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Some questions related to the large time approximation, by wavelets 
and finite elements, o f the solutions of dissipative evolution equations.

Abstract: In this work we consider some methods to approximate the global 
attractor of the dynamical system defined by the flow of the solutions of a dis­
sipative nonlinear parabolic equation. These methods, that relate to the inertial 
manifolds theory, are adjusted to wavelets and to new hierarchical finite-elements 
bases.

In the first part, we construct approximate inertial manifolds (A.I.M.) for a 
class of evolution equations. A.I.M.’s are smooth finite-dimensional manifolds 
that contain the attractor into a thin neighborhood. The innovation is that these 
manifolds are defined as graphs on orthonormal wavelet bases.

In the second part, we first study new hierarchical finite-elements bases. We 
then use these bases for a nonlinear Galerkin approximation of a reaction-diffusion 
equation. We prove convergence results for approximate solutions towards the 
solution of the original problem.
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RESUME

Dans cette thèse, nous abordons quelques aspects de l’approximation pour 
les grands temps des solutions d’équations aux dérivées partielles dissipatives. Les 
méthodes utilisées se situent dans le cadre de la théorie des variétés inertielles, 
et sont adaptées aux ondelettes et à de nouveaux types d’éléments finis.

En quelques mots, la dissipation de l’E.D.P. se traduit par l’existence d’un 
attracteur pour le système dynamique associé, i.e. d’un ensemble compact de 
l’espace ambiant qui attire toutes les orbites quand t —> + 0 0  (cf [Tl]). Pour sur­
monter les difficultés inhérentes à l’approximation d’un tel ensemble -  l’attracteur 
peut avoir une structure complexe, fractale ; la vitesse de convergence des orbites 
peut être arbitrairement lente -  de nouveaux objets mathématiques ont été in­
troduits, les variétés inertielles. Ce sont des variétés régulières de dimension finie, 
invariantes par le flot des solutions, et qui attirent toutes les orbites avec une 
vitesse exponentielle (cf [FST]).

En particulier parce que leurs équations plus simples facilitaient l’implémen- 
tation d’algorithmes numériques, vinrent ensuite les variétés inertielles approxi­
matives (V.I.A.), qui sont des variétés régulières de dimension finie qui attirent 
toutes les orbites dans un voisinage mince, en un temps fini et avec une vitesse 
exponentielle (cf [FMT]). En outre il subsiste des équations pour lesquelles on ne 
connaît pas de variété inertielle, et pour lesquelles ont été construites des familles 
de V.I.A. qui approchent l’attracteur avec un ordre de plus en plus élevé (cf [DM], 
(il), [T2]).

A titre d’exemple, l’espace de dimension finie sur lequel on implémente 
une méthode de Galerkin pour calculer une solution approchée de l’équation 
considérée, représente la V.I.A. la plus simple, puisque plate, et la plus grossière, 
puisque fournissant un ordre d’approximation peu élevé. Par ailleurs les V.I.A. 
d’ordre supérieur sont la base d’algorithmes numériques performants, en vue de 
l’intégration pour les grands temps des équations d’évolution (cf [DJT], [DJMT], 
[FJoKSTi], [JRT])

La théorie et la pratique des Méthodes de Galerkin Non-Linéaires est main­
tenant bien développée dans le cas d’une approximation spectrale des solutions, et 
s’étend à présent au-delà : cf [MT] pour les éléments finis, [T3] pour les différences 
finies.

La thèse s’articule dès lors autour de deux axes. La première partie est 
consacrée à la construction de V.I.A. à l’aide d’ondelettes pour une équation pa-
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rabolique dissipative. La seconde partie commence par la description de nouvelles 
bases d’éléments finis , que l’on utilise ensuite afin d’implémenter un algorithme 
non linéaire -  dont on étudie la convergence -  pour une équation de type réaction- 
diffusion.

1)Construction de variétés inertielles approximatives à l’aide d ’onde- 
lettes

Soit une équation qui s’écrit sous forme abstraite

du Â .—  + Au + B(u) = f  
at

où l’inconnue u(t) envoie R+ dans L2(Tn), Tn étant le tore n-dimensionnel, où 
A est l’opérateur non borné (—A)m, avec conditions au bord périodiques, et où 
la nonlinéarité B est choisie bilinéaire avec des hypothèses techniques assurant 
l’existence d’un attracteur pour le système dynamique associé à l’équation.

Le résultat central établit des estimations pour les grands temps sur la 
distance, pour différentes topologies, entre toute trajectoire u(t), et l’espace de 
dimension finie Vj engendré par les 2jn premières ondelettes, rangées dans l’ordre 
naturel. Dans le langage des variétés inertielles, nous avons établi que, sous ré­
serves de considérer des ondelettes de régularité suffisante, Vj fournit une V.I.A. 
d’ordre comparable à celle obtenue en utilisant la décomposition spectrale de u(t) 
suivant les vecteurs propres de A , et ceci pour des espaces de même dimension.

Auparavant nous aurons établi des résultats préliminaires sur les ondelettes, 
où nous retrouvons à quelles conditions elles fournissent des bases inconditionelles 
des espaces de Sobolev périodiques (cf [Me]).

Dans le théorème central, nous prouvons en outre des estimations pour les 
grands temps sur la distance entre ^ (i) et Vj, ce qui nous permet de dériver des 
équations de V.I.A. qui fournissent des ordres d’approximation supérieurs à celui 
de Vj.

2)Méthodes de Galerkin non linéaires à l’aide de bases hiérarchiques 
presque orthogonales d’éléments finis

Dans cette partie nous envisageons d’étudier un algorithme non linéaire 
pour approcher les solutions d’une équation de réaction-diffusion de type

du—  -  uAu + R(u) = / ,
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où la non-linéarité R est un polynôme de degré impair dont le terme de plus haut 
degré est positif.

Dans un premier temps, nous décrivons la construction de nouvelles bases 
hiérarchiques d’éléments finis associées à la discrétisation de 1’ opérateur Id — A 
sur fi = [0,1]” ( n = 1,2), avec respectivement des conditions aux limites de type 
Dirichlet, Neumann ou périodiques.

Ensuite on établit des résultats relatifs à l’analyse des fonctions des espaces 
de Sobolev qui interviennent dans la formulation variationelle du problème initial, 
en particulier on traite le cas des espaces Zr^iî), à l’aide des bases précédemment 
obtenues.

La dernière partie est consacrée à l’étude de la convergence de la solution 
du problème semi-discrétisé, la variable t étant gardée continue, vers la solution 
du problème initial.
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CONSTRUCTION OF APPROXIM ATE 

INERTIAL MANIFOLDS 

USING WAVELETS

Olivier Goubet

Laboratoire d’Analyse Numérique, 

Université de Paris-Sud,

91405 Orsay Cedex, France

Introduction

One of the aims of this article is to make the connection between two recent theories: 

the theory of inertial manifolds that has emerged from the study of dynamical systems 

and the theory of orthonormal wavelet bases.

First let us have an overview of the inertial manifolds theory, that relates to the large 

time study of dissipative evolution equations.

Let us consider a nonlinear P.D.E. that is dissipative; it means that there exists a 

global attractor for the associated dynamical system, i.e. a compact set that is invariant 

by the flow of the solutions, and that attracts all the orbits when t —> + 0 0 . Nevertheless 

the convergence of the orbits towards the attractor can be arbitrarily slow, and this one 

can have a complex structure, and even be a fractal (see [Tl]).
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Then new Mathematical tools have been introduced ([FST]): The inertial manifolds 

(I.M.), which are smooth finite-dimensional manifolds, positively invariant by the flow of 

the solutions, and that attract all the trajectories with exponential speed. From the Phys­

ical point of view, I.M.’s modelize the interaction laws between small and large structures 

of a turbulent flow, and represent its permanent regime; actually on a I.M. small eddies 

are slaved by large ones, and there is similar results, after a transient time, for a trajectory 

that is not on the I.M. (see [FST], [FMT]). Nevertheless, until now the existence of I.M. 

necessitates a very restrictive property, the spectral gap condition (see [Tl]).

Hence came the approximate inertial manifolds (A.I.M.). They are smooth finite- 

dimensional manifolds that attract all the orbits into a thin neighborhood, in a finite 

time, and with exponential speed. A.I.M.’s axe useful when no existence result for I.M. 

is available, and also since their equations axe rather simple, and then make easier the 

implementation of numerical algorithms (see [FMT], [T5], [DeMa], [FI])

The theory of A.I.M.’s which first developed in the spectral case has begun to extend 

beyond. Some nonlinear algorithms have been established for finite elements (see [MT]) 

and finite differences (see [T3]). The purpose of this paper, following a suggestion of R. 

Temam, is to construct approximate inertial manifolds using the newly developed concept 

of orthonormal bases of wavelets.

The improvement featured by wavelets with respect to spectral bases (here the trigono­

metrical system), is to combine good localization properties in space variable, and good 

localization properties in frequencies (see [M]). In this paper we axe interested in the space 

periodic case, and we consider the periodic version of wavelet bases of [D], [LM], [L], as 

described in [M]. However, wavelets are flexible tools that can be adapted to other do­

mains than the n-dimensional torus (see [JM] ), and allow us to consider the construction 

of A.I.M.’s in domains where few information on the spectral bases is available.

Nevertheless, in this paper, for the sake of claxity, we will focus more particularly on 

the one-dimensional spline wavelet bases of [L], referring the reader to an Appendix for
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multidimensional results and for other wavelet bases.

The paper is organized as follows. In section 1 we briefly recall some results about 

spline wavelets in the one-dimensional periodic case. In section 2 we give for the sake of 

completeness a proof of a result announced in [M] saying that, if spline wavelets are regular 

enough, then they provide an unconditional basis for periodic Sobolev spaces. In section 

3, we describe a class of nonlinear parabolic P.D.E.’s; Then we show how one can use the 

wavelet expansion of a function to construct several A.I.M.’s for this class of evolution 

equation. The method follows [T2]; first we define the induced trajectories, tools that 

allow us to estimate the distance, for different topologies, between the orbits and the space 

spanned by the k first wavelets, ordered in the natural way. These estimates, that hold 

for large time, are then compared to the ones obtained in the spectral case, for spaces 

that have the same dimension. The result is that the wavelets provide a flat A.I.M. that 

provide the same order of approximation than the one obtained using spectral bases. Then 

we give two examples of nonflat A.I.M.’s that approximate the attractor with higher order 

than the flat one; once again we match the accuracy obtained in the spectral case. Finally 

in the appendix we extend the results of section 2 to the constructions of [D] and of [LM] 

and to the multidimensional case.

Notations: Let Z  (reap. TZ, C) be the set of integers (resp. of real numbers, of complex 

numbers).

Let II = 71/Z  be the one-dimensional torus. We denote by (7^(11) the space of N 

times continuously differentiable functions on II and by HS(J1) the usual periodic Sobolev 

space.

We denote by j 4(II) the space of functions u in iTa(II) such that

/ u(x)dx = 0.
J n
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#*(11) is a Hilbert space when endowed with the scalar product

(u,v), = ^  | k \2t u(k)v(k), 
keZ

where

-u(fc) = f  u(x)e~2tnkxdx.
Ju

Let | u I* be the corresponding norm,

i
I U | , =  ( u , u ) t  .

When s = 0 we write -ff0(H) = jL2(H), | u |o=| u | and (it,v)o = (« 5v).

In the following we will denote by C a constant that only depends on the regularity 

N of the wavelet, and in part 3 on the data of the equation.

1. Spline wavelet bases o f  ¿ 2(H)

We consider the finite dimensional space Vj =  {u € C ^H ); v is a piecewise polynomial 

function of degree less than or equal to N + 1, with nodes at As/2J; 0 < k < 2J}. Then we 

have the embeddings

Vo C . . .  C Vj C vj+1 C . . . L 2(D).

We define

Wj = vj+, n № ) • “■, (1.1)

then we have

i !(n) = 0W ^, (1.2)
j = 0

the sum being orthogonal.

Let us introduce what are the periodic wavelet bases associated to the W j’s. We first 

recall the original construction on 71; from [L] (see also [B], [M]) we know that, for each 

integer N, there exists a function satisfying

10



4>N 6 CN{R), (1.3)

if>N being a piecewise polynomial function of degree less than or equal to N +  1 with 

nodes at the half integers.

( H)
3 £jv > 0/ for m < N +  1

am
| ^ i M * )  l< C « - " 1*1. (1.4)

( ill) If m < N + 1

f  xmi{>N(x)dz = 0. (1*5)
J n

The wavelets, that are derived from ipN by a translation and a dilation as below, 

satisfy

( iv) The family {2^ 2̂ jv(2j'* — k)}^ k&z is an orthonormal basis of

-  L2(H). (1.6)

Remark 1: Formula (1.4) shows the exponential decay of the wavelet 2^2î n (2^x — k) 

away from Formulae (1.3) and (1.5) describe the localization in frequencies of the

wavelet 2j'/2̂ jv(2j'* — k) around an anulus of radii ci2J, C22J.

Remark 2: Throughout this paper we shall omit the subscript N on i/’N-

Following [M] we define the periodic wavelets as

Vv,*(z) = 2J'/2 Y ,  V’(2J* + 2j£ -  k). (1.7)
uz

This periodization transfers to periodic wavelets the localization in frequencies ( see Lemma

2 below), and does not deteriorate too much the localization in space variable. Then we

(i)
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have

• The family {i>j,k}i<k<2i is an orthonormal basis of Wj. (1-8)

• The family {V,j',ife}0< .<+ 1<h<1j is an orthonormal basis of ¿ 2 (II). (1*9)

2. Preliminary results

2.1 Bernstein inequalities

Proposition 1: There exists C > 0 such that for any v in Vj

M n+i < C2*N+1> M  • (2-1)

Proof: Let bn be the Nth fundamental B-spline, defined from the characteristic function

X ° f  [-1 /2 ,1 /2] by

bN = X ^ ^ X -  (2.2)
N+l times

For v in Vj,
2’

v — ^  a j)jfe2J/26jv(2Jx — k). (2.3)
fc=i

It is well known that

c . ( Ê | a M l , ) < l » l a< c , ( i ; i < » M l i ). (2.4)
k— 1 1

for some constants c i ,02 depending on N.

On the other hand, we have

I v In+i— ^ N+1 âj,kaj,pmj,k,pi (2*5)
l<k,p<2>

where
f  dN+1 dN+1 

mi,k,p =  2J dxN+16n(2j x -  k) dxN+1bN(2:ix -  p)dx. (2.6)
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We observe that either mj,k,p =  0if|fc — p |> JV + 1 or

q N+1 q N+1

I m i ^ P  l ^ l l  d x N + l  b N  IU l (* )H  f a N ~ l b N  IU ° ° W  • ( 2*7)

It follows

I » lw+i< C4*N+1) Y ,  I II “ i.p i • <2-8)
\ k - p \ < N + l

Using
2*

X I  I a j>k II a 3>P I -  C  S  I a i ' k I2’ ( 2 ‘9)
|k-p|<N+l k= 1

we infer the result from (2.4) and (2.8).

Remark 3: We recall that C is a constant that depends on N, but which is independent 

of j.

Proof: This is just a particular case of the interpolation inequality (see [Tl] and the 

references therein).

Corollary 1: Let s be in [0, N  -f- 1]; then for any v in Vj

I ® |.< C2jt |t7 | . (2.11)

Proof: Thanks to (2.10)

I » |.<| V |>-(./<w+»»| „ . (2.12)

13

Lemma 1: Let r, s, t be real numbers, r < s < t . Then for any u in IT^II)

• (2-io)(2.10)Iu I3< \ u  I
t - TГ l«l t

l - r

t - T



We infer from (2.1) and (2.12)

Corollary 2: Let s be in [-N  — 1,0]; then for any v in Vj

I v |< C2~jt | v |, . (2.14)

Proof: Thanks to (2.10)

I ® |<| *  |(W+D/(W+1-)| „ I - ‘+/<N+1- ) . (2.15)

Using (2.1)

| v | <  c ~ t ^ N + 1 - a)2 ~ M N + 1 ) / ( N + 1 ~ t )  | v | - ' / ( ^ + i - » ) |  v | ( N + i ) / ( J V + i - « )  _ ( 2 . 1 6 )  

To conclude we take the power of inequality (2.16).

2.2 Poincare inequalities

| v |.<  C t/(N+1)2j * | v | . (2.13)

Lemma 2: Let f  be in L1(7Z). Let g(x) =  Y lt£ z f(x +  0  € -^(H). Then

g(k) = /(*). (2.17)

(the left hand side of the equality above represents the kth Fourier coefficient of g, the 

right hand side denotes the value at the point k of the Fourier transform of f )

Proof: Thanks to Fubini’s theorem,

f g(x)e~2iltkx dx =  V  / + f(x)e~2î k- i)xdx (2.18)

14



We set
f  . h i  

m( 2j) = 2_J/2 ^  aJ*feea:i,(“ 2i7r27)' (2‘22)fc=i
This yields

™(£) = TO(^ )^ (^ ) -  (2-23) 

Then, thanks to Parseval’s identity,

| w  |2=  E  I “ №  I2. (2-24) 
u z

we obtain

\ w  l2=S  lTO(^) l2l ^ j )  I2 • (2-25)
u z

we write

m 2= E  E M s j + o i ’ i ^ + o r  i2-2«)
fc=l-2i-1 ¿e.Z

Observing that mis a one-periodic function, we obtain
2 j — 1

l®l2= E lro(^)|2( E l^ |+i)|2)' (2*27)
fc=l — 2̂ ~1 U Z

15

provides the result.

Proposition 2: There exists C > 0 suci iia i for any w in Wj

I to | - n - i < C2-j(n+1) |w I . (2.19)

Proof: Let w E Wj\ we write
2>

w  =  (2.20)
fc=l

We easily infer from (1-7) and (2.17)

1 - i  ki
(2.21)

(2.20)OL

2J

W  =

k=l

i
2 J/24

i
( 2¿ ) ( - 2¿7T

ki
23 )•

hkfß



Lemma 3s Let f  be in L2(Tl) fl L^ijl) such that | f(z)  |< (7(1+ | z |)-a  with a > |, 

and such that the family { f ( x  + i)}tez  is an orthonormal family in L2(7Z). Then, for each 

z in II

£ | / ( z  +  i ) | 2= l .  (2.28)
u z

Proof: We prove that the Fourier coefficients of the one-periodic function

u z

are equal to zero.

Lemma 2 yields

/ ( E i /<*+<>
•/n lez

= f  I f ( z) I2 e~2i”k*dz. (2.29)
Jk

The result follows, using Plancherel’s theorem

/  | f(z)  |2 e~2i*kzdz
Jk

= f  f (x) f (x  — k)dx. (2.30)
Jk

Then, we apply Lemma 3 to (2.27) to obtain

2, _ 1

I w |2= ^2  I m(k/23) I2 • (2.31)
k = l —2> ~1

On the other hand, by the same computations as above

I "  | - N - 1  =

E  M | ) i 2 ( E ( * + | r “ - 2 i ^ + i ) i 2). (2.32)
jfe=i - 2i - 1 tez

16

Now we need

1 -

uz
I / {*'+*)

|2E

L (Ei
lez

f (z  +  /) I2) ' — 2Ì7ckz dz

1
4 E

2j-i

I m к
( V )|2 (E

tez
(*+

к
2i ) - 2 Л Г - 2 I Ф

к
23 )|2)- (2.32)

16

j (N+1)

are equal to zero. 

Lemma 2 yields

= /  I /(* ) I2 e~2i”k*dz. (2.29)
Jk

The result follows, using Plancherel’s theorem

f  I f ( z) I2 e~2i*kzdz
J n

= I f (x) f (x — k)dx. (2.30)
J-R.

Then, we apply Lemma 3 to (2.27) to obtain

2>-*■
I w |2= E  I m(k/23) I2 • (2.31)

fc=l—2>- 1

On the other hand, by the same computations as above

I «  |1jv _ i =



Using (2.31), we observe that it is sufficient to prove that 3 C >  0/

£  I ( I  + £ )  r ” ~2l + i )  l2< C < +CO (2.33)
tez

to end the proof of Proposition 2.

First we obtain

£  ( A  +  ¿ r “ - 2 I *(< +  â )  |2<  4N+1, (2.34)
tez*

using that for \k\ < 2-7-1, we have 

and thanks to Lemma 3

y i  I |2^  !• (2.35)
tez*

It remains to majorize

(£r2N-21 «£) i2>
that is the term corresponding to £ = 0 in (2.33). For that purpose we observe that, thanks 

to (1.5), î>(z) =  0(zJV+1) when z —*■ 0. Therefore there exists a constant C such that

( £ r 2" “ 2 I |2<  C. (2.36)

This fact concludes the proof of Proposition 2.

Then we also have 

Corrolary 3s Let s be in [ - N  — 1,0]; then for any w in Wj

M . < C2j'\w\. (2.37)

17

I-
к
23 - f  II- 2 N - 2 < 4N + l

►

¿ez*
E i Ф(* +

к
23 )l 2 < 1.

к
( 2 i )

- 2 N - 2 IФ
к
2i )l( 2 < C.

and thanks to Lemma 3

(2.35)

It remains to majorize

( £ r 2N-2 i ¿(|) I2,

that is the term corresponding to £ =  0 in (2.33). For that purpose we observe that, thanks 

to (1.5), i>(z) = 0(zJV+1) when z —► 0. Therefore there exists a constant C such that

(2.36)

This fact concludes the proof of Proposition 2.

Then we also have 

Corrolary 3s Let s be in [ - N  — 1,0]; then for any w in Wj

и ,  < C2j'\w\. (2.37)
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Corrolary 4: Let s be in [0,iV + 1]; then for any w in Wj

Proof: We prove (2.37) and (2.38) as we established (2.11) and (2.14), using (2.19) instead 

of (2.1).

2.3 Conclusion

We summarize section 2.1 and section 2.2 by:

Proposition 3: There exist C\,Ci > 0 such that, for each s in [—N — 1 ,N  +  1], for any 

wj in Wj, setting
2i

wi = J2'r3,k'l’ j,k,
k= 1

we have
2 j

c, | Wj |.<  2 * ( £  < <?2 I |. • (2.39)
k-\

We also have

k  i= (X > 2,*)1/2- <2-40)
k=1

The following theorem includes the main result of this section.

Theorem  1: Let s be in ( -N  — l,N  + 1); let u be in We set

7j,k =<  'UiV’i,*: > H*(n),H-*(n)’

2>

WJ =
k= 1

Then, u = X̂ jl̂ o wji w^ere the sum is unconditionally convergent in jff'(II).

18

H  < C2~j ‘ \w\t . (2.38)

Ъ,к = < U,Wj,k >

W j  =

2>
E
k= 1

ПкФз,к-

The following theorem includes the main result of this section. 

Theorem  1: Let s be in ( -N  — 1 ,N  +  1); let u be in HS(U). We set

Then, u = wji w^ere the sum is unconditionally convergent in

18



Actually there exist Ci(s)jC2 (s) > 0 such that

+ 0 0

<?.« M î<  £  I \]< Ca(.) I » |; (2.41)
j-o

Proof: We first prove (2.41) for u regular, such that u =  holds in ¿ 2(H) for

instance.

Then we conclude by noticing that if un —> u in JET*(II), then, thanks to Proposition 3, 

Wj<n —*• Wj in HS(TL). (wj,n defined from un in the obvious way)

Now we follow step by step the proof of Theorem 8 chapter 2 of [M]. We write

i u \l= X  i w j i* (2-42)
j'=o j<t

Choosing e such that | s |< N — e, we obtain

| (wj,wt)s |<| Wj |a+e| wt |,_e, (2.43)

and thanks to (2.39)

I |< C2~<1- »  | Wj |.| wt \. . (2.44)

Therefore
+oo

| 2 £  | (wh w,) .  ||< c £ ( £ 2 - l ‘ - i l )  | Wj i;
j<t j—0 t^j

p  +oo

<2-4s)
¿ = 0

This yields
4-oo

(2.46)
j=o

On the other hand, setting
J

uj  = (2.47)
j=o

19

Proof: We first prove (2.41) for u regular, such that u = -t-oo
j= 0Wj holds in L2(TL) for

Iu I23
+ 00

E
j=0

I wi I2s +2 E
i<t

( W j , W l ) s . (2.42)

кW j , W t м < I wi Iв+£I wl Iв —

кW j , W ¿ )• I< С 2— e(t-j) I Wj 1,1 Wt I..

< с
2 е -  1 j=о

Е
-foo

I W j I2з

Iu I28 < С (-)
+ 00
E
j=о

IW j
2
8

Uj E
j=о

4i»W j ,

instance.

Then we conclude by noticing that if un —> u in JET*(II), then, thanks to Proposition 3, 

Wj<n —*• Wj in HS(TL). (wj,n defined from un in the obvious way)

Now we follow step by step the proof of Theorem 8 chapter 2 of [M]. We write

Choosing t  such that | s |< N — e, we obtain

(2.43)

(2.44)

and thanks to (2.39)

Therefore

+OQ
1 2 ^ 1  (< •,• ,»«) .  Il< c D E 2 " ' 1' ^ 1) 12

j<t i=o

(2.45)

This yields

(2.46)

On the other hand, setting

(2.47)
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J

k j | i . < C W £ l 4i> ,-| - . ’ (2.51)
j - 0

this yields, using (2.39)
J

I «jr l - .<  1 «JF lî - (2-52)
j =  0

We then infer from (2.50) and (2.52)

< E  I »i  l î ) , / 2  <  C M  I «  I, . (2.53)
J —o

We let J —> +oo to end the proof.

We summarize Proposition 3 and Theorem 1 by:

Corollary 5: For each s in ( -N  — 1,N + 1), there exist Ci(s),C 2 (s) > 0 such that, if

+oo 2j

* = EEwtoe i’(I>’
j = 0 k = l

t h e n

C i ( i )  I »  IÎ <  E 4 "  I v *  H  C2(s) | u 12 . (2.54)
j>k

20

CU,UJ)
J

E
j=o

4j« I w ,- I2 . (2.48)

J

E
7 =  0

4je I W j I2 > C
J

E
i=0

I W j Ie2 (2.49)

J

E
j = 0

I W j I
2
в < c (2.50)IujI8IuI

we have

Thanks to (2.39)

Then we infer from (2.48), (2.49)

Using the first part of the proof we obtain



In other words, if | s |< N + 1, the family {^j,k}o<j<+oo-, i<k<2> is an unconditional 

basis for (For equivalent definitions of an unconditional basis in Hilbert spaces see

for instance [JM]; see also [M] and the references therein)

3. Approxim ate Inertial Manifolds

3.1. A  class o f evolution equations

Let H be the Hilbert space ¿ 2(H). The class of evolution equations we shall consider 

has the form

^  + Au + B(u, u) = / ,  (3.1)
at

where /  € H, A is the dissipative partial differential operator (^ fr)mj acting on H, whose 

domain is

D(A) =  t f2m(H),

B is a bilinear operator from D(A*/2) x D(A1̂ 2) into D(A~1̂ 2)y and the unknown u maps 

R+ into H.

We will consider the initial value problem consisting of (3.1) and of initial condition

u(0) = u0 € H. (3.2)

Notations: As usual we write

V = D(A'/*) = i T (II), || • ||=|-U

and

21



((*,•)) = (v )m .

Moreover we assume that the following properties involving B hold: Setting

B(u) =  B(u,u),

b(u,v,w) = <  B(u,v),w  >v',v>

for

u,v,w € V,

we have

b(u,v,v) =  0 (3-3)

and there exists > 0 such that for any u,v,w in V

I b(u,v,w) |< Cb | u |1/2|| u ||1/2|| v || | w |1/2|| w ||1/2 . (3.4)

We also assume that there exists Cb > 0 such that for any u,v in D(A)

I B(u,v) |< CB I ti |1/2| Au |1/2|| V  II, (3.5)

I B(u,v) \<CB \u | '/2|| «  ll'/2!! v ||>/>| Av |‘ / 2, (3.6)

and that

I S(u,v) |< CB II u IIII v II d  +  L o g t i iH J l) ) ! /» ,  (3.7)

where Aj = (27r)2m is the smallest eigenvalue of A.

Under these assumptions we recall without proofs the following well-known results:

Theorem  2 (well-posed problem)

There exists a unique solution of (3.1) and (3.2) belonging to

C(0, +oo; H) n L2(0, T; D(A^ 2)),
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for each T > 0.

Moreover if uo £ V then u belongs to

(7(0, + 0 0 ; V) n L2(0,T; D(A)), 

for each T > 0.

Proof: See [Tl] and the references therein.

Theorem  3 (Dissipativity. Absorbing sets)

Let us consider initial data uo in (3.2) satisfying

| Uo |< J?o, II Uo ||< Rl.

Then there exists a time to that depends on uo through Ro, and on the data Ai,| /  | of 

the equation such that for t > ¿o

I u(t) |< Mo’, || u(t) ||< Mi, (3.8)

where Mo, Mi are independent of uo, but depend on the other data.

Proof: This is related to the existence of an absorbing set in H and V for the dynamical 

system (3.1); actually to = C\ log(iZo) + C2 is the entrance time in these absorbing sets; 

see Chapter III Section 2.2 in [Tl].

Theorem  4 (Time analycity)

There exists a domain of C containing

1(11 “ 0 ¡1) =  {C e C,JIe< > 0,

| Im( I < To if Re( > To

| Im ( | < R e (  if Re( < T0}
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where u can be extended to an analytic map into D(A); here To depends on Aj, | /  |, || u0 ||. 

Proof: See [FMT], [FT], [P].

Remark 4: We will use Theorem 4 in the following form:

For t > to (to as in Theorem 3),u can be extended to an analytic map from

A =  {£ G C, ReC, > to,

I ImÇ \ <To if Re( > to + To 

I I'mC, | < ReC — to if ReC < + To}

into D(A), with To that depends on Aj, | /  | but which is independent of || «o || •

We also recall from the proof of Theorem 4 (see [P] for instance) that for (  G A,

||»(C)||<2(1+M,), (3.9)

Mi being as in Theorem 3.

3.2 Induced trajectories lying in the flat manifold

Let Vj (j  being fixed in this section) be the flat manifold associated with the (linear) 

Galerkin approximation of (3.1); (3.2) by periodic piecewise polynomial functions.

Let Pj be the orthogonal projector in H  onto Vj; let Qj — I d a  — Pj- We also define 

Pi ,j (being provided m  < N + 1 such that Vj C V  holds) as the orthogonal projector in V  

onto Vj, and Q ij — Idy — Pi,j-

Remark 5: In the following we shall omit the subscript j  on Pj, Oj, Pi j  and O ij.

Following the methods developed in [T2] we call induced trajectories (lying in the flat 

manifold) associated with u(t) solution of (3.1); (3.2) the trajectories y(t),yi(t) defined
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by:

y(t) = Pu(t) ; y\(i) = Piu(t). ( 3 .1 0 )

we also set

z(t) =  Qu(t)] Zi(t) =  Qiu(t). ( 3 .1 1 )

Remark 6: Unlike the spectral case we no longer have у = y\.

We recall from the results of Section 2 

Proposition 4: For m < N + 1, there exists с > 0 such that for any z in QV

I * l< ¿ r I I г II • <3'12)

Proof: We write
“l-oo 2l

z = X  X  * (ЗЛЗ)
fc=l

Thanks to Corollary 5 there exist constants ci,c2 that depend only on m,N  such that

Cl II z II2 < X 4/m  I 7*,* |2 <  c 2 II г II2 . ( 3 .1 4 )
t,k

This yields

4 * " £ | 7 « ,* 1 2< < * Ы Г .  (3-15)
I,к

and the identity

I * i2= £ I a *  i2 (3-16)
e,k

provides the result.

We would like to check this kind of inequality for z\ in QiV. For this purpose we 

need more regularity on the wavelets ipjtк 's :
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Proposition 5:For 2m < N + 1, there exists c > 0 such ihai for any z\ in QiV

1*11< ¿ r  II II • (3-17)

Proof: First we observe that

(z\ E QiV) & (Az\ € V' and < Az\,ij)itk >y»)v=  0 for t  < j)

Then if m < N + 1, thanks to Theorem 1, we write
+oo 2l

Azi =  ^  (3-18)
¿=j fc=i

where
4-00 2l

Cl(m) | Azj |2_m< ^2 ^2  | 7<,Jfe I2 4~tm < c2(m) | Azx \tm, (3.19)
t=j k=i

where ci(rra), C2(to) as in Corollary 5. We observe that | Az\ |?_m=|| z\ ||2.

On the other hand we would like to estimate | Az\ |̂_2m=| z\ |2 with respect to the 

7 t,k 's. If 2m < N + 1, the sum in (3.18) is unconditionally convergent in H~2m; then 

applying Corollary 5 we obtain

0 (2 m) | Az, | i,„  < £  È  I W  I2 16“ ' m
l = j k= 1

< c2(2m) | Azi \2_2m, (3.20)

and therefore we infer the result from (3.19) and (3.20).

3.3. Behavior o f  small eddies

Theorem  5: For 2to < N + 1, both z(t), z\ (t) satisfy, for t large enough as in Theorem

3, the following inequalities:

| z(t) I, I z,(i) I, I z'(t) I, I z'M  |< c (3.21)
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Remark 7: Here we set z' = z[ —

Remark 8: We match here the accuracy established (see [FMT], [T2]) in the spectral 

case in the following sense: Let Pj be the orthogonal projector onto the space spanned by 

the first 2J eigenvectors of A;Qj = Id — Pj', then we have, for t large enough

\Qju\< cSL'/\

|| Qju || < cS 'l*L 'l\  

where 6 = jfz:, L being a logarithmic correction of S.

Proof of Theorem 5:

We take the scalar product in H of (3.1) with z\ \ using (3.3) and

(Au,zi) =  ((u,zi)) =|| z\ ||2 (3.23)

we obtain
¿u

\\zi \\2= ( f , z 1) - (  —  ,z1) - b ( z 1,yitz1) - b ( y i tyu zi). (3.24)

Then (3.7) yields

I l< CB II yi f  (1 + L°g(AllurF2))1/21211 ' ( 3 '2 5 )

Il z(t) I U I Z\ w II < c Um)
1 /2

2 jm (3.22)

We reinterpret these inequalities saying that the Bat manifold Vj associated to splines
d m ) 1/ 2 • d m ) 1/ 2of order N is an approximate inertial manifold of order — in H and of order 2,'m— 

in V.

Thanks to (2.1)

(1 +  Log( I Ayi I2

II y i II2 )) 1 / 2 < С(jm) 1/2 (3.26)
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Hence

I % i , y i , * i )  1^ C (jm )112 || yx ||2 | z i  | . ( 3 .2 7 )

On the other hand we use (3.4) to obtain

I Kzu yu *i)  l< c  II Vi IIII zi III zi I • (3-28)

Then we infer from (3.24), (3.27) and (3.28)

II Z! ||2< (I /  I + I ^  I +C (jm )1/2 || yi ||2 +C  || yi || || zi ||) | z 1 | . (3.29) 

We observe that for t large enough as in Theorem 3 we have both

II in ll,ll*i ll<IMI< Mi, (3.30)

and that for t large enough as in Theorem 4

I ^  l< c ,  (3.31)

that is a consequence of the Cauchy formula applied to u in a ball included in A, and of 

(3.9). We use these facts to obtain

II P <  C (jm f'2 | z, |, (3.32)

holding for t large enough as above, where C depends on N and on the data Aj, | /  | of 

the equation, but is independent of j.  Then Proposition 5 yields

II *, ll< 0 {- ^ ,  (3.33) 

I is C & g L .  (3.34)

Now we estimate | z \ and || z ||; we observe that z = Qz\ and that therefore

M < l , l < ^  (3.35)
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Proposition 6: For m < N +1, Q, which is an orthogonal projector in H, maps continu­

ously V into itself, and its norm as a linear operator acting in V is bounded independently 

of j.

Proof: We write for v £ V

holds; but moreover we have

To end the proof of Theorem 5, it remains to estimate | z1 | and | z[ |. For this purpose 

we observe that z and z\ are analytic in time in the same domain as u, and then we use 

Cauchy’s formula to get the estimates on z' and z[ from these on z and z\. For reader’s 

convenience we give a complete proof below.

29

Thanks to Theorem 1, for m < N + 1 we have

where ci(m), C2(m) are as in Corollary 5.

We apply this result to z = Qz\ to obtain

(3.36)

(3.37)

(3.38)

(3.39)

V =

-foo 2 l

Е Е
<=o ¡t=o

7t,kVt,h,

Qv =
-l-oo 2*

Е Е
l=j k=0

11,kW t,к ’

Il Qv II <
1

ci(m)1/2

+ 00 2l

Е Е
l=j k=о

4 Im II t ,к I2

< 1
ci(m)1/2

+00 2l

Е Е
1=0 k=o

Îrn I71,к I2

< (
c2(m)
ci(m) )1 / 2 Il » II,

Il * ll< G
(jm)

23 m
1 / 2



First we need to introduce some notations. Let Hc,VciVji  and D(As)c be the com­

plexifications of H , V, Vj and D(Aa). We recall that if u\ + iu2 is a typical element of He, 

then we have

A(u 1 + iu2) =  Au\ + iAu 2 ,

(«1  + iu2,v1 + iv2) = (tii,Vi) +  (u2,v2)

+ i[(u2,va) -  (ui,v2)],

and that the multiplication by a complex constant is performed in the natural manner.

We observe that the family {$t,k}o<i<j-,i<k<2> is 311 orthonormal basis of V£ in He 

and that moreover we have

Lemma 4:

The family { i’t,k}o<t<+oo;i<k<2i 1S an orthonormal basis of He,  (3.40) 

and for m \ s |< N +  1 the family

{Vv,*} o<t<j;i<k<21 ,s an unconditional basis of D(As 2̂)c (3-41)

Proof: The proof is straightforward and is left as an exercise to the reader.

Now we observe that y\ and z\ can be extended as time analytic functions in the same 

domain as u. Let Yi,Zi, and U be the extensions of y\, z\ and u. Then U satisfies, for 

< € A(|| t>0 ||)

^  + AU + B(U) = f .  (3.42)

Taking the scalar product in He of (3.42) with Z\ we obtain

l|Z1 ||2< | ^-||Z I |+|K V i,y„Z1)|
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+ |&(Y1,Z 1,Z 1)| +  |6(Z1,r 1,Z I)| 

+ |6(Z1,Z 1,Z 1)I + |/||Z1 |. (3.43)

Easy computations yield

\b{Z1,Z 1,Z 1)l<\Z1 \\\Zl \\2, (3.44) 

I HZi,Yi,Zi) \< C \ Zi HI Zi DU Yi ||, (3.45)

where C is an absolute constant.

Using (2.1) on Re(Yi) and ira(Yi) we obtain

| K n , n , Z , )  |< C II y, IP O'm)1/ 2 I Z, I, (3.46) 

| HYuZuZ,) |< C || Yj mi Z, || ( ;m )'/2 | Z, |, (3.47)

where C depends on N.

For (  such that | Im ( |< ^  and Re£ > io + 2To (with <o and To as in Remark 4), we 

apply Cauchy’s formula on a ball B centered at of radius to obtain

| ^ (C )| < C Sup|(7(r,)|, (3.48)
vQ rjeB

and we infer from (3.9)

I l< c ,  (3.49)

where C depends on the data of the equation through M i.

We also use (3.9) to majorize || Y\ || and || Z\ || by 2(1 + Mi), for £ as above.

All these facts yield

|| £1 ||2< C {jm f!2 \Z}\. (3.50)

On the other hand we observe that Lemma 4 provides analogous forms of Poincare 

inequalities (3.12) and (3.17) for Z and Z\. We also infer from Lemma 4 that the orthogonal 

projector in He onto the orthogonal complement of V£ is continuous as a linear operator 

mapping Vc into itself, the corresponding norm being bounded independently of j .

31



An analogous result for z\ concludes the proof.

3.4. Two nonflat approximate inertial manifolds

Following the methods developed in [T2] we provide below two examples of (nonflat) 

approximate inertial manifolds of higher order than the flat one.

First let us consider the (nonlinear) mapping $ 1  : PV  —> QV defined as follows: For 

each y in P V , there exists a unique $i(y) in QV such that

( (* i (»). *)) =  ( /  -  Ay -  B(y), I), (3.55)

32

where C depends on the data of the equation through M\. We then infer from (3.51) and

(3.53)

(3.54)

(3.53)| ~ (< ) |< Csup | Z(rj) |, 
at neB

To end the proof of Theorem 5, we apply Cauchy’s formula on a ball B centered at 

t > ¿o + 32o? of radius ^  to obtain

for C belonging to a thinner strip than A, for example

{

I

(3.52)

(3.51)

We apply these remarks to (3.50) to obtain, by the same computations as above,

I
dz
dt I <C

{jm)
4 jm

1 / 2

ImC, l<
T0
2 '

ReC > h ■f 2To

in i  si (j™)
Ajm, ’i< с

Il S 11,11 Zi  | | < C
(.jm)1 / 2

2 jm  ’



for any z in QV. $1  is well defined, thanks to a straightforward consequence of the Riesz 

representation theorem.

Remark 9s Let us notice that the term (Ay,z) does not vanish. Actually, unlike the 

spectral case y and z are orthogonal in H, not in V. This point can also be observed in 

the nonlinear algorithms described in [MT].

Let M.\ be the graph of $ 1; then we have 

Proposition 7:

M l  is an approximate inertial manifold for the equation (3.1) of order in H and 

of order in V.

Remark 10: We match here the accuracy established in the spectral case (see [FMT], 

[T2]) in the sense of Remark 8.

Proof: We plan to estimate the gap between the trajectory u(t) and its induced trajectory 

lying in All, y(t) + $i(y(i)), where y(t) = Pu(t) as above. We set

Xi(*) = $ i (y{i)) ~ z(t). (3.56)

We rewrite (3.55) as

QA^t(y) + QAy + QB(y) =  Qf. (3.57)

Hence xi satisfies

QAXi + Q(B(y) -  B(u)) =  (3.58)

We take the scalar product in H of (3.58) with to obtain

II Xi ||2<l % ,* ,X i )  1+ I H z,y,x i) |

+ I &(*,*,XI) l+l ^  llxi I • (3-59)
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I % , * , X i )  l< CB II y nil 2 II (1 +  L o g ( i ^ J l ) ) ' / 2 I x i  | .  (3.60)

We infer from (3.8) and (3.38)

\\y\\<C\\u\\<CMu (3.61)

and from (3.22)

Ml < o ^ ,
these estimates holding for t large enough as in Theorem 5.

We apply (3.12) to obtain

I Xi l< ¿ r  II X: II, (3.62)

and (2.1) to have

(1 + Log( J - ^ E j ) ) ’ /2 < (3.63)

Then we finally obtain

l* (y ,* ,X .)l< C '!£ | | * 1 ||. f3-64)

We also have, using (3.4)

I K*,y,Xi) \<Ci\z |'/2|| * ||>/»|| y III Xl |>/’ || Xj ||'/2 . (3.65)

We then infer from (3.21), (3.22), (3.61), (3.62) and (3.65)

IH *,!,,XI) I < C ^ H | X 1 | | , (3.66)

For t large enough as above.

Using (3.3) and (3.4) we obtain as well

I b(z,z,xi) \<Cb \z HI z DU xi ||, (3.67)

On the other hand (3.7) yields
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I b(z,z,Xi) \< || xi || • (3.68)

Using (3.21) to estimate | | we finally obtain

l l x . f i ^ + C , ^  (3.69)

+ ^  + C4« llU ,||

This yield

II Xi ll< C(- 0 ,  (3.T0)

and thanks to (3.62),

I X. I< c ! 0 ,  (3.71)

holding for t large enough as above.

Now we define M .2 as the graph of the mapping $2  : PV —* QV defined by induction 

from $ 1  by:

((*a(»), *)) (3-72)

= (QA*i(t/) -  QB(y,i i (y))  -  QB($,(y),y),z),  for any z in QV.

Existence and uniqueness of $ 2(y) are consequences of the Riesz representation theorem. 

We have

Proposition 8:

M .2 is an approximate inertial manifold for the equation (3.1) of order H

and of order in V.

and thanks to (3.21), (3.22)
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Remark 11: We match here the accuracy established in the spectral case (see [T2]) in 

the sense of Remark 8.

Proof: Setting

X 2 = * 2( y ) - z ,  (3.73)

and using (3.57) we rewrite (3.72) as

QA$ 2 (y) + QAy + QB(y) (3.74)

+Q B(y,$i(y)) + <?£($! (y),y) =  Qf.

Hence

QAx2 + QB(y,x l) + QB(xi,y)

dz
= —  + QB(z), (3.75)

where xi is defined as above. We take the scalar product in H of (3.75) with X2 to obtain

II X2 ||2<| b(y,x 1 ,X2) |+ | b(xi,y,x2) I 

+ 1 Kz, z,x i)  I + 1 Yt IIX21 • (3*76)

As usual, thanks to (3.7)

I b(y,Xi,X2) I

< CB II V llll X. II (1 +  Log ( I M - ) ) ’ /* | XJ | . (3 .7 7 )

From previous estimates (3.61), (3.63) and (3.70) we obtain, for t large enough as above

\Ky,XuX2)\<C^ m |X2 I, (3.78)
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and thanks to (3.12)

(3.79)

On the other hand, using (3.4)

I 4(Xi,!/,* .) I< Ct | xi |1/2|| X. ir/J || V III X2 |I/2|| X2 H,/2 ■ (3.80)

We infer from (3.12), (3.61), (3.70) and (3.71)

By similar computations, using (3.3), (3.4), (3.21) and (3.22)

(3.81)

I b(z,z,x2) \<Cb \z HI z Hü X2 II

< O S  II »  II (3.82)

We have as well, using (3.12) and (3.21)

(3.83)

We summarize (3.76), (3.79), (3.81), (3.82) and (3.83) by

(3.84)

holding for t large enough as above. Poincare inequality (3.12) ends the proof.
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APPENDIX

In this appendix we want first to present a proof of Theorem 1 for the multidimensional 

periodic wavelet bases built from the one-dimensional ones by tensor products. For the 

sake of simplicity we present this result for the two-dimensional case. The reader could 

check that it can be extended without difficulties to the d-dimensional case, d > 2.

After that we will end the paper explaining in few words how to prove Theorem 1 

considering two other important examples of wavelet bases.

In both cases we just have to prove analogous results to Proposition 1 and Proposition

2.

We recall from [L], [M] that, for each N > 0, there exists a function <pn satisfying (i), 

(ii), such that

/  <pN(x)dx ±  0,
J n

and that, setting

ipjtk(x) =  Y ,  Vn (2j x + 2U -  k), (A.2)
uz

the family

{<Pj,k}i<k<2> is 311 orthonormal basis of Vj. (-A.3)

(We dropped for convenience the subscript N  on the tpj^'s.)

Let us introduce some notations. IP(II2) will be the usual periodic Sobolev space on 

the two-dimensional torus. IP(II2) will be the set of functions u in JET4(H2) such that

11 u(x)dx\dx2 =  0.
JJ IP

iP (II2) is a Hilbert space when endowed with the scalar product

;(«,„)).= £  I*lJ**(*)«(*).
k e Z 3

where

38

(A. 1)



| k | =  (k.k)1/2, k l  = kih +  k2i2, 

u(k) =  j  J  u(x)e~2txk'xdx.

We denote the corresponding norm

II U ||,= ((u,u))y2.

Then let Vj  be the space of functions v £ L2(JL2) = H° (II2) such that both

xi i— >• v(xi,x2),x 2 i— ► r(* i,x 2)> belong to Vj 

(i.e. Vj =  Vj <8> Vj). For a — (a i,a 2) in Aj =  {1 ,... ,2J} 2, we set

<pa{x) = <Pjtai(xi)<Pj,a,(x 2 ). (AA)

Then we observe that the family {<pa} atAj is an orthonormal basis of Vj.

Now we are ready to claim 

Proposition A .l There exists C > 0 such that for any v in Vj

II ® ||n+i< C2«n+1> II « II, . (A.5)

Remark A .l: As above C is a constant that depends only on N.

Proof: We use the convexity of the function A i— > XN+1 to write

ktZ1

< 2n E  (iiN+2 + H N+2) I «(*) I2
u z 1

<  2N [|| (a ,)N+1u ||j +  n (3 ,)w+1u ||2], (A.6)
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setting (di)N+1u = l^N+t ; i = 1 , 2 .

On the other hand we write for

v =  Aa<Pa in Vj (A.7)
cteAj

II (9i)N+1v ||J= £  ^ V ( ( ( a . ) " +V . , ( « . ) w+V «-)).- M -8 )
a.a'eA,-

Thanks to Fubini’s theorem

(((9i)w+V «.(9.)K+V«'))o =

( /  K’« +I>(*lV<ci ,+I)(a:l ) ^ l ) ( /  i’o(*2)»V,(a:2)<&2), (^-9)
./n 1 Jn

where we set <p^+1\xi) — £ N+i<pat{xi)i and where we dropped the subscript j  on the
Vx 1

<Pjta. ’s to write <pai; ¿ =  1,2.

Using fn (pat{^2 ){p<x,2(x2 )dx2 — 0 if a2 7̂  «2  (c  ̂(A-3)), we obtain

(A10)

(A l l )

(A.12)

(A.13)

We then apply (2.1) to the function x\

(A.3) yields

therefore

To conclude we recall that the family {</5a}aGAj is an orthonormal basis of Vj, then using 

(A.6 ), (A.13), and that (A.13) holds for || (92)iV+1v ||§ as well, we obtain || v ||̂ +1< 

CA*n +') || v |jo •
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Il (öl)
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V II20
2J

E
02 = 1L

(
2>

Eai = l
\a(fi( N + 1)

«1 (*l)) 2dx\.

/п ( Eai = l
A aV( N + 1 )

«1 (*l))
2 dx j < C 4j( N + l ) к2i

Eai = l
(xi))2dx i.

ь2>
Е
ai = l

(xi))2dxi  =

2*
E

a i = l

À 2 a  ?

Il (a.)N+1» IIS< C 4i(Ar+ï)( E A2J .



Wj = V,-+1 n  (V j^ .  ( -4 -1 4 )

Wj can be viewed as the direct sum of three of its subspaces, namely

Vj ® Wj-, Wj ® Vj) Wj ® Wj.

We observe that the family {̂ >ai (xj )^aj (x2 )}aeA,- is an orthonormal basis of

Vj ® Wj- (A. 15)

(we also dropped the subscript j  on i>j,a2 to write >̂a j).

We claim

Proposition A .2: There exists C > 0 such that for any w in Wj

|| w ||-jv -i<  C2~̂ n+1̂ || w ||o . (¿.16)

Proof: For w in Wj we write w =  w\ +  w2 +  w$ where w\ £ Vj ® Wj] w2 € Wj ® V̂ ; «>3 £ 

Wy ® Wj. We observe that

II W llo=ll » 1  llo +  II III +  II «0» IIS, ( ¿ . 1 7 )

II w II—N—1 — 3(ll ll-N -1 +  II w2 II—JV—1 +  II W3 II —to—1 )• (-A.18)

It follows that it is sufficient to check (A.16) on both w\,w2,ws. Because the proofs 

are similar we present below only the proof for w\.

Let

W\ = E  Aay,ai(*l)'0a2(*2) (-A.19)
oceAj

Using (1.7), (2.17) and (A.2) easy computations yield

I m. —2nra./ f -1 /  o

= f a  E  u - 20)
aGAj

Now we set
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Hence

и» .  ii5= E  i т ф  i2i * ф  i2i Л § )  i2- (A-21>
г е я 2

setting

= Ь  S  л а е_2‘,Г^ Ь - (A22)
«ел ,-

m is a .Z2-periodic function. Using this fact we obtain

ii » 1  iu= E  i ™ ф  i2 ( E  i * h § + i2)< E  1 ^ 5 7 + «  I2)- <A-23>
ЛЕГ t\Q.Z i-2 £<2>

where Г = {к € Z 2¡\ -  2 *-* < к { < 2^~\1 =  1 , 2 }.

Thanks to lemma 3

и ®i 112= E  i т ф  i2 • (A-24>
fcer

On the other hand we write

4i(w+1> || «>, ll2- « - ^  E  I M i )  l2| |  Г 2" ' 2 • (AM)
t€ZI

By the same computations as above 

4j(jv+i) || Wi \\2_ n _ 1

= E m £ > i2 ( E  i i + < r 2N" 2i v ( | + ^ ) i 2i « f e + ^ ) i 2)- (>i-2e)
fcer t e z 2

we infer from (A.24) and (A.26) that to prove (A.16) for w\ it is sufficient to majorize the 

function

1/2 ,1/2]2 —* "R+ 

z — ► e  u + « r 2N- 2i ^ 1 + i i ) i 2i iS (^ + ^ ) i ! .
lez*

observing that | z + £ |-2ЛГ-2< 4 ^ + 1  for z in [—1 / 2 , 1 / 2 ]2 and l  ф 0 we obtain

E l H (  г 2"-211¡K*, + /,) |214(*2 + /2) l2
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< 4n + '( £  | v(zi + (t) |2)( •£  I *(*» + h )  I2)- (A.21)
tiez t2£Z

We then apply Lemma 3 to obtain

J 2 \ z + i  l-2iV-2| <p(zi + tl) |2| Hz* + 12) |2< 4N+1 (A. 28)

We have now to majorize

| Z  | - 2 N - 2 |  ^ ( Z j ) |2 |  ^ ( Z2) |2 

we infer from (1.5) and (A.l) that

I <pM  I2 = 0 (1 ),

I *(*») I2 =  0(1 *  |2N+2),

when| z |—► 0. This fact ends the proof.

Let us recall some results about the Daubechies’ compactly supported wavelets. (See 

[D], [M]).

Vn > 1, there exists a couple of functions >̂n, <pn such that:

^n,<PneCn(Tl) (A. 29)

• J  xm'il>n(x)dx = 0 if m < n (A.30)

•ij)n,ipn are compactly supported. (.4.31)

(Actually there exist two constant ci,c2 > 0  such that the width of their support belongs 

to [cjn, C2Tl]).

• The family {2, /2^n(2jf* — k)}jtk€z  is an orthonormal basis of (A.32)
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• If we denote by Wj the space spanned by the functions •0n(2Jæ — k); k € 2 ,

then the family { 2 ^ 2 <pn(2 -'x — k)}ksz is an orthonormal basis of Wi. {A.33)
K i

Now we are able to define the periodic Daubechies wavelet bases and to prove Theorem 

1 in this case, being provided n is large enough with respect to s. Actually we just have to 

replace 6jv by tpn in the proof in Proposition 1 and by ipn in the proof of Proposition 

2. The multidimensional results follow.

We recall now what is the Littlewood-Paley wavelet basis (see [LM], [M]). There exists 

a couple of functions (pyij} belonging to the Schwartz class S(7l) satisfying respectively 

(A .l), (A.30) for each integer to, (A.32) and (A.33). Moreover <p and are compactly 

supported. Then, with the same notations as above, for w in Wj

w{£) = m{£/2j )î>{e/2j ), (A.34)

where to is a one-periodic function. This yields, for each s in 71

m ; = £ i » w  ?\i\u
UZ

= £  I AM Pm2*, (A35)
a2> <t<b2>

where a and b are independent of j. This fact yields to Proposition 1 and Proposition 

2 . We then deduce that the periodic Littlewood-Paley wavelets provide an unconditional 

basis for all Sobolev spaces #*(11). The multidimensional results follow.
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Nonlinear Galerkin Methods Using Hierarchical 
Almost-Orthogonal Finite Elements Bases

Olivier GOUBET 
Laboratoire d’Analyse Numérique, Université Paris-Sud 

Bâtiment 425, 91405 Orsay, France

1. Introduction

New methods have recently emerged in Numerical Analysis in view of a better 
understanding of nontrivial dynamical situations arising in large time integration of 
dissipative evolution equations. Actually the set that describes the permanent dynamics 
of the equation -the attractor- can have a complex structure and even be a fractal (see 
[Tl]). A dynamical approach for the numerical discretization of such problems led to 
the development of the so-called Nonlinear Galerkin Methods.

Their history can be overviewed as follows. A first step was the theory of inertial 
manifolds (I.M.). The idea was to imbed the attractor into a smooth finite dimensional 
manifold and to reduce the dynamics to this manifold (see [FST], [Tl] and the references 
therein).

Next came the approximate inertial manifolds (A.I.M.). These manifolds capture 
all the orbits after a transient time in a small (thin) neighborhood. Hence they represent 
the large time behavior of the system up to a certain level of accuracy : the order of the 
A.I.M., that is the width of the neighborhood. Sequences of A.I.M.’s, that approximate 
the attractor with higher and higher order, have been derived for a broad class of 
dissipative evolution equations (see [DM], [F], [PT], [T2],...).

As the classical Galerkin method is related to the coarsest of these A.I.M.’s, the 
flat one, the nonlinear Galerkin methods feature inertial nonlinear algorithms that cor­
respond to A.I.M.’s providing better orders of accuracy. The theory first developed in 
the spectral case (see [FMT], [MT1]) extends now beyond : for instance see [T3], [CT] 
for works about finite differences or [G] about wavelets.

In this paper we are interested in finite elements. Hence we go back to the frame­
work of [MT2] : let Vh be a finite elements space corresponding to a triangulation 
whose mesh size is h. Instead of computing an approximation yh of a solution u of a 
dissipative evolution equation as the solution of the approximated problem on Vj,, we 
are looking for a nonlinear approximation yh + <f>(yh), where <f> maps V/, into a suitable 
supplementary Wh of Vh into V/,/2-

The algorithms of [MT2] used finite elements spaces that are related to classical
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finite elements hierarchical bases ; for a description of such bases see [Y]. But for 
numerical reasons it appears that it is convenient to enforce an orthogonality condition 
between the spaces Vh and Wh- Here appears the theory of orthonormal wavelet bases 
(see [M]).

Actually it could be possible to use the wavelets for open subsets of IR^ as described 
in [JM]. On the other hand an unconvenient feature of these functions is that they are 
not given in an explicit form, although very interesting asymptotical results are available 
(see [Jl]).

Therefore we are looking for new hierarchical bases whose elements enjoy both 
properties of finite elements and wavelets :

- Numerical convenience : each function is derived from a single(1) basic function by 
dilations and translations (up to a truncation for functions whose support is close 
to the boundary).

- Localization : each function is compactly supported around a vertex of one grid.
- Orthogonality : each function is orthogonal to all but a finite number (independent 

of the function) of the others.
- Cancellations : each function oscillates (because the basic function has vanishing 

moments).

All these properties will allow us to obtain a robust decomposition of functions u 
as a sum

+00

u = yh + ̂ 2zhj (1.1)
j=0

where yh is as above and where the incremental variables zhj+1 are obtained by successive 
mesh refinements hj+ 1 =  with the condition that Zhj+l is orthogonal to Zhh for
k < j  +  1 .

The remainder of the article is organized as follows. In part 2 we describe the 
construction of the basic function. In part 3 we present the new hierarchical bases and 
we address some questions related to the robustness of formula (1.1). In part 4 we study 
a nonlinear Galerkin algorithm that applies to a class of reaction-diffusion equations. 
This class of equation that does not appear in [MTl], [MT2 ] necessitates some partic­
ular treatment. Other questions related to large time approximation properties of this 
algorithm will appear in a subsequent paper.

Notations :

• fi : (0,1)N, N =  1,2 ; dil =
• dist(x, 17) = inf{|x — o>|,u> £ fi}
• 6 \<fl : Kronecker symbol

(*) One in space dimension one, 2 N — 1 in space dimension N.
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• i 2 (I) : space of sequences {ax} indexed by I  such that

X  la*|2 < + °°
A 6/

• L2p($l), Hq(CI) : classical Banach, Sobolev spaces on Cl.

•  m *j =  f  \u(x )\2pdxJ n
• |u| = |zt12 j ( , ) corresponding scalar product.
• IMI2 = /  \Vu(x)\2 dx; (( , )) corresponding scalar product.

Jo
• Hull. =  sup |(tt,¥>)|

IMI = 1
• supp (u) denotes the support of a function u.

2. Construction of the Function 6

For the sake of simplicity we will only describe in the following the construction as it 
relates to usual Qi finite elements in space dimension one or two. The existence of such 
function for various finite elements is related to the existence of compactly supported 
functions in multiresolution analysis ; see [L] where this last question is addressed.

2.1. The one-dimensional case

In this paragraph cr is the roof function depicted in Fig. 2 .1 , up to a multiplication 
by a constant choosen such that

I <7(x)2dx =  1 .

-4L 0 d

Fig.2.1. The roof function 
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We are looking for a piecewise affine continuous function^ that is compactly supported, 
whose nodes axe the half-integers, and which satisfies :

J  cr(x)0 ^x + ^ — k̂ j dx =  0, for any k in TL. (2.1)

A convenient solution is borrowed from [A] ; 6 is the function whose graph is

.-to

* / \ 1 
- Z y  %.--------

Fig.2.2. 6 : one — dimensional case 

Actually we shall consider the function

Now we prove some preliminary material that we shall use in the next section.

LEMMA 2.1. Let j  >0 ,h  = £ .  The (nonvanishing) restrictions to (0,1) of the functions 
x —* 6 ( jr — i  — I) , l  £ 2Z, are linearly independent.
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Proof.

Fig.2.3. : Functions with nonvanishing restrictions, j  =  2

Remark : In the following we will represent the points that are on the coarse grid by x 
symbols, and the uncremental points, that are the points on the fine grid that are not 
on the coarse one, by o, A ,0 ,... symbols.

There are exactly jr + 2 functions 9 ( jj[ — I — j )  whose support is not disconnected 
to (0,1). Let I  — {A = h (i + I ) }  be the set of indices of such functions. We observe 
that all the points of I  are in (0,1) except — and 1 -f- f  • We have to prove that, if 
there exist numbers 7 x’s such that

E ta« ( ^ ) = 0  (2.2)

for all x in (0,1), then 7a = 0 for all A in I.
Let ¡j, be such that

7/i = |7mI = max ItaI •
A e l

First, if fi is in (0,1), we take x = y. in (2.2) and we obtain

7 M0 (O) < max |7a| [ ^  9 (~~T~\  )
A e l  \ n / J

On the other hand, we go back to the definition of 9 to observe that for any Ao =
h (io +  1)

* ( ° » E  # ( ^ )  •
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These two last inequalities lead to 7  ̂ = 0.

The second case occurs when /x is equal to — j  (the case 1 + -| being similar). We 
then take x = 0 in (2 .2 ) and we obtain

T—A/2 + Tft/2 =

and we axe back to the first case.

2 .2 . The two-dimensional case : Q1 elements

For that case we mimic the construction of two-dimensional wavelets by tensorial 
products (see [M]).

f  1 *

\  °
------------------- * -  a - x ----------------------

Fig.2 A. Qi uniform triangulation 

Written with their center at (0 ,0 ), the three basic functions are

( da.(xi,x2) =  6 (xi)d(x2),
< 0>(x 1 ,X2) =  <r(x!)0(x2),
( 0 &(xi,x2) =  e{x1 )a(x2),

where 6 , <7 are as in the one-dimensional case. For instance the values on the grid of 
are depicted in Fig. 2.5 below ; as usual in the next sections we will chose the L2

52



_____K. -3___ 5___ ± _ % ____

____ A____~C___ « ___ -_6___ i.___

_____ lA ___* ___ £___ -j___\____

Fig.2.5. : two — dimensional Qi case.

We also define the two-dimensional a function as

<r(x1 ,x2) = o-(xi)<r(z2), 

the <r’s in the right hand side of the equality above being the one-dimensional one.

Remark. We have to observe that the analog of (2.1) holds thanks to Section 2.1 and 
to Fubini’s Theorem.

3. The New Hierarchical Bases.

This section is organized as follows : first we shall present the construction of several 
hierarchical bases on ÎÎ =(0,1), in view of the discretization of an elliptic problem with 
respectively homogeneous Dirichlet, Neumann or periodic boundary conditions. Then 
we will derive such bases for the unit square [0, l]2 in IR2. We will conclude this section 
by establishing some properties of these bases.

3.1. The bases : the one-dimensional case

Let us introduce some notations. We are given a triangulation of [0,1] with intervals 
of width h = hj = ĵ-, and we denote by Nh the set of the nodes (vertices) of the 
triangulation, and by Vh the corresponding V\ finite elements space. For instance for 
the Dirichlet boundaxy conditions

Nh =  |k.h, l < f c < ^ - l ,  f c e w j .

normalization for #a -
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Remark. Formula (3.1) defines <7o as the restriction to (0,1) of h~1'2a (^) in the Neu­
mann case, and as the restriction to (0,1) of h-1/2 [er (^) + <r (^jp)] in the periodic one 
(since 1=0 in that case).

We then recall the following well-known result :

PROPOSITION 3.1. The family iS a ^asis f°T Moreover there exist two
constants Cj, C2 > 0 that are independent of h such that for any

y = y(x) = ^  « « M * )  
k  eivfc

in Vfi, the following inequalities hold :

c,\y\2 <  X )  l“ «|2 <  f t lv l2. (3.2)
i t £ N h

Proof. We just compute the Gramm matrix of the <tk’s and then observe that on each 
column, the diagonal entry is larger than the sum of the modulus of the other ones.

We then define Wh as the orthogonal complementary (in L2 (Sl)) of V/, in V̂ /2 . We 
are looking for a basis of Wh whose elements are functions that are localized around the 
A’s belonging to Ih = Nh/2 \Nh. We will derive these functions by truncation, dilation 
and translation of the function of Section 2. We first observe that, independently of the 
boundary conditions, card Ih =  dim Wh =

3.1.1. Dirichlet boundary conditions

For A in Ih such that supp 9 ( - -jp) C Ù we set
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(3.3)0a(®) h-* /2  tì (
X A

)■h

M * ) h-1
(

X к
)■h

(3.1)

Remark. We have to add to iV/, respectively k =  0 and k = j;, and k — 0 (or k =  ^), 
for respectively the Neumann and periodic problem.

For a as in Section 2, for k in Nh, we set

{ Ĵ/cGiVfc

' 2<т



being understood that we consider the restrictions to (0,1) of the functions involved in 
(3.4),(3.5).

ct k A0

° y \   ̂ «. Â  «. *
I O X -r'"X — ©-----—Xy o ■ \  X— ' ' X — ©— — o------------------ 1

V . 6

Fig.Z.l. Dirichlet boundary conditions', 
j  =  4; /16, #5/16

We will prove that this family provides a basis (for Wh) in Proposition 3.2 below.

3.1.2. Other boundary conditions

For A in Ih\ { f , 1 — £ } , we define 0\ as in (3.3). Let us first consider the Neumann 
case. For a reason that will appear in the proof of Proposition 3.2 below, we set

**/»(*)= h~'12 {" ( f  ~ 5 )+ 9 ( f  + 5)) ’ (3-6)

«1-W» = (« (f - 1 + 1) +6 (l -  \  - 1) ) . (3-n

being understood that we consider the restrictions to [0,1] of the functions involved in
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Hence we already have jr — 2 functions ; it remains to define 0j,/2 (and #i-(h/2))- For 
that purpose we shall modify 6 (jr — i )  in order to enforce the condition #/,/2(0 ) =  0. 
We then set

«»/»(*) = h- ' 12
( '

- в ((
X 1

)2h
X 1
h +

2))
1̂—(А/2)(ж) =  h 1/2

( ' (
X

h
1
h

1
2 )+ в (

X

h
1
h

1
2 ) ) ■

(3-4)

(3.5)



A11 A 4-0

? /  \  f -  /  \
\—j  —\ * ~ A X — ©--- ^ o V -)</—©- Vx—/ o ^ (  o— ^ — e----[

Fig.3.2. Neumann boundary conditions;
i  = 4, ^i/i6, 5̂/16-

For the periodic case, we set

<w * )= h~'12 (» ( f  -  5) + « ( f +5 -  5)) (3-8)

«.-(»/»>(*) = h~'12 (" ( f  - 1 + 5) + 0 ( l  + 5) ) • <3-9)

being understood that we consider the restrictions to [0,1] of the functions involved in 
(3.8), (3.9)

o / X 4- 4 . /  \ 4 .
I ~j - e - W / ^ X — ^/ - ©—\>̂ — — j
/ - c  V - 6  v - 6  V i *  \

Fig.Z.Z. Periodic boundary conditions; 
j  =  4, #1/16, #5/16•

(3.6), (3.7).
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z =  z(x) =  ^  7А0л(*) 
a GJfc

in Wh, the following inequalities hold

C3 \z\2 < Y ,  ItaI2 < C4 \z\2. (3.10)
a e/fc

Proof. The first step of the proof is to check that each 6 \ belongs to Wh, i.e. that в\ is 
orthogonal to <rK for all к in Nh.

Independently of the boundary conditions, this is a straightforward consequence of 
(2.1) for any A in Д  such that supp 0\ С [0,1].

Actually it remains to prove this result for 9 ^ / 2  (the case of 6 \-(h/2 ) being similar) 
defined by (3.4) or (3.6). Let us first consider the Dirichlet саде. For any к in Nh, we 
have

Thanks to (2.1), the two integrals involved in the right hand side of (3.11) vanish, and 
the result follows.

For the Neumann case, an analogous proof gives the result for all k in Nh except 
k =  0. On the other hand we have

Hence, since 6  and cr are even functions, we have

and then, thanks to (2.1), the right hand side of (3.12) vanishes.

Let us now prove the first assertion of Proposition 3.2, i.e. that the 9\s provide a 
basis for Wh- We just have to establish that these functions are linearly independent. 
This point is a straightforward consequence of the definition of the 6 \s and of Lemma 
2.1.
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3.1.3. Basic properties

PROPOSITION 3.2. The family
Moreover there exist two constants

defined as above provides a basis for Wh.
that are independent of h, such that for

any

{ л
C3 ìC4 > О

6Ihвл }

L
&h/ 2 (x)aK(x)dx = 1

h \ L e (
X

h
1
)2

<7
(

X — к

)h

- hJWL (

X

h +
1
2 )

(7
(

X — AC

h ) dx

L
ĥ/2 {x)aa(x) dx =

1
h [«̂>oв

(

X

h
1
)2

<г GDdx

+
lx > О в (

X

h +
1
2)а

( i )
dx

■

(3.12)

(3.11)

x> 0
в

(

X

h +
1
2 )

(T(!)dx — jJ z < 0
в

(

X 1
h 2 )

a( dx
X

)h



is a Riesz basis for L2 (fl).

Remark. The meaning of the theorem is that any function u in L2 (Cl) can be written 
in a unique way

“ (*) =  a «°'*(aj) +  E  E  7a0a(®),
* e N ho j >  o a  e i hj

such that the quantity

( £ m 2+ £ m ! ) 
\ '  j,A /

defines a norm that is equivalent to the L2 one ; in other words a Riesz basis is a basis 
that is isomorphic to an orthonormal one.

Proof of Theorem 3.1. Thanks to the density of |Jj>o -̂ 2(^) we have

£ 2(fl) = Vk © ^ +© Wĥ j , (3.14)

the sum being orthogonal.
Let denote by I  the set of indices Nh0 U ^Uj>o ĥi )  • We then define eK as the

sequence of ¿2(/). Then we define a linear operator L from £2 (I) into L2 (il)
by setting

l (eK) = <rK if k G Nho,
L(ex) = dx i i \ e  I\Nho.
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Let us prove now the second part of Proposition 3.2. Inequality

W2 < c Y , 17*1’ (3-13)
A £ l k

is straightforward to estabHsh by expanding

\z\2 < Y j M  W  I /  Ox(x)0 lt(x)dx ,
A I * '«

ajid observing that the integrals involved in this sum, that are anyway bounded by 1, 
vanish if |A — fi\ > Ch, for some constant C.

For the reverse inequality, we rather prove directly the following stronger result :

T H E O R E M  3 . 1 .  For any hj = let us define the family { ^ A } x e / h 8 3  above.
Then the family

К } K^Nhn и
(и

¿>0

{ agì h0A} j

( ме/8it,«)

1 /2

ы  
2) ’ 3 > О,

vh¡ in

7 = 0



Thanks to (3.14), the family {^K}K&̂ h U {0\}\£i\Nh is complete in £ 2(i2), and there­
fore L is onto. On the other hand, thanks to (3.2), (3.13) and (3.14), L is bounded.

Moreover L is one-to-one : if u; in ¿2 (I) is such that T(u>) =  0, then we consider the 
L2 projection of T(u>) on either Vh0 or Wh} , and we use Proposition 3.1 and the first 
part of Proposition 3.2 to obtain u> =  0.

Therefore the Banach open mapping theorem applies and Theorem 3.1 follows.

3.1.4. The two-dimensional case

The construction of bases for the unit square follows the method of tensorial prod­
ucts (see Section 2.2). As an example, we give below some functions related to a problem 
with mixed boundary conditions.

I i I I I I I 1
<*----- O-----< )----- <3— o----- <>----- o----- -------6)

— X — o— H ^

() — ----- O-----9 -----o  O----- il-----il— o

1>— * «— « — i f — »— — X

( )-----o ----- 1 a---- <i----- É----- it----- O----- <*----- i*

---- ii-----7^----

o— o — o — <3— O— <5— <>

Fig.ZA. Mixed boundary conditions

Let us consider a problem with Neumann boundary conditions on x\ =  0 and x\ — 1, 
and Dirichlet boundary conditions on x2 = 0 and x2 — 1 (see Fig. 3.4. above).

Remark. As usual, we consider the restrictions to [0, l]2 of the functions presented 
below.
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^ ^ ^  \ V  \ "v4
____ 3____M__ 50___-54 3____

____ 4 ___U___& __ U___-*___

____ ±___4 ___3____zi___±___

Fig.3.6. Op for ¡X close to =  1

• For u) =  ( f ,  A2) as in Fig. 3.4, we have
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вш h -1(xi ,x2) в (
X i

h
1
2 ) + 0 (

X1
h +

1
2)K*2 л 2

h )■

• For A =  (A1? A2 ) as in Fig. 3.4, we have

____ w____-j___ *•___ _____ài___

-6__ 3Í___-to U___z i___

____ Ч£__ -Í0 *00 -to -to___

-<___ 56____*{0 Ъ 6 ___2 Í ___

___ л.__ ч__ до__ 2Í__ i:__

Fig.3.5. #А /or* A far away from dQ,

• For fi = (Ai,1 — 4) as in Fig. 3.4, we have

0a(®1,®2) -  h 1в
/  xi — Ai \ /  x2 — A2 \
{ ~ T - )  ° v-r-J •

0м(*Ь*2) =  h гв ( • * (
X i  -  Al

)h
X2 — 1

h +
1
2

- в (
®2 —  1

h
1
2)]



- \ i -  U ____s _____4-_____

>S\> £_üf_èi__

^ \ - U ô  (10 < o  to____

^  ^  ^  ^

- U  U_____- c  i . ____

\  1 I 1 

* i s 0

Fig.3.7. 0  ̂ /o r  (jj close to X\ =  0
Remark. We have presented the functions in Fig. 3.5, Fig. 3.6 and Fig. 3.7 without L2 
normalization.

3.2. Sobolev space and the new hierarchical bases

For the sake of clarity, we will establish the results above for the bases related to 
a Dirichlet problem. Then we will briefly indicate the modifications to do in order to 
obtain similar results about the Neumann case (Results about the periodic case can be 
found in [M]).

The previous theorem shows that our bases axe convenient to analyze the behavior 
of functions in L2{fi). In this section we will study some properties of the bases in Hq(Q,) 
spaces up to the natural edge that is s =  1.

First let us have a look at the properties of the Ox’s for the Hq norm. The following 
result describes the cancellations of these functions.

PROPOSITION 3.3. Let h = hj = be as above. There exist two constants C5 , Ca > 0, 
that are independent of h, such that for any

z = z(x) =  ^2  7a #a (s )
a eh

in Wh the following inequalities hold :

(3.15)

(3.16)
Proof. We derive
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as we obtained (3.13), observing that ||#a|| < 7“-

Remark. We have to observe that this so-called Bernstein inequality holds also for the 
<7*’s. Namely there exists a constant C > 0 independent of h such that for any y in Vk 
the following inequality holds :

m i  <  £  m - (3 .i7 )

Let us now prove the reverse inequality in (3.16). Thanks to (3.10) and to the interpo­
lation inequality

M2 < № I U ,

we just have to prove

L E M M A  3 .1 .  There exists a  constant C > 0 , that is independent of h, such that for any 
z in Wh the following inequality holds :

||*||* < Ch\z\. (3.18)

Proof of the Lemma : Let u in Hq(CI) be such that ||u|| = 1 . We have to estimate

|(*,«)|a <  ( e  ItaI2)  (  £  |(«»,»)|J)  ,
\Ae/h /  \ae/fc /

setting as usual
2 = z(x) =  X  7a0a(z)- 

AG I k

Hence, thanks to (3.10), inequality

I f  6 \{x)u{x)dx < C/&2||-u||2 (3.19)
Ae/J * '0

yields (3.18).

Let us now prove (3.19). The first observation is that because J 9{x)dx vanishes 
there exists W  compactly supported such that W(x) — W(x + 1 / 2 ) =  0(x). This point 
comes from the fact that we can apply the Paley-Wiener Theorem to and that

1—e* 2
therefore

W{x) =  (2ir)~N [  - i i i L ¿ ^ d t  
J n N  1 -  e ‘ j

is compactly supported.
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On the other hand, we observe that any 0\ writes as 6 , or as a sum of two
or four functions 0 (restricted to ÎÎ). Hence setting

{
«(æ) if x is in O
0 elsewhere

we have

J  9\(x)u(x)dx = h~N/2 X  J  n w  (ü{x) - ü ( x -  - ^ j d x

i t  i /  h \ 2 V ' 2 (3'20)
< c Y l [ j  p (æ) “  “ y x ~  2 j  dXj  ’

where u;v = G JRN/ x~f̂  G supp W j  . Then

Y ,  l(0A,u)|2 < c  f  |«(i) - Ü  ( z  -  dx

S L  •/e " 1 V 2J (3.21)
<Ch2 f  |Vü(a:)|2 dx,

Jr n

that concludes the proof of Lemma 3.1.

Remark. For the Neumann case, we have to replace H\ (fI) and H~1 (0) by

H 1 ^ )  =  G H \ n y ,  J  u  =  o |

and its dual space.
If we still denote by ||z||# the quantity sup then (3.18), and therefore

Proposition 3.3, hold.
The idea of the proof is to set ü = ü(x) = Pu(x), where P is the prolongation 

operator from /T1(i2) to H1(JR.N) defined by 2N successive reflections (and a truncation)
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(see [B] Remarque 10, p.160).

' ; ;• ,_,__j

L— J S L j  
i i 
i i 
, i 
.__________________ !

Fig.3.8. The prolongation operator 

Going back to the definition of the 0\ s, we then observe that

i> * (« (^ ) )= A w/2«xW,

and that therefore

J  u(x)9\(x)dx = h~N/2 J  (Pu)(x)0 ^ ^  dx.

The same proof as the proof of Lemma 3.1 above provides the estimate

EK ,̂«)I2<cj»2(H2 + |hi2),
A6 I h

and the conclusion follows the remark that since J*ft u =  0 we can apply Poincare in­
equality to obtain |ti| <

Hence let us give two interesting features of our bases that are consequence of 
Proposition 3.3. The first one is related to the discretization of the operator —A +  Id 
on Vh using a fully hierarchical basis : we already know a basis for V/, that is
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P R O P O S I T I O N  3 . 4 .  Let M h be the matrix whose entries are the ( ( # a , 0 / i ) )  +  for
\,(j. in Uj>i Ih.j- Then there exists an explicit diagonal preconditioning Lh such that 
the condition number Kh of the matrix (Zrh)-1M fc(£h)~1 grows (with respect to h) 
like |Log h\2.

Remarks
. For analogous studies for wavelets and for the classical hierarchical bases see 

respectively [J2] and [Y].
. The reason why we do not obtain 0(1) instead of 0(|Log h\2) is because the 

function 0 lacks a little smoothness.

Proof : First we observe that 7* . is empty for j  > C(Q)|Log h\, where C(fi) is a 
constant that depends on the diameter of fI. Therefore if we define a function y of V& 
as

V =  V I z- j  (3.22)

where
z - j  =  z - j { x ) =  ^ 2  T A 0 A (æ ) ,  

a  e i h _ .

we obtain both

M 2 < C | L o g /.| 5 > -i f ,  (3.23)
j> 1

M i S C I L o g ^ U ^ I I 2. (3.24)

Using (3.15) and (3.23) we obtain

We look upon the coarse grid as a superposition of coarser grids iî2>h0i 3 ^ 1» and 
we define the corresponding spaces V2,/,0. We observe that V2i h0 =  {0 } if j  is large 
enough (because fi is bounded). We then define by induction Wh_} as the orthogonal 
of V2i+ih0 in V2i h0 and we consider the corresponding bases {ÖA}^gjh • The basis we 
shall consider for Vh is

j> l
и { в } лл ei

Let us prove now a kind of reverse inequality. We set

(3.25)

(3.26)

IMI2 < C\Log h\
E

J>1 «
1

2 ¿h
п

E
xeih_;

ь м 2
))■

ÿ(x) = E (
1
23 h)

2

z4 (*)»
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follows.
We reinterpret (3.25), (3.28) saying that for

( - ,  \2h
\

J_
2h 

_1_
4/i

Lh = \

4 h
\

1
2Th

\

then K h = 0(|Log |̂2).

The second application of Proposition 3.3 that we give below extends the robustness 
of Formula (1.1) beyond the L2 case. We shall prove that this formula holds for any 
function or distribution in Hq(Q.) or in H~3(Q), for any s in (0,1) except s =  1/2. (In 
that case we cannot define H y 2(Ct) by interpolation between L2(€l) and JT^(ii); see 
[LM]).
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and therefore

and then using (3.10), (3.18), (3.24) we obtain

where z_j is as above. Hence we have

E
¿ > 1

(
1

2i h)

2
к -il

2 (y,ÿ)

< I M I  l l ÿ l L .

E
Ì>! (

i
23 h)

2

\z - j \
2 < С I Log Ы1'2

(Eз> i (
1

2 ih )
2

\z-j\
2

)

1 / 2

IMI»

ILog h\ 1E
i>i ((

1
23h

2

E 1 т А | 2

)
< CIMI2 (3.28)

(3.27)



where j *  is a negative number that depends on the diameter of f t .

Remark. Analogous results hold for the Neumann case, if we replace Hq (and H~s) by 
the spaces defined by interpolation from H1 and its dual.

Proof. The proof is classical for orthogonal splittings of L2 in a sum of subspaces that 
enjoy both (3.10), (3.15), (3.18). See [M, Th. 8, Ch. 2]. See also [G].

3.3. Lp(ft) spaces and the new hierarchical bases

The aim of this section is to establish some properties we will use in the next 
section. At the same time we will extend the meaning of formula (1.1) beyond the 
Hilbertian L2 case.

In this paragraph we will use the localization properties of the Ox’s and the <rK’s 
around respectively A and k  ; we will also use the fact that the function of the dual 
bases enjoy similar properties. Namely for any A or k in respectively Ih and Nh, if we 
define by 0\ and a* the unique functions in respectively Wh and Vh such that

{0x>,0*x) = Sx,x', for any A in Ih, (3.29)
(o v , O  = SK,Ki, for any k in Nh, (3.30)

then there exist two absolute constants a*,C* > 0 such that

P R O P O S I T I O N  3 .5 .  The family (Jiez is 30 unconditional basis for the spaces
jt: X Glfij

Hq(SI) and J3’_s(ii), |s| < 1, |s| /  1/2. Namely any u in respectively i?o(ft) or H~8(€l) 
can be written in a unique way as

where the sum is convergent in respectively Hq(Q) and H s(ii). Moreover

defines a norm on respectively and H 4 (ft) that is equivalent to the usual one.

Remark. We recall that in Prop.3.5. actually

u(x)  = Е Е
j(z2L \ E l h j

TA0 \(x)

E
je 25 (

(hi) 2 8 E
AGA.

ы 2
)

u(x) = E E
j>j. ле/л.

7А^л(а;),

\K(z)\ < C*h NI2 exp (-a *
\x

h
) ■

Al

|<7*(æ)| < CJi N/2 exp - a . Ix «I
)■h
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(3.32)



hold for any h, x , A, k.
For a proof of (3.31), (3.32) we refer the reader to [JM]. The idea is that, for 

instance for (3.31), because the 0\’s satisfy (3.10), the inverse G-1 of their Gramm 
matrix enjoys good decay properties for the entries away from the main diagonal. Hence 
by 9\ =  G~1 6 \, the localization properties of the 9\’s transfer to the # ’̂s.

L E M M A  3 .2 .  The orthogonal projectors L2 (il) — » V / ,  a r e  uniformly bounded (indepen­
dently of h) a s  operators acting on Lp(fl), 1 < p < +oo.

Proof : Thanks to (3.32), the estimate 

sup V  (u,<7*)<TK(x)

X E i l , t e N k  (  (  w  (3'33)< Itiloo. ( sup /  |<r*(a?)| dx J . ( sup ( V  <tk(x) J I 
\«eNhJ n )  ) )

provides the L°° bound. Since the projector is self-adjoint we then derive the L1 bound, 
and therefore the IP ones by classical interpolation results.

We then order the 9\ s in the natural way (the functions of WfXj before those of 
W/lj.+1). We have

C O R O L L A R Y  3 .1 .  The family IJjez or( êred as above provides a Schauder basis
for Lp(£l), 1 < p < +oo and for Cq(Q,).

Remarks.
. Oo(fl) denotes the subspace of L°°(fl) whose functions are continuous on fl and vanish 
on its boundary.
. Corollary 3.1 means that any function u in Lp(f2), 1 < p < +oo, or Co(ii) can be 
written uniquely as

+ oo
“(*) =  E  E  7a0a(*),

j= -  oo a eih.

the partial sum being convergent for the corresponding norm.
• As usual we have to replace C'o(ii) by C(ii) for the Neumann problem.

Proof of Corollary 3.1 : We observe that thanks to Lemma 3.2 and to the fact that the 
9\ s present the same features that the <rK’s, rewriting the partial sums as

X  + X  7a â(®),
itENh A elfc

we bound them (uniformly with respect to h) in the Lp,s. Hence the conclusion results 
from the density of (Jj>0 Vhj respectively in ¿^(fi), p < +cx>, and in C0(ii).
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Remark : For 1 < p < + 0 0  we have a stronger result for the Dirichlet case. Actually 
the dx's provide an unconditional basis for We do not want to develop this point
here. Nevertheless the idea is to check that the operator from Z?(IR̂ V) into ^'(IR^) 
whose kernel is

X I  S  e*(x)d\(y)
jeïï ae/hj

belongs to the Calderon-Zygmund class (CZO) and therefore is bounded on 1 (̂1RN), 
1 < p < + 0 0 . (See [M, Chap. 6 and Chap. 7]). The conclusion follows the observation 
that both the restriction operator

u € ^ (IR ^) -> u /n  € Lp{&)

and the prolongation operator

f Ü = u in a  € LP(TRn )
u G Lp(Ü) -> { K J

I ü =  0 elsewhere

are bounded.

4. A Nonlinear Galerkin Algorithm  for a Reaction-Diffusion Equation Us­
ing the New Hierarchical Bases

In this section, we will only consider a Dirichlet boundary conditions problem. 
The results that follow can be also proved for Neumann or periodic problems, with 

obvious modifications in the statements of the theorems (JjT1(0) or HpeT(Q) instead of 
# ¿ (0 » ,  an(l minor changes in their proofs (for instance we have to work with vA +  Id 
instead of vA for some a priori estimates).

4.1. An equation with a polynomial nonlinearitv

The evolution equation we shall consider can be written in the abstract form

uAL
—  + i/Au + R(u) =  /  (4.1)
at

where the unknown function u maps [0,+oo) into L2 (fi); A denotes the unbounded op­
erator on L2 (£l) that is the Laplacian with homogeneous Dirichlet boundary condition; 
v is a positive parameter ; /  is in L2(fi); and the nonlinearity R is a polynomial

2p-l

R(£) =  6jfê 2fc-1, with b2 p - 1 > 0. 
k= 0
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For existence and uniqueness results of solutions u of (4.1) and of initial value 
condition

u(0) = uo in L2 (Ct), (4-2)

we refer the reader to [Tl]; see also [Ma].
From the references above, we also recall the existence of two nonnegative constants 

t0 =  to(fl,f), Mo, that are independent of Uo, such that for t > to

HIM*)!!2 + M*)l2 + mOl^p < M 0 < + 0 0  (4 .3 )

holds. Here Mo is a constant that behaves with respect to the data of the equation like

m. =  c(p) [im + 1/ 12] .

The estimate (4.3) is related to the existence of absorbing sets and of an attractor for 
the dynamical system given by (4.1).

4.2. The nonlinear algorithm

The method developed here follows the framework of the nonlinear Galerkin finite- 
elements methods (see [MT2]). Nevertheless two slight differences appear :

• First, here the new hierarchical bases replace the classical ones.
• Then, the equation that links yh and Zh is given in an implicit form (see (4.5) 

below) ; actually this is because we want the semidiscrete problem to have the 
same monoticity properties as the original one, which is a gradient-like system.

Let us now present the algorithm. Let Vh, Wh be as in Section 3. Let uh =  yh+z/i be 
the (nonlinear) Galerkin approximation of u defined as follows : (yh,Zh) is the solution 
in Vh x Wh of

( “ flf >3fc) + + z^Vh)) + (R{Vh + zh),yh) = (f ,y h), (4.4)

v((yh + zh,zh)) + (R(yh + zh), zh) =  ( /, zh), (4.5)

these relations holding for any (yh^Zh) in Vh X Wh, and of initial condition

yh( 0) = uh,o,

where Uh,0 is for instance the L2 projection of uo on Vh.

Remark : Because (4.5) is given in an implicit form, then some preliminary work will be 
needed to ensure that the application yh —> Zh is well defined and smooth ; this point 
is the aim of Section 4.3 below.

Before we go further on the properties of this algorithm, we indicate some hypothe­
ses we need on the spaces and Wh :
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• (HI) A density result :
Vhj is dense in Hq(Q).

i> o

• (H2) The so-called enhanced Cauchy-Schwarz inequality : There exists 8  > 0, that 
is independent of h, such that for any yhizh in Vh x Wh the following inequality 
holds

l ( ( y * , * * ) ) l < ( l - i ) I M I I M | .  (4-6)

• (HZ) The L2p version of the enhanced Cauchy-Schwarz inequality : There exists 
Sp > 0 , that is independent of h, such that for any yh, Zh in Vh x Wh the following 
inequality holds

sp  (l VhlZ  +  \zh\l*) <  I Vh +  zh \lPp • (4.7)

• (HA) The improved Poincare inequality : There exists C that is independent of h 
such that for any Zh in Wh we have

\zh\ < Ch\\zh\\. (4.8)

Let us explain why these assertions hold. (Hi) is well known. (HZ) follows from 
the fact that the L2 projector onto Vh is uniformly bounded with respect to h as 
an operator acting on L2p(fl) (see Lemma 3.2). (HA) follows from Propositions 
3.2 and 3.3. (H2) can be seen as a consequence of Lemma 3.1 and of (3.17) that 
actually show that the L2 projector onto Wh is uniformly bounded as an operator 
acting on Hq($1). (For another proof, see Lemma 4.2 below).

4.3. The fixed point problem

Here we could apply a Banach fixed point theorem. But it is more complicated 
than the method we present below and it leads to a worse stability condition on h with 
respect to the parameter v.

4.3.1. A uniqueness result

Let us denote by Ph (respectively Qh) the projector in L2 (fl) onto Vh (respectively 
Wh). Let us denote by (respectively Q^) the mapping from H~1 (il) into L2 (Q.) 
defined by

(Qh.uiv) = {ui Qhv)H-1,!!*
(respectively

(Phuiv) = iu,Phv) h - 1,^ )

for any u,v in f f -1 (ii) x Z2(ii). Hence we can rewrite (4.5) as

uQ*hA(yh + zh) + Qh(R(yh + zh) -  f) = 0. (4.9)
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Now let z\,z\ be two elements of Wh that satisfy (4.9). We set

zh = z2h -  z\,

and we easily derive from (4.9) that Zh must satisfy

v \\zh\\2 +  (R(Vh + zl) -  R(yh + zh),zh) =  0. (4.10)

On the other hand, we go back to the definition of R to prove without difficulty that 
there exists a constant C such that for any u, v in L2p(il)

(R(u) — R(v),u — v) + C\u — v \2 > 0 (4-11)

holds.
Hence we infer from (4.8), (4.10) and (4.11) that, if h satisfies

h < h0 (v) =  CV1/2, (4.12)

where C is an absolute constant, then Zh = 0, that is the uniqueness result.

4.3.2. An existence result

We define Th as the nonlinear mapping acting on the finite dimensional space Wh
by

Th(zh) = vQ*hA(yh + zh) + Q*h(R(yh +  zh) -  /)• (4.13)

We write
(Th(zh),zh) = u\\zh\\2 +  {R{yh +  zh) -  R(yh),zh) ,4 ^

+ v{(yh,zh)) + R{yh) ~ f,zh)-
Hence we use (4.8), (4.11) to obtain from (4.14) :

(Th(zh),zh) > „11*4 IMI ( l  -  ( ^ ) 2j  -  (iM I -  ll/l|j +  ^ (yi,>IL)  , (4.15)

ho being as in (4.12). We then apply

L E M M A  4 .1 .  Let [ , ] be a  scalar product on IR^, and T a continuous mapping on IR^ 
such that

[T (i),i] > 0 for [£] = R; 

then there exists £o> [£o] R-> such that

Tfo) = 0.
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Proof : See Chapter 12, Lemma 3 in [T4].

Therefore, if we assume that (4.12) holds, (4.8), (4.15) and Lemma 4.1 provide the 
existence result.

4.3.3. A regularity result

Let Fh be the nonlinear mapping from Vh x Wh into Wh defined by

Fh(yh, zh) = vQ*hA (yh + zh) + Q*h{R{yh + zh) -  / ) .  (4-16)

Fh is obviously a smooth mapping and if we compute its partial differential with respect 
to Zh we obtain

D Zh Fh{yh, zh)wh =  vQ*hAw h + QlR'(yh +  zh)wh, (4-17)

holding for any Wh in Wh-
On the other hand we observe (see (4.11)) that there exists a constant C such that, 

for any u in L2p(Cl)
R'(u) + C > 0 (4.18)

holds for x a lm o st  everywhere in Cl. Therefore (4.17) and (4.18) lead to

(DZhFh(yh,zh)wh,w h) + C \wh\2 >̂ ||w/,||2. (4-19)

Then, using (4.8) and assuming that assertion (4.12) holds, we apply the implicit func­
tion theorem to Fh and we deduce that the mapping yh —► zh defined according to 
Sections 4.3.1 and 4.3.2 is of class C°°.

4.3.4. Conclusion

PROPOSITION 4.1. If (4.12) holds, for any yh in Vh there exists a unique Zh =  <f>h(yh) 
in Wh satisfying (4.9), and moreover the mapping <f>h is of class C°°.

4.4. A priori estimates
Using the previous section, we rewrite (4.4), (4.5) as the O.D.E. in Vh

^  +  v P Z A fa  + M v i ) )  + P i W v h  + M v h ) )  -  f )  = 0. (4-20)

implemented with the initial condition

j/h(0) = Phu0.
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Owing to the smoothness of <f>h, the solution yh(t) of (4.20) exists, by classical results, 
on a maximal interval of time [0,ij»). As usual the a priori estimates below show that 
actually th =  + 0 0 .

4.4.1. A priori estimates for Unite time intervals
We take yh = yh, Zh = Zh in (4.4), (4.5) and we add these equations to obtain, 

setting uh =  yh + zh,

\l[t ^  + v + (R(Uh)’Uh) -  (4-21)

On the other hand, we go back to the definition of R and we observe that there exists 
a constant C such that, for any u in L2p(Sl), the following inequality holds :

W « ) ,« )  + C > ^ M g .  (4.22)

We then use (4.6), (4.7), (4.21), (4.22) to obtain, by straightforward computations

J t  +  •'«(IlSttll2 +  IW |2) +  h r - i S p ( \ v h \%  + W g )  < c, (4.23)

where C is a constant that depends on |ii| and |/|.
Then using classical methods (see [Tl]) we deduce that :

• The sequence yh remains in a bounded set of

L°°(0, + 0 0 ; L2(tl)). (4.24)

• Both sequences yn,Zh remain in a bounded set of

L2(0 ,T ;# ¿ (0 )) n L2p{[0,T] x ft), VT > 0. (4.25)

4.4.2. A priori estimates for large time intervals
We consider the following discrete Lyapunov functional :

Ah(t) =  ^ ||«aWI|2 + [  G(uh(t,x))dx -  (f ,u h(t)) + K , (4.26)
1 J  n

where G satsifies G' = R and where the constant K  is choosen such that

A > \  K W f  + ^  M * ) £  • (4.27)

Then we use (4.4), (4.5) and the smoothness of <f>h to obtain that

S ^ W  + It t H ’ - 0 H-28)
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holds.
On the other hand, from (4.21), (4.22), we obtain that, for r > 0 and t > 0, we

k a v e  t + r

J  Ah(s)ds < C r  + C ' |yft(i)|2 . (4.29)

We go back to (4.23) and we apply Lemma 5.1 of [Tl] to see that we also have

|</h(*)| < Mi

for t larger than a which is independent of uq, and for Mi that is like Mo in (4.3). 
We then apply this inequality to (4.29), and using the uniform Gronwall Lemma (see 
Lemma 1.1 in [Tl]), we infer from (4.28), (4.29) that for t > ti, t\ =  fo +1 for instance,

Ah(t) < C < +  oo (4.30)

holds for some absolute constant C.

We reinterpret (4.6), (4.7), (4.27), (4.30) by

P R O P O S I T I O N  4 .2 .  There exists 11 > 0 such that for any uq in L2 (£l), both s e q u e n c e s  

yh, Zh remain in a bounded set of

¿ oo(ii,+ oo ;tf01(O )n L 2i>(ii)). (4.31)

4.5. Convergence results

In this section we shall prove that, when the mesh size h tends to 0 -being provided 
h < ho as above- we have

THEOREM 4 .1 .  Let u be the solution of problem (4.1), (4.2). Then for each T > 0

Uh —+ u in L2 (0 , T ] strongly, (4.33)
Uh —»• u in Z2p([0,T] x ii) strongly, (4.33)

and fro T > ti, ti being as in Proposition 4.2,

Uh —> u in L°°(ti, +oo; if^(ft)) weakly star, (4-34)
Uh —> u in Lq([ti,T] x fI) strongly, for q < +oo. (4.35)

Proof. First we prove that

=  ~ PhiA u h + K M  ~ f )
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Hence using (3.17) we have

||Pfttt|| < \\Pku\\ + J  |P\u -  PhuI. (4.38)

We then observe that
|Phu ~ Phu\ < \Phu ~ u|

and therefore (4.37), (4.38) conclude the proof of Lemma 4.2.

Let us go back to the proof of (4.36). First, using (4.25) and Lemma 4.2 we observe 
that the sequence P^Auu remains in a bounded set of Z,2(0,T; On the other
hand, using (4.25), Lemma 4.2 and the fact that

R : L2p{il) L2p/2p-\ n )

is bounded, we obtain that the sequence P£R(uh) remains in a bounded set of 
£2j>-i([0,T] X fi). Therefore

remains in a bounded set of

(4.36)

remains in a bounded set of L2p!2p 1(0,T;£T 1(ft)).

From (4.25) and (4.36), applying a classical compactness argument (see [LM]) we 
observe that the sequence yn remains in a compact set of L2(0,T;X2(ii)) =  Z/2([0,T] X  

f2). On the other hand, we infer from (4.8), (4.25) that zj, strongly tends to 0 in 
L2 ([0 ,T ] x fi).

Hence we have a subsequence of Uh, still denoted by Uh, such that :
• Uh weakly converges to a function u* in L2 (0 ,T] if j(ii))  fl L2p([0 ,T] x ft), and 

strongly in L2 ([0 ,T] x ft).
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j ß 2 p / 2 p - l (О ,Т ;Я -'(П )).

dvh
dt

= —vPfrAuh -  P£R(uh) + Phf

In order to establish (4.36) we use

L E M M A  4 . 2 .  The operator Ph is uniformly bounded with respect to h as an operator 
acting on Hq(CI) fl L2p(€t).

Proof. It remains to prove the Hq bound. For that purpose we introduce the elliptic 
projector P\ that is the orthogonal projector in Hq(îî) onto V/,. Then we assume that 
the following well-known error estimate holds :

(4.37)(•и — -P¿i í| < САН«!!.

Я " 1(П)).



• yh converges to u* in £ +oo(0, + 0 0 ; L2(ü)) weak star.
• R(uh) weakly converges to a function <p in L2p/2p_1([0, T] x iî).

To prove that u = u*, and that therefore the whole sequence Uh converges to u* =  u 
as written above, it is sufficient to check that actually <p =  R(u*) holds. It can be done 
by classical compactness-monotonicity arguments : Let v be a test function. We set

,T ,T

0 < Xh = I (R(iih) — R(v),v,h — v)dt + C I \uh — v\2dt, (4.39)
Jo Jo

with C as in (4.11).
Using (4.4), (4.5) and the convergence results above we obtain

,T ,T

lim supXh < I (<p — R(v),u* — v)dt + C I \u* — v\2 dt. (4.40)
h —> 0 ^  *'°

We take v =  u* — Aw, A > 0, in (4.40) and we let A —> 0 to obtain (p =  R(u*).

The strong convergence result (4.32) is obtained as in [MT1] proving that 

-T f T

Yh = v \\u — uh\\2dt+  / (R(u) — R(uh),u — Uh)dt 
Jo Jo

T
+ c j ^  \uh -u\2dt + ±\yh(T)-u(T)\2 

tends to zero when h —► 0. From Yh —> 0 when h —*• 0, we also derive that

f  (R(uh),Uh)dt —> f  (R(u),u)dt 
Jo Jo

and that moreover
(4.41)

thanks to the weak convergence results in L2p([0,T] x fi). We then apply Prop. 111.30 
in [B] to obtain (4.33).

On the other hand, (4.34) results from (4.31), and (4.35) is obtained as follows 
: first, (4.32) provides that Uh converges to u in L2(\t\, T] x il); moreover, thanks to 
(4.31), Uh remains in a bounded set of Lq([ti,T] x ft) for any q < + 0 0 ; therefore (4.35) 
results from classical interpolation results between the £ 9’s.
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