity

A =Am, A=Ams.

We also introduce :

8= A2/ Amsd
Note that :
(4.7) |AB+12p|2< A|ABpl2, V p ePD(AB+1/2)
(4.8) |AB+12q|2> A|ABql2, V qeQD(AB+1/2) .

By projection of (4.1) on PH and QH, it comes that p = Pu, q = Qu satisfy
the following coupled system

(4.9) %% +A2p + PAf(p+q) = O,

(4.1 0)%1 + A2q+QAf(p+q) =0.

The next proposition states that q and all its time derivatives remain
small for large time.

Proposition 4.1. For all jin N , there exists a time tj which depends
on the data, o, j and R when lupl < R and Uo € Hy such that , fort > t)

(4.11) lqidty | < 582,

(4.12) |Aqi)(t) | < 58,
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where xjis a constant depending on the data, a and j.

We omit to give the proof of that proposition that can be found in [16] . It is very
similar to the proof of Proposition 1.1.

nstr ion of the famil f AIM

We present in this Section the method of construction of a sequence

M., i e N, of AIM. As in Part |, the manifolds correspond to approximations of
equation (4.10) for q. Also, these approximations are improved by considering
approximations of an increasing number of time derivatives of q. However
since the nonlinear term in (4.1) contains derivatives, the algebra of
construction differs from the one in Part I.

We start with the construction of M, 1 and M. 2 which is borrowed from
[16]. Proposition 4.1 indicates that q and %are small for large time. Therefore

we are lead to replace in (4.10) p+q by p while % is neglected. This gives the
following approximate equation :

(5.1) A2q + QAf(p) = 0.

For p given in PH since A is injective on QH , (5.1) possesses a unique

solution g1 € Q D(A2). The manifold I 1 with equation gi= ®1(p) is an
analytic manifold in H of dimension m. The orbits are attracted by a thin
neighborhood of .1 as shown in the following Theorem.

Theorem 5.1. There exists a time t;* depending on the data, a and R
when [ uo/ < R and up € Hg such that the orbits of (4.1)-(4.3) remain whent
> ty*at a distance in H of 9, 1 bounded by k1 83 ; x1 is an appropriate constant
which depends on the data and o .

Proof. Let u = p+q be an orbit of (4.1)-(4.3). Fort > 0, we define
qi(t) = ®1(p(1)).

Then, p(t) + q1(t) liesin M. 1 and
dist (u(t), M1) < la@)-qi)l.

Substracting (4.10) from (5.1), we obtain

(5.2) A2(g1-q) = QA(f(p+q) - f(p)) + q(1) .
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Since, for n <3, H3(Q) is an algebra, it is easy to see that the mapping

u — f(u) from H2(Q) into H2(Q) is lipschitzian on the bounded sets of H2(Q).
Therefore, by (4.5), we have :

|A f(p+q) - Af(p) | < x ligliH2g).

Then on the subspace
{u e H2(Q), Judx = 0},

the norm of H2(Q) is equivalent to the norm |Au|. Thus, using also (4.12), we
obtain

|A f(p+a) - Af(p) | < 3,

for t large enough. The second term in the right hand side of (5.2) is bounded
by using (4.11)

g | < k&2, forlarge t.

Finally, we have obtaind that
(5.3) |A2(qy -q)| < x8+x82
and, thanks to (4.8) , this gives

lg1-ql < «83.

Theorem 5.1 is proved .

It comes from the proof of Theorem 5.1 (especially (5.3)) that the
approximation of the time derivative by 0 is of better order than the one of the
nonlinearity. Therefore, we can improve the approximation of (4.10) by
replacing (5.1) by

(5.4) A2q + QA f(p+®1(p)) = O.
For p € P H, we define
®2(p) = g2, the solution of (5.4).

Let M, 2 be the analytic manifold of dimension m in H with equation
q = ©2(p). Then
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Theorem 5.2 . There exists a time tz* depending on the data, a and R
when [uo| < Rand uo e Hy such that the orbits of (4.1)-(4.3) remain when t >
to*at a distance in H of I 2, bounded by k264 ; x2 is an appropriate constant
depends on the data and o .

The proof of this Theorem can be found in [16].

Next, in order to construct M. 3 , we introduce an approximation of q(1).
This is done by differentiating (4.10) with respect to t and neglecting q(2) . The
method is analog to the one in Section 2, but again the approximations of the
different terms in (4.10) will be too crude and we will be able to improve them
in a fourth step with q(2) still neglected (the details of the computations for the
first six manifolds can be found in [16]). Thus, we see the main difference
between the two schemes. For the Cahn-Hilliard, when we neglect gk) we
consider two successive approximations of (4.10) (and therefore two
manifolds).

Now, we describe the algebra. The manifolds are defined recursively.
Assume that we have obtained M1, M 2, ..., M 2k-3, M 2k-2 for some k > 2
(this has been done for k=2). We aim to construct M. 2x-1 and M. ok . We start by

T 2k-1 ; M 2k-1 is defined thanks to two sequences pigk-gi-1, i=1,.., k-1
and qizk_zm, i=0,.., k-1, where pff,_,k_zi_1 provides an approximation of p()

and gh, »; of ) . These families satisfy estimates of the form
(5.5) | Phait - PM | < g 82621,
(5.6) Iqizk-zi-1 -q( | < i §2k-2i+1

fort > t"x where xix depends on the data, o and k ; t"k depends on the data, «a,
R and k when |uo | <Rand ug e Hq (this will be shown in Section 6 below).

We start by defining pak-2i-1 by induction on i, i increasing. We denote :
dl
FiiuuM , ., ul)y = ot F(u).

Then, p;k_zm , is given by

. -1 1 1 i-1 i-
(5.7) Pokait =- A2D0y i1 - PA fi1 (P+02k-2i-1, Pok-2i + Qok-2i-1» - Pak-2i + q'2;1-2i4),

where we have set
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p? =p, V.

Note that (5.7) is an explicit formula and all the terms in the right-hand side of
(5.7) are known either from the construction of the previous manifolds or from
step (i-1) of the recursive scheme. Also (5.7) is obtained as an approximation
of equation (4.9) for p differentiated (i-1) times.

Then, the sequence qi2k_2i_1 , i =k-1, ..., 1, is defined recursively on i for i
decreasing thanks to the formula

1
(5.8) Ghaia + A2 Gpkait + QAT (P+Q2k-2i-2 » Parc2it + Ggk2iz » -

pl2k~2i~1 +Qpc2i2) = 0.

We agreed that

It is easy to check that all necessary terms are known in (5. 8) This formula is
obtained by consndermg equation (4.19) for q differentiated i times. Note that

fori = k-1, we have qzk si.3 = 0 ; this means that the derivative q(K) is neglected

in the construction of M, 2k-1 -

Finally, qok-1 = qgk_1 = dok-1 (P) is given by the analog of (5.8) for i=0 :

q;k-S"' A2 qok-1 + Q A f(p+Qok-2) =

We now proceed to the construction of I 2ok .For that purpose, we
introduce two families plgk-gi i=1, ..., k-1 and qi2k-2i , i=0, ..., k-1 which satisfy the

estimates

(5.9) |pi2k_2i -pi) | < w 52K-2i41

V t 2 t"k where x and t"k are as in (5.5) (5.6).

The construction is analogous to the one of M. 2k-1 , so that we only give
the formulas. We first define plak-2j by
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i i 1 1 i-1 i1
Pok.2i = - A2 p:'g;-znz - PA fi.1(P+Q2k-2i» Pok-2ie1 + G2k2i » s Pok-2is1 + G2k-2i) -
fori=1,..,k-1.Thenq,,; i=k-1,.., 1is given by

- . i i
(5.11)Q5x 2o+ A2 Gy o + QA Ti(P+Q2k-2i-1, Pay.ai+ Q2k2i-1s -+ P2k-2i + A2k-2i-1)
=0

Again it follows from (5.11) for i = k-1 that q(K) is neglected in the construction of
M2k -

Lastly for p given in PH, ®2k(p) = q2k is the solution of
1
Qok-2 + A2 qok + QA f(p + Q2k-1) = 0.

To conclude, we have defined the mapping @k : PH — QD(A2) for all
ke N* . The graph of this mapping is an analytic manifold M,k of dimension m

in H. The M.k 's provide a better and better order approximation to the orbits as
k increases.

Theorem 4.3. There exists a time tx* depending on the data, k, a and R
when [uo | < Rand up € Hy, such the orbits of (4.1)-(4.3) remain when t > t*at
a distance in H of M x bounded by xk §+2 ; xx is an appropriate constant
depending on the data, k and « .

Remark 4.4. Remarks similar to Remark 2.4 and 2.5 can be made
here. The details are left to the reader.

Remark 5.4. On the contrary of the case of reaction-diffusion
equations, the schemes that we have just defined can not be improved.

Proof of Theorem 4.3. We postpone to Section 6 the proof of
estimates (5.5) (5.6) (5.9) (5.10). Let us show here that these estimates yield
Theorem 4.3.

Let u(t) = p(t) + q(t) be a solution of (4.1)-(4.3) and let p(t) + gk(t) the
induced trajectory on M.kx. We aim to estimate

Xk(t) = ak(t) - q(t).
It follows from (5.9) and (5.13) that gk satisfies

Qro+A2qk + QAf(p +Qk1) = O
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By substracting (4.10) to this equation, we obtain
(5.14) A1 = QA (f(p+0) - f(p+aKk-1)) + 9V - Gy -

It is clear from (4.6) and (5.6) (5.10) that p, q and gk-1 are bounded for large t
by constants depending only on the data, k and a. Therefore, since f(u) is
lipschitzian on the bounded sets of H2(Q), (5.14) yields

(5.15) |A2x | <x |A@Q-agk-1) | + g -qlkal,
and using (5.6) (5.10),

| A2xy | <« 8K,

|2 | < x 8k+2 .

Theorem 4.3 is proved.

6. Proof of th imate n_tim rivativ

The aim of this Section is to derive estimates (5.5) (5.6) (5.9) (5.10). We
will prove by induction on k that

6.1)k | poraiq - p | <1822, i=0, ... k1,

6.2)k |AQbois-q®) | <8262 i=0,.. k1,

(6-3)k |ppy.p;- PO | <1 8K-241 i=0, ..., k-1,

(6'4)k IA(ql2K_2| - q(l)) I S Kk 82k-2l+1 ’ i = 0! ey k-1 ’

for t = tx where xk depends on the data, k, a and tx depends on the data, k, a

and R when |ug| <R and uge H . We recall that poj=p, V1.

Fork =1, (6.1)1 and (6.3)1 are obvious. Also (5.3) along with (4.8) yield
(6.2)1. Finally, (6.4)¢ states the result of approximation for the manifold M. 2
that can be found in [16] and is derived with techniques similar to the ones
used here.

Next assume that (6.1)k-(6.4)k are true up to order k-1 for k>1. We aim to
prove them at order k. Following the schemes of construction of the manifolds,
the relations (6.1)k (6.2)k (6.3)k (6.4)k will be proved successively.
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We start by (6.1)x and argue by induction on i, for i increasing. Fori = 0,
relation (6.1)k is obvious.

Assume it is true for 1, 2, ..., i-1. By substracting (5.7) from the (i-1)th
derivative of (4.9), we obtain

6.5) |pogoiq - pM | < |A2(P;;-2i+1 -pEN) | + |A(fi1 (p+g2k-2i-1 ,p;k-2i +

Qak2i-1 » - P o + Gomezit) - fict (P#q, P + g1, ., plDe gD [

Thanks to the induction assumption fori-1 and (4.7), we have for large t

(6.6) | A2 (Phtpivq - PUD) | <22 | Phg iy - piN | < kA2 522042 < i §2K-2i

Next, for majorizing the second term in the right handside of (6.5), we
use Lemma 6.1 below. Indeed, thanks to (4.6) and the induction assumption, it
is easy to check that

P+G2k-2i-1, Pay o + Oiepiog » P+A » P + g, 1 < o < i-1

are bounded in H2(Q) by constants depending only on the data, k and « for
large time. Therefore Lemma 6.1 applies and yields

(6.7) IA(fi'1(p+q2k-2i-1 ’ p;k-2i + q;k-ZH ) ees pi2-|1<.2i + qi2-'1(-2i_1) - fi-1 (p+q, p(1) +
g, ..., plD) +qi-M) | < x {llp;k_z -pIIK2Q) + ... + llpi2'|1(_2i - pDI2q) +

lagk-2i-1 - AlH2(Q) + Iaszi - G IH2(Q) + ... + Iqoepig - 9EDIHZ0) ).

For1 <a<i-1, we have :

P32 - P@IHZ(0) < c1{ | Pow.zi - P | + TA(Rg .5 - PO I},
with ¢1 a universal constant,
< (thanks to (4.7)),
<ci(1+A) Ipg . -p@| .

Therefore using (6.3)k-i+a

(6.8) llpg‘k_2i -p@I2ig) < Cq(1+A) K 8221,

< Kk 52k-2i
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Also, for 0 < o <i-1, we see that
12y 5i.1 - A@IHZQ) < c2 | A(QQ 54 - a@) |,

where c2 is a universal constant and thanks to (6.2)k-i+q
(6.9) "qgk-zi-1 - g2 Q) < c2 k §2K-2i
To conclude, we infer from (6.5)-(6.9) that

| phycsig - P | <% 5221, for large t,

which is (6.1)k .

The estimates (6.2)k, (6.3)x , (6.4)kx are proved thanks to similar
arguments, except that the induction is for i decreasing for (6.2)x and (6.4)k.
The details of these very technical estimates are left to the reader.

To conclude, there remains to check the following Lemma.

Lemma 6.1. The mapping

Fk : H2(Q)k+1 5 H2(Q2),
(Uo, ..., Ux) — Fi(uo, Uy, ..., Uk),

is lipschitzian on the bounded sets of H2(Q)k+1 .

The proof is easy since fk is a polynomial and H2(Q) is an algebra (recall that
Q C R", n < 3). The details are left to the reader.
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INTRODUCTION.

Let us consider the Cahn-Hilliard equation :

3
a—'t‘ +vA%u— Af(u) =0, in @ x R, (0.1)

where v = u(z,t) is a real-valued function, 2 is an open set in R" and the nonlinear
function f is a polynomial of even order whose leading coefficient is positive.

We know that (0.1) (together with Neumann or periodic boundary conditions) pos-
sesses solutions defined for all time and those solutions converge to a global attractor A
(see R. Temam [1] and the references quoted there).

We are interested in a singular perturbation of that equation that we obtain by adding
a second order time derivative with a small coefficient :

0%u, + Ou.

“i2 T ot

+vA%u, — Af(u) =0, (0.2)

we want to show the same type of results for (0.2) as for (0.1) : existence of solutions
and of a global attractor A.. Moreover, we want to study the behaviour of A, when € goes
to zero and to know whether A, "converges” to A. More precisely, since A lies in L%(12)
and A in H2(Q) x L2(N) (indeed, (0.2) is a second order equation thus the solution is
(u, %) and lies in a product space), we will first define a convenient embedding A* of A
in H2(Q) x L?(Q) (an element u in A will be identified to the pair {u,v} where v is the
derivative at time 0 of a solution of (0.1) passing through u at time 0, then we will show
that the Hausdorff semidistance 6(A¢, A*) for the topology of H2(Q1) x L?(Q) converges to
zero ; in other words the attractor A, is upper semicontinuous at ¢ = 0. For that purpose,
we will need a priori estimates independent of € for the solution of (0.2). Such a priori
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estimates are not easy to get and that will be the object of Section II. Unfortunately,
for technical reasons which will be mentionned below, our results are only valid in space
dimension one. In space dimension two or three, we do not know whether there exists an
attractor A, for (0.2) while in the unperturbed case the existence of the attractor is known
in space dimension one, two or three.

In a related situation, J.K. Hale and G. Raugel [1] proved the upper semicontinuity
of the attractor for a singular perturbation of a reaction diffusion equation.

The lower semicontinuity of A, is a problem of a totally different nature (see J.K. Hale
and G. Raugel [2]) ; it needs very precise information on the attractor and we intend to
adress it eventually.

This work is organized as follows : in Section I, we set the notation and state the
theorems of existence of solutions for (0.1) and (0.2) ; thus we can define the corresponding
semigroups. Concerning (0.1), we do not give the proof that the reader can find in R.
Temam [1] ; concerning (0.2), the proof are classical and are sketched in appendix A. We
end Section I with a few remarks on Lyapunov functions for (0.1) and (0.2). In Section
II, we derive a priori estimates on the solutions of (0.2). We will prove the existence of
bounded absorbing sets in different spaces. Moreover, these absorbing sets are independent
of €. In Section III, we use the results of Section II to prove the existence of attractors for
(0.2), these are attractors in the weak topology (whereas the attractor of (0.1) is in the
strong topology). In Section IV, we prove the upper semicontinuity of the attractor at
¢ = 0. We use the same type of methods as J.K. Hale and G. Raugel [1].

I. Preliminaries
a) Notations.

Q1 is the interval [0, L] in IR. We denote by || -|| and (:,-) the norm and scalar product
in L%(Q). For each u in L?(1), we denote by m(u) its average :

Bype w

L2(0) is the subspace of L?(f) consisting of functions whose average is zero :
L*(N) = {u € L*(Q)/m(u) = 0}.
For each u in L2%(Q1), 4 is its projection on L?(Q) :

& =u — m(u). (1.2)



We introduce the unbounded linear operator given by

A= A%
du JdAu
= 4 —_—e_—— =
D(A) = {uv € H*(Q) 30 = 0 0 on 901}, (1.3)n

if we consider the Neumann boundary conditions for (0.1), (0.2), or
D(A) = Hp,(0), (1.3)p

if we consider periodic boundary conditions (H,,,(Q1) is the space of functions of H*(0)
whose derivatives of order less than three are equal at 0 and L). A is a positive self-adjoint
operator, it possesses an orthonormal basis of eigenvectors (w;)jen. We denote by (};);en
the associated eigenvalues, we then have :

Vi,j €N : (wi,w;) =6
Aw; = Ajw;

0=A0<A1SA2SSAJ—’+OO
Moreover, wq is the constant function equal to —}; and for all u in L2(0) :
m(u) = (u,wo). (1.4)

For all s in IR, we recall that A® is defined by
+o0 +o00
Au = Z Ajujwj, Vu= Z ujw;.
j::]_ ]=0

We denote its domain by
V, = D(A%%). (1.5)

Ve(!) is endowed with the seminorm and semiscalar product :

| u|o=| A**u |, (1.6)
(u,v)s = (A"“u,A’“v), (1.7)

and with the norm :
I wlla= (| |2 +m(u)?)/2. (1.8)

(1) Usually, V, denotes the domain of A%/2. Here, we prefer to use the domain of A%/4,
so that V, is embedded in the Sobolev space H?(11) (when s is positive).

3



[ o]
Moreover, for u = f:o ujw;, we have

+o0
u eV, iff Zz\;/zu? < +o0,
=1

and then :
1/2

+o0
lule= [ Y2722 ], m(u) = uo. (1.9)
=1

When s is positive, V, is a subspace of H?(0, L) and || ||, is a norm equivalent to the usual
norm of H*(0,L).

We easily deduce from (1.9) the interpolation inequality :

| % |xay+(1=2)8a <] u |§1| u |},;’\, for all v in V,,,

s1 < sy and X € [0,1].

Let f denote a polynomial of even order whose leading coefficient is positive and vanishing

at 0:
2p—1

f(z) = Z a;z’, azp—1 > 0. (1.10)
1=1

We denote by g the primitive of f vanishing at O :

b) The Cahn Hilliard equation.

The unknown function is a scalar u(z,t), z € [0,L], t € R", and the equation reads :

du

3t +vA%u— Af(u) =0in [0,L] x R, (1.11)
where v is a strictly positive real parameter. We supplement (1.11) with an initial condi-
tion:

u(z,0) = uo(z) for z in [0, L}, (1.12)

and with boundary conditions that can be one of two types. Either the Neumann boundary

conditions : P A
U u
E = —%— =0atOand L, (1-13)N



or the periodic boundary conditions :
0%u
oz>
(We will write (1.13) for (1.13)x or (1.13),; there will be no confusion since the two cases

are treated in the same way. The domain of A will be (1.3) 5 if we consider (1.13)y and
(1.3) p if we consider (1.13)p).

[o4
(0,") = %(L, ) for a < 3. (1.13)p

We then have an existence and uniqueness theorem for solutions whose proof can be
found in R. Temam (1] :

Theorem 1.1. For all ug in Vo, the equation (1.11)(1.12)(1.13) has a unique solution u
which belongs to

c([0,T); Vo) N L?(0,T; V2) n L*?(0,T; L**(0, L))

for all T > 0.

The mapping S(t) : uo — wu(t) is continuous in Vo and the familly (S(t))t>o0 is a
semigroup.

The function J(v) = ¥ | u |} + [, 9(u)dz decays along the orbits.

Moreover, if ug is in V3, then :
u € C([0,T);V2) N L%(0,T; Vy)
for all T > 0.

Remark. Theorem 1.1 is still true in space dimension n = 2 and, if we assume p = 2, in
space dimension n = 3.

c) The perturbed Cahn-Hilliard equation.

The unknown function is a scalar u.(z,t), z € [0, L], t € R™, and the equation reads:

662uE + Oue
ot ot

where € is a strictly positive real parameter which is supposed to be small. f and v are as

+vA%u, — Af(ue) =0in [0,L] x R, (1.14)

in section b). We supplement (1.14) with the initial conditions
ue(z,0) = uo(z),

1.15

5



and with the same boundary conditions (1.13) x5 or (1.13),.

For the existence and uniqueness of solutions, we have the following theorem whose
proof can be found in Appendix A.

Theorem 1.2. For s =1, 2 or 3 and for all (ug,u1) in V, x V,_2, equation (1.14)(1.15)(1.13)
possesses a unique solution u. and

(v %) € c0.7)v, x Vi),

for all T > 0. The mapping :

520 ¢ (soru) = (wul0). 52(0))

is continuous from V, X V,_; into itself and the family (S(t):>o forms a semigroup.

Remark. We can easily prove that (S2(t) is in fact an homeomorphism from V, X V,_, into
itself and is defined for all ¢ in IR. Therefore (S&(t):>0 is in fact a group. Thus there is
a difference with the semigroup introduced in the preceding section for the Cahn-Hilliard
equation that has a regularizing effect and thus cannot be invertible.

d) Evolution of the average.

In order to study the long time behaviour of the solutions of equation (1.14), it is
useful to rewrite the equation as a system for its space average m(u.) and %, = ue — m(u.).
We take the scalar product of (1.19) with wo = % (this amounts to taking the average of
(1.14)); we obtain

Lk ( )+d (ue) =0 1.17)
e am(ue 5" (ue) =0. (1.
We substract (1.17) from (1.14), and obtain
€ pilet il + vA*u, — Af(te +m(ue)) = 0. (1.18)

We supplement (1.17)(1.18) with the obvious initial conditions :

m(ue)(0) = m(uo), m (d;te) (0) = m(u,1), (1.19)
%(0) = o, %(O) = ;. (1.20)
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Then (1.14)(1.15)(1.13) is equivalent to the system (1.17)(1.20) (supplemented by bound-
ary conditions for ).

Moreover, (1.17)(1.18) can be solved explicitely for m(u.), and we obtain
m(ue) = m(uo) + em(uq)(1 — e~¥/€).
We easily deduce :

Proposition 1.1. Let u be the solution of (1.14)(1.15)(1.13) with (uo,u1) € Vs X Va2

(s = 1,2 or 3), then m(u,) + em (%) is independent of t and

m(ue) — m(uo) + em(u;) when t — +o0,

m(aé;l'te) — 0 when t — +o00.

For the Cahn Hilliard equation, the average of the solution is constant and the equivalent
system formally reduces to the preceding case with € = 0.

e) Lyapunov functions.

Thanks to Theorem 1.1, the function J(u) = £ | u |3 + [, g(v)dz is a Lyapunov
function on Vj for the Cahn-Hilliard equation. For the perturbed equation (1.14), we do
not have a Lyapunov function on the whole space V, x V,_2. We take the scalar product

of (1.14) with A=1/22%  we obtain :

%%( du :-*—ulue |¥) | :+( fwd, ) =o.
But,
(1. %) = (100.52) - (100 (%))
= & [ stwdiz— (swam (L)),
Thus
14 ( a :+u|ue =1 g(ue)dz) | _ - (fam (Z)) =0

We cannot conclude in general that the function J.(u,v) = €| v |2, +v | u |} + 2 [, g(u)dz
decays along the orbits of (1.14)(1.15)(1.13) (we do not know the sign of (f(ue),m(-‘%“zﬂ)).
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If we restrict the semigroup (SZ(t)):>o0 to the subspace :
Xo = {(u,v) € V4 X V,_3/m(v) = 0}

(this space is stable for the semigroup thanks to Proposition 1.1), then J.(u,v) decays
along the orbits in xo. Thus, we have a Lyapunov function on the subspace xo.

I1I. Time uniform estimate for the perturbed Cahn-Hilliard equation.

a) In this section, we prove the existence of bounded absorbing sets for the equation
(1.14)(1.15)(1.13) in the spaces X that we define hereafter. As we will study in Section
IV the behaviour when € converges to zero, we will always make precise the dependence
of our estimate on ¢, and the constants that appear are independent of ¢. € is supposed to
be in a fixed interval |0, €o|.

Due to Proposition 1.1 (in particular to the fact that m(u.)+em (%) is independent

of t), it is impossible to find bounded absorbing sets in the whole space V, x V,_;, thus
we define for s = 1,2 or 3 and for all a in R :

X = {(u,v) €Ve x Vo_z: | m(u) | +e0 | m(v) |< a}.

Thanks to Proposition 1.1, X2 is stable for the semigroup (S2(t)):>0, we will prove the
existence of bounded absorbing sets for the restriction of S2(t) to X¢'. We first give a few
lemmas that we will need.

Lemma 2.1. For s = 1,2 or 3, let u € L?(0,T;V,) satisfy :

du

7 € L?(0,T;V,_2)
and 2,

2
€z +uAu€L (0,T;V,—2),
then
d%u oj2-10u) _1d [ |du|” )
(65—2-+UAU,A TS 2dt 58_24-‘11]3 s

in the sense of distribution on ]0,T|.

This lemma is classical, the reader can find the proof in J.M. Ghidaglia and R. Temam

[1].



Lemma 2.2. Let 0 < A < min (%Al, ﬁ) . Then for all (u,v) in V, X V,_5 :

1 A
(1= 2¢) [v 3 +A(e = )(u,v)emz + M | u 22 [ 2, +5 [ u 2.
The proof of this lemma is easy, we use the fact that for all v in V,_2 :

| u |a——2$

1
vl

We now define the three following functionnals :

For all p,y in V; xV_, :
Ei(p, ) =€lv+Arp | +vp |2, +2/ 9(p)dz
o)

For all o, in V3 x V, :

Bao¥) =<l b+ doB+v |0t +2 [ fi(o)| Vol ds
For all o,y in V; x V_;,uin V; :
Es(p, ) =€|p+Ap |2, +v | o |? +2/ﬂf’(u)<ﬁ2d:c.

(A is the constant appearing in Lemma 2.2).
Then we have :

Lemma 2.3. There exist some constants cy, ..., ¢, €},-...,c§ independent of € such that :

Cile| 121+ @ [}) —C2 < Ex(p, ) < Cile |9 2 + e D)+ Ca @ I,
Ca(e|¥ 15+ 013) ~Ca< Ea(p, ) < Cale| ¥ 5+ 0 [3) +Cill e T,
Cs(e|¥ 121+ 10 ) —Coe < Es(p, ) < Cile| ¢ 12, + e ) +Ce llw 7P *| e |-

Proof of Lemma 2.3 : Let ¢,% in V; x V_,, then

elv+rp |2 <2(e| v |2, +eX? | p |2,)

€
52<elwti +—|so|"l>
1 46% 1

1
(e L)

9




g is a polynomial of even order with a positive leading coefficient, therefore we can find
two positive constants C2 and k such that

C.
2|0

k|z|**>g(z) > - , for all real z.

We deduce :
Z/AMMZ—%,
Q

and the left hand side of the first inequalities follows.

Thanks to Sovolev inequalities, we know that L°°(2) is embedded in H!(Q2) and we
can find a positive constant C such that :

lele=<Clel-

We deduce :
2 [ ge)dz <2k |0 2]

2
<z2kC | alle i’
and the right hand side of the first inequality follows.

For the two other inequalities, we use the same type of arguments.

b) Absorbing set in X7§ :

Proposition 2.1. There exist two constants R;, R, independent of € such that for all u.
solution of (1.14)(1.15)(1.13) with (uo,u;) in X§, we have

2

du
e + | ue(t) |2< Ry + Ry(e | ur |21 + | uo |2 + || uo [|2P)e 22,
-1

We easily deduce, thanks to Proposition 1.1 :

Corollary 2.1. The semigroup (S}(t)):>0 possesses a bounded absorbing set in X¢ for all

Q.

Proof of Proposition 2.1 : Let A be a positive real number smaller than inf (%/\1, %)
(see Lemma 2.2) and u, be the solution of (1.14)(1.15)(1.13) where (uo,u;) is in X§. We

set
_ du,

dt

v + Aug,

10



and rewrite (1.14) as follows :

efid—:{ + (1 = Ae)v + A(Ae — 1)ue + vA®u, — Af(ue) = 0. (2.1)

We take the scalar product of (2.1) with A=/2y in L2 :
210w luclt 42 [ guddz) + 1=29) v ?

2 dt ! R Pl -1 (2.2)

A = 1)(er0) 1+ 20| e [ 4A(S ), ) + () m()) =0.

The leading term of g(u) is gzz”p;LuzP , the one of f(u)u is azp—1u??, therefore

3C; >0 : Vue R, f(u)u>g(u)-— /\IC;”

(recall that azp—_; is positive). We deduce

A(f (), ue) > A / g(u)dz — Cy. (2.3)
Q
Moreover, since (ue, %) belongs to X :
du,
m(v) =m ( 7 ) + Am(ue)
<a (A + l) .
€0
There exists a constant Cy such that :
1 A C
VuéIR:lf(u)|§— —g(u)+_2 ,
( 1 ) 2 | Q|
alA+ —
€0
which gives :
(2.4)

A
[ (f(wdm(w) < 5 [ oluddz+Ca
We use (2.3), (2.4) in (2.2), we denote C3 = 2(C; + C;) and we use Lemma 2.2, we find

that for all time ¢ :
1d
3 (<10 Paswuclt o2 [ o(uas)

Av A C
o 2+ e +5 [ aluddz < 22,
Q 2

L1
4 2

11



Thus : P p \ P
- - Z —£) < Ca.

Thanks to Gronwall’s Lemma :

du, 2C
o <u" dt ) = ‘,\'i(l — ¢7%Y) + Ey(uo,u1)e™ 3.

We deduce Proposition 2.1, thanks to Lemma 2.3.

c) Absorbing set in X% :

Proposition 2.2 : There exist two constants Rz, R4 independent of € such that for all
bounded set B in X§, there exists a time to(B) (independent of €) such that for all
solutions of (1.14), (1.15), (1.13) with (uo,u;) in B and for all time t > to(B) :

du 2

2
+ | ue(t) 1< Rs + Rq (e — (to)
o dt

du,
€ % (t)

+ ] welto) |%) et

0

We easily deduce, thanks to Proposition 1.1 :

Corollary 2.2 : The semigroup (S2(t)):>0 possesses a bounded absorbing set in X$ for all
a.

Proof of Proposition 2.2.

We take the scalar product in LZ(2) of (2.2) with 4, we get :

(elv 3 +v uelz) +(1—2e) | v [§ +A(Ae — 1) (ue,v)o
+ v | ue |2 —(Af(ue),v) =0

DN =
&=~

We rewrite the last term as follows :

~(81(we),0) = (' (w) Vae, V52)
+ A(f'(ue) Vue, Vu,),
-(Af(ue), =—/f' |Vue |2 dz

+ /\/ f'(ue) | Vue |? dz,
Q

12



+ /f'(ue) | Vue |2 dz (2.6)
Q
-5 [ 7w G | Vuc o

We estimate the last term of (2.6) :

l /f" )2 | Vu, |? d

due
dt L2

< 21 (v |z | Vue |14

-2

we use Sobolev inequalities and interpolation inequalities :

3C1 >0 | f'(ue) |z= < Ci]] ue [13772 +1),
dC2 >0 : | Vu, |%4 < Cz | ue 3/2| Ue ;/2 .

(Recall that the space dimension is 1 ; therefore H'/4(Q) and a fortiori H/%(Q) is embed-
ded in L*(1?)). We deduce :

IE/ f"(u)due | Vue |2 dz
2Ja

du
< CCo(llwe 13772 +1) e [ we 112 -df
L3
du Av
< Calll we 72 +1) L (74 3|20’ 2 o 1)
2
- a
Co((ll we 13772 +1) [ [2)+ 5 e [+

1 Av
+§|v|g+7|ue|§'

We use (2.6) and (2.7) in (2.5), we obtain thanks to Lemma 2.2:

m( (v B e B+ [ /) | Vuc [ da
+§ | v |2 +T | ue |3 +z\/ f(ue) | Vue |2 dz (2.8)
2
< Ca((l we 1377 +1) e /) + 3 | we B +5a

There exists a constant Cg such that :
Yue R Af'(u) > =f'(u) — Cs ;

13



therefore :
' 2 A ' 2
A f(ue) | Vue|*dz > = [ f'(ue) | Vue |* dz
Q 4 Jq

Let B be a bounded set in X', then B is bounded in X{*. Thanks to Corollary 2.1, there
exists a constant C7 (independent of B) and a time ¢o(B) such that for all time t > to(B) :

_ A a?
2Cs(( we 1377 +1) Lwe /)4 + S lucld + 3 +2Ce | uc i< Cr. (2.10)
0

(2.9), (2.10) in (2.8) give :

d du, A du,
—_— _ — <
thz (ue, 5 ) + 2E2 <uea 7 ) Cq,

for all time t > to(B). Thanks to Gronnwall’s lemma :

E, (ue(t) due (t)) < 2—6-11(1 — e 3(t"%)) L E, (ue(to) ddt (to)> —3(t=to),
We deduce the Proposition 2.2, thanks to Lemma 2.3.

d) Absorbing set in X§ :

Proposition 2.3 : There exists two constants Rs, Rg independent of € such that for all
bounded set B in X§, there exists a time ti(B) (independent of €) such that for all
solutions of (1.14),(1.15), (1.13) with (uo,u1) in B and for all time t > t,(B) :

2

d?u, du,
| T| + [ + [ w(t) 1B
2
< Rs + % ( due (t1)]| + | ue(ts) 13 '*‘1) e~ 3(t=t),
1

We easily deduce, thanks to Proposition 1.1 :

Corollary 2.3 : The semigroup (S2(t)):>0 possesses a bounded absorbing set in X§ for all
T.

In order to prove the Proposition 2.3, we need two lemmas :

14



Lemma 2.4. Let u. be the solution of (1.14)(1.15)(1.13) with (uo,u1) in X, then there
exist a constant K, (independent of (uo,u1) and €) and a time to(| ¥y |—1,| %o |1,m(u1))
such that for all timet > g :

/'t du.|?
to | dt

Lemma 2.5. Let f,g be two functions defined on R* such that :
(i) g is positive,
(ii) there exists ky,kz,ks, k4 in IR* and a time to such that for all time t > tg :

d
Y ki <ot ksgf + g,

(iii) there exists ks in IRt such that for all time t >t : ftto g(s)ds < ks, then, for all time
t Z th

ds __<__ Kl-
-1

f(t) < (5’1 + k4ks) ekaks
ky
( 2 ) kaks —ky (t—to)
+ (to) 3 Ks 1 0
kq

Proof of Lemma 2.4. We take the scalar product of (1.14) with A=1/22% .

1d 2 +v| |2+/ (ue)d
2dt€ ) V|ue|] Qgczzt

1
8] [rom () o

Thanks to Proposition 2.1, we can find a constant C] and a time ¢o(| uo |—1,]| 1 |1) such
that, for all t > to :

du
dt

(2.11)

du 2
t

+ulut) |2 +Lg(u€(t))dz <cl. (2.12)

Thanks to Sobolev inequalities (the space dimension is one) :

(ue)dz| < C 2p-1
[ rwdz) < 31w 137 +1 219
S C37
for all ¢ > to. We use (2.13) in (2.11), we obtain since m (2 ) = m(u;)e™¥/¢:
1d [ |duc|? )
il d
\ (2.14)
du, «a
< ! = —t/E
+ dt 1 - Ca €0




We integrate (2.14) from to to t and use (2.12) :

/t du, 2 ds < lcl + Cra(e—to/e _ e—t/E)
ol dt|_, —2t 7
< -;—C{ + Cjo.
Proof of Lemma 2.5 :
We have for all t > ¢ :
df
a + ki f < ks + kagf + kag,

t

We multiply (2.15) by R f'o alo)de .

d kit—ks f: g(s)ds
7 (C f(t))

< (kz n k4g)ek1t—f'0 g(8)ds

t
< (k2 + kag + k1 k4 / g(s)ds)eF?

to

d (ke ¢ kit
< — = + d 1 .
dt (kl ke '/to g(s) s) ¢

We integrate (2.16) from tq to ¢ :

¢
eklt—ks feo g(s)ds

F(t) — eFriof(to) <
t

(fc_z + k4/ g(s)ds> ekt _ -k—zek‘t°,

PR A ks

t t
10 < (52 4k [ alo)ds) o 20
1 to

+ <f(to) - ;3) e_kl(t_ta)—k3 f*o 9(e)de

1

< <%2- + k4k5) ekeks 4 (f(to) - k—z) ekaks g—k1(t—to)
1

Proof of Proposition 2.3 :

We differentiate (2.2) with respect to time and we denote by

dv  d%u. du.
= — = A—

it~ a2 M a
_ du,

w =
dt’

16
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we obtain :

e%— + (1= AW + A(Ae — 1)w + vA%w — Af'(u)w = 0. (2.17)

We take the scalar product of (2.17) with A~1/2W :

( |W| +Fr|w|H)+ 1= 2e) | W |2, +2(Ae — 1) (w, W) _,
+ v |w |f +(f'(ue)w,W)o =0

N | =
&l&

(2.18)

We rewrite the last term as follows :

(f (we)w,W)o = (f'(ue)w, w')
+ A(f'(ue)w, w)
+ (f (ue)m(w),W),

(wdww)o =3 % [ fudires)
+A/nf'(ue)d'12d:c
+ m(w) (f'(ue), W) (2.19)
-3 [ Mot
- 3m(w) [ f(wdatds.

We now estimate the last three terms of (2.19). Since H!(2) is an algebra (2 C IR) and
f" is a polynomial of order 2p — 3 there exists a constant ¢; such that :

| £"(ue) 1< Calll we 1777 +1).

Therefore :

| () (" (), W) | | mlw) 1| £ (we) |s] W |1
< Ci m(w) | (|| we 17772 +1) |W |y (2.20)
< Com(w)?(| ue |377° +1)2 + 2 | W 2,

Thanks to the embedding of H!(f1) into L°°(1) there exist two constants C3, Cy4 such that:

' f"(ue) |z < Ca(] ue 2p ® +1)
< Culll ua |72 +1).

17



Now we use the embedding L3(Q?) C L%(2?) C Vy/3 and an interpolation inequality :

| @ |32 < Cs | w s
<Cs|w|a|wli.

Thus :
[ 175 da| < CoColllue 177° 41) |w |-t w I
a (2.21)
2p—3 2 2 | AV 2
< Co(ll we 17777 +1)* Jw 24| w [T +g lwli
Similarly, there exists a constant C'7 such that :
- — Av
m(w) [ "(w)?ds] < Com()(l u |80 1) (w42 (W (222
Q
We use (2.20)-(2.22) in (2.19) :
(P Who > 55 [ 1wt
+ A / f'(ue)w?dz
Q
1
= Cam(w)?(|| we 1772 +2)° — 2 | W |2, (2.23)
- Av
— Co(ll ue P> +1)* |w 24| w |} —— = |w i
AV
— Com(w)?(|| ue |72 +1)% |w |2, - = lwii

Now, we use (2.23) and the Lemma 2.2 to obtain from (2.18) :

d ~
GEIW R+t + [ fu)ot)
Q
1
2

[

A
Fo W+ w2+ / £ (we) 2 dz
Q

< Cym(w)?(|| ue ||3772 +1)?
2p—3
+Co(ll ue I7P7° +1)? w2, | w |3
2p—-3
+ Crm(w)?(|| ue I377° +1)% | w |2,
1
+§|W|2-1+T|w|f-

Finally, since there exists a constant Cg such that :

,\/ f'(ue)widz = 5/ f'(ue)w?dz — Cs,
Q 4 Ja



we have: \ \
d du, d?u, A du. d“u,
dt (Ea(dt’ dt2)>+2E (dt’ dt2)
< 2Cym(w)* (] ue |27~ +1)? +2Cs

206 2p—3 2 2 due dzue
+ (” Ue ” +1) | w |-—1 E3 dt ’ dt2

+ 207m(w)2(ll ue 777 +1)% Jw |2,

Let B be a bounded set in X§, then B is bounded in X{ and thanks to Corollary 2.1,
there exist constants independent of B and of e, k2, k3, k4, and a time ¢, (B) such that for
all (4o, u;) in B and all time ¢ > ¢,(B), we have :

d du, d*u, A du, d?u.
@l (W’ i ) + gk ("&?th )
due d*u.

<k2+k3|‘w|1E3(dt dt2>+k4|‘w|l

Thanks to Lemma 2.4, there exists a time t2(B) such that for all ¢t > t,(B) :

t
ty

Thanks to Lemma 2.5, for all t > to(B) = sup(t1(B),t2(B)) :
du, d?u, k2 ks K
—_ < = 3
E3 ( o (t), 7T (t)) (2 3 + k4K, e

d d k
+ (E3 ( :te (to)s b (t0)> - 272) eks Ki—3 (t—to)

Thanks to Lemma 2.3, there exists k], k% constants such that for all t > ¢ :

d?uc, |>  |du. .o |d%u. duc, .|
<
a9 Tl (t) 1tk ( gz o) _, | at (to) .
P 2 (2.24)
+l welto) 12777 |2 t0) ) TR,
dt
We assume that tg is sufficiently large so that :
2p-—2 du’e 2 )
l'ue(to) 1777 | - (to)| < ka, (2.25)
0
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where kj is a constant independent of B (we use Corollary 2.2). Moreover, thanks to
(1.14):

d;;i‘(to) = du‘(to) +|“e(to)|3+!f(ue(to)|1,
d?u 2k [|du (2.26)
| D) < ( <1o)| |ue(to)|§+1),
and
e < e[ 50|+ [%00] i,

2
due

iz ) .

)| +1
1

) (2.27)
ecof +1)

[ue(t)3 < K% (62
From (2.24)-(2.27), we deduce the Proposition 2.3.

e) Propositions 1.1 and 2.1 are still true if we consider (1.14) on a bounded set in IR?
or R3, but we do not know whether Propositions (2.2) and (2.3) are still true. If we try
to obtain estimates in V; X Vy by the same techniques as in Proposition 2.2, we have to
estimate the last term of (2.6) :

1/ f"(ue )d“‘ | Vu |2 dz.
2J)q

Even if n = 2, this term is stronger than E, (uc, ) For instance, we can majorize it by:

du,

(g || | Ve |24 - (2.28)
L2

If n =2, L4(N) is embedded in H'/2(Q) and L*°(N) in H**+¥(Q) for all n > 0; therefore
using interpolation inequalities, (2.28) is majorized by

1—
Cll we 177l we 12 +1) Il ue llo] we |1] ue |2

and this is too strong (we would need n < 0 and this is not possible). If n = 3, (2.28) is
stronger. For the Proposition 2.3, we have the same type of problems.

III. EXISTENCE OF ATTRACTORS.

a) In this section, we first give a result of B. Nicolaenko, B. Scheurer and R. Temam [1]
concerning the existence of a maximal attractor for the Cahn-Hilliard equation (1.11)(1.12)-
(1.13). Then using a general theorem, we prove the existence of attractors for the perturbed
Cahn-Hilliard equation (1.14), (1.15), (1.13) in the spaces X2 endowed with their weak
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topology. The results are valid for the Cahn-Hilliard equation in space dimension n = 1,2
or 3, but for the perturbed equation, since we do not have any absorbing set in space
dimension higher than two, the results are restricted to the space dimension n = 1.

It is known that the attractor for the Cahn-Hilliard equation has finite Hausdorf and
fractal dimension. We think that the method developed in J.M. Ghidaglia [1] (which is
a slight modification of the usual method presented in R. Temam [1] for instance) can
be adapted successfully to the perturbed equation in order to show that the attractors
constructed in secton b) hereafter have finite fractal and Hausdorf dimension.

b) The Cahn-Hilliard equation.

As we already mentionned in section Id), the average of a solution of (1.11) is constant.
Therefore, there does not exist any absorbing set in the whole space Vy and we have to
introduce the subsets of Vj :

Hoy={ueVy:|mu) |< a}.

One can show (see B. Nicolaenko, B. Scheurer and R. Temam [1] or R. Temam [1]) the
following result :

Theorem 3.1. The restriction to H, of the semigroup (S(t)):>0 defined in Theorem 1.1
possesses a maximal attractor A, in H, endowed with the strong topology of Vy. Further-
more, A, is compact and connected (for the strong topology of Vj).

Thanks to Theorem 1.1, we know that if ug is in Vo, then for ¢t > 0,u(t) is in V3. As
the attractor A, is in invariant set, we deduce :

Ay C V5.
Using the second assertion of Theorem 1.1 and the same argument as above :

Ay C Vy.

c) The perturbed Cahn-Hilliard equation.

To show the existence of an attractor for the equation (1.14), (1.15), (1.13), we use a
general existence theorem whose proof can be found in R. Temam [1] or Hale [1] :
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Theorem 3.2. Let (E,d) be a metric space and (S(t)):>0 a semigroup on E such that for
each t, S(t) is continuous.

Suppose that there exists a bounded absorbing set B, such that U S(t)B, is

t>to
relatively compact in E for some to > 0. Then

A=w(B,) =[] d (U S(t)Ba)
820
is a maximal attractor for the semigroup (S(t))t>o :

-VtelR : St)A=A4
- for all bounded set in E :

d(S(t) B, A) ——— 0.

t — +oo

Moreover A is compact and connected.

Our aim is to apply Theorem 3.2 to the semigroups (S?(t)):>0 on X3 endowed with
the weak topology. In section II, we obtained bounded absorbing sets in X7 endowed with
the strong topology, we denote them by B, .. Let to be such that

SZ(t)Ba,e C By for t>to;

then U, S¢(¢)Bs, C Bg, and since B} is compact in X3 weak, U,, SZ(t)Bg . is
relatively compact in X} weak.

In order to apply Theorem 3.2, it remains to check the weak continuity for the semi-
groups (S2(t))t>0. We have

Proposition 3.1 : For a in R*, s = 1,2 or 3 and t > 0, the mapping S2(t) is weakly
continuous on X,

Proof : We first consider the case s = 2 or 3. Let (un,v,) be a sequence in X< weakly

convergent to (u,v) in X¢'. Then (up,v,) converges strongly in X ; and since S2~1(¢) is

strongly continuous S?(t)(u,,v,) converges to S%(t)(u,v) in X& ;| strong. On the other

hand, (4n,v,) is bounded in X and consequently S?(t)(un,vn) too, therefore there exists

a subsequence S&(t)(un,,vn,) that converges weakly in X to a limit (U, V). This subse-
a

quence is strongly convergent in X ,, thus the limit (U,V) must be equal to S?(t)(u,v).
This shows that the whole sequence weakly converges to S2(t)(u,v).
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We now consider the case s = 1. Let (un,vn) be a sequence in X weakly convergent
to (u,v) in Xy*. We denote by u? (resp. u.) the solution of (1.19), (1.15), (1.13) with
Uo = Up, U; = U, (resp. ug = u, u; = v). We substract the equations satisfied by u? and

u., we obtain : \
d*w? dwl 2 n
dt; + —d—t‘— +vA*w? — Af(ul) + Af(ue) =0, (3.1)

where w? = u? — u,.

€

We take the scalar product in L? of (3.1) with A“lg'{g- :
2 dw™ 2

1d dw? n12
2 dt (‘l d _2+"|wfl°)+’ a |_,

+ (D) - rwd 47222 ) o,

dt

2

(3.2)
< |f(u?) = fludlza-

Since (u?) is bounded in H!(?) and consequently in L>°(f1) and since f is Lipschitzian on
the bounded sets of IR, we have

3 C(ul,uc) such that
£ (u?) = f(u)|Z2 < C|uf — ulzs

3.3
< Clwllzs )
< C(lw?lo + m(w?)?).
We take the average of (3.1) :
D) + S m(wr) =0
eozm(wd) + 5m(we) =0,
and that implies :
m(w?) = m(u, — u) + em(v, — v)(1 — e~¥/€), (3.4)
d n
m ( :;t‘ ) = m(vy, —v)e Ve, (3.5)
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2

We deduce from (3.2)-(3.5) :
dw?

d 2 2
az(f B +u|w:|o)51w2|o

+C(m(un — u) + em(v, — v)(1 — e~¥/€)).

-2

Thanks to Gronwall’s Lemma, we have :

2

+ 07l < e (elun = ol 4 fun - )
| t (3.6)
n C/ ec('“‘)(m(un —u) + em(v, —v)(1 — e—t/e))dt.
0

] dw?
dt

As {v, — v,u, — u} converges weakly to zero in Xy and the injection of X' into X is
compact, (3.6) shows that {%‘-(t),w;‘ (t)} strongly converges to zero in X§. In the same

manner as in the case s = 2 or 3, this implies that S!(t){un,vn} weakly converges to
S(t){u,v} in X§.

Now, Propositions 2.1, 2.2, 2.3 and 3.1 allow us to apply Theorem 3.2 in the three
cases s = 1, 2 and 3. Thus, we have

Theorem 3.3 : For s = 1,2 or 3 and « in R™, the restriction of S&(t) to X2 possesses a
maximal attractor A; , compact and connected in the space X endowed with the weak

topology.

Remark. 1) A2, is a bounded set in X3 and consequently in X2. As it is an invariant set,
we have :

3 2
Ae,a - Ae,a.

In the same way :
A2, C AL,

Unfortunately, we do not knwo whether A2 , and 4] , are bounded in X3 and X2 and we
do not know whether the other inclusions hold.

2) Using the compactness of the injection of X3 into X;' for all s’ < s, one can see that
the bounded sets of X7 are attracted by A¢ , in the strong topology of X s

3) Let (u,v) be in A2, then there is a complete orbits (uc(t), duc(t)

4t )teIR in A o such that

ue(0) = u, v(0) =v.
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For all time t, we have :

m (Sen) = mio)es
m(v) =m (%(t)) et/e.
Since m (%ﬁ(t)) is bounded, by letting t — —oo we have
m(v) = 0.

Using section Ia), for the perturbed Cahn-Hilliard equation there exists a Lyapunov func-
tion defined on a set that contains the attractors. We deduce that the attractors consist
of the unstable set of the set of the fixed points.

4) Using the technics developped in J.M. Ghidaglia and R. Temam [2], one can generalize
Theorem 3.3 to the case where the right hand side of (1.14) contains a time periodic forcing
term.

IV. Convergence of the attractor in Xg when ¢ — 0.

a) In this section, we prove that when € is small, Af”a is close to A,. More precisely, we
first define a convenient embedding of A, (which is included in Vy) into X¥ :

AL = {(u,—vA%u + Af(u))/u € Aa}-

If (u,v) € A%, and if (u(t))ter is a complete orbit in A, such that u(0) = u, then v is
the time derivative of u(t) at the time 0 : v = 9%(0). We will show that the Hausdorf
semidistance §(A2 ,, A%) converges to zero.

b) Theorem 4.1. The Hausdorf semidistance §(A¢ ,, A3) converges to zero when € — 0 :

lim sup inf  (Jue—ulZ+ve—v]2)*=0.
€ — 0 (ue,ve) € Ae,a (u,v) € A2

Remark. As we already mentioned in the introduction, Theorem 4.1 gives the uppersemi-
continuity of the attractor at zero. The lower continuity is much more difficult and we need
to have sharp informations on the structure of the attractors (consisting of the stationary
solutions and their unstable manifolds).
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Proof of Theorem 4.1.

We know that A2, is an invariant set. Let (u((t)):cr be an orbit in 42 ,, then using

Proposition 2.4 we have :

2 2

+ |ue(t)l3 < Rs, (4.1)
1

] d?u(t)
dt?

du(t)

dt

-1

for all time t, with Rs a constant independent of e.

Moreover we saw in the third remark of the preceding section that:
du,
— ) =0 4.2

m(u,) is independent of t. (4.3)

and

Let n be a real positive number. For each € positive, we choose (ue,ve) in X§ such that :

inf (| ue—ullZ + || ve —v [|3) > 6(A2a, A2) — -
u,v € A7,

We denote by (u(t), 2 (t)) a complete orbit in A7 , such that

teR

du,

e(0) = ue, a3

(0) = ve.

Then thanks to (4.1), (4.2), (4.3) we have

(2e)e>o is bounded in L*°(IR, V3), (4.4)
(%) is bounded in L*°(IR,V}), (4.5)
dt >0

2
(ﬁ%) . is bounded in L°(IR,V_,), (4.6)
>

Thus, using classical compactness theorem, (4.4) and (4.5) imply that there exists a sub-
sequence (u¢)e>o and a function u in CO(IR, V3) such that for all T > 0, u. converges to
u in C°(|-T, T}, V2). Moreover (4.4) implies that u belongs to CP (IR, V2).

We know that Z%c is in C°(IR,V,). And (4.5) implies that there is a subsequence
(that we still denote by (u¢)er>0) such that
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dug du

— — 1 oo
= i L (IR, V;) weak star. (4.7)
Thanks to (4.6), we have :
du, . roo
ez 0 in L*°(IR,V_,) strong (4.8)
We rewrite (1.14) as follows :
ducl dzuel 2
7 = —¢ Y —VvA*ug + Af(ue:). (4.9)

Since the mapping u — f(u) is continuous from V> to V2 we deduce from (4.8) and the
convergence of u¢ to u in C°([—T,T],V2) for all T > 0 that =5 d" 2l
Af(u) in C°([-T,T),V_2) for all T > 0.

converges to —vA2%y +

(4.7) implies that :
— = —vA%u + Af(u), (4.10)

and (4.5) implies that —d—tﬁ- converges to 4% in C°([—T,T),Vo) for all T > 0 and that 4%
belongs to CP (IR, Vo).

Thus, u is solution of the equation (1.11) that belongs to C?(RR,Vz). From the defini-
tion of A,, for all t u(t) belongs to A,. And from (4.10) :

(v, 5 0) 4.

Since (ue:, d—;‘gi) converges to (u, %‘ti) in C°([-T,T],Vs x Vo) for all T > 0, we have :

(s, ver) = (ue:(O),%(O)) converges to (u(O),%(O)) in (Vy x Vo).

And that implies :

im  inf  (Jue—ulf+ve—v]}) =0,
€ — 0 (u,v) € 4

0 < lim sup 5(!1?,&, A) <n.
e—0
n is arbitrary small, therefore :

lim 6(A2,,4%) =0.
e—0
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APPENDIX
Proof of Theorem (1.2)

The proof of this theorem is very standard, we use a Faedo-Galerkin method. Let
(w;)jemn be the orthonormal basis in L?(0, L) of eigenvectors of A. We first look for u,y, in
Sp(wi, ..., wm) such that

d?u,, dum

2 —_ =
€ + 7t + vA*upy — APy f(um) =0, (A.1)
um(0) = Ppuo, (A.2)
du,,
T(O) = PmUI. (A3)

(P, is the orthogonal projector on Sp(wy,...,wpm)).

The existence and uniqueness for u,, on an interval [0, T,| follow from classical the-
orem on ordinary differential equations. Using the same arguments as in the proof of
proposition 1.1, 2.1, 2.2, 2.3 one easily prove that, for s = 1,2 or 3, if (uo,u;) belongs to
Vs X Vy_g then, forall T >0:

(4m)men is bounded in L*(0,T;V,), (A4)
dtim is bounded in L*°(0,T; V,_2). (A.5)
dt meN

_(in fact, we can prove (A.4), (A.5) with simpler calculous since we are not interested in the
dependence on € and we do not need time uniform estimates). ((A.4) and (A.5) implies
that T, = +00).

Now, using classical compactness theorems, we can take the limit in (A.1), (A.2),
(A.3). There exists a function u» in L°°(0,T;V,) with ‘fi—': in L*®(0,T;V,_z) for all T > 0
such that:

d*u  du 2
EF+-CE+UA u-Af(u,)—~0, (AG)
u(0) = uo, (A.7)
d
-d-’tf(o) =u,. (A.8)

Now, we prove the uniqueness in V; x V_; together with the continuity of S!(t).
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Let (uo,u1), (vo,v1) in V3 x V_; and u, v the corresponding solution of (A.6), (A.7),
(A.8). We denote by
w=1u-—v.
We have 2 P
w w 2, _ _
et T vA*w — A(f(u) — f(v)) =0. (A.9)
We take the scalar product of (A.9) with A=1/222 we obtain :

1d ( |dw 2
2dt \ |t

2

+ufw? ) +| %
1 ! dt
dw

+ (1w -r0.5) =0,

-1

2 2

li € ﬂ +U|w‘2 .+. .(11_0_
2dt dt|_, 1 dt|_,
< 1£(w) = £(v)]x |22
- - 1|5,
dt |_,

We use a Young inequality :

d
at \ €

Since f is a polynomial, V; is an algebra and u,v are in L*°(0,T;V;), we know that there

dw |?

dt |_

T Vlwli) <If(w) - f(0)I5.

exists a constant C; (depending on sup |u|; and sup |v|;) such that
[0,T] [0, ]

£ (w) = f(¥)]1 < Cifu —vls.

d dw
at \ €| dt

An application of Gronwall’s lemma leads to :

Therefore :

2
+wwﬂscwm.
-1

2

+ww(t)F < e (efuaf?, + v fuol}) (4.10)
-1

dw
pral)

€

We now take the average of (A.9) :

d? d
eEt—2m(w) + —m(w) =0.



Therefore :
m(w) = (m(uo) — m(vo))

+ e(m(u1) — m(v1))(1 - e*),

m (%) = tmlun) = m(un))e~e (4.12)

(A.10), (A.11) and (A.12) imply the unicity of the solution in V; X V_; and the continuity
of S(t).

(A.11)

The continuity of S2(t) and S!(t) are left to the reader. We use the same type of
arguments as above. It remains to prove the regularity of the solution, that is :

(u, %‘tf) € C([0,T), Vs x Vo_3).

We notice that u is the solution of the nonhomogeneous linear problem :

d*v dv 2
6F+E+UA v=yg,

supplemented with the same initial and boundary conditions as (A.6) and with :
g=Af(u) € L%®(0,T;V,_2).

On can find the proof of the regularity for that type of linear problem in Lions-Magenes
(1] for instance.
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