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INTRODUCTION

Cette thése consiste en un ensemble de travaux réunis autour de deux thémes prin-
cipaux : les fonctions L p-adiques et la construction explicite de certains groupes comme

groupes de Galois. Chaque article est précédé par un bref résumé de son contenu.

Article 1. Sur linvariant-p des fonctions L p-adiques attachées aux courbes elliptiques a

multiplication complexe.

Soit E une courbe elliptique définie sur un corps quadratique imaginaire K, & multi-
plication complexe par K, et soit p un premier différent de 2 et 3, o E a bonne réduction,
qui est décomposé dans K; on écrit (p) = pp*. Soit F, le corps obtenu en ajoutant a
K tous les points de p"-division de E (n = 1,2,...), et soit M, la p-extension abélienne
maximal de Fo, non-ramifiée en dehors de p. Soit X, le groupe de Galois de M, sur Fi.
Soit I' = Gal(Foo/Fp), ot Fy = K(E,). Il est connu que Xo est un Z,[[I']]-module de
torsion de type fini. Nous démontrons ici que son invariant-u est nul.

La méthode utilisée est de démontrer que 'invariant-u est nul pour chacune des fonc-
tions L p-adiques L, i, 1 <i < p—2, construites par Bernardi-Goldstein-Stephens; il n’est

p—

pas difficile & voir que (Xoo)=3"2"7 u(L, ;). Pour étudier l'invariant-u de ces fonctions
L, on utilise leur construction en tant que transformée gamma de fractions rationnelles
sur la courbe elliptique E, et on donne une formule générale reliant 'invariant-y d’une
telle fraction rationnelle & celui de sa transformée gamma. Explicitement, si R est une
fraction rationnelle sur F dont le développement de Laurent est entier, on lui associe une
mesure A sur Zp, et on définit sa i-iéme transformée gamma pour 1 < ¢ < p — 2 par
L(s) = [, (z)*wi(z) d), ol w est le caractére de Teichmiiller. On a alors:
P
Théoréme: ,u( Y wi(v)A*o (v)) = u(T(s)), ot W est I’ensemble des racines de I'unité
veEW
dans K, \* est la mesure ) restreinte & Z et Ao (v) est la mesure définie par Ao (v)(C) =

AM(vC) pour tout ensemble ouvert-compact de Z,.
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The main result of this paper proves that the p-invariant is zero for the Iwasawa
module which arises naturally in the study of p-power descent on an elliptic curve

with complex multiplication and good ordinary reduction at the prime p. 1987
\cademic Press. Inc.

0. INTRODUCTION

Let £ be an elliptic curve defined over a quadratic imaginary field K,
with complex multiplication by K. and let p be a prime different from 2 and
3. where £ has good reduction. and which splits in K. say (p)= ,.*. Let
F. be the field obtained by adjoining to K all ,.”-division points on E
(n=1.2...). and let M, be the maximal abelian p-extension of F.
unramified outside p. Write X, for the Galois group of M., over F_,
cndowed with its natural action of the Galois group Gal(F, K). Let
I"=GaltF, F,), where £, =K(E ). It is well known that X', is a finitely
generated Z,[[/']]-trosion Z,[[I"]]-module. The aim of this paper is to
prove that the u-invariant of X', is zero.

Our methods have been inspired by the recent work of Sinnott [9] in
the cyvclotomic case. The same result has been obtained independently and
simultaneously by Gillard [5]; the key difference between his approach
and the one in this paper is in the proof of algebraic independence
(Theorem III here, 1.2 in [5]). In particular, Gillard studies the schematic
closure of a certain subvariety of E”, whereas here we consider the Zariski
closure of a certain subgroup of the formal group of E£", E being the curve
reduced mod p, which permits us to establish the theorem by elementary
methods. This is the only point in Sinnott’s article which does not
generalize easily to the elliptic case. It is also noteworthy, however. that in

3
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U-INVARIANT OF p-ADIC L-FUNCTIONS 21

applying the results to the p-adic L-functions, Gillard used those construc-
ted by himself in an earlier article [10], whereas here we follow the con-
struction of the p-adic L-functions L,, for 1 <i< p—2givenin [1].

1. NOTATION

Let K be an imaginary quadratic field of class number l. with ring of
integers (. Let E be an elliptic curve defined over K. with complex mul-
tiplication by (', and let Y be the Grossencharakter of E over K. We fix an
algebraic closure K of K and an embedding K ¢ C. Let S be the set contain-
ing 2. 3. and rational primes g such that E does not have good reduction
for at least one prime lying over g. Let p be a rational prime which is not in
S. and such that p splits in K: (p) = /1/1* Let m = /(). Let K, be the com-
pletion of K at 4 and let /, be the ring of integers of the completxon of the

maximal abelian unramified extension of K ,. We fix a Weierstrass model
for E.

yT=4x"— g,x — g, (1)

such that g,, g; € ¢. and g3 — 27¢3 are minimal at all primes of K not lying
above a prime in S. Let L be the period lattice of the Weierstrass
w-function associated with this model. Since K has class number 1. there is
an € L such that L =QC(.

Let L(J*, 5) be the complex Hecke L-function of J*. Let 2, be a p-adic
period of E. We follow the notation of [1] in reviewing the construction of
the p-adic L-functions L, (s)for 1 <i< p—2. such that for each integer
A=zl k=i(mod p—1),

QIAL, (k) =(k— 11— (" (2)/N,))Q *LJ* k). (2)

Note that the interpolated L-function is the primitive one.

Let ¢(z. L)Y=(¢(z= L), 2'(z, L)). Let w» be the Teichmiiller character on
Z,. and for each xe Z}, let (x) = x/w(x). Let E denote the formal group
giving the kernel of reduction modulo 4 on E: a local parameter for E is
given by t = —2x/y. If we consider - to be the parameter for the additive
formal group G,, then 1= —20(z)/'(2) gives the exponential map from
G, to E. If we let w be the parameter for the multiplicative formal group
G,,, then since £ has height 1 (since p is split). there exists a power series
otw)ewl ,[[w]] which gives an isomorphism of formal groups 9: G,—E.
The p- _adic period is. by definition. the coefficient of w in J: it is determined
up to a unit in Z}.

We now introduce the basic rational functions on E (see [2] for details).
Let xe (. 2#0 or a unit, and let £, denote the kernel of x on E. For each

L
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,0<i< p—2, such that f; # 1, let Q, be a primitive f;-division point on E.
Define

P)=[] (x(P)=x(R)) and &, ,(P)= [] AP+ Q) (3)
Re E,

te Gy,
R#0

where G, = Gal(K(E,)/K). We have the following equation [1]. For any
ideal # of ¢ prime to x and to f|,

[T ¢ao(P+S)~Co00 (W(E)P), (4)
Se ks
where o, is the Artin symbol of # relative to K(E,)/K, and the symbol ~
means that the quotient of the two functions is a constant in K*.

We now consider the development of the rational functions in (3) in the
parameter - of the additive formal group, and define

IS Z. 1 T = ]~
R, (= L)= {;1(¢( L)) if ‘
‘ Crolo(z. L)) otherwise.
Let m, = cardiGal(K(E,) K)) for each i. Consider the set # of maps u:
4 — Z. where 1 is the set of elements of ¢ prime to f, and to ,, and where

wx) =0 for almost all xe A and > p(a)(Nx—1)=0.

x€e 4

For we#. let R, (z.L)= [T.cs (x*™R_(z. L))"*. Then (d/d=)log R‘,,‘,
(z. L) has a Laurent series expansion in ¢ which is an integral power series
in / [[1]]. and for a suitable choice of y, this is the series underlying the
construction of the L (s) (see [1, 3]).

In order to complete the construction. we need to introduce several basic
facts about gamma-transforms (for more details see [9]). Let A,, be the

space of / -valued measures on Z,, and let C denote a compact-open sub-
set of Z,:

(a) There is an isomorphism A4,, — /7, [[w]] given by 2+— H (w),
where H,(w)=>, ., (j.z,, (M) diyw' = 52,. (T 4+w)" da.
(b) Letf(x)=2,a, ' be the characteristic function of C, where ¢, are

p-power roots of unity [9]. We define a measure 4|, by restricting ~ to C

and extending by zero. Then the power series H;, (w) associated to 4| is
given by

ZaiH;.(Ci(1+‘1')—l)- (5)
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In particular. if C=2%, we write A* for ';-|z; and H*(w) for H,.(w). We
then have

1'1}"(\1')=H;‘(w)—l Z H;({(1+w)—1). (6)

r=1

(c) We define the measure 4-7 for yeZ¥ by ~ 7(C)=~(;C). Then
H, (w)=H,(»w "'). and we have the formula

roY e =4l 7 (7)

(d) We now discuss the gamma-transform. Let J(r)e[/ [[r]], and
set JOw)e I,[[w]] equal to J(o(w)) viewed as a power series in w. Let £ be

the measure associated to the series J(w). For each i. 0<i<p—2. we
define

r(s)= t (XD wi(x) dr (8)

and we may thus speak of the gamma transform of a measure associated
with a power series in t. Clearly 7Y"'(s) is an [wasawa function. te.. if u is a
topological generator of 1+ pZ,, then there exists a power series
G.(w)el [[w]] such that G(u*—1)=T7""(s). Let ¢: Z, - U=1+ pZ, be
the 1somorphism given by 1+ u'. Then as a power series. G,(w)
corresponds to the measure in A,, given by

(Zg‘}.»ﬁi(-\) P, (9)

where the sum 1s over the (p — I)th roots of unity in Z, (see [9]). By (c)
above. we may write (9) as

N\

(z il ) o (10)

We now apply the gamma-transform of (d) to the measure whose
associated power series in 7 is the Laurent expansion of (. dz) log R;“_,-(:, L).
Up to multiplication by units in the Iwasawa algebra. this gives the
functions L, (s) for 1 <i< p—2 (see [ 1] for the complete construction).
Now. the p-invariant of I'Y”(s) is considered by definition to be the
pu-invariant of the associated power series G,(w). i.e.. the infimum of the
valuations of its coefficients. Thus it clearly suffices to study the u-invariant
of the gamma-transform to determine the u-invariant of L, (s).

€
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2. u-INVARIANTS OF CERTAIN GAMMA-TRANSFORMS

Let E be an elliptic curve as in Section 1. and let R(P) be a rational
function on E: by a slight abuse of notation we write R(t) for the expansion
of R as a Laurent series in 7, where r = —2x/y is a local parameter at zero
on E. We suppose that R(r)e !, [[1]]

Let 0: G,, — E be the isomorphism of formal groups as in Section 1, and
consider a measure 4 on Z, with values in I, whose associated power series
in / ,[[w]] has the form R(é(w)) for R(P) as above. Let W denote the set
of roots of unity in K. The aim of this section is to apply the methods used
by Sinnott in the cyclotomic case (see [9]) to prove

THEOREM 1. For each i. 0<i< p— 2. we have the formula

,Ll< Z w'(v) 2* - (v) ) = u((s)).

re W

Before the proof of Theorem I, we need several preliminary remarks. Let

r be the number of roots of unity in K. m=(p—1)/r. and f3,..... S, be a
basis for the ¢ -module generated by the (p — 1)th roots of unity in Z,. For
1 < j<m. let ¢, be representatives of the (p — 1)th roots of unity modulo
. Then

3,=Za,-,-/f,, a,el (11)

for 1 < j<m.

Now. since we are considering p-invariants. we will wish to consider the
reduction of our power series R(Jd(w)) modulo ,.. To this end. we denote by
d(w) the power series d(w) modulo /. so Jtw) has coefficients in F,, the
algebraic closure of F,. Letting £ denote the curve reduced mod ,.. we see
that o(w) gives a formal group isomorphism from the multiplicative formal
group in characteristic p to the formal group of E. which we denote by &
But since the points of E all reduce to 0 mod 4, we let B=F,[[T]] for an
indeterminate 7. and we extend the field of definition of E to the quotient
field of B. We also consider B to be the underlying set for G,, in charac-
teristic p. Then J converges to a value on £ whenever w has its value in the
maximal ideal of B. which is the ideal generated by T.

We now recall that for each element e Z,. there exists a unique power
series. usually denoted [f] (r), such that [f](¢)=fit (mod deg2) and
[f](r) is an endomorphism of E (see [8]). We use the notation
gp(t)=[B1(r) and write g,(¢) for the reduction of ¢,(7) mod s.

Now. let E" be the abelian variety consisting of the product of n copies of
E. and let ¢,..... t,, be the copies of 1 coming from the » coordinate projec-

7



U-INVARIANT OF p-ADIC L-FUNCTIONS 25

tions E” — E. Let K(E") denote the field of rational functions on E”
developed out in their Laurent expansions at ¢,,..., ¢,, and let 4 = K(E")n
1,[[t s 1,1]. In the same vein, we write 4 =K(E")n B[[t,,... 1,]1] for
rational functions on the reduced abelian variety.

We now state two independence results which are fundamental to the
proof of Theorem I. For the a; as in (11), we have

THEOREM II. For 1 < j<m, let ®,: E" — E be the map given by
®(P,... P,)=Y a,P.,

and suppose r,...., r,, are rational functions on E such that

”m

Y r(@d,(x))=0 forall e E™
;=1

Then euch r, is u constant function on E.

THEOREM III. Let ©: B[[t,..... t,11 = B[[t]] be the map given by
Ot,)=qyu(t). Then the restriction of @ to A is injective in the sense that if
red und riq,(1).....44,(t))=0. then r =0 identically.

Theorems Il and ITl will be proven at the end of this section. We now
proceed to the proof of Theorem I. Let ~ be a measure on Z, as before

whose associated power series has the form R(d(w))e/ [[w]] for Re A.
We have

PROPOSITION.  Let C be a compact-open set in Z,. Then the power series

associated to 4| has the form R (d(w)), where R is also a rational function
on E.

Proof. We may write >, h,(T for the characteristic function of C. as in
Section 1(b). Then the power series associated to ~|. is given by
S, b, RA(C,(1 +w)—1)). Now, since 0 is an isomorphism of formal groups,
and {, — 1 is in the maximal ideal of /,. we see that {, — 1 corresponds
under o0 to the r coordinate of a n-power division point }/, on E. Thus,

YA RGN +w)—1)=3 bR — 1B d(w))

1

=Y b, RU(V)® p1),

which is the expansion of 3,5, R(V, @, P) in 1. By definition. this function
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1s R~(P). But R, is a rational function on E since addition on E is rational,
and 4| is associated to R(d(w)), which concludes the proof.
Now, for each i, 0 <i< p—2, define a measure

Ki= Y w'(v) A*:=(v)
re W
We first remark that x; is associated with a rational function in d(w) on E.
For by the preceding proposition, A* is associated with a rational function
R*(d0(w)), and then by Sectionl(c), /*-(v) 1is associated to
R*(3((1 +w)" '—1)=R*([v '1(8(w)))=R(vr~'P) on E. Now, we are
considering the u-invariant of a measure to be the pu-invariant of its

associated power series; this is how we investigate the u-invariants in the
statement of Theorem I, which we recall as

u( > w‘(u)),*:(u))=u(1“,"’(s)). (12)

re W

In fact. proving the simpler formula
u(k;) = pu(l(s)) (13)

is equivalent to proving (12), for the left-hand sides are the same by
definition. and for the right-hand sides we have

-~

ris)= 3 o'(e)| (x> o'(x)di*-(v)

re W ‘Zn

= Z w’(v).. e 'y o (e 'x)di*
dz;

re i’

= z u)’(v)w"(v")L‘ (x> w'(x)dr

re W

= r(s).

Thus, since we have stipulated that p #2 or 3. and r must always be 2. 4.
or 6, we have

p((s)) = u((s)).

To prove (13). we prove that divisibility by = of x; (i.e.. of its associated
power series) implies that of /'!'(s) and vice versa. thus, cancelling the fac-
tors of n from both sides gives (13). The first implication is evident. since if
n divides ~, then it certainly divides 3, e'x; ¢l (Eq. (9)), so I'{'(s), by
Section 1(d). The second implication is not trivial. Suppose n divides
Y. &'w; - ¢l Then m divides r 37 &7 'k, |(,-'¢) = (¢, '), reformulating as in
(10).
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Let r,(d(w)) be the power series corresponding to the measure

e, 'K | 'v)- We may then write the assumption that n divides the gamma-
transform as

m

Y rio((1 +w)?—1))=0 (mod =/ ,[[w]]). (14)

/=1

Considering the rational functions 7, on E and the whole situation in
characteristic p, we have

m

Y F([&]3(w))=0. (15)

j=1
Thus using the notation §,(r) for [¢,](¢) reduced mod s, we have

m

Y G (1)=0. (16)

y=1

Now. in the notation of Theorem II. let @,: E” — E be defined by

12

¢/(tl A ] ’n) = Z (7(1,,(t1)*

=1
for the «,, as in (11). Then (16) may be written

1244

S FADPUAGp (1) G (1)) =0. (17)

1 =1

Now. by Theorem III. this statement implies that the function 3" | 7, - &,
on E" is identically zero. and by Theorem II. we obtain that each 7, is then
a constant function on E. so that 37, 7, =0. or equivalently. ¥, r,; =0
(mod n/ [[w]]).

Finally. recalling that r(P) was the rational function on £ associated to
the measure ¢, 'x,|,, ',,. we obtain

nm
K, = Z Z €, lKi'(c, ey (D)

Jj=1lrve W

=Y ( Y r,(vP))sO (mod ),
re W j=1
so k, is divisible by n, which concludes the proof.
We note that since the p-adic L-function is constructed by taking the
gamma-transform of a measure whose power series is exactly the develop-
ment in w of a rational function on £, we may apply Theorem I to obtain

information on their p-invariant. This is done in Section 3. We now prove
Theorems II and III.

10
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Proof of Theoremll. First, note that since ¢, =27_,a,;B; and
®D(P,,..., P)=37_,a,P;, we must have the condition

ac®;,=bod,<>a=5b=0

for a.be(, and i# j, since this is clearly true of the ¢, This and
algebraicity are the only conditions on the @&; which are needed in the
proof of Theorem 2. The algebraicity of the @, means that since they are
certainly not constant maps, they must be surjective onto E. Now, let
K, = Ker @;. We will show that whenever i # j, @, |, is still surjective onto
E. If it were not, it would be constant, so its image would be e, the identity
element of E. Now, obviously, @, |, =e, so we have induced maps

&, E"/K, -E and &, E"/K, > E.

Thus. &, - &' is an endomorphism of E, so some 7€ (. But then 1 - &, =
;- @,. which is not possible. So @, |« is surjective.
Now. let P, € E be a point at which r,, has a pole. Then r, (P, ®;P) has

a pole at e. Choose R, in E” such that &, (R,)= P,; then we still must
have

m

2 ri:®(Ry+R)=0 VRe E",

/=1

so it suffices to know Theorem II for the functions r(®,(R,) ®,P), ie., we
may suppose that r,, has a pole at e.

Let D, be the set of poles of r,; then @~ '(D;)n K,,, for 1 < j<m. must
have codimension 1 in K, otherwise @, would be constant on X,,, which
is not the case. So 3 "' @~ '(D;)n K, has codimension 1 in K,,. Thus, we
can choose an R, in K,, such that ®(R,)¢D,, | < j<m— 1. We can now
write

m—1
oo @o(R)=r,, @, (R, +R)=— Y r;c®(R, +R).

j=1

But the right-hand side is regular, implying that r,, has no pole at e!
Evidently. the procedure works for each of the r; in the same way, so they
are all constant functions on £. This concludes the proof of Theorem II.

Proof of Theorem IIl. We need a long series of lemmas.

LEMMA 1. Let H be a Zariski-closed subgroup & E". Then there exists a
non-trivial homomorphism ®: E" — E such that H = Ker &.

Proof. Let I,: E— E™ be inclusion of the ith factor for 1 <i<n. Then
since H is a proper subgroup, there exists j between 1 and »n such that

"
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Im /, ¢ H. Thus the composition t: E— % E" — E"/H is non-trivial. and
since H is closed, E"/H is an abelian variety. So the dual t*: (E"/H)* - E
(as abelian varieties) is non-trivial. But E”/H is isogenous to (E"/H)*, so
choosing an isogeny f: E"/H — (E/H)*. we have t*- f: E"/H — E non-
trivial. Then &: E" —» E"/H — *° ' E is non-trivial and H < Ker .

LEMMA 2. Let ®@: E" — E be a homomorphism. Then ® has the form

n

(D(Q],.... Qn)= Z xiQi’ 1,-6@.

i=1
Proot. In the notation above, set x, = ®-[,: E— E. Then

n

DO, ... Q,,)=d>< > 1,-(Q,-)>= Z %, Q.
f 1

=

¢ =1

LEmMA 3. If G is a subgroup of E". und H is its Zariski closure. then H
is also a subgroup.

Proot. 1t suffices to show that H is closed under addition and inverses.
Let 4: Hx H — H’ be addition. For any algebraic map ¢ which is zero on
. we know ¢ must be zero on H. But then ¢ A 1s zero on H x H since it is
zero on G x G and H x H is the Zariski closure of G x G. But this means ¢
1s zero on H’. so H' < H. The argument for inverses is analogous.

LEMMA 4. Let f3,..... B,.be elements of Z, which are linearty independent
over (. and write t =3(w) as usual. Let F be the algebraic closure of the

quotient tield of the ring B. R the ring of integers of F. und M the maximal
ideal ot R. Let

G= Gy (1) Gu1)) | 1=30w), weM].

Then G is Zariski dense in E" (considered to be defined over F).

Proot. Recall that whenever w is in M. then J(w) converges to an
actual value on the formal group of E. Let H denote the Zariski closure of
G. Then by Lemma 3. H is a subgroup of E™. If H # E", then by Lemmas 1
and 2. there exist elements «,...., x, € ¢, not all zero, such that

n

Y 2,0,=0  Y(Q,,..0,)€H.

But then. we may write this as

n

R GEDY 1.[/7,](”:[ > 1,-3,-](1)=0
1 =1

1=

i=1
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for all ¢ on the formal group of £, so 27_, 2;f: =0. But this is not possible,
so we must have H = E".

We may conclude the proof of Theorem 3. Suppose that for some re 4,
we have ©(r) =0. This means

r(Gg,(1)s.r G (1)) =0.

But r is continuous in the Zariski topology, so it must be zero on all of E".

3. THE u-INVARIANT OF THE p-ADIC L-FUNCTION

The aim of this section is to apply the results of Section 2 to the measure

associated to the p-adic L-function. as discussed in Section 1. In particular,
we prove

THEOREM V. u(X,)=0.

In order to do so, we show that the p-invariant of each L, (s) is zero.
Indeed. it is shown in [ 1] that the u-invariant of X is equal to the sum of
the p-invarnants of the L, (s) for 1 <i<p-—2.

Recall from Section 1 that for each i, 1 <i< p—2, and for a suitable

choice of u. the integral power series expansion of the rational function on
the curve

d d

—log R,,(5, L) = —log [T (2™ Ry (=, L)y (18)
d= dz
is exactly the power series which gives the measure associated to L , /(s) as
in Section l(a).

LEMMA 1. For each i, 1 <i< p— 2. we have u(4;) =0, where the series

associated 1o 4, is the development in w of (d/dz)log R wilz, L)

Proof. We show that as a rational function on E, (d/dz)log R, (=, L)
does not reduce to zero mod /4, in fact, we exhibit its poles on E. Recall
that r=# W.

Let S={xed | u(x)#0}, and & = [{Re E| R is a point of x-division for
some x€ S|. Now, since all x€ .S are prime to z and prime to each other
(see [1. Lemma I1.7; 3, Lemma 287]), we have that reduction mod /4 is injec-
tive on .. We separate the proof into two cases.

Case 1. f., =1, 1e., r divides i. We explicitly write down the rational
function on the curve from (18):
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d
2 wa)—log [T (x(P)—~(R))

xe A Re E,.
R+*0
—2v(P)
= - 19
EA Ma)g.\‘(P)—x(R)’ (19)

from which it is easy to see that the poles must come from the points O and
Re . Now. in fact. the residue at O is exactly > ,. , u(x)(Nx—1)=0, so
there 1s no pole there. However, the residue at each R is —2u(x), and since
ulx)= =1 (see [1]). this does not reduce to zero mod .. Moreover. since

reduction mod , is injective on .Z, all the points in ¥ give poles of the
reduced function on E.

Cuse 2. f,# 1. The only difference with Casel is in the explicit
expression of the function associated to ~,:

{
z;zlx)—;—lognn(.\‘(P+Qf)—,\'(R))
x (= R T

_ —2v(P+ Q)
‘?%2"‘“’ NP+ Q) —x(R)

Here again. the poles come from the points —Qf and R— Q7 for all te G,
and Re 2. Now. the residue of cach pole at —QF is again
Soutx Nz —1)=0. so there are actually no poles there. But the poles
coming from the R — Q; have residue —2u(x). which as before is prime to
,» for each =z (see [3. Lemma 287]). Moreover. since each R— Q] 1s a
primitive z/ -division point. again reduction mod ,; is injective on this set,
so each R — Q7 gives a pole of the reduced function on E. This concludes
the proof.

LEMMA 2. The p-invariant of +¥ is zero.

Proos. In fact. we show that the u-invariant of 2, |, is not zero. from
which the result follows. Note that the characteristic function of pZ, is

(1 p)y> .- , 2% Now. the power series associated with 4, is the development
n ow oof 3>, ,uxnddzylog S, ,(P) when f, # 1. so by Section 1(b), the
power series associated with blpe, s S e HlxNdldz)

log [1s. +. Z..0(P + S). which by the functional equation (4) given in Sec-
tion |. can be written

re A4

1[ d 3
Y w1 | Soe trga 1P | (20)
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Now, by the chain rule, we can write 3., u(x)(#n/p)((d/dz)
log ¢, 0.,1([7]P) for (20), which allows us to reduce modulo ,. The poles
of this function come from the points —Q*+ S and R— Q™+ + S for all
t1e€eG,, Re ¥, and Se€ E,. But all the S reduce to zero mod £, so evidently
the residue of each pole is a multiple of p, and thus reduces to zero mod 4.

Thus the rational function in (20) is divisible by p, which concludes the
proof.

LEMMA 3. The u-invariant of the measure

Y wi(v) AF:(v)

re W
is zero.
Proof. As usual. we divide into two cases.

Case 1. f,=1.1e. r divides i. In this case, the measure in the lemma
becomes simply > .. 4 A¥ = (v), since w'(v)=1 for each v € W. But the poles
of 4* are given by the points Re ¥, and the v are isomorphisms of E, so
they only permute the poles. So 4A*-(v)=4* for each v. and the measure
can be written r~*. Now the result of Lemma 2 concludes the proof.

Case 2. f, # 1. Let us consider the set of poles of the form

We attach a P, to each Re . For each Pg, let v 'P, denote the set
‘vt ""(R—Q7)| ted,|. Now, since the orbit of Q; under the t lies entirely
in one congruence class modulo W, the v 'P, are compietely disjoint sets
for R fixed and ¢ varying in W. We show. moreover, that if
v 'Pg =t 'Pg, then R, = R,. For first of all, R, and R, would have to
be points of x-division for the same z. But then, letting f; act on both sides
of the equality, we would have R, = R,. This shows that for v fixed, the
poles of 2* (v) are given by the v ~'Pg for Re &£, and that all these poles
are distinct. It remains to be shown that no pole of A* (v,) can be a pole
of *-(v,) if v, #v,. Suppose we had R,, R,, t,, and 7, such that
v (R, — Q) =v, '"(R, — Q7). First. we see immediately that R, and R,
must be points of z-division for the same x. But then, letting x act on both
sides. we obtain

el (= = v (7).

which is impossible if v, # v, since the two points would be in different
congruence classes mod W.

We have now proved that all the poles of >, ,, w'(v) 2* - (v) come from
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v~ 'Pg for all ve W and Re %. Applying the methods in the proof of
Lemma | to these points. we easily compute that the residues all have the
form vu(x) for some ve W, and as before, that this is never congruent to
0 mod ,.: similarly, we see again that reduction mod / is injective on the
entire set of poles. This suffices to prove that the rational function
associated with 3. _,, w'(v) A* - (v) does not reduce to zero mod .

Now. for 1 <i< p—2. up to units in the Iwasawa algebra. L, (s) is
given by the (i — 1)th gamma-transform of 4, (see [1] for details), and
L, o(s) is itself given by a unit in the Iwasawa algebra. Thus. applying the
resuit of Theorem I in Section2 permits us to conclude that the
p-invariants of the L, (s) are zero for 0<i< p—2. This concludes the
proof of Theorem IV.
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Article 2. Interpolation p-adique de valeurs spéciales de fonctions L.

Soit K un corps quadratique imaginaire. Soit K sa cloture algébrique et fixons un
plongement de K dans C et C, pour tout nombre premier p. Soit F' une extension de K
de degré n. Un caractére de Hecke ¥ de K sera appelé K-admissible s'il existe k() € N
et (1) € N— {0} tels que 3 ((a)) = mkw)Np/K(a)‘j("’) pour tout a € K* congru
a 1 modulo le conducteur my de 3. Si 9 est un caractere de Hecke de F' qui est K-
admissible, on pose A() = T'(j(y))"(2mi)~" ¥ L(y,0), ot L(¥,s) est la fonction L de
Hecke attachée a . Une conjecture de Deligne prouvée par Harder prédit la valeur de
A(%) a multiplication par un nombre algébrique prés. Dans cet article, nous étudions le
comportement p-adique de A(¥).

Soit p # 2,3 un premier qui est décomposé dans K. Soit p le premier de K induit
par le plongement de K dans C, et P l'autre premier de K sur p. Or il est connu que
tout caractére de Hecke ¢ de F' de type Ay (et done tout caractére de Hecke de F' qui
est K-admissible) induit un unique caractére continu 1(?) de Gal(F?®/F) & valeurs dans
C;. Si m est un idéal de I’anneau des entiers de F\, soit |m| I'ensemble des places de F
qui divisent m, et si S est un ensemble fini de places de F' qui ne divisent pas (p), soit
GF,s,p (resp. GFsp) le groupe de Galois group sur F' de 'union des extensions abéliennes
de niveau m telles que |m| C SU|(p)| (resp. |m| C SU|p|). Si ¢ est un caractére de Hecke
de F qui est K-admissible, de conducteur my, alors 1(P) se factorise & travers § F,S,p pour
tout S tel que |my| C S U |(p)| et méme & travers Grsp si k(¢p) = 0 et |my| C SU |p|.
Finalement, soit F'V conjugué complexe de F' et si ¢ est un caractére de Hecke de F,
soit ¥V le caractére de Hecke de FV defini par ¥V(a) = N(a)~'¢~!(d) pour tout idéal
fractionnaire a de FV.

Théoréme: (i) Il existe une mesure unique pg sur Gr s, telle que pour tout caractére de
Hecke v de F qui est K-admissible et tel que »(P) se factorise & travers G F,s,p (et avec
’hypothése supplémentaire que k(1)) =0 ou j(¢) =1sin > 3), on a:

/g P dus = Egy(6¥) i (9) W ($) Es($)A().

(ii) Il existe une unique pseudo-mesure (qui est une mesure si S # @) caractére de
Hecke K-admissible 3 de F tel que %(P) se factorise & travers Gr s p, on a:

/g P dhs = B (9" Wo($) Es($)AG),

ou si T est un ensemble fini de places, E7(3) est le facteur d’Euler au-dessus de T (en
s = 0) de la fonction L attachée a ¥ et W;(¢) est une racine locale.
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P-adic Interpolation of Special Values of Hecke L-functions

Pierre Colmez and Leila Schneps

0. Introduction

Let I be a quadratic imaginary field. Let K be its algebraic closure and fix an
embedding of I¥ into C and C, for all primes p. Let F be an extension of degree n of
LK. A Hecke character v of K will be called I{-admissible if there exist k(¢) € N and
j(¥) € N = {0} such that ¥((a)) = Wk(w)Np/K(a)"jW’) for all @ € K* congruent
to 1 modulo the conductor my of ¥. If ¥ is a K-admissible Hecke character of F, we
set A(¥) = T(j(v))"(27i)~™¥) L(4,0), where L(3, s) is the Hecke L-function attached to
v. A conjecture of Deligne [D] proved by Harder [H-S| predicts the value of A(¢) up to
multiplication by an algebraic number. The aim of this paper is the study of the p-adic
behavior of A(¥).

Let p # 2.3 be a prime splitting in . Let p be the prime of K induced by the
embedding of I into C, and P the other prime of K above p. As observed by Weil [W1],
any Hecke character w.of F of type Ay (thus any K-admissible Hecke character of F) gives
rise to a unique continuous character ¥?) of Gal(F*®/F) with values in C;. Ifmisan
ideal of the ring of integers of F, let |m| be the set of places of F' dividing m, and if
S is a finite set of places of F' not dividing (p), let GF,s, (resp. Gr,sp) be the Galois
group over F' of the union of all abelian extensions of level m such that |m| C S U |(p)|
(resp. |m| C SU |p|). If ¥ is a K-admissible Hecke character of F' of conductor my,
then ¥(P) factors through G s, for all S such that |my| C S U |(p)| and even through
Grsp if k() = 0 and |my| C SU |p|. Finally, let FV be the complex conjugate of
F and if ¢ is a Hecke character of F, let ¥V be the Hecke character of FV defined by
»Y(a) = N(a)~'¢~1(a) for all fractional ideals a of FV.

Our main result can be stated as follows:

9



Theorem: (i) There exists a unique measure ps on Gr s, such that for all K-admissible
Hecke characters ¢ of F such that (P) factors through Gr s, (and with the additional
assumption that k(¢) =0 or j(¢p) = 1 if n > 3), we have:

/g OP dus = By (") Epg(¥)Wo () Es($)A().

(ii) There exists a unique pseudo-measure (which is a measure if S # 0) such that for
all K-admissible Hecke characters 1 of F' such that 1(?) factors through G F,S,p, We have:

/g B P dhs = Epgy (4" )Wo($)Es($)A®),

where if T is a finite set of places, Ep(1) is the Euler factor above T (at s = 0) of the
L-function attached to v and Wy(3) is a local root number.

Remark: Stated like this the theorem does not really make sense because in each equality,
the left hand side belongs to C, and the right hand side to C. But as we have fixed
embeddinés of K into C and C,, if we choose an elliptic curve E defined over K with
complex multiplication by K, a generator n of H!(X,0x) and a generator v of the 1-
dimensional K-vector space H;(E(C),Q), we can define a p-adic period 5, = f7 n and a
complex period 7 = f1 n (cf. III §2 for details). The fields K (1) and K(n,) as well as
the isomorphism between them sending 7., to 7, are independent of the choices of E, 7
and v and all equalities take place in K (7c0) ~ K(7,).

Such measures have been previously constructed in the case n = 1 by Manin-Vishik
[M-V] and Katz [K]. Using ideas of Coates-Wiles [C-W], Yager [Yal],[Ya2] and Tilouine
[T] (see also de Shalit’s book [d Sh]) obtained a much more elementary construction of
this measure (still in the case n = 1).

We obtain our theorem in the following way. Using a method developed in [Co 1],
similar to Shintani’s method [Sh| in the totally real case, we can define a value A’(%)
explicitly given as a polynomial in Kronecker-Eisenstein series attached to lattices in K
and a priori depending on various auxiliary choices (mainly the choice of “Shintani decom-
position”) which is formally (i.e. without worrying about convergence problems) equal to
A(). To prove that A’(¥) = A(%) in general turned out to be beyond our capacities,
but by a suitable modification of the methods of [Co 1], we were able to prove the desired
equality whenever n = 1,2 or n > 3 and k() = 0 or j(¢) = 1. Now, having these explicit
formulae allowed us to deduce the general case from the case n = 1. A by-product of the

existence of this measure is that A’(¢) is independent of all choices.
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If y is a continuous C}-valued character of G5, (resp. Gr,s,p), We set L, s(x) =

fg”'? X dps (resp. Lp s(x) = ng's’p x dAs. We can then make the preceding theorem
more precise as follows:

Main Theorem: (i) L, s(x) is a holomorphic (and even Iwasawa) function of x.

(ii) If ¥ is an admissible Hecke character of F' such that 9(?) factors through Gr s,
then

Ly s($'P) = E(¥)Efg (V) Wa(9)Es($)AT ().

(i11) If the conductor of x is divisible by all the elements of S, then there exists a p-adic
unit TV(P)(x) such that W) (x)L, s(x) = Lp,s(x"), where xV is the character of G, 3y
obtained from Y in the same way as ¥V was obtained from 1 for 3 a Hecke character of

F.

(iv) Lp, s(x) is a meromorphic function of y, holomorphic except for a simple pole at

\'=1if5=@.

(v) If ¢ is an admissible Hecke character of F such that y(?) factors through G s p,
then Ly, s(¢?) = Eg(v¥)Wp(¥)Es(v)A().

The paper is organized as follows. After introducing in I the basic notations and
recalling some basic facts about Fourier transforms of functions on adéles, we present in II
a slight modification of the Shintani-like method developed in [Co 1]. In part III, we prove
the existence of p-adic measures attached to n-dimensional generalizations of Eisenstein-
Kronecker series attached to lattices in K. As a consequence of the existence of these
measures we derive the fact that all choices that we had to make in part II lead to the
same result. In part [V we prove a number of functional equations satisfied by A(v) and
apply the result of the two preceding parts to compute A(¢). Finally, part V is devoted
to the construction of us and As using the measures constructed in part III and to the
study of the p-adic L-functions L, s and Ly s.
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I. Notations and Definitions.

Let K be a quadratic imaginary field. Let a — @ denote the non-trivial automorphism
of K. Let F ~ K[X]/P(X), for P an irreducible polynomial of degree n, be an extension of
degree n of K. Let FVY = K[X]/P(X): We still write o — @ for the antilinear isomorphism
from F to FV sending X to X. We shall use H to denote either F or FY so HY will be
FV (resp. F)if H = F (resp. H = FV). Let Oy be the ring of integers of H, Uy be
the group of units of Oy, I(H) be the group of fractional ideals of H, I*(H) C I(H) be
the set of ideals of Oy, Cl(Oy) be the group of ideal classes, C(H) C I*(H) be the set
of ideals a of Oy such that Op/a is cyclic, C°(H) be the set of principal ideals of C(H),
P(H) be the set of prime ideals of Oy, P(H) be the set of finite subsets of P(H), Ay
be the ring of adéles of H, A{I be the ring of finite adéles of H and dy be the absolute
different of Oy. If V is a subgroup of Uy let VV = {3 | v € V'} be the corresponding
subgroup of UY;. If a € I(H),leta = {@ | a € a} € I(HY) and if S € P(H), let
S={plpeS}ePHY). Ifme I(H),let |m|={q € P(H) | vg(m) # 0} € P(H) and
if S e P(H), let Is(H) = {a € I(H) | la|nS = 0}. Also let Op, s (resp. O ) be the
subring of H defined by z € Op,s (resp. OY g) if and only if vq(z) > 0 if q € S (resp.
q¢S5) .

Fix an embedding of the algebraic closure K of K into C. Let Yy oo = HQQC ~ Y} X
Y,, where Y] = HQgCand Y, = HYQk C. Let 1,...,7, be the n embeddings of H into
K; we obtain an isomorphism of ¥; (resp. ¥;) with C™ sending a®1 to (1(), ..., Tn(e))
(resp. to (1i(@),...,ma(@)) ). With these identifications, H and HV become dense K-
vector subspaces of C* and a € I(H) becomes a lattice in C". If y = (y1,...,y») and
z=(z1,...,2n) belong to C", let Tr(y) = Y7, vi; N(y) = 1=, ¥i; ¥z = (v121,- - -, YnZn);
(y | z) = Tr(yz +yz) and (y | )0 = exp(—2m2{y | 2)). If B is a basis of H over K, we
let BY be the basis of HY over K dual to B with respect to ( | ) and if B is a finite set of
bases of H over K, we let BY = {BY | B € B}. If a € I(H), let a¥ be the dual lattice of
a with respect to (| ). Then, a¥ € I(HV) and we have a¥ =a~!d3} = (ady)~.

If q € P(H), let Hq be its completion at q and Oq be the ring of integers of Hq. If
S € P(H), let Hs = [[ c5Hq and Os = [[;¢5Oq. We can describe A}, as the set of
£=(...,2q,...)suchthat 4 € Hq forall q € P(H) and z4 € Og for almost all q € P(H).
We can define a pairing ( | )y on A{{ X A{{ with values in the group of roots of unity
of K~ C C* in the following way. The above defined pairing { | ) on C™ x C™ induces a
pairing on H x HY with values in Q which we can extend to a pairing on AL X Aﬁv with
values in Aé, and usinifile canonical ’iicfmorphism between A,fQ /11 » Zp and Q/Z, we set
(z | y)u = exp(—27i(z | y)) where (z | y) is the image of (z | y) in Q/Z. This pairing
induces local pairings ( | )s on H X HZ and we have (z | y)u = [[4epin)(%a | ¥g)al-

22



Using these pairings, we can define the (local and global) Fourier transform. Let Sg g
be the space of K-valued locally constant compactly supported functions on Hs. IfaC b
are two fractional ideals of Hs and ¢ € Sg p is constant modulo a and zero outside b, we
define its Fourier transform Fs(¢) € Ss u by:

N—(a") .
Fs(o)(y) = { Sty Lzeb/ad(@)z |y)s ifzea’
0 ifz ¢ a¥

where a¥ is the ideal of H% dual to a with respect to (| )s and Ns(a) is the norm of a as
a fractional ideal of Hgs. It is an exercise to verify that this definition does not depend on
the choices of a and b and that F5(Fs(¢))(y) = ¢(-y).

Let S(H) be the space of K -valued locally constant compactly supported functions on
A{,. The fractional ideals of A{, are in 1-to-1 correspondence with elements of I(H). So
if a C b are elements of I(H) and ¢ € S(H) is constant modulo a and zero outside of b,
we define its Fourier transform Fy(¢) by the same formula as before (with the subscript
S replaced by H) and we have Fyv (Fu(4))(y) = ¢(—y).

If S € P(H), let Ss(H) be the subspace of S(H) of functions of the form
os(rg)Hq¢5 lo,(zq), where ¢5 € Ssy and 1lp, is the characteristic funtion of Oq.
There is an obvious isomorphism between Ss i and Ss(H) and S(H USGP(H) Ss(H).
fSNS =0 and 0 = OS(xS)quss lo,(zq) € Ss(H) and ¢' E Ss' y. we define
o' *0 € Ssus/(H) by ¢' x o(z) = ¢'(zs )ps(zs) quSUS, lo,(zq). Finally, if b € I(H),
define ép € Sjp|,i by éb = 1o}, — b where 1y, is the characteristic function of b con-
sidered as an Hjp| fractional ideal, and if b € I(HY), let &y € Sip|,u De defined by
oy = 10|E| — N(b)™! le-t. Let v be a generator of the fractional ideal of H|y,| generated
by dy. Then we have

f|b|(6_ (z) = bp(v2).
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I1. Shintani’s method.

In this section, we shall recall some results obtained in [Co 1| and improve a little bit
on them. Let k¥ € N, j € N — {0}, and let V be a subgroup of finite index in Uy. Let
Sk,j,v(H) be the subspace of S(H) of functions satisfying:

$(vz)Na/R(0) Nujx(w) = g(z) forall zeAf and veV. (1)

If ¢ € Sk,j,v, we set

k

1
TV vr)M > e

BEH*[V

Ak, j,¢,8) =

This expression is independent of the choice of V' and converges for Re(s) >> 0. By a
theorem of Hecke, A(k, j, ¢,s) admits an analytic continuation to the whole complex plane
and a functional equation relating it to A(j — 1,k + 1, Fy(¢), —s). We set

A(k,j,9) = Ak, J, ,0), (3)
and the functional equation gives
A(k,5,9) = (=1)"U"ViA(f = L,k + 1, Fr(9))- (4)

From now on, V will be a torsion free subgroup of finite index of the subgroup of Uy
of elements of norm 1 over K. Let B(V) be the set of finite sets of bases of H over K

satisfying:
=Y fa(vz) (5)
veV peB
where, if B = (f1,B,..., fa,B) is a basis of H over K, we set
= det(B) [[(Tr(fip2)™ (6)

i=1

for all z € (C*)" such that the right hand side converges.

Remark: This condition is an “algebraic” version of Shintani’s condition [Sh] (in the to-
tally real case), that the union over B € B of the cones generated by f; g,..., fa,B is a
fundamental domain of (R} )" modulo the action of V.
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Lemma 1: (i) B(V) is not empty.
(i1) If B € B(V), then BY € B(VV).

Proof: We shall use theorem 1 of [Co 1] to construct explicit elements of B(V). By a
theorem of Dirichlet, V' is of rank n — 1. Let us choose a basis 71,...,n7,-1 of V, and for
eacho € Sp_y,let fi, =1land f; , = Hj<i No(j) for 2 <4 < n. Write ¢(o) for the signature
of o and suppose that (fi,s,..., fn,0) is a basis of H over K for all o € S,—; (we can always
find 79,....7n—1 so that thls is true). Then there exists a sign € = €(n1,...,7n-1) such
that. if B = (f1,6,---+fn,0c) When ee(0) =1 and By = (fno, f2,05-- - fn—1,0, f1,0) When
ee(0) = —1, then B = {B, | 0 € S,_1} € B(V). Part (ii) of the lemma follows by taking
the Fourier transform of both sides of (5) and using the fact that the Fourier transform of
Fp(z) with respect to ( | )oo is t"Fpv(2).
Let z; = (zi1,....2in) for ¢ = 1,2 be variables in Y; ~ C". Let V; = H" ( aza,,)

We deduce from (5) and the fact that V, ov = V; if v € V, that whenever the right hand
side converges and B € B(V'), we have

k

L™ S 3. 1
(2iz)n) (3 -+ 30)) 7z7r)n(k+1) (ZE;/ 32;3 vB + 21]22)o0 fB(vE + 1)) 1 =2,=0
v €
(7)
If B is a finite set of bases of H over K and ¢ € S(H), we set
K(z1,22,6,B) = Y_ Y $(B)fB(B + 21)(w + 21]22)oo- (8)

BEH BeB

This series is not absolutely convergent but makes sense as a distribution, and the resulting
distribution can be expressed in terms of elliptic functions attached to lattices in K (cf.
[Co 1] and III §3 of this paper).

If o € Sk.;v and B € B(V), we set

1 1 21 Z9
(

F(zl’:%d)’s):[—U_H:—V]W ¢ 2—75,%,05»3)- (9)

Now. plugging (7) into (2) with s = 0 yields the following formal identity:

A(k,j, ¢) = VIT'VE(F (21,22, ¢, B)) (10)

21=22=0"

The main problem with (10) is that F(z, z2, ¢, B) is in general not regular at z; = z, = 0.
In fact. we have the following lemma:

Lemma 2: The singularities of I{(2, z2, ¢, B) are simple poles situated on the hyperplanes
Tr(fi.B(3+ z)) =0 (resp. Tr(fipv(B + z)) = O) where (§ runs through elements of H
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(resp. HV) such that ¢(8) # 0 (resp. Fu(4)(B) # 0), B runs through elements of B and
1<:<n.

Proof: The proof results from the expression of K(z1, 22, ¢, B) in terms of elliptic functions.

Remark: The poles on the hyperplanes of equation T'r( f; B(8 + z)) are already apparent
in formula (8); the others appear if we use the following functional equation which is a
direct consequence of the Poisson summation formula:

I{(21,22,¢,B) = 2.n(‘zl l 22)001{(3% _zl7fH(¢)an)° (11)

We shall say that (¢, B) satisfies the condition (*) if K(z,22,9,B) has no singularity at
z1 = zo = 0. This is equivalent to

1) é(z)#0=>Tr(fipz)#0 forall € H, Be€B and 1<i<n.
2) Fu(o)z)#0=Tr(fipvz)#0 forall z€ HY, B€B and 1<i<n.

We shall say that (¢, B) satisfies (**) if it satisfies (*) and if we have moreover

3) #z)#0=>Tr(fr)#0 forall z€ H and f € &B)
4) Fu(z)#0=>Tr(fz)#0 forall z€ HY and fe€&(BY),

where £(B) (resp. £(BY)) is a finite subset of H (resp. HV) which will appear in the proof
of Theorem 3.

If (¢,B) € Sk,jv(H) x B(V) satisfies condition (*), we set
Ag(k,j,8) = Vi VE(F(21,22,9,8)), _, _, (12)

and

Fj(22,6,B) = Vi (F(21, 22,4, B))

Let g be a C'*° compactly supported function on C equal to 1 in a neighborhood of 0. Let

(13)

21=0"

e > 0 and pi(s) = ik%’g—#%, and set
Ag(k,j5,¢,5) = /Cn FJ(ZI’¢7B)H(g(ez2,z)“k(3)wm)' (14)

1=1

Theorem 3: (i) A (k,J, 9, s) is a meromorphic function of s € C and the locus of its poles
is independent of e.

(i) When € goes to 0, Ag (k,j,d,s) converges uniformly (outside the poles) to
A(k,j, ¢,s) on each compact subset of Re(s) > % + 1.
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(ii1) For all € > 0, we have Ag ((k,J,¢,0) = Ag(k, ], d).

(iv) If (¢, B) satisfies condition (**), then Ag (%, j, ¢, s) converges uniformly (out-
side the poles) on each compact subset of Re(s) > g — =75 (tesp. C), if n > 3 (resp.
n=12).

(v) AB(k,j,0) = (=1)"U=Di*Agy (j — 1,k + 1, Fu(9)).

Corollary: If (¢, B) satisfies condition (**), we have Ag(k,j,¢) = A(k,7,4)if n= 1,2 or if
n>3andk=0o0rj=1

Proof of theorem 3: (v) is an immediate consequence of formula (11). Using the same
method as in [Co 1. p. 198], we see that A(k, j, #, s) is a finite combination of the functions
studied in [Co 1, II]. Granting this, (i) follows from [Co 1, II Lemma 8], (ii) from [Co 1,
II Lemma 9] and (iii) from [Co 1, II, §6]. The only thing which is new is (iv), which will
allow us to remove from [Co 1, Th. 5 and 6] the meaningless condition about embeddings
of F into K. This improvement is made possible by replacing Lemma 1 of [Co 1, III] by
the following stronger theorem of Schmidt:

Lemma 4: (Schmidt’s subspace theorem) Let é > 0 and {(Lj1,...,Ljna) |7 € J} be
a finite set of families of n linearly independent linear forms with algebraic coefficients.
Then there exists a finite set £ of elements of HY such that for all ¢ € S(HV), the set of
elements of HY satisfying

(i) ¢(z) # 0
(i) there exists j € J such that [[1, |L;,i(z)| <[ =]~

is contained in the union of the hyperplanes of equation Tr(fz) = 0 for f € £ up to a
finite set.

For the proof of this statement see [Sch, Th. 7TA]. Let us go back to the proof of (iv).
Let & > 0. A slight modification of the proof of [Co 1, II, Lemme 10] shows that there
exists a finite set £L(BY) = {(Lj1,...,Ljn) | j € J} of families of n linearly independent
linear forms with algebraic coefficients (they are the Ny ; of [Co 1, Th. 2]) such that if,
for all j € J, the set of z € HY such that Fu(¢)(z) # 0 and [[i, |L;i(2)] <z |~ is
finite, then Ag (%, 7, ¢,s) converges uniformly (outside the poles) on each compact subset
of Re(s) > %— Q(nl—i%}:-}f—m (resp. C) if n > 3 (resp. n = 1,2). To finish with the proof,
we just have to take £(B) (resp. £(BY)) of condition (**) to be the set £ associated to
L(BY) (resp. £(B)) and § = (4(n - 1))_l by Lemma 4.

When (¢, B) does not satisfy condition (*), we cannot define Ag(k, j,9) by formula
(12). As the singularities of F(21, 22, ¢,B) are simple enough, we could give a meaning
to (12) by taking a suitable finite part as in [Co 1, II, §6], but here we shall use the
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standard technique of replacing ¢ by a suitable linear combination to eliminate the pole.
IfSeP(H)let Sk ={qN Ok | q€ S} € P(K) and if S € P(K), let SH = {q € P(H) |
3p € S such that q|p} € P(H).

Lemma 5: Let £ be a finite subset of H*; then there exist S(€) € P(H) such that for all
S € P(H), all b € C(H) satisfying |b| N (S(€) U(Sk)®) = 0 and all f € £, we have: if
z € b™10y 5 — O s, then Tr(fz) ¢ O% (5, n and in particular T'r(fz) is non-zero.

Proof: Let S' = |du| Usee |(f)| and S(€) = (Sk)?. Let b € C(H) be such that |[b| N
(S(&)U(Sk)?) =0 and « € b™10% g — Oly 5. There exists q € |b| such that ve(z) < 0.
As Op/b is cyclic, q is of degree 1 and if p = qN Ok and q' € |p| — {q}, then q' ¢ |b|,
hence vg/(z) > 0; and this implies, as q ¢ S’, that vp(Tr(fz)) = vq(z) which implies
Tr(fz) ¢ O (sy)a-

If S € P(H) and §' € P(HV), let C(S,5") = {(by,b2) € C(H) x C(HV) | [bs| N
(Sk)H = 0,|ba| N (S4 )" =0 and |by | N |be|x = 0}, and if T € P(H), let C1(S,S") =
C(SUT,S5'UT). Also let C°(S,S") (resp. C3(S,S")) be the intersection of C(S,S")
(resp. C7(S,S")) with C°(H) x C(HV). If ¢ € S(H), and by € I(H),bs € I(HV), set
Bby by = 6b1_1 * 5:2_1 * 0, whenever this is defined.

Lemma 6: Let B be a finite set of bases of H over K. Then there exist S = S;(B) € P(H)
and S’ = S}(B) € P(HV) such that, for all T € P(H), all ¢ € Sp(H) and all (by,b;) €
Cr(S,S"), the conditions (*) and (**) are satisfied by (@b, b,, B)-

Proof: b, ,b,(z) # 0 implies z € bI_IOQI,T — Oy 1 and FH(db,,b,)(z) # 0 implies z €
by lO’HV’-T - O’HV,T‘ Hence, the result is an immediate consequence of Lemma 5.

Let OF act on Sy, by ¢ — ¢ oy where ¢ o y(z) = ¢(yz). Any ¢ € Sy, has a
unique decomposition ¢ = ) ¢y where ¢, = 0 for almost all x, x running through the
locally constant characters of OF, and ¢, oy = x(7)¢y for all vy € O%. Now, using the
identification between Sy,r and S7(H), we can decompose any ¢ € ST(H) as ), ¢y and
if ¢ belongs to Sk ;v (H) then so does ¢. Let (by,by) € C3(S1(B),S;(B)) and 1 € H
be a generator of by and #; € HY be a generator of b,. If ¥ € H* and ¢ € S(H), let
¢ oy € S(H) be defined by (¢ o v)(z) = ¢(yz). Then we have )

(¢X)b!vb2 = d’X_X(BI)_1¢x°ﬂ1_N(b2)X(B-2)¢x032—1 +N(b2)X(B2,81_1)d’xo(ﬂlﬁz—l)a (15)

but as N k(1)
v
Ak, 5, 607) = ———A(k,j,6), (16)

Ny/k(7)
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we obtain

Ak, 3,0) =Y vs, 82k, 5, X)ACk, , (6 )by ba), (17)
X

where

V.Bl,ﬂz(kaj> X) = (1

X(B) T Nuyk(BiY -1, X(Ba)Ngv k(B2)F | 1
- ) (1- . (18)

—_k —_—j-1
Nuk(B1) Nuv/(B2)

To be coherent with formula (17), we set, if ¢ € S7(H) N Sk,;,v(H), B € B(V) and
(blsb?-) = ((/81)3('32)) € CT(SI(B)’S;(B))?

‘\B.ﬂl,ﬁz(k’ja ¢) = Z Vﬁl.ﬂz(kﬂj’ X)"'\B(k’j’ (¢X)b1,b2)’ (19)

X

and the right hand side is well-defined by Lemma 6.

Remark: We expect that Ag 3, 3,(k,7,0) = A(k,J,0) and by the corollary to theorem 3,
this equality is true if n = 1,2 orif n > 3 and £ = 0 or § = 1. Moreover, we shall prove
using p-adic methods (cf. III §4 of this paper) that, to a large extent, Ag g, 3,(k, , ¢) does
not depend on the auxiliary choices of B, #; and f;.
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III1. Construction of the basic measure

§1. P-adic measures

Let p # 2,3 be a prime which splits in K. Fix an embedding of K into C, (and keep
the previous embedding of K into C). Let p be the prime ideal of O determined by this
embedding, Op be the completion of Ok at p and P the other prime ideal of Ok above p.
Let Yo p =OH ®@0x Op ¥ Onv ok O and Yy, = Oy ®Z, =Y; x Y, where Y7 =Yy
and Y3 = Ygv . We can also describe Y; (resp. Y2) as the topological closure of Op (resp.
Opnv) into C? via the map a — (r1(a),...,Ta(@))( resp. (T1(@),...,Ta(a@))). With this
description, we can write y; € Y; as (yi,1,---,¥in). If 2 € C}, weset Tr(z) = 3, z and
N(z) = H:;l zi. If £ is a prime ideal of Ok, let dy ¢ be the part of dy above ¢. Fix a
basis B = (f1,...,fn) of d;I%OH.p over Ok . Let B* = (g1,...,9n) be the basis of H
over K dual to B with respect to the bilinear form Try,x(zy) and BY = (f;V,..., fa")
and (B*)Y = (g1V,...,gn") be the bases of HY over K dual to B and B* with respect to
(]). Then B* is a basis of d,‘,}pOH,,J over Ok,p, BY is a basis of dgl\,,sOyv’p over Ok,p
and (B*)V is a basis of d;{l\,,pOHv,p over Ok p. .

Ify; € Vi, weset z; = (zi1,...,%in), Where z; ; = Tr(g;jy1) and z2,; = Tr(g;"Vy2).
The map y; — z; induces an isomorphism of Op-modules between Y; and Op ~ Z3. If
zi =(zi1,-..,2in) for i=1,2 is sufficiently close to zero in C3, weset w; = (wi1,..., Win),
where wy j = exp(—Tr(fjz1)) — 1 and w,; = exp(—Tr(f;V22)) — 1.

Let A be a closed subring of O the ring of integers of C,. A A-valued measure on a
compact and totally disconnected topological space X is a continuous (for the supremum
norm) linear map on the space of continuous functions on X with values in C, whose
values on characteristic functions of compact open subsets of X are in A. If u is a A-
valued measure on Yy ,, we define its Fourier-Laplace transform by

2 n
ezp(—=Tr(y121 + y222))dp = /Z2 H H(l + w; ;)" dAp,

p 1=1j7=1

Fy(z1,22) = /

YH,p
where \p is the measure on Zf," deduced from p via the map (y1,y2) — (z1,z2).

Lemma 7: If p is a A-valued measure on Yy p, then F,(z, 22) is given by a power series in
a neighborhood of zero, and reciprocally, if F(z1,2;) is a power series, then for F(z;,2)
to be the Fourier-Laplace transform of a A-valued measure, it is necessary and sufficient
that F(z1,22) expressed in w;,w; is a power series with coefficients in A.

Proof: The general case reduces easily to the case n=1 which is well-known.
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We shall write Wpg ,(wi,ws) for the Fourier-Laplace transform of p expressed in
wy,wy. Ify € H/ d;ﬁPO H,p, We define a locally constant character x. of Y; identified with
Onv ®0x Op by the formula x+(y1) = (7 | y1)jp| (cf. I), andif vy € HV/dI';lv’pOHv,p, we de-
fine a locally constant character xy of Y2 ~ On ®o, O by the formula x+(y2) = (2 | 1)
The map 7 — X induces an isomorphism from H/dg' ,On,p (resp. HY/dgy ,Onv p) to
the group of locally constant characters on Y7 (resp. Y3).

Lemma 8: Let j,k € Nand 7, € H/d;prH,p and v, € H"/dl}l\,’pOHv,p. Then

(i) fYH.p X'fl(yl )X‘Yz(y2)N(y1 )JN(y2)k d'll = V‘]’.vg (FX‘n X“Izl‘(zl’ 22)) 21=22=0"

where, if ¢ is a continuous function on Y , then ¢u is the measure defined by

Sy, ¥ d(n) = Jy,  o¥dp, and
(i) Fyy, xvpn(z1:22) = W u(o. oy 6 5(1 +wij) — 1,...),
where the ¢€; ; are p>®-th roots of unity defined by €; ; = x, (_f_]) and €2,; = xv,(f; V)

Proof: (i) follows by developing e:z:p( Tr(yl z1+1Y222)) as a power series and (ii) is evident

if we remark that \,(y:) = [[}=, € "7, which gives

z.
F\n\n# 21, 72) HH €i,j 1+w,11 7 dAp.

YH P 1_1 ]._

Our aim in the rest of this section will be to prove that under suitable conditions,
the holomorphic part of K'(z1,22,¢,B) is the Fourier-Laplace transform of a measure on
Y .p. We shall first consider the case H = K, and this will involve the study of the p-adic
behavior of Eisenstein-Kronecker series. This is the aim of the next paragraph, and in the
paragraph after that we shall reduce the general case to the case H = K.



§2. P-adic properties of Eisenstein-Kronecker series.

Let us begin by recalling the definitions and some basic facts about Eisenstein-
Kronecker series. We refer to [W2] for the proofs. Let L be a lattice in C and A(L) =
7= 1Vol(L). If u,z € C, we set

(z,u)r = exp(A(L) ™! (27 — uz)). (20)
If k£ > 1is an integer, we define for Re(s) >> 1 the function H(s, z,u, L) by the formula

Z+w)k

Hk(S,Z,U,L) = F(S)A(L)a_k Z'(W,’U.)L Iz +w|23 '

w€L

(21)

This function has an analytic continuation to the whole complex plane and satisfies the

functional equations

Hi(s,z,u,L) = (u,z) Hx(k + 1 — s,u,z2,L), (22)
He(s,z,u,L') = [L': L¥* Y (v,u)r Hi(s,z +7,[L' : L]u, L) (23)
YeEL'/L

if L is a sublattice of L', and
Hi(s, Az, u, ALY = A% Hy(s,z,u,L) for A€ C. (24)

From (4) and (5) one deduces that if u € QL and b € C is an endomorphism of L such
that bu € L,
*
Hi(s,z,u,L) = W Y (v bu)LHi(s,y +b7"2,0,L). (25)
v€b-1L/L

If j is an integer such that 1 < j <k, we define

Ekyj(z,L) = Hk+j(j,2,0,L) and EJ'(Z,L) = Eo,j(Z,L), (26)
aj(L) = E;(0,L) = Ey,;-1(0, L), (27)

and
p(z,L) = Ea(2,L) — az(L) (so p'(z,L) = —E3(Z,L)). (28)
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Ey(z,L) has the following Laurent expansion in a neighborhood of 0:

EI(Z,L) "‘TL—)’ +z + Zan+l(L)£:;_z)_n_’ (29)

and Ey j(z,L) — (A?L)> PT(fl is real analytic in a neighborhood of 0.

Proposition 9: There exists a (non-unique) polynomial Pj ; with rational coefficients in
the variables E(z,L) = {Ei(z,L),....Ej(z,L),...} and a(L) = {a1(L),...,q;(L),...}
such that Py j(E(z,L),a(L)) = Ek,j(z, L) for z ¢ L.

Proof: The proof is by induction. The statement is trivial for k = 0 and j > 1. Moreover,
as %Ek_]-(z,L) = —FE% j+1(z, L), if the statement is true for (k,7) it is true for (k,j + 1).
Thus the problem is to show the existence of Pr4;; assuming the existence of Py ; for
k < nandj> 1. If we write down a Laurent expansion for Ep4;,1(2, L)+ =5 Ei(z, L)"+?

n+2
in a neighborhood of 0, we obtain

n n+2-—k

n+2 ZZQ"kJ(aL)( z )F(J)+R()

zJ
k=0 ;=1

Ensi1a(z,L) +

where the Qn «,; are polynomials with rational coefficients and R,(z) is real analytic in a
neighborhood of 0. From this we deduce that

n n+42-k
Env1a(2.0)+ ( )n+2 Z Z PkJ z L), (L))Qn,k,j(a(L))

k=0 ;=1

1s a doubly periodic real analytic function annihilated by a power of (%) and hence a
constant. Using the fact that E,411(0.L) = an4+2(L) we find that this constant can be

expressed as a polynomial in the aj(L) with rational coefficients, which concludes the proof.

Let E be an elliptic curve with Weierstrass model y* = z* — g2z — g3, defined over O
with complex multiplication by Ok and with good ordinary reduction at p. Let L be the
period lattice of w = dz/y. Choose a basis (v1,72) of Hi(E(C),Z): then fv: w=r1/) w
for some 7 € ', and a = Z + Zr is a fractional ideal of K. We assume that we have chosen
our basis (71,72) in such a way that vp(a) = vg(a) = 0. Let n = (z + az(L))w. Then
(w.n) is a basis of HLz(E) and if a € Ok, then a*w = aw and a*n = an in HLx(E). Set

= f‘r1 w and Ne = f,n n. Using Legendre’s relation, we obtain A(L) = —Teo/Neo- If
a € K. welet & = aws € QL, and if P is a torsion point on E, we let 2(P) € I be any
element such that Z(P) = wez(P) corresponds to P via the isomorphism C/L ~ E(C).

Of course. z(P) is only determined up to an element in a.
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Let t = —2z/y = —2p(2)/p'(z) = (2 + - --) be the parameter of the formal group E
which is the kernel of reduction mod p, A(t) be the power series giving z in terms of ¢
(it is the logarithm of £ and we have dA(t) = w(t)), and ® denote the formal group law
on E. Let I, C O be the ring of integers of the completion of the maximal unramified
extension of Q, and M = Qp(g2,93). The formal groups E and G,, are then isomorphic
over I, g def I,(g2,93). We shall fix an isomorphism ¢ from E to Gy by requiring that
the following condition holds. Let @) be a point of p*-division on E. Then we want
1+:(t(Q)) = (2(Q), 1) where the left hand side is a p®-th root of unity in C, and the
right hand side is a p®-th root of unity in C. We will write ¢(Q) for this p/in fty-th root
of unity. For reasons to become obvious later, we write —n, for the coefficient of ¢ in
v € I, g[[t]] (« has no constant term), and extend the isomorphism from K C Cto K C C,
to an isomorphism from K (1) to K(n,) sending ne to n,. Note that this is possible
because 7o is transcendent due to a theorem of Cudnovskii (cf. [Wa]) and 7, also in a
more trivial way.

Suppose G(z1, ..., zn) is locally real analytic around 0. We define the holomorphic part
of G to be 'H(G(zl, . zn)), the power series in 21,. .., z, obtained by equating z;,...,Z,
to 0 in the formal Taylor series expansion of G in 21,...,2n,Z1,...,2n. If H(21,...,25) is
locally of the form F(z,...,2,)/G(z1,...,2n), where F is real analytic around 0 and G
holomorphic, we define_the holomorphic part of H, H(H(z1,...,2a)) € C((21,-..,2n)),
by H(H) = H(F)/G. If moreover H(F) and G have coefficients in K (7o), we shall also
view H(H) as an element of C,((z1,...,2n))-

Proposition 10: Let @ € (K — p~*a) U a, which means that the division point P(a)
corresponding to a is either 0 or does not belong to E. Then if 1, is the characteristic
function of a, we have:

(i) H(Er(a+A(t),L)) = la(a)t~ + E(& L)+ 122, ba(a)t ' Gi(a,t), where b,(P)
is in the ring of integers of M (P(a)).

(i) E1((&, L) = @np (mod O).

(iii) If Q is a p™-division point, then G;(a,#(Q)) (which converges by (i)) is equal to
Ei(a+2Q),L).

Proof: Let ¢(z,u) = Ey(z+u,L)— Ey(z,L)— Ey(u, L). Then ¢ is a meromorphic function
in u and z and hence an algebraic function on E x E. Moreover, it is easily seen to belong
to M(E x E) and to have a well-defined reduction mod p. Now, if &« € K — p~®a, then
H(E1(A(t) + & L) — E(M(t),L) — Ey(&,L)) +t~! is an algebraic function on E without
singularities on E and whose reduction mod p is defined, and so is given on E by a power
series in t with coefficients in the ring of integers of M (P(a)). Hence, to prove (i) and (iii)
for any a, it suffices to prove them for a = 0.
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Let B € Ok such that  is prime to p By the same arguments as before, one sees
that H(E1(BA(t), L) — BEI(A( ), L)) — B~Y(N (,3) — 1)t™! is an algebraic function on E
with no singularities on E, and so is given on E by a power series G(t) with coefficients
in the ring of integers of M. Now take 8, € Ok satisfying f, =1 (mod p") and 3, =1
(mod p"). Let n tend to +0o0. Then Gg,(t) obviously tends to (E;(A(t))) — ¢! which
concludes the proof of (i). To prove (iii), suppose @ is a p™-torsion point. Then if n > m,
we have ,Q = Q and o G, (@) = (1 - B)E:(3(Q), L) - B (N(Ba) — HQ)" (as
Gp, is an algebraic function, one can evaluate it at a point defined over K using complex
arguments). But when n tends to +00, Gg, (t(Q)) tends to G1(0,t(Q)) —#(Q)™" and the
right hand side tends to E1(2(Q), L) — ¢(Q)~! which concludes the proof of (iii).

It remains to prove (ii). First note that if a € a, there is nothing to prove as Ey(&,L) =
0. So suppose a ¢ a and write @ = ag + a; where a3 € p~®a and vp(ag) > 0. Then,
using (i) and (iii) with a = ag and @ corresponding to &;, we deduce that if (ii) is true
for ap then it is true for a and we are reduced to the case when a ¢ a and vp(a) > 0.
Now, if 8 € Op, then F3(z) = E1(Bz,L) — BEi(z, L) is an algebraic function on E whose
reduction mod p is defined. so if z corresponds to a point defined over K which does not
reduce to a 3-division point mod p, then F3(z) € O. One deduces from this that if (i) is
true for « it is true for Ja, and if § is prime to p and (ii) is true for « then it is true for
3=1a. Now let h be the class number of K and let 7 be a generator of p*. By the previous
reductions, it suffices to verify (ii) fora =7 " andn > 1. Let k € Z and a, = ¥~ ". Then

1 -
Ey(kéin, L) = Hi(1.kGn,0,L) = Hy(1,0,kéin, L) = — Y (nELEi(r, L)
yexr~"L/L
¥#0

Let € = (v,1),. Then using the isomorphism ¢, we see that

E\(kd,,L) = in Z e G1(0,c7 (e - 1)).

us

So
. 1 -
Ei(Gn,L) = E\(dn, L) = Ey(0,1) = — > (e=1)G1(0,:7 (e - 1)).

But as tG1(0,¢71(t)) € —np + tI, g[[t]], we obtain the desired result by applying the
following obvious identities:

i_ ) -1(modr™) ife=0
Z (e—l)z{O(modTr") ifi>1"
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Corollary: 7, = nliI%O p"E1(p™"weo, ).

Thus 7, appears as the p-adic period of the differential form n = (z + a2(L))(dz/y)
integrated along the cycle v; viewed in Tp(E) in the obvious way (cf. [P-R], [de S]). Using
this remark, it is easy to show that the isomorphism between K(7o) and K(n) does not
depend on the choice of E or 7;; it depends only on the embeddings of K into C and C,.

Proposition 11: Let a € (K — p~*°a) and let Gk j(a,t) = H(E4,j(& + A(t),L)). Then
(i) Gr,j(at) € O[[t] ® Q.
(ii) If Q is a p-division point, then G (a,(Q)) = Ex,j(& + #(Q), L).

Proof: If k = 0, then (i) follows from Proposition 10 and the fact that Ey ; = —%Eo,j_l
and £ = 44 where &£ ¢ 1+ tO[[t]], and (ii) follows from the fact that Ep ; is a rational
function on E. The general case follows then from the existence of P ; (Proposition 9).

Proposition 12: Let @ € K, vp(a) > 0. Let Ay(2) = (2,é&)r. Then
() H(Aa (A1) € Ol1e)

(ii) If @ is a p*°-division point, then ’H(Aa (/\(t))) evaluated at t = ¢(Q) is equal to
Aq(2(Q)) where 2(Q) has to be chosen so that @z(Q) € p~°°a (this restriction being due
to the fact that A,(z) is not periodic of period L in z).

Proof: Everything is obvious once we have proved that 'H(Aa (/\(t))) =(1+ L(t))a-. But
we have Aq(z) = ezp(A(L)™}(2@We0 — 0wooZ)). So using the identity A(L) = —Toona)!
we obtain: H(Aqa(z)) = ezp(—neo@z), and p-adically, 'H(Aa(/\(t))) = exp(—nyaA(t)).
As ) is an isomorphism from E to G, we find that ¢(t) = ezp(u)(t)) — 1 for some u € C,.
Equating terms of degree 1 in t gives u = —n, which allows us to conclude.

Proposition 13: Let & € K — p~®a and § € K such that vp(8) > 0. Thenfor1 < j <k
we have:

() H(He (G, & + A1), 5,1)) € Ot © Qp.

(i1) If Q is a p*-division point then the previous series evaluated at t = t(Q) is equal
to Hi(j,a& + 2(Q), 3, L), where z(Q) has to be chosen in such a way that B2(Q) € p~a.

Proof: Choose b € O satisfying (b,p) = 1 and b8 € a. Then formula (25) gives:

. A & A1)
Hk(]a&+/\(t)’:8aL) = T Z <7’BB>LEIC—],](7+—+—,L)

YEb-1L/L b b
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Since b is prime to p, b~! is an endomorphism of E and b~ \(¢) = A([b~!]t). Then (i)
follows directly from Proposition 11 (i).

Now let @ be a p™-division point and let b* € O be such that b*b = 1 (mod p™). Then
[671]#(Q) = t(b*Q) and so by Proposition 11 (ii), we obtain that 'H(Hk (G, &+ A(), B, L))
evaluated at t = ¢(Q) is equal to

—k—j
b ) ~p - * > -~ * ~ 2
= 2 (WBBLE(y+ a7 +5°H(Q), L) = Hi(j, & + b5°(Q), B, L),
yEb-1L/L

which allows us to conclude.

Proposition 14: Let a € I be such that v5(a) > 0and § € K —p~>°a. Thenfor1 <j <k

(i) H(Hk (. & 8 + A1), L)) e O[lt] © Q.

(11) If Q is a p*°-division point, then the previous series evaluated at t = ¢(Q) is equal

to Hi(j, & 5+ 3(Q), L),

Proof: Everything follows easily from the previous proposition and the functional equation
for Hi(j,u.z.L) which says that

H(Hi(j,a.3+ M0, L)) = (14 o(0) "H(He(k +1- 4,5+ \1),6,L) ).

Note however that Proposition 5 (ii) would give some restrictions as to the possible value
of z(Q) which makes (ii) work, but since Hk(j,u,z,L) is periodic of period L in z this

restriction is unnecessary.

Proposition 15: Let a,3 € Ik —a. Let k.l € N and Gi,1,q,8(t1,t2) be the power series
defined by

Grla,3(tit2) = H(HHI(L& + A1), 3+ A(t2), L))
If a.3 € Ok p, then

(1) Gi.la,8(t1,t2) € Ip E[[t1,22]]-

(11) If @1, Q2 are p>°-division points, then
Grtos (H(@1),8(Q2)) = Hipu(l,& + 2(Q1), 5 + (Q2), L),
where z(Q,) has been chosen so that z(Q1)(8 + 2 Qz)) ®a,

The proof of this proposition will need several lemmas (as well as the preceding propo-
sitions). First, call a power series H(t1,t2) = 3, i a; jtit} “almost bounded” if, when 1
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is fixed, a;,; is bounded as j varies and if Q is a p®-division point, then H(t;,#(Q)),
which converges because of what precedes, is a bounded power series in ¢;. If H is almost
bounded, then if Q; and @, are p™-division points we can define H(t(Q1),(Q2)) as the
value of H(t1,1(Q2)) at t; = t(Q1).

Lemma 16: If H is an almost bounded power series satisfying H(¢(Q1),¢(Qz)) = 0 when-
ever (J; and Q2 are p°°-division points, then H is identically equal to 0.

Proof: If you fix Q, then the series H(t1,(Q2)) is bounded and is equal to 0 if #; = Q)
where Q is a p™-division point. This implies that H(t;,¢(Q2)) is equal to 0 as a power
series in t1, hence for all i > 0, 3522 ai ; (t(Qz))j = 0. But this is true for all p*-division
points @2, so a; j = 0 for all z and ;.

Lemma 17: Gk i1,q,3 is almost bounded.
Proof: We have

2 (=A(t))" ) »
Grtastttn) =30 ) (144,85 + M), D)) = Y ot

By Proposition 14 (i) and the fact that A(¢) has no constant term, we obtain that when 7 is
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