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ANALYTICAL AND NUM ERICAL STUDY OF SOME FREE BOUNDARY 
VALUE PROBLEM S AND PHASE FIELD MODELS

A bstract.

In this thesis we study some free boundary problems and phase field models.
The first part of this work is devoted to the study of free boundary problems where the mean 

curvature explicitely appears in the expression of the problems. We consider in Chapter 1 the sta­
tionary flow of a viscous liquid known as Marangoni type flow. The main difficulty here is that the 
interface between liquid metal and air intersects the boundary of the domain. This leads us to in­
troduce weighted Holder spaces in order to prove the existence and uniqueness of a smooth solution.

In Chapter 2 , we present the numerical study of a one phase Stefan problem with surface tension. 
The discretization of the heat equation in the liquid part uses a semi-implicit scheme in time and 
a finite element method in space based on an adaptative mesh algorithm. The computation of the 
discretized interface uses a front traking method.

The second part of this thesis bears on a study of phase field models from the point of view 
of dynamical systems. When some small parameters tend to zero, the solution of the Caginalp 
phase field model converges to the solution of the viscous Cahn-Hilliard equation or to that of the 
Cahn-Hilliard equation. The purpose here is to obtain related properties for the corresponding 
maximal attractors. We consider in Chapter 3 the case that the nonlinear function appearing in 
the equations is of polynomial type and prove that the corresponding maximal attractor is upper- 
semicontinuous. In Chapter 4 we extend these results to the case of a logarithmic nonlinearity.

Key words : Navier-Stokes equations ; Marangoni effect ; weighted spaces ; existence and 
uniqueness ; Stefan Problem ; finite element method ; front traking method ; system of second 
order ; nonlinear parabolic equations ; maximal attractors ; upper-semi continuity.
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IN T R O D U C T IO N

L’objet de cette thèse est l’étude de problèmes à frontière libre et de modèles de 
transition de phase.

La première partie porte sur des problèmes où la courbure moyenne de la frontière 
libre apparait explicitement dans l’une des équations qui la décrivent. On étudie tout 
d’abord un problème à frontière libre stationnaire, connu sous le nom d’écoulement 
Marangoni. Notre approche s’inspire des travaux de Abergel et Bona [1], Solonnikov
[15] dont le cadre plus simple est celui des équations de Navier-Stokes. La difficulté 
essentielle réside dans la présence d’une paroi rigide qui rencontre l’interface air- 
métal en des points anguleux. C’est pourquoi nous utilisons des espaces de Hôlder 
pondérés pour démontrer l’existence et l’unicité d’une solution régulière.

On effectue ensuite l’étude numérique d’un problème de Stefan à une phase avec 
tension superficielle, problème qui apparait en théorie de la corrosion aqueuse. Une 
méthode d ’éléments finis est utilisée pour la discrétisation de l’équation de diffusion 
dans la phase liquide et une méthode de discrétisation explicite en temps permet 
de calculer le déplacement du front. La triangulation évolue au cours du temps de 
telle sorte que l’interface discrète coïncide avec des côtés de triangles, ce qui permet 
d’obtenir des résultats numériques très précis.

Dans la deuxième partie, on s’intéresse au comportement pour les grands temps 
des solutions de modèles de champ de phase, c’est-à-dire de systèmes d’équations 
d’évolution non linéaires couplées pour la température et un paramètre d’ordre. Ces 
modèles constituent des approximations de problèmes à frontière libre, par exemple 
du problème de Stefan avec tension superficielle.

La théorie des systèmes dynamiques de dimension infinie développée par R. 
Temam [17] constitue la base de notre étude. Les modèles considérés étant fortement 
dissipatifs, ils possèdent un attracteur maximal, c’est-à-dire un ensemble compact, 
invariant par le flot et qui attire tous les bornés.

Le problème plus spécifique qui nous intéresse ici est d’expliciter la relation entre 
quelques-uns des modèles les plus standards en transition de phase et en particulier 
de montrer que l ’on peut passer continûment des équations de champ de phase à 
l’équation de Cahn-Hilliard visqueuse et à l’équation de Cahn-ïïilliard. B. Stoth [16] 
démontre la convergence des solutions du modèle de champ de phase vers celles de 
l’équation de Cahn-Hilliard pour des temps finis.

En nous inspirant de méthodes dues à Haie et Raugel [8], Debussche [5] et De- 
bussche et Dettori [6 ], nous démontrons la semi-continuité supérieure de l’attracteur 
du modèle de champ de phase. Nous considérons tout d ’abord le cas où la fonction 
non linéaire apparaissant dans les équations est de type polynomiale puis le cas où 
elle est logarithmique.
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PR EM IER E PARTIE  
E T U D E  ANALYTIQU E ET N U M E R IQ U E DE QUELQUES  

PROBLEM ES A FR O N TIER E LIBRE

1. E xistence d ’interfaces stationnaires régulières pour un écoulement  
de typ e  Marangoni.

On considère l’écoulement stationnaire d ’un fluide visqueux contenu dans une 
cavité et dont la surface libre est soumise à un flux thermique non uniforme. Ce 
type d’écoulement connu sous le nom d’écoulement Marangoni [4], [13] est caractérisé 
par l’existence simultanée d’un phénomène de convection libre au sein du fluide et 
d’une contrainte tangentielle localisée à l’interface. On suppose que l’écoulement 
satisfait l’approximation de Boussinesq et que l ’interface est un graphe.

Le résultat principal de cet article donne l’existence et l’unicité d’interfaces sta­
tionnaires régulières dans un voisinage de la solution capillaire, c’est-à-dire la so­
lution obtenue pour un flux nul et un fluide au repos, dans des espaces de Hôlder 
pondérés [1 0 ]. Plus précisément, on montre que si les paramètres du problème sont 
différents d’une suite finie de nombres réels positifs, apparaissant comme une partie 
des valeurs caractéristiques d ’un opérateur de Sturm-Liouville, et si le flux thermique 
reste suffisamment petit alors le problème possède une solution régulière unique.

Ce résultat est obtenu à l’aide d’un théorème de fonctions implicites. La difficulté 
essentielle provient de la présence de points anguleux sur la frontière du domaine 
occupé par le fluide. Les démonstrations s’appuient en particulier sur des résultats 
obtenus par V.A Solonnikov [14], [15] pour un problème de Stokes avec des points 
anguleux sur la frontière du domaine, et sur l’étude d’un problème de type Sturm- 
Liouville dans des espaces de Hôlder pondérés. A notre connaissance, le résultat 
que nous présentons est le premier résultat mathématique ayant trait à l ’existence 
et l’unicité de solutions régulières pour un écoulement de type Marangoni.

2. Etude numérique d ’un problème de dissolution-croissance avec tension  
superficielle.

On considère un problème de Stefan en dimension deux d ’espace. Ces équations 
modélisent l’évolution d’un système physique constitué d’une phase solide formée 
d’un seul composé en contact avec une phase liquide qui eit une solution diluée de 
ce composé. On décrit et on implémente une méthode numérique simple permettant 
de suivre l ’évolution morphologique de l’interface solide-liquide au cours du temps.

Plus précisément, on considère des problèmes aux limites associés aux équations

Ct = D A C  dans la phase liquide , (1)

= ( ’p- — c'j Vv sur l’interface Tt , (2 )

Vu =  kV  (C — a ex p { iK ))  sur l’interface Tt , (3)

où C ( x ,y , t ) est la concentration du composant dilué dans le fluide, v est le vecteur 
normal à l ’interface Tf, Vv est la vitesse normale de l’interface et K  sa courbure 
moyenne. Les paramètres D , V, k et 7  sont respectivement le coefficient de diffusion,
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le volume molaire du composant solide, une constante cinétique et un coefficient 
proportionnel à la tension superficielle.

La principale difficulté de ce problème est liée au fait que le domaine spatial varie 
au cours du temps. L’idée de la méthode est de résoudre successivement à chaque 
pas de temps l’équation (3) pour déplacer l’interface, puis les équations (1) et (2) 
pour déterminer la concentration dans le domaine ainsi obtenu.

Deux méthodes différentes ont été adaptées pour le calcul du déplacement de la 
frontière libre. La première due à Ikeda et Kobayashi [9], consiste à déplacer les 
noeuds de l’interface discrète en leur associant une direction normale approchée et 
une courbure moyenne approchée. Dans la seconde méthode, due à Roosen et Taylor 
[12], on déplace l’interface discrète en associant à chaque segment une courbure 
moyenne approchée.

Une discrétisation semi-implicite en temps est alors utilisée pour la résolution de 
l’équation de diffusion. L’approximation spatiale repose sur une méthode d’éléments 
finis de degré un dont la triangulation évolue au cours du temps de telle sorte que 
l’interface coincide avec des côtés de triangles.

Cette étude numérique permet de mieux comprendre les propriétés qualitatives 
de la solution. Elle montre en particulier que pour des valeurs physiques des 
paramètres du problème, aucune instabilité morphologique n ’apparait. De plus, 
suivant la condition aux limites imposée sur le bord supérieur du domaine, la solu­
tion et la frontière libre convergent soit vers une constante dans le cas de conditions 
de Neumann, soit vers une onde progressive dans le cas de conditions de Dirichlet 
quand t —y +oo. Enfin, dans le cas où la tension superficielle est nulle, des points 
singuliers peuvent apparaitre et se propager au cours du temps.

D EU X IEM E PARTIE  
SE M I-C O N T IN U IT E  SU PE R IE U R E  P O U R  DES M ODELES DE

C H A M P  DE P H A SE

3. U ne perturbation singulière des équations de Cahn-Hilliard et 
Cahn-Hilliard visqueuse.

On considère des problèmes aux limites associés à un modèle de champ de 
phase constitué d’un système de deux équations paraboliques non linéaires pour 
un paramètre d’ordre ¡p et la température u. Ces équations s’écrivent [2 ]

{
6<pt =  A<p — g(<p) +  u dans il x ZR+ , (4)

eut +  <pt = Au dans Cl x JR+ , (5)

où fi est un ouvert borné de ZR", n  < 3 de frontière régulière dCl. On suppose que 
le terme non linéaire g(<p) est de la forme

2p— 1

g(s) =  dksk avec a2p_i > 0 et p > 2 , 
fc=i

et que les fonctions <p et u satisfont des conditions aux limites de Dirichlet ho­
mogènes.
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Dans le cas physique [3] où g(s) = sz — s, le problème ainsi obtenu modélise 
le processus de solidification d’un matériau à l’état liquide ; le paramètre d’ordre 
ip satisfait <p ~  1 dans la phase liquide, <p ~  — 1 dans la phase solide et u = 0 
correspond à la température de fusion du matériau.

Si l’on pose e =  0, dans le modèle de champ de phase et si l ’on substitue l’équation
(4) dans l’équation (5) on obtient un problème aux limites associé à l’équation de 
Cahn-Hilliard visqueuse [11] pour la seule inconnue <p

<pt + A  (A <p — g(<p) — 6(pt) = 0 dans iî x IR+.

Quand S =  e et e J. 0, la solution (ipe,u c) du problème de champ de phase converge 
vers la solution d’un problème aux limites associé à l’équation de Cahn-Hilliard [16], 
[17]

ipt +  A (A <p — g(<p)) =  0 dans Cl x ZR+ .

Les problèmes aux limites associés au système de champ de phase, à l’équation de 
Cahn-Hilliard visqueuse et à l’équation de Cahn-Hilliard possèdent des attracteurs 
globaux A eS, A 6 et A  respectivement.
On démontre la semi-continuité supérieure de l’attracteur A cS d’abord en (e,£) = 
(0 ,8) pour S > 0 fixé, puis en e =  6 = 0.

4. Une perturbation singulière de l’équation de Cahn-Hilliard avec non 
linéarité logarithmique.

On considère un modèle de champ de phase dont la non linéarité est de type 
logarithmique. Il s’agit du problème aux limites

e<Pt =  A<p +  oup — g(<p) +  u dans il x

euf +  (pt = A u  dans Cl x 2R+ , (7)

<p = u = 0 sur d û  x JR+

</?(a:,0) =  (p0 , u(x,0) =  uqÎ®) dans iî

(<?*)

où il est un ouvert borné de H T, n < 3 de frontière régulière d û , a > 1 une 
constante et où la fonction g(<p) a pour expression

g(s) = - ln
'  2 V I  -  s

On établit dans un premier temps l’existence et l’unicité d’une solution pour le 
Problème (Qe). L’idée essentielle de la démonstration est de considérer une suite de 
problèmes plus réguliers où la fonction g est remplacée par [6]

et de prouver des estimations à priori uniformes en N. On déduit également de ces 
estimations l’existence d’ un attracteur maximal.

4
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Si l’on pose £ =  0 , dans le Problème (Qe) et si l’on substitue l’équation (6 ) 
dans l’équation (7) on obtient le problème de Dirichlet associé à l’équation de Cahn- 
Hilliard [6 ]

(pt + A (A <p + oup — g(<p)) =  0 dans Cl x ZR+,

qui possède un attracteur maximal Ai. On effectue alors dans le Problème (Qe) le 
changement de variable v =  y/lu. On déduit des résultats démontrés pour (Qe) que 
ce nouveau problème est bien posé et qu’il admet un attracteur maximal A \.  On 
démontre que cet attracteur est semi-continu supérieurement en e — 0 .
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Existence of sm ooth, stationary  
interfaces for Marangoni-type flows

F. ABERGELH and C. DUPAIXH 
(*) Laboratoire d’Analyse Numérique, CNRS et Université Paris-Sud,

91405 Orsay, France

A b s tra c t .  We consider the motion of a fluid, the free surface of which is 
subject to a non-uniform thermal flux. We use an implicit function theorem 
in weighted Holder spaces to prove the existence of a smooth interface for 
small values of the flux.

R ésu m é. Nous étudions l’écoulement stationnaire d’un liquide visqueux 
dont la surface libre est soumise à un flux de chaleur non uniforme. Nous 
prouvons, par un théorème de fonction implicite, l ’existence et l’unicité d’une 
interface régulière dans des espaces de Holder avec poids.

A M S codes : 35, 76

K ey w ords : Navier-Stokes equations, Marangoni effect, free surface, weighted 
spaces, existence and uniqueness
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Existence of smooth, stationary interfaces for 
Marangoni-type flow.

by
F. Abergel and C. Dupaix

Laboratoire d’Analyse Numérique, Université Paris Sud Bâtiment 425,
91405 Orsay, France

1 Introduction

In this paper, we consider the flow of a viscous liquid, when its free surface is subject 
to a non uniform thermal flux. This type of flow, known as Marangoni type flow, 
see e.g [7], [1 2 ] and [14], is characterized by both a convection phenomenon within 
the fluid, and by an additional tangential stress acting at the interface.
Concerning the convection flow, we shall make the classical Boussinesq approxima­
tion for variation of the density, so that the really interesting terms in the modeling 
equations will be provided by the surface law.

Our main result concerns the existence and uniqueness of a stationary interface, 
in the neighbourhood of the capillary solution, i.e, one that is obtained when the 
flux is zero and the fluid is at rest. This result is obtained via an adequate implicit 
function theorem. Contrarily to similar works for the Navier-Stokes systems [2 ], [1], 
the main technical difficulties lie in the presence of corners at the boundary of the 
domain occupied by the fluid, and use is made of the machinery developped in [15],
[16]. We also need to study Sturm-Liouville type problems in weighted spaces.

To our knowledge, this is the first mathematical result concerning the Marangoni 
flow, as fax as existence and regularity are concerned. Moreover, we want to mention
[4], where a numerical study is performed, and [3] where a bifurcation problem is 
studied.

The paper is organized as follows : Section 2 contains the main geometrical and 
functional hypotheses and notations; in Section 3, the physical problem is described, 
and its mathematical formulation given. Section 4 is devoted to the proof of our 
main result : after presenting the variations of domain suitable for the problem, we 
study in Section 4.3 Sturm-Liouville problems in weighted spaces, and finally prove 
in Section 4.4 the implicit function theorem that we need.

Essentially, we show that, when a certain parameter (the Marangoni number 
times the Froude number) does not belong to a finite set of real numbers, then, for 
small enough values of the thermal flux, there exists a unique stationary interface 
in weighted Holder spaces.
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2 Functional setting

Let ii be an open bounded set of IR2 whose boundary dfl is a piecewise smooth 
Jordan curve, and denote by S ( fi) the set of points where the tangent vector to dCl 
is discontinuous.
We define the following functional spaces :

2.1 The space C m 'a of a-holderian functions of order m

Let 77i be a non-negative integer and a £ (0,1) a real number.
Cm(ii) will stand for the space of m-times continuously differentiable functions in
n.
We then define the space of m-times continuously differentiable functions in ii whose 
ra-th derivatives satisfy a Holder condition with exponent a.
We denote this space by and endow it with the norm :

l l  V ' c In* /- \l i V ' c \Dku(x) -  D ku(y)\ 
M c~.«(n) =  2-u S uP \D  u ( x )| +  S uP J---------- _  ia---------1 •

|fc|<m x  G |fcl=m X,y  I*  ^

x 7¿ y

2.2 The space C ls of weighted holderian functions of order [I] 
and exponent I — [/]

For x G IR, we define [x] as the integer part of x.
For y  6 ii we set

d(y) := I n f  | | y - z | | ,  
z £

where ||.|| stands for the euclidian norm.
Let I, be a positive non-integer number, and s a non-integer real number.
For s € (0 ,1], we define the space C*(i2,«S(ii)) for which the following weighted norm 
is finite :

Mc«(n,s(0 )) =

+

and for s < 0, we equip C[(i2,S(i!)) with the norm :

Md*].*-M(n) +  ■ SuP l ^ * ) 1*1 ‘D ku(x)\
*<|fc|<J x € ii

£ Suy
x , y e n  {  \ x ~ v I J
x^y
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Mc<(n,s(n)) = Y i  SuP |d(x)|fc' 'D ku(x) 
o<\k\<i x G Q,

I+ ^  Sup lM in ( d l *(x) ,d l *(y))
lfcl=[f] z , y G f i  I

x ^ y

jDku(x) -  Dfcu(t/)| 

\x -  y f“W

In the same way, and for all non-integer s and all positive non-integer I satisfying 
s < I, we define the space Clt ( I , S ( I )) where J  is a segment. S (I)  is then composed 
of the endpoints of I .

2.3 Remarks - Notations

A quite complete study of weigthed holderian spaces can be found in [13].
We now give some properties of weigthed holderian spaces which will be useful later. 
Let I G IR +* and 5 G IR  be two given non-integer numbers.

i- Let k be a positive integer satisfying k < [/]. We suppose that s < l+k.
If u G Cj+fc(ft,5 (il))  then Dku G Cj_fc(il,S (fi)).

ii- We suppose that s < /. If u G C*(ii, <S(fi)) then if U is a primitive of
u, it satisfies U G C^(i2,<i>(fl)).

iii- Let be given ( l i ,h )  G (JE+*)2 and ( Si,S2) G IR2 satisfying Si < h 
, S2 < h  on one hand, and <  I2 , Si <  S2 on the other hand . Then 
if u G and v G C ^ (ii,5 (ii)) , we have (u.v ) G C|*(il,S(ft)). 
Moreover there exists a positive constant C, independant of u and v such 
that the following estimate holds

lu ,'u lci11(n,5(n)) -  •

Notations
• In the following, when we will consider the space Clt , we will always assume that 
I > M a x(0 ,5 ).
• 1^1  ̂ will stand for Sup  |u(s)|.

x G n

3 Statem ent of the problem

3.1 The physical problem

We consider a container C, partially filled with a viscous liquid.The boundary of 
the container dC  is composed of two half-lines (x = —1 , y > 0) and (x =  - f l ,y  > 0 )  
which axe connected at the points (-1,0) and (+1,0) by a smooth curve dC . 
dC~ is supposed to lie in the half-plane (y < 0).
The gravity g , is directed along the vector — j(0 , —1).
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We denote by fi the part of C containing the fluid, fi is the open bounded set of 
jffi2 defined as :

Cl := { M (x ,y )  G C /y  < f ( x ) }  
and

E := {M (x ,y )  £ C / - I < x < + 1  and y = f{ x )}  
is the interface between the fluid and the atmosphere.
Let T := dCl\E and S(Cl) := T H E .
Let I  := ( - 1 , + 1 ) and 5(7) := ( { - 1 }; { + 1}).
We suppose that the angles of contact between T and E are both equal to (3 G (0 , 7r) 
with the convention that /? =  0 if =  — j  at x =  — 1 , where is the unit tangent 
vector to E.
The flow is supposed to be stationary.
The interface is subject to a non uniform thermal flux I .  Thus, the temperature 
gradients induce, on one hand, a superficial stress which generates a Marangoni 
flow and, on the other hand, a volume force inside of the fluid, which generates a 
convection flow.
Several authors have considered the physical aspects of this problem, for example,
[7], [1 2 ], or [14].

3.2 The mathematical formulation

We first make the two following assumptions.

A l-  We assume that the Boussinesq approximation holds, namely, on 
one hand, the external force satisfies pc{l — a{T — Tc))g and on the other 
hand, the mass density p is constant and equal to pc in the volume of 
the fluid.
Where pc  =  p(Tc)-, Tc is the temperature of the boundary of the con­
tainer (ie. the rigid part of the boundary). Tc is supposed to be a 
constant, a is a given positive constant.
A 2 - The surface tension coefficient 7  is given as a non-increasing affine 
function of the temperature.

The boundary conditions axe the followings :

B C l-  The fluid satisfies a no-slip condition at the boundary of the con­
tainer.
B C 2 - The temperature at the boundary of the container is constant and 
equal to Tc-
B C 3 - The interface is subject to a non uniform thermal flux T.
BC 4- The interface is in thermal and dynamical equilibrium.

We then write the conservation laws of mass, momentum and energy and obtain, in 
a dimensionless form, the following system of partial differential equations for the 
unknowns (u, 0 ,0-, / ,  C) :

12



{S.)

V.-u = 0 in iì (1)
(u.V)u — Divcriu) — XOj = 0 in Q, (2)

- T K = 0 in Si (3)

u = 0 and 9 = 0 on T (4)
= — tX and u.n = 0an, on S (5)

a(u).n.t — Ma* ̂  =0 on E (6)

cr(u).n.n + Pa + -p^f -  Ma*a(9) 1 -7 -i--- I - C  = 0 « !  (7)
W l+ A V .

b r f e ) (±1)=±CM(/J)
(8)

J  a{u).n.ndx = 0 (9)

/ dxdy = V 
j n

(10)

where :
• u, 0,cr are respectively :
the velocity field, the temperature and the stress tensor with 
a(u) = -p.Id + ^ c (« )
where e(u) = ^(Vu -f Vi?) and p + is the pressure

• C is a constant which has to be determined
• A is a constant equal to

either 1 if we consider an evaporation problem 
or -1 if we consider a condensation problem

• X = I(x) is the non-uniform thermal flux
• e is a small parameter
• Pa is the atmospheric pressure
• ol{8) = 6 + #o is the surface tension, where 0O is a constant
• Pr is the Prandtl number (cinematic viscosity over diffusion coefficient)
• Re is the Reynolds number (characteristic velocity V* of the flow times charac­
teristic length L* over the cinematic viscosity)
• Ft is the Froude number (square of the characteristic velocity over characteristic 
length times gravity field)

.  Ma- = - j J - j i  where 4ft is the derivative of the surface tension with re­

spect to the temperature 9, and p is the mass density. Remark that Ma* is related 
to the usual Marangoni number Ma, with Ma* =

• V is the volume occupied by the fluid.
Remark 1 Equations (6) and (7) result from the local decomposition of the vector 
equation
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cr(u)n + {Pa + /)™ — + Ma* (a(O)Hn — Va(i)i"j = 0 ,

which express the dynamical equilibrium of the interface.
(cr(u) + Pa + -jjrpf)n is the superficial density of force describing the action

of the fluid on the interface.
(a(9)Hn) is, following the classical interpretation of [11], the first variation of the 
surface energy, and it measures the forces to apply to obtain a deformation at the 
interface.
Finally, is induced by the variation of the surface tension and charac­
terizes the Marangoni type flows.

4  W e l l - p o s e d n e s s  i n  t h e  n e i g h b o u r h o o d  o f  t h e  C a p ­

i l l a r y  s o l u t i o n

4.1 The main result

Our purpose is to prove the following result :

Theorem 4.1 IfT belongs to Cl+2 then : 
a/ There exist a finite sequence of real numbers,
0 < Ai < • • • < Ax < ~f"00
and real numbers V > 0, eo > 0 and so £ (0; 1] such that if Ma*Fr$o ^ A,- for all
1 = 1, • • •, K then

V |e| < £0 
Vs e (o,s0) 
vv > v
VI e ci±l(i,s(i))
satisfying the condition X(M^) = 0 
if p = |  with S(I) = Ut=i,2{M*},

there exists a unique solution (u, 0,(7, /, C) of (Se) satisfying :

u<e (c;+!(n,s(n)))2 
0 €  c;+ J( n , s ( i i ) )  
o-e (cJiKn.stn)))4 

c  qm .

b/ Moreover, there exists a real number ^ such that if the angle of contact
(3 satisfies 0 < fi < /?,, then there exists a positive number si > 1 such that the 
conclusion of a/ remains true for every s £ (1, Si) satisfying s < I -f 2.

The rest of this section is devoted to the proof of Theorem 4.1.

14

(-Va(ö)il

ß->  5

f  e  c',iì CJ-.ä(z))



4.2 A particular solution of the problem

Let us suppose c =  0 and V = V0, V0 given, respectively in (5) and (10).
In this case, (u,6,cr) =  (0,0, constant) satisfy equations (1) to (6) and thanks to
(9), a =  0.
Moreover, integrating (7) with respect to x between -1 and +1, we deduce that 

C0 := C = Pa + V°2F t̂ ~ — Ma*0oc°s((3) so that (7) and (8) can be written as :

4 - / ( i ) -  M z - h  (  , -  Ma%cos{!3) Vx €  I
W 1+ / • ( * ) / .  (11)

-  =  ±cos((3) ,

where VL is the volume of the fluid enclosed between the line (y =  0) and the curve 
dC_.
But —1 < cos((3) < +1 , > 0 and Ma*9o > 0 and therefore thanks to the results 
of [8], [9] it is well known that there exists a unique solution g £ C°°(I) of (11). This 
solution is the so-called capillary solution, and determines the interface of the fluid 
at rest.

R e m a rk  2 If g is the solution of (11) for V = Vq, then g + -y- is the solution of
(11) for V  =  Vo + Vi. Thus, we will choose V  large enough, so that g(x) > 9 >  0 
for all x £ [— 1,+1], where g is a positive constant.
We will denote by V  the smallest volume such that the condition above can be 
satisfied.

We now state a first proposition :

P ro p o s itio n  4.2 Suppose (3 £ (0,7r) given.
Let V = Vo where Vo £ 1R+* is given and satisfies V0 >  V.
Then there exists a unique solution (uoj9oyao^gyCo) of problem (So) for (e =  0). 
This solution satisfies :

(•Uo,0o,cro) =  (0,0,0)

|  C0 =  Pa H— ~2~Fr----- Ma*0ocos(j3)

[ j  G C°°{I) is the unique solution of (11).

P ro o f  of P ro p o s itio n  4.2
It remains to prove the uniqueness of the solution of problem (So).
Multiplying the Equation (3) by 6 and integrating over fio> the open bounded set of 
IB? associated to g, we deduce, using (4), that 9 =  0 in fio-
Moreover, taking the scalar product of Equation (2) with u, integrating over fi0,and
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using Equations (4), (5) and (6), we deduce thanks to Korn’s inequality that u =  0 
in il0-
Finally, we deduce from (9) that a(u ) =  0, which completes the proof of Proposition 
4.2.

4.3 Preliminary result

We establish in this section a result that will be useful in the sequel.
We denote by g the capillary solution of Equation (11) and we set =  —1, x 2 = +1. 
We introduce the two linear operators £  and B defined for every function p of C2(J) 
as

\ j  1 +  gl(x) __
Cp(x) := - — — -----p(x) -  Ma*90H(p(x)) ,

Bp(x) := ^  ’

with

_ Pxx 9xQ xx . /  9xxi^- ^ 9 x )  | 9 x 9 x x x  \
~ i + H  (1+ « ) * ' ■  l ( i  + S ) 3 (i + f f l ’r '

These operators arise naturally in the linearization of Equation (11).
We are now able to deduce the following proposition

P ro p o s itio n  4.3 Let I > 0 and s > 0 be two real numbers satisfying s <  I +  2.
There exists a finite sequence of real numbers
0 < Ai < • • • < \ K <_+oo
such that if  Ma*Fr$o ^  A; for all i =  1, • • •, K
then, for all ( a i ,a 2) G IB? and all h G Cltt \ ( I , S ( I ) ) ,  there exists a unique function 
p G ,S ( I ) )  solution of :

f Cp(x) =  h(x) Vx G I  
1 Bp(xi) =  a; with i = 1,2

P ro o f  of P ro p o s itio n  4.3
Existence o f a solution
We first assume that h G Cn(I)  for some non-negative integer n.
Letting

1

i + £ ( * ) ’

r(x) =  Exp  Q  J  ,

Bip)
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= - ? n  ■it2 (Xj

q(x) =  ^ r ( x ) ^ p ( x )  ,

/i = Ma*Fr90 ’

the problem above can be written as a Sturm-Liouville problem :

J (r(a5)P*(*))* +  (mp(*) -  9(*))P =  M®)
\  Bp(xO =  ai (i= l,2) ;

thus, using for example the results of Churchill [5, p.260-264] or Ince [10, chap.IX], 
we deduce the existence of an unique function p G Cn+2(J), provided fi is not a 
characteristic number (/xt-)igjv of the Sturm-Liouville operator, namely a number ¡x 
for which the homogeneous system

i (r(x)p*(x))e -1- (/ip(x) -  q(x)) p = 0 
1 Bp{xi) = 0 (i=l,2) ;

possess a non trivial solution. This yields the condition Ma*Fr60 ^  A j for all i G IN  
with Ai =  Tp.

H'i _
But, on one hand Ma*90 and F t axe positive real numbers. Since, on the other 
hand, no more than a finite number of the A* are positive numbers [5, Th. 4 p267], 
we deduce the existence of the finite sequence mentioned above.

We now come back to the weighted holderian spaces.
If s > 1, which implies [s] — 1 > 0, we have then (/,<£(/)) C CM-1(J), so that 
the existence of a solution follows.
If 0 < s < 1, the previous inclusion does not hold; we use the density of Ck(I)  in 
Clst \ ( I ,  £ ( / ) )  for all k > [I] +  1, to prove the existence.

Regularity of the solution 
Letting

p(x) = w(x)Exp  ,

then, w satisfies the following ordinary differential equation

, n i wxx(x) + <p(x)w(x) = H (x )V x  E I  
var) j  B{V}){xi) =  Ai with i =  1,2 ,

where, using the previous notations, we have set :

H(x)  : = ------- Exp ( -  f X % ( t )d t ) ,
V J Ma*60R(x) y V4 L i  R K J J ’
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^(x\ f1 _ Rxxjx) 3 Rl(x)
^  } ■ R${x)  4 fl(z) ^  16 R 2(x) ’

Si := i=1,2 ’

Aj —  auExp Q  y  i = l , 2 ,

We first consider the similar problem with constant coefficient, namely

(q \ I  zxx{x) +  b.z(x) = H(x)  Vz e I  
c,t I  (zx +  Biz)(xi) — Ai with i =  1 , 2  .

Let us prove that z  6  (7 ,5 (7 )) for H  6  C*!*(7 ,5(7)).
For x € 7, z can be written as :

1 f x
z(x) = 7 z0(z) +  u z^ x )  + —  J  ̂ (z0(x -  t) -  zx{x -  i)) H(t)dt

where :
a i  =  s f—b if b <  0 , £*i =  i^/b  else
z0(x) =  eai* and Zi(x) =  e~aiX
7  and v being the solution of the linear system

f a i(7e-ai — ve*1) +  2?i(7e-0[1 +  t/e°l ) =  Ai 
\  Qi(7 eai -  ue~ai) -f B 2('feai + ue~ai) = A 2 -  A 2 ,

with

- 1L {(x+h) +i1 - ¿) e““,(1_‘)} •
For notational convenience, we write z in the form

z(x) = tJ>(x ) -f  J  ^<f>(x,t)H(t)dt ,

where

V>(®) :=  7*o(®) +  t'Zi(x) ,

^ ( * » 0  := 5 ^ 7  (z0(x -  t) -  zr(x -  t)) .

Thus, using the fact that

p t l N  ,

<92p+1 ^ ____ 2p

we deduce that

Vp 6  7?V with 2p +  1 <  [/] -1- 3 ,

k£lC i

¿ £ f t * ( * )  =  + £  a ^ " 1" ^ ^ ® )  + ^  4>{x,t)H{t)dt,
k^K, 2
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where Ki = {0,2, • • •, 2p — 2} and £ 2 =  {l, 3, • • •, 2p — l}.

Thus, using the results of Remark 2.3, we deduce that 
H  € ( / ,£ ( / ) )  implies zxx € C iiJ (J ,5 ( /)) .

Then, if 5 > 1, we have =  |z L  + 1**^ +  |2««|cJ+‘l(/ li(/ ))

and i f  € ( / ,£ ( / ) )  implies that < +oo, so that

|*(*)| < |^(®)| + \J^4>(x,t)H(t)dt

< U’L + m.oWL
<  +oo ,

and thus < +oo. In the same way, we deduce that |zx(®)| < +oo. 
Thus, for s > 1 , z € C l,%\(I,S(I))

On the other hand, if 0 < s < 1, we have [s] =  0, and thus

i-i _  i-i , i . i  , c„.„ M 1 ) ~  z*(y)\ , i .  i 
lZlc;+i(/,5(/)) -  lZloo +  lZ*loo + SuP i _ I* +  \Ẑ \ c ,,+_\(IMI))

x ,y  e l  1 
x ^ y

But, for 0 < s < 1,

/ - ’ < +0°  • 

and H £ S ( I )) implies Sup  |d1_*(i)£T(x)| < + 0 0  ,
x e I

so that

t € I

Thus, we deduce that

f(*)l ^  NK*)! + | j  ^4>{x,t)H{t)dt

l*L + l* L / j* (O I*<

< + 0 0  .

and in the same way, we deduce that \zx \ < + 0 0 . 
Finally, we have
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< + 0 0 .

Thus, H  € C|jli(7,«S(J)) implies that z is in Ci+J(7,S(7)), which completes the proof 
for the regularity of z solution of (Sctt).

We now come back to the problem (Svar).
Let T be the Green’s function associated to problem (Sc,t ) and II, that associated 
to problem (Svar).
We have for all x € 7,

z ( x ) = J  T (x,t)H(t)dt  , 

•u>(x ) =  J*  Ii(x, t)H(t)dt  .

We then write w in the form

w(x) = J  (D (x ,t) -  T (* ,i))  H{t)dt  +  z{x) .

Thus, we want to prove that

F(x)  := (II(* ,t) -  T (x , t ) )H( t )d t  € C»*{I ,S ( I ) )  .

Using the properties of the Green’s functions T and II, see for example [6, p305], 
and in particular that (T — II)(.,t) is C1 everywhere, and is a C2 function exept

1zx(x) -  zx(y) 1
I® -  y\‘

Φ χ { χ ) -  Φ χ { ν )

I* -  y|

\Φχ(χ) -  Φχ(ν)\  , £ * * · * > ■
■ s(t)dt

I® — 2/|\χ -  yI

* - y \

<  21- '  | ψ » | „  + Sup Sup  
x , y  € /  i G I
x ^ y

I x - v \ ‘

Ή Μ , Λ 1!jf  H(t)dt

-1

d

ox Φ {■z , t) H It) it
ry

-1
d

dx Φ (y>0H(0dt

d

dx
Φ y

d
ox φ [ χ ο

β
03 Φ\[y>t)tx

I - ι
H (0 dt

+

rv

X

d

dx Φ( t) Η (t) ,dt



possibly for x =  i, we deduce, proceeding as in the case of constant coefficient, that 
H  G Cltt . \{ I ,S ( I ) )  implies that F  G C ^ (/,< S (/)) , and the proof of Proposition 4.3 
is completed.

4.4 Proof of Theorem 4.1

To prove the Theorem 4.1, namely the well-posedness of the problem (5e) for small 
enough values of the parameter e, we use an implicit function theorem.
Thus we consider the problem (Se) on a domain fl* obtained as a perturbation of 
the domain fio determined by g.
We transform the problem (5t ) on fif to a problem on the fixed domain fio? and we 
then apply an implicit function theorem to a mapping defined on a space of suitable 
deformations.

4.4.1 T h e  space V 1'“ of adm issib le  p e r tu rb a t io n s  

Let 8 G IR+*.
In the following, fio will stand for the open bounded set of IR2 determined by the 
capillary solution g of (1 1 ).

For s G ZR+* and I G IR+* satisfying s < I + 2 and (p, 77) G (c^®(I,«S(I))) , we 
define the transformation

Mo G So 1— * Mg = M q 6 -(- Tfto'j ,

where n0 and t0 are respectively the outwaxd unit normal and unit tangent vector 
to So at Mo.
S; will stand for the set of the points Ms so obtained.

(/>,77) cannot, of course, be choosen in an arbitrary way.

Indeed, since the container has vertical rigid walls, Mo Ms and j  must satisfy a 
colinearity condition at x =  ± 1 , namely :

77 =  pgx at x =  ± 1  .

Moreover, for simplicity, we choose tangential deformations 77 such that

rj(x) = p(x).gx(x) Vx G I  .

This choice amounts to considering deformations in the j  direction only.

This kind of deformations is allowed because of the existence of a representation of
So in term of a function g of x. For a more general case, namely for a parametric 
representation of So, the choice of the deformations is a little bit more complicated 
but remains possible. Indeed, we would then choose deformations in parametric 
forms, as graphs over S 0.

Then we denote by V l,,(I), the space of admissible perturbations.
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4.4.2 Perturbations of the open bounded set il0

For p € 7 we set

Si = |M s  /  Ms =  ilfo “I- ip ~f~ jjxtoj VM0 € So}

|  Ms (xs,ys) /  ^ ^  _  . ( zo) + Sp(x0)y /T + ^ì(xó )  )  V:Co 6  ^

We then associate to p a global transformation x  =  x(p) mapping fio onto fi; and 
defined as

X =  x(p) : fio — * ÌÌJ
Mo >-* x(M0) ,

where

X(M0) =  <p(z0ty0) ^ *° j

+(1  -  <p(x0,y 0)) ^ +  6p(x0)yjl +  9 l{ x 0)) j  ’

where ip is a smooth function such that

<p{x,y) =  0 if hi < y < g(x)
< 0 < <p(x,y) < 1 if h2 <  y <  hi 
k <p(x,y) =  1 if y < h 2

where A-i >  h2 axe two positive constants.
For 8 small enough, we can define the inverse transformation x -1 , which maps iif 
onto Ho, as

x _I =  x~‘M  '■ — » t*o
M ,

where

X ~ x { M s ) =  ¥ > ( * « , y « )  (  ^  )

+(i-?(*,,»)) [ ___ y t g f a )___  ] .\ $(*«) + + pK35«) /
Thus for £ small enough, say £ < S0, the transformations % and x - 1  as smooth 
as the function p.

Moreover, if p € #*’*(0 , ^ ) ,  the ball of centered at the origin and of radius

t ~} we havet>o

x(p) € (cit!(Sic,S(Sl,))y 

x~l(p) e (cS5(ni.5(n<)))J
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D efinition :
Let us suppose that 0 < 8 < 80.
tts will be called a perturbation of the open bounded set if there exists a function 

p G Bl'*(0 , 4-) such that = X“1( ^ ) -

4,4.3 Transformation of the problem on $ls to a problem on the fixed 
domain i20

Let fi* be a perturbation of ilo-
Thus, we want to find (us, 0s, 0’s, fs^Cs) solution of (Sc) on il*.
But, fIs is a perturbation of iio> so that this problem is equivalent to finding (t?, 0,a, / ,  C) 
solution of

V.u = 0
(u.'V)u — Diva(u) — XOj =  0 

“  75t v H c ^  =  0

it =  0 and 0 =  0

89
~dn v 
cr(u).n.i — Ma*j~l = 0

= — eX and u.n 
89 
dl

+ /*

zn fi0

in fio
2>72>
071 To

071 So

on S 0

— C = 0 on So<r(u).n.n + Pa + -  Ma*a(0)

------- ±cos(/3)
\ / l  + /i(± l) ̂̂

0’{u).n.ndx = 0 
f  det(J)dxdy  = V

v Ôo
where
• and J ~ x respectively stand for the jacobian matrix associated to x (p) and

x - ' i p )
• v  =  ( J - ' y . V  , A =  V .V , Div =  V 
and where we set :• u = us ox
• 0 = Osox
• a = asox

• f  = fs°X
• 1  = Xsox . J(M0) = n(x(M0)) = n(Mi)
.  it Mo) =  t (x (M 0)) =  i(M5) .
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4.4.4 U sing th e  im plic it fu n c tio n  T h eo rem

We define the function T  acting from

m  x (V \+oo) x Cl,X \( I ,S ( I ) )  x  J R x  (ci+2(fi0,«S(n0)))2 
into

x I R x I R x  (c;+2(n 0,5(fio))) x JR2 as

1 ¿ (e ,V ,p ,w ) -  C

T  : (c, V, />, C7, w)

/  V v/
/ <r(tT).n.7icf;c 

* Eo

[  det(J)dxdy  — V  
Jcin

u — w

•I -----:p cos(0)
J l  + f i ( ±  1)

where

£ ( e ,  V ,p ,to )  =  cr{u).n.ñ +  Pa +  -  Jkfa*a(^) ( j J l  ... )
F r  VV1 +  /* 2/ ,

and (u, 0, cr) is the solution of the system

V.u =  0 in  fio

(îü.V)u — D iva(u ) — A0j =  0 in fio

w .V 0  — =  0 tn  f i0

u =  0 and 6 =  0 on To 

^  =  — eZ and u.n =  0 on So 

a(u).n.t — M a * = 0 on S 0 .

If we set So := (e =  0, V  =  Vo,p =  0,C  =  Cq, w =  0), it is clear that !F(So) =  0. 
The main result in the course of proving Theorem 4.1, is stated in the following 
proposition :

P ro p o s itio n  4.4 Let us suppose s > 0 and I > 0 given and satisfying s <  I +  2. 
There exists a finite sequence o f real numbers 
0 <  Ai <  • • • <  \ K < _ + o o

such that i f  Ma*Fr$o ^  A,• fo r all i =  1, • • •, K  then

a /  There exists an open neighbourhood Wo of So in IR x  (V", +oo) x
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IR x (c*+2(iio5 £ ( ^ 0 ))) such that T  is a C1 function on Wo-
b / D(Pictc;)J-(So), the Frechet derivative of T  with respect to (p ,C ,w ) at So, is an 

isomorphism from  C ^(J ,«S (J)) x I R x  (c*+2(fi05 ¿>(^0))) onto C*t*(7, S(J))  x IR x

ir x (cl+2(n0,s (n 0)))2 x iR 2

Theorem 4.1 is a straightforward consequence of Proposition 4.4.
In order to prove Proposition 4.4, we need several auxiliary results.
Therefore, we introduce the following functional spaces

X := (ci+2(iio,<S(fio)))2 X Ci+2(ii0,<S(fto)) x (cl, t \ { % ,S ( n 0) ) y / I R

Y := x (ci_2(fl0,«S(fio)))2 x Ci_2(ii0,«S(ii0))
x(c;+2(r0,5(r0)))2 X ci+2(r0,5(r0)) x ci+2(s0,5(E0))
xC |ii(S o ,5 (2 o ))  x C itU S o ^ iE o )) ,

and for 5 =  (e, V, p, C, w) r  IR  x {V , + 0 0 ) x Cjj? ( / ,£ ( / ) )  x IR x  (c |+2(fio ,5(iio)))‘ 
we define the linear operator A = A (S )  such that

A (S ):  X —> Y
(u ,0 ,a )  1— ► A ( S ) (u ,0 ,a )  ,

where V.-u

A(S)(u,9,cr) =

(w.V)'u — Diva(u) — A 9j 

* * *  ~
u \Vo

0\To

d9
(H +eX)

J  |S0 

a{u).n.t — 1=0 /
Then, we consider the following problem 

Given F  =  ( / ,)® =1 G Y
find (u, 0 , <r) G X. such that 
A(50)(xT, 0,cr) =  F.
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This problem can be formulated as

Given F  =  €  Y

fmc^u, 9, er) €  X  such that

~PTK¿Ae = & in n° (12)
e =  h  onTo (13)

H  =  f l  on S ° (14)

and

V .u  =  f i  in i i 0 (15)

—Divcr(u) =  Xßj 4 - /2  in í í0 (16)

< û  =  fa on r 0 (17)
•u.n =  / 6 on S 0 (18)

a(u) .n .t  =  M a +  / 8 on S 0. (19)

Let ii be Em open bounded set of IR2. Let T be a part of dCl with endpoints
5(ft)  =  U { ^ (,)}- 

i
Let us suppose that there exist neighbourhoods of M W and functions gi such th at, 
in the local coordinates system , T can be represented as
y =  gi(x) for 0 <  x < ({.
We will say th a t T G C\ for s G (0, /), if T belongs to CW,I-W and if 
5 iG ^((0 ,C i),{0 } ).

We have the two following results

L em m a 4.5 a / Let To G C£+2 and S 0 G Coif3! with a € (0,1).
There exists a real number ao > 0, such that if  s G (0 ,ao ) then, fo r all ( /3, / 5, f?) G 
Cj_2(i20,«S(ii0)) x C'+2(r0,<S(r0)) x C^(So,<S(So)) satisfying the compatibility con­

dition — f i  ai points o f S ( fi0),

there exists a unique solution 9 G C|+2(iio,«S(i2o)) o f Equations (12...14)- 
b / Moreover, there exists a real number c*i satisfying

a i > M a x(a 0, l|)  such that, if  T0 G C[+2 and E0 G with s G (1, cti) and s < 1+2, 
then the conclusion o f a / remains true.

L em m a 4.6 a / Let r 0 G +\  and S 0 G C**3 with a G (0,1).
There exists a real number So > 0, such that if  s G (0,ao) then :

tf  (^fh h  ~  M ji h i  h i  h  +  Ma*-j^&Sj  G Y \  , there exists a unique solution (u , a) G
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(c;+2(ii0,S (fto )))2 x (Cl,t\(C l0,S ( n 0) ) y  ¡1R o f Equations (15...19). 
b / Moreover, there exists an angle (3+ such that, if ¡3 < (3+ then there exists a real 
number a i such that, if T0 G C*+2 and S 0 G with s G and s < 1 + 2, then
the conclusion o f a / remains true.

Where Y i  is the subspace of Y  of functions ( ^ ,  92t9<i96i9s) £ X

(ci_2(iio ,5 (fio )))2 X (c|+2(r0,5(r0)))2 x C;+2(So,5(So)) x C iti(S o ,5 (S 0)) satis­
fying the com patibility conditions :

/  g i(x ,y )d xd y=  g6(x)dx + 5 4 .n(x(r),y(r))d7 
J n0 •'Do ^r0

•  g6{Mi) = gi.nz(Mi)
if/? ¿ 5

where S(Sl) =  |J {M i} and where tr  is choosen so that tr  =  —n% for (3 =  
i =  1

The proof of Lemma 4.6 is given in [16], and that of Lemma 4.5 follows step by 
step that of Lemma 4.6.

From these two Lemmas, we deduce the following corollary :

C o ro llary  4 .7  The assumptions on To and So are the same as in Lemmas 4-5 
and 4-6.
a /  There exists so with so £ (0,1), such that, for all s £ (0, s0) and all F  e Y  
satisfying the compatibility conditions of Lemma 4-5 and 4-6, there exists a unique 
solution (u,0,cr) E .X  o f Equations (12) to (19).
b / Moreover, i f  (3 < (3*, there exists S\ > 1 such that for all s £ (1, Si) satisfying 
s < I + 2 and all F  d Y  satisfying the compatibility conditions of Lemmas 4-5 and 
4-6, the conclusion of a /  remains true.

Therefore, we deduce from the result above th at A(50) is an isomorphism from X  
onto the subspace of Y  of functions satisfying the compatibility conditions of Lem­
mas 4.5 and 4.6.
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We now give an other useful result.

L em m a 4.8 Let So > 0 be as in §4-4-2 •
For 0 < 6 <  Sq,

Ss i— > A(5f) is aC1 function fro m IR x (V , -f-oo)xBi,4(0, ^~ )xIR x  (c |+2(iio,S(ii(>))) 

into L(X  ,  Y  ), space o f linear continuous operators from  X  into Y  .

P ro o f of L em m a 4.8
The operator A is a linear function of (e, V, C ,w ).
Thus, we have to prove th a t, for all fixed (e,V ,C , w) in ZR x (V, +oo) x 1R x 

(c |+2(ii0,«S(ii0))) 5 the mapping

A(«) = A(e, V , » , C , w )  : -^) — > L(X ,Y )

P 1— * M p ) »

is C1.
This mapping can be w ritten as :

P 1— ► x - 1(p )  1— » M p )
Thus, we first consider the mapping p i— ► x -1(/5)-

Let (pn)n€i f  be a sequence of Bl,,(0, y-) converging in C |^ (J,< S (/)) to p belonging

to B'.*(0, ¿ ) .
We have :

(x -K a O -x - 'M ) (*,!/)= ( S < e „ ( x , y ) ( p - e „ ) ( z , y )  )  ’

with 6 ^ n bounded in C^® (I,«S(I)) independently of n.
Thus, there exists C > 0 such th a t

lx 1(p*) ~  X 1(/>)lci+31(ni,5(n<)) -  C\pn — (/,£(/)) »

and thus

P 1— » X _ 1(p ) ,

is a lipschitz continuous function.
Moreover, and in the same way, it is easily seen th a t
X _ 1(/>n) -  X ~ x{p)  =  L{pn -  p) +  |pn -  p |c J+*(/^(/))i(Pn  ~  P)  where L{.) is a linear

operator and where £(pn — p) goes to 0 in as p tends to pn in

<S(/)). Using for example the results of [2], we infer that

P '— * X _ 1(p )
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is C1.

We now consider the mapping

(O n< )))’ — t(X ,Y )
X  ( p ) '— > A ( p )  •

A  depends on x _1(/?) through its jacobian matrix J ~ l in a polynomial way. Then, 

the fact that the function x —1 (z9) 1— * * ^ _1 is smooth from into

(c^(i2f,<S(fi{))) , make the proof of Lemma 4.8 complete.

We can now prove the Proposition 4.4.
The mapping T  can be written

S (us,Bs,crs) J r(5)('Us,^s,o's),

where (us,0s, <?s) is solution of A(5)(-u, 9, a) =  0 .
We set Qs := (us, &S, <?s)-
Thus, we first want to prove that there exists an open neighbourhood W0 of So in 

jH x (y ,+ o o )  x Clt^ \ ( I  ,S ( I ) )  x J E x  such that the mapping Tx

is of class C1 on W0.

Let U := ZRx (V ,+oo) xB'-*(0 ,^ - )  x I R x  (c!+2(Q£,S ( i}£) ) ) 2

Let Qs0 be the solution of A(5o).Qs0 =  0- 
Let 77 6  IR+*.
For S  E l l  such that |5  — 5o|w < 77, let Qs be the solution of A (S ) .Q s  = 0.
Then A(50). [Qs0 -  Qs) =  (A(S) -  A(S0)).Qs. 
so that, using Lemma 4.8 :

A ( S o ) . [ Q 5o - Q s ]
= D A (S0)(S  — S0). [Q5 — Qs0] +  D A (S0)(S -  S0).QSo + \S -  S0\u t (S  -  S0) 
where DA(So) is the derivative of A  at point So and £(S — 50) tends to zero in Y 
when 5 tends to So in U.
Thus, using that

- A {S0) € L(X ,Y )
- S  1— > A (S)  is a C1 function

- (Qs0 — Qs) remains bounded in X ,

we deduce that, when S  tends to 50 in U , then A(50). [Qs0 — Qs] g°es to zero in 

L ( X , Y ) -
Thus, using that A  1(5o) remains bounded in L(Y ,X ) thanks to Corollary 4.7, 
we deduce that Qs -  Qs0 =  1-5 — 50|w £(S -  50).

Thus Qs = Qs0 ~ A~i (S0) ( D A ( S 0)(S  -  S0).Qs0) +  \S -  50|w ¿(S -  S 0) where
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£(S — So) tends to zero in X  when S tends to S0 in U, so that DTi(So) = 0 and 
there exists an open neighbourhood of So in U in which S i—► Qs is C1.

Using the expression of J-(S).Qs, it is now easily seen that the mapping Qs 1—> 
T(S).Qs is C\

Taking into account the fact that (uo,6o,o'o) = we can see that the deriva­
tive of T  at S0 evaluated at (p, C,in), denoted by D̂ Pic,vS)̂ r(S0)(p, C,w), has the 
following expression

r.n0.nQ + 4 -  [p^Jl + gl + Dwf(w)) -

- Ma» \T  - J z — ] -  90 (DpH{g).p + DwH{ïïj)^ -  C

/ T.no.nodx
Jx o

J  Py/Ï+Îîdx

v — w

(\/l + gl [px + p fxJ x̂  + f{w))^ (±1)

where we have set
v — Dpv(p) + Dwv(w) ,
T =* DpT{p) + DwT(w) , 
r  = Dpr(p) + Dwt(td),
and where the derivative of the mean curvature H with respect to p at g, denoted 
by DpH(g).p, is given by

r> TT(n\ n _ Pxx | 9x9xx n f  9x3:(! *̂5se) i 9x9xxx \  «
-  i t n  + V'U + iJ)’ + ( i+ H F J ' ■

(v, T, r) are the solution of the lineaxized problem

V.v = 0 in ilo

(Pis.)

—Dìv(t) — XTj = 0 in iì0 

1 AT = 0 in fì0Pr.Re
v = 0 and T = 0 on To 

v.no = 0 on S0
9T _^^  -  ° on E°

T.n0.t0 — Ma*?ĵ ~ = 0 on So-
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Thus, we are now going to prove that D(Pic,w)J~(S0) defined above, is an isomor- 

phism from Clt% \(I,S{I)) x I R x  (ci+2(i20 ,^ ( i i 0 ) ) ) 2 onto Cl,± \(I ,S ( I ))  x l R x I R x  

(c l+2(a 0, s ( n 0) )Y  x m 2.

Therefore, we now show that, under the assumption that , Ma*Fr90 ^  A,- for all
i = 1 , • • •, K ,  there exists a unique solution
(p ,C ,w) e Cl, \ \ { I ,S ( I ) )  x I R x  Ci+2(ii0 ,5 ( i i 0) ) 2 satisfying :

f ¿ i ( r ,T )  + Dp£{p) + L2(w) - C  = h1 V x E l

I T.n0.n0dx =  Ci
J'Ln

f_^ P\Jl + 9%dx =  C2

v — w =  h->

together with the condition

\ / l  + 9 l  (px  + p f j y )  + J fe (D wf ( w ) )  = a±1 at x = ±1. 

Where (v , T , t ) satisfies (Pls0), and where we have set

¿ i( r ,  T) =  T.no.no — Ma*T
\A  + 9l

Dp£{p) — ~F^P\j^- +  5* + Ma*9oDpH(p) ,

L 2(w ) =  -p^Dwf(w ) + Ma*90DwH (w)  .

First, we remark that for all C2,h 2,a i ,a - i)  € Cl» - \( I ,S ( I ) )  x IR x  IR x

(Ci+2(ii0 ,5 ( i i0))) x iR 2, there exists a unique solution (v, T, r ) satisfying the system 

(«s.) :
(v , T , t ) = (0 , 0 , constant).

Moreover, the condition J  r.no.nodx = C\ yields r  =  y./ci, where Id  states

for the identity matrix of IR4.
Thus, v = 0 together with equation v — w = h2, gives w = —h2, so that in order to 
prove Proposition 4.4, we only need to study

f DpZ{p) - C  = h \ f x e l

j   ̂P ^  + 9 ldx = C2

Px +  P
9 x 9 x x

1 + 9 l
(xt) = ai fo r  i = 1,2

with Xi =  —1 

x 2 — -f 1

(20)

(21)

(22)

But assuming that p is known, then the equation (2 0 ) gives 
p =  (Dp £ ) _ 1 (/1 + C), so that Equation (2 1 ) gives C as the implicit solution

of j \ D p£ .)~ \h  -  C )(x)x/ T + i 2( 5 d z  = C2 .
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Thus, it only remains to prove, for all function h 6 ,£(/)) and all (oi,a2) £
JR2, the existence of a unique function p G C ^ ( /,< S ( /) )  satisfying

\ DpZ(p) = h , V x e i

(px +  p f xl x? i ) (æ0  =  ai f o r i  =  1, 2
x with X\ = — 1

= +1
but this is precisely the result given by the Proposition 4.3.
This ends the proof of Proposition 4.4.
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On a dissolution-growth problem with  
surface tension : a numerical study
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(: ) Laboratoire d’Analyse Numérique, CNRS et Université Paris-Sud, 91405

Orsay, France
(2) Commissariat à l’Energie Atomique, B.P 6 , 92265 Fontenay-aux-Roses,

France

A b s tra c t .  We consider a one-phase Stefan problem with surface tension in 
space dimension two. We show how this problem arises from corrosion phe­
nomena and present a numerical solution, based on a finite element method 
for the discretization in space and on two alternative methods for tracking 
the moving free boundary.

R ésu m é. Nous étudions un problème de Stefan à une phase avec tension 
superficielle en dimension deux d’espace. Après avoir montré comment ce 
problème modélise un phénomène de corrosion aqueuse, nous en donnons 
une résolution numérique basée sur la méthode des éléments finis pour la 
discrétisation spatiale et sur des techniques fines de déplacement de fronts.

AM S : 35K15, 35R35, 80A22, 65N30, 65N50.

K ey w ords : Stefan problem with surface tension, free boundary, finite el­
ement method, front tracking methods
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1 Introduction

Many physical processes involve a solid phase in contact with a liquid phase. These 
phenomena are accompanied by a change of the geometry of the interface between 
the two phases. We are interested in the evolution in time of these interfaces. This 
paper is devoted to the study of a dissolution-growth process appearing in corrosion 
phenomena where typically a metal is in contact with a liquid and where the two 
phases evolve while exchanging mass. The physical model described in Section
2 leads us to study a one-phase Stefan problem in space dimension two for the 
concentration C (x ,y ,t )  of the chemical species passed into the liquid phase and 
the interface Tt between solid and liquid.

In Section 2 we derive the following basic equations for C and Tt :

Ct = D A C  in ü t , (1 ) 

D ^  = ( y  -  c )  Vv on rt , (2)

V„ =  kV  (c  — ae^K) on Vt , (3)

where v is the unit normal vector to the interface I \ ,  Vv is the normal velocity of 
r t, K  is its mean curvature, D is the diffusion coefficient, V is the molar volume 
of the solid compound, n is a kinetic constant, a  is the saturation concentration of 
the solution and 7  is proportional to the surface tension of the interface T*. Closely 
related models have been developed by Conrad & Cournil [6 ] and Gruy & Cournil
[7]. The aim of this paper is to present a numerical solution for corresponding 
boundary value problems.

In Sections 3 and 4, we describe a numerical algorithm. An essential difficulty 
is the variation in time of the space domain. The idea is to successively solve at 
each time step the equation (3) for the interface motion and then the equations
(1 ) and (2) for the concentration. We suppose that Tn := r „ ^ t , fin := Cln&t and 
Cn C(., . ,n A t)  are known and we want to compute Tn+1 and Cn+1. We proceed 
in two steps :
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(i) we use an explicit scheme for computing Tn+1;
(ii) we discretize the equations (1 ) and (2 ) by means of a semi-implicit scheme 

in order to compute C n+1 on fin+1.
Section 3 deals with step (i). We adapt two different methods for tracking the 

interface. The first one, which is due to Ikeda & Kobayashi [8 ], consists in moving 
each point of the discrete interface by computing an approximate normal direction 
and an approximate value of the mean curvature at each vertex of the discrete 
interface. In the second method, which is due to Roosen [1 1 ] and Taylor [17], [18], 
one displaces the edges of the discrete interface by associating a mean curvature 
value to those edges.

The fact that we deal with a one-phase problem and that we do not known any 
phase field approximation makes it necessary for us to use a front tracking method 
rather than phase field computations as it is done by Caginalp & Socolovsky [5] or 
a level line method as presented for instance by Osher & Sethian [9] or Sethian [16].

In Section 4 we discretize the equation for the concentration. We use a semi- 
implicit scheme for the discretization in time and a finite element method with 
piecewise linear basis functions for the discretization in space. In this paper the 
triangularization varies in time so that the discrete interface coincides with edges 
of triangles at each tLne step, whereas some previous computations were performed 
with a fixed mesh [13].

We give numerical results in Section 5 and show how they are compatible with the 
qualitative properties of the solution. In particular in the case that a homogeneous 
Neumann boundary condition is given on the uppsr boundary of the space domain, 
which corresponds to the case of a closed physical system, one numerically verifies 
that the concentration converges to the saturation concentration a  as t —► +oo

and that the integral /  (1  — C (x ,y ,i))  dxdy, namely the total mass of the solid, is
ot

conserved in time. On the other hand in the case that a constant Dirichlet boundary 
condition is given on the moving upper boundary of the space domain, one observes 
that the concentration C and the interface Tt converge to a travelling wave solution. 
Finally we remark that in all the cases that we consider the free boundary does not 
develop dendrites and stabilizes for large time.

Boundary value problems associated to equations (1 ), (2 ) and (3) have also been 
study from an analytical point of view. For the local existence and uniqueness of a 
solution in the case that the interface is parametrized in the form y = f ( x , t ), we 
refer to [14]. For the existence and uniqueness in the neighborhood of a stationary 
solution we refer to [1], and the local existence and uniqueness of the solution in the 
case that the interface is a smooth simply connected curve is proven in [2 ].

2 The physical model

2.1 The basic equations

We consider a system composed of a solid phase of a single compound and an 
incompressible liquid phase which is a dilute solution of that compound. The
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time evolution of this system induces mass transfer processes : a homogeneous one 
which consists in a diffusion process in the fluid and a heterogeneous one, namely a 
dissolution-growth process, located at the interface between solid and liquid.

Let fi£ denote the liquid phase and r t the interface between solid and liquid. Let 
C (x ,y ,t)  represent the concentration of the chemical species passed into solution, 
depending on the space variables (x ,y)  and on the time t.

The equations governing the evolution of the concentration and of the interface 
are deduced from the following physical laws.

i) Mass transfer
We suppose that the liquid is at rest and that at every point of the interface the 
volume decrease of the solid is exactly equal to the volume increase of th * liquid, so 
that the convective velocity can be neglected. Moreover we also disregard all other 
fluxes (e.g. gravity induced flux, thermal flux, etc...) with respect to the diffusion 
flux. If we denote by J  the diffusion flux, the first Fick’s law gives

J  = - D  grad C , (4 )

where D is the diffusion coefficient.
Let u t be an arbitrary subdomain which can be decomposed into u\, the liquid 

part and the solid part, i.e wt = u>[\J By the conservation of mass in u>£, Lot 
contains the same number of particules at each time t :

i t  ( / „ , cd xd y )  +  i t  ( /„ .  b d x iy )  = 0 - (5 )

where V  is the molar volume of the solid compound, so that ^  represents the 
concentration in the solid phase. Let ul (respectively u‘) denote the inward unit 
normal to du>[ (resp. du>*) and V„i (resp. V^«) denote the normal velocity of du)\ 
(resp. eta*). We deduce from (5) that

/  Ctdxdy — [  CVvidcr — f  ^zVusdo- = 0 . ( 6 )
J»[ Jdu,{ Jdw; V  v

Let Vv denote the normal velocity of the interface and let T be the part of the 
interface contained into ojt , i.e. T =  Tt n u>t.
Using (6 ) and the fact that J.vx =  CV„i, we obtain

f  Ctdxdy + [  (^77 — Vuda — (  J.ulda — 0 . (7)
Ju; J t  W  J J d w [ \ t

Equation (7) holds for any subdomain u>t , in particular if we take =  i<4, that is 
=  0 or f  =  0, equation (7) reduce to :

f  Ctdxdy = [ J.ulda . ( 8)
Jw\ Jd u,'
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Moreover it follows from (4) that

L, 3-v'i°= -DL , j j d,T=D L; ACdxiy • (9)
and consequently that

J  ̂  Ctdxdy = d J  ACdxdy .

Hence, we obtain the diffusion equation

Ct = D A C  , ( 1 0 )

in the liquid domain. Then, substituting (1 0 ) into (7), we deduce using (9) that

j t { b - ° ) V M + StJ-via = (>'
where V is the unit normal to Tt directed towards the fluid. Therefore, we obtain 
the equation at the interface Tt

<ll>

ii) Dissolution-growth o f the solid
We suppose th at the rate of dissolution or growth of the interface, follows the law 
Vv =  h (C ,K ), where h is a kinetic function, depending on the reaction pattern 
modified by the mean curvature K  of the interface.

We consider an interface reaction of first-order and a Gibbs-Thomson law [1 0 ] to 
introduce dependency on the mean curvature. We suppose that the kinetic function 
is given by

h(C, K ) = kV [C -  See7* ) ,

where k is a kinetic constant, So is the saturation concentration of the solution and 
7  is proportional to the surface tension of the interface. W ith the particular choice 
of the kinetic function h, we obtain (3) which '> e substitute in (11) to obtain

= kV(v ~ °) (c ~ s°e'*) ■ < 12>
The kinetic law (3) is valid only when the argum ent of the exponential is not 

too large which is verified in the experimental context where values of 7 K  do not 
exceed 2 . In practice, it turns out in the numerical experiments th at if we choose 
an initial interface satisfying 7 K  ~  2 , then 7 K  remains of order 2 or less at all later 
times.

Finally we remark th at the choice of the kinetic function h is not unique. Another 
type of interface reaction could have been used, for example a reaction of second 
order where the kinetic function h is a quadratic function of the concentration C

[4]-
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2.2 Boundary and initial conditions

We consider two kinds of problems :
i) The Neumann problem
The upper boundary E of the domain flt is a fixed plane {y = M }. The concentra­
tion C satisfies the Neumann condition =  0 on E.
ii) The Diiichlet problem
The liquid domain Ctt is a diffusion layer. The upper boundary Et =  {y =  d(t) +  M }  
of moves in such a manner that the area of the liquid domain is conserved in 
time. The concentration C satisfies the Dirichlet condition C =  g on Et, where g

new domain, which we still denote by fit , is bounded in the x-direction, with x 
varying in (0, Z). Then C and Tt satisfy periodicity conditions.

given.
Moreover we suppose that C and Tt are L-periodic in the x-direction. This 

assumption enables us to transform tr.e problem into an equivalent one where the

We assume that Tt does not have more than one point on {x  =  0}, namely can 
be parametrized by the x-coordinate in a neighborhood of {x =  0}. Without this 
assumption, the periodicity condition would have to involve all the points of Tt with 
x-coordinate zero. However the numerical study shows that if the initial interface 
is parametrized in the form y = /o(z), then the interface keeps being parametrized 
by x for all positive times, which justifies this assumption for the dissolution-growth 
problem.
Then the periodicity conditions are given by :

7(0, y, t) =  C(L,y , t )  

l§(°,2/,i) = >

ind if we parametrize the interface Tt by its arc length, i.e.

rt : [0,/] —  m2
s I— ► (x(s , t ) , y(s , t ) )  ,

then

x(l , t )  =  x(0, t )  +  L, y ( l yt) =  y(0,i)

ff(M) -  ®f(M) -  •
(14)

Finally, periodic initial conditions are given for C and Tt : 
rt=0 = r0 and C(x,y ,  0) = C0(x,y) ,  (x,y)  G , 
where Ho is the initial liquid domain.
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2.3 Dimensionless equations

In order to obtain dimensionless equations, we set

(x,y) : = -^(x,i/) ; s : = -jjs  ; I := -j-jl ;

; 7 := } } 7  5 a : = V S 0 5 

C (x ,y ,i)  := y C (z ,y , i )  ; f £-(s) := j } T t(s) .

Some easy computations show that C and r t- satisfy the following rescaled equa­
tions, where the tildas have been omitted

(Pi)

C, =  AC in Q (15)

$ 2  =  (1 -  C) (C -  a f * )  o n T  (16)

=  o on E , t > 0 (17)

S or
C =  g on Et , t > 0 (18)

C satisfies (13) (19)

C (x ,y ,0 )  =  C0(x,y) ,  (x ,y)  £ fl0 (20)
Vv — C — aeTfi: on T (21)

r t satisfies (14) (22)

r t=0 =  r 0 , (23)

(ft)

where Q =  { (x ,y ,i) , (x ,y)  6 , t > 0} and T = { (x ,y ,i) , (x ,y)  G Tt , i > 0}.

2.4 Some bounds on the concentration

With the scaling of Section 2.3, we have that

0 < C0(x,y)  < 1  for all (x , y ) € fi0 > ( 24)

and
0 < g <  1 (25)

One can formally show, by means of the maximum principle that (24) and (25) 
imply a similar property for the concentration C, namely that

0 <  C < 1 in Q . (26)

From now on we suppose that the conditions (24) and (25) axe satisfied so that 
(26) is satisfied as well.

40



3 Discretization of the interface equation

This section is devoted to the numerical solution of the equation for the displacement 
of the interface

K  = C -  a e <K on Tt .

We do so by means of an explicit scheme, namely

Vv =  Cn -  aeTjr^  on Tn,

where Tn := r na.t, f ln := flnAt and Cn := C(., . ,nA t) .
O-p

Since Vv =  - ^ ( n A t) .u (n A t), we compute the interface at time in+1 =  (n +  l)A f 
by means of the formula

Tn+1.u{nAt) = Vn.u{nAt) +  A tVv .

Hence, the knowledge of Tn and the computation of the normal velocity Vv permit 
to determine Tn+1. We now present two methods for moving the interface and 
computing its curvature.

Let Pp be a point of the discretized interface at time tn = n A t  and let C" =  
Ch (P ? ,nA t) ,  where Ch is obtained by a discretization in space of the function C 
(see Section 4 below). Let {P/ 1} ^ 1 be ( I  +  1 ) points of P 1 saisfying

*(PD  =  0 ; x(Pp+1) = L ;

!/(■?"+1) = y(P?)
y{P?) -  y(Pr) _  y(P?„) -  y (P f)

p n  P  
r \

pn p n  
r I 7+1

(27)

The interface Tn is then approximated by

TI = { Ò  [ f T Æ i ]  ! satisfying (27)J ,

where the notation y(P)  stands for the y-coordinate of the point P, and with the 
convention that the liquid part lies on the left side of the interface when one follows 
Tn from 5 =  0 to s = I.

Let p be a positive integer and set A ti  =  We also set I?£’0 =  T£, C£’° =  C£ 
and for 9 = 1 , ..-,p we define

T l’q = | l J  ; satisfying the same as (27) j  ,

and C£’? =  Ch (P ?* ,nA t)  .
We adapt two methods. In the first one, due to Ikeda and Kobayashi [8 ], one 

moves the points P?’q so that one has to compute at those points an approximate
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normal direction and an approximate value of the mean curvature. In the second 
method, due to Roosen and Taylor [1 1 ] (see also [17] [18]), one displaces the edges 
[P"’9, -Pj+i] of the discrete interface and associates a normal direction and a mean 
curvature value to those edges.

3.1 Adaptation of the method of Ikeda and Kobayashi.

Motion of the discretized interface
For q = 0, ...,p — 1 , we obtain r £ ’9+1 from r £’9 by computing the displacement

pn,qpn,q+1 =  A ti JCn,9 _  -V7 ( 28)

for i = 1 , • • •, I  +  1 , where is the curvature of the circle circumscribed about 
the triangle ( ,  P " ’9, Pt̂ l9), and ££’? is the unit vector at P/ 1’9 pointing into the 
liquid phase, and perpendicular to the segment [P£!?,P;+?] as shown in Figure 1 

below.
More precisely, Uh,i and Kh,i are given by the formulas

uh,i =  ^  , ( 29)
Pi-iPi»+1

where J  =  i  ̂ 0 ) ’ an^

2 det P»Pt—i , PiPi+i

K h,ì = ..........., -V - y  -  S  • ( 30)
| P .P i.i |.| PiPi+1 |.| Pi-iPi+1 |

In view of the orientation that we choose for the interface, we remark that the 
mean curvature Kh,i is positive when the solid part enters the liquid one at point

Pi.
Also note that the method is of order 1 for the computation of the normal and 

of the curvature, (see Appendix A).

Furthermore, we deduce (7£ ’9+1 from C£’q by the formula

Ctn'9+1 =  Ch (i^n,9+1 ,nA i) ~  Ch (P " ’9,nA i) +  P ^ P J 1' ^ 1 . VCh (P /\n A f)  , 

in which we substitute (28) and in view of the interface condition (16), this yields

C n,9+1 =  Cn,q +  A ii Jc n,5 _  2 ^  _  çn,,) _ ( 3 ^
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Hence, TJ| +1 = r£ ’p follows from solving (28) and (31) for i — 1 , • • • , / +  1 and
q = 0 , • • • , ? -  1 .

The time step Afi is chosen in order to avoid numerical instabilities. Moreover 
we have to control the length of line segments of r £’9 in order to prevent some pos­
sible self-intersections of the interface. We do so as follows :

Control of the edges
Let lmax > lmin > 0 be two given real numbers.

1 . If pn»î p n»9 
r i r i+l < lmin, we consider the midpoint of [P”’9, Pj+9] as a new vertex

and remove P " ’9 and P;+?.

2. If Dn»9 Dn>9 
r i ^t'+l > lmax> we introduce a new vertex P n'\ .  If P n'9i would be taken

2 2

as the midpoint of the edge, it would be a point with zero curvature. Thus, 
in order to avoid this problem we use an idea due to T.I. Seidman [15] (see 
Figure 2 below).
We suppose for simplicity that ^  0 and ^  0 . Let C; and C;+1 be
the circles of radii Ri and Ri+i circumscribed respectively about the triangles 
(P/l’i , P/1’9 , P^ \ ) and (P/1’9 ,Pj+?,Pl+l)- Let be the mediatrice line

of [P"’9, P;+i]* Let Adi denote det ^P/^’P/l!9 , P/l,9P / ^ 9 ^ and A/"(P) denote

d e t ^ P f f ’9 , PP£? j .

We then define

Ni = { (A + i)  n c ,}  with M iAf(N i) > 0 , 
and

Ni+1 = { (A '+ i) RC.+i} with M i+1Af(Ni+1) > 0.
This condition means that Ni is the intersection point of the mediatrice line

----------►
D i + 1 with the circle C; and that the angles between the vectors P " ’9 P/ ^ 9

----------> ------- ► --------y
and PP'qP ^ \  and between the vectors NiP?'q and NiP?+\ have the same 
orientation. Finally, we set the new vertex Pi+i as the midpoint of [Ni, Ni+i].

As it is shown in Appendix B, one can check that the curvature corresponding 
to point Pi+\  is approximately equal to the average of the curvatures corresponding 
to the points P / 1’9 and P/ !̂9.

3.2 Adaptation of the method of Roosen and Taylor.

We propose here an alternative formula for computing the curvature which was pro­
posed by Angenent & Gurtin [3] and Taylor & al. [17], [18] in the case of crystals 
with polygonal edges.
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Motion of the discretized interface
To each edge [P;,P;+i], we associate the unit normal to the edge pointing
into the fluid, and the curvature K hi+i .
This is done according to the formulas :

and

where

uh,i+ \ -  - .. ) » ( 3 2 )

I -P.-P.+11

7V- _ —1 9i,i — l  +  +  l  i7t,* +  l )  ( Oo \
K h,i+ \ ~  >------------------  > ( 3 3 )

I PiPi + l I

1 — Vi
9 h j  —

t -  -  V ' /2

and

=  +1 if they are adjacents and the solid enters 
into the fluid (concave case),

=  —1 else.

Note that this method is of order 1 for the computations of the normal and the 
curvature (see Appendix A).

As mentioned above, the motion by mean curvature of the interface is imple­
mented by moving each of its edges. Thus, w • need another description of the

discrete interface. We associate to T£, the set T? =  ,

where Pp+l — ^(P ?  + Pp+1) and /?+i Dn pn  
r i ^ t + l , and we define the vector G"

of components ((??),• := C*+i =  \{C i +  C7+i)> * =  1,

In the same way, we define the set T”’5 and the vector C±’q for q =  1, • • • ,p, and
2 2

we set r ? ’° =  r ? ,  C”’0 =  C?. Moreover, to each edge ( PV\ t , I? i ) we associate 
2 2 2  2 \  1 ‘ 2 * 2 /

^h'i+i an<̂  i- as defined above and we denote by the whole straight line

containing this edge.
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Then T^+ =  r£ ’p is obtained by solving for q = 0, • • • ,p  — 1 ,

p n , q  p n , q + 1 _ a  . 
.+ ! *+!  “  1 

for i = 0, • • • , /  —

yKn,q 1
C ^ - a e  *••’+ *

*+5
-m ,q

" •4

^n.,+1 =  B n̂ ,+1 p  9+1 for i =  1, • - - , J  , 
t 2

and Pj!k+1 *s calculated from the periodicity 
condition for the interface

ç n , q + 1 _ ^^»9

+ A íi 

, for { =  ! , • • • , / + !  .

'yK '1'*
C i'q -  ae k'i+i (1 -  c r )

Control o f the edges
As in the case of the previous method we have to control the lengths of the segments. 
Let lmax > Imin > 0 be two given real numbers.

1. If p n , g  Tjn,q 
r i r i+ 1 < ¿min, we consider the midpoint of the edge as a new vertex and

remove P "’9 and . 

2. If pn,g p n ,q  
r i -r t+l > lmax, we take the midpoint of the edge as a new vertex.

Moreover, the method requires another kind of test. Indeed, the calculus of P?'9
as the intersection of the two lines B n'\  and B!V\ can generate what Roosen &

1 2 *+2
Taylor [11] call flipped-segments. This corresponds to the case

it happens, the vertex P/1’9 is removed. The Figure 3 below gives an example of 
such a segment.

4 Discretization of the equations for the concen­
tration

To begin with we give a weak formulation for the diffusion problem (P i). Since the 
space domain n t depends on tim e, we are led to introduce function spaces which 
depend on time as well. For t > 0, we set S t =  {v G jBT1 (í^t) j ^|*=o =  f|*=i}- (For a 
domain fi, we denote by fT1(ii) the space of square integrable functions with square 
integrable first derivatives).
We also introduce the spaces 7it and Vi defined as follows :

(i) in the case of a Neumann boundary condition,

Ht = Vt = S t ,
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(n) m thè case of a Dirichlet boundary condition,

"H-t =  {v € S t\ v =  0 on E t}

Vt =  {t> 6 5 t; v = g on Et} .

Next we define the set
Qt := {(x,y,i)> 0 < i < T and (x ,t )  G ii t} .

We assume that the interface Tt is smooth enough. We multiply equation (15) 
by <p G 7it and integrate by parts on iit- We obtain the problem

Find C G H 1(Qt ) with 0 < C < 1 such that

i for a.e. t G (0,T) and for all y? G "Ht .

4.1 Discretization in time.

Next we show how we discretize in time Problem (34). For all ip G 'H{n+\)e>.t and 
for all integer n  G [0, (T — A i)/(A i)], we associate to problem (34) the following 
discretized problem.

Find Cn+1 G V(n+i)At such that

(z) C (x ,y ,0) =  C0(x ,y)  (x ,y)  G ii0;

(ii) C (t) G Vt for a.e. t G (0,T);

( in)  I Ct<pdxdy + [  V C V ip d xd y-1- [  Cip da — [  C \  da
(34)

(35)

where Cn is an extension of C n to the domain fin+1. We will explicitely show such 
an extension after having presented the discretization in space.

4.2 Discretization in space.

We use a finite element method.
Before discretizing in space Problem (35) we introduce some notations. We 

denote by i2£+1 the discrete approximation of the domain ii(„+i)At and by T £+1 a
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Ce Ψ da a
r<

e yK
Ψ da

( Ο  λ  ί  ° η+1(Ρ  dxdV + ί  dxdy +  [  Cn+1 ( l  -  δ η  +  a e * * " 1) φ  da
iit J n n+1 %/Ωη+ι yr^1 ' '

=  χ +  ί  C n(pdxdy +  a. ί  εΊΚη+1φάσ 
' ζ \ ι  7η»+ι

for all φ G Ή(η+ι)Δί and for all integer η € [0,(T  — Δ ί)/(Δ ί)]  ;

(ii) C°(x,y) =  (7ο(χ , 2/) (x,t/) G Ω0 ,



triangularization of fi£+1 such that to each point of the boundary {x =  L}  there 
corresponds one point having the same y-coordinate on the boundary {x = 0}. 
Furthermore we denote by jVn+1 the number of nodes of of x-coordinate stricty 
less than L.
Next we introduce some discrete approximations of the function spaces, namely

s ; + 1 i Vh £ C° ( n p )  for all K  € T £ + \  1 
\  Vh is linear on K  and 1^ ( 0 ,.) =  Vh(L, .) J

In the case of the Neumann boundary condition, we set

w;+1 = v;+1 = s;+1,

and in the case of the Dirichlet boundary condition we set 

w ;+1 =  {t>„ <E » I = 0 o n  EJ+1}

V£+1 =  {»/. € SJ+1, vh = g  on S ;+1} , 

where E£+1 is the upper boundary of .

r  ̂7Vn+1
Let be the piecewise linear basis functions of <S£+1 (they take value

one on one node and vanish at all other nodes). We decompose the approximate 
solution on this basis,

N"+1 ____

t=l

where C'f+1 =  C'£+1(P/l+1). In the same way

jV»+i

Q(*.y) = £  C M +Ii*,y) (*,y)€̂ +1,
*=i

Jf n+1

e ^ n+1(x,y) =  53 c?+V ? +1(*»y) »
»=i

with
f n + 1

if the node P "+1 of 7 n̂+1 belongs 
to the moving interface,

0 elsewhere.

Furthermore we decompose (C£C'£+1) and (C'£+1e7ifn+1) according to

jy n + 1

c z c f \ z i y ) = £  0fC7!*+V?+1(*.y), 
t=l

C?r+1e?+V ? + ,(*,») •
*=1
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In the case that a Neumann boundary condition is prescribed we obtain the 
linear system :

E  c r +1 
i=l h  *,? + v "+1 i x i y  + 4 «  W ' v v r 1 d^ y +

+  ( l  -  C? +  ae"+1) | rn+i ^ +V -+1 ^

ivn+1 

-  £
t = l

(36)

à â r  i -  i’r + v "+1 ^  +ae?+1 L ‘ ^ +V "+'

K for j  =  1 , • • •, iVn+1 .

One obtains a rather similar system in the case that a Dirichlet boundary con­
dition is prescribed on the upper boundary of the domain which is then moving.

Construction of the extension C£ of C% to the domain ii£+1.
We now describe the construction of the extension Cfi of C£ to the domain f2£+1. 
Let PP+l be a node of ii£+1. Either

(i) P ” +1 G and Ch(P?+1) is computed by linear interpolation in the triangle of 
Thn+1 containing P?+\

or

(ii) P " +1 ^ and P ” +1 is located in a neighborhood of the interface
First of all we suppose that P / 1 is a node of and P " +1 the corresponding node 

r £ +1 obtained by moving the free boundary, i.e. by computing the displacement

p n p n + 1 =  A t  ^

We use the approximation formula

(37)

c ; « ”+1) ~  w )  + / r r ‘ ^ c î ( f r ) :

so that in view of the equation (37) and by means of the interface condition (16), 
we obtain

C n ( ^ n + l )  ~ C n +  A t  Jçrn _  Qe7 ^ „ ] 2 (]_ _  _

Then we choose

C? =  C” +  A t  [C?r -  a  exp ( l i f « ” ) ) ] 2 (1 -  C ? ) ,

on the discrete interface T^+1.
Otherwise, if the node P " +1 is strictly located between the two interface and 
r£ +1, we determine the quadrangle (P ” ,P £ ,P " +1 ,P £ +1) ,  where P " ,P £  6  ]?£ and 

P " + 1 , P£+1 £ H + 1 , which contains P ” +1 and interpolate in this quadrangle the
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value of C£ at P " +1.

(iii) Pp+1 and P " +1 is located above E£.
In the case of a Dirichlet boundary condition on the moving upper boundary 

E£+1, when S £ +1 is above E£, we have to extend Cfi beyond to E£ up to E£+1. In 
this case we set Cfi = g , in the whole part delimited by E£ +1 and E£.

Two variants of the conjugate gradient method have been used for solving the 
linear system (36) : BI-CGSTAB which was introduced by Van Der Vorst [19] and 
GMRES introduced by Y. Saad &: M. Schultz [1 2 ]. No significant differences in the 
results were observed.

At each time step a new triangularization is generated by means of the mesh 
generator Modulef in such a way that the nodes used to move the interface are 
degrees of freedom of the problem. An advantage of this method is the possibility to 
refine the mesh in a neighborhood of the interface without increasing too much the 
cost of the numerical computations. Furthermore, a part of the triangularization of 
the domain may be fixed, at least for a number of time steps. The main draw back 
of this method is that since, at each time step, at least on a part of the domain 
the triangularization changes, we have to interpolate the value of the concentration 
there.

5 Numerical results

In this section we present and discuss a number of numerical results; some have been 
obtained with a homogeneous Neumann boundary condition on the fixed upper 
boundary of the space domain while others have been obtained with a Dirichlet 
boundary condition on the moving upper boundary (cf. Section 2 .2  (i) and (ii)  ). 
The computations have been performed with the method of Ikeda 8z Kobayashi for 
tracking the moving free boundary. In the case of the Neumann boundary condition, 
we present a comparaison test between the methods of Ikeda &: Kobayashi and of 
Roosen & Taylor.

5.1 Domain of variation of the different parameters.

The main parameters to be chosen are the initial concentration C0, the initial in­
terface To, the value of the saturation concentration a  and the value of the surface 
tension a.
(i) Typically initial concentrations are given by Co =  0 and Co = 2a.

(ii) Most of the tests have been performed with taking as initial interface the function

y =  /o(*) =  &sin ) x € [0 , 1 -] (38)

with 6 =  4 1 0 ~ 6 m and L = 15 1 0 ~ 6 m. More rapidly oscillating or less smooth 
initial interfaces have also been considered (see test 2 in Section 5 .2  and test 4  in 
Section 5.3).

(iii) a  is chosen as a multiple of the value 50 =  1.42 1 0 3 mol/m 3 which corresponds
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to the saturation concentration of copper, for example a  =  305o.

(iv) Two values of the surface tension a have been chosen, a = 0 and a = 30. The 
value of the constant 7  is then given by 7  =  6 1 0 - 9  a. When there is no surface 
tension, i.e a =  0 , singular points may appear on the interface in finite time : this 
is due to the fact that the interface then satisfies a first order equation.

The other parameters, i.e. the diffusion coefficient D , the molar volume V  of the 
solid and the kinetic constant k , are fixed and take the values D =  1 0 - 9  m2/s, V  = 
7.09 10- 6  m3/mol and k = 7.09 10~ 9 m /s.

5.2 The case of a homogeneous Neumann boundary condi­
tion.

The height M  of the fixed upper boundary is given by M  =  6 1 0 - 6  m.
Before describing the numerical results, let us make some remarks about the solu­
tion.
(i) The concentration satisfies a conservation law, namely the total mass of the 
solid is preserved. Indeed coming back to the dimensionless equations, integrating
(15) by parts over i2t and using the boundary conditions (16), (17), (21) we find that

/  (1 — C). dxdy = /  (1 — C )V v da,
J Ot JTt

but since

4  /  (1 -  C) dxdy = I  (1 -  C)t dxdy -  f  (1 -  C) Vv da,
J Clt Jflt •'Tt

we deduce that for all t > 0

f  (1 — C) dxdy =  f  (1 — C0) dxdy . ( 39)
J fit •'fio

When performing numerical computations, we systematically compute the quantity

/ (1  — C) dxdy . A numerical observation is that this integral varies slightly in the 
J 0 1
first steps of the computation and becomes constant afterwards; in order to remedy 
the variation for small times, we take smaller time steps initially and let them in­
crease with time.

(ii) Suppose that 7  > 0 . A numerical observation in the case that To is parametrized 
in the form y =  fo(x) is that the pair (C , Tt) converges to (a, constant) as t —► + 0 0 . 
Next we show how one can compute this constant.
Suppose that

lim C(t) = a.
t—► -}- OO

Letting t goes to -|-oo in (16), we formally deduce that for 7  7  ̂ 0 ,

lim K(t)  = 0 ,t—> + 00
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which means that the free boundary converges to a plane {y = y ^ }  as t tends to 
+ 0 0 .
On the other hand, letting t tend to + 0 0  in (39) and using that |iioo| =  {M — y ^ L  
gives

t/» = M  -  ———— f  (1 -  C0) dxdy. ( 40)
(1 — a)L Jn0

This also provides a criterium for checking the validity of the numerical programs. 

Next we present the results of some numerical computations.

1. T he  case th a t  C0 =  0, a  =  3050, a =  0.
Applying formal arguments based on the maximum principle one can check that

0 < C < a  so that Vv =  C — a  < 0. Therefore this case only involves the dissolution 
process.

The curves presented in Figure 4 show the interface at several times starting 
from time t =  0. Clearly the interface decreases in time and converges to some 
nontrivial stationary state. In fact we remark that every solution (C, / )  with C =  a  
and /  arbitrary is a stationary solution.

2. T he  case th a t  C0 =  0, a  =  3050, <r = 30.
Both dissolution and growth occur here and as it has been discussed above the 

solution converges to a constant as t —> +oo.
Figure 5 shows the time evolution of the interface, whereas Figure 6 represents 

the concentration in the all domain at times t = 10^, t =  1700$ and t =  4200<s.
The process seems to exhibit two stages : in the first one, only dissolution occurs 

and the concentration C on the interface stabilizes to the saturation value : Figure 
7 shows the time evolution of the mean concentration on the free boundary; in the 
second stage both dissolution and growth occur and the interface converges to the 
constant y<*, as t increases.

We show on Figure 8 the variation in time of the quantity / (1 — C) dxdy for
J fit

three different sets of time steps : At,  A t /2  and 2At.  We remark that the variation 

of /  (1 -  C) dxdy decreases as the time steps become smaller. The relative error 
J

is of order 0.1%.
In Figure 9 we present error estimates, when multiplying and dividing the time 

steps by 2, namely the quantities

(a) e L  = - d  (b) e' 1/2

where we suppose that the interface Tt is given in the form y = f ( x , t ) .  Note that 
e2At and el t /2 are respectively of order 1% and 0.5%. Similarly we have computed 
relative errors e£t/2(i) and e%&t(t) for the concentration on the interface. The errors 
are very small since and e£t/ 2 respectively have a maximum value of order 
0.25% and 0.125%.
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Finally we compare the two methods for tracking the front. In Figure 10  we 
present the relative error of the computation of the interface when using the algo­
rithms based on the methods of Ikeda &: Kobayashi and of Roosen &; Taylor. Note 
that the error is at most 0 .1%.
We show in Figure 11 the relative error of the computation of the concentration on 
the interface. This error is at most 1.75%.

Moreover the relative error for the computation of the asymptotic value y«, of 
the interface as t tends to +oo is equal to 0 .8 % in the case of Ikeda & Kobayashi, 
whereas it is equal to 1 .6 % in the case of Roosen & Taylor.

Two more numerical tests have been performed with different initial data. Figure 
12 represents the time evolution of the free boundary in the case that the initial 
interface is given by

y = /o(*) =  b sin +  sin , * 6  [0 , L] ,

with 6 =  4 1 0 - 6  m, L — 15 1 0 - 6  m and M  — 1 1 0 - 5  m.
Figure 13 shows the time evolution when starting from a rather singular initial 

interface; we note the regularization in time of the free boundary.

5.3 The case of a Dirichlet boundary condition.

This case is characterized by the existence of a planar travelling wave solution where 
the interface I \  is given by f ( x , t ) =  /o +  vt, where fo  = constant is the initial 
interface and the concentration is given in the form C { x ,y , t ) =  U(y — vt — fo ) .  

In fact we can compute the expressions of the dimensionless quantities v and £7, 
namely if we set

z = y -  vt -  f 0,

then
U(z) =  1 +  (v +  a — l)e~vz, ( 41)

and v is the unique solution of the algebraic equation

(v + a -  l)e~vM = g -  1 , (42)

where g is the value of the concentration on the upper boundary and M  is the height 
of the initial upper boundary. It turns out that there is growth, i.e. that v > 0 , 
when a  < g <  1 whereas there is dissolution, i.e. v < 0 , in the case that 0 < g < a. 
If g = a, the travelling wave solution reduces to a stationary solution of the form 
(Coo, Too) =  (a>y =  constant).

From a chemical point of view, one would expect the travelling wave solution U 
to be linear in z instead of having the exponential form (41); however for practical 
purposes it does not matter too much since the profile of U is very close to linear.

The height M  of the initial upper boundary is given by M  = 6 1 0 - 6  m. The 
saturation value a is fixed and equal to 30So. On the upper boundary three values 
of the Dirichlet data g have been chosen, i.e. g = 0 which corresponds to a global 
dissolution process, g = a  which in view of (42) implies that v = 0 and g = 2a
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which corresponds to a global growth process. We also choose two values of the 
surface tension, i.e. a — 0 and a =  30. We observe that as t increases, the solution 
converges to the travelling wave solution (U , f , v ) computed above.

Next we present the results of our numerical computations.

1. T he  case th a t  C0 =  g — 0, a =  305o, <r = 30.
Global dissolution occurs and the solution converges to the travelling wave solu­

tion as t increases.
Figure 14 shows the time evolution of the interface and the convergence to a 

plane.
We show on Figure 15 the time evolution of the difference between the velocity 

v of the travelling wave and the velocity vc(t) of the mean plane of the interface. 
For large enough times, vc( t) practically coincides with the travelling wave velocity 
v.

We show on Figure 16 the time evolution of the mean concentration on the in­
terface which asymptotically tends to the dimensionless value v +  a, namely to the 
physical value 1.812 m ol/m3.

2. T h e  case th a t  C0 = g = a, a = 305o, cr =  30.
Since g = a we deduce from (42) that the asymptotic value of the velocity should 

be equal to zero.
Figure 17 shows the time evolution of the interface. We observe here that the 

mean planes of the interfaces do not move, even for small times.

3. T h e  case th a t  C0 = g = 2a, a  =  305o, cr = 30.
Global growth occurs here and the solution converges to the travelling wave 

solution as t increases.
Figure 18 shows the time evolution of the interface and the convergence to a 

plane.

4. The case that C0 = g = 2a, a =  305o, a — 0. 
We take as initial interface the function

V = fo{x) =  b
/27tx\ . / 4ttx 

sm I —— I +  sin
V L \  L

Figure 19 shows the time evolution of the interface. Global growth occurs here and 
two singular points appear on the interface exactly at the local minima of the initial 
interface. The two singular points move and converge to a unique singular point.

5.4 Conclusion

For the values of the physical constants considered in this paper and which were 
chosen in view of the physical context, the dissolution-growth problem (Pi), (P2) in 
space dimension two does not exhibit morphological instabilities, i.e. no fingering 
occurs. In both the cases that a homogeneous Neumann condition and a constant
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Dirichlet condition, are imposed on the upper boundary of the domain, the numerical 
interface converges to a constant profile as t increases whenever the surface tension 
<7 is positive. In '.he case of the Neumann boundary condition the concentration C 
converges to a  and the interface converges to a constant as t —► + 0 0  whereas in the 
case of a constant Dirichlet boundary condition the concentration converges to the 
travelling profile U and the interface converges to a constant which displaces itself 
at the constant velocity v; if the boundary value is larger than the saturation value 
a  then v > 0 and only growth occurs for t large enough while if the boundary value 
is smaller than the saturation value a  then v < 0 so that only dissolution occurs 
for large times. A final remark is that in the case that cr — 0 singular points may 
appear on the interface and propagate as t increases.

A ppendix A :
Estimation of the numerical error on the computation of the 

unit normal vector and of the curvature.

We assume for simplicity that the interface is parametrized in the form y = f ( x )  
with /  sufficiently smooth.

A l. The case of the method of Ikeda and Kobayashi.

The discrete interface Th is defined by

I \  =  {Pi = {xi, / i )  where /< =  /(x ;) , * =  1> •••»*}•

Moreover, we suppose that xt- > xt_i and we set h = max — x,_i). Then the
*e{2,...,/}

following result holds.

P ro p o s itio n  1 : Let Pi and Ki be respectively the unit normal vector and the 
curvature o f the interface y = f {x )  at a point P{. Let Uh,i be the approximate unit 
normal vector defined by (29) and Kh,i the approximate curvature defined by (30). 
Then

\ \ u i - u h,i\\ = 0 ( h )  and \Ki -  K h,i\ =  0 ( h ) .

Proof :

We have

1 (  /»-n ~  fi-1  \
= 7----------------- rrïTÏÏ Xi+1 ~ *’_1

[l I ( ̂ *+1 ~ Ì 1 \ 1 / ̂^x.+i -  x,_i y
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By Taylor expansion up to order 1 for / ,  we have f x =  _  ft 1 +  0  (h), where
Z t-f 1 *ci— 1

/x =  fx(xi)- Hence we have that

= -/«

i1 + /: 1
+ O (i).

Thus we get 

From (30) we obtain

K h,i =

|£- -  % | |  =  0 ( h ) .

c,--i — — zi||z»+i — æ*—11

2 [(^»-l Xj)(fi+l fi)  (̂ -t-H x i)( fi- l  />)] (43)

fj+l — f i - 1
^  1 X i+1 -  Xi_!

I 4 . f& k l---- f i .\  l + f l î ^ l ---- Î i \
^  \^Xi+l - X i J  X T  ^ X t_! -  Xi)

Using Taylor expansion up to order 2 for / ,  we get

/ « i  =  fi  +  (* ¡± 1  -  x , ) f ,  + i ï i È l p i ) ! / , ,  +  o  ( i s) , 

where the derivatives f x and f xx are taken at X;. Thus we have

(Xi_! -  Xi)(fi+i -  fi) -  (Xi+X -  X;)(/;_! -  fi)

j i ®*-1 ®*)(®»+i ®»)(®*+i ®t—i)y** "f" o  (j^) ’

1/2

(44)

Remark that (x;_i — xj)(x;+i — x^)(x;+i — x.-.x) < 0 , and thus using (44) and expan­
sions for f x in the expression of Kh,i, we deduce that

K h,i =

Thus we have

~ f xx + 0 (h ) /*

[ 1 + ( / x + o  (M) 2] 372 (x + f i r +  ̂ ^

\K{ — Kh,i\ = O (h ) .

R e m a rk  : For a constant discretisation step, i.e Xi — x ^  =  h for all i =  2,..., I ,  we 
have the following improved estimation for the normal vector : \\i>i — i7^|| = 0  (h2) .

A2. The case of the method of Roosen and Taylor.

The discrete interface is defined by

I \  =  {[-P», P»+i] where Pi =  (x;, /,)  with /,• =  /(x ,) , for i = 1 ,...,I  } .

We also suppose that x,- > xv_i and we set h = max (x; — x;_i). Then the fol- 

lowing result holds
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P ro p o s itio n  2  : Let U{ and K{ be respectively the unit normal vector and the 
curvature of the interface y = / ( ^ )  at & point Pi. Let vhi+\ be the approximate 

unit normal vector associated to the edge [ P i ,P t-+1], defined by (32) and K h i + 1 the 

approximate curvature associated to [Pt-, defined, by (33). Then

P ro o f  :

We have

I»7*- ¿ V f  ill =  0 ( h ) ,

K h,i+i = - ( K i  + K i+1)+  0{h)

vh,i+h =

. / ‘+.1__ Îl

[(*<+i -  *i)2 + ( / i+. -  m 1' 2
_________ t̂+l _______

[(xi+1 -  X; ) 2 +  ( / i+1 -  f i )2)1/2

(1  + f i )
2 \ l /2

/* ) + O (h).

Thus we obtain
\Wi -  vKi+i\\ = 0  (h).

Next we compute the approximation order for the computation of the curvature. In 
order to simplify computations, we assume that x» — x;_x =  h for i =  2 ,
We set

Vh,i+L-Vhti-1

( f w  -  fi)U i -  f i - i )  + h?

[{/i+x -  A)2 +  fc2]I/2 U  -  f i - 1)! +

By Taylor expansion up to order 4 for / ,  we have

f i ± i  — f i  i  h f x  +  y / ï i  ±  ^ f i - f z x  +  2 5 / 4 ®  +  0  ( / l 5 )

where all /  derivatives are taken at x;. Then equation (45) becomes

[i + f î  + i > m U h . - \ f L )  + o(h* j\

where

with

d± =  (1  +  f x ) 1 ^ 2 [l i  h ai +  h2 a2 i  h3 Û3 -f O (fr4)] 1

fXX  f i x  4" 2 f x f i x_ __ f x f x x  _ _  s f x f z x  +  4 / * *

“ ‘ - i + / r  a 2 _  i  + Æ
a3 —

6 (1  +  / 2 )

(45)
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Using Taylor expansion of (1  + x ) 1/f2 up to order three, we get

¿i =  (1 +  fir112 [ l  T  f a ,  +  £ ( ! « ;  -  c)
i y d 11!*1! — a3 “  | ° l )  +  O (A-4 )] ■

Then we obtain

= 1 "  T ( T + 7 J F  + 0  ^ " ) '

Moreover we get

^  ~  \ T T c — J  “ 2 (T T JT) + 0 { -h >'

and

P{Pi+1 \ = h(l + f l f ! 2 + O (V ) .

Thus =  • 7̂~' ~Xj 2 \3/2 + ^  (M anc  ̂ with the definition of £,• j in Section 3.2,
\ pa

we obtain
P iP j+ i, W T J I W

= - « T T ^  +  ° W -
| P i P i+ a | ^  +

2

In a same way, we have

=  iU i +  Offc)- (46)

*.i+. ^ = r  =  i * i+i +  0  ( f t ) .  ( 4 7 )

Thus, in view of (46) and (47) we obtain

Jrw +i =  i  ( *  + * « )  + 0 (A).

Appendix B :
Approximate curvature of the new points introduced in the 

case of the method of Ikeda and Kobayashi.

The aim of this part is to justify the procedure described in section 3.1 which allows
to introduce a new vertex with non-zero mean curvature, when the segment

m  ;+i] is too long. We show that the approximate curvature K  at point Pi+i
K '  4- K ‘ 2satisfies K  ~  —!—^ ^  where K{ and -fiT.+i denote the approximate curvatures
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P'P-respectively at P; and P;+i. More precisely, if we put h =  we have the fol­
lowing result.

P ro p o s itio n  3 : Let Ki and iT,-+i be the approximate curvatures respectively at 
points P{ and Pi+i defined by (30). Let the point determined as in Section

3.1 and K  the corresponding approximate curvature at Pt+i defined by (30) as well. 
Then

K  = ±{Ki + K i+1) + 0 ( h 2) .

P ro o f  :

The notations that we use here are those of Figure 2. We assume that Ki ^  0 and 
Ki+ 1 ^  0. Let Oj be the center of Cj for / =  i , i  +  1 and O the center of the circle 

circumscribed about the triangle (PtP,+iP»+i)- We suppose that the line (Oj, C\+i) 
is oriented so that

OiNi =  with I = i , i  + l  and O P i + 1 =
Ki 2 K

By construction of the center O there exists a > 0 such that

M P i+i = & OPi+i ,

where M  is the midpoint of [PjPt+i] and since

M Pi+ L =  OPi+, — O M  = £>pj+i ( l  -  ( l  -  h } K ^ )  

we deduce that

M P i+1 =  0 ? i+i ( l  -  ( l  -  h‘K * ) l/1)

- £
= j K  + O (k‘) ( 48)

In the same way expressing that M Ni =  OiNi — 0 /M , we have for I — i , i  + 1

W N i =  ~-Ki  +  O fh4) . ( 49)

Since M P i+i — ^ (M N i  +  MNi+i)  we deduce from (48) and (49) that

R  = Ki + K i+1 + Q ̂
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Figure 1 .  Discrete unit normal and discrete mean curvature at vertex Pt- for the method of

Ikeda & Kobayashi.

Figure  2. Introduction of a new point as midpoint of [N{) iVt+i], using an idea due to T.I.

Seidman.

F igure  3. The case of a flipped segment. 
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Figure 4. Convergence to a stationary solution in the case of a homogeneous Neumann 

boundary condition on the upper boundary, with Co =  0 , a  =  30Sq, cr =  0 .

F ig u re  5. Time evolution of the interface in the case of a homogeneous Neumann boundary

condition on the upper boundary, with C q =  0, a =  30, a =  305q.
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t=10s

t=1700s
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t=4200s

Figure 6. The concentration in the whole domain at different times in the case of the homogeneous Neumann boundary condition, with C0 = 0, a = 305o, a = 30. The dark shaded regions are regions with maximum concentration.

Figure 7. Time evolution of the mean concentration on the interface in the case of ahomogeneous Neumann boundary condition on the upper boundary, with <r = 30 and a = 30So.
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Figure 8. Influence of the time step on the conservation of / (1 — C) dxdy in the case of a
Jcithomogeneous Neumann boundary condition, with a = 30Sq and a = 30.

Figure 9. Error in L2-norm for the computation of the interfaces in the case of a homogeneous Neumann boundary condition with a = 30So and a — 30, when multiplying anddividing the time steps by 2.
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Figure 10. Error in L2-norm between the algorithms based on the method of Ikeda &: 

Kobayashi and the method of Roosen & Taylor for the computation of the interface.

F ig u r e  11. Error in L2-norm between the algorithms based on the method of Ikeda &

Kobayashi and the method of Roosen & Taylor for the computation of the concentration on the

interface.
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Figure 12.

Figure 13.

Time evolution of the interface in the case of a homogeneous Neumann boundary 

condition, with Cq — 0, c  =  30, a  =  30So-

Time evolution of the interface in the case of a homogeneous Neumann boundary 

condition, with Cq = 0, a = 30, a = 30Sq.
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Figure 14. Time evolution of the interface in the case of a Dirichlet boundary condition 

g =  0 on the upper boundary, with Co =  <7 , cr =  30, a  =  305q.

Figure 1 5 .  Time evolution of — t>c(*)| in the case of a Dirichlet boundary condition g =  0  

on the upper boundary, with Co =  g) cr =  30, a  =  305q.
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Figure 16. Time evolution of the mean concentration on the interface in the case of a 

Dirichlet boundary condition g = 0 on the upper boundary, with Cq = g, a  =  30, a  =  30Sq.

F ig u re  17. Time evolution of the interface in the case of a Dirichlet boundary condition

g = a on the upper boundary, with C q =  p, a =  30, a  =  305q.
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F igure  18. Time evolution of the interface in the case of a Dirichlet boundary condition 

g =  2 a  on the upper boundary, with Co =  g, <? =  30, a  =  305q.

F igure  1 9 .  The case of zero surface tension : time evolution of the interface in the case of a 

Dirichlet boundary condition g — 0  on the upper boundary, with Co =  <7 , cr — 0 , a  =  30Sq.
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DEUXIEME PARTIE

Semi-continuité supérieure pour des 

modèles de champ de phase
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A singularly perturbed phase field 
m odel : upper-semicontinuity of the  

attractor

C. DUPAIXH and D. HILHORST^1)
(x) Laboratoire d’Analyse Numérique, CNRS et Université Paris-Sud, 91405

Orsay, France

A b s tra c t .  We consider a singularly perturbed phase field model for the 
Cahn-Hilliard and the viscous Cahn-Hilliard equations and we prove that 
the maximal attractor associated to this model is upper-semicontinuous.

R ésu m é, Nous considérons un modèle de transition de phase qui est une 
pertubation singulière des équations de Cahn-Hilliard visqueuse et de Cahn- 
Hilliard et nous montrons que l’attracteur maximal de ce modèle est semi- 
continu supérieurement.

AM S : 35K50, 35B25

K ey w ords : System of second order, nonlinear parabolic equations, maxi­
mal attractor, upper-semicontinuity
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A singularly perturbed phase field model 
Upper-semicontinuity of the attractor

by
C. D upaix  and  D. H ilh o rs t

Laboratoire d’Analyse Numérique, CNRS et Université Paris-Sud, 
Bâtiment 425, 91405 Orsay, France

1 Introduction

In this paper, we consider a phase field model as well as boundary value problems 
for two limiting equations, namely the viscous Cahn-Hilliard and the Cahn-Hilliard 
equations. All three problems possess a global attractor and our concern is the 
upper-semicontinuity of the global attractor. More precisely, these problems have 
the following form. The phase field model which we consider [1], [2 ] is a coupled 
system for an order parameter <p and the temperature u , namely

(.PF)

S<pt =  A ip — g(tp) + u in fi x ZR+,

eut + <ft = Au in Cl x IR+,

<p =  u =  0 on dO x IR+,

(p(x, 0 ) =  <po(x) , u(x, 0 ) =  uo(a;) æ Ç fi,

(1.1)

(1.2)

where fI is an open bounded set of IRn (n < 3) with smooth boundary dfi, (<¿>05^ 0) £ 
( i 2(fi))2. We assume that the function g has the form

2p— 1

d(s ) = a2p-i > 0 , p >  2 .
3=1

In the physical case g(s) = sz — s [2 ].
The problem for the viscous Cahn-Hilliard equation which has been introduced by 
A. Novick-Cohen [1 1 ] is obtained by setting e =  0 in Problem (PF) and substitut­
ing equation (1 .1 ) into equation (1 .2 ) : one then obtains a problem for the single 
unknown function <p, namely

(V C H )

' <pt +  A (Ay> — g(ip) — S(pt) =  0 in fi x IR+, 

ip =  A (p =  0 on dO, x ZR+,

k <p(x, 0 ) =  (po(x) x £ Cl.
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The problem for the Cahn-Hilliard equation is obtained by setting e = 8 =  0 in 
Problem (PF) and substituting equation (1.1) into equation ( 1 .2 ). One obtains

(pt -f A (Ay> — g(y>)) = 0 in fi x ZR+,

(C H ) < (p =  A y> =  0 on dCl x IR+,

<£>(z,0 ) =  yjoi1) z € ii.

In [13], Stoth considers Problem (PF) on a finite time interval in the case that 
g is a cubic function. In the case that e =  8, she proves that as t  [ 0 , the solution 
(<pe,u e) of problem (PF) converges to a pair (<p,u) where (p satisfies Problem (CH) 
and u = —Atp +  g{<p)-

Elliott and Kostin [6 ] and Elliott and Stuart [7] prove continuity properties of 
the attractor of Problem (VCH).

This paper is organized as follows. In Section 2 , we recall existence and unique­
ness results for the solutions of the problems (PF), (VCH) and (CH) as well as results 
concerning the attractors associated to the corresponding semigroups. In Section
3 we derive time independent estimates, uniform with respect to the parameters e 
and 8, for the solution of Problem (PF). Finally we prove in Section 4 the upper- 
semicontinuity of the attractor of Problem (PF) in the space H 2(fl) x L2(fl), first 
at (e, £) =  (0 , 8) with 8 > 0 arbitrary and then with e = 8 at e =  0 . Furthermore an 
immediate consequence of the proofs is the upper-semicontinuity of the attractor of 
the viscous Cahn-Hilliard equation in the space H 2(fi) at 8 =  0 , which was already 
proven by Elliott and Stuart [7]. Our methods of proof are partly inspired from 
methods due to Hale and Raugel [8 ] and Debussche [3].

The results proven in this paper will be extended to the case of Neumann and 
periodic boundary conditions by Dupaix, Hilhorst and Lauren$ot [4] and to the case 
that g is a logarithmic function by C. Dupaix [5]. The authors also plan to consider 
the general case where the nonlinear function g involves a maximal monotone oper­
ator.

A cknow ledgem en t. The authors wish to thank A. Debussche, I. Kostin and Ph. 
Lauren got for many inspiring discussions.

2 Preliminaries

In this section we introduce some notations used in this paper and recall existence 
and uniqueness results as well as results about the existence of a global attractor 
for the three problems (PF), (VCH) and (CH).

To begin with we recall some properties of the polynomial function g which will 
be useful in what follows.

(i) There exists a constant Ci such that
3

9{s)s > - a 2p- i s 2p — Ci for all s £ 2R. (2 .1)
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(ii) For every 77 > 0 , there exists a constant C2 =  C2(-q) such that

l<K5)| ^  77a 2P-i-s2p + C2 for all s G IR. (2.2)

(iii) There exists a positive constant C3 such that

g (s) > —C3 for all s 6  ZR. (2 .3 )

In the sequel we will use the scalar product and the norm in £T- 1(ft) =  (#¿($"2)) . 
For w G H ~1(Cl) we define

-0 =  iVto

as the unique solution in i?£(ft) of the problem

{
—A ̂  =  tw in the sense of distributions in ii,

=  0 on dft.

Then if v, to G I f -1  (ft) and if i}> — N v , £ =  TVto

(u,w)K_1(n) = j  Vj>V£dx,

and

I M I f r - i ( n )  =  Jn m 1**-

Finally we present known results about the problems (PF), (VCH) and (CH). To 
begin with, we recall results of Brochet, Chen and Hilhorst [l] about Problem (PF).

T h eo rem  2 . 1  For any ((po,Uo) G (L2(Cl))2, Problem (PF) has a unique solution 
(<yc& ,u tS) which satisfies

e  £ “  ( o , T ; ( i 2( n ) ) ! )  n ^ i o . T K ^ i i i ) ) 2 ) ,»>■* s  i» (qt )

for all T  > 0 ,  where Q t  := f t  x  ( 0 ,  T ) and

(v'e,u's) <= C (¿J(fi))2) .

Moreover

{<p's,u 's) G (C°°(ft x (0 ,+ o o ) ) \

and the mapping

Spfit) : (v>0,w0)'--- ► (¥>**(*),tiei(t))

zs Lipschitz continuous on (£ 2(ft) ) 2 /o r all t > 0 and (‘S,p/ ( i ) ) i>0 is 0  semigroup on 

( I 2(ft))2.
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For the maximal attractor of the phase field problem we have that

T h eo rem  2 . 2  The semigroup (Sp/ ( i ) ) t>0 associated, with Problem (PF) possesses 

in (L2(fl) ) 2 a maximal attractor A.cS that is connected. Moreover A.eS is bounded in 

(Cm ( f i ) ) ’ for all m e  IN.

The following result [7] holds about the well-posedness of Problem (VCH).

T h eo rem  2.3 For any ipo G Problem (VCH) has a unique solution
satisfying

(0 , T; I 2(fi)) f) I 2(0 , T ; #¿{ 1})) fl L*’ (Qt )

for all T  > 0 , where Qx := il x (0 ,T ), and

<ps EC( l R+;L2(fi)).

Moreover

<p s e  c°° ( n  x ( o , + o o ) ) ,

and the mapping

Svch(t) : <P0 '— > <pS(t) 

is continuous on L 2{Cl) for all t > 0 and (5'vc/l( i ) ) t>0 is a semigroup on L2(fl).

Next we give a result about the existence of a global attractor for the viscous 
Cahn-Hilliard problem.

T h eo rem  2.4 The semigroup (Svch{t))t>0 associated with Problem (VCH) pos­
sesses in L 2(Cl) a maximal attractor A.s that is connected. Moreover A.s is bounded 
in Cm(fi) for all m  G IN.

Finally, the well-posedness and the existence of a maximal attractor for Problem 
(CH) follows from Temam [14] and Marion [1 0 ].

T h eo rem  2.5 For any <po £ L 2(fl), Problem (CH) has a unique solution <p satis­
fying

V 6  L°° (0 , T; ¿ 2(fi)) f | £ 2(0, T; H 2(Ü) f | H ^ t l ) )  f | L » {Q T)

for all T  > 0 , where Qx := ii x (0 ,T ), and

< p e c  ( m +',L2( n j ) .

Moreover

ip G C°° (ci x (0, +oo)j ,

and the mapping 5c/l(i) : <p0 1— ► ¥>{t) is continuous on L 2(Ct) for all t > 0 and 
{Sch{t))t>0 is a semigroup on L2(f2).
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T heorem  2.6 The semigroup {Sch(t))t>0 associated with Problem (CH) possesses 

in L2(ft) a maximal attractor A  that is connected. Moreover A  is bounded in Cm(fi) 
for all m  £ IN.

3 Time uniform a priori estimates

The main purpose of this section is twofold : show the existence of an absorbing set 
in H 3(Cl) x 5 rl(fi) which does not depend on the small parameters e and £; obtain 
strong enough estimates in order to be able to prove the convergence of orbits.
In what follows we suppose that

(0  (po.tio) € L2(n) x L 2(n). (3.i)

(it) 0 < e < 1, 0 < i  < 1. (3.2)

A natural function to consider [1], [9] is the enthalpy vcS = eucS +  ipeS. We also 
use the notation v£ =  euo +  <po.

The first result is the following.

L em m a 3.1 There exist positive constants a and b such that the function veS = 
eueS -f ipcS satisfies

¿ll^ei(0lli*(n) +  11^(011^-1(0) ^ (^Ibolliajn) +  IKIIff-i(n)) e~at +  b

for all t >  0.

P roo f. We rewrite (1.2) as

v f  = A u 's,

multiply this equation by N (veS) and integrate on ft to obtain

[  v ? N (v cS)dx = í  Au ^ N ív '^ d x ,  
J n J n

that is

j  -  (A N (vc6))t N(v 's)dx =  J^ueSA N {v eS)dx,

so that

~  /  \VN(vcS)\2dx +  /  ueSveSdx =  0,
2 dt in  in
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which we rewrite as

1 d
2 5 ll»r f ll!r-.( fl) +  / „  +  Va y-“ } i x  =  0.

By substituting the expression for ueS in (1.1) in the equality above and using (2.2) 
we obtain

\ f t  {^ll^l&in) + iMlff-nn)}

+ J ' {e(u'6)2 +  | V ^ | 2 +  <ptSg{<pt6)}dx  =  0,

which in view of (2.1), gives

+ |e (u efi)2 + \V<p's \2 + -fl2p-i(v,ei)2p|'^a; < C\

Using that e < 1 we deduce that

11^11/7-1(0) — ||i2(n) 

<  C5 ||iai0) +  I I^ I Il^ ci)) >

(3.3)

and thus since S < 1,

'lL»(0 ) llv ' I Lf f - i (n )S ^ & m  + b « " 2

<  C6 (e ||^e i||i;s(n) +  f  a2P- i  (p '* )  dx +  l ĵ ,

which we substitute in (3.3) to deduce that

\ j t { i | l * > r f l l i » ( n )  +  l l « - r f l l f f - . ( 0 ) }  +  Cr ( « l l ^ l t ( n )  +  <  0,.
The result of Lemma 3.1 then follows from applying Gronwall’s Lemma.

Corollary 3.2 There exist a positive constant Dq and a time to = ¿odl^oH^n)» lluo||jf-i(n)) 
such that

i||*>r f ( i ) l lL (o) +  ll” r f(‘ ) l l ir - . (n) <  -Do

for all t  > to-
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A key ingredient for the next estimates is the functional 

Vc(tp,u) = J  ̂ { ||V vp |2 +  G{<p) +

where G(s) =  f  g(r)dr. We show below that it is a Lyapunov functional for Prob- 
J o

lem (PF).

L em m a 3.3 For all t > 0 and all r > 0 , the solution ((peS,u cS) of Problem (PF) 
satisfies

^ V .( v *, ,u rf) ( i ) < 0 ,  (3.4)

and
rt+r

Ve(tpcS ,u eS)(t +  r) + 6 J^(<pf)2dxds

+ [ t+r [  \VucS\2dxds = Ve(ipeS,u eS)(t). 
Jt J n

(3.5)

P roo f. We have that 

d
=  j f  { ( - A V‘‘ +  v ?  +  eu‘l u‘,‘ } i x ,

in which we substitute (1 .2 ) to obtain 

d
- V c(<p's,u 's) = j n { ( -  Aip'6 + g(<peS) -  u 's) <pf -  \Vu 's \2}dx.

In turn substituting equation (1.1) gives

d_ 

dt
Vc{<p's,u 's) = jf  { - % ? ) ’ -  |Vuei|2}cZz < 0 ,

which gives (3.4). In order to obtain (3.5) one integrates the equality above between 
t and t + r.

The next step is to show that Ve(tpeS,u eS) enters an absorbing ball.

L em m a 3.4 There exist a positive constant D\ and a time t\ = iidl^oll^n)» lluo||ff-i(n)) 
such that

Vc(v 's,u 's)(t) < D1 for all t > t x.

Consequently (<̂ ei, ^/eueS) enters an absobing set o /iT 1(Cl) x L 2(Cl).
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P roof. We deduce from (3.3) and Corollary 3.2 that

J*+T Ve{<pcS,u 's){s)ds < C { r ,D 0)

for all t > t0 and r > 0. The result of the lemma then follows from (3.4) and the 
Uniform Gronwall Lemma.

In what follows we show a serie of auxiliary estimates which will allow to prove 
the existence of an absorbing set in H 3(Cl) x 5 ’1(fi) for the solution (<peS,u cS) of 
Problem (PF).

L em m a 3.5 For all r > 0 there exists a constant C =  C (r ) such that

< C for all t > t\. (3-6)

P ro o f. We multiply equation (1.1) by A <pcS and integrate by parts. This gives 

~ / n \V<p'*\2dx + Jn (A<p's) 2dx = j n {g(<pc£) A ^ s -  u 's A<p's}dx,

which we rewrite as, using also (2.3),

“  /  I V ^ I ^  +  i  /  ( a <p's) 2d z < C s  [  |V ^ | 2dx + \  f \Vu‘s\2dx. 
JL (Lt J n  I  Jn  vO I  Jn

Next we suppose that t > ti and integrate the inequality above between t and t + r. 
Using also the results of the lemmas 3.3 and 3.4, we deduce the result of Lemma 3.5.

Next we use the lemmas 3.5 to prove the existence of absorbing sets.

L em m a 3.6 There exist a positive constant D i , a time t 2 > ii and a positive 
constant e0 such that for all e £ (0,£o),

(i) J  { % t* ( 0 ) 2 +  \VueS(t)\2}dx < D 2 for all t > i 2; (3.7)

(ii) f  J^{\V<pf\2 + e ( u f ) 2} d x d s < D 2 .  (3.8)
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P roof. We differentiate equation (1.1) with respect to i, multiply the result by <pf
and integrate by parts to obtain

6 d 

2:
Ja (<p?)2dx +  \V<pf\2dx = {-g'(<pc£)(<p'ts)2 + u'tstpl'}dx. (3.9) 

Multiplying equation (1.2) by u\s and integrating by parts gives

j a { t ( « f ) 2 +  +  - -  l a |V urf| H t  =  0. (3.10)

Hence adding up (3.9) and (3.10) gives, in view of (2.3),

Hi +i {iv tf‘ iJ+
< c , i ( i f f ) 2i z  (3-11)

< C3 (^ Ja IV r f f d x  + c y f  Hlr-.(n)) ■

Furthermore, we deduce from (1.2) that

llv7ti |ljy-i(o) =  ||A ue5 — (3.12)

— 2|| A ^ l l f l - ^ n )  +  2 1| llir—i (n)

— 2||Vuei||̂ 2̂nj + 2 C e 2 \\uls \\L2 n̂ y

Using (3.12) we deduce from (3.11) that

2 Jn + |V-uei|2|dx + 2 Jo { ^ ^ l 2 +  e(uf ) 2} dx

< C  f  \V u 's\2dx,
J n

(3.13)

provided that e is small enough say, £ < e0. The result of the lemma then follows 
from (3.5), Lemma 3.4 and the Uniform Gronwall Lemma.

From now on, we suppose that e G (0,£o).

L em m a 3.7 There exists a positive constant D3 such that

11^(0 llf/-2(n) — -̂ 3 (3-14)

for all t > t 2.
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P ro o f. We multiply (1.1) by A a n d  integrate on f2. This gives

J  (A ipeS)2dx = J  + g(tpeS)AtpeS — u eiA<peS^dx,

which we integrate by parts to deduce that, using also (2.3),

i  l n ( A ^ f d x  <  C j n { % f ) J +  I V ^ 'I 2 +  \V u‘‘ \*}dx.

The result then follows from the lemmas 3.4 and 3.6.

In order to be able to show in Section 4 that the trajectories on the attractor 
are compact in C ([—T, T]; H 2(Ci)) for all T  > 0 , we need the following result which 
is a direct consequence of (3.8).

C o ro lla ry  3.8 There exist a time ¿2 an<f & positive constant C such that

ll^t5 |UJ(tj,+oo;iii(n)) +  V ^IK ^U ’te.+oo-.L^n)) < c. (3.15)

L em m a 3.9 There exist a time 13 > f2 and a positive constant D such that

(i) J  {¿>|Vip^ ( £ ) | 2 +  6 e(u f(t))2}dx < D for all t > i 3; (3.16)

(H) f>2 Jt Jn (v it)  dx < D.

P ro o f. We differentiate (1.1) with respect to i, multiply the resulting equation by 
tplf and integrate by parts to obtain

6 jf  ( r t f i x  + ~ f n I V t f f i x  =  -  j n g'(v ' ‘ )v 't‘ v ‘‘ dx +  Ja u f t f ' d x

£ ||j'(*>rf)||i-(n) ( / , ’ (^  (Va.)*dx) ’

+ / uftpgdx.
Jo

Using (3.14), we deduce that for all t > £2, 9 {<PcS) is bounded in so that

+  [  u fip ft dx.
Jo
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i T t l a  + J0 ‘fit uf dx +  Jn \V u f \ 2dx = 0. (3.18)

Adding up (3.17) and (3.18) and multiplying then by 8 gives

SJt In +  + S2 / „  ^ dx ~ C L  ( v f f i x .  (3.19)

Using also (3.15), we deduce Lemma 3.9 (i) by means of the Uniform Gronwall 
Lemma. Part (ii) of Lemma 3.9 then follows from integrating (3.19) in time be­
tween tz and t and letting t tends to -foo.

L em m a 3.10 There exists a positive constant D such that

11̂ ( 011^ ( 0 ) < ¿> for all t > t3.

Next we differentiate (1.2) with respect to £, multiply the result by u\s and integrate
by parts to deduce that

P roo f. The result of the Lemma follows from (1.1) together with (3.8), (3 .6 ) and 
(3.9).

One can summarize the previous results as follows

T h eo rem  3.11 There exist a time t$ and a positive constant D such that

(Olliri(n) +  \\*P (011^3(0) + v/^ l l u /W llz,2(n) ^  11^(011^(0) — ^  

for all t > i 3.

4 Upper-semicontinuity of the attractor

As it has been recalled in Section 2 , the semigroups corresponding to the problems 
(PF), (VCH) and (CH) possess global attractors that we denote by A eS, A ‘ and A  
respectively. In this section we prove the upper-semicontinuity of the attractor A eS 
first at e =  0 for 8 > 0 fixed and then at e = 8 =  0 . The upper-semicontinuity of 
the attractor A s of Problem (VCH) at 8 =  0 then follows.
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4.1 Upper-semicontinuity of the attractor for the perturbed 
viscous Cahn-Hilliard equation

To begin with we define a convenient embedding A os of A s into a product space. 
It follows from setting e = 0 in equations ( l . l ) - ( l .2 ) that the viscous Cahn-Hilliard 
equation can be written as the system

Stpf =  A<ps -  g(<ps) + us 

<Pt =  

which gives

—6Aus +  us =  —A <ps 4- g(<p6)-

This leads us to set

*4°5 =  {(<p,C6(-A<p + g(ip)) , <p G A 6 } ,

where the operator /  i— ► v =  £ s ( f )  is defined as the unique solution of the Dirichlet 
problem

( —SAv  +  v =  /  in Q 
[ » =  0 on dfl.

Next we prove the following result.

T h e o re m  4.1 Let 8 be a fixed constant. The attractor A cS is upper-semicontinuous 
at e = 0 , i.e. the Hausdorff semidistance d (A e6, A05) converges to zero as e J, 0 :

lim Sup I n f  (||y>ei -  ¥>*11̂ 2(0) +  IK* -  uf ||ia(n) ) * =  0.

P ro o f. Let tj > 0 be arbitrary and let (ip*6 G A eS be such that

I n f  ( | |^ ei — V’i ||iT2(n) +  IK* — t,£|li,2(n) ) 2 ^  ^ (A eS ,A ? S) — rj, (4.1)

and let (<peS( t) ,u e£(t))tem be the complete orbit in A eS such that

( ^ ( 0 ) , ^ ( 0 ) )  =  ( r S,v tS) .  (4.2)
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We deduce from the invariance of A ci and from Theorem 3.11 that there exists a 
positive constant C =  C(S) such that

llvJti (Ollfl'i(n) \/^llu t5(i )llL2(n) +  H ^W IIn^n) — ^  (4-3)

for all t £ IR. Since by Lemma 3.9 we also have that

ll^tt IU5(nx(-r,r)) < C for all T > 0 ,

we deduce from Simon [1 2 ] that the set {v5"5} g 0̂  ̂ is precompact in C ([—T, T]; jET2(fi))

for all T > 0 and that the set {v’t5}  ̂ is precompact in C ([—T, T]; £ 2(ii)) for all

T  > 0 . Therefore there exists a subsequence of {v5*5}  ̂which we denote again by

and a function ips belonging to {ip £ C;oc (ZR; H 2{Sl) ) , tpt € C/oc (ZR; £ 2(fl))} 
such that

V't  ----- > in C([-T,T]-,H2riH'0(n))

<pf ----- > ipf in C ([-T ,T ];£ 2(ii)), 4̂'4^

as £ I 0 . For n < 3 one has the embedding H 2(Cl) C L°°(Ct) [14, p. 44-47] so that 
as e J. 0

9{(PcS) ----- ► 9{.<PS) in C ([-T ,T ] ;L 2(n)). (4.5)

Therefore, using the parabolic equation

u “  =  i v f  -  +  g (r “ ), (4.6)

and (4.4) we deduce that as £ [ 0

u«« ----- . u‘ := 8<p\ -  A<ps + <?(/), (4.7)

in C ([—T, T]; L 2(Cl)). Moreover we deduce from (4.3) that g(ipeS) is bounded in 
L°°(—T ,T ; H q(Q,)) s o  that by (4.6) and (4.3), as e J. 0

A <peS ----  ̂ A ips weakly in L 2(—T ,T ; H q(CI)). (4-8)

Note that also by (4.3) , as e J. 0

ueS ---- >• u6 weakly in L 2(—T ,T ] H q(£1)). (4-9)
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Next we show that the function <ps satisfies Problem (VCH). It follows from (1.1)-
(1 .2 ) that the pair (<pcS,u c6) satisfies the integral equation

J  [ e u f  + <p?} X dx  =  {Sy \s -  A<pcS +  g(<peS)} A X dx,  (4.10)

for all t G (—T, T) and all X  G D(i2). Letting e |  0 in (4.10) we deduce in view of
(4.3), (4.4) and (4.5) that the function (ps satisfies the viscous Cahn-Hilliard equation

V‘ = A ( 6 9 ‘ - A V ‘ + ,(*>')) m C ( [ -T ,T \ - ,L ‘( a ) ) .  (4.11)

Also by (4.4) and (4.11), <ps =  A<ps — 0 on dfl x (—T, T).
Substituting (4.7) into (4.11) and then (4.11) into (4.7) and also using (4.9) we 
deduce that us satisfies

f - S A u s + us = -  A + g{tpf) in C ([-T , T]; £ 2(ii))
\ c (4*12)
|  us =  0 on dCl.

Next note that by (4.3), <ps G BC  (IR ; H 2(fl)) where BC stands for bounded con­
tinuous. Therefore, the complete trajectory (v,i(i))teiR belongs to A s . Since also 
us satisfies (4.12), it follows from the definition of A 05 that the pair (^ 5( i) ,u f(i)) 
belongs to A?s for each t € JR. Moreover, it follows from (4.4) and (4.7) that 
(tpcf veS) = (<pcS(0),ueS(0)) converges to (^ 5(0 ),iii (0 )) € .40i in H 2(tt) x L 2(Cl) as 
e J. 0 . This implies that

lim I n f  (||V>ei -  ^ llja (o )  + IK* -  |Il2(0) ) 2 =  0,
ei° ( ,̂v*)eXo< v v ' K '

which, in view of (4.1), implies that for each rj > 0

0 < lim sup d {A?6, 'A?'} < 7] .

Therefore

lim<Z (^AeS,.4*) =  0 .

4.2 Upper-semicontinuity of the attractor for the perturbed 
Cahn-Hilliard equation

As in the case of the viscous Cahn-Hilliard equation we define a convenient embed­
ding of A  into a product space, namely

•4° =  {(v>,-Ay> +  $(p)), <p G A  }.

In what follows we prove the following result.
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T h eo rem  4.2 The attractor A c := A cc is upper-semicontinuous at e — 0 , i.e. the 
Hausdorff semidistance d ( A e,A°) converges to zero as e  J. 0 :

lim Sup I n f  (\\<pe -  <p\\h(n) + \\u‘ -  u \\h(çi) )* =  °-
e l° (9*.«*)€>• (V,u)€^° v ' '

P ro o f. Let 77 > 0 be arbitrary and let G A c be such that

InS (IIV-1 -  VHIW» + II*' -  ” lll>(0))i £  d (A ‘’A °) -  v, (4.13)

and let ((pe( t) ,u c(t))t ]̂R be the complete orbit in A e such that

(<e‘(0),u-(0)) = ( r , V ) .  (4.14)

The invariance of A c together with Theorem 3.11 imply that there exists a positive 
constant C such that

W ilson) 11^(0lliri(n) — ^  (4.15)

for all t G IR- Since by the Corollary 3.8 we have that for all T > 0

l l^ t lU ^ - r .r ^ n ) )  +  ||^2(nx(-r,r)) < C> (4-16)

it follows from Simon [1 2 ] that there exists a subsequence of {v?e}ee(oeo) that we 
denote again by {yje} and a function ip G L°°(—T,T; i f 2(fi) f | H q(£1)) such that

<p' ----- > ip in C ( [ - r ,  T ] ; i f 2(ft)), (4.17)

as e J. 0 . In turn, (4.17) and (4.15) imply that as e j  0

div'*)  ----- ► ffiv) in C ( [ - T ,T ] ; i 2(i2)) and weakly in L 2( - T ,T ;  Hq(Q,)). (4.18)

Next we use that

ue -  e<p\ =  - A <PC +  9{<PC), (4.19)

to deduce from (4.15) and (4.17)-(4.18) that there exists u G C([—T, T]; L 2(Cl)) such 
that as £ J. 0

uc ----- > -u in C([—T, T]; i 2(f2)) and weakly in L2(—T, T; ^¿(fi)), (4.20)
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and

u = —A<p + g(<p) in C ([—T, T]; L 2($lfj and in L 2(—T, T; #¿(£2)). (4.21)

Also by (4.21), (4.18) and (4.20) one has the boundary condition Atp £ L 2(—T, T ; Hq(CI)). 
Since the pair (<peS ,u cS) satisfies the equation

eu‘t + <pet = A  (erf -  A<p' + g(<p' ) ) ,

it is clear that it satisfies as well the integral equation

T  T

[  f  (eu\ +  <f\)Xdxds = [  [  {e<pct — A(pc + g(<pe)} A X dxds ,  (4.22) 
J - t Jq J - t j o

for all X  £ T>(Q, x (—T, T)). Next we let e J. 0 in (4.22) and use (4.15), (4.17), (4.18) 
and (4.16) to deduce thet the function <p satisfies the Cahn-Hilliard equation

tpt +  A (A<p -  g(<p)) = 0,

in L 2(—T, T; i f 1(ii)), together with the boundary conditions <p =  Aip =  0.

Moreover it follows from (4.15) that <p £ BC (IR\ H 2(Cl)). Therefore, the com­
plete trajectory (<£>(i))teJR belongs to A. Since also u £ BC (IR-, L 2(Cl)) and satisfies
(4.21), it follows that the pair ((p(t),u(t)) £ ,4° for each t £ IR. Finally it follows 
from (4.17) and (4.20) that (ipc,v c) =  (</?e(0),ue(0)) converges to (y?(0),u(0)) in 
H 2{n) x  L 2(Cl) as e |  0.

This implies that

lim d ( A e,A°)  = 0 .

4.3 Upper-semicontinuity of the attractor for viscous Cahn- 
Hilliard equation in the limit of the Cahn-Hilliard equa­
tion

Up to now we have been interested in the upper-semicontinuity of the attractor of 
the phase field model. However, the upper-semicontinuity of the attractor of the 
viscous Cahn-Hilliard equation appears to be an immediate consequence of our esti­
mates, as we will see below. Note that this result has already been shown by Elliott 
and Stuart [7].

T h e o rem  4 .3  The attractor A s is upper-semicontinuous at 8 = 0, i.e. the Haus- 
dorff semidistance d (.4*,-4.) converges to zero as 6 J, 0 ;

lim Sup I n f  | | /  -  v?||jy2(n) =  0.
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Proof. Let 77 > 0 be arbitrary and let £ A s be such that
I n f  \\i>‘ -  i> | | jr i(0 ) >  d ( ^ ‘ . - 4 )  -  >), (4.23)

and let (<ps{t))t£R be the complete orbit in A? such that ^ (0) = i>s- The invariance 
of A s together with Theorem 3.11 imply that there exists a positive constant C such 
that

(0 lli?i(n) llv îOlljĤ o) + 11̂ ( 011^1(0) — C (4-24)
for all t £ IR.
Since by Corollary 3.9 we have that for all T  > 0

llv’t l|.LJ(—T,T¡H1(0)) < C , (4.25)
it follows as in section 4.2 that there exists a subsequence of that we
denote again by i 1̂ }  and a function ip £ L°°(—T, T; H 2(fl) f| #¿(17)) such that as 
8 |  0

J  - -- ► v  in C([-T,T];ff2(ii)), (4.26)

and that
g(<p6) --- ► g(ip) in C([—T,T]; i 2(fi)) and weakly in L 2(—T,T; £T (̂ii)). (4.27)

Next we use that
us -  8ipst = - A <p6 + g(ips), (4.28)

to deduce from (4.24), (4.26) and (4.27) that there exists u £ C([—T, T]; X2(iI)) such 
that as 8 I 0

us --- ► u in C([-T,T];£2(ft)) and weakly in L 2( - T , T ]  (4.29)

and
u = - A t p  + g(<p) in C ([-T, T]; L 2(f2)) and in L 2{ - T , T; flj(ii)). (4.30)

Furthermore, it follows from (4.30), (4.27) and (4.29) together with equality (4.28) 
that A ip £ L 2(—T, T ; H q(Q,)).
Next we note that <ps satisfies the integral equation

J  J  + (8<pst — Aips + g((p6) )A X } d x d s  = 0, (4-31)
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for aU X  € D(ii x (—T, T)), we let 8 J, 0 in (4.31) and use (4.24), (4.26), (4.27) 
and (4.25) to deduce that the function tp satisfies the Cahn-Hilliard equation in 
L2(—T ,T ; H l (il)), together with the boundary conditions of Problem (CH).

Moreover it follows from (4.24) that <p £ BC  (ZR; H 2(Cl)) so that the complete 
trajectory (<p(t))teR belongs to A. Finally (4.26) implies that ips =  ^ ( 0 )  converges 
to (/?(0) in H 2(Cl) as 8 j  0. This implies the result of Theorem 4.3.
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A singularly perturbed phase field 
m odel with a logarithmic nonlinearity
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A b s tra c t .  We consider a phase field model with a logarithmic nonlinearity. 
We prove that this model is well-posed and that it possesses a maximal at­
tractor that is upper-semicontinuous.

R é su m é . Nous considérons un modèle de champ de phase avec terme non 
linéaire de type logarithmique. Nous montrons que ce modèle possède une 
solution unique et qu’il admet un attracteur maximal. Nous prouvons que 
cet attracteur est semi-continu supérieurement.

A M S : 35K50, 35A05, 35B25

K ey  w ords : System of second order, nonlinear parabolic equations, maxi­
mal attractor, upper-semicontinuity
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A singularly perturbed phase field model with a 
logarithmic nonlinearity

by
C. D upaix

Laboratoire d’Analyse Numérique, CNRS et Université Paris-Sud 
Bâtiment 425, 91405 Orsay, France

1 Introduction

In this paper we consider a phase field model and a Cahn-Hilliard equation with a 
logarithmic nonlinearity. More precisely we consider the Dirichlet problem

(n

e(pt = A ip +  a<p — g((p) + u in fl x ZR+,

eut +  <Pt =  Au in Û x ZR+,

<p = u =  0 on dCl x ZR+,

V?(x, 0) =  (fo(x) , u(x,0) =  u0(x) x £ Q,

(1.1)

(1.2)

where fl is an open bounded set of ZR" with smooth boundary di), e 6 (0, M )  for 
some given constant M , a  > 1 is a given constant and the function g has the form

The function <p can be interpreted as an order parameter whereas the function u 
stands for the temperature. We suppose furthermore that (^oj^o) G /C x L 2(fi) 
where

K =  G L2(fî), —1 < < 1 a.e. in

Setting e = 0 and substituting equation (1.1) into equation (1.2), one obtains the 
Cahn-Hilliard equation for the single unknown function <p. This leads us to consider 
as well the Dirichlet problem

(ft +  A (A <p -f a<p — g{f))  =  0 in fi x IR+ ,

(P ) < <p =  A (p =  0 on dû  x ZR+ ,

9?(x,0 ) =  <po(x) x £ fi.

(1.3)

Elliott and Luckhaus [4] prove the existence and uniqueness of the solution of an 
extension of Problem (P) with a vector unknown. Debussche and Dettori [2] give 
an alternative proof for the existence and uniqueness of the solution of Problem (P) 
and show the existence of a maximal attractor of finite Hausdorff dimension.
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The purpose of this paper is twofold : (i) show that Problem (P e) is well-posed 
and possesses a maximal attractor A e in arbitrary space dimension; (ii) prove an 
upper-semicontinuity property for this attractor at e =  0 in the case that n < 3.

Following an idea of Debussche and Dettori [2] we consider the approximation 
of the function g

N  s 2 k + l

= (L4) 

and the boundary value problem (P^) that one obtains by replacing g by in 
Problem (P c).

In Section 2, we recall the precise results of [2] about Problem (P) and the results 
of Brochet, Chen and Hilhorst [1] about Problem (Pjy-).

In Section 3, we give a priori estimates which do not depend on N  for the solution 
pair of Problem (Pjy). Many of the estimates are also independent of e.

These estimates permit to establish in Section 4 the existence and uniqueness 
of the solution (<pe,u e) =  S e(t)(<po,uo) of Problem (P e) such that S e(t) satisfies 
the usual semigroup properties and such that for each t > 0, S e(t) is a continuous 
mapping from K x L z(Ct) into itself.

We prove the existence of a maximal attractor A e in Section 5.
The function pair (y>,v) = (<p, y/eu) satisfies the rescaled boundary value problem

£(pt =  A (p + aip — g(ip) +  -j=v in ii x IR+, (1.5)
v e

(PrC)
y/evt +(pt = -K=Av in fi x iZ2+, (1.6) 

ve
(p =  v =  0 on dfl  x ZR+,

v (p(x, 0) =  <po(x) , v(x,0) =  vo(*) := eu0(x ) x e  fl.

In Section 6, we reformulate the results of the sections 3, 4 and 5 in terms of 
the function pair (tp,v), namely we state an existence and uniqueness result for the 
solution of Problem (Pre) and a result about the existence of a maximal attractor 
A . W e  then show the upper-semicontinuity of A '  at e =  0.

This paper extends similar results obtained by Dupaix, Hilhorst and Laurengot 
[3] and Brochet, Chen and Hilhorst [1] in the case that the nonlinear function g is 
a polynomial function.

A cknow led g em en t. The author is greatly indebted to D. Hilhorst for her 
guidance and encouragements.

2 Preliminaries

In this section we introduce some notations used in this paper and recall results 
of Debussche and Dettori [2] about the existence and uniqueness of the solution of 
Problem (P) and about the existence of a maximal attractor of Problem (P). We
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then give a theorem due to Brochet, Chen and Hilhorst [1] about the existence and 
uniqueness of a smooth solution of Problem (Pjv).

In the sequel we will use the scalar product and the norm in H ~l (Cl) =  (# ¿ (0 ))  . 
For w € 5 ’-1(ii) we define

■0 =  Afw

as the unique solution in #¿(17) of the problem

{
—Aif> =  w in the sense of distributions in fi,

=  0 on dCl.

Then if v, w £ H ~1(Cl) and if =  N"v, £ = /Sw

(v,w )H_1{a)= I  VipVZdx,
J  0

and

M llr- .(0) =  /„  lv V f ¿x.

Finally we recall results about the Cahn-Hilliard Problem (P) and the phase field 
model (Pfr)-

T h e o re m  2.1 [2] For any (po £ K, Problem (P) has a unique solution ip satisfying

V € £“ (o, T; ¿’(fi)) f i £s(0, T; F J(f!))

for all T  > 0, and

VP 6 C (iR+; I 2(fi)) .

Moreover for all t > 0,

M 0IU ~(o) ^  1

and the set {x  £ fi, |<£>(ic,i)| =  1} has measure zero.
The mapping S(t)  : <po i— ► <̂ (t) ¿5 continuous on K endowed with the topology of 
L2(fi) for all t > 0 and (S(t))t>0 is a semigroup on K.

T h e o re m  2.2 [2] The semigroup (S(t)) t>0 associated with Problem (P) possesses 
in K a maximal attractor A  that is connected.
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Theorem  2.3 [1] For any (<po,uo) G (Z/2(fi))2, Problem (Pjy) has a unique solution 
(‘Ph ,V'n ) which satisfies

(v -k, u‘n) £ L~  ( o ,^ ; ( I 2(fi)) )̂ n i !(0 ,T ;(F o'(n ) ) ! ), v p  S L *(Q T)

for all T  > 0, where Q t  := 0  x (0, T) and

e c (™+; (£’(«))’) •

Moreover

{(Pn i un ) € (C~(i2 x (0,+oo)) ,

and the mapping

Sh(t) • (v?o>‘“ o) 1 ► ( ¥ ,w’( 0 > u w ' ( 0 )

¿5 Lipschitz continuous on (L2(Cl))2 for all t > 0 and (S'^-(i))t>0 is a semigroup on

(L2m 2.

3 Uniform a priori estim ates for the solutions of 
Problem  (P^)

The main purpose of this section is twofold : obtain uniform a priori estimates 
with respect to N  for the solutions of (Py); obtain uniform a priori estimates with 
respect to N  and e for these solutions. The first kind of estimates permits to prove 
results concerning the well-posedness of Problem (Pe) and the existence of a maximal 
attractor whereas the second kind is used to deduce the upper-semicontinuity of the 
attractor of Problem (Pre).
Problem (P/r) can be written as

T O

eipt =  A<p + aip -  gif(<p) +  u in ft x ZR+, (3.1)

eut + (fit =  Au  in ft x ZR+, (3.2)

<p =  u = 0 on dCl x IR+,

k <p(a;,0) =  ¥>o(®) > w(x,0) =  u0(x) x G ft, 

where is given by (1.4).

A key ingredient for the forthcoming estimates is the functional

v&(v,v) = fn {||V^p - + G„M +
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/ •«  N g2k-\-2

where G„(») = ji gN( r ) i r  = £  (2 t +  2)(2t +  t ) -

Note that if ip £ AC then Gjv(^) < G(y>) where G is defined by

r* +°° 52fc+ 2 1
G(s) =  £  g{r ) i r  = £  (M +  2)(2fc +  1) =  5  «1 +  .)M 1  + . )  +  ( ! -  . W 1  -  •))

We remark that 0 < G(s) < ln(2 ) and that g'(s) > 2 for all 5 £ ( — 1 , 1 ). Therefore

VS(*>,u)< V'(*>,u) := + +

In particular this implies that the estimates for which the right-hand-side only de­
pends on VJy^o^o) are uniform with respect to N.

We now prove a result that will be useful to deduce estimates for (<Px, y/eueN) in 
5 3 (ft) x £ 2(fi).

L em m a 3.1 Let (p,tt) £ (¿^(ft)  fl L2N+2(Slj) x I 2(i2). Then

l-Ho(n) ollu lli2(n) —  « a2|^l +  yiv'(v7»u )- (3-3)

P roof. We have that

N ,rt2fc+ 2

/n [ 2 24 2 24 ^  (2 fc +  2 )(2 fc +  1 )

Thus using the inequality

---- s H----- s > — a ,
2 24 -  2 ’

it follows that

L  { _ f  ̂  +  -  _ ^ a2 |f ii +  \  Ja GN(fp)dx, (3.4)

so that

V£(y>,u) ^ — ̂ a 2|ii| +  ^ ^  (lV ^ | 2 +

>  - | a 2| f i |  +  +  §  IM i i ,a (n ) '

97

<

i {
1

2
|v<£> 2 a 

~  2
+ G(v») +

e

2 }dx

Hi*( Ω ) + 11*11,1 (0 )
+ In(2)|Ω |.

L{
α

2
+ GN [ ψ ) \dx

+ [ ψ ) + ε ν? ) ■dx



3.1 Uniform estimates with respect to N

In this section we prove estimates for the solution of Problem (P They will per­
mit to prove the existence of solutions for Problem (P e) in Section 4.

Throughout this section, we assume that the initial functions (^o^o) satisfy 

(y>o,uo) € ( K f ) E i ( i l ) )  x L 2(i}).

Next we prove the following result.

L em m a 3 . 2  There exists a positive constant C such that for all T  > 0, that

Ik /v iO ll^o) +  11^(011^(0) ^  pr (ll^olli^n) +  lluo||r2(n)) exP ( ^ l r )  (3 ,5)

for all t £ (0 , T);

ll^wllL*(o,r;fl2(n)) “*■ e lltt^llL2(o,r:ir>(n))

Q (3-6)
+  ||Gjv(^)||L»(otr 5L»(n)) < C (||v>o||£a(n) +  IM ll^ n ))  exP ( ^ 2r )  •

P roo f. We multiply the equation (3.1) by \<peN, use the inequality

<Pn 9n {<Pn ) > Gn (<Pn )

multiply the equation (3.2) by eueN -f <Pn , and add the two resulting inequalities to 
obtain

l i t  f 0 { ( ^ ) 2 (£Uw +  V N Y }dx + 2  j n +  £\ ^ un \2 +  -GN(<Pff)^dx

< |  Ja {<*{Vn Y  +  (PNuN }dx

~ « I ̂ N̂dx + h I (eV,tfT + ~

-  ?  fa  & N )2dx + ¿ 2  I (£Un  + <PN)2dx,

la + (eu‘N + ^}dx’
so that using Gronwall’s Lemma we deduce that

f n { ( ^ ( O )2 +  («“ *(*) +  V>jf{t))2}dx < Jq (<pI + («*o +  v̂ o)2) dx exp

< Jn (S^o +  2e2utydx  exp ( ^ r * )  •
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Moreover we have that

Jn {(<r?̂ ) 2 +  (un )2} ^ x =  ji^Ar)2 + ^2 (eUN + Vn  — {Pn )2^ x

~  f n { ( 1 + ~2) ( ^ n )2 +  eUN +  V n ? } * *

-  ~ ir Jn { ( ^ ) 2 +  (£Un  +  P n )2} ^ !

and thus

Jn {{Vn Y  +  K r ) 2}da: Jn (3¥>o +  2e2u 20)dxexp  ( ^ r < )

in {v 20 + ul ) dxexv  ( “ T r )  

which implies (3.5). (3.6) then follows from integrating (3.7) in time.

L em m a 3.3 There exists a positive constant C such that For all T  > 0

Jo ^uN)ds ^  C (llv’ollLi(n) +  IkoHi^n)) exP (^ 2 ^ )  • ( -̂®)

P roof. We have that

£  Vi{<e’m u‘„ )is  < £  f a {iVv-SrP + Gn (v ’n ) + s(u’Nf } d x i s ,  

which in view of (3.6) implies (3.8).

The result below expresses the fact that Vfc is a Lyapunov functional for Problem

(Pir)-

L em m a 3.4 For all t > 0 and all r > 0; the solution (<Pw,ucN) of Problem (Pfr) 
satisfies

(i) ¿ ^ ( y ^ u S r X i )  < 0 ; (3.9)

(ii) Vfr((pcN,u cN)(t + r) +  jf { e ( ^ ) 2 +  IVuJrl2}dxds (3.10)

=  “ #)(*)•
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P roof. We multiply the equation (3.1) by (<Px)t, the equation (3.2) by ucN, integrate 
by parts and add the resulting equations to obtain

~ ^ n {{Pn ûn ) ~ Ja {—£((iî )t — (3-11)

which implies (3.9) and (3.10).

L em m a 3.5 There exists a positive constant C such that for all T  > 0 

/  /  t U ( f N ) 2t +  \VueN\2}dxds

t c  \  (3>12)
< O (HiPolfcto) +  ||« o ||i,(0) +  T )  exp ( - j T j  .

P ro o f. We multiply the equation (3.11) by t to obtain

+ /„‘{'(*>»« + F u t f j d x i t  <

Next we integrate this inequality in time between r  and t using also (3.8) and (3.10) 
to deduce that

s : l s [e(<p'N)t +  \V ueN\2}dxds

 ̂ /  ^N (<PNtu N)(s )^ s + r'VN(<P N iu N){r )Jo

< c  ( l l ¥ > o | l i a ( n )  +  I I « o | I l » ( o ) )  e x p  (¿pT) +  rV£(<p0,u0 ) ,

and let then r J, 0 to deduce (3.12) in view of (3.3).

L em m a 3.6 There exists a positive constant C such that for all r > 0

fa { * ( * M ? ( ‘ )  +  | V « 5 , ( t ) | J } < t e  <  c  ( i  +  i )  W ( < p o , « . )  + 1 )  ( 3 . 1 3 )

for all t > r  > 0.

P ro o f. We differentiate equation (3.1) with respect to i, multiply the result by 
(v?^-)t, integrate by parts and use the monotonicity of gx  to obtain

\ j t  L  ^ ^ * dx + h  -  Jn {a ( ^ ) t  +  K rM pJr)*}dz- (3-14)
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Multiplying equation (3.2) by (ucN)t and integrating by parts gives

Jn {£(uw)t +  ('f’tf + 2 ~dt Jo \ ^ Ux \ 2dx = (3.15)

Hence adding up (3.14) and (3.15) we obtain

2 Ja Jn { ^ ( v 7̂ )*!2 + e(uN )l}^x
r , (3-16)

-  a i ^ N^ dx-

Using (3.10) and (3.3) we can apply the Uniform Gronwall’s Lemma to (3.16) and 
thus we deduce that for ail 5 > 0

Jn {£(¥?/v)t2(i +  s ) +  +  -s)|2}dx < C ^ (V^((p0,u 0) +  1) (3.17)

for ail t > 0, which completes the proof of (3.13).

L em m a 3.7 There exists a positive constant C such that for all T  > 0 and all 
t 6 (0,T)

i 2 J  {£( ^ ) t  (0  +  |V u^(f) |2}<te
r  (3.18)

< ? ( T + !) (llv»o||i,(n) +  ll«o|fc(0) +  T)  exp ( - j T j  .

P roo f. Multiplying inequality (3.16) by t2 we deduce that 

\ j J /  { e ( ^ ) t  +  |V u ^ |2}<Zx < t 2a  (<p‘N)2tdx +  t {e(y>^)^ +  | V ^ | 2}dx.

Next we integrate between r and t , using also (3.12) and (3.13)

V j n {e(<ii?N)t(i ) +  I 12 (*)}<**

t 2

-  I  fa  {*’“ (**)? +  f (£^ > ‘ +  +  J  I  { '(* * )?  W  +  |Vu*w|s(r)} ix

< C , ( ?  +  1) (||(Po||J»(0) +  ||«.Hi,(n) +  T)  exp ( ^ r )  +  C2 + i )  (1 +  V ^ , u a) ) . 

The result of Lemma 3.7 then follows from letting r j  0.

L em m a 3.8 There exists a positive constant C such that for all r > 0

f  (AtpeN(t))2dx < C ( - +  -)(Vx(<p0,u 0) + 1) for all t > r > 0. (3.19)
J n r e
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Proof. We multiply equation (3.1) by A <peN and integrate by parts. This gives using 
the monotonicity of

i  jf (A v ‘Nf i x  < ^ ! n (v 'N) \ i z  + C Ja { |V ^ „ |2 +  (3.20)

and (3.19) follows from (3.13), (3.3) and (3.10).

L em m a 3.9 For all r > 0 there exists a positive constant C = C(r) such that

J ^ T j  (A <p‘N)2dx < C(VZ(<p0,u 0) +  1) (3.21)

< c ( y c(ipo,'U'o) + 1)

for all t >  0.

P roof. We integrate (3.20) between t and t +  r and use (3.3) and (3.10) to deduce
(3.21).

L em m a 3.10 There exists a positive constant C such that for all T  > 0 and all 
t 6 (0,T)

t2 gjf((peN(t))dx < +  I)2 (llv?o||£2(n) +  lltxo|lx,2(n) -^) exP ( ^ 2  * (^-22) 

P roof. We multiply the equation (3.1) by gff(<pjf) to obtain

Jn Sn ^ n ) ^

<  f  { - P j v ( ^ ) I v ^ I 2 +  ^ n S n ^ n )  +  u n 9n(<Pn) -  e(<P‘N )t9N(<p‘N ) } d x  (3 33)

~ C In +  +  e2^ ) t } dx + \ J n 9n (Vn )<Ix ,

Multiplying (3.23) by t 2, we deduce (3.22) from (3.5) and (3.18).

L em m a 3.11 For all r > 0 there exists a positive constant C = C (r) such that

It I n 9N ^ N ) dxds ^  G ( ^ (V ’OjUo) +  1) (3.24)

<  C ( V e(yo,uo) +  1)

for all t >  0.

P roo f. The result follows from integrating (3.23) in view of (3.3) and (3.10).
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[  ^  C(~ +  ~) ( ^ ( ^ 0 ,^ 0) +  1) for all t > r  > 0. (3.25)
Jo r e

L em m a 3.12 There exists a constant C such that for all r > 0

Proof. (3.25) is a direct consequence of inequality (3.23) together with (3.13), (3.10) 
and (3.3).

3.2 Time uniform estimates

In this section we prove time uniform estimates, independent on N , for the solution 
of Problem (P#). The bounded absorbing sets depending on e will permit to prove 
the existence of a maximal attractor of Problem (P e) whereas the bounded absorb­
ing sets that do not depend on e will be used to prove the upper-semicontinuity of 
the attractor.

Throughout this section we suppose that (f^oj^o) G /C x L 2(fi).

A natural function to consider [l] is the enthalpy zeN =  eueN +  tpcN. We also use 
the notation zg =  e^o +  ‘¿’o- We first prove the following result.

L em m a 3.13 There exist positive constants a and b that do not depend on N  and 
e such that the function zcN =  eucN +  <peN satisfies

£l l ^ ( i ) | | i J(n) +  IkMOIIff-itn) ^  (ellVolli^o) +  IkSlllr-i(n)) e"ai +  b

for all t >  0.

P roof. We rewrite (3.2) as

{zlf)t — A u eN,

multiply this equation by Af ( z cN) and integrate on 0  to obtain

[  (■z^ ) t ’̂ "(2:5/)<̂:c =  f  A u ^ A f(zcj])dx,
J 0 Jo

that is

f  — (A /S (z ‘N))t J\f(zcN)dx = f  u cNA A f(zeN)dx ,
J 0 Jo

so that

\ j i  Jn + Jn ^ z - Nix  =  0,
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which, we rewrite as

1 d 

2 H " Z

By substituting the expression for ucN in (3.1) in the equality above we obtain, using 
also (1.4),

2 {^IVArlli^n) +  Hz^llH-i(n)}

+ Jn j e(uw)2 + lv^kl2 — ai<PN)2 + + 1 =

Then using the inequality —ax2 > — | x 4 — | a 2, we deduce that

>-hjn (pm4** - ¿‘»’mi+fo ( w  + i(^r + t , ^ r ) dx

> -fu lfil + /o + i (^ )4 + £  + ̂  +

>  — g a 2| f i |  +  J  Gpf^tptf'jdx.

Thus we deduce from (3.26) that

+  / n { «  +  |V ^ |*  -  \ W ’„ f  +  G „(V’„ )} ix  < | a ’ |ii|.

Since

e llv,^lli*(n) +  llzArllir-i(n) — +  Ci|lzArllL2(n)

< 2 « *C 'IK Ik (0) + *(« + 2C1) llyS,f 1(n),

using that e < M  we deduce that

z Wv n Wv w  +  llz^llir-i(n) < °2 ( e11̂ 5/11x5(0) +  \  j a GN{ip'N)dx)  ,

(3.26)

which we substitute in (3.27) using also (3.4) to deduce that

ld_

2 dt

(3.27)
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The result of Lemma 3.13 then follows from applying Gronwall’s Lemma.

A direct consequence of Lemma 3.13 is the following result.

C oro lla ry  3.14 There exist a positive constant Do which does not depend on N  
and e and a time to =  ^ o ( | | | | 2,2(n)> ||e‘u'°lii3-—i(n)) such that

ell¥?/vWII.£,2(n) llzArMlljy-i(n) — ^o

for all t >  to-

The next step is to show that Vfi(<pcN,u cN) enters an absorbing ball which neither 
depends on N  nor on e.

L em m a 3.15 There exist a time t\ = ¿ldl^ollx^n), Ik^olljj-^n)) and a positive 
constant Di which neither depend on N  nor on t  such that

(i) V&(ip‘N,u eN)(t) < Di for all t > t i \  (3.28)

(ii) | |^ ( i ) l lH 0>(n) +  e lltiAr(i )lli»(n) ^  A  for all t ^ ^ - ,  (3.29)

(Hi) J  | e ( ^ ) t  +  \VucN \2}dxds < X^. (3.30)

P roo f. We deduce from (3.27) and Corollary 3.14 that

f t + r

for all t > ¿o and r > 0. (3.28) then follows from (3.9) and the Uniform Gronwall 
Lemma. (3.29) then follows from Lemma 3.1, whereas (3.30) is a direct consequence 
of (3.10).

The next result gives the existence of a bounded absorbing set for ueN in Hq(Q,).

L em m a 3.16 There exist a positive constant D 2 , a time t2 > t\ that do not depend 
on N  and e and there exists a positive constant £0 such that for all e € (0,£o),

(i) J^{e(<peN)l(t) + \V ueN(t)\2}dx < D2 for all t > t2', (3.31)

(ii) Jt { | V ( ^ ) t |2 +  c(ueN)l}dxds < D2. (3.32)
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P ro o f. Our starting point is the inequality (3.16). Its right hand side can be 
estim ated as follows

^  y  l l ( v > w ) t l l i r - i ( n )  +  \  J0 l v ( ^ ) t | 2 ^ -  ( 3 - 3 3 )

Using equation (3.2) we deduce that

II (v?5sr)t 11^—i (o) =  — E(tiw)t|l.ff-i(n)

—  2 | | +  ^ e 2 11 I I £ r — i ( n )
— 2 ||V u ^ ||L2̂ nj +  2C£2||(ii5v)t ||£2 n̂j.

Thus in view of (3.33), we deduce from (3.16) that

h i t  / „  { ' ( * * ) ?  +  l v “ V I J } < f c  + \ J  { | v < * W  +  * ( « « ? } ■ * *
(3.34)

| V u eN\2dx,

provided e is small enough. (3.31) then follows from (3.30), (3.34) and the Uniform 
Gronwall’s Lemma. In order to show (3.32) we integrate (3.34) between i 2 and t 
and let then t f +oo.

We prove in the next Lemma a similar result as in Lemma 3.16 but for arbitrarily 
large values of e.

L em m a 3 .17 There exist a positive constant Z)2 that do not depend on N  and e 
such that

Jn {e( ^ ) t  (0  +  |V u ^ (i) |2}^® < ^  fo r all t > t 2. (3.35)

P ro o f. Using (3.30), we can apply the Uniform Gronwall’s Lemma to inequality 
(3.16) which implies (3.35).

The next lemma implies the existence of an absorbing set for <peN in H 2(il).

L em m a 3.18 There exists a positive constant Ds which does not depend on N  
and e such that fo r all e £ (0,£o)

f  (A tpeN(t))2dx < Dz fo r all t > f2. (3.36)
Jo

< a 2
Jc

106

dxft( Ψ ν .a IJCl



P roof. This is a direct consequence of inequality (3.20) in view of (3.31) and Lemma 
3.15.

L em m a 3.19 There exists a positive constant D$ which does not depend on N  
and e such that

f  (A<pcN)2dx < —  f or aU t > f2> (3.37)
J n £

P roof. Here again we use inequality (3.20) and deduce (3.37) from (3.35) and 
Lemma 3.15.

The next result gives the existence of an absorbing set for the nonlinear term 
9n {<Pn ) in Problem (P^).

L em m a 3.20 There exists a positive constant D4 which does not depend on N  
and £ such that for all e £ (0,£o)

f  9n {<Pn (^))(̂ x ^  -^4 for all t > t2. (3.38)
J n

P roo f. (3.38) follows from (3.23), (3.31) and Lemma 3.15.

One can summarize the previous results concerning the existence of bounded 
absorbing sets for the solutions of Problem (P'fr) as follows.

T h eo rem  3.21 There exist a positive constant C , and a time £2 which do not 
depend on N  and e and a positive constant £0 such that for all e £ (0,£o)

(i) ElK^ArMOIIi^n) +  llv?̂ -(0lljT2(n) +  ||fll.iv(v:,/i(*))llL*(n) +  llu5/(011^(0) — ^

for all t > ¿2!

(**) j t {iKv t̂llfl n̂) + ell(tt̂ )t|li*(n)} -  C.

Finally for e > 0 arbitray the following result holds.

T h eo re m  3.22 There exists a positive constant C , times t\ and £2 > £i> which do 
not depend on N  such that for all e > 0

(*) 11^(011^1(0) +  lluw(0lli,i(n) — ^  f or aH t

(ii) ||v5̂ (^)Hir2(n) +  11^(011^(0) — f or * — ^2-

107



4 Well-posedness of Problem (P £)

In this section, we prove the existence of a unique solution of Problem (P e) that we 
construct as the limit as N  — ► + 0 0  of the solution {<PN,ueN) of Problem (P&-).

More precisely we prove the following result 

T h eo rem  4.1
(i)  For every (^oj^o) € K, x L 2(tt), Problem (P e) has a unique solution (tpc,u e) 
which satisfies

( ,> * ,« •)  6 L ~  (0 ,T -,(L *(n )f)  nL*(0,T; (H}(n) f )  

for all T  > 0, and

( ^ , u e) € c ( i R + ; ( l 2(fi))2) .

( ii)  If(<po,uo) G ( J C n ^ W )  x L 2(n) then

(¥>*,««) € {0,T;Hi(Sl)  x L 2(n))  n  L2(0, T; f f 2(£l) x H'0(Sl)) 

for all T  > 0, and

(<pe,u e) G C (2 R + ;^ ( i i )  x L 2(Clfj .

Moreover for all t > 0, ||¥>e(i)IU80(fi) < 1; the set {x G Cl, \ipe(x ,t)\  =  1} has measure 
zero and the mapping S e(t ) : (<po,uo) 1— > (<pe( t) ,u e(t)) is Lipschitz continuous 
on K  x L 2(Cl) endowed with the topology of (L2(0 ))2. Furthermore [Se(t))t>0 is a 
semigroup on K  x L 2(Cl).

4.1 Continuity of the semigroup - Uniqueness of the solution

Let (y?o5̂ o) and (tpo,uo) be pairs of initial functions in K x L 2(il) and let (<pc,u e) and 
(ipe,u e) denote the corresponding solutions of Problem (P £). We set (jf =  <pc — i(>e 
and we = uc — uc, then

e<j>\ =  +  a<f>e — (g(tpe) — g(i>c)) + we in Cl x IR+, (4.1)

ew\ +  4>et =  A w c in ii x 2R+, (4.2)

(f>e =  we =  0 on dfl x IR+,

<fie(x,0) = <f>0(x) , iwe(x,0) = io0(x) x G ii,
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where we have introduced the notations <f>o := <po — -0o and Wo := Uo — ûo- 
We multiply the equation (4.1) by j4>c, the equation (4.2) by ewc + <f>c, integrate by 
parts and add the resulting equations using the monotonicity of the function g to 
obtain

2 Tt Jn + (£t"‘ +  P f } i x

L 1 + ' H V w ' f i x + \  /„ +«’>'}*=.
and thus proceeding as in the proof of Lemma 3.2 it follows that

\~Èi Jn {(^e)2 + (ew* + 4>e)2}dx < ^ 2  JQ {(^')2 + (EU,e + <f>e)2}dx.

Using the Gronwall’s Lemma we then deduce that

f 0 { (P i* ))2 +  +  <f>c(t))2}dx < exp {<£* +  (£w0 +  <j>o)2}dx

for all t > 0. This in particular implies that

f n { ( ^ ( i ) ) 2 + (wc{ t ) f ) d x  < exp {<f>l +  w%}dx (4.3)

for all t > 0. Thus we deduce on one hand the uniqueness for Problem (P c) and on 
the other hand the Lipschitz continuity of the mapping Se(i) from K x L2(Cl) into 
itself.

4.2 Existence of solutions

Throughout this section, we suppose that e is a fixed positive constant.
We first consider initial functions (<po,uo) that belong to (KÇ]Hq(CI)) x L2(€l). 

It follows from the lemmas 3.1, 3.4, 3.9 and 3.11 that for all T  > 0 there exists a 
positive constant C =  C(T, ||y>o||#i(n)> l l ^ o ( n ) )  which does not depend on N  such 
that

ll¥Ĵ (í )IUoo(o,2,;ír01(n)) < C  (4-4)

llA<̂ I U ’ (<?r ) ^  c  (4-5) 

IM v ^ ) IU ’ (<?r ) ^  G (4-6)

1 1 ^ ( 0  IU°°(o,r;¿ 2 (n)) <  -̂ß (4 .7)

II^IIl»(o,t -,h ¡(o )) <  O  (4.8)

ll(^)tlU*(<?T) <  ^  (4.9)
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where Q j  =  f2 x (0, T). Thus we deduce that there exist a subsequence of {(< ^5 'uAr)}.w>o 
that we denote again by an(l functions (tpe,u e) which satisfy

( * > > • )  €  L2 ( o , T ;  ( # ( < ! )  n f l o ' ( f t ) )  x  Bi(Sl))

such that as N  — ► + 0 0

<peN -------1 <pc weakly in L2(QT), (4-10)

weakly in L2(QT), (4-11)

9n (Vn ) -------“ 9* weakly in L 2(QT), (4.12)

ucN -------k ue weakly in £ 2(0, T; # ¿ (0 )) ,  (4-13)

(Pw)t -------1 Vt weakly in L2(QT). (4.14)

Letting N  — ► + 0 0  in the equation (3.1) we deduce from (4.14), (4.11), (4.10),
(4.12) and (4.13) that the pair (<pe,u e) satisfies

etpl =  A (pe +  cupe — g* + ue in L 2(Qx). (4-15)

Next we let N  — ► + 0 0  in the equation (3.2). Therefore we remark that using 
(4.8) and (4.9) together with equation (3.2) it follows that

IKu5/')t||£a(o,riH-»(n)) < C, (4-16)

and thus

(ueN)t -------“• u\ weakly in £ 2(0,T; f f -1(ii)) (4-17)

as N  — ► + 0 0 . From equation (3.2) we deduce that

<*(«Sr)t +  ( t f r ) t  , X)  = -  ( V ^  , V * ) ,

for all X  £ Z>((0,T) x fi) where ( ,) denote the duality product between V '((0 ,T )  x 
ii) and T>((0, T) x fi), and let then N  — ► + 0 0  to deduce from (4.17), (4.14) and
(4.13) that

eut +  y>t =  Aw in Z2(0, T; i? _1(ii)). (4-18)

Moreover using Simon [6], (4.4), (4.9) on one hand and (4.7), (4.16) on the other 
hand imply that as N  — > + 0 0

<Pn  ----- ► V* in C([0,T];L2(il)), (4.19)

ueN ----- ► ue in C([0,r];fT_1(ii)),
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so that in particular y c(x, 0 ) = ¡po and u£( z , 0 ) = uo in Cl.
Note also that using for example Temam [7, Lemma 3.2, p.69], it follows from (4 .8 ) 
and (4.16) that

ue 6 C([0 , T ] ; £ 2(n)).

Hence the functions ipc and ue satisfy

etpl = A p c + a<pe -  g* + u e in L2(QT) 

euet +<p't = A u '  in L 2(0,T; H ~1(Cl))

<pc = uc =  0 on dCl x (0 , T)

<p£(x ,0 ) =  ipo, uc(x, 0 ) = u0 in fi.

(4.20)

(4.21)

We now prove that g* = g(<pc) and the set {z £ fi, |<̂ c(x ,i) | =  1 } has measure 
zero and that (ipeyuc) £ C(ZR+; # ¿ (0 )  x L 2($l)).

The usual monotonicity argument does allow here to prove that g* =  g(<pc). 
Therefore we adapt a method introduced by Debussche and Dettori [2 ]. For an 
arbitrary small 77 £ (0 , 1 ) and for all t £ (0 , T), we set

= ix e lv&0M)l > 1 -v}>

and we denote by |E ^(i) | its measure namely |£ ^ ( i ) |  =  M eas(E^( t))  = f dx
Je?  (0

and by X ^ ( t )  its characteristic function :

f l i f  x e E " ( t )
X ? ( x , t ) = \  v K )

I 0 elsewhere .

Using Lemma 3.12 we deduce that

— & for all i 6  (0 ,T) ,  (4-22)

and thus
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which implies that

< ( 0
1/2

<
C(T,s)

f  ( l - ^ 1
(4.23)

Thus letting N  — ► +oo we deduce from (4.19), (4.23) and Fatou’s Lemma that

\Erj(t)\ = f  Xv(t)dx < [  lim in fX ^ ( t)d x  < lim i n f  f  X ^ (t)d x  
Jn Jo n —»+oo n —>+oo Jn v

< lim i n f  |.E ^(i)|
~  n —.+<» ■ ' I  11 w l

< 4C

where |^ ,,(i) | and Xn{t) respectively stand for the measure of the set 
{x £ Cl, \ipe(x ,t)\ > 1  — 7/} and for its characteristic function. Letting then 77 J, 0, it 
follows th a t for all t 6 (0,T )

M ea s{x  € Cl, |y>e(x ,t) | > 1} =  0. (4-24)

Next we show that (4.19) and (4.24) implies that as N  — ► + 0 0 , for all t £ (0,T )

9N(<PN(t)) ----- > $(¥>'(*)) a.e. in Cl. (4.25)

It follows respectively from (4.19) and (4.24) that for all t £ (0,T )  and almost every 
x £ Cl

<PeN(x ,t)  ----- ► <p'(x,t), (4.26)

\<p'(x,t)\ < 1. (4.27)

Fix (x ,t)  £ Cl x (0 ,T ) such th at <peN(x,t) converges to ipe(x,t) as N  — ► + 0 0 . It 
follows from (4.27) th at there exists a positive constant No such that for all N  > N 0,

IvJrOM)! < 1> (4-28)

Then we have that

M p w (* .0 )  ~  9(<Pe(x,t))\ < \gN(<p'N(x,t)) -  g(<p'N(x,t))\ (4.29) 

+ l$(Pw(*»0) ~ 9{<P'{x,t))\.

It follows from (4.26), (4.27) and (4.28) that the right term  of the right-hand-side 
of (4.29) converges to zero as N  — > + 0 0 . Concerning the remaining term  we have 
that

W * * 0 M ) ) 0) = 2  (4'3°)
k= N + 1 +  1
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In view of (4.28), there exists a £ (0,1) such that |<̂rv (z ,f)| < 1 — a. Hence for 
M  > N  +  1

M I t \2fe-j-l . M

E
\rN) | ^  1 V"' I..« |2fc+l

2k + i  1 -  2 W T Z  2^ 1^1
fc=AT+l LK +  1 k=N+ 1

M

-  2n \~ Z  £  ( l - a ) 2,t+1
fc=i\T+l

.  (1 -  a)2"+ 3 1 -  (1 -  a)2(M-^)
^  27V+ 3  l - ( l - a ) J •

Thus letting M  — > +oo we deduce that

| tf? { f N ? M  , . (1 ~  ° ) iiVW 1 
i i r + 1  2 fc +  l  2 ^  +  3  l - ( l - a ) 2 ’

which implies in view of (4.30) that gff((peN(x , i)) converges to <7( ^ ( 2;, i)) as N  — ► 
+oo. This completes the proof of (4.25).

Then using Lions [5, Lemma 1.3, p.12] it follows from (4.6) and (4.25) that

9n (<Pn ) -------“ 9{<PC) weakly in L 2(Sl x (0,T)). (4.31)

so that g* =  g(<pc).

Next we prove that ((pc,u c) E C([0, T]; jffJ(fi) x Z2(fi)). Since we already know 
that (<pc,u c) E C([0,T]; (L2(ii))2), it only remains to prove that <pc E C([0,T]; #¿(£2)). 
We deduce from Lemma 3.8 that for all 6 > 0 there exists a positive constant 
C =  C(6) which does not depend on N  and such that

11̂ ( 011^ ( 0 ) < <? for all i > £ > 0.

Thus using (4.9), this in particular implies that the limiting function <pe is in 
C([£, T]; H q(CI)) for all 8 > 0 so that in turn <pe £ C((0, T]; iT^(fi)).

In what follows we first prove that G(<pc) £ C([0,T]; I? ( fl)), then that the map­
ping t i— ► V(ipc,u c)(t) is continuous on [0, T]. Since the functions and ue are 
continuous from [0,T] into L 2(ti), this implies that <pc £ C([0, T]; H q(Q,)).

Let t 0 £ [0, T] and let tk be a sequence in [0, T] converging to t0 as k — ► +oo. We 
deduce using (4.19) and (4.24) that G(v?e(i*)) converges to G(<pc(to)) as k — ► +oo 
almost everywhere in fi, since also |G(y?e(ifc))| < ln(2) it follows that G(<pe{tk)) 
converges to G(<pc(to)) in Z-1(ii) as k — > +oo by the dominate convergence theorem.

Next we prove that t \— ► uC){t) is continuous at t = 0. We deduce from
the Lemma 3.4 that

V ( v ‘ , u ' ) ( t )  <  V ( ^ , u „ ) ,
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and thus

limsup V e((pe,u e)(t) < V'(<p0,uo). (4.32)

But since <pe € -£°°(0, T; Hq(CI)) f| C([0, T]; L 2(Cl)), we deduce using Temam [8, 
Lemma 1.4, p .263] that the function <pc is weakly continuous on [0,T] with val­
ues in H q(CI). Hence it follows that

V'(y>Q,uo) < liminf Ve(y>£,iie)(i),

which in view of (4.32) implies that

H m V ~ ( ^ . « * ) ( t )  =  V * ( y o , u < , ) >

and thus

^ ^ ( [ 0 , 7 ] ; ^ ) ) .  (4.33)

This conclude the existence part of Theorem 4.1 (ii).

In order to prove part (i) of Theorem 4.1, we consider initial functions 
((£>0 , 1*0) 6 JC x L 2(ft) and we define a sequence {(v?ofc,tiofc)}fc>1 such that (^ofc>̂ ofc) E 

(/Cfl-ffo(^)) x L2(U) for all k > 1 and (<pok,uok) ----- ► (^ 0 ,^ 0) in (L2(Cl))2 as

k — ► + 0 0 . Let (<fp,Up) and ((p',ucq) be two solutions of Problem (P e) with ini­
tial functions (<p0p,u 0p) and (<pog,Uog) respectively. We deduce from (4.3) that

f n {(Vp ~  ^ ) 2(*) +  K  “  u\)2{t)}dx < ^  exp { ( ^  -  <p'0q)2 +  (u'0p -  u lq)2}dx.

Thus {(<P%iu k)}k> 1 is a Cauchy sequence in C([0, T]; (£ 2(fi))2) and there exists 
(<fe,u e) G C([0, Tj; (L2(fi))2) such that as k — >• + 0 0

(V i,« i) ----- ► in C ([0 ,T ];( i2(ii))2). (4.34)

It remains to show that (ipe,u e) satisfies Problem (P f). It follows from the uniform 
estimates with respect to N  of Section 3.1 and in particular the lemmas 3.2 and 
3.10 that

C ( C \
IKv’fc»‘ufc)llz,a(otr 5(^ (n ))2) -  ^2 ll(v>ofe,wofe)||(L2(n)p e x P \ ^ 2^ j  (4 -35 )

| |^ (¥ Jfc)IU«>(o,riL*(n)) < — (IKv’ofc^ofc)!!*!,» )̂)» +  V f ) ( T  +  l)exp  • (4.36)

Thus we deduce from (4.35) that as k — ► + 0 0

( r t , « i )  -------k (^% ^e) weakly in £ 2(0, T; ( i^ ( f t ) )2). (4.37)
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Moreover it follows from the existence proof above that for all i £ (0 , T) the set 
{x £ fi, \<pl(x,t)\ > 1 } has measure zero. By a similar proof as above, one can 
show as well that for all i £ (0 ,T ) the set {x  £ fi, |(^c(z ,i) | > 1} has measure zero. 
Therefore using again (4.34)

----- y 9((P') a-e 'm ^  anc  ̂ for all i £ (0 ,T ) as k — ► -foo. (4.38)

Next we prove that as k — > +oo

s(rf) -----* 9(v‘) in I-(0 ,T ; !'(«))•

To th a t purpose for arbitrarily small 77 G (0,1) and all t G (0 ,T ), we introduce the 
sets

E$(t) = { x e n ,  \<p'k(x ,t)\ > 1 -  77} , Ff{t) = n  \E { (0 ,

E„(t) = {® g n, |^£(M )| > i -  v},  Fv(t) = n \ E v(t),

and the associated functions Z* and defined by

1 if x S ij(t)

o if x e E$(t),

« , ( , .» ) = {  l i f i e F '’(i)
\  0 if X  G £„(i).

Note th a t using similar technics as before one can deduce from (4.36) that 

Next we have that for all t G (0 , T)

fo 19{<Pk{t)) ~ 0(ve(O)M* < Jn ^(PkMX1 -  zv(x̂ ))\dx

+  /  \9(Vk{t ))Z n(x ' t ) ~  9W c{i))Zr,{x,t) d x+  [  \g(<p'(t))(l -  Z n(x,t))\dx  (4.40) 
J n 1 J n

:= (£ )  + (F) + (G),

and we estim ate the three terms of the right-hand-side of (4.40) : (E), (F) and (G) 
as follows.
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(E) < {j„S2̂ ’i.)dx} {/.I1 

< £ip |£,‘(t)|1/! 

<_2cm

We deduce from (4.36) and (4.39) that

(4.41)

Next we show that (F) tends to zero as k — ► +oo. Using (4.34) and (4.38), we 
deduce that for all t € ( 0 , T) as k — ► -foo

a-e- in

Moreover <7 is a non-decreasing function and

\ g ( r i ( t ) ) Z ^ , t )I <  s ( l  -  , )  =  i / n  ,

and thus for all t £ (0 , T)

----- ► 9 (<p'{t))Zr,(x ,t)  in X ^il), (4.42)

as k — ► +oo by the dominate convergence theorem.

Finally we consider the term (G) =  /  | (̂<^e(i))(l — Z J x ,  t))\dx. We deduce from
J n

(4.36), (4.38) and Fatou’s Lemma that

*110(^(0)11*00 <  C(T)  for all t £ (0 ,T), 

and proceeding as for the term (E), we deduce that

(<?)< (4.43)

‘ n  (  V )

Thus we deduce from (4.40), (4.41), (4.42) and (4.43) that for all t £ ( 0 , T)

fl'Cv’fcW) ----- f dir'i*))  in Xx(ii) as fc — ► +oo. (4.44)

Note that the pair (ipi>uk) satisfies the integral equations

: f  f  ipekX tdxdt = — f  f  V<pkV X d xd t  +  f  (  {a<pk — g(<pek) + uek} Xdxdt  
Jo Jn Jo Jn Jo Jn

-£

f  (  {eu\  +  <pck} X tdxdt =  f  f  V u iV X d x d t  
Jo Jn Jo */n
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for all X  £ X>((0,T )  x fi). Letting k — ► +co in this equations we deduce from
(4.34), (4.37) and (4.44) that the pair (<pe,uc) satisfies Problem ( P £) in D*((0, T) xft) 
together with the initial and boundary conditions of Problem (P e).

5 Existence of a maximal attractor of Problem

i n
The aim of this section is twofold : prove that the nonliear term g(<pe) enters an 
absorbing set of L2(Cl) and show the existence of a maximal attractor for Problem
(P ‘). 

5.1 Existence of a bounded absorbing set for the nonlinear 
term of Problem (P £)

We show in this section that the nonlinear term g(<pc) enters an absorbing set of 
L2(Q). More precisely we prove the following result.

L em m a 5.1 There exist a positive constant D and a time ¿2 which do not depend 
on e and a positive constant £0 such that for all e £ (0, £0 )

Ib M O )!!!* ^ )  ^  D f ° r al11 ^  *2 . (5 .1 )

P roof. We deduce from Theorem 3.21 that there exist a positive constant C and a 
time ¿2 which do not depend on N  and e and a positive constant £0 such that for 
all £ £ (0, £0) the solution (<Pn ,Un ) of Problem (Pjy-) satisfies

11^(011^(0) +  IM pw (0)IIl*(o) - 0  for ^ 1 - iz; (5-2) 

Jt IK^wOtllji^o) — (5 .3 )

Thus we deduce that there exists a subsequence of { whi ch we denote again 
by {^/sr} and a function ipc such that for all T > t 2,

&  ----- ► in C([fa,T ] ;f f01(n)),

as N  — > + 0 0 . In particular

tpeN ----- ► 1pc a.e. in Cl and for all t £ (t2 ,T )  (5-4)

as N  — ► + 0 0 . Note that by Section 4.2 the function <pe satisfies Problem ( P e).
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Moreover it follows from (5 .2 ) that on one hand there exists a function g* such 
that

9n {Vn ) -------“■ 9* in L°°(t2,+oo-,L2(Cl)) weak * (5.5)

as N  — ► +oo, and

lls*(0ll£*(n) <  C for all t > t2, (5.6)

and on the other hand that for all 77 £ (0 , 1 ) the measure of the set 
:=  {x £ Cl, |v ^ (x ,i) | > 1 — v} satisfies

I W ) r  <  for all t > t 2. (5.7)

E ( v}
k= 0

We denote by X ^'e(t) the characteristic function of this set. Using (5.4), (5.7) and 
Fatou’s Lemma it follows th a t for all t £ (t 2,T ) and all 77 £ (0 , 1 )

\E ^c(t)\ = j  X ^ i x ^ d x  < N K™+oo™ ij^X% e(x ,t)d x  =

<  . AC

In2F t5)’
where \En'e(t)\ denote the measure of the set {x £ ii, \<pe(x ,t) \ > 1 — 77} and X '1’c(x ,t)  
its characteristic function. Letting then 77 J, 0 it follows th a t for all t £ (t2,T )

M ea s{x  £ Cl, |<pe(x ,i) | > 1} =  0 . (5.8)

Using (5.4) and (5.8) one can show in a similar way as it has been done in Section 
4.2 th a t as N  — ► + 0 0

g N ^ x )  ----- ► 9(<PC) a-e- in Cl and for all t £ (t2,T ). (5.9)

Using Lions [5, Lemma 1.3, p .1 2 ] it follows from (5.2) and (5.9) that for all T  > t2 
as N  — ► + 0 0

9n {<Pn ) -------- g{<pc) weakly in L 2(t2,T ; L 2(Cl)),

which in view of (5.5) implies that g* = g(tpe). Therefore (5.1) then follows from 
(5.6).
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5.2 Existence of a maximal attractor

Next we prove the following result about the existence of a maximal attractor for 
Problem (P e).

T h eo rem  5.2 The semigroup {Se(t))t>0 associated with Problem (P e) maps K x 
L2(Cl) into itself. It possesses in K x L2(CF) a maximal attractor A e that is connected. 
Moreover A e is bounded in (/C f | x £ rl(ii).

P roof. It follows from the existence theorem that the semigroup {Se(i)}t>0 is 
continuous on K x L2(Cl). From Theorem 3.22 (i) we deduce that the solution 
(<pe(t) ,u e(t)) of Problem (P e) enters an absorbing ball B  of H q(CI) x L2(Cl) for 
t > t \ .  Moreover Theorem 3.22 (ii) implies that there exists a time ¿2 > such that 
S e(t)B  is bounded in H 2(Cl) x JET1(Cl) and thus relatively compact in Hi (Cl) x L 2(Cl) 
for all t >  ¿2- The existence of the maximal attractor then follows from Temam [7, 
Theorem 1.1, p.23].

6 Upper-semicontinuity of the attractor

From Theorem 4.1 we deduce that Problem (Pre) is well-posed and that the mapping 
: ( )  i— ► ((pc( t) ,v e(t)) where (<pe,v e) is the solution of Problem (Pre) with 

initial functions (950,^ 0)) defines a continuous semigroup on K  x L 2(Cl). Moreover it 
follows from Theorem 5.2 that the semigroup {‘S'r(0)'t>o possesses in K. x L 2(Cl) a 
maximal attractor A$.
Note that there exist simple one to one relations between the two semigroups S c(t) 
and S '( t)  and the two corresponding attractors, namely

We also introduce the set A 0 = A  x {0} and prove the following result.

T h eo rem  6.1 For Cl C IRn with n  < 3, the attractor A$ is upper-semicontinuous 
at e = 0, i.e. the Hausdorff semidistance d(A^.,A°) converges to zero as e j  0 ;

and

*-(0 Jj-4'•

lim Sup I n f  (||<pc -  ¥>11̂ 1(0) +  IMl£*(n) ) 2 =  0.
el° (Vl0)6A°
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P roof. Let 77 > 0 be arbitrary and let (̂ >e,ioe) £ A ‘ be such that

( / . n) L  ( i l r  ~ V’ll* i(n) + -  ■* { ■< 'A °) -  V- (S-1)

Let ve(t))t£]R be the complete orbit in A ‘ such that

(v ‘(0),v‘(0)) =  (p ,w " )  (6.2)

We deduce from the invariance of A*, from Theorem 3.21 and Lemma 5.1 that there 
exists a positive constant C which does not depend on e such that for all e £ (0 , eo)

V^ll 9̂4 (^) ll£,2(n) +  llv?e(0 ll.ff*(n) +  Il5r(¥?c(i)) llx,2(ri) — (6-3)

and

llve(0llffi(n) — Ce (6.4)

for all t £ JR. Moreover

ll¥’tllL*(-r,TiHi(n)) +  I I \\L*{-T,T-,L*(n)) <  C for all T > 0. (6.5)

Thus we deduce from Simon [6 ] that the set {‘/?e}e€(o eo) *s Precom Pact in 
C ([—T, T]; iT2_7 (i))) for all 7  £ (0 , 1] a*id all T > 0 and that the set {v*}e€(0eo) *s 
precompact in C ([—T, T]; £ 2(ii)) for all T  > 0 . Next we also use that if 7  £ (0 , 1 / 2 ) 
the embedding i f 2~7 (i}) C C(i2) holds [7, p. 44-47] to deduce that there exists 
a subsequence of {<pe}crf0<c0) which we denote again by {¥,e}ee(0eo) and a function 
tp€ L°° ( - T ,  T; (i?2( i i ) , 1 ^¿(il)))  such that as e 1 0

<f' ---- > if in C([-T,T);ff'(i)))f|C(S x [-T.T]). (6.6)

Moreover it follows from (6.4) that

v ' ----- ► 0 in C ( [ -T ,T ] ; I 2(ii)),

as t  I  0. Also note that if n < 3 and if 7  £ (0,1/2) then the embedding H 2~J(Cl) C 
C(fl) holds [7, p. 44-47]. Therefore we deduce that as e J, 0

<pe ----- >• <p in C ([-T ,T ] x fl). (6.7)

Next we show that as e |  0

d i f ' )  -------1 9(<P) weakly in L 2( - T ,  T; L 2(Sl)).
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The method of proof is similar to that of Section 4. Let ( G (0 , 1 ) be arbitrary small. 
For all t G IR, we introduce the sets

£|(i) = {* € ft, |</>e(x,0l > i -£}, Et(t) = { x e n ,  \<p{z,t)\ > i - £},
and we denote by \E^(t)\ and |-Ei(i)| their measures and by X£(t) and A^(t) the 
associated characteristic functions. It follows from (6.3) that for all t £ IR

1^(01 < , v  (6-8) 
W ( i ^ )

Then letting £ J, 0 we deduce that for all t € IR

M eas{x  £ ft, |</?e(x,£)| > 1} =  0 . (6.9)

Moreover we deduce from (6.7), (6 .8 ) together with Fatou’s Lemma that for all 
t e { - T , T )

|i?f(i)| =  f  X ((x ,t)dx  < lim inf [  X I(x ,t)d x  = lim in f |^ ( i ) |  < ----- -—rr-,
Jn «10 Jn «io 4 ^ 2  / 2 — £ \

so that letting £ |  0 it follows that for all t £ (—T, T)

M e a s { x £ f t ,  |</>(x,i)| > 1} =  0 . (6 .1 0 )

Thus using (6 .6 ), (6.9) and (6 .1 0 ) we deduce that for all t £ (—T, T)

g(<pe) ----- ► g(tp) a.e. in ft. (6 -1 1 )

It then follows from (6.3), (6 .1 1 ) and Lions [5, Lemma 1.3, p .12] that

9(<Pe) -------1 9{<p) weakly in L 2( - T ,  T; £ 2(ft)). (6 .1 2 )

Next we rewrite the parabolic equation (1.5) in the form

A<pc -  g(<pe) = er f  -  ot<p' -  ~^=ve,
y /l

and use (6.5), (6.3) and (6.4) to deduce that

||Ay?e ~ fl'(v:’e)IU2(_jir ;ffi(n)) < G

so that using also (6.3) and (6.12) it follows that as e J, 0

A <pc -  g(tpe) -------- A<p -  g(<p) weakly in L2( - T ,  T ; Hq(£1)) (6.13)
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and thus since <7(0 ) =  0, we deduce from (6.7) that <p satisfies the boundary condi­
tion A (p =  0.

Next we prove that the limiting function </? satisfies Problem (P). To that purpose 
we rewrite the equations (1.5) and (1.6) in the form

y /lvet + <p\ =  A ( - A <pe +  g(<pe) -  a<pc +  eipet ) ,

and remark that the pair (<pe,v e) satisfies the integral equation

T T/ t j u { V e v t + V7'}  X dx  =  J  ^ f^{ -A < p e + g(<pe) -  a<pe + £(pet } A X  dx (6.14)

for all X  € T>((0,T) x ii). Letting e J, 0 in (6.14), we deduce in view of (6.5), (6.13) 
and (6 .6 ) that the function <p satisfies the Calm-Hilliard equation

tpt +  A (A<p + a ip -  g((p)) = 0

in L 2(—T ,T ; H q(CI)), together with the boundary conditions <p =  A(p = 0 .
Next note that by (6.3) and (6 .1 0 ) <p € BC (IR; Hq(€1) f )K)  where BC stands 

for bounded continuous. Therefore, the complete trajectory (^(¿))te.R belongs to A. 
Moreover, it follows from (6 .6 ) that the pair (•0e,tue) =  (v?e(0 ) , ,ue(0 )) converges to 
(</?(0 ) , 0 ) G A 0 in Hq(Q,) x £ 2(fl) as e |  0 . This implies that

lim I n f  (IIi¡)e -  V-Il^n) + I K I i l * (n) ) ’ =  °>
ei° (V-,o)e^° 0

which, in view of (6 .1 ), implies that for each 77 > 0

0 <  lim s u p  d , .40)  <  77 .

Therefore

lim d =  0 .
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