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Abstract

We study the Cauchy problem for KP type equations by harmonic analysis
techniques developed in the last decade mainly by J. Bourgain, C. Kenig, G.
Ponce and L. Vega.

First we consider the Cauchy problem for the KP-II equation. We prove the
local well-posedness for the KP-II equation in the anisotropic Sobolev spaces
242 (R?) for s; > —1/3, s > 0. On the other hand we prove that the cru-
cial bilinear estimate needed for the local well-posedness fails for s; < —1/3,
s = 0. The global well-posedness of the KP-II equation in HzY;”?(R?) for
83 > —1/310, so > 0 is also proved. The main new technical ingredient is a
generalization of the bilinear estimate providing the local well-posedness.

The fifth order KP equations are also considered. We prove local and global
well-posedness results for both KP-I and KP-II type equations. In the case
of fifth order KP-I equation we prove the global well-posedness in the energy
space despite the “bad sign” in the algebraic relation related to the symbol of
the linearized operator.

Key words: Kadomtsev Petviashvili equations, Cauchy problem.

AMS subject classification: 35Q53, 35Q51, 35A07.






Résumé

Dans cette thése nous étudierons le probleme de Cauchy pour les équations de Kadomtsev-
Petviashvili (KP). Les équations de KP apparaissent naturellement dans plusieurs contextes
physiques comme un modele “universel” pour la propagation des longues ondes dispersives
faiblement non linéaires qui sont essentiellement uni-dimensionnelles avec des effets trans-
verses faibles. Par ailleurs, elles sont un des plus importants exemples d’un systéme Hamil-
tonien bi-dimensionnel intégrable. Dans cette thése on utilisera des techniques d’analyse
harmonique, développées ces dix derniéres années par J. Bourgain, C. Kenig, G. Ponce, L.
Vega pour étudier les équations de KP. En effet les équations de KP sont des généralisations
en dimension deux de ’équation de Korteweg - de Vries (KdV)

(1) Ut + Ugzz +UUz =0
L’équation (1) a été obtenue par Korteweg - de Vries comme un modéle pour les longues
ondes uni-dimensionnelles qui se propagent dans un canal. Parmi les solutions de (1), un réle
spécial est joué par les ondes solitaires

1
(2) u(t, z) = 3¢ sechza\/é(:c - ct),
ol c est la vitesse de propagation. En étudiant la stabilité des ondes solitaires (2) par

rapport & des perturbations bi-dimensionnelles, Kadomtsev et Petviashvili [33] ont obtenu
les équations suivantes en 2D

(3) (ut + UUzzz + uuz)z + uyy = 0-

Le role du paramétre o devient transparent si on considére (3) dans le contexte des “water
waves”. Le signe de o est positif (équation KP-II) quand la tension de surface est petite
ou absente (le nombre de Bond < 1/3). Le signe de o est négatif (équation KP-I) quand
la tension de surface domine comme dans une eau trés peu profonde (le nombre de Bond
> 1/3). Dans le cas critique quand le nombre de Bond est prés de 1/3 des termes d’ordres
superieurs apparaissent dans (3). On doit dans ce cas considérer ’équation de KP d’ordre 5
(voir Kawahara [38])

(4) (ut + OUzzz + O1Uzzzzz + uuz)z + uyy = 0.

Le principal but de cette thése est ’étude mathématique des problemes de Cauchy associés
A (3) (avec o > 0) et & (4) pour o et o; arbitraires (g, # 0).

Décrivons maintenant la composition de la these.

Dans le Chapitre 1 on presente le cadre général d’une méthode pour étudier le prob-
leme de Cauchy pour des équations d’évolution non linéaires, développée par J. Bourgain

1Ce résumé est essentiellement une traduction en frangais du Chapter 0 ci-dessous
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(voir [12, 13]), simplifiée et améliorée par C. Kenig, G. Ponce and L. Vega (voir [42]). On
commence par introduire les espaces de Bourgain dans une situation générale. Ensuite on
démontre les estimations linéaires qui sont en fait uni-dimensionnelles et ne dépendent pas
du choix d’une équation particuliere. Apres on montre I’estimation non linéaire dans un cas
simple - 1’équation de KdV avec donnée dans L2. Finalement on présente une idée récente
de J. Bourgain (voir [16]) pour prolonger les solutions locales globalement en temps. La
méthode est basée sur une décomposition des données en basses et hautes fréquences. On
utilise cette idée dans le Chapitre 4 dans le contexte de 1’équation de KP-II.

Dans les Chapitres 2,3,4 et 5 on étudie le probleme de Cauchy pour I’équation KP-II

(5) { (ut + Uzzz + uu:c)z + Uy = 0
u(0,2,y) = ¢, (z,y) € R?

avec des données dans des espaces de Sobolev d’indice négatif. Dans le Chapitre 3 des général-
isations en dimension trois de (5) sont aussi considérées. Dans [14], J. Bourgain démontre
que le probleme de Cauchy pour I’équation KP-II est localement bien posé pour des données
dans L?. La preuve est présentée surtout dans le cas des données périodiques mais peut
étre adaptée au cas continu. La démonstration de [14] utilise une décomposition dyadique
associée au symbole de 1’équation linéarisée. Dans cette thése on présentera une approche
différente qui utilise des techniques dues & C. Kenig, G. Ponce, L. Vega (cf. [42]), développées
dans un premier temps dans le contexte de I’équation de KdV et les inégalités de Strichartz
pour I’équation de KP injectées dans le cadre des espaces de Bourgain associés a I’équation
de KP.

On introduit les espaces fonctionnels pour les données intiales de (5). Soit Hz%? (R?), s; €
R, s; € R les espaces de Sobolev anisotropes munis de la norme

I8l gzyes = (L= 92)/2(1 - 82)/]1s .

Les espaces Hz';?(R?) sont naturels pour les données de (3) car leurs versions homogénes sont
invariantes par les transformations de changement d’échelle qui preservent les équations de
KP. On note que Ho'J(R?) = L2(R?). On introduit aussi les espaces de Sobolev anisotropes

modifiés H7;*?(R?), munis de la norme suivante

”¢”ﬁ;1‘;‘2 = ”¢”H:‘_1‘;"2 + “(_ag)-ln‘b”}{;},""
De fagon similaire a [48] on note H® (R?) les espaces de Sobolev modifiés, munis de la norme

Illg. = ol + 11(=02) 4|l ars.

Dans le Chapitre 2 on démontre que le probleme de Cauchy pour (5) est localement bien posé
avec des données dans H*(R?), s > 0. On se sert de I'inégalité de Strichartz pour I’équation
KP-II injectée dans le cadre des espaces de Bourgain correspondant 3 H*(R?).

Dans le Chapitre 3 on améliore le résultat du Chapitre 2. On démontre que le prob-
léme de Cauchy pour (5) est localement bien posé pour des données dans H3;2(R?), s; >
—1/4,s; > 0. Le fait que ¢ € H2,™ (R?) signifie que (—02)~1/2¢ € H2,”(R?) ce qui est
(comme on le verra plus tard) une restriction inutile. L’avantage des espaces de Bourgain
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basés sur ~§},}"’ (R?) est la simplification des cas des basses fréquences dans I’estimation bil-

inéaire cruciale pour la preuve. Par ailleurs la taille de l'intervalle d’existence dépend de
|2l faye et donc méme dans le cas 3; = s2 = 0 on ne retrouve pas complétement le résultat

de [14]. Dans le Chapitre 5 on présente une amélioration significative du résultat du Chapitre
3 concernant (5). Dans le Chapitre 3 une généralisation en 3D de (5) est aussi étudiée. On
démontre que le probleme de Cauchy pour I’équation de KP-II en 3D est localement bien
posé avec des données dans H*(R3), s > 3/2 (les espaces H*(R?3) sont définis similairement
3 H*(R?)). La démonstration utilise des inégalités de Strichartz pour 1’équation de KP-II en
3D. Les techniques du calcul différentiel utilisées en 2D ne semblent pas étre appropriées au
cas de la dimension 3.

Il y a deux ingrédients principaux dans le Chapitre 4. D’abord on introduit une ap-
proche pour traiter le cas des basses fréquences dans I’estimation bilinéaire de sorte qu’il
n’est plus indispensable d’utiliser les espaces H;;’?(R?) comme ensemble de données ini-
tiales. En exploitant la nature asymétrique de I’estimation bilinéaire on introduit un facteur
supplémentaire dans la définition de 1’espace restriction de Fourier ce qui nous permet de
traiter les cas des basses fréquences. Il est surprenant qu’un facteur similaire soit utilisé
dans [14] mais pour des raisons complétement différentes (voir Chapitre 7, Section 6, preuve
de la Proposition 5 pour une application typique de I’approche de [14]). Le deuxiéme in-
grédient dans le Chapitre 4 est la preuve d’existence d’une solution globale de (5) pour des
données dans Hz;?(R?), s; > —1/310, s, > 0. Cela généralise le résultat d’existence globale
de J. Bourgain pour des données dans L2. L’exposant —1/310 est de nature technique et
il n’est sirement pas optimal. La démonstration se sert de 1’idée récente de J. Bourgain
de décomposer les données en petits et grands modes de Fourier. Le nouvel ingrédient tech-
nique est une généralisation de I’estimation bilinéaire cruciale (voir Chapitre 4, Theorem 4.2).

Dans le Chapitre 5 on démontre que le probléme de Cauchy pour (5) est localement bien
posé avec des données dans H;';™ (R2), sy > —1/3,s2 > 0. La démonstration est une version
raffinée des arguments du Chapitre 4. Le résultat est probalement optimal compte tenu des
exemples donnés dans la deuxiéme partie du Chapitre (voir Chapitre 5, Theoréme 4). Dans
ce sens, c’est ’analogue du résultat concernant I’équation de KdV obtenu par C. Kenig, G.
Ponce et L. Vega (voir [42]).

Dans les Chapitre 6 et 7 on étudie les équation de KP d’ordre 5

(6) { (ut + quzrr + ,Bu::::xa:z + 'Ur'u;-)z + Uyy = 0

u(07 z, y) = ¢(ZD, y)
dans le cas de la dimension 2

(7) { (ut + atzzr + ,Bu::xxzz + 'u'u:c):: + Uyy + Uy, = 0

‘U,(O, Y, Z) = ¢(:L‘, Y, Z)
dans le cas de la dimension 3. Evidemment a ’équation de KP usuelle correspond 8 = 0 et
a = =1 (KP-I) ou a = +1 (KP-II). A I’équation de KP-II d’ordre 5 correspond 8 < 0 et a
’équation de KP-I d’ordre 5 correspond g < 0.



Les résultats de type “bien posé” dans le Chapitre 6 sont donnés pour I’équation de
KP-II d’ordre 5. Dans le cas de 2D on démontre que le probléme de Cauchy pour (6) est
localement bien posé pour des données dans HzY;"*(R?), s; > —1/4,s; > 0. En 3D, on dé
montre que le probléeme de Cauchy pour (7) est localement bien posé pour des données dans
~;};” (R?), s; > —1/8,s2 > 0. La démonstration se sert d’un effet de régularisation globale
démontré dans [5]. Un autre effet de régularisation est une relation arithmétique pour le
symbole de I'opérateur linéarisé. Cette identité a le “bon signe” seulement dans le cas de
P’équation KP-II (8 < 0). La deuxiéme partie du Chapitre 6 concerne des résultat de type
“probléme mal posé” pour des équation de type KP-I. La démonstration utilise essentielle-
ment I’existence des ondes solitaires.

Dans le Chapitre 7 on continue d’étudier le probleme de Cauchy pour I’équation de KP
d’ordre 5. D’abord on montre que le probleme de Cauchy est localement bien posé dans
’espace d’énergie pour ’équation de KP-I d’ordre 5, malgré le “mauvais signe” dans la rela-
tion algébrique liée au symbole. C’est le premier résultat de ce genre pour une équation de
type KP-1. Dans le cas des données périodiques on utilise ’approche de [14] pour démontrer
des résultats de type bien posé pour 1’équation de KP-II d’ordre 5 avec des données péri-
odiques (voir Chapitre 7, Théorémes 4, 5).

Le Chapitre 8 est consacré a une note sur le caractére “mal posé” local de I’équation de
KdV. On montre que le probleme de Cauchy pour I’équation de KdV est localement mal-
posé dans H?®, s < —3/4, si on impose que le flot u(0) —> u(t) est de classe C? de H*(R)
dans H*(R). On améliore ainsi un résultat de [15] ot des conditions de régularité C* sont
nécessaires. Dans [15] le caractére “bien posé” local n’est pas satisfait dans les directions
¢(z) telles que R

(&) ~ YNy, -N411 (&) + YNy N4 (§),
ou 14 est la fonction caractéristique de ’ensemple A. La relation entre la fréquence N et
le paramétre v est donnée dans [15] par v ~ N —%. Dans notre preuve, cette relation est
remplacée par ¥ ~ N~2, ce qui est la principale nouveauté dans notre approche.
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CHAPTER 0

Motivation and description of the results

The main goal of this thesis is to study the Cauchy problem for the Kadomtsev-Petviashvili
(KP) equations. The KP equations naturally occur in many physical contexts (they are
“universal” models for the propagation of weakly nonlinear dispersive long waves which are
essentially one-directional, with weak transverse effects). On the other hand, they are one
of the most important example of two dimensional Hamiltonian integrable system. In this
thesis, in order to study the KP equations, we shall apply harmonic analysis techniques,
developed in the last decade mainly by J. Bourgain, C. Kenig, G. Ponce, L. Vega. The KP
equations are two dimensional generalizations of the celebrated Korteweg - de Vries (KdV)
equation

(1) Ut + Uzzz + UUz =0

The equation (1) was derived by Korteweg - de Vries as a model for long waves propagating
in a channel. Among the solution of (1) a special role is played by the solitary wave solution

(2) u(t,z) = 3c sech%\/E(x —ct),

where c¢ stays for the propagation speed. When studying the stability of the solitary wave
solution (2) with respect to weakly two dimensional perturbation, Kadomtsev and Petviashvili
[83] derived the following equations in 2D

(3) (ut + OUzzz + uuz)x + Uy = 0.

The role of the parameter o is transparent when considering (3) in the context of water waves.
The sign of o is positive (the KP-II equation) when the surface tension is small or absent
(Bond number < 1/3). The sign of ¢ is negative (the KP-I equation) when the surface tension
dominates as in very shallow water (Bond number > 1/3). In the critical case when the Bond
number is near to 1/3 higher order terms should be taken into account in (3). Therefore in
that case we are in position to consider the fifth order KP equations (cf. Kawahara [38])

(4) (ut + OUzzz + O1Uzzzzz + uuz)z + uyy = 0.
This thesis is mainly devoted to the mathematical study of the Cauchy problems associated
to (3) (with o > 0) and (4) for arbitrary o and o;.

Now we describe the structure of the thesis.

In Chapter 1 we present the general framework of a method for studying the well-
posedness of nonlinear evolution equations, introduced by J. Bourgain (cf. [12, 13]), sim-
plified and improved by C. Kenig, G. Ponce and L. Vega (cf. [42]). We first introduce the

7



8 0. MOTIVATION AND DESCRIPTION OF THE RESULTS

Bourgain spaces in a rather general situation. Then we prove the linear estimates, which are
actually one dimensional and do not depend on the particular equation. Next we prove the
needed nonlinear estimates in a simple case - the KAV equation with L? data. Finally we
present a recent idea of J. Bourgain (cf. [18)]) for extending the local solutions globally in
time, based on decomposing the data into low and high Fourier modes. This idea shall be
used in Chapter 4 in the context of the KP-II equation.

Chapters 2,3,4,5 are devoted to the study of the local and global well-posedness of the
Cauchy problem for the KP-II equation

(5) { (ut + Uzzz + uuz)z + Uyy 0
u(0,z,y) = ¢, (z,y) €R?

with rough initial data (Sobolev spaces of negative indices). In Chapter 3 the three di-
mensional generalization of (5) is also considered. In [14], J. Bourgain proved the local
well-posedness of the KP-II equation for data in L2. The proof is mainly performed for peri-
odic boundary conditions but could be applied to the continuous case too. The proof of [14]
uses suitable dyadic decompositions associated to the symbol of the linearized equation. In
this thesis we shall perform an alternative approach which uses the simple calculus techniques
due to C. Kenig, G. Ponce, L. Vega (cf. [42]), first performed in the context of the KdV
equation and the Strichartz inequalities for the KP equation injected into the framework of
the Bourgain spaces associated to the KP equation.

In order to formulate our results we define the functional spaces where the initial data
is expected to belong to. Let Hz';(R?), s; € R, s; € R be the anisotropic Sobolev spaces
equipped with the norm

Il = 111 = 822 (1 - 8))**/%4|a,

The spaces H;';"*(R?) are natural for the initial data of (3) since their homogeneous ver-
sions are mvanant under the scale transformations preserving the KP equations. Clearly
20(R?) = L?(R?). Taking into account the specific structure of the KP equations we also

introduce the modified anisotropic Sobolev spaces H24® (R?), equipped with the norm
16l gz,2 = llgzy2 + 11(=92) /2]l royyea
Similarly to [48] we denote by H 3(R?) the modified Sobolev spaces, equipped with the norm
I¢llg. = Nl + 11(=02) /2| ars.

In Chapter 2 we prove the local well-posedness of (5) for data in H ’(R?), s > 0. The
main tool is the Strichartz inequalities for the KP-II equations injected into the framework
of the Bourgain spaces corresponding to H*(R?).

In Chapter 3 we improve the result of Chapter 2, proving the local well-posedness of
(5) for data in H242(R?), s; > —1/4,5, > 0. The fact that ¢ € H2.%2(R?) means that
(-02)~Y2¢ € Hz*(R?) which is (as we will see later) an unnecessary restriction. The
advantage of using the Bourgain spaces based on H2;*?(R?) is the trivialization of the small
frequencies cases in the crucial bilinear estimate. On the other hand the size of the time
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interval, where the local well-posedness is obtained depends on ||¢|| ALy and therefore even

in the case s; = s = 0 we do not recover completely the result of [14]. In Chapter 5 we
give a significant improvement of the result of Chapter 3, concerning (5). In Chapter 3 the
three dimensional version of (5) is also considered. We prove the local well-posedness of the
3D KP-II equation for data in H*(R3), s > 3/2 (the spaces H*(R?) are defined similarly to
H?*(R?)). The proof uses only the Strichartz inequalities for the 3D KP-II equations. The
simple calculus techniques used in 2D do not seem to be appropriated in the case of three
spatial dimensions.

There are two main ingredients in Chapter 4. First we show how to treat the small
frequencies cases in the bilinear estimates and thus we are not obliged to use the spaces
2% (R?) for the initial data. Using the asymmetric nature of the crucial bilinear estimates
we introduce an additional factor in the definition of the Fourier transform restriction spaces
which helps us to deal with the small frequencies cases. Surprisingly a similar factor is used
in [14] but for different purposes (cf. Chapter 7, Section 6, the proof of Proposition 5 for a
typical application of the approach of [14]). The second main ingredient of Chapter 4 is the
proof of the global well-posedness of (5) for data in Hz%"(R?), s; > —1/310,s; > 0. This
generalizes the L? global well-posedness result of [14]. The exponent —1/310 is of technical
nature and is surely not optimal. The proof uses an idea due to J. Bourgain of decompos-
ing the initial data into high and low Fourier modes. The main new technical ingredient is
a generalization of the bilinear estimate providing the local well-posedness (cf. Chapter 4,

Theorem 4.2).

In Chapter 5 we prove the local well-posedness of (5) for data in Hzy(R?), s; >
—1/3,33 > 0. The proof is a refinement of the arguments of Chapter 4. The result
seems to be optimal in the sense that the key estimate for the local well-posedness fails
for s; < —1/3, s = 0 (cf. Chapter 5, Theorem 4). In this aspect, it is the counterpart of the
H?*(R), s > —3/4 local well-posedness for the KdV equation proved by C. Kenig, G. Ponce
and L. Vega in [42].

Chapters 6 and 7 are devoted to the study of the fifth order KP equation

(6) { (ut + QUgzz + PUzzzzs + uux):r T Uy = 0
u(0,z,y) = ¢(z,y)

in the two dimensional case and

(7) { ('u't + QUzzz + BUzrzzs + uuz)x + Uy + Uz = 0
u(0, z,y, 2) = ¢(z,y, 2)
in the three dimensional case. Clearly “usual” KP equations correspond to3 =0and a = -1

(KP-I) or @ = +1 (KP-II). Further the fifth order KP-II equation corresponds to 8 < 0, while
the fifth order KP-I corresponds to 8 > 0.

The well-posedness results of Chapter 6 are devoted to the fifth order KP-II equations. In
2D we prove the local well-posedness of (6) for data in Hz';**(R?), s; > —1/4,s2 > 0. In 3D
we prove the local well-posedness of (7) for data in H24"(R2), s; > —1/8, 53 > 0. The proof
makes use of a global smoothing effect for the linearized equation established in [5]. Another
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smoothing effect essentially used in the proof is an arithmetic identity involving the symbol
of the linearized operator. This identity has “good” sign only in the case KP-II equation
(8 < 0). The second part of Chapter 6 is devoted to the proof of ill-posedness results for
some KP-I type equations. The proof relays on the existence of solitary wave solutions.

In Chapter 7 we continue the study of the fifth order KP equations. We first prove the
global well-posedness in the energy space of the fifth order KP-I equation despite the “bad
sign” in the algebraic relation related to the symbol. This result is the first of this kind for
KP-I type equations. The proof uses the global smoothing effect for the linearized equation
from [5] and the simple calculus techniques due to C. Kenig, G. Ponce and L. Vega. Then
we turn to the case of periodic boundary conditions. The difficulty in that case is that the
free evolution does not possess any dispersive property. Here we use the approach from [14]
in order to obtain the local well-posedness for the periodic fifth order KP-II equation with
rough data (cf. Chapter 7, Theorems 4, 5).

Chapter 8 is devoted to a remark on the local ill-posedness for the KdV equation. We
prove that the Cauchy problem for KdV equation is locally ill-posed in H®, s < —3/4 if one
asks the flow map u(0) — u(t) to be C2 from H*(R) to H*(R). This is a slight improvement
of a result from [15], where C® regularity is needed. In [15] the local well-posedness fails
along the directions ¢(z) such that

B(E) ~ NNy, N 41 (€) + Iy N4 (£),

where 14 is the characteristic function of the set A. The relation between the frequency N

and the parameter yis y~ N -2, In our proof the relation between v and IV in an example
similar to [15] is ¥ ~ N~2, which is the new point.



CHAPTER 1

Preliminaries

1. Local existence

We shall give an idea for the method developed by J. Bourgain for studying the local
well-posedness of nonlinear evolution equations (we also refer to the expository paper [23]
for a more complete presentation). The method is a rather general scheme and can be applied
for equations of type

(1) U(O) = 1o,

{ iy = Au+ f(u)

where A is a self-adjoint operator acting on a Hilbert space. In most cases A is a differential
operator (or a Fourier multiplier) defined on a classical Sobolev space. The term f(u) repre-
sent the nonlinear interaction and ug is the initial data. Several examples could be injected
into the previous framework:

- A = A, where A is the Laplace operatorin R", which corresponds to a nonlinear Schrodinger
equation .

-A=18 z € R, f(u) = —iuu,, which corresponds to the Korteweg de Vries equation.

- A=i03+i0;'02, (z,y) € R? f(u) = —iuu,, which corresponds to the Kadomtsev-
Petviashvili equations.

- A=+/-A, which corresponds to a nonlinear wave equation.

- A = diag{-A,v/-A}, where diag stays for the diagonal matrix, f(u) = (u1ug, Alul?),
which corresponds to the Zakharov system.

Actually we shall solve the integral equation corresponding to (1). Let 9 be a cut-off function
such that ¢ € C°(R) , supp ¥ C [-2,2], % = 1 on the interval [-1,1]. Consider a truncated
version of the integral equation corresponding to (1)

@) w0 = $OU o~ 900 [ Ve~ D)),

where U(t) = exp(—itA) define the free evolution of the system. Sometimes we change ¥(t)
by ¥(t/T) in the integral term and we look for solutions on the time interval [-T, T)]. Clearly
to a global solution of (2) corresponds a local one of (1) on the interval [—1, 1] (respectively
[-T,T]). Now we define the Bourgain spaces. These are the spaces B equipped with the
following norms ||u||p = ||U(~t)u||x, where X stays for a classical functional space, for
example a Sobolev space. We shall solve (2) by a fixed point argument in B. Suppose that
the initial data belongs to Y and the space X be of the form X® = Y (H?), b € R. We denote
by B® the Bourgain space corresponding to X®. Then we have the next result.

1



12 1. PRELIMINARIES

THEOREM 1. (linear estimates)

(3) I#@U©)¢lles < lldlly, @€Y

t

@ ”zp(t) [ ve- t’)f(u(t’))dt’“ < 1F ()l g,
0 BbY

where b +5<1,6>1/2, ¥ >0.

Proof. The estimates are in fact one dimensional (with respect to time) and do not
depend on a particular choice of the unitary group U(t). The proof of (3) is a direct conse-
quence of the definition. It suffices to note that (t) and U(t) commute since the operator
U(t) is a multiplier operator with respect to time. In order to prove (4), we note that it is
equivalent to

(5) ’|¢(t) /0 o(t)dt’

S lvllg-»-
Hp

Since b+ b’ < 1, the inequality (5) affirms that “by integrating we gain a derivative”. Using
Fourier transform we obtain

w0 [0 = v [ o
= em_lﬁ‘r T e—it:ﬁr T — @r
= v [ Simarae [ e -ve [ 5
= Il(t)+12(t)+f3(t).

We shall now estimate the three terms. First

(M

1 p
1@l < 3 19O laplolly-v { /I L dr} < llollg-s-

k>1

Further we have

2@l me £ S llvllge-2 S llvllg-»

Hp

ttT
< / e——-'z?(r)dr
|

< .
T|>1 T

eit‘r
/ —v(7)dr
lr|>1 T

It remains to estimate I3(t). Using Cauchy-Schwarz inequality, we obtain for b > 1/2

1Ol < T [ 26

o ()

dr 1% ([o(r)|%dr \?
S D@ gsllvll ge-s

S llg-s, since b+d < 1.

b
Ht,loc

dr
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This completes the proof of Theorem 1.
There are different variants of the estimate (4). For example if we wish to take into account
the factor T of the cut-off function then in [23] the following estimate is proven

t
19(t/T) /0 Ut - ) fu(t))dtlgs S T | F(W)llgors B4+ <1, 6 < 1/2.

Sometimes one needs to take b = 1/2 in the definition of the Bourgain’s spaces. For example,
this is the case of the periodic KdV equation. In this case the terms I;(t) and I3(t) can be
treated in the same fashion as above. A logarithmic singularity appears in the estimate for
I3(t). Using the above arguments one can easily obtain

o [[ve-trsuenar] , < (10, +1500,4).

where the space Z “3is equipped with the norm

-4 = 1080l -1y

and W -3 stays for the Sobolev space with respect to time based on L! and measuring
regula.rlty of order —1/2. For more details we refer to [23, 24].

In order to apply a fixed point argument we have to prove the following estimate

A
(6) If (W)l g-+ S llllBss
where A is the order of the nonlinearity. The estimate (6) is called “nonlinear estimate” or
“bilinear estimate” in the case of a quadratic nonlinearity.

Here we shall consider a simple case when an estimate of type (6) holds. More precisely
we shall prove (6) when
(7) fw)=iuus, ¥ =I*R), A=id}, b= + b=;-

From this version of (6) together with Theorem 1 and a Picard fixed point argument will result
the local well-posedness of the KdV equation for data in LZ(R). Thanks to the conservation
of the L? norm one extends the solutions globally in time. Note that assuming (7), the norm
of the Bourgain spaces B® has the form

lullgs = (7 +€°a(r, &)l .2,
A duality argument shows that when (7) holds the estimate (6) has the form
(8) J S A llezllglizalhll g2,

where
// |§|f Tl)fl) (Tl_ ™€ - el)h(‘r’ f) _ drdfdrydé,
(r+&)5 (n+ &) (r—m + (€ - &)%)+
We can assume that f, g, h are positive. A use of the Cauchy-Schwarz inequality yields

1/2
J< / I(r€) { / If(ﬁ,fx)g(r-T1,5-61)|2dnd€1} h(r,€)drde,
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where

r 1/2
I(r,§) = = 3) ) ‘

(r+§3) ( (n+ &M (r—n+(E- &)%)

Further we easily obtain

o= £3> (/ T+6+ e 61)3)”)1/2'

Performing the change of the variable £, — p, where = 7 + £ + (€ - &;)3 we arrive at

Ire) < —EL" ( / s )‘”
T @) U () + € - 4l

g/
(7 +€3)7 (47 + £0)7

A

< const.

Hence I(r,€) is bounded and another use of the Cauchy-Schwarz inequality completes the
proof of (8). Now it remains to use a standard fixed point argument in order to prove that
the initial value problem for the KdV equation is locally well-posed for data in L2. The
above arguments are further developed in [42] where the bilinear estimate is proven for the
Bourgain spaces based on H*(R), s > —3/4 yielding the local well-posedness for the Cauchy
problem for KdV equation for data in H°(R), s > —3/4. This result is sharp due to the
counter examples constructed in [42].

2. Global existence

We restrict our considerations to the following case

9) { Uy 2 ;(D)u-l—-f(u)

)

where p(D) is a Fourier multiplier acting on the classical Sobolev spaces H*. Once we have a
local well-posedness in a suitable space we can extend the solutions globally by the aid of the
conservation laws due to the symmetries of (9). Here we shall give an idea for the method
developed by J. Bourgain to prove the global well-posedness in cases when the conservation
laws are not directly available. Let H(u(t)) = H(¢) be a conservation law. Actually we shall
consider only the case H(¢) = ||¢||L2. We shall try to construct global solutions for data
below L2. Note that there is no conservation of the Sobolev norms below L2 for (9). We
suppose that a local well-posedness below L? could be proven. Let ¢ € H~*, with s > 0.
Consider the following decomposition

¢ = éo + no,
where ¢y is the spectral projector on the interval [- N, N]. Here N > 1. Clearly
8l ~ N, lmollgr-a ~ N*7°.
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Let B%~* be the Bourgain space associated to H~*(H?). Consider the following system
i = p(D)v+ £(v)
(10) wy = p(D)w+ f(v+w) - f(v)
(v(0),w(0)) = (do,m0) € L*x H~°
The next Theorem could be proven by using the techniques described in the previous section.

THEOREM 2. (local existence) There ezists (u,v) € B3+° x B3+, g unique local so-
lution of (10) on the time interval [-§, 6], where § ~ N=*°, o > 0 and in addition

“v”3§+,o < CNﬁ, g >0,

loll 4oms < N7V, y>0.

Write
w(t) = U(t)m +r(¢).
The new estimate is the following.

THEOREM 3. Fort € [0, 4], we have
Ir@lze < (Iollggeoliollggan + ol )

< ¢ NB—
We can easily obtain the following corollary.

THEOREM 4. Suppose that Theorem 2 and Theorem 3 are proven and s+v - —as > 0.
Then (9) is globally well-posed for data in H=*.

Proof. Let § be the size of the existence interval from Theorem 2. Set
¢1 = u(5) + r(é), m= U(J)f)o
Since U(t) is an isometry on the classical Sobolev spaces we have

”ThHH-c = “7}0“}{—0.
Further we have

falle < [[w(d)llzz + llr(8)llz2
ligollz2 + lIr ()] 2
< lidollzs + eNP.

IN

Hence the L? norm increase as N°~7. We would like to iterate the process M (N) times. We
need that

M(N)NP=7~ N*, i.e. M(N) ~ N*=F+7,
Thus we obtain an interval of size
M(N)é ~ N*t7—F-as,

Since s+ — 08— as > 0and N >> 1, we can finally achieve any interval.






CHAPTER 2

Remarque sur la régularité locale de I’équation de
Kadomtsev-Petviashvili-II

This Chapter essentially contains the paper [56] (Remarque sur la régularité locale de
P’équation de Kadomtsev-Petviashvili, C.R. Acad. Sci. Paris, t. 326, Série I, p. 709-712,
1998).

Résumé. On donne une démonstration courte d’une partie d’un résultat de Bourgain [14]. Plus
précisement, on démontre que le probleme de Cauchy pour I’équation de Kadomtsev-Petviashvili-II
est localement bien posé dans des espaces de Sobolev d’indice strictement positif.

Abstract. We give a short proof of a part of the Bourgain’s result from [14]. More precisely
we prove that the Cauchy problem for the Kadomtsev-Petviashvili equation is locally well posed in
Sobolev spaces with positive index.

1. Introduction

On considere le probleme de Cauchy pour 1’équation de Kadomtsev-Petviashvili-II

(1) { (ut + Uzzr + uuz)z + Uyy = 0,
u(0,z,y) = ¢.
En utilisant une méthode initialement appliquée aux équations de Schrédinger non-linéaire
et KdV ([12, 13]), Bourgain [14] démontre que le probléme (1) est localement bien posé pour
des données initiales dans H*(T?), s > 0, T? = R?|Z%. La preuve peut étre adaptée aux
données dans R?. Bourgain [14] utilise une décomposition dyadique associée & la structure
d’équation (1). La preuve n’utilise pas les propriétés dispersives de ’équation linéarisée dans
le cas des données dans R?2. Ici, on donne une démonstration courte d’une partie du résultat
de Bourgain qui est basée sur les propriétés dispersives de I’équation (1). On écrit (1) sous

la forme
@) { 10iu = p(D1, Do)u — tuu,,
u(0,z,y) = &,

ol Dy = —10;, Dy = —i0, et |’ opérateur p(Dy, D;) est défini par la transformation de Fourier
F(p(Dy, D2)u)(¢) = p(¢)@(¢). On note par ¢ = (&,7) les variables conjuguées de Fourier et
p(¢) = —€3 + /€. On note H>*(R3) I’espace de Sobolev classique muni de la norme

s (R = [14r) (€ 8(m, )3 L o
o (.) =1+].]. On note H**(R3) I’espace de Sobolev modifié (voir [48]) muni de la norme
lu; B> (R®)]| = [|lu; H>* (R®)|| + || D1~ u; H**(R®)]|.

17



18 2. SUR LA REGULARITE LOCALE DE L'EQUATION DE KP-II

On definit de méme maniére ’espace H*(R?) et on note L2 I’espace H°. On peut remarquer
que quelque soit u € H**1%2 ona [ u(t,z,y)dz = 0. Soit U(t) = exp(—itp(D1, D3)) le groupe
unitaire qui définit ’évolution libre de (2). On va résoudre (2) dans ’espace de Bourgain B%*
muni de la norme ||u; B®*|| = ||U(-t)u; H"*||. Comme FU(-t)u)(r,¢) = a(r — p(¢),(), on
obtient que la norme dans B**® s’écrit sous la forme

lu; B2 = / (r + p(O)P (L + X a(r, ¢)Pdrdc.
On a le théoréme suivant.

THEOREME 1. Soit s > 0. Alors quelque soit ¢ € H?, il eziste T = T(||¢llgz.) positive et

u(t, z,y), une solution unique de (1) dans Uintervalle [T, T] telle que u € C([-T, T); H*(R?))r
Bl/2s,

On va résoudre une version tronquée de 1’équation (2)

(3) u(t) = Y(OUE)u(0) - 59(/T) /0 Ut - )0, (8¢ /2T ()t

ol 1 est une troncature telle que ¢ € C§°(R), supp ¥ C [-2,2], ¥ = 1 sur l'intervalle
[-1,1]. Aux solutions globales en temps de (3) correspondent des solutions locales de (1) sur
Iintervalle [T, T]. On a l’estimation suivante pour I’évolution libre

1(6)U (£); B>*|| < clig; H|\-
Pour estimer le terme intégral de (3), on utilise la Proposition suivante.

PROPOSITION 1. (voir [24], Lemme 2.1). Il eziste ¢ > 0 telle que

¥(t/T) / t U(t - t") 3, (w?(t)))dt'; BV ?*
0

ou Y?® est munst de la norme

lw; Y2l = (7)) (1 + €™M F (U (=t)u); LE(LY)].

L’estimation non-linéaire est la suivante.

< eflluuz; BV 4 |luug; Y| 1},

PROPOSITION 2. Soit s > 0 et supp u C {(¢,z) : |t| < cT'}. Alors il eziste v > 0 tel que
on a les inégalités suivantes

(4) lurg; BT < eI |ju; BY2#)2,

(5) lluug; Y?|| < T7||u; BY22||2.
On va essentiellement utiliser 1’estimation suivante.

PRroOPOSITION 3. (inégalité de Strichartz, voir [24], Lemme 3.1 et [48], Proposition 2.3).
Soit
0<y<1 0<6<L1, >0, suppucC{(tz):]t|<cT}

Alors, quelque soit u € Ez(R:’), on a l’inégalité suivante

(6) IF 72 + p(Q) i, O)); LTz )| < T2 lul| 2,
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ot Y* =7 -0 et q, r sont telles que

2_,.80=7 gmy.mgl_L_0-60-9)
q_l 1+¢ '’ or)=2G-2)= 1+e

2. Démontration de I’estimation non-linéaire

On pose 0 = o(7,¢{) =7+ p(¢), o1 = 0(11,(1), o2 = 0(T = 71,{ — (1) et
(7, ) = (r+ p(Q))/3(¢)*i(r, ).

Par dualité, on écrit (4) sous la forme

.//K(T,C, 71,G1) (11, G)@(T - 71, ¢ — (1) (7, ¢)dnd(1drd(| <

(7) T {[lwliza + llwll 2l Dzl ~ wll 22 + | Dzl " w22 vl 2,
. _ O ) -G~
ou K(Ty Ca TI’CI) - <01>1/2<02)1/2(0)1/2 .
On peut supposer que @ > 0 et ¥ > 0. On a la relation suivante
(&1 — Em)?

o1+02 -0 =368(€ - &) + §E(E-&)

Donc max{|o|, |o1],|02|} > |£16(& — &1)|. Par symétrie, on suppose que |o;| > |o2|. On note J
le membre de gauche de I'inégalité (7). On consideére trois cas principaux.

Cas 1. |o| > |o1],]€] > 2. On note J; la restriction de J sur cette région. On peut
supposer que [¢| < 2|¢1|. Si [¢]| > 2|¢y], alors [¢] < 2|¢ — (1] et les arguments sont les mémes.
Si |6 >1et|6—&|>1, alors |€](c)~1/2 < ¢ et on obtient en utilisant les inégalités de
Hoélder, Strichartz et Sobolev

B < IF (o) 2, G))s LI )

IF =2 (o2 72(C = )" = 70,€ = ) LA ) lllvllze
TP FN(o2) " P (r = 11, ¢ = 1)) LHERE ) llwllza oz
T |wl|Z o]l 22,

4 condition que &(r1) = 8(rp) = 3=L — 1, 6(r1) +6(r2) = 1, s > 8(r3) — 6(r}). On pose v = €

<
<

14¢
et la restriction de l'injection de Sobolev devient s > "’%351, qui est satisfaite pour s > 0 et

¢, €, suffisamment petits. Si |&;] < 1, alors [€](0)~/2 < ct|&;|~! et les arguments sont les
mémes en utilisant |||D;|~ w||z2 & la place de ||w||z2 ol cela est nécessaire.

Cas 2. |a1| > |o|, €| > 2. On note J; la restriction de J sur cette région. Si || < 2|1,
alors on peut appliquer les arguments du cas 1. Soit |{| > 2|¢|. Si & > 1et | -&| > 1,
alors |€](g1)~1/2 < ' et en utilisant les inégalités de Holder, Strichartz et Sobolev, on obtient

B < IF () 20(r, €)); LALY ) IIF (o) /2 (r = 71,¢ = 1)) LA(LE )l

172 ()b (m, G))s LHLR2 )
< w2l 22,
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a condition que &(r; =ﬂ—l,25r1)+6r2 =1,s > 4(r2). On pose v = € et la re-
14¢ 2

striction de l'injection de Sobolev devient s > -"'ﬁj—fl, qui est satisfaite pour s > 0 et ¢, ¢
suffisamment petits. Si |€;] < 1, alors |€](01) 712 < ¢t¢|€;|~! et les arguments sont les mémes.

Cas 3. |€] < 2. Dans ce cas, on a |¢[(d)~!/2 < ¢ et on peut utiliser les arguments du
cas 1.

On remarque que w € L% et on peut donc utiliser 1'inégalité de Strichartz avec w dans
tout les cas précédents. On a utilisé I'inégalité de Strichartz avec v seulement si |£| > 2, car
dans ce cas on peut supposer que la fonction v est telle que 9(7,0,7) = 0 prées de £ = 0 et

donc qu’elle appartient a L2. Par dualité, on écrit (5) sous la forme

| / / Ko (7, G,y C) (s )b (r = 70, € = C1)3(C)dmdGrdrdC] <

(8) T {llwliZz + w2 lll Dzl " wll 2 + 1 D2| ™ wl| 2} Il 2,
. _ OG-
ou KI(Tva TI)CI) - (01)1/12(02>1/2<01) .

Si |€] < 2, alors on utilise les mémes arguments que dans la preuve de (4) dans le cas 1
en remplacant ¥(r, () par {¢)~19(¢) € Lff,(). Si |o1| > |o| on utilise les arguments de la
preuve de (4) en remplacant 9(r,() avec {(0)~1/2~¢5(¢) € L?T ¢) pour ¢ suffisamment petit.
Si |o| 2 |oy] et [€] > 2, on a alors que |o] > c[¢[*|é1], lorsque [€1] < 1 et |o] > c[¢[?, lorsque
|€1] > 1. Il reste a remarquer que
(€)0(¢) 2 “ €)o(S) . 2

———===€ L{_ ., avec ——== L7

(o) +1¢2 ~ 70 (o) + g2’ 7 (Q)
et a utiliser les arguments de la preuve de (4). Ceci termine la preuve de la Proposition 2.
Des arguments standards de point fixe terminent la preuve du Théoreme 1.

' < cllvllzs

Remarques. L’idée de ce travail vient de [32], ol est donnée une démonstration dif-
férente du Théoreme 1. Elle n’utilise pas les propriétés dispersives de (1), mais se sert de
la méthode utilisée dans [42] pour ’équation de KdV. Dans [57], nous démontrons que le
probléme (1) est bien posé dans des espaces de Sobolev nonisotropes d’indice négatif par
rapport a z (en particulier dans L?)!.

!cf. Chapters 3,4,5



CHAPTER 3

On the Cauchy problem for Kadomtsev-Petviashvili equation

This Chapter essentially contains the paper [57] (On the Cauchy problem for Kadomtsev-
Petviashvili equation, Communications in Partial Differential Equations, 24 (1999) 1367-
1397).

Abstract.

Using the method of Bourgain we prove local well-posedness of the Cauchy problem for KP-1I equa-
tion in non-isotropic Sobolev spaces H ;}g”(RZ) for s; > —1/4 and s, > 0. In the case of three space

dimensions we prove local well-posedness in H*(R?) for s > 3/2.

Résumé.
En utilisant la méthode de Bourgain on démontre que le probléeme de Cauchy pour I’équation de
Kadomtsev-Petviashvili-II est localement bien posé dans les espaces de Sobolev non-isotropes H 2y (RZ),
quand s; > —1/4 et s, > 0. Dans le cas de la dimension trois, on obtient que le probléme de Cauchy
pour I’équation de KP-II est localement bien posé dans H*(R?), quand s > 3/2.

1. Introduction

We will study the initial value problem for the Kadomtsev-Petviashvili-II equation (KP-
IT). The Cauchy problem for KP-II equation in R? has the form

1 (ut + Uzzz + uuz)z + Uyy = 0
M u(0,z,y)=¢

The Kadomtsev-Petviashvili equations are “universal” models for the propagation of weakly
nonlinear dispersive long waves which are essentially one-directional, with weak transverse
effects. The equation (1) has the structure of an infinite dimensional Hamiltonian system and
applying the inverse scattering method one can obtain global solutions of (1) in Sobolev spaces
Ws2OW*!, s> 10 (cf. [61]). Using a method based on an analysis of multiple Fourier se-
ries first applied for the Schrédinger equation (cf. [12]) and KdV equation (cf. [13]), Bourgain
(cf. [14]) proved global well-posedness of (1) for initial data in H*(T?),s >0, T?=R?Z%
The proof is also adapted for data in R2. Bourgain [14] uses mainly a suitable dyadic de-
composition associated to the structure of the equation (1) and an algebraic relation for the
symbol of the linearized operator. No form of the classical Strichartz inequality is used for
obtaining the result of [14]. In [32] using a method proposed by Kenig, Ponce, Vega (cf.
[42], [43]) a part of the Bourgain’s result is recovered. More precisely local well-posedness
of the Cauchy problem (1) in H*(R?),s > 0 is proved. The nonlinear estimate of [32] is

21



22 3. ON THE CAUCHY PROBLEM FOR KP-II

obtained by a change of variables similar to that of [42] for KdV equation or [43] for the non-
linear Schrodinger equation. No form of the classical Strichartz estimate is used in [32] either.

We write (1) in the following form
@) { 10;u = p(Dy, Do)u — tuu,
u(0,z,y)=¢
where D; = }0;, D; = 30, and the operator p(Dy,D;) is defined through the Fourier

transform

F (p(D1, D2)u) (<) = p()a(C)-
Here { = (£, 1) stays for the Fourier variables corresponding to (z,y) and

2

_ g3 .
p(¢) = €+€

With H%*1:2(R3) we denote the classical Sobolev spaces equipped with the norm
llu; H*12 (R2)|| = [(r)>(€)* (m)*2a(r, €, m); LE, o),

where (.) = 1+ |.|. Similarly we define H*1+*2 (~R2) and the homogeneous spaces H*1"%2(R?).
As in [48] we define modified Sobolev spaces H%*1*2(R?)

ﬁb,al,sz (R3) — {u € Hb,al,sg (RB) :]_'—1(|§|-—1,&(T’ C)) € Hb,31,32 (RS)},
equipped with the norm
llw; B2 (R®)|| = [lu; H**»*2 (R®)|| + ||| Da| ~ u; HO*2%2 (R%)|.

Similarly we define the spaces H su2(R?). With L? we denote the space HP°. Note that for
any u € H%*%2 we have
/ u(t, z,y)dz = 0.
-0
Let U(t) = exp(—itp(D1, D;)) be the unitary group which defines the free evolution of

(2). In both papers [14] and [32] the solutions of (1) belong to the space Bb%1+* equipped
with the norm

®) Jus B4 = [0 (=) X0,
where X%b1:3 i3 equipped with the norm
Y s T s
(@ s X540 = [ ) €%t O g

In [14] a small modification of (4), according to the size of the initial data is performed. The
parameter s measures the Sobolev regularity of the solutions and b~ 1/2, b; ~ 1/4. In the
present paper we shall not make use of the term (Iﬁag)bl in the description of the functional
space where the solutions are expected to belong. More precisely we shall solve (2) in the
Bourgain type spaces B*®**2 equipped with the norm

Jus B¥ = U (=t)u BO#
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Since F(U(-t)u)(r,¢) = u(r — p(¢),() we obtain that in terms of the Fourier transform
variables the norm of B%%1+%2 can be expressed as

lu; Bo 22| = [|{r + p(C))*(€)™ (ma(m, Ollzz . + I{r + p(O)1E1 7€) (m)*a(r, s,

Note that if u(t, z, y) is a solution of (1) then so is
ux(t, ¢, y) = A2u(A3, Az, %)
We have that
lwat, o Mgone = A2 003, )| o

Hence one may expect that for s; + 2s2 + 1/2 > 0 the Cauchy problem (1) is well-posed in
H?1*2-type spaces. Our main goal in this Chapter is to prove the following Theorem.

’I"VHEOREM 1. Let sy > —1/4 and s; > 0. Then there ezists b > 1/2 such that for any
¢ € H*\»*2 there ezist positive T = T(||#|| z.,..,) and a unique solution u(t,z,y) of (1) in the
time interval [T, T] satisfying

u € C([-T,T}; H*»**(R%)) n B>+,

We shall obtain solutions of (1) belonging to Bl/2tesusn o 5 —1/4,s2 > 0 and e suffi-
ciently small. One dimensional Sobolev embedding injects the solutions in the framework of
the continuous in time functions. The linear estimates are the same as in [12], [13], [14]. In
the estimate of the nonlinear term uu, we consider three main cases. The difficulty in the
first one is a singularity which appears near to the origin in the integral representation of the
nonlinear estimate. In the second case we apply the method of Kenig, Ponce, Vega similarly
to [32]. In the third case we make an essential use of the Strichartz-type inequalities for KP
equation (cf. [23], [48]).

The rest of the Chapter is organized as follows. In Section 2 we recall the framework of
Bourgain’s method and state the nonlinear estimate in two space dimensions. In Section 3 we
prove Theorem 1. Section 4 is devoted to the case of three space dimensions. In an appendix
we give the proof of the classical Strichartz inequality for KP in three space dimensions.

2. Preliminaries

Note that the equation (2) is equivalent to the following integral equation

(5) u(t) = U(t)u ——/Ut—t W2(¢))dt.
Let 9 be a cut-off function such that
¥ € C§°(R), supp ¥ C [-2,2],% = 1 over the interval [-1,1].

We consider a cut-off version of (5)

©) ult) = YOV Ou(O) - 39/T) [ V(e - )00l ())de
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We shall solve globally in time (6). To the solutions of (6) will correspond local solutions
of (5) in time interval [-T,T]. We have the following estimate for the first term of the
right-hand side of (6)

1$ (&)U (5)6; B> < cl|g; H*|

For estimating the second term in the right-hand side of the integral equation (6) we use the
next Proposition.

PROPOSITION 1. (cf. [23], Lemma 3.2). Let —1/2 < ¥ <0< b< ¥ + 1. Then

¢
¢(t/T)/ U(t — t')0, (u?(t'))dt'; B2 || < eT =04 ||yuy; BY o122 |
0

(7)

Remark. The estimate of Proposition 1 is in fact one dimensional (with respect to t).
More precisely (7) can be reduced to the following estimate

|Kg; Hyl| < T ~**¥||g; H{ |
where the operator K is defined by

t
(Ka)®) = vt/T) [ att)ar.
We refer to [23], Lemma 3.2 for details.
The Strichartz inequalities are injected into the framework of Bourgain spaces. More
precisely we shall use the following estimate.

PROPOSITION 2. Let
0<6<1, >0 0<b<1/2+¢.
Then for any u € L*(R3) the following inequality holds

®) |72 + 2l I LI )| < vl
provided q and r satisfy the nezt relations
2 6b 1 1 (1-6)b
-=1- ir):=2(=--)= .
q ! 1/2+¢’ (r) (2 r) 1/2+ ¢

Proof. For any ¢ € L?(R?) the classical version of the Strichartz inequality for KP
equation (cf. [48], Proposition 2.3) yields

(9) 1U#); LY (Lig )|l < clillz2,
provided

1ilol 2<ycw

qg r 2 -
Once we have (9) Lemma 3.3 of [23] gives for any u € B/2+€1.00
(10) llu; L§ (Lig gl < cllu; BY/2+e09,
provided

1+1_1 2 << oo
g r 2 7= 00
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Interpolating between (10) and
llu; LE(LEz )Nl < Hlw; B2,

(=)
we obtain
(11) s LI(LE, I < cllu; B4,
provided
2 0b (1-6)b
e = <1.
q 1 1/2+4 ¢’ 8(r) 1/2+ ¢’ 0<f<1

But (11) is equivalent to (8) which completes the proof of Proposition 2.

Remark. Note that (9) is true for any ¢ € L%(R?), but U(t)¢ is the solution of the
linearized KP equation under an additional assumption on the initial data. It is easy to be
seen that for any ¢ € L?(R?), U(t)4 is the solution of the linearized KP equation.

We shall solve (6) in BY/2%+2431:%2 for g > —1/4, s, > 0 and € > 0 sufficiently small.
Due to Proposition 1 in order to apply a fixed point argument it is sufficient to estimate
B~1/243¢5192 norm of the nonlinear term. Then a small factor T¢ appears in the right-hand
side of (7) which ensures the fixed point argument. Our main tool is the following Proposition.

PROPOSITION 3. Let s; > —1/4 and s; > 0. Then for sufficiently small ¢ we have

(12) “uuz; B-1/2+3c,31,32” < c||u; Bl/2+2€"’"’2”2.

3. Proof of Proposition 3

We set
b(r,¢) = (T + p(Q))/*+7(6)* (n) a7, ().
Then (12) is equivalent to

(T + p(Q)) M/ 2¥3e(g) 1+ () f K(r,¢,m,C)o(r, Q)b (r — 1,( — Q)dndG|| <

LZI(

(13) c{llwllZz + llwllzalll Dzl " wllzz + Il Del~ |21,

where

_ G- &) (m) " (i —m) ™
K(Ta Ca T1,y Cl) - (Tl +p(cl))1/2+2¢(7- -7 + p(c _ Cl)>1/2+2€
By duality we obtain that (13) is equivalent to

\ / / Ko (1, ¢, 71, € (r1, )b (r — 71, € — )0 C)drdCadrdc| <

(14) c{|lwl|3> + |lwllLall| Dz| = wl| 2 + ||| De| " wl|32}|v]l 2,
where

= (é)lﬂl (m)*2(&1) 721 (€ - &) (m) "2 (n — m) ™™
Kl G ) = GV (e — 7+ PG — VWG 4 POV
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Without loss of generality we can assume that @ > 0 and © > 0. Further we set

2
o:=0o(r,)=T7-6+ 77_, o1:=0(n,G), ox:=o0o(r—-1,{-C().

§
As in [14] the following relation plays an essential role
(61 — €m)?

15 o1+o,—0=3 - 4
(15) 1+ 02 £1€(6 - &) e - &)
Hence
(16) max{|o|, |o1], |02} 2 |62€(€ — &1)I-
We shall also use the next elementary inequalities
(17) (m) =22 (n — m)™*2 < e(n) 72,
(18) ()2 -&)TP < ()7, if s > 0.

By symmetry arguments we can assume that
|o1] 2 |o2].

By J we note the left-hand side of (14). We shall divide the domain of integration of J into
three main regions. In the first region |¢| is small and in the second and third region we take
into account which term dominates in the left-hand side of (16).

Case 1. [£] < 2. We denote by J; the restriction of J on this region.
Case 1.1. [£| <2, |&| < 1. We denote by J;; the restriction of J; on this region.

Using (17) we obtain

; //- (€)1 =1 (my, Q) w(r — 71, ¢ = $1)d(7, )drd{dmd(y
N (€1)%1 (€ — &)1 (0)1/2-3¢(g ) 1/2+2¢( g, ) 1/2+2¢

el (gm
g( ,5,71,51) = <a)1/2_3¢<§1>31 <§ _ El)’l

Now using the boundedness of || and |£;| we obtain that g is bounded and using Holder
inequality and Proposition 2 with b = 1/2 + 2¢,0 = 1/2 and €¢; = 2¢ we obtain

Ju < |IF (o)A w(r, 1) LHLE )
1F 1 ((o2) /224 (r — 71, ¢ = G1)); L(LE )]l o

LA

We set

Remark. Note that g remains bounded for s; > 0 without smallness assumptions for
|€1]. But we are not able to apply the above arguments without smallness assumptions for

|€1] when s; < 0. Let us consider a sequence (7(™, £(™), n(“),ﬁfn)) such that

(n))2
€M 50, €Y 00, = —(—nE(T))—.
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Then it is easy to see that
g(r™, €™, n™, £M) 5 co.

Therefore when s; < 0, [£1] > 1 and |§| < 2 we have to perform a different argument in order
to estimate J.

Case 1.2. [§]| <2, |[&] > 1. We denote by Jy2 the restriction of J; on this region.

Using Cauchy-Schwarz inequality we obtain

1/2
J12 S /Il (7'1,(1) {/|;|<2 |ﬁ(7—a C)'&)(T - TI’C - Cl)lszdC} 12)(T1, Cl)dTIdCIa

where

§ - —s2 E 143 5_5 —2s; 2824rd 1/2
Ii(m,G1) = ( 1&,1)1%7-14-)2: (/|€|.<_2 ( ()77- T<’l)232<13)1—6¢<?0).2>1+4c C)

We have the following Lemma.
LEMMA 1.
Il(TlaCI) S COﬂSt, 1f |§1| 2 1.

Proof. We assume that —1/4 < s; < 0. If 8; > 0 then we can apply the arguments of
Case 1.1. in order to estimate Jj2. Using (17) and the boundedness of || we obtain

(19) Li(r,G) < o)~ / drdg v
LA = (01)172%2¢ \ Jig1<2 (0)1=6¢(ap) 1 +4e :
We perform a change of variables

a=0— 0y, B = 3&1 (& —§).

Note that |8| < 18|¢;|?. Moreover we can assume that & > 0. If & < 0 then the arguments
are the same. Further we have

d¢ = c|8|*/*dadp
&8 - B) o1 + B - oft/?
Moreover
/2
c(1) 2 d¢ !
(20) 11(7'11C1) < <al)l/2+2c ('/lf|52 m) )

where we used the following elementary inequality

°° dt c
/-oo (t)1t+4e(t — g)1-6¢ < (6)1=6¢"
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Therefore we have

Li(n,6) < (3

S <01>1/2+2c|§l |3/4

18)¢ ]2 /-oo |ﬂ|1/2dadﬂ 1/2
18162 J-c0 (365 — B)/?|a — 01 — B|M*a) ¢

We set

L oo~ ), +
oo | = a1 = BIMH)18  Ja>210,+81+1 la|<2lo1+61+1

~ J ~

(1) 2)

If |a| > 2|01 + B8] + 1 then |a — 07 — B|7! < 2(a)~!. Hence

da ¢
ye [ )
2 la|>2lo1—Bl+1 | — 01 — B|1/2=Te(a)+e = (gy + B)1/2-Te

c(2loy + Bl + 1) < c

I e e

where we used the following two elementary inequalities

® dt < c
oo ()FE|t — G[1/2-Tc = (g)1/2-Te’

/lbl dt < c|b|™
—Jb| (t>l—6€|t - 0|1/2 - (0)1/2'

Therefore we have

18]¢ 2 1811/2d3 13
C
him Q) < G gy {'/—ISI&P (36 - 8o + ﬂ)m_h}

: [ s v
(al>1/2—3/2e<§1>3/4+231—7c —18¢, 2 (%5113 _ ,3)1/2(01 +,3>1/2

Now we consider two cases for (1, (3).

o |6 <oy
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We have that

c /0 |8I*2dB
+

I(r,61) < (al)1/2_3/2¢<€1>3/4+231—7e{ _18¢2 (363 - B)1/%(oy + B)1/2

/‘8‘? 18]1/%d /2
o GE- 0701+ )"

[
(a.l)1/2-3/2:(61)3/4+231-7c X

0 dg 18¢* dp 12
X{./_lsef (o1 + B)M? +€1/0 |%§?—ﬂ|1/2(01+ﬂ)1/2}

&1 4p
. (o1)Y/%- 3/2‘(6 )3/4+2s1—7e{( 1)1/2+€1(/ 1263 - 5| ﬂl

it gp e 4 12
/o (01 + B) +/18<?—1 13¢3 - B'*(on +ﬂ)‘/2)}

< c
> <01)1/2-3/2c(§1)3/4+231

—((01)? + & In(1 + (01)))/?

c cln'/?(1 4 (o))
<0.1>1/4-3/2e<§1>3/4+231—7c (0.1>1/2—3/2c(£l)1/4+231—7c

c
< ¢+ (€Y ¥ —Te < const,

provided s; > —5/4 and e be sufficiently small.

o |oi| < &)

If |€,] < 48 then we can easily verify that I;(7y,{1) < const. If |&;| > 48 then

1/2
(%I&ls - ﬂ) > clé]/?

29
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and hence

2 1/2
c(en)!V? el __dp
11(7'17<1) < (01)1/2—3/2c(€l)3/2+231—7e {['13|€1|2 (0.1+ﬂ)1/2

< const,

c
(al>1/2—3/2c(€1>1/2+231 —Te

provided s; > —1/4 and e be sufficiently small. This completes the proof of Lemma 1.
Therefore using Lemma 1 and Cauchy-Schwarz inequality we obtain

Sz < cl|wl|Z2[lvll 2,
which completes the proof in Case 1.
Case 2. |o| > |o1], |€| > 2. We denote by J, the restriction of J on this region.
Case 2.1. |o| > |ou|, €] 22, [&4l>1, [£—&| > 1. We denote by Jz; the

restriction of J2 on this region. In this case we perform arguments of [42] similarly to [32].
Using Cauchy-Schwarz inequality we obtain

1/2
Ja < /R’ I(r,¢) {/|¢7|Zl<71| |@(71, C1)@(T — 71, — Cl)lzdﬁd(x} (7, ¢)drd(,

where

(] ()7 (€ — &) 2dndg )\
lo|>lo1] (m)

I(r,¢) = (o)1/2-3¢ 292 () — 1,)2%2 (g, )1 +4¢ gy ) I H4e

If we prove that I(7,() is bounded then an applying of Cauchy-Schwarz inequality will prove
(14) when |o| > |o1|. We have the following Lemma.

LEMMA 2. (cf. [32], Lemma 2.2.)
I(r,{) < const, if [¢]>2.

Proof. Lemma 2 is essentially proved in [32] but we shall give the proof for completeness.
Using (16),(17), (18) we obtain

1/2
(I ] dmd¢, )

< —— <0.

I(1,¢) < (0)1/2+31—3e lo1>Jo | (7)1 +4e(gg) 14 , ifs<0

(21)

1/2
(£ drd¢y .
22) o= (o)172-3¢ </lv|2lzn| (01)”“‘(02)1*“‘) o 20

We shall only prove boundedness of the right hand-side of (21), i.e. we assume that 0 >
s1 > —1/4. The arguments in the case s; > 0 are similar (simpler). We perform a change of
variables

a =0y + 09, B =361(€ - &1).
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Note that £ € [-3|o|, min{3/4£3, 3|o|}], when £ > 0 and £ € [max{3/4€3, —3|o|}, 3|0|}], when
& < 0. We assume that £ > 0. If £ < 0 then the arguments are the same. We have that
dc, = c|8]'/*dadp
EF72GE — B) o+ - o] 1

Therefore we obtain

I(r,¢) < (a)l/c2(f-zl—36|§|3/4

min{3/4€3,3|a|} 00 |ﬂ|1/2dadﬂ 1/2
<
S L. e s | S

et [ sl gpigg |
<U)1/2+31-3€I§|3/4 ‘/:"3|0| (353 - ﬁ)1/2(0’+ﬂ>1/2 )

where we used the following two elementary inequalities

*° dt <_¢ ot dt <_¢
oo ()Tt — g)1H4e = (gYIHde [ pyivdep —g|i/2 = (g)1/2”
Now we consider two cases for (7,().
o 31 < 4ol

We have that

c(€)1+2 0 |81*/%dB
I(T, C) < <U)1/2+’1_3€|€|3/4{[-3|a| (3_53 _ ﬂ)1/2<a+,3>1/2
@ 181'/2dB 1/2
AN ceEr

3,3 /2
M © _dB ap [ dg l
< (0)1/2-!-31—35 {'/‘3|0| (0‘+ﬂ)1/2 +§ ‘/0 |%§3 _ ﬂ|1/2<0+,@)1/2

3 3_1

_"'(L)1_/i+_2_31_{(c,>1/2+§3/2(/?6 48

<0.>1/2+31—3e |%£3 _ ,3|

%53_1. dp © ag 1/2
+L (0’+,3> + /3;63—1 |%E3 _ﬂll/2<a+ﬂ)1/2)}
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C(€)1/4+2s1

S Gy (@ + €7 (1 + (o))

()42 (@)1 (In(1 + (9))'/?
<0)1/4+31—3€ (0->1/2+31—3c

C<£>1/4+231 C<§>1+2’1 -1/2-s 2¢
= (€)3/4+3a—5e (5)3/2+3sl—12¢5‘:(€> Hazetiie,

Hence
I(r,¢) < const,

provided s; > —1/4 and e be sufficiently small.
o 4o < 2P

In this case we have

/2
c(€)1+2n (a)l/“ 3l dg '
I(Ta C) < <U>1/2+31_35|£|3/4 /—-3|¢7| (%63 —_ ,6)1/2<0' + ,3)1/2 <

C(§)1/4+2"1 3|a| dB 1/2
(o) Ta¥n=3elg s LMW :

c<€)—1/2+231 (0)1/4
(0’) 1/44351-3¢

< ¢(€) 7131 < const,

This completes the proof of Lemma 2.
Therefore using Lemma 2 and Cauchy-Schwarz inequality we obtain

Jar < cl|lw||2a]|v]| 2,

which completes the proof in Case 2.1.

Case 2.2. |o| > o1, |€]>2, |é1] < 1. We denote by J,; the restriction of J; on
this region. Using Cauchy-Schwarz inequality, (16), (17) and (18) we obtain

1/2
Ja2 < ./R3 I(r,¢) {/IOIZIde 11l (1, G)b(r = 7, ¢ - C1)|2dT1dC1} o(r, {)drdc,

where

(§>1+281 / dTl d<1 1/2
)
I

< 2 .
I(T, C) = <U>1/2+31—3¢: o[>l (01>1+4e<02)1+4¢ ) if 51 <0
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1/2
3 drd(y .
I(T, C) < <0)1/2—36 ([alzlall <01>1+4e(a2>1+4¢) ) if s; > 0.

Now we can perform the arguments of Case 2.1
Case 2.3. |o|2|ou|, [€]22, [§-&|<1.
This case can be treated in the same way as Case 2.2.
Case 3. |o1| 2 |o|, |€| > 2. We denote by J3 the restriction of J on this region.

In this case we shall use Strichartz inequality in order to estimate J. Using (17) we obtain

Ja < / (f)l+sxtf)(7'1,<1)'lb(1' - 1,¢ = (1)9(7,{)drd¢dnd(,
0= (€)1 (€ — &)1 (0)1/2-3¢(0) ) 1/2+2¢(g,) 1/2+2¢

Case 3.1. |§;| < 1. We denote by J3; the restriction of J3 on this region.

We have that ) )
< <

c
(o)!/2 = €& 2E - &2 T [€]l&] /2

Hence
(23) (€)1 (01)"V2(6) T (€ - &)™ < el
Using (23), Holder inequality and Proposition 2 with €; = ¢/2 we obtain
Ja < IF (o) TVAE0(r, Q) L (LG )
7= (o) =21l b (m1, €1))s LE (LG )l
171 (o) /22 (r — 71, ¢ — C1)); LE (L)
< cllwllzz|ll Dz~ wllallvll 2,
provided

2 _ 6(1/2 — 3e _(1=0)(1/2- 3¢
a=1"Tmgep 0 =TT argr

g2 — 1/2+¢/2 ° 2 —1§2+e}2’
92 _ 0(1/2 + 2¢ _(1=0)(1/24 2¢)
B=1- 1/2+¢/2 » O(rs) = 1/2+¢/2

q%+§1§'+.‘113=1 v 6(r1) +6(r2) +6(r3) = 1.

Now it is sufficient to take & = 1/2 to ensure the restrictions of the Holder inequality.

Case 3.2. [£-&]|<1.
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This case can be treated in the same way as Case 3.1.
Case 3.3. [£-&|>1, || > 1. We denote by Jz3 the restriction of J3 on this region.

We have that
O ()T HE) T E — &)™ S IEMHFIGITATE - € 7HP < const.

Now as in Case 3.1. we obtain
Js < IFN(0) T e(n, Q) LR )

IF 1 (or) =20 (s, ) LR (L2 )

172 (o)~ /3 2ew(r = 1, € = Q1)) LE(LE )l

< cllwliZallvllze,
provided

0(1/2 — 3¢ _(1=6)(1/2-3¢)
1/21¢/2 0 )= TRt o
20¢

92 172 +¢/2 2T 1/2+€¢/2!
2 _ 4 6(1/2+2€ _(1=06)(1/24 2¢)
=1 Taxen » ) ="TnTgr

Ttamta=1, 8(r)+6(r)+8(rs) =1.

2 _q_
91_1

As in Case 3.1. we take @ = 1/2 to ensure the restrictions of the Hélder inequality.
This completes the proof of Proposition 3.

It remains to use standard fixed point arguments to complete the proof of Theorem 1.
We define an operator L

1 t
Lui= p(OU®)8 - 39/T) [ Ut =)0 ¢))ar.
0
Using Proposition 1 and Proposition 3 we obtain
(24) “Lu;Bl/2+2e,31,33” < C|l¢; I?sl,agll +CT€“‘U; Bl/2+2€”"32”2.
Similarly we can obtain

(25) |Lu — Lv; BY/?+2es1.32)| <

T*||u — v;Bl/2+2e.31,82“”u+ v; Bl/2+2c,al,33“.

Using (24),(25), we can apply the contraction mapping principle for sufficiently small T,
which completes the proof of Theorem 1.
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Remark. With arguments similar to these of Case 3 of the proof of Proposition 3 one
can prove the next estimate for s; > —1/2 and s; > 0

,/|E[>1/K3(T’ Cy Tlv(l)w("'hCl)w(T - TI,C—CI)Q}(T, C)dTldcldeC <

(26) ce{l|wllZ> + llwll 2| Dz| " wl| 2 + ||| Dz| " w||22}|v]| 22,
where

(€)1 (n)*2(€1) 1 (€ — &)~ (m1) "2 (n — m)~*

(114 p(G))Y3(r — 11+ p(C = G))YE(T + p(C)) /2

If we extend (26) when |¢| < 1 then we could prove local well-posedness of (1) for s; > —1/2,
s2 > 0. An additional term would appear in the linear estimate but we could estimate it as in
Proposition 7 bellow. We note also that just using the arguments of Case 3 above we are able
to extend (26) when |§| < 1 for 8; > 0, s > 0 and therefore to prove local well-posedness in
this range for (s1, s2).

K3(T’ Ca T1, Cl) =

4. The case of three space dimensions
In this section we consider KP-II equation in R3

{ (ut + Uzzr + UUg )z + Uyy + Uz =0
u(0,2,y) = ¢
With methods similar to these of the two dimensional case we shall prove that that (27) is

locally well-posed in the modified Sobolev spaces H? for s > 3/2. In two space dimensions the
Strichartz inequalities for KP equations are similar to these for two dimensional Schrodinger
equation. One of the difficulties in three space dimensions is that losses of derivatives appear
in Strichartz inequalities (as for the wave equations for example). We write (27) in the form

(28) { i0;u = p(D;, Dy, D3)u — iuu,

u(0,z,y) = ¢
where Dy = 19;, D, = %By, D3 = 18, and the operator p(Dy, D3, D3) is defined through
the Fourier transform

(27)

F(p(Dr, Da, D3)u)(Z) = p(Z)4(Z).
Here Z = (&, 7,() stays for the Fourier variables corresponding to (z,y, 2) and

__ a3, ¢
p(2) = §+€+€

With H>*(R*) we denote the classical Sobolev spaces equipped with the norm
llu; H>*(R4)|| = [[(r)*(2)*a(r, Z); LE, )|,
Further we define modified Sobolev spaces H bs(RY)
H*(RY) = {u€ H*(R*) : F7}(I¢]"a(r, 2)) € H**(RY)},
equipped with the norm
s B> (R*)|| = [[us H** (R*) || + 1 D1~ s H**(RY)]].



36 3. ON THE CAUCHY PROBLEM FOR KP-II

Let U(t) = exp(—itp(D1, D2, D3)). We shall solve (28) in the Bourgain type spaces Bb*
equipped with the norm

lus BY| = U (~t)u; B

In the terms of the Fourier transform variables the norm of B%* can be expressed as

llus B> = (r + p(2))X(2)*a(r, Z); L2, 2l + | + p(2)MIE|(2)*(r, 2); L2, )|
The next estimate is essential for obtaining the result in three space dimensions.

PROPOSITION 4. Let s > 3/2 and

supp u C {(t,z) : |t| < cT}.

Then there ezxists v > 0 such that the following inequality holds
(29) lwug; B=2%|| < eT7|ju; BY2| 2.

Using Proposition 4 we can prove the following Theorem.

THEOREM 2. Let s > 3/2. Then for any ¢ € H* there ezist positive T = T(l|¢llg.) and
a unique solution u(t,z,y, z) of (27) in the time interval [T, T)] satisfying

v € C([-T,T); H(R®) n BY/?»,

Remark. Similarly to the two dimensional case we can define the non-isotropic Sobolev
spaces Hj%’2"*% (R®). Note that if u(t, z,y, z) is a solution of (27) then so is

uy(t, T, y, 2) = A2u(A3t, Az, A%y, A%z).
We have that
[ur(E, s Mggonezen = A2 72 u(A%%, -, )l grasneg

Hence one may expect that for s; + 4s; — 1/2 < 0 the Cauchy problem (27) is ill-posed in
H?*1»*2*2 (in particular in L?).

4.1. Proof of Proposition 4. In the proof of Proposition 4 we shall need the following
estimate.

PRrOPOSITION 5. (Strichartz inequality) Let

0<v<1 0<0<1, >0, 1/2<b<1/24+¢, suppucC{(t,z):|t]< T}
Then for any u € L?(R*) the following inequality holds

(30)  [IFA (el ST (r 4 p(2)) i, 2)); LIL] I < TPz,

(zvyv
where y* =5 ifb> 1/2, v* =v—0 if b= 1/2 and provided q and r satisfy the nezt relations

2 0l-yb .1 1 (1-6)1-1)b
5—1—1/2+€1’ 6(7‘).-3(2 r)- 1/2+ ¢
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Proof. For any ¢ € L?(R®) Theorem 4.2 of [5] (cf. also the Appendix) yields

(31) DI~ U )8; LILY, , )l < clidllza,

provided

2
E:&(r), 2< gL .

Like in the proof of Proposition 2 we obtain

_(=~ b 5(r ' -
(32) |~ (1€1™ 073 (1 + p(2)) ™ |a(r, Z)1); LI(L; 4,2l < ellullz2,
provided
2 ob' 1-8)
e, [ A = 7/
q 1/2+€1’ 5(1’) 1/2+€1

Now using (32) with b’ = (1 — )b we obtain
_(1=7)bs(r R - b
172l 54T (7 + p(2)) (T, 2)1); LUz g0l < cllir + p(2))a(r, 2); L7,
provided
2 _ - 6(1 — )b
q 1/2+¢’
The argument of [24], Lemma 3.1. yields

I{r +2(2))~"d(r, 2) ||z < T Pullgs,

which completes the proof of Proposition 5.

_(1-6)@1-7)
é(r) = Tote

Further we set
b(r, Z) = (r + p(Z2)/*(Z)*i(r, Z)
By duality we obtain that (29) is equivalent to
| // K(T, Z, T1, Zl)'d)(‘rl, Zl)ziz(r - T, Z — Zl)ﬁ(T, Z)d‘rleId-rdZ| S

(33) T {||wl|Zs + llwllzalll Dal " wllz2 + 1Dl wliZ2}Hlvll 2

where

_ (EN2)(21) (2 ~ Z1)"°
K(n2m2) = egzyie - 27 - zl)l>1/2<r +p(2))'7?

Without loss of generality we can assume that @ > 0 and ¢ > 0. We set

o:=0(r,Z)=7-6+ ———172 2- Cz, oy:=0(n,21), o:=0(tr—1,Z—- 7))
We have the relation
o _ (6 —€m)? | (&6 —€61)?
ator-o=3EE-W er ) Y aiE-6)

Hence

(34) max{|a|, |o1], |o2]} > [&€(€ — &)

37
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By symmetry arguments we can assume that
loa] > |2l

By J we note the left-hand side of (33). As in the proof of Proposition 3 we shall use the
Strichartz inequality with v just when || > 2. We consider three main cases.

Case 1. [£]| < 2. We denote by J; the restriction of J on this region. We can assume
that |Z| < 2|Z1|. If |Z]| > 2|Z,| then |Z| £ 2|Z — Z;| and the arguments are similar. Using
Holder, Strichartz and Sobolev inequalities we obtain

Ji < F (o) () L (L, )

= (z9:2)

IF1(Z = Z1)~*(o2) " 20(r = 11, Z = Z1)); L (L, w2

1—+)8(r
IFH 6 — &l TS (o) il = i, Z - 20)); L L

(f,y,z))|H|w“L2”v||L2||

IN

< eI Pw|alvllLe,

provided
2 _,_90-~ _(1-6)(1-1v)
42_1_ +2¢ ? §(r2) = 14+ 2¢ !
2 _ 4 _ 1 1—v)é(r, 3
o = 1" TF2q » °> 6 +2e) T
1,1_1
an @ 2
We take v = € and hence
261
0—1-6’

i.e. 0 < 7 <1 for € and ¢, sufficiently small. The Sobolev embedding restriction becomes

(54 1261 + €)(1 — € — 2¢;)
6(1+2€1)2 !

which is fulfilled for s > 2/3 and ¢, € sufficiently small.

§>3/2-

Case 2. |o| > |o1], [€] > 2. We denote by J; the restriction of J on this region. We
can assume that |Z| < 2|Z;|. If |Z| > 2|Z;| then |Z| < 2|Z — Z,| and the arguments are
similar.

Case 2.1. [{;]| < 1. We denote by J2; the restriction of J; on this region. Using (34)
we obtain

(35) lo| > clé]?|al-



4. THE CASE OF THREE SPACE DIMENSIONS

Using (35), Holder, Strichartz and Sobolev inequalities we obtain
Ju < FNZ = Z1)*(oa) V2b(r — 11, Z ~ Z2)); LI (LG, )|

17~ (o)~ 2161~ by, 20); L (L, )10l 22

1-v)é(r
< (€ - &l ST (o) 20 (r =i, 2~ Z)) LY (L, )
IF =2 (or) = 2ea | Vb (rh, Z0)); L (L2, , )l e
< T |w|| g2 [|| Dl wl| g2 |l 22

provided

2 _ 0$1-12 _(1-901-7)
q_l—l— + 2¢; ) 6(7‘1)— 1+7€1 ’

l_ _ 1 1- 57‘1 é_
‘12—1 I+2¢ s> 6(1+ 2¢;) T

We take v = ¢ and hence
2¢;
1—¢
i.e. 0 < 7 <1 for € and ¢ sufficiently small. The Sobolev embedding restriction becomes
(541261 +€)(1 — € — 2¢1)
6(1 + 2¢;)? '

which is fulfilled for s > 2/3 and ¢, € sufficiently small.

6=

$>3/2-

Case 2.2. [&] > 1. Using (34) we obtain
lo] > cl¢l®.

Now we can use the arguments of Case 2.1.

39

Case 3. |o1| > |o|, |€] > 2. We denote by J3 the restriction of J on this region. We

have that

Ja < / (f)(Z)"lZ)(Tl, Zl)'d’("' -m,Z - Zl)f)(T, Z)deZdTleI
= (Z = 20y (Z1)* (o) T2 (a0) 12 (03) ]2

Case 3.1. |£;| < 1. We denote by J3; the restriction of J3 on this region. Using (34)

we obtain

(36) 1] > =I€PIEal.
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Case 3.1.1.
region. Using (36), Holder, Strichartz and Sobolev inequalities we obtain

1712 - 20 (o2) ™20 (r — 71, Z - 20)); L (LE,, )

171 (o)"?6(r, 2)); LE (L, 4,2 I D1l w2

J311

provided

<

IA

IN

1—-4)4(r
NF-1(€ - &l arkae) (o2) V2 (T — 11, Z — Z4)); LI (L]}
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|é1] £ 1, |Z] £ 2|Z,|. We denote by J3;; the restriction of J3; on this

ae)) |

IF (o) "?0(r, 2)); LE(LE, NI D1l 2

T2 |jwl| [l Da|~ wll g2 lol 2,

2 _ 0_£1—72 _(1-06)(1-1)
.q_l-_l— + €1 ) 6(7‘1) 1+2€1 '

_.2__:1_ 1 s> 1_767'1 +3
q2 1+2¢ 6(1+ 2¢;

1+1_1
a2 2

We take v = € and hence

26]

0=
1—¢'

i.e. 0 < 0 <1 for € and ¢; sufficiently small. The Sobolev embedding restriction becomes

(5+ 126, +€)(1 — € — 2¢;)

> —
s23/2 6(1 + 2¢;)? '

which is fulfilled for s > 2/3 and ¢, € sufficiently small.

Case 3.1.2.
region. In this case we have that |Z| < 2|Z — Z;|. Using Hélder, Strichartz and Sobolev
inequalities we obtain

provided

J312

€1l <1, |Z] > 2|Z;|. We denote by J3;2 the restriction of J3; on this

< NIF (200l (m, Zh)); LE(L (xyz))“
|7~ (o2) 20 (r = 71, Z = 24)); LP(LE, , )
|F=1 (o)~ ?0(r, 2)); qu(L(zyz))”

< oI wllgzll| Daf T wllgallvll -

1,.1_1
nte=72
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Now it is sufficient to take ¥ = 1'—3‘* (i.e. g2 = g3 = 4) to ensure the restriction of the Holder
inequality.

Case 3.2. |€ —&;| < 1. This case can be treated in the same way as Case 3.1.

Case 3.3. |6-&|>1, |&]|> 1. In this case we have that
lo1] > [€lI€1]1€ = &1 > cl€|?

Now we can estimate J like in Case 3.1. This completes the proof of Proposition 4.

4.2. Proof of Theorem 2. As in the two dimensional case we shall solve globally in
time the truncated integral equation

37) ) = $OUOUO) - go(e/T) [ Ut - )0, (u2(t))de.

Note that (37) is equivalent to
8) w0 =OUEUO) - p/D) [ UG- 0D,

Hence we can assume the nonlinearity to be truncated too. We shall solve (38) in B!/2*. In
this case an additional term appears in the linear estimate. For that purpose we introduce
the auxiliarv snaces Y?

Y? = {u:|u;Y?|| < oo},
where
lu; Y2l = [[{m) " 2) F(U(=t)u); L(L7)|| + II{m) " (2)° |61~ F (U (—t)u); LZ(L5) |
The linear estimate has the form

PROPOSITION 6. (cf. [24], Lemma 2.1).
The following estimate holds

t
¢(t/T)/ U(t - ¢)0:(u*(¢'))dt'; BY**|| < eflluug; B™/3*| + [luus; Y1}
0

Hence in order to apply a fixed point argument we need the following Proposition.
PROPOSITION 7. Let s > 3/2 and
supp u C {(t,z) : |t| < cT}.
Then there exists ¥ > 0 such that the nezxt inequality holds
(39) lluuz; Y2|| < eI lu; BY2*|2.
Proof. Using a duality argument we obtain that (39) is equivalent to

| / / K(r, 2,1, Z0)(r1, Z1)(r — 11, Z — 21)8(Z)drdZ,drdZ| <

(40) T{|[wl|Za + llwllalll Dol wliza + [1D=| " wl|Za vl 22,
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where
(€)2)(%1)~(Z — Z1)°
K(r,Z2,m,2y) = (01)1/%(03)1/%(0) i
When €] < 2 we can perform the same arguments as in Case 1 of the proof of Proposition 4
replacing 9(r, Z) with (¢)~'9(Z) € qu-,z)' When |oy| > |o| we can use the same arguments
as in the proof of Proposition 4 replacing o(r, Z) with (o)~1/2-¢)(Z) ¢ L}, 5 for sufficiently
small e. When |o| > |o;| and || > 2 we have that

lo| > clé|*|&1], when |&] <1

and
|o| > cl¢|?,  when |&]> 1.

Hence ©32) _ c(e)i(2) ©)(2)

v C v C v

o) S+ aler S Bl +iep  Vher lalsd
and

(©)9(2) _ c©)3(2)
@) S @rigr T izt
It remains to note that
o(Z
(i€)>:_(|€)|2 L(TZ)1 with “( >+I§|2’ (-rZ) SC”U"LZ

and to apply the arguments of Proposition 4. This completes the proof of Proposition 7.

We shall solve (38) by the contraction mapping principle for sufficiently small T. Using
Proposition 6, Proposition 4 and Proposition 7 we obtain

I%(¢/T) /0 v (t - )3 (9 (t'/2T)u*(¢'))de’; BY*|| <
c(l10:(%*(t/2T)u?(t, 2)); B~V/*|| + 10:(¥*(¢/2T)u (2, 2)); Y°||) <

cT"||%(t/2T)u(t, Z); B2
But we can easily prove that for any € > 0 there exists ¢ > 0 such that
(41) Il (¢/2T)u(t, Z); BY/>*|| < T ~¢lu; BY/2.
To prove (41) we use the next inequality due to Coifman and Meyer (cf. [18])

(42 labllray < ey Il my + ]z g 19780y
where J = (1 - )1/ 2, Using (42) and Sobolev embedding we obtain
4 (t/2T)u(t, 2)); BY*?| <
c(ll¥llzeolllus B2 + |71/ (8/2T) | a+ll[|u; BY/>|]) =

([$llz= + T~ T |T 2| are) s B2,
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which proves (41). Hence

| ¥(¢/T) /: U(t - t')0: (¥*(¢'/2T)u’ (¢'))dt’; B/

As in the proof of Theorem 1 a fixed point argument completes the proof of Theorem 2.

< cT0-9||u; BY/2|2,

5. Appendix. Strichartz inequality for 3D KP equation

In this appendix we give the proof of (31). This estimate is essentially established in [5]
but we give the proof again for completeness. In the particular case of KP equations the
arguments are simpler then these [5] where a large class of estimates of type (31) for some
generalized KP equations are derived. In particular a smoothing effect is established if we
replace the term uzz; With uzzzz; in KP equation.

PROPOSITION 8. For any ¢ € L%(R®) the following inequality holds

4
(43) D=7 U () ¢lly ey, , ) < clléllza,
where 9
- =4(r).
p (r)

First we shall prove a L? — L? decay estimate for the solution of 3D KP equation.
LEMMA 3. The nezt inequality holds
_i) . st
(44) “IDI‘ 3 U(t)¢;L(z,y,z)|| <t 5 )“¢”L"”
where
1 1
2<r<o0, —-+5=1
ror
Proof. Using Fourier transform we obtain
Ut)p=90xS5(t,.,.,.)

where
(45) S(t,2,y,2) = /Rs exp(i(e€ + yn + 2 + tp(Z))dédndc.

We change the variables as in [48]
7= /6, C=1t/elMC.

Hence we have that

S(t,2,y,2) = 7 / " lelexp(i(s?/t + 22/t + )6 + it€)de

—00

Further we have

Ut)e = %/ 3 /°° €| exp(i(y2/t + 21/t + z1)€ + it€’)dEdzydyrdz <

Csupuet-onnl [ 161} expliat + t6")ElIIDA 0l sy



44 3. ON THE CAUCHY PROBLEM FOR KP-II

Now using Lemma 2.1. of [39] we obtain
c
(46) I @9llz= < Z51D="4ll, g2,

The proof of (44) follows by interpolation between (46) and the conservation of the L% norm
for KP equations. This completes the proof of the Lemma.

Proof of Proposition 8.

By duality argument (43) is equivalent to

_&r)
(47) l R,(IDzI e (S(t,-)*¢))¢|SCII¢|IL2II¢IILg'(L(r;M),
where

PR

¢ ¢ r
Using Plancherel equality we obtain that (47) is equivalent to

49 | 60 26@d Dz < bl

Here S (7, Z) stays for the space-time Fourier transform of S. We have that
S(r,2) = 8(r - p(2)),

where § is the Dirac delta function. Hence one can estimate the left hand-side of (48) as
follows

| /R, €= 52 5(r, 2)4(2)b(r, 2)drdZ] < ezl S b(a(2), 2) : LY.

Therefore Proposition 8 will follow from the next Lemma.

LEMMA 4. (restriction lemma) The following Fourier transform restriction inequality
holds

|.__(_).

1€~ $(p(2), Z) : L ||<CH¢IILq(Lr I

Proof. We have that

__(_l 2 _ & v 2 —
| oo 16515062, )Pl = | /R4sl(r,Z)|¢(r,Z)| drdrdZ| =

| /R‘ (S1 % Y)Pdtdzdydz| < c||S; * ¢||L:'(L;,y,,)||¢”L;"(L;j,,,,)'

Here S (¢, z,y, 2) is defined through its Fourier transform

_8(n <
| 3

S51(1,2) = |75 8(r - p(2))
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Using Lemma 4 and weak Young inequality we obtain
151 *bllLges, ) <

ll |15 e €1°5* exp(i(t = P(2)) (5, 2))s Ly sl <

el [ 10 D3 Lyl = )"l < ellblyygr
00 t z,Y,2

The restriction of Young inequality is

1 1 2

- +1==4+46(r), ie. -—-=4(r
,H1= g+ = =5(r).
This completes the proof of the Lemma and Proposition 8.
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CHAPTER 4

Global low regularity solutions for Kadomtsev-Petviashvili
equation

This Chapter essentially contains the paper [58] (Global low regularity solutions for Kadomtsev-
Petviashuili equation, to appear in Differential Integral Equations).

Abstract.

We study the initial value problem for KP-II equation. We prove the existence of solutions
to the integral equation corresponding to KP-II for any data in L?, removing the additional
condition imposed in [57]. Following a method recently developed by J. Bourgain we obtain
global solutions to KP-II with data below LZ.

AMS Subject Classification: 35Q53, 35Q51, 35A07.

1. Introduction

In this Chapter we continue the study of the initial value problem for Kadomtsev-
Petviashvili-II equation (KP-II). The Kadomtsev-Petviashvili equations are two dimensional
extensions of the Korteweg-de Vries (KdV) equation. They are “universal” models for the
propagation of weakly nonlinear dispersive long waves which are essentially one-directional,
with weak transverse effects. The Cauchy problem for KP-II equation in R? has the form

(1) { (8 + taz + Utz)z + Uy =0
u(0,z,y) = ¢(z,y)

In order to solve the initial value problem (1) different methods could be applied. For in-
stance (cf. [B1]) the inverse scattering technique provides global existence results for (1)
under some decay assumptions on the initial data. Using energy type estimates for (1) local
well-posedness in H* for s > 2 could be obtained (cf. [31]). The condition for s is in order to
control the L™ norm of the gradient of the solution. The equation (1) possesses an infinite
number of conserved quantities. Unfortunately the only useful one to provide global a priori
bound seems to be the L? norm.

In [12], [13] J. Bourgain developed a new method to study the local regularity of some
important nonlinear evolution equations. In the favorable cases the local well-posedness re-
sults together with the conservation laws provide global well-posedness. The method was
first applied for the nonlinear Schrodinger equation and KdV equation. One of the main
points of the method is the choice of the functional space where the solutions are expected
to belong. These are Sobolev type spaces based on L? which take into account the specific

47
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structure of the respective equation. The solutions are obtained by a fixed point argument
for the equivalent integral equation. The linear estimates are similar for all equations. They
are in fact one dimensional with respect to time (cf. [23]). The main difficulty concerns
the nonlinear estimates. There are at least two different methods for deriving the nonlinear
estimates. The first of them makes an essential use of the Strichartz-type inequalities injected
into the framework of Bourgain’s spaces. The second method is based on a direct estimate
for the kernel in the integral representation of the nonlinear estimate.

Returning to KP-II equation, some results (using Bourgain’s method) concerning local
well-posedness of (1) have recently appeared. The method of Bourgain is applied to the
evolution equation derived by (1)

@) { 10u = p(D1, D2)u — tuu,
u(0,2,y) = ¢,

where D, = 18;, D, = 19, and the operator p(Dy, D;) is defined through the Fourier
transform

F (p(D1, D2)u) () = p(¢)u(S)-

Here ¢ = (£, n) stays for the Fourier variables corresponding to (z,y) and

_ "
p(¢) = «$+5

The method consists of applying a Picard fixed point argument in a suitable functional space
to the integral equation corresponding to (2)

t
3) u(t) = U(t)d— 1/2 / U(t - £)0, (w2 () dt’,
0
where U(t) = exp(—itp(D1, D2)) is the unitary group which defines the free evolution of (2).

In [14] local solutions of (3) in L? are obtained. The nonlinear estimate uses a dyadic
decomposition related to the symbol of the linearized operator. A short proof of local well-
posedness in H®, s > 0, which uses Strichartz inequalities, is done in [56]. The same result is
obtained in [32], where the nonlinear estimates are obtained by the second method explained
above. In [57] local well-posedness of (1) in Sobolev spaces with negative indices with respect
to z is obtained. However, an additional condition on initial data is imposed. More precisely,
it is assumed that |€|7'¢(&,n) € L%, which seems to be quite restrictive. Our first goal in
that Chapter is to prove local existence and uniqueness of (3) for any data ¢ € L2, removing
the additional condition on data imposed in [57] (cf. Theorem 2 below). The solutions are
in spaces similar to these proposed by J. Bourgain [14]. Therefore in some sense we give an
alternative proof of the result of [14] in the case of data on R? (in [14] the periodic case is
also considered).

In [15] J. Bourgain developed a method to obtain global well-posedness in Sobolev spaces
with fractional indices between these where global well-posedness is provided by the conser-
vation laws and the local existence. The second goal of this Chapter is to show that this
approach provides global solutions below L? (cf. Theorem 5 below). Actually we use a sim-
ilar argument to this performed in [19] in the context of the KdV equation. In [21] the
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approach is applied for the Modified KdV equation. More precisely global well-posedness
for the Modified KdV equation for data in H*(R), s > 3/5 is obtained. The proof in [21]
does not use Bourgain’s type Fourier transform restriction norms. It relies on some sharp
estimates for the unitary group associated to the linearized KdV equation and in particular
on the dual version of the sharp Kato’s smoothing effect.

With X5b1(R3) we denote the spaces equipped with the norm

by
(r)? (1 + (<§§>1/4> u(r, E,n):Lff.c)

where (-) = (14| -|?)}/2. Now we define the Bourgain type spaces B**'(R3) equipped with
the norm

Jlu; X**1 (R)|| =

b

llus B[] = [U(=t)u; X>*)).

Since F(U(-t)u)(r,¢) = u(r — p(¢),{) we obtain that in terms of the Fourier transform
variables the norm of B%b1 can be expressed as

T b
(r+20)* (14 B ) 01

By H: we denote the Sobolev space which measures the regularity with respect to the z
variable equipped with the norm

Nullzg = 11K6)°@(&, )l 2

(€’

Jfus Bo ) =

Further we define the space B equipped with the norm

by
r+ oo (14 SRR ) 2t 02

Clearly Bg’b‘ = B, Let I C R be an interval. Then we define the space B5™* (I) equipped
with the norm

b,b —
”u; Bs l” -

Iollppongy =, {Iwllgpm, w8 = u(0) on 1}

Note that for b > 1/2 and b, > 0 one dimensional Sobolev embedding injects Bg'b‘ into
C(R, H:(R?)). Now we state a bilinear estimate which will be the main tool in the proof of
the L2-Theorem concerning KP-II (Theorem 2 below).

THEOREM 1. The following inequality holds
(4) lluug; B~ || < ellu; B4 2,
where
b>1/2, 1/2>b >7/16, b >11/48, b —-1/4>b; >5/8 -V

In the proof of Theorem 1 we make use of both Strichartz type inequalities and changes
of variables similar to those performed by C. Kenig, G. Ponce and L. Vega in the context of
KdV equation. We shall use Theorem 1 for b~ 1/2, ¥’ ~ 1/2 and b; ~ 1/4. Under the same
conditions for b, b’, b; the arguments of the proof of Theorem 1 yield

||6,(uv); B-b'.ln” < cllu; Bb’b‘||||v; Bb’b‘”.
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Using Theorem 1 and the arguments of the linear estimates in Bourgain’s framework (cf.
Section 3) we can obtain the following Theorem.

THEOREM 2. There erist b > 1/2 and b; < 1/4 such that for any ¢ € L? there erist a
positive T = T(||§||z2) and a unique solution u(t,z,y) of (8) in the time interval [-T,T]
satisfying

u € C([-T, T}, L*(R?) n B* ([T, T)).
In addition the length T of the ezistence interval satisfies T > c||¢||zf .

Let u(t,z,y) be a solution of (3). Then u is a solution of (1) only if an additional
restriction on the initial data is imposed. This is because of the singularity of the symbol
p(¢) near to £ = 0. Actually the operator U(t) is defined for any ¢ € L? but U(t)¢ has a time
derivative only if we suppose that ¢ has a “zero z mean value”. More precisely U(t)¢ has a
well-defined time derivative provided |§|‘1$(§, n) € §’. This condition means that formally
J ¢(z,y)dz = 0. Hence we have the following Theorem.

THEOREM 3. There ezxist b > 1/2 and b; < 1/4 such that for any ¢ € L? satisfying
|€171p(&,n) € S’ there ezist a positive T = T(||¢||12) and a unique solution u(t,z,y) of (1)
in the time interval [T, T] satisfying

u € C([-T,T}; LAR?) n B* ([-T, T)).

As was mentioned previously, if u(t,z,y) is a solution of (1) then ||u(t,.,.)||z2 does not
depend on ¢. The time interval for the solutions obtained in Theorem 3 depends only on
|[@llz2 and therefore iterating the process of deriving local solutions we arrive at the following
Theorem.

THEOREM 4. (J. Bourgain) For any ¢ € L?(R?) such that |§|‘1$(§,17) € S8’ there exzists
a unique global solution of the Cauchy problem (1).

As it was mentioned we shall generalize Theorem 4 for data rougher then L?. Following
the idea of [15] we decompose the initial data in low and high Fourier modes. Then we use a
local existence Theorem in Sobolev spaces with negative indices (cf. Theorem 4.3 below) as
a consequence of a bilinear estimate proved in Section 4.1. Then we make use of the bilinear
estimate from Section 4.2 to complete the argument. Thus we are going to prove the following
Theorem.

THEOREM 5. Let (b,b1) = (3+, 55) and s € (—1/310,0]. Then for any ¢ € HS such that
|€]71¢(&,n) € S’ there ezists a unique global solution of the Cauchy problem (1) satisfying

u € C(R; H(RY))NBYY | w(t) — U(t)p € L2(R?).

The number —1/310 is of technical nature and is probably not optimal. Our aim here is
to show that Bourgain’s argument could be applied for KP-II. The essential step of the proof
of Theorem 5 is the bilinear estimate proved in Section 4.2. The result of Theorem 5 could
be easily generalized to the spaces Hz!;", provides s; > —1/310 and s, > 0. The point here
is that for s; > 0 we have

(M (m)™*m-m)™" <c

For details we refer to [52], [57].



2. PROOF OF THEOREM 1 51

The rest of this Chapter is organized as follows. Section 2 is devoted to the proof of the
nonlinear estimate (Theorem 1). First we state the Strichartz inequality injected into the
framework of Bourgain spaces and some elementary calculus inequalities needed for the proof.
The rest of the section consists of the proof of the integral representation of the nonlinear
estimate (cf. (13) below). Section 3 is devoted to the proof of Theorem 2. First we prove the
linear estimate (Proposition 3.1). Then a fixed point argument and a scaling one provide the
existence. Finally we prove the uniqueness by the aid of Proposition 3.4. Section 4 is devoted
to the proof of Theorem 5. First we prove two bilinear estimates needed for the proof. Then
in Section 4.3 we apply Bourgain’s argument to complete the proof.

We shall use the following notations. By or F we denote the Fourier transform, while by
F~1 the inverse transform. ||.||z» denotes the norm in the Lebesgue space LP. A ~ B means
that there exists a constant ¢ > 1 such that %|A| < |B| < c|A]. The notation a+ means a + ¢
for arbitrary small ¢ > 0. Constants are denoted by ¢ and may change from line to line.

Remark. Some new results of H. Takaoka for KP-II equation have recently appeared.
The result of Theorem 2 (cf. also Corollary 2 below) has been further developed in [52]
where a sharper local existence without the restriction on the data is obtained in Sobolev
spaces of negative indices with respect to z. (In the next Chapter we shall further improve
that result). In [53] global well-posedness below L? is shown. However in [53] an additional
condition on the initial data is imposed. More precisely the initial data is supposed to belong
to a homogeneous Sobolev space of negative index with respect to z which is a restriction on
it. On the other hand the regularity of the spaces considered in [53] is lower then this in the
present Chapter. Thus the results of [53] do not overlap with ours.

2. Proof of Theorem 1

2.1. Preparation of the proof. The linearized KP equation has dispersive properties
(cf. [48]) and hence there are Strichartz type inequalities for KP (cf. [51]). On the other
hand these inequalities are naturely injected into Bourgain’s framework. In this paper we
shall make an intensive use of the following estimate.

PROPOSITION 2.1. Let ¢, > 0 and 2 < ¢ < 4. Then for any u € L?(R3) the following
inequality holds

(5) |72 ((r + p(¢)) ", Q)llze < ellullLe,
where b =2(1 - 2)(1/2+«).

Proof. For any ¢ € L?(R?) the classical version of the Strichartz inequality for KP
equation (cf. [48], Proposition 2.3) yields

(6) NU)¢lle < cllll L2
Once we have (6), Lemma 3.3 of [23] gives for any u € BY/2+41.0
(7) lullzs < cllu; BY/2*19.

Interpolating between (7) and the identity

llullzz = llu; B,
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we obtain
(8) llullze < ellu; B>,
where b = 2(1 — %)(1/2 + €1). But (8) is equivalent to (5) which completes the proof of
Proposition 2.1.
We shall also make use of the following calculus inequalities.

PROPOSITION 2.2. Let ¥ < 1 <. Then for any a € R the following inequalities hold

o dt c
©) | wi= <
ot dt c
10 | o
o0 dt c
an | owam <
Now we set
2
c:=0(r,)=7-6+ %, o1:=0(m,G), o2:=0(r-m,(-G),
(o)
9 :=6(r,() = O 0, =0(r1,$1), O2=0(r—711,{—C1).
Setting @(T,¢) = (0)®(8)@(r, ) we obtain that (4) is equivalent to

(12) “ l(fl()f? //K(T, C,lefl)a("'l,Cl)@(T-T1,C—C1)dT1dC1;L%.,,C)

where

‘ < dllwl..

1
K(T7 C) T1, Cl) - <01>b<02>b(01)(02> .

By duality we obtain that (12) is equivalent to

(13) / / Ky (r, ¢, 71, C)B(r1, C)B(r — 70, C — C1)(r, €)drydCrdrdC

where

< cllwliFzllvllza,

1£1¢6)
Ky (r,¢, 1, = 7
06T ) = o o 8 ()
Without loss of generality we can assume that & > 0 and ¥ > 0. By symmetry arguments we
can assume that |o1| > |o2|. To gain the loss of a derivative in the nonlinear term we shall
use the relation (cf. [14])

(&1n — €m)?

(14) o1+02—0=36EE-6)+ EEE—)

and hence

(15) max{|a|, |o1], |o2|} > |£2€(€ - &)
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By J we denote the left-hand side of (13). As it was mentioned in the introduction, there are
different methods to estimate J. One of them is based on using the Strichartz inequalities.
Note that J can be written in the form

J= / ws (7, ¢) (uz % ua) (1, () drdq.

Using Plancherel identity and Hoélder inequality we obtain
3
J < [T F iz,
j=1
where E?ﬂ % = 1. In the favorable cases u; have the form
Uy = <U)_aﬁ, Ug = <01>-a1@, Uz = ((72)-0213

and an application of Proposition 2.1 (Strichartz inequality) completes the proof.

Another method reduces the evaluation of J to a direct estimate for K;. Namely Cauchy-
Schwarz inequality yields

1/2 1/2
/ ( / derldcl) ( / | (1, CL)B(r — 71, ¢ — cl)Pdndcl) o(r, ¢)drd¢

K15 L2 ¢y (L o)) Ml 2 0]l 2.
Hence the difficulty is to prove

J

IA

IN

”Kl; (021()(11(2711(1))“ < 0.

Now we give an idea for the estimation of J proposed in [14]. We localize J in the following
regions

<U)NK’ (1) ~ K, (0’2)~K2, )~ M, (&)~ M, <€‘€1>~M2,

where K, K, K, take values 27,5 = 0,1,2,... and M, My, M, take values 2/, j = 0, £1,42,...
Therefore (15) yields
ma.x{K, Kl, Kz} Z MM1M2

z MC }(,KI,KQ, M, M],M:z

< UKM, WK,M;, * WK,M, >,

where < .,. > stays for the L? scalar product, the sum is taken over K, K1, K2, M, M, M,
and vkM, WK,M,, WK, M, are localized v and w. The difficulty is to prove an inequality of

type
(17) ”wKxMx *‘""Kﬂ‘ffz"[x2 < C(Kl’ K3, M, M2)“wK1M1"L?"wK,M;”L?

In the favorable cases use of (16) and (17) provides the estimation of J by a total constant.
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2.2. Proof of the integral representation of the bilinear estimate (4). We shall
estimate J considering five cases for (7,(, 71,(1). We use both the Strichartz inequalities and
direct estimates for the kernel K, (r,¢,m,¢1).

Case 1. €| < 24. We denote by J; the restriction of J on this region. Using that
() < ¢(o)* we obtain
c
Ky(1,¢,11,01) £ ——-
l( C 1 Cl) (Ul>b<02)b
Since b > 1/2 the use of the Strichartz inequality yields
Ju < IF (o)t (m, el F (o) P B(r = 71, ¢ = Cu))llallvllze

< cllwliZallvllza-
Case 2. |o| > |o1], |€| > 24. We denote by J; the restriction of J on this region. Using
Cauchy-Schwarz inequality we obtain

1/2
J2 < /R"‘ I(r,¢) {[alZlanl |W(71, 1) W(r = 71,¢ = C1)|2dT1dC1} v(r,¢)drdc,

where

1/2
€l dr1dG
I(r,¢) = (o) (/laIZI«nl (01)2b<02)2b(91)2(02>2) .

We have the following Lemma.
LEMMA 2.1.
I(r,{) < const, if [£| > 24.
Proof. Using (9) we obtain

1/2
1£1¢6) ¢y
I(T7 C) < <0.>b' (</|”|Zl‘71| (01 + 0-2>26> .

We perform a change of variables similarly to [32]
a=01t+0y,  B=3&L(E-&).

Note that £ € [-3|o|, min{3/4&3,3|c|}], when € > 0 and ¢ € [max{3/4¢3, -3|o|}, 3|0|}], when
& < 0. We assume that £ > 0. If £ < 0 then the arguments are the same. We have that

c|B|'/%dadp
€3/2(3€3 - B)1/?|0 + B - af'/?

d¢y =
Therefore we obtain using (11)

: 3 /2
C(§>1/4<0> {/mnn{3/4£ ,3|a|}/-oo Iﬂll/"’dadﬂ }1 g

I(r,¢) < RGN oo B = B) 25 + ff — o /% (a)?

c(€)/g) [ mint3/4e’3lol} \8[1/2dg 1/2
(U)b’ /;3|a| (%63 _ ﬂ)1/2<0+ ﬂ)1/2 .
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Now we consider two cases for (7,().
o 3IEP < 4ol

We have that

€40, [° 18"/2dB
I(T, C) < (a’)b’ 3o (%53 - ﬂ)l/2<0’+ﬁ)1/2
3¢ |,3|1/2d,3 12
+L‘ (%53—ﬂ)1/2(0+ﬂ>1/2}
L 0V, 0 4B
S0 s (0B
i© dp
3/2 12
+£ A |%€3 _ ﬂ|1/2(0 +,6>1/2}
c(€)1/4(8) 1/2 | ¢3/2 -1 4p
. (o) oy +¢ (4/0 |2_§3 - g
« 4 v
+/ <U+,B> /{3_1 1%63 _ﬂll/Z(a._*_IB)l/z)}
/
. %ﬁ“")“’ﬂmln(u<a>))‘/2
< c(€)/4(6) 4 c€)8)

oy o
Let |o]® < |€]/4. Then we have

(€) (3}
GEANGES

provided b’ > 1/3. Let |o|** > |€|'/4. Then we have

€ 3/4
1r0) € oo + g <

I(r,{) < < const ,

const ,
provided b’ — b; > 1/4.

o 4o < 3P

55
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In this case we ha

()14 | [ a4 "
I(r,{) < (g)'-1/4 {/:_alal (%63 - ﬂ)1/2<0+ﬂ>1/2}

c(6) O R
@A {/.w. o+ ﬂ>1/2}

c(8)(o)/*Y
N @
Let |o|** < |€]*/4. Then we have

(6)3/2—36’

Q)< Zgnr

< const ,

provided &’ > 1/3.
Let |o|® > |€|1/4. Then we have

<U>1/2-b’+61 < <£)3/2—3b’+361
€3 = (g3

provided b’ — b; > 1/4. This completes the proof of Lemma 2.1. Therefore using Lemma 2.1
and Cauchy-Schwarz inequality we obtain

I(r,¢) < < const ,

J2 < cl|wl|Za]lvll -

Case 3. |oy| > |o|, €] > 24, || < 1. We denote by J3 the restriction of J on this
region. We shall estimate J3 by a localization with respect to &; and (o;). We set

JEM _ / / K (r, G, Q)@ (r, Q) B(r — 71, € = C1)3(r, Q) dmdGrdrdC,
AKM

where
AKM = {(11,¢1) 1 |6] ~ M, (o1) ~ K }.

Js< Y JEM,
KM

where the sum is taken over K = 2%,k =0,1,2,... and M = 2™, m = 0,-1,-2,.... Now
we shall estimate Jg{M in two ways. First by a direct estimate for K; we bound J;{{M . Then
we estimate JXM by the aid of the Strichartz inequality. A suitable interpolation provides
the needed inequality.

We have

Cauchy-Schwarz inequality yields

1/2
JEM < /R" *M(r,¢) {/AKM |[@(r1, Q)@ (T = 71, - Cl)|2dT1dC1} v(r, ()drd,
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where

M, = B0 (| dnde )1/2.
()" \Jaxn (01)%(02)26(61)2(62)?
We change the variables
a=o01+03, P=3a(§-&).
As in the proof of Lemma 2.1 we suppose that £ > 0. We have
18] < 3I€I(J€] + 1)2M < 9|¢°M.
Hence using that () < c(o)®* we obtain

IKM(T, C) < Cl€|1/4

Since |B| < |o1| we obtain

|ﬂl1/2 < C<al)l/2—2bl S CK1/2—2b1.

/ / / e |B1/2drydedp e
onrief (o)™ e — o) (363 = B)Plo+ f — a /282 |

(61)* ~
Hence
IKM(z ) < C|€|1/4If—1/4_b‘ {/ /QMW dadp
(@) e (@)% (36 — B) /[0 + B - afil?
< cl¢| /4K /b {/9M|e|2 dB }1/2
= (o)h —omigl2 (363 = B)/2|o + BI*/2

Since |€| > 24 we have that |3£3 — 8| > 3¢3 and therefore
1/2
Ki/A-b ( MEE g
"™z, cl 2( 5\ —b / 2 1/2
€11/%(a)¥' =2 | J-omep2 |o + BIY/

cK1/4-h .
M/4£11/2

IA

< cKl/4-61M1/4,

where we used the elementary inequality
oM |¢[?
/ _L” < cMY?g).
oM lo + Bl

Hence
IKM(‘F, C) < cKl/4—61 M1/4.

57
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Cauchy-Schwarz inequality yields
(18) J3M < KA M4 )| Tz o]l -
Now we shall estimate JM (7, () by the aid of Proposition 2.1. We have

&6
(T ¢, TlaCl) = (a’)b'<(11;§+)b‘ (02>b

Let ||t < |€]/4. We denote by JEM the restriction of JXM on this region. We have
cl¢l

(0)¥(01)P+0(02)?

Kl (Ty C’ 71, Cl) <

CM—I/ZK—I/S
(a)b'(al)b+bl —5/8(0-2)6 -

Using Proposition 2.1 and Hoélder inequality we obtain

I — el @) o, Ollize

< M1/2K1/8
(o)™ =51 458 (r1, 1) [ o2
{o2) " @(r — 71,¢ = C1)llLes

< —lwllZa ]

= pzgrsIL2IENL?

provided 311— + q—12- + q% =1 and

Vo= 20124 )1 - qi),

1

b+b, —5/8

2(1/2+ e1)(1 - =),
q2

b = 2(1/2+e1)(1—3).
q3

Now we take ¢ = b+ b,/2+b'/2—13/16 to ensure the restriction of Holder inequality. Note
that if ' + b; > 5/8 then ¢; is positive.

Let |0 > |¢|/4. We denote by JEM the restriction of JXM on this region. Since
(01)3/8 > c|€[3/* M3/ we obtain

/
KI(T) Ca 71, Cl) S b— CI£|3 :
() =01 (01 )o+b1(ay)?

CM—S/SK-I/IG
(a)br_bl (01)b+b1 —7/16(0.2)1, .
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Using Proposition 2.1 and Holder inequality we obtain

C —_» ~
I < WII(U) ST, Q) Iz
(1) =0+ 718G (7, C1) || L2

I{o2) B (1 = 71,¢ = Q) lLw

c
s M3/8K1/16”w”%2”v”L2y

provided -+ o~ + 51; =1 and
B-b = 21/2+a)1-2),
q
b+b,—7/16 = 2(1/2+¢)(1 - qz),
2

2
b = 2(1/24+e)(1- ).
g3
Now we take ¢ = b+ b'/2 — 23/32 to ensure the restriction of Hélder inequality. Note that
€1 > 0, provided b’ > 7/16. Further we have
IM < IEM 4+ IEM
1 1
(19) S c (M1/2K1/8 + M3/8K1/16) “u)“iz”v”L2
c
< Wllwllizllvllm-
Interpolation between (18) and (19) (with weights 3/4 and 1/4 respectively) yields
CM1/16 2
m"wllmllv”m-
Since b; > 11/48, summing over K and M yields
Js < cllwlZallvll s

Case 4. o1 > |o|, |€] 224, [§| < 2|&1]. We denote by J4 the restriction of J on
this region. In this case we have

JEM <

G < el
Hence

cl& |3/
Kl (Ty C$ Ty Cl) S (0')6'(0'1)6(0’2)b .

Using Cauchy-Schwarz inequality we obtain

1/2
Js < /11(7'1,(1) {/I ol [9(r, Q) W(r — 11, - C1)|2deC} (71, C1)dm1dC),
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where

i ardg\"*
Il(TlaCI) = <al)b (/l;llzlal <0.>26'<a-2>2b)

We have the following Lemma.

LEMMA 2.2.

I(m1,¢1) < const.

Proof. (10) yields

Ii(11,G1)

IN

cl& |3/ / d¢ e
(01)° | Jios13)e| (@ — 92)%

cl€1[/4(a1)*~ / i "
(o1)® lov|>le| (0 — 02)?® ’

where we used that |0 — 02| < 2|0;|. We perform a change of variables

IA

a=o0 -0, B = 3861(& - §).
We can assume that & > 0. If §; < 0 then the arguments are the same. Further we have

c| 8|} *dadp

A GPPGE - A e + B ol

Therefore we obtain using (11)

I < &l /min{s/«?.aw} /oo |8|'/2dad e <
1(m,6) < (01" | J-sten] o0 (3E = B)1/?|0y + B — a| /() <
clé, |12 /min{3/4£?,3|61|} |8|1/%dp ik

(0¥ | J-aleul G&-pxe+y 2]

Now we consider two cases for (71,(1).

o 3|62 < 4oy



We have

L(m,¢6) <

IA

IN

IA

IN

IA

IA

provided & > 5/12.
o 4loy| < 3l&P

In this case we have

Ii(11,6)
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6]/ /0 1B1/2d
(@) Jglonl (36 = B)Y3(01 + B)/2

6 181"/2dB 12
+j0 (%E?—ﬂ)1/2(01+ﬂ)1/2}

clés]*/? /0 dp
(Ul)b' i (01+ﬂ>1/2

+67° / : z Ji/2
U Jy @ Ao + AT

dal'’? i g [T __dp
o (8T

%6:1;_1 dﬂ Tf? dﬂ 1/2
A~ /e 36 = Ao, + By )

C|§111/2(<01>1/2+€13/2 In(1+ (o1)))/2

(a1)®

(31 A (3
<al)b’-1/4 (al)b’-o

a2 &l
|€1[3'=3/4 |63~
const,

o e [ o % v
T (o) [3|01| (36 - B)V/*(o1 + B)*/?

61
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clé[M/2 Bl g5 M
(a1)b'=1/41&,[3/4 /.3|a,| (o1 + B)1/2

c{oy)!/* cléy[3(1/2-¥)
(o)’ =1/4jg |14 = |&|1 /4
provided & > 5/12. This completes the proof of Lemma 2.2. Therefore using Lemma 2.2 and
Cauchy-Schwarz inequality we obtain

< const,

Js < cllulZallellza.

Case 5. |o1| > |o|, €] > 24, [€] 2 2/|&], [&1] > 1. We denote by Js the restriction
of J on this region. In this case we have that |£| < 2|§ - &|.

Let |o|® < |€]'/4. We denote by Js; the restriction of Js on this region. We have
clé]l [/

(0)¥(01)*+*1(02)°

Kl (Tv Cs T1, Cl) S

c
(U)b’ (al)b+bl—5/8 (Uz)b :
Proposition 2.1 and Hoélder inequality yield
I < @), Q)llew

{o1) 251 +5/8% (11, C1) | L2
{o2) 2@ (T = 71,¢ = C1)lzes

< cllwlizallvllzs,

provided qll + ng + qis =1 and
¥ o= 2(1/2+ el)(l—ql),
1

b+b —5/8

2(1/2+ e)(1 - =),
q2

2
b = 2(1/24+¢)(1 - —).
g3
Now we take €; = b+ b'/2+b;/2 — 13/16 to ensure the restriction of Holder inequality. Note
that if by + b’ > 5/8 then ¢, is positive.

Let |o]? > |€|1/4. We denote by Js; the restriction of Js on this region. We have
g

- cl€3/4), M/
Kl(ry Ca T1, Cl) S (a)b"bl (a’l)bl'H’l <02>b .
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and
€746 < cl€l 2l e — &M% < (1) ¥(01) /8 = e(01)¥/%.

Therefore

C
(a)b’—bl (al>b+b1 -3/8 (02)5 .

Kl (Ta (7 T1y Cl) S

Proposition 2.1 and Hélder inequality yield

Js2 < (@)~ F05(r, )|z
(1) "84 +3/8%(ry, ¢1) ||

{o2) =@ (T = 71, ¢ = ¢1)lles

IA

cllwlZzllvllza,

provided .-+ -4 - =1and
, 2
b-b = 2(1/2+€1)(1—q—),
1
2
b+b1-3/8 = 2(1/2+€1)(1—q_)’
2
2
b= 201/2+e)(1-2).
43

Now we take ¢; = b+ b'/2 — 11/16 to ensure the restriction of Holder inequality. Note that
if b’ > 3/8 then ¢, is positive.
Hence

Js < cl|wll2a(lv][ 2

This completes the proof of Theorem 1.

3. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. First we prove the linear estimate
following the lines of the Bourgain’s method (cf. [12], [13], [14], [23], [32]). Then using
Theorem 1 and a scaling argument we prove the existence. Finally we prove the uniqueness
using an argument of [42]. Recall that we shall apply a Picard fixed point Theorem to the
integral equation

(20) u(t) =U(t)p—1/2 /0 t Ut — t")0-(w?(t'))dt'.
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3.1. The linear estimate. We define the operator T}

(21) Ty(u) = - 1/2/ Ut -t (u?(t'))dt'
Let ¢ be a cut-off function such that
¥ € C(R), supp ¥ C [-2,2],% =1 over the interval [-1, 1].
Now we state the linear estimate.
PROPOSITION 3.1. Letb>1/2,4 > 0,b+b <1 andb; > 0. Then
(22) 19Ts ()l posr < c(ll@llLz + [Jurzll g, )
Proof. Recall that p(¢) = —€3 + -'lg and o = 7 + p(¢). Note that

ito

¥(t) / Ul(t u(tu(t)dt’ = P(¢) /e‘(‘5+y""’(()).7"(uux) (r, C)e - ldeC
= t) Z lt) ei(tf‘f‘lﬁl-tl’«))}'(uuz) (T, C)Uk-ldeC
k>1 k! lel<1

+9(t) / @) F 4y ) (7, €) ldrd(
le|>1 g

—(t) ei(’£+y’7't”(<))f(uu,) (1,¢) —l-deC
lo]>1 a

(1) +(2) +(3)-

Further we have

IDN < ellt* @)l goes lvuz]l g-ve,
for any b > 0 and b’ > 0. In order to estimate (2) we need the following Lemma.

LEMMA 3.1. For any b > 0 and b; > 0 the nezt inequality holds
(23) l¥ullgoa < ellullgss -
Proof. Let (7, ¢) = (0)%(8)4(r,¢). Then (23) is equivalent to

ooy

where 0* = 71 + p(¢) and 6* = -((;—;1)76% A duality argument shows that the above inequality
is equivalent to

(24) ‘ / <U>b§zz — 1)5(ry, ¢) (T, ¢)drdmyd(

2
/ B(r — )06 " 5(ry, Q)| drdC < |lv]a,

< cf|vl| zaf|wl| 2.
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~

We can suppose that ¢ > >0, @ > 0. Since (¢0) < |[r—71|+(0*) and () < |7 —71|> +(8*)
we obtain
{o)%(6)

(o7)¥(67) =

<14 |r =7 P+h,

Now we set
X(r=n)=QQ+|r- 7'1|b+b‘)12;(1' - 7).
We denote by I the left-hand side of (24). Cauchy-Schwarz and Young inequalities yield

< (/(x % v) (7, ) i(r, C)deC)2

< / (X %7 )2(r, ¢)drdC||w||2,

IN

clxllZ: lwllZa llwllZs,

which completes the proof of Lemma 3.1.

Now due to Lemma 3.1 we have

1@llgsss < cll€o)>HO)F (wus) L2

< clluslig-s-

el o ( [ (f Pt dc) y

F(uug)(r,¢)|*drd
C||¢||Hb+°1/< )2b 74 ((7))(2(19’]) :

It remains to estimate (3)

IN

13)ll geen

IN

< C”¢I|H:’+bl“uuz”Bb—l.bl

< C“""t”s-b’-h .
Now we estimate the free evolution
[$@OU ) llpor < cllPlloen ll8llL2,

which completes the proof of Proposition 3.1.

3. 2 Existence. Using Proposition 3.1 and Theorem 1 with b = 5 Lieg b = - — € and
b, = - — 2¢ we obtain for sufficiently small e.
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ProPosITION 3.2. If € > 0 is sufficiently small then the following inequalities hold
(25) I To(@)l| gy egose < iz + 11l poa0)

(26) 1% (Te(u) — To ()l gyeeg2e <l = vll gpseg-2cllu+oll gaac g2
Now a standard fixed point argument yields

PROPOSITION 3.3. There ezists cog > 0 such that if ||@||2 < co then the map YTy has a
fized point u which is the unique solution of u = ¥Ty(u), i.e. local solution of (8) in time
interval [-1,1].

To prove local existence for arbitrary data in L? we shall perform a scaling argument. If
u(t,z,y) is a function then we set ur(t,z,y) = T?/3u(Tt, T3z, T?/3y). Similarly if ¢(z,y)
is a function then we set ¢r(z,y) = T?/3¢(T*/3z,T*3y). Finally we set ¢¥r(t) = (t/T).
We have that ||¢7||z2 = T/%||#||.2- Hence due to Proposition 3.3 if T is sufficiently small
then the equation u = 9T, (u) has a solution. Note that if u(t,z,y) is a solution of KP
equation with data ¢(z,y) then so is ur(¢, z,y) with data ¢r(z,y). This observation and a
direct computation shows that we have the next relation

(27) [WTsr(u)]lr-1 = prTs(ur-1)-

Hence up-1 is a solution of ¥1rT¢(ur-1) = ur-1. Therefore, we proved the existence of a
solution to (3) for T sufficiently small in time interval [-T,T].

3.3. Uniqueness. To prove the uniqueness we need the next Proposition.

PROPOSITION 3.4. Let 1/2 > b > b” > by > 0. Then there ezists 8 > 0 such that for
8 € (0,1) the following estimate holds

l¥sull g-vsy < €8°|lullg-omsy -

Proof. Let Y®* be the space equipped with the norm
2
17 ~
lullyss = Ii(r = € + 2@ AUl -

Write the norm in B%* as

||“||Bb'°x ~ |lu|lyso + ||'“||Yb+bx-—1/4-
If0<b<a<1/2andd € (0,1) then there exists § > 0 such that
(28) [Ysully-o. < c6®|ully-s.s.

The estimate (28) is proved in [42] in the context of KAV equation (cf. inequality (3.29) in
[42]). For KP equation the proof is essentially the same. Now using (28) we arrive at

||¢’6u||3-b'.bx ~ ||‘/’6“||y-b'.o+||¢6“||y-b'+bl.—1/4

IN

c6® ”"”y-b".o + cb ||“||y-b’{+bl.—1/4

IA

060"1""8—6”,!;1
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This completes the proof of Proposition 3.4.

Let uy,up € BY/2+e1/4=2¢([_T T]) be two solutions of (2) in the time interval [-T,T]
and é € (0,T) to be specified later. Clearly

t
ws(w - ) = % [0t~ )0, - ) (e)ar

Let I = [-4,68]. Then Proposition 3.1, Proposition 3.4 and Theorem 1 yield for sufficiently
small ¢ > 0

s = wall pyaeyoaeyy S ellvdur = w)ll ggacya
< cll9i0u(ul — ud)ll 5 yseyac
< e85z (vl = ud)ll g-gsgeye
< cb|vs(uy — ug)llB%,,}_,,Hul + U2||B§+¢,}-ze

< o (Jlur = vall ghreoregy +) -

Here the constant ¢ depends only on ||u; + uz|| phte}-aer We chose é such that ¢6? < 1/2 to
conclude that u; = u; on I. Now we iterate the last argument to prove the uniqueness. This
completes the proof of Theorem 2.

4. Proof of Theorem 5

4.1. A bilinear estimate. In this section we prove a bilinear estimate following the
lines of the proof of Theorem 1.

THEOREM 4.1. Let (b,b,b1,5s) be such that
b>1/2, ¥ >s+1/8, b >b+s b -b>1/4+s b +3b>1,
b +2b, >7/8, b >5/12+5s/3, b +b>1/2+5/2, b >3/8+s/2
Then the following inequality holds
(29) 102 (w0)ll v < cllull ool o

Proof. Recall that

2
o:=o(r,() = T+ 1—7—, 01 :=0(11,(1), o02:=0(r—71,(—C),

3

(o)™
:=6(r,¢) = O 6, =0(r,¢1), 62=0(r —,(— ).
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We have that (29) is equivalent to

/]K(Tv Cv T1y (1)”(2(7‘1, Cl)a(r - T, C - CI)G(T, C)dTldgldeC <

(30) cllullzallvllze llwll Lz,

|€1¢)(€) ~*(€1)* (€ — &1)°
()% (01)*(02)"(61)(62)
Without loss of generality we can assume that € > 0, U > 0 and @ > 0. By symmetry argu-

ments we can assume that |o;| > |o|. We denote by J the left-hand side of (30). Consider
several cases for (7, (¢, 71,(1).

K(Ta C) T1, Cl) =

Case 1. [£] < 24, |[&| < 48. We denote by J; the restriction of J on this region.
Using that (8) < c(o)®’ we obtain

K(Ta <1 T Cl) S

_—°
(01)%02)*
Since b > 1/2 the use of the Strichartz inequality yields
Ji < NIF (o)t a(r, Q) zalF (o) 7 0(r = 71, ¢ = G))lallwllze
< clullgellvlla|lwl| L.

Case 2. [£] < 24, |&] > 48, |01 > |o|. We denote by J, the restriction of J on
this region. We have that (8) < c(6;)(£1)*/* and hence

clél(€1) /(€ - &)°
(U)bl(dl)b(az)b

K(T) <’ 71, Cl) S

clé|(€1) /442

= (0)¥(01)¥(02)*

Since |€]1/8+3(£,)1/4+25 < ¢(a,)1/3+* we obtain

K(Tv C) 71, Cl) < 7 Clgli/s—s .
<U)b (al>b 3—-1/8(0-2)5

By Strichartz inequality we have
Ja < ||FH((on) bt 80(ry, 1)) |
|F=1((o2)~*8( = 71, = G1)) e
172 (o) B(, )|z

cllullzallvll z2llwll 2z,

IA
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provided ;11— + q% + ;13- =1 and
b—s—1/8 = 2(1/2+e)(1- ql),
1
2
b= 201/2+a)(1L- ),
2

bl

2
2(1/24+ «)(1 - —).

q3
Note that if b’ > s+ 1/8 then ¢; > 0.

Case 3. [£]| <24, |&]| > 48, |o| > |o1|- We denote by J3 the restriction of J on
this region. We have that (8) < ¢(o)* and hence

K(T, C’ Tl,CI) clfl(fl)’(g“ fl)’

(0)¥=41(01)*(02)?

IA

clé]*~

(0)¥'=b1=2(01)(02)®

IN

_°
(01)%(02)*’
provided b’ > b; + s. Now a use of Strichartz inequality yields
Ja < IF (o)t G)llzallF 7 ({o2) P(r = 1, € = Cu)ll e llwll s

< cllullzallvllzallw]] 22

Case 4. || > 24, |o|>|o1|, min{|&],|§—&|} < 1. We denote by J4 the restriction

of J on this region. Note that in this case we have
(O~ (€ &) <e
Therefore we are in position to perform the arguments of the proof of Theorem 1, Case 2.
Under the assumptions b’ > 1/3 and b’ — b; > 1/4 we obtain
Ja < cllullg2lvllz2(|wl| 2

Case 5. |€| > 24, |o| > |o1|, min{|&],|§—&1|} = 1. We denote by Js the restriction

of J on this region. Note that in this case we have
()7 (&1)* (€ — &1)° < e(€)"(0)’.

Using Cauchy-Schwarz inequality we obtain

1/2
Js < /R3 I(r,¢) {/I.GIZval |%(r1, C)o(r — 71, - Cl)lszIdCI} w(r, {)drdc,

where

_ler=) dnder "
I(r,¢) = (o)o'=2 (/Ialzldll(al)zb<02)2b<01)2(02)2> .
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We have the following Lemma.
LEMMA 4.1.
I(r,{) < const, if |§| > 24.
Proof. Using (9) we obtain

o ) i\
I(r,¢) < (o)~ (/I<7|2|01| (oy + 02)%) .

Perform a change of variables a = 01402, = 3££1(£—&1). Note that & € [-3|o|, min{3/4¢3, 3|0|}],
when & > 0 and & € [max{3/4&3, -3|0|}, 3|c|}], when € < 0. We assume that € > 0. If £ <0
then the arguments are the same. We have
c|8|*/*dods
[€F7(GE = B)PPlo + B — ' 2

d¢y =

Therefore we obtain using (11)
min o ) 1/2
I(r,¢) < SE20) / te/actalen / 181"/ dadp <
T (o) =3Jo] ~o (36 =B) 2o+ B - aV/¥ )| ~

c<§>l/4—23(0> min{3/4¢3,3|c|} |ﬂ|1/2dﬂ 1/2
()b /_3|a| Ge-p)\ o+ 2|

Now we consider two cases for (7,().

o 3l < 4o

We have that

@) [0 1BI2dp
I(r,¢) < @O U_30) BE = f) 120 + p)I/2
lﬂlmdﬂ
4 / 5750 T 51T J1/2
o @Y 0 dp

(@)= 30| (o + B)1/2

§€3

3/2 ap 1/2
Ao

C(€>1/4-2a<0){<0)1/2 +£3/2(/

(@

353 Al
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€1 4p @ dg 1/2
+L <0’+,3) +/%€3_1 |%§3 - ﬂ|1/2<0'+ﬂ)1/2)}

< SeE(6)

< S () €I+ (o))

c(€)/42(6) | (€)' 72(6)

<a)b'—s-1/4 <0->b'-s- :

Let |o|’ < |€|*/4. Then we have

@ (@
I(T1 C) S (6)36'—33 + <£>3b1_33_ S ConSt b
provided b’ > 1/3 + s/3.
Let |o|* > |€|}/4. Then we have
@, (@
I(T’ C) S <a»>b’—b1—6—1/4 + <a)b'—bl —8—
@ 3
< <§>3b’-361—33-—3/4 + (o')35'=3b, =35
< const,

provided &' — by > 1/4+s.
o 40| < 3lEP

In this case we have

c(€)1/4-25() 3|o] dp 13
I(r,¢) < W_TI/T {/_3|0| (%53 — ﬂ)1/2(a+ﬂ)1/2}

«(0) O I
(o) -e-tra(g) /e {/_sw W}

c(O) (0.>l/2—b'+s
= () /2+2s

Let |o|t < [€]/4. Then we have

IA

I(r,¢) < M_ < const
AN TN VIR TR ’

71
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provided &’ > 1/3 + s/3.
Let |o|®* > |€|}/4. Then we have

<0.> 1/2=-b'+by1 +s

I(r,¢) < GEEET
3/2-3b'+3b, +3s
o (g¥rh
- ({)3/4-}-23
< const,

provided &' — b; > 1/4 + s/3. This completes the proof of the Lemma. Therefore using
Cauchy-Schwarz inequality we obtain

Js < cllull2lv]l L2 ||| 2.

Case 6. [£]| > 24 |oy| > |o|, |é1] < 1. We denote by Jg the restriction of J on this
region. In this case we have that

@) -&a) <ec

Hence we are in the situation of Case 3 of the proof of Theorem 1. Now we shall apply a
slightly more precise argument. We shall again localize Jg with respect to & and (o;). Set

JEM _ / / K(r,C,m, (1, )BT = 70, ¢ = Q) B(r, ¢)dradCydrdC,
AKM

where
ARM = {(1,¢1) : |&] ~ M, (1) ~ K}.

JGSZJGKM’
KM

~ where the sum is taken over K = 2% k=0,1,2,...and M = 2™, m=0,-1,-2,.... Asin
the proof of Theorem 1, Case 3 we can obtain

We have

(31) JEM < K0 MY ]| a2 |o]| 2] -
Further we have
1£1(6)
K(r,(,m, < 7 .
(16T G) S oo ) ()
Let |o|* < |€]'/%. We denote by JEM the restriction of JKM on this region. We have
cl¢]

K(T1 CJ T1y Cl) < (U)b'(0’1>b+b1 <02)b

cM~1/2K S
(a)b’ (01>b+bl —5—1/2(0-2>b :
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Here 4 > 0 is to be specified later. Using Proposition 2.1 and Holder inequality we obtain

C —b ~

(o) "o 8 ++125 (1, 1) || Lo
{o2)~*0(r — 71,¢ = C1)|ILws
c
< Wll"llm“”“mllwllm,
. 1,01 4 1 _
provided atate=1 and

Vo= 212+ €)1 - =),
q

2(1/2+ a)(1- 2,
q2

b= 201/2+e)(1-2).
q3

b+by—6-1/2

Note that if § < b’ + b; — 1/2 then ¢, is positive.

Let |o|®* > |€]1/4. We denote by JEM the restriction of JEM on this region. We have

cl¢l*/

K(TJ C) T, Cl) S (0->bl-bl (Ul>b+b1 <0.2)b

cM—3/8K =6

Using Proposition 2.1 and Hélder inequality we obtain
c b ~
Ja" < spmgsle) P G(T, ¢l
o)~ =514 +3/55(ry, )|

{o2) "B (7 = 71, ¢ = C1)lLes

c
< sprgeslllzalivlizzliwllzs,
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prov1ded + + =1and
2

¥ —b = 2(1/2+61)(1—q—),
1

b+b —6—3/8 = 2(1/2+e1)(1—q3),
2

b= 21/2+ea)(1-2).
q3

Note that if § < b’ — 3/8 then ¢; > 0. Hence

(32) JEM < Ml/gKg”u“L"’“v”Lzll'w“L’
Interpolation between (31) and (32) with weights §+ and 3— respectively yields
cM
JeM < e lullzellolizellwllze,

with §; > 0 and §; > 0 provided

(1/4=b1) G3+) = 8(3-) <0,

3
i.e. § > 1/2— 2b;. But § should be such that
§ < min(b' + b; — 1/2," - 3/8).
Hence we are able to chose proper é provided b z;.nd b, satisfy
b’ +2b >7/8, b +3b > 1.
Summing over K and M yields
Jo < cllullz2llv| 2]l wl| g2

Case 7. [£| > 24, |oi| > |o|, |€] £ 2|&|. We denote by J the restriction of J on
this region. In this case we have

(9) < c(En)/A, (61)°(€ - 51)’ (51)23
(01) = ()’ (5)’ ,

c|g[3/4+2
K(T)C)TI)CI) S (U)bl(0'1>b(0'2)b.

Now the arguments of of the proof of Theorem 1, Case 4 provides a bound for J7 provided
b > 5/12+ s/3.

Hence

Case 8. [£]| > 24, |oi]| > |o|, |€] > 2|&1], |&1] > 1. We denote by Jg the restriction
of J on this region. In this case we have that |¢] < 2|€ — &;| and

(§1)°(€ - &)° cl€ — £}
RGN <€ -4&1)°
Hence
cléll€ - &1°(6)
(9)¥(a1)%(02)>(61)

K(T) C) T1, Cl) <
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Let |o|bt < |€]}/4. We denote by Jg; the restriction of Jg on this region. We have

cléllér//21€ - &l°
K(Tvca Tli(l) S (U)b,(al)b+bl <02>b

c
(a>b'(o-1)b+bl -s/2-1/2 (0-2)b ’

Proposition 2.1 and Holder inequality yield

Jor < (o) ™B(r, Q)llza

(o) b+ 201251 ¢) | Lo

{o2) =20 (r = 71,¢ = 1)l

IN

cllullzsllvllzallwll L2,
. 1,1 41
provided atetes= 1 and

b= 2(1/2+ea)(1- =),
Q1

b+by —s/2—1/2

212+ a)(1-2),
q2

b

2
2(1/24+ )1 - =).

a3
Note that if b; + b’ > 1/2 + s/2 then ¢, is positive.

Let |o|®* > |€|}/%. We denote by Js; the restriction of Jg on this region. We have

clé[¥4& |1 /41E - &l°
K(T, C! T1, Cl) < <a->b"b1 (01)I’+b1 (02)b

C

Proposition 2.1 and Hélder inequality yield

Jsz < (o) P d(r, Q)L

<

(o) 2t +3/8+2/ 25 (7, (1) || L2

{o2) 40 (r = 71,¢ = C1)llzss

IA

cllullz2llvll L2 llwll 2,

75
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. 1,1 1 _
provided atute= 1 and

b’—bl = 2(1/2-}-61)(1-3),

Q1

b+b—s/2-3/8 = 2(1/2+e1)(1-q3),
2

2

b = 2(1/2+4+¢€)(1-—).
a3

Note that if ' > 3/8 + s/2 then ¢, is positive. Hence
Js < cllull g2 |v]l 2] wl]| £2-
This completes the proof of the Theorem .

Now we state a corollary which will be used in the proof of Theorem 5.

COROLLARY 1. Let (b,V',b1) = (3+, 31—, ). Then for s € [0,1/32) the following inequal-
ity holds

(33 102 (w0l v < cllull goas ol o

Using Corollary 1 we arrive at the following local existence result.

COROLLARY 2. Let (b,b) = (3+, %) and s € (—~1/32,0]. Then for any ¢ € H:(R?)
there exist positive T = T'(||@||#:) and a unique solution u(t,z,y) of (3) in the time interval
(=T, T] satisfying

v € C([-T, T); H3(R%) n B

S
In addition the length T of the ezistence interval satisfies T > cl||¢|| . +** .

z

Proof. Once we have Corollary 1 the proof of Corollary 2 follows the lines of the proof of
Theorem 2. The assertion for the length of the existence interval follows from the inequality

128
o7l < T76 ||B]|a;.

4.2. Another bilinear estimate. This section is devoted to the proof of the following
estimate.

THEOREM 4.2. Let (b,¥,b,) = (3+,1—, Z). Then for s € [0,1/32) the following inequal-
ity holds.

(34) 10z (wo)ll g-vr0 < cllull goen l[vll ges -

Proof. Note that (34) is equivalent to

‘/ / K(Ta C$ Tl Cl)a(rla CI)E(T - T1, C - Cl)ﬁ;(T, C)d'rldC1d7'd< S

(35) cllullz2lvl| g2, l|wl| L2,
where

__ lekey &)
K(r,¢,m,1) = <0.>b'<al>b(02)b<01>(02)



4. PROOF OF THEOREM 5 7

Without loss of generality we can assume that & > 0, ¥ > 0 and @ > 0. By symmetry argu-
ments we can assume that |o)| > |o3|. We denote by J the left-hand side of (35). Consider
several cases for (7,(, 71,(1).

Case 1. [{| <24, |&| < 48. We denote by J; the restriction of J on this region. As
in the proof of Theorem 1 we bound Jy, provided b > 1/2.

Case 2. [£| < 24, |[&] > 48, |o1| > |o|- We denote by J, the restriction of J on
this region. In this case we have that

cl€1(€1)°(§ — &1)°
()% (01)"(o2)®

K(Ta Cv T1, Cl) S

clé|*
T (o) (o1)o (o)
Now we bound J; by the aid of Proposition 2.1, provided b > s, i.e. s <1/2.

Case 3. [£]| < 24, [&] > 48, |o| > |o1]- We denote by J3 the restriction of J on
this region. We have

clél(€1)*(€ - &1)°
(0)¥(01)%02)*

K(Tv C) T1 Cl) S

clg]'~

(0)¥'=*(01)*(02)"

Now we can estimate J3 by the aid of Proposition 2.1, provided b’ > s, i.e. s < 1/2.

<

Case 4. || > 24, |o|>|o1|, min{|&],|§—&1|} < 1. We denote by J4 the restriction
of J on this region. Note that in this case we have

(€1)7(€ — &1)° < )’

Now, in order to bound Jy4, we can perform the arguments of the proof of Theorem 4.1, Case
4, provided ' > 1/3+s/3 and b’ —b; > 1/4+ s/3,1.e. s<1/2 and s < 3/32.

Case 5. [£| > 24, |o| > |o1], min{|&], | —&1|} > 1. We denote by Js the restriction
of J on this region. In this case we have

(€1)°(€ — &) < ¢(a)*.

The arguments of the proof of Theorem 1, Case 2 provides a bound for J5 provided b’ > 1/3+s
and b’ —b; > 1/4+s,i.e. s<1/6 and s < 1/32.

Case 6. || > 24 |oy| > |o]|, |&] £ 1. We denote by Jg the restriction of J on this
region. In this case we use the same localization as in Case 6 of the proof of Theorem 4.1.
We have

s/2
(60" (€ - &0)" < )6 - ) < ST
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Hence the following inequalities could be obtained similarly to (31) and (32) respectively
(36) JeM < KNIV | ] o] pa || -

JgM < K521 2= | pa o] [l 2,

where 1/2 — 2b;(§ < min{b' — 3/8,b' + by — 1/2}, i.e. 1/16 < § < 1/8. We take § = 1.
Hence

(37) JeM < KB M0 o o] a5,

We shall interpolate between (36) and (37) with weights o and 1 — « respectively. Choose o
such that

a(l/4-5/2)+ (1 —a)(-1/2—-5/2) =0+ ( to have a positive power of M),
i.e. @« =2/3+ 2s/3+. Further we need
a(1/32+s/2)+ (1 - a)(-1/8+ s/2+) < 0, ( to have a negative power of K),

i.e. s < 1/29. Hence

cM4
JeM < 7 llullz2 (vl L2l|wl| 2,

with §; > 0 and é;2 > 0. Summing over K and M completes the proof in this case.

Case 7. [£]| > 24, |on| > |o|, |€] £ 2|&1|- We denote by J; the restriction of J on
this region. In this case we have

(€1)%(€ - &)* < cl&|®.

Now the arguments of the proof of Theorem 1, Case 4 provides a bound for J7 provided
b >5/12+2s/3,i.e. s < 1/4.

Case 8. || > 24, |oi| > o], €] > 2|&|, |&1] > 1. We denote by Js the restriction
of J on this region. In this case we have that |{| < 2| — &;| and

clEllé]/**ele ~ &l

K(T7 Ca T1, Cl) S (cr)b'(al)b*’bl (0-2>b

(4
(a)b'(al>b+bl —1/2—3/2(02)6

Now a use of Proposition 2.1 gives a bound for J7, provided b’ +b; —1/2 > s/2,i.e. s < 7/16.
This completes the proof of the Theorem .

4.3. End of the proof of Theorem 5. Decompose the initial data ¢ € H_* in two
parts

& = ¢o + no,
where

do = f 3(€, m)e'Ermagdn.
KISN
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Here N > 1 is a large number to be specified later. Note that ||¢o||f2 ~ N® and ||7ol| o ~
N*~?. Consider the following system of integral equations

(38) u(t) = Ut)do+ /0 tU(t—-t’)u(t')ux(t')dt’,

t

(39) o) = Ut)no+ / Ut - ¢)8, (v + 2uv) () d.
0

We have the following local existence Theorem for (38)-(39).

THEOREM 4.3. Let (b,b)) = (1+,%) and 0 € (s,1/32). Then there ezists a unique
solution (u,v) of (38)-(39) on the time interval I = [—6, 8] satisfying

u € C([-T,T}; L¥(R?) N By* (I), v e C([-T,T]; H;°(R?) n B4 ().

In addition the length & of the ezistence interval satisfies § ~ N8 and the following inequal-
ities hold

(40) lullgeer < eNiE*H,
]

(41) ”v”Bb,e»1 < CN%8-0+230+.

Proof. We apply the scaling argument of the proof of Theorem 2 and Corollary 2.
Recall that if u(t, z,y) is a function on R3 then we define us by us = 6*/3u(ét, 6/3z, 6*/3y)
and similarly for given ¢(z,y) we define ¢s as ¢5 = §2/3¢(8'/3z, 62/3y). Consider (38)-(39)
with initial data ((¢o)s, (0)s). We have that

l|(d0)sllz2 = 6Y/%| b0l ~ 8*/6N*

and
1—-2¢

I(m0)sllgze < 8% Imoll e ~ 6N
As in the proof of Theorem 2 we shall use a contraction argument to obtain a local solution
(u,v) of (38)-(39) in Bg'b1 @ B on the time interval [—1, 1] with data ((6o)s, (70)s). More
precisely we define an operator T

T : BY @ B +— Bb" @ BbY:,
where T'(u, v) = (T1(u, v), T2(»,v)) and

Ti(u,v) = P()U(t)(do)s + ¥(t) /: Ut —tu(t')uz(t')dt,

t
Tywv) = YOO+ v) [ Ut - )30+ 2u0) ().
0
Using Proposition 3.1 and Corollary 4.1 we obtain
T2, 0)liges < e{llo)sllzz + IIqugg,al},

A

IT2(e, )llgsss < c{llmo)sllarze + llull gon llvll gres + 0l }-
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Now a use of the contraction mapping principle provides a fixed point (u,v) of T for é such
that || (#0)s||z2 = 6'/8||dol|2 = co < 1. Note that with this choice of § the norm | (0)s | =< is
small. Furthermore since ((#0)s, (10)s) is small in L2@ H;° then we can perform a contraction
argument in By @ B, where B is a ball with radius ¢||(¢o)s]|z2 in Bg’b‘ and B; is a ball with
radius c||(70)s]| -+ in B?_'g‘. Hence we obtain that (u,v) satisfies

(42) l[ull go.or < ell(do)sllzs ~ e,

(43) ol e < cll(m)sllzze ~ N7o¥3.

Since (u,v) is a solution of (38)-(39) on [—1,1] with data ((#o)s, (70)s) then (us-1,v5-1) is a
solution of (38)-(39) with data (¢o,n0). This proves the existence. The uniqueness follows
from the argument performed in the proof of Proposition 3.4. In order to prove (40) and (41)
we need the next Lemma.

LEMMA 4.2. Let § <1 and s > 0. Then

”"‘6-1”351"1 < 651/3-b—b1“u”3321.

Proof of the Lemma. Recall that o(r,{) =7 - &+ ’Jg and ¢ = (£, 7). We have
lug-slos = 67*lu(./6,/61%,./6%%) | Fan,

= o for (1 0 o

|Fu(./8,./63,./8%3)(r,¢)|*drd¢

58/3-2b—261 /(5-{- 0(51', 51/35, 52/3,,))26({)-3

1/3¢ £2/3.\\61 \ 2
<6b1 + (6+ 0(67'1(56)1/?5 77)) l) |a(51_’ 51/35,(52/317)|2de<

< 62/3-%-%1”“”235,61

-3
Hence

_ < 61/3—6—61 .

lus=1llgoas <€ llull go.e:

This completes the proof of the Lemma. Using Lemma 4.2, (42) and (43) we arrive at (40),
(41). This completes the proof of Theorem 4.3.

We decompose v in the following way
v(t) = U(t)no + w(t).
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Further we set
$1 = u(8) + w(8), m =U(d)n.
It is clear that ||nol|z—c = ||m|lzz--- Now we shall estimate the L? norm of ¢;.

lgrll: < ([u(d)llz2 + [[w(d)]| L2
= |l¢ollzz + [|w(d)ll L2

~ N°+|lw(8)] 2
Now we estimate ||w(d)||z2 by the aid of (40), (41), Proposition 3.1 and Theorem 4.2
lw@)llze < suPre(-co,00) ¥ (B)w(?)l|z2

< |l¢w||Bg'°

IA

c(l10z(uv)ll g0 + 10=(v?) ] o)

IN

2
c(lull oo oll goas + 9120

< C(N?—Z-3+N%s—a+2w+ +N3!_7’_20+4”+)

< CN%(’_‘H'ZW'*' .

Hence i
|12 < |l¢ollrz +cNe s—o+2s0+

Therefore the L? norm increase by at most cN 3 °-o+2s0+ passing from time 0 to time 4.
We iterate the argument replacing ¢o and 7 with ¢; and 7; respectively. We would like to
iterate the process M(N) times. In order to keep the control on the L? we need that

M(N)NT*=7t2% L No| je. M(N)~ NO-35720-,
Hence we are able to achieve an interval of size
M(N)§ ~ No-F =20,
Therefore to achieve any interval we should impose the condition
(44) | a—%zs-—2sa>0.

The largest possible value for o is 1/32. We take 0 = 3;—. Hence (44) is equivalent to
s < 1/310. This completes the proof of Theorem 5.






CHAPTER 5

On the local regularity of Kadomtsev-Petviashvili-II equation

This Chapter essentially contains the joint paper with Hideo Takaoka [54] (On the local
regularity of Kadomtsev-Petviashvili I equation, Preprint (1999)).

Abstract.

We prove the local well-posedness for the KP-II equation in the anisotropic Sobolev spaces
213 (R?) for s; > —1/3, s; > 0. On the other hand we prove that the crucial bilinear
estimate needed for the local well-posedness fails for s; < —=1/3, s, = 0.

1. Introduction

In this Chapter we continue the study of the Cauchy problem for the Kadomtsev-Petviashvili-
IT (KP-II) equation with data in an anisotropic Sobolev space of low order. The Kadomtsev-
Petviashvili equations are two dimensional extensions of the Korteweg-de Vries (KdV) equa-
tion. They are derived in [33] as “universal” models for the propagation of weakly nonlinear
dispersive long waves which are essentially one directional with weak transverse effects. Con-
sider the initial value problem for KP-II equation

(1) (Ut + Uggz + UUz)z + Uy =0, (2, 2,y) € R?,
u(0,z,y) = ¢(z,y),

where the initial data ¢(z,y) belongs to an anisotropic Sobolev space H;%;" (R?) defined by
H2; (R = {9 € SR : [4llgzyn < oo}
where
@l = (1 - 827201 - 63/ .

The spaces Hz;" (R?) are a natural set for the initial data of (1) since their homogeneous
versions are invariant under the scale transformations preserving the KP equations. More
precisely if u(t, z,y) solves (1) with data ¢(z,y) then so does

Uu) (t, z, y) = /\2u(A3t1 Az: ’\2y)a
with data
$r(3,y) = M¢(Az, N%y).

Consider the homogeneous versions H3%”? (R?) of H;%" (R?) equipped with the norm

I8l 52 = (=02 /2(=80/ 0]z,

83
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Then
23341/2 3
“u/\(ta g )“H;,lf;.? = \ntiat / ”u(A ty o )”H,‘fx;'2 :
Hence for s; + 285 + 1/2 = 0 the space H3%’*(R?) is invariant under the scale transforma-
tion which preserves the KP equations. Therefore the critical values for (sy,s3) for initial

data in H7%" (R?) is s; + 2s2 + 1/2 = 0. One may expect well-posedness (ill-posedness) for
s1 + 2s2 + 1/2 >0 (81 + 239 + 1/2 < 0).

Our goal is to seek for the lowest possible (si,s2) such that (1) is locally well-posed
in H2,"(R?) (more precisely, within the framework of B%:%2  which is defined in Def-
inition 1). The notion of local well-posedness in the functional space X means the ex-
istence, the uniqueness, the persistence property (i.e. a solution describes a continuous
curve in X whenever ¢ € X) and the continuous dependence of the solution upon the
data. There are a large number of recent papers devoted to the Cauchy problem for (1)
(cf. [14, 20, 31, 32, 48, 52, 53, 57, 58, 60, 01] and the references therein). The KP
equations are infinite dimensional integrable Hamiltonian systems. Thus the inverse scat-
tering technique could be applied to (1) under appropriate decay assumptions on the initial
data ¢ (cf. [61]). In [61] a smallness assumption on the data is also assumed. Using energy
estimates one can obtain local well-posedness of (1) in HzY**(R?) provided s; > 3/2 and
s3 > 1/2. Actually the proof does not rely on the specific structure of KP equations and
could be performed in a rather general context. The condition for (s, s2) is imposed in order
to control the L* norm of the z derivative of the solution by the usual Sobolev embedding.
The equation (1) possesses an infinite number of conservation laws. Unfortunately the only
one providing an a priori bound seems to be the L2 norm. In [20] A.V. Faminski obtained
weak solutions of (1) in a suitable weighted space. In [12], [13] J. Bourgain developed a new
method to study the local regularity of nonlinear dispersive equations. This method has a
special advantage for the quadratic nonlinearities and has been first applied to the nonlin-
ear Schrodinger equation and to the KdV equation. An essential element of the method is
the new Fourier transform restriction spaces strongly related to the symbol of the respective
equation. The method has been successfully applied for KP-II equation as well. In [14] J.
Bourgain showed that (1) is locally well-posed for data in L2. The proof is mainly performed
for periodic boundary conditions but could be applied to the continuous case too. The ar-
guments of [14] do not use the Strichartz inequality for the KP equations. One uses dyadic
decompositions related to the symbol of the linearized operator, in order to prove the crucial
bilinear estimate. An additional difficulty appears in the continuous case because of the ap-
pearance of small frequencies cases in the integral representation of the nonlinear estimate.
In [57] the local well-posedness of (1) in Sobolev spaces with negative indices with respect
to z variable is obtained. However, an additional condition on initial data is imposed. More
precisely, it is assumed that |£|7'¢(£,n) € L?, which is rather restrictive. The constraint
on the data is in order to eliminate the difficulties with the small Fourier modes in the in-
tegral representation of the nonlinear estimate. This condition on the data was removed in
[52], where local well-posedness for the integral equation corresponding to (1) in Hz%* (R?),
81 > —1/4, s3 > 0 is obtained. In [53],[58] the global well-posedness of (1) with data below
L? is shown by using a new idea due to J. Bourgain of decomposing the initial data into low
and high Fourier modes. In all papers [52],[53],(567], [58] a modified version of the proof of
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[14] is performed. Namely, the Strichartz inequality for the KP equations are injected into
the framework of the Bourgain spaces associated to the KP equations and one uses the simple
calculus techniques which C. E. Kenig, G. Ponce and L. Vega first performed in the context
of the KdV equation.

In this Chapter we prove that (1) is locally well-posed for data in the anisotropic Sobolev
spaces Hz;*? (R?), s; > —1/3, s > 0. The proof is a suitable combination of the arguments

of [52] and [58]. The result seems to be the optimal one for initial data in H34*(R?) , due
to the counter examples of the relevant bilinear estimate constructed in the second part of
the Chapter. Now we define the Bourgain spaces associated to the KP-II equation.

DEFINITION 1. For b, by, bs, 81,82 € R we define Bg;b,‘,;b’ as a Bourgain type space asso-
ciated to the KP-II equation

B = {u € S'(RY) : |lull ooy < oo},
L2

_ g3 n3\h
< -4 ><E)"(n)”( T Z;f,‘) )a(r,s,n)
74,0

and (-) = (1+]- |2)%. Let I C R be an interval. Then we define the space B54%2(I) equipped
with the norm

where

|Iu|IBgil:£'2b2 =

“u”Bf’lb_%':’(I) = wegrl}’t;l'b? {"w”Bg’:}v;’z’ ‘UJ(t) = u(t) on I} .

21,82

Now we state the crucial bilinear estimate which is essential for the proof of the local
existence result concerning the KP-II equation.

THEOREM 1. Let the real numbers b, b, by, b, s1, 82 be such that
by >0, b,>0, b>1/2, s;2>0, 81> b =0,
51>1-3b, s> 1436, —30 —by, o >b+ 1/4,
bl+3bl > 1, b’+2b1+b2—2b1b2 >1, s1>b-1,
b +b>1/2, 26/ +by>1, s >1-3b —3b' +b,.
Then the following inequality holds
@) 102 (w0)l -sim S el g9l

Using Theorem 1 with b = 1+, b’ = 1—, b; = 1+ (depending on V'), b, =  we arrive at
the following Theorem.

THEOREM 2. Let 8 > —1/3, s > 0. Then

(3) 10z (o)l _—p+.4+.3 < llul st ylloll bt

‘lv‘2
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Remark 1.1. The estimate of Theorem 1 contains the bilinear estimates of Proposition
3.4 established in [52]. Namely taking b = 3+, ¥’ = 3—, by = 1, b, = 5; + 2 we obtain for
81> -1/4

10000 g oot S 10l g ol g

The proof of Theorem 1 uses the Fourier transform restriction method due to J. Bour-
gain. As in the case of the KdV equation the difficulty stems from the derivative nonlinearity.
The smoothing effects result from an arithmetic identity involving the symbol 7 — &3 + Uei of
the linearized KP-II equation (cf. (13) below). A “bad” sign in the similar identity for the
symbol of the KP-I equation is the obstruction to perform the method for the KP-I equation
(which is derived by changing the sign of the term uy, in (1)).

Since the KP equations are two dimensional generalizations of the KdV equation one
may try to adapt the arguments of some of the existing results for the KdV equation in
the context of KP equations. Unfortunately a lot of properties of the KdV equation do not
have analogues in the case of the KP equations. For example the sharp version of the Kato
smoothing effect for the linearized KdV equation is used in order to gain regularity for the
KdV equation in [40, 41]. The point is that one controls the L (L?) norm of the gradient
of the solution to the linearized KdV equation by the L2 norm of the initial data. In order to
prove this (sharp) version of Kato smoothing effect one changes the role of the time variable ¢
and the space variable z in the oscillatory integral representing the solution of the linearized
KdV equation. Then an application of Plancherel identity provides the needed bound. If we
try to use the above argument for the linearized KP equations we should choose one of the
space variables z or y to be changed with the time variable and hence we lose the symmetry
of the estimate. On the other hand in [48] a local smoothing effect for the KP-II equation
is obtained. The proof uses the original Kato idea (cf. [37]) in the context of the KdV
equation. Since the Kato local smoothing effect can be used to obtain global weak solutions
for the KdV equation (cf. [37, 44]) for data in L? the local smoothing effect of [48] strongly
suggests the global existence of weak solutions for KP-II equation with data in L2. Actually
A.V Faminskii [20] proves such a result for data in an L? weighted space. Another tool
used in the context of the KdV equation are estimates for the corresponding maximal func-
tion. We do not know of any satisfactory maximal function inequalities for the KP equations.

On the other hand, there are Strichartz inequalities for the KP equations (cf. [48]). They
are in fact similar to those of the 2D Schrodinger equation and hence at this level the KP
equations behave as the 2D Schrédinger equation. It is known that it is difficult to solve in
the Bourgain spaces a derivative nonlinear Schrédinger equation even in 1D because of the
lower order dispersion compared to the KdV equation (where the dispersion is sufficient to
compensate the loss of one derivative). Therefore the fact that one is able to solve the KP-II
equation (recuperate a derivative loss) in Bourgain spaces shows that the dispersion of the
KP-II equation is in some sense stronger than that of the 2D Schrédinger equation. We note
also that the Hessian matrix of the symbol of the linearized KP equation is a constant and
hence the Strichartz inequalities do not gain some additional regularity, contrary to the KdV
equation, where the second derivative of the symbol of the linearized KdV equation increase
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at infinity.

There are difficulties to prove Theorems 1 and 2 by the calculus arguments of [42] alone
in the case of the KP-II equation. In the integral representation of the bilinear estimate one
needs the integrability with respect to 7, the dual of y in the Fourier variables. For that
purpose we need the following extra factor

(1— €+ L)
(€)b2

in the definition of the Fourier transform restriction spaces. We need (4) also to treat the
small frequencies in the proof of the crucial bilinear estimate. At this stage we do not know
of a proof of the bilinear estimate (2) which does not make use of the Strichartz inequality
for the KP-II equation.

(4) 1+

A consequence of Theorem 2 is a local existence result for (1). The method consists in
applying a fixed point argument to the integral equation corresponding to (1). The linear
estimates are similar to those of other dispersive models where the method of Bourgain could
be applied. Then a Picard fixed point Theorem provides the existence. The proof of the
uniqueness uses an additional argument first applied in the context of the KdV equation (cf.
[42]). We have the following Theorem.

THEOREM 3. Let s; > —1/3 and s; > 0. Then for any ¢ € Hiy"(R?), such that
I€|716(€,m) € S'(R?) there ezist a posztwe T = T(ll¢llgzy)( limpyo T (p) = 00) and a
unique solution u(t,z,y) of the initial value problem (1) on the time interval I = [-T,T]

1
satisfying u € C(I, H2, (R?)) N B:;‘,;e“'s ).

Remark 1.2. Actually we shall solve an integral equation corresponding to (1) for any
data ¢ € H7,**(R?). The condition [¢|~1¢(£,n) € S'(R?) is imposed in order to insure that
the solution of the integral equation solves (1) too in the distribution sense.

Now we state a result showing that in some cases the crucial bilinear estimate needed for
the local well-posedness fails.

THEOREM 4. The estimate
() 110z (wo)| BEbhm S i BPryt il BEoy

fails if one of the following cases hold
(a) b+b < 2/3,
(b) S1<3(b+b1)—b2—2,

(c) s < -1/3.

The proof of Theorem 4 uses ideas due to C. E. Kenig, G. Ponce, L. Vega (cf. [42]). Com-
bining the results of Theorem 2 and Theorem 4 we see that the Sobolev exponent s; = —1/3
is critical for the bilinear estimate (5). This observation strongly suggests that s; = —=1/3 is
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also the critical exponent for the local well-posedness of the KP-II equation in the anisotropic
Sobolev spaces H24°(R?), when using a contraction argument in the Bourgain spaces related
to the KP-II equation. Note that the exponent s; = —1/2 is suggested by the scaling argu-
ment. Hence similarly to the KdV equation, it seems that in the case of the KP-II equation
the critical for the local well-posedness Sobolev exponent differs from the scaling one. The
scaling exponent for KdV equation is —3/2. In [42] local well-posedness for data in H*(R),
s > —3/4 is obtained. In fact, the flow map turns out to be real analytic. On the other hand
in [15] it is proven that if the data-solution map is supposed to be of class C® from H*(R) to
H’(R) then KdV equation is locally ill-posed for data in H*(R), s < —3/4. For the moment
we are not able to prove a similar result for the KP-II equation.

Finally we remark that the existence of solitary wave solutions for the KP-I equation
was used in [49] in order to prove that the KP-I equation is locally ill-posed in H2y°(R?),
s; < —1/2. Unfortunately this approach does not work in the context of the KP-II equation.
Namely, a use of Pohojaev type identities shows easily that there is no nontrivial localized
solitary wave solution for the KP-II equation (cf. [10]).

Notations. We denote by “or F the Fourier transform and by F~! the inverse transform.
||-||L» denotes the norm in the Lebesgue space LP. A ~ B means that there exists a constant
¢ > 1 such that 1|4| < |B| < c|A|. For any positive A and B the notation 4 < B (resp.
A 2 B) means that there exists a positive constant ¢ such that A < ¢B (resp. A > ¢B). The
notation ax means a £ ¢ for arbitrary small ¢ > 0. Constants are denoted by ¢ and may
change from line to line. By mes(A) we denote the measure of a set A.

The rest of the Chapter is organized as follows. Section 2 is devoted to the proof of the
crucial bilinear estimate. We first state the Strichartz inequality for KP equations injected
into the framework of Bourgain spaces and some simple calculus inequalities needed for the
proof. The rest of the section is devoted to the proof of the integral representation of the
bilinear estimate. In Section 3 we apply a Picard fixed point argument to an integral equation
corresponding to (1). In Section 4 we give the examples of failure of the bilinear estimate.

2. Proof of Theorem 1

2.1. Preparation of the proof. Let ( = (&, 7), (1 = (&1, m1) and

2
0= U(f,C)=T—€3+%, o1:=0(m, 1), o2:=0(r -1, - (),

by
0:=0(r Q) = ST, Bui= (), 1= 07 = 1, o).

Now we state a version of the Strichartz inequality for the KP-II equation.

LEMMA 2.1. Let 2 < ¢ < 4. Then for any u € L?(R?3) the following inequality holds
(6) 171 ((0)~a(r, QD llze < Null 22,
where b= 2(1 — %)(%+)
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Proof. For any ¢ € L?(R?) the classical version of the Strichartz inequality for the KP
equation (cf. [48], Proposition 2.3) yields

(7) U #)¢lls < 114l

where U(t) = exp(—t(93 + 9;182)). Once we have (7), Lemma 3.3 of [23] gives for any
u € L*(R3)

®) 171 ((@) 73~ [8(r, ODllzs £ llullza.

Interpolating between (8) and the Plancherel identity completes the proof of Lemma 2.1.
Now we state a corollary of Lemma 2.1 which will be intensively used hereafter.

LEMMA 2.2. Let a3, a2, a3 € [0, % + €] and u, U, W be positive. Then

17(7‘1, Cl)a(r - T, C - Cl)ﬁ(rv C)
O e

provided a; + a2 + a3 > 1+ 2¢.

drdCdrdGy S [|ullz2|lvllzallwll e,

Proof. We denote by I the left-hand side of (9). Clearly we can assume that oy +az+a3 =
1+ 2¢. Then the Holder inequality, the Plancherel identity and Lemma 2.1 yield

I < IF (@)™ D)llzalF 7 (02)™2D) ||z |7~ (o) D)l

S llllzallvllzallwll e,

provided a; = 2(1 — %)(% +¢€),5=1,23and ;-+ -+ -~ = 1. But the last condition is
equivalent to a; + a2 + a3 = 1 + 2¢ which completes the proof of Lemma 2.2.
We shall also make use of the following calculus inequalities.

LEMMA 2.3. For any a € R the following inequalities hold

o0 dt 1

(1) | o= S
%0 dt 1

() /_oo )1+t — aft < (a)7

A duality argument shows that (2) is equivalent to
[ [ 6t @)ote - mi¢ - (e Qdnddrdc <

(12) llullz2llvll 22, [Jwll 22,

where %, ¥, W can assumed to be positive and

N e i N
K 6ma Q) = o o b ()0 (e (n = my™
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2.2. Proof of the integral representation of the bilinear estimate. We shall
consider only the case s; € (—1/3,0]. Let s = —s;. Moreover we assume s; = 0. The
case s3 > 0 can be treated in the same way, using that for s; > 0 one has

(M < (m)™(n—m)*.
Hence the kernel K(7,{,m,(;) in (12) becomes
_ IO &) (€ — &)
(0)¥(01)*(02)(61)(02)

To compensate the loss of a derivative in the nonlinear term we shall use the relation (cf.

[14])

K(Tvc) TI)CI)

o ey &n—€m)?
o1 + o2 o= 3515(5 El) + EIE(E _ 61)
and hence
(13) max{|a|, o1, 02|} > |61€(€ - &)

By symmetry arguments we can assume that |o;1| > |o2|. Denote by J the left-hand side of
(12). We consider several cases for (7,¢, 71, ¢1).

Case 1. [£] <24, |&1]| < 48. Denote by J; the contribution of this region to J. In
this case (8) < (o)*’ and hence
1
K(r,¢,m,¢1) S 57—

Since b > 1/2 a use of Lemma 2.2 provides a bound for J;.

Case 2. [£| <24, |&| > 48, |o1]| > |o|. We denote by J; the contribution of this
region to J. We have that () < (o)% and hence

€](€1)*

b1 (g1)8(ag)b”
In this case || dominates in (13). Therefore |€[*(£1)%* < (01)* and hence we obtain

j€1* 2
K(T7 C) T1, Cl) 5 (U)bl-bl (Ul)b_" (0’2)b .

Since b" > b; + s a use of Lemma 2.2 provides a bound for J.

K(Ty C’ T1, Cl) 5 (U)b’

Case 3. [£]| <24, |&]| > 48, |o| > |o1]- We denote by J3 the contribution of this
region to J. We have that (8) < (o) and since in this case |o| dominates in (13), we obtain

€It~ 1
K(r¢md) 3 (o)b'—b1=3(g1)b(ap)? S (01)%(02)®’

since b’ > b; + s. Now Lemma 2.2 provides a bound for J;.

Cased. [€]224, lo|2loul, min{l&al,lé—Euf} > 1.
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Case 4.1. |£] < 100/&;| and |€| < 100|€ — &;|. Denote by Jy4; the contribution of this
region to J. Due to (13) on the support of J;; we have

€112 1€1 171 = &1 S J€]HI3)6|(1+DB)e — g, |(1+9/3 < (5)(1+)/3,

o Let (0)% < |€|%. Then

1
(a>b’—(1+s)/3<a-1>b<a.2)b .

K(Ta Ca 1 Cl) 5

Since &' > (1 + sL/3 we can use Lemma 2.2.
o Let (a)l’1 > |€|”2. Then similarly as previously we obtain

1'% 16’1 - &l° 1

(O’)b -b (Ul)b<0'2)b ~ (o.)bl b; —max{s, (1+’—b2)/3}<01)b<02)b

K(T) C) Tl Cl)

Since b’ — b; > (1+ 8 — b2)/3 and b’ — b; > s we can again use Lemma 2.2 to complete the
proof of this case.

Case 4.2. |€] > 100/¢,| or || > 100§ — &;1|. Denote by Jy2 the contribution of this
region to J. On the support of Jy2 one has

1 =216)° 1€ = &u)° < J€MFe.

Using the Cauchy-Schwarz inequality, we obtain

1/2
Ja2 /I(r, ¢) {/ [@(71, C1)o(r — 71, — Cl)lzdrIdCl} (7, ¢)drd¢,

where

leli+(6) dndg; v
O ="gp" (/|a|z|al|<01)2"(02)2"<91)2(92)2) '

We are going to show that I(r,() is bounded for |£| > 24. Using (10) we obtain

) ([ dein )" "
(@) (o1 + 02)®
We perform the change of variables (&;,m1) — (v, p)
v=3&(E-&), p=o1toa

Note that v € [—3|o|, min{3/4€3, 3|c|}], when £ > 0 and v € [max{3/4&3, —3|o|}, 3|0|}], when
€ < 0. We assume that £ > 0. If £ < 0, the arguments are the same. Further we have

I(r,Q) S

clv|/?dvdu
[EPCE — )l + v — AT

d§idny =
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Therefore we obtain using (11)

©re(g) [ (Al oo [v[/2dpdy v
e {/ 3.0./_«, GE— )2l + v — u ()P

<€>1/4+,<0) /-3|a| |V|1/2dl/ 1/2
~ (o) —3lo] (363 —v)1/2(0 + v)1/2 ‘

o Let |o|* < |£|b?. Since in this case min{|&;], | — &1|} < ﬁlél we have that |v| < %|§|3§a.nd
hence |v|'/2 < (3€% — v)'/2 ~ |€]3/2. Then we have

’ 1/2
< < XL
I(r,¢) < (a)l/“ ] |%£3 V[172(g y)1/2d” < (5)36’-3/4 < const ,

since b’ > 1/3 + s/3.
o Let |o|** > |€]%2. Then we have
. o ont 1/2 .
I(T C) < <§>1/4+ by /3| | |l/|1 2b'42b4 0 < (€>1/4+ b2
T o BE - A+ A [ amTm

since b’ — by > max{(1+ s — b2)/3,1/4}.
Hence I(7,() is bounded for |£| > 24. Using the Cauchy-Schwarz inequality we obtain

Jaz < llullcz|vll 2 [|wll 2.
Case 5. [£]| > 24, |o|>|o1], min{|&],|€ — &1|} < 1. In this case we have
(€)™ (61)*(€ — &) < const.

and we can thus perform the arguments of Case 4.2 with s = 0.

< const ,

Case 8. [£| > 24, |o1| > |o|, |&1| £ 1. Denote by Jg the contribution of this region
to J. On the support of Jg one has
(E)*(&1)*(€ = &)* < const.

Hence we assume that s = 0. Consider the dyadic levels

ARM = {(r,¢1): |&al~ M, (o)~ K]}.
Denote by Jé{ M the contribution of AKM to Js. Then

Je XY JEM,
KM

where the sum is taken over K = 2% k = 0,1,2,... and M = 2™, m = 0,—-1,-2,.... We
shall bound JXM in two ways. First we shall use an argument similar to that of the Case
4.2 above. Then we shall estimate JXM by the aid of Lemma 2.2. A suitable interpolation
argument will provide the needed inequality.

The Cauchy-Schwarz inequality yields

1/2
TEM s [ 1M r, ) { [ @t - m¢ - o Pandc } (7, ¢)drdg,
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where

Koy L 1610) nde, )"
I"%(r,¢) = (@) (AKM <01>26<02>26<01)2(02)2) )

Similarly to Case 4.2 we perform the change of variables

v=36(E-&), n=o1+o0,.
As in Case 4.2 we can suppose that £ > 0. We have

vl < 3l€(I¢] + 1)2M < 91¢)* M.
Hence using that (8) < (o)?’ we obtain

1/2
most [T eMIEE clé[/2|y]/2drydpdy
omiep (01)(n = 01)2(3€3 — V) 2o +v — p1/2(6))2 [

Due to (13) we have that |v| < |o;| and therefore

|(x:9|1>/22 < (o )1/2 -2b, < K1/2-21
Hence
2 1/2
IKM(T, ¢) < I€II/4K1/4 —by / /ngfl dudv
: awiep (BGE — V)Pl + v — '

Mlé|? 1/2
e /9 el dv
~ —oMIep? (%53 - ,,)1/2|(7 + u|1/2

Since |€| > 24 we have that |%§3 -v| > %53 and therefore

IKM(T ¢) < K1/4h /QMKP dv 13
UM empepp lo + |2

K1/4-b
e

< K1/4—61M1/4,

~y

where we used the elementary inequality
oM ¢[?
/ v . Mg,
oMlep o + V|12 S
Now we have by the Cauchy-Schwarz inequality
(14) JeM S KA MY ]| alo]| 2w -

Note that in (14) we gain a small factor M'/4, When b; < 1/4 the only use of M'/4 provides
a bound for Js. But as it was mentioned in the introduction our goal is to lower as much as
possible b; in order to weaken the restriction of Case 3 above. For that purpose we shall now
estimate JXM by the aid of Lemma 2.2.

Ml/4l§|1/2
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o Let |o| < |¢]*2. We denote by JEM the contribution of this region to JEM. Since |£| < 1
and using (13) we arrive at

|E| M-1/2K—51
K(T,C,Tl, Cl) ,S (a)b'(dl)b'*'bl <0’2)b 5 <o.)br(a.1)b+bx—-51-1/2<02)b~

Here 8; > 0 is to be specified later. Due to Lemma 2.2 we obtain a bound

1
(15) JEM < g lellzzllvlizzliwlize,

provided 2b+ o'+ b, — &, —1/2 > 1.
o Let |o|% > |€]%2. We denote by JEM the restriction of JXM on this region. We have
lell—bg < M—(l—bg)/ZK—SQ
K(7'1 Cy T1 Cl) SJ (U)b"'bl (01)b+b1 (Gg)b ~ <0-)b'-61 (U])b+bl -62—(l—b2)/2<0-2)b .

Due to Lemma 2.2 we have a bound

1
(16) JEM < ra=tzges Nellzzllvllzallwllzs,
provided 2b + b’ — 8, — (1 — b3)/2 > 1. The factors K~%, i = 1,2 in (15), (16) help us to
lower b;. Thus an interpolation between (14) and (15) (resp. (16)) with weights 2+ and -
(resp. 3=22+ and 37%;-—) respectively yields
Méi
VAR 2oz lellzzllvllzallwllza,

with 67 > 0 and 65 > 0 provided

(1/4 - by) (§+) ~ & (%-) <0, e & >1/2-2,
Mé
(resp. Jgz¥ %5 lullzallvllzallwllzz,
with 67 > 0 and 65 > 0 provided

2 — 2b, 1 .
(1/4 - bl) <3 _ 2b2+) - 52 <3 — 2b2—) < 0, 1.e. 52 > (1/2 - 2b1)(1 - bz))
But for the applications of Lemma 2.2, §; should be such that
0 <2b+b+b,-3/2, &2 <2b4+b +0b/2-3/2.

Since b > 1/2, it remains to note that we are able to choose properly d; provided b, b; and b,
satisfy

b +3b; >1, b +2by + by —2b,by > 1.
Summing over K and M yields

Jo S llullzallvllzellwllza-

Case 7. €| > 24, |oy| > o], [€| < 2|&1|- We denote by J7 the contribution of this
region to J. In this case we have

ﬂ < (§I)b2 and (£1>3<€ —El)’ < (61)2’

(61) ~ (6)™ @~
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Using the above inequalities and taking into account that |o;| dominate in this case we arrive
at

K(T1 Ca 1 Cl) 5 |§1|1+’.s ’
(0)b(01)¥ (02)®

for s < 1— b;. We use now a symmetry argument. The arguments of Case 4.2 can be used
to estimate J7. The point is that we get the same estimate just replacing (r,¢) with (1, ().

Case 8. [£| > 24, |o1| 2 |o|, €] > 2|, |é1] > 1. Denote by Jg the contribution
of this region to J. In this case we have that |£| < 2|¢ — ;| and

(§1)°(€ - &)°

ol s (6"
Hence
€liésl*(0)
K6 l) S o ooy

o Let |0/ < |£|%. We denote by Js; the contribution of this region to Jg. Since |oy]
dominates in (13), we obtain

|€]1&1 ]2 422

(0)¥(01)*+b1 (02)?

1
<
N (o) (o)b+b —max{1/2, (402 +1)/3} ()b

K(Tv Ca T1, Cl) ,s

Since b'+b, > (s+b2+1)/3 and b > 1/2, we have that 2b+b'+b; — (s+b2+1)/3 > 1. Since
b’ +b, > 1/2 and b > 1/2, we have that 2b+ b’ +b; — 1/2 > 1. Therefore a use of Lemma 2.2
provides a bound for Jg;.
o Let |o|®* > |€[*2. Denote by Jg, the contribution of this region to Jg . Similarly to the
estimate for Jg; we have

il
K(T) C) T1, Cl) 5 <U)b'—b1 (a‘l)b"'bx <02)b

1
<
~ (o) b1 (g, )btbr—max{(1-52)/2,(s+1)/3} (g, )b

Since b’ > (s+1)/3 and b > 1/2, we have that 2b+ ' — (s+1)/3 > 1. Since 20’ + b, > 1 and
b > 1/2, we have that 2b + b — (1 — b3)/2 > 1. Therefore we can apply Lemma 2.2 in order
to give a bound for Jg;.

This completes the proof of Theorem 1.
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Remark 2.1. One can summarize the restrictions on s = —sy, ¥, by, b2 of the proof of
Theorem 1 in the following way:
s1 > by —b - when || is small.
s1>b -V, s >1-3b, — when |o|dominates in (13)

b'>b1+1/4, 31>1+3b1—3bl—b2.
b'+3by >1, b +2b+by—2bjby >1 — when |o;| dominates in (13) and |£;] is small.

81 >bp—1, 2'+b;>1, b +b;>1/2, — when |oy| dominates in (13) and |§;] > 1
s > —3b/—3bl+b2+1, 81 > 1-3b.

3. Proof of Theorem 3
We shall apply a Picard fixed point Theorem to the integral equation

a7 w0 =U@s-1/2 [ Ut - )8, (a2 (¢t

where U(t) = exp(—t(92 + 9;'2)) is the unitary group describing the free evolution of the
KP-II equation. The operator U(t) could be regarded as a kernel operator

U(t)¢ = St * ¢)
with a kernel S;(z,y) defined by the oscillatory integral

00 oo 2
Si(z,y) = /_ /_ exp (izf +dyn + it (6% - %)) d€dn.

Suppose that u(t,z,y) be a solution of (17). Then u(t,z,y) satisfies the KP-II only if an
additional condition on the data ¢ is imposed. Actually U(t)¢(z,y) is well defined for any
¢ € S'(R?) but U (tl¢(z, y) has a well-defined time derivative when we can give a sense to
the expression |¢|714(£, n).

Let 9 be a cut-off function such that ¢ € C§°(R), supp ¥ C [-2,2], ¥ = 1 over the
interval [—1,1]. Let v5(t) = ¢(t/d). Now we state the linear estimate.

THEOREM 3.1. Let b > 1/2, 4 > 0,b4+b < 1,b, >0, by > 0 and s;,s2 € R. Let the
operator Ty be defined by

Ts(w) = U(t)p — 1/2 /0 Ut - )0, (u2(t'))dt'.

Then the following estimate holds

(18) [¥Ts(u)ll geoyea < (||¢||H;3,;'2 + ”uuz”B.—lb':»:hb?) :
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Proof. Let Yb31:92 be the space equipped with the norm

”u”}’b-'wz =

b
(r-e+ %) ()" ()2, €, 7)

2
Lr.f,n

Then we can write the norm in Bg;b,‘,;b’ as

“u”BE'bl'b? ~ [lullybioron + [[ullystssor—bzea-
1,92

Now we state a theorem containing the linear estimates in the Bourgain space framework.
These estimates are in fact one dimensional (with respect to time) and do not depend on the
particular choice of the unitary group U(t).

THEOREM 3.2. Letb+b' < 1. Then for 51,5, € R we have
(19) D@ () Bllys.or02 S |l 21,02

20 9) [ U= OOF )t lysonr S 1Fly v
Proof of Theorem 3.2. To prove (19) it suffices to notice that
llullys.onen = ”U(—t)“"H:,;'xymz,
where H,b, Ve (R?) is a classical Sobolev space equipped with the norm

lull o = IPE" (27, € iz

e

For the proof of (20) we refer to [42] (cf. also [23]).

We return to the proof of Theorem 3.1. Due to Theorem 3.2 we obtain

[9Te()llgesses ~ [9To(W)llyoures + [[¥To(w)llyrere1-b2n2

5 (“(}5”]{;1‘;‘2 + “d,”H;};'b?"’ + ”uux“}’-b’.'lmz + ”uuz“y—b'-ffbx-'l-bzﬂz)

< .92 + ||uu b .
S (I8llzye + el
This completes the proof of Theorem 3.1.

Using Theorem 3.1 with b = 1+, ¥’ = 21—, b; = %+, b; = } and Theorem 2 we obtain for
sy >—-1/3and 5220

1) I9Ta(@l g 44 S (uqsuy;;,-., + nun;&,ﬁ}) -

Similarly we can obtain

(2 9(Telw) = Tl g gy S 0= oll g gt oll g gt

81,92
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Hence due to (21) and (22) there exists co > 0 such that if ||¢)| a2y < co then the map
9Ty has a fixed point, which is a solution of the integral equation (17) in the time interval

[—1,1]. To prove local existence for arbitrary data in Hz';**(R?) we shall use the scale change

invariance of KP equations. As was noticed in the introduction if u(¢,z,y) is a solution of
the KP-II equation with data ¢(z,y) then so is

ux(t, z,y) = Nu(A%t, Az, A%y),
with data
¢,\ (:C, y) = ’\2¢(’\Iv ’\2y)‘

We have that

”¢/\”H;ly’°2 - O(Amin{o,al,232,31+2az}+1/2), as A — 0.

Since for s; > —1/3, 5, > 0 we have s; 235 4+1/2 > 0, we can always assume that ||| 21,%2
is small enough. To prove the uniqueness we need the following theorem.

THEOREM 3.3. Let 1/2 > b > b” > by > 0, by € R. Then there erists § > 0 such that
for 6 € (0,1) and s1, 32 € R the following estimate holds

sl 50000 S &l oot

Proof of Theorem 3.3. If 0 < b < a < 1/2 and § € (0,1) then there exists # > 0 such
that

(23) ||¢6“||Y-°-'1"2 5 50”“”)’-5"1"2-

The estimate (23) is proved in [42] in the context of the KAV equation (cf. inequality (3.29)
in [42]). For the KP equation the proof is essentially the same. Now using (23) we arrive at

||¢6u|IB’-lb;,:1.bz ~  |[Ysully-vr0y.0; + 1sully -br48y.00-1/402

S 601”““}’—""#1.'2 +592IlullY‘°”+blv’l‘1/4:’2

8
<9 ||“||B‘-l§'.'ébx b2

This completes the proof of Theorem 3.3.

1 1 1
2+'6+'3

Let uy,u2 € B, s? "3([-T,T]) be two solutions of (17) in the time interval I = [-T,T]
and é € (0,7T) to be specified later. Clearly

t
wo( - w) = % [ U= 0.8 - a0t
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Let I} = [-4,6]. Then Theorem 2, Theorem 3.1 and Theorem 3.3 yield

- < 2(uy —
llu u2”8.§:.'2*+'i(11) < cllys(u uz)”an&hi

< c||¢§3,(uf - “%)”B—h.h,}

81,82

< o8llwsda(uf = w)l__yepei

81,32

IA

B lgs(ur = vl 1 g4l + wall e g

a —
< o (o= wall g gog , +) -

81,82
Here the constant ¢ depends only on ||lu; + u2“3§+-&+-§‘ We chose § such that c6® < 1/2
31,82

to conclude that u; = u; on I;. Now we iterate the last argument to prove the uniqueness.
This completes the proof of Theorem 3.

4. Proof of Theorem 4

4.1. Proof of (a) and (b). We shall construct examples where the bilinear estimate
which is crucial for local well-posedness fails, by considerations similar to [42], p.591 (cf. also
[15], Section 6). Let x4 be the characteristic function of the set A. The sets A and B are
defined as follows

n

¢ <1},

A={(r,&,n): N<SESN+NYV2 | <NY? and |r-€+—=|<

B = {(Tafa 7]) : (_7'9 =€, _77) € A}
Note that A and B are symmetric with respect to the origin, of Ri,&n' Let C be the paral-

lelepiped centered at the origin of dimensions cN3/2x N=2 x N1/2 with the largest side point-
ing in the (3N2,1,0) direction of R3,, and the shortest side pointing in the (—~3N~2,1,0)

&M
direction of Ri,&n‘ The parallelepiped C has
N3/2+3
te————— ~ N7V
2NVI9N* +1

as £ components of the vertices. Clearly

lIxallz ~ llxBllz2 ~ llxcllzz ~ 1.
We remark that A includes the set

1
D={(r,£,n)=NS€SN+N“/2, lnls%Nl/2 and |‘r—§3|§§}.
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Actually if (1,€,1) € D then
2 2
1
e £52
and hence (1,£,7n) € A. On the other hand D includes the parallelepiped

1
<|r-€+ +4<1

D'={(r,&n) : |nl< -;—NI/Z, for fixed 7 the sections parallel to the (7, &) plane

are rectangles having a vertex (N3, N, ) with dimensions N~2 x N3/2

and the longest side pointing in (3N?,1,0) direction of R, }.

Similarly B includes the set D" which is symmetric to D’ with respect to the origin of Ri,m.

Since the volume of D’ is a constant independent of V and the orientation of D, D” and C
in the space is the same, we obtain

(24) (xa*xB)(1,&,1) > (xp' * XxD") (T, &, 1) 2 xc (7, &, n).

First we shall show the necessity of b+ b; > 2/3. Assume that b+ b; < 2/3 and (5) holds.
We shall consider only the case b+ 8; > 0, since the case b + b; < 0 is easier. Recall that

¢=(mn),¢ = (&,m) and
0= U(T,C)=r-—§3+"§—2,

By polarization and duality (5) is equivalent to

/ 1 |§|(§)"‘f(7'a§,7))<(”)b‘> g(r—mn,§-&,n—-m)
e (k) @7 NP - eyno (Fk)

oy:=0(n,¢1), oz2:=0(r-1,(-¢().

drd¢

2
L"’1 $1.m

<
(25) <l Ngllza -
Take

(26) f(7.1£’ 77) = XA(Txf’n)a Q(T,f,ﬂ) = XA(T,Ea 77) + XB(T,E,T))-
Note that on C one has |7| < ¢ (1 + N?|¢|). Consider the sets

Si=Cn{(r,&n) : n* >N, |n| > c}

and
S2=Cn{(r,&n) : 7* <N?€, |n| > c}.
Clearly S; US; C C. Further we have

<(1 "2) S
(0)~ +E ) on oj

() S (1+N%¢]), onS,.

and



4. PROOF OF THEOREM 4 101

Now substituting (26) into (25) and using (24) we obtain

Xc (T1§1 77) 1/
> Ay
const 2 N (/Sl (o) T+ drdfdn)

Xc (Ta fa 77) 1/2
+N ( S, —(a>2(b+bx) d‘rdfdn)

N2 ron/N 1 g\ 2bth) 1/2
s ([ ) )

cN-12 ,cN¢ 1/2
+N (/ / (N2€)—2(b+b1)dnd€)
¢ c

vV

-1
~ NN—S(b-I—bl)/Z’
which proves the necessity for b+ b; > 2/3.

Now we show that an argument similar as above provides the necessity for s; > —1/2. In
the next section we shall obtain an improvement of this result. Note that (5) is equivalent to

l |€](€)" <(a)b‘ > f(r,6é1,m) g(r—=m,§-&,n—-m) dryd€dn,
1-b a1)® s 72)"
(VN gy ion)t ({eir) (€ - €0 (00 ( Z2) L
27) b ”f”Lf,,e,"”g”Lﬁ'm‘

We shall take f and g as in (26). Then arguments similar as above show that substituting
(26) into (27) yields

2 1/2
> N-2 K€ xe(r,€,m)
const 2 N ‘( 5, (oy20-b=h) drd€dn

/2
-2 |f|2XC (Ta €s 77) !

) N3 ponN ¢ g\ H1-b=h) 172
v ([ e () e

eN-12  .cN¢ 1/2
+N—2al / / 62(N2€)2(b+b1-1)d7’d§

vV

-1

~ N—281 N3(b+b1)/2—2’



102 5. ON THE LOCAL REGULARITY OF KP-II
which proves the necessity for s; > 3(b+5,)/4-1 2> —-1/2.

Now we show the necessity of s; > 3(b+ 1) — b2 — 2. A duality argument shows that (5)
is equivalent to

/ |€1¢€)* g(T, &, 7) <(a)b‘> f(m,&,m) h(r — 1, —&1,n—m) drdrd€d€ dndm,

(o)t~ (€)™ (51)"(00"(%%& (€ - &) (0)? (2 =)

(28) Sllgllzz, 1fllzz, NAllzz, -
Let the set A’ be defined as follows:
A'={(r+2N%¢&+2N,n): (r,€) € C, |n| < VN/2}.
Clearly mes(A’) ~ 1. Set

g(r,ﬁ, 77) = XA'(T’§1 ), f(T’Er 7’) = h(",f, n) = xa(r,§, TI)-
An argument analogous to [42] p. 591 gives

(29) (f*h)(T,f,T])Z (XA*XA)(T1£117)2 XA'(vay 77)
On the set A’, we have || ~ N and |1 — €3 + 1’;

lgllzz ~ 1l fllzz ~ llAllL2 ~ 1.
On the set A, we have [{| ~ N and Ir -+ ﬂ;-l < const. Substituting (29) into (28), we

obtain
const Z N-—261 . Iél(é.).,(lax)lil_(:, 63 77) <<<Z)>: >d1’d§d17

. Clearly

> N H1+3(b+bi-1)-b; drdtdn
AI

~ N—a1+3(b+bl)—bg—2’

which shows the necessity of the condition s; > 3(b+ b;) — b, — 2. This completes the proof
of Theorem 4, (a) and (b).

4.2. Proof of (c). The aim of this Section is to give a proof of (c). The essential
ingredient of the proof is the following Lemma.

LEMMA 4.1. Let N > 1 be a large number. Then there ezist sets A, B, W in R3, _ such

that

T.&:m

mes(A) ~ mes(B) ~ mes(W) ~ O(1),

2

T 1< ~N
bk €]

772 2
+?\5N, el ~0(1)

(r,6,m) € supp (AUB) = |r—€+

(né&mn)e suppW = |1-¢€
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and
XA*XB 2 XW-

Once we prove Lemma 4.1 the proof of Theorem 4 (c) is straightforward. Recall that (5)
is equivalent to

“ lfl(fl)’b‘ (U)b‘> f(r,&1,m) g(r—m,€-&,n—m) drydg,dn;
(@) <f>"’ (1) (o)t (S ) (€ — &) (0a)? {205 i
(30) SNz, Ngllez -

Now take f = x4, § = xB, Where the sets A and B are the same as in Lemma 4.1. Then
clearly

0(1) z N—231N2(b+b1—l),
which shows the necessity of
51 2b+b1-1>-1/3

due to (a). Hence it remains to perform the proof of Lemma 4.1.

Remark 4.1. We note that the example providing the necessity of s; > —1/2, con-
structed in the previous section uses f = x4, ¢ = xB in (30), with x4 *xxB 2 xc. The sets A,

B,Cin R2 ¢.n have measures O(1), the symbol 7 — £+ 953 of the KP-II equation is bounded
on A and B, ||~ N on A and B, l'r -8+ f‘;-l < N3/2 and |¢| ~ N~1/2 on C. In this section

we improve this argument by considering sets A and B with the same properties as in the
example providing the necessity of s; > —1/2, but the set C will be such that |¢| ~ O(1) and

|r—§3+ﬂg-‘ <N%onC.
Proof of Lemma 4.1. Let v = ;}ﬁ and the set Ag, C R? be defined as follows

7-53 <2}’

Agn={(1,6) : N+B<ESN+B+7,

where 0 < 8 < 1and 0 < n < N. The set Ag, includes the rectangle R},m of dimensions
c¢N~2 x N3/2 with the longest side pointing in the

(3(N+ﬂ)2 + (N—fﬁ)? 1)

direction of R? ¢ The intersections of the planes {n = const} with the set A in Lemma 4.1
will be chosen as subsets of R 5o+ Lhe coordinates of the vertices of R q in (1,€) plane are
the following:

(W +8)7- wg N +8),

(N +8) - g ~Th N +8+83),
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2
((N+ﬂ+7)3_ﬂfz+_7_1,N+ﬂ+7),
(N +B+7° - o + - LN +6+7-6),

where
1-43-342 (N+ﬁ)+~_+pﬁﬂr_m;7
1+(3(N+5)2+W'i?)7)

= T(N+.Ba77a7) =

€5 =&V +8,m,7) = (3(N +B8)* + (zpz ) (N +B,7,7).

Note that 73 ~ N=* and £ ~ N~2 (more precisely £ = 1, N~2 4+ o(N~?%)). Further we note
that the rectangle R} is situated between the following lines in the (7, €) plane:
Bm

=(3(N+ﬁ)2+ N+2ﬁ )(f‘N'ﬂH(N""B)s‘ﬁ%,
r=(3(N+ﬁ)2+ N-:ﬁ >(€_N‘ﬂ‘€é)+(N+ﬂ)3—;v":7—r5.
Now we define the set Bg,, i as follows

1._§3+ (77 —51{)2

For0 < <1, K=0(N)and 0 <7 <N, the set Bg g includes the rectangle R%.n,K of

dimensions ¢N~2 x N3/2 with the longest side pointing in
g g

- K)"’
BN +1-f—7)? 4 T ,1)
(( ELA sy g
direction of (7,£) plane. The intersections of the planes {n = const} with the set B in Lemma
4.1 will be chosen as subsets of R3 , ;. The vertices of R}  have the following coordinates:

_K)2
(_(N+1—,B_7)3+ :I_K_o,,—N_l'*'.B'*“Y)a

Bgngx :={(r§): =N+ -1<E<-N+-1+47, <2}.

(~(V+1- -7+ FEEE 43, -N -1+ 8+7-63),
(—(N+1—ﬂ)3+ s +1,—N—1+ﬂ),
(- +1-BP+ L 412 N - 145+ 63),
where

B=1(-N-1+8+vn1-K,-7), &=E6-N-14+B+v,7-K,—7).
Note that €2 = SN2+ o(N~2). The rectangle R}, i is situated between the lines:

ro= (30VH1-B-7+ FEEEL) €+ N+1-6-)-
(N+1-8-7)°+ 552,
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r = (3(N+1—ﬂ 7)2+(ﬁ$1——5)_—75,)(€+N+1—ﬂ v +E&5)-
(N+1-8- 7)3'*'N‘+1—2J—7+Tﬂ

in the (7,€) plane. For fixed 7, the set W in Lemma 4.1 will be the intersection of suitable
parallel translations of the rectangles R} and R} . The relation between 7 and 8 will be

chosen later. Now we define the parallelogram Rg, k in R3,§ as the intersection of suitable
translations of R},,ﬂ +no 20d R%,ﬂ—ﬂo, k With a proper choice of n9. More precisely we set

Rgnk = {Rll3.n+no - {TO’EO}} N {R%.n—no,K + {7'0’50}} |

3N?2 3N 3J/N 5 K? K? 1 K
= N3 2 oy vy o2 L2 — z ——
T0:= N>+ 5T 3 T3 v TaN® o N+2, o =

The parallelogram Rg , k is determined by the following lines in (7,£) plane:

(31) {r=(3(N+ﬁ)2+‘(”Ni§§)(s+ —B)+(N+p)7° - GHEE o

r= (3o GEER) €+i-0-)
NV +B)° - T 13,
) T o= (3(N+1-ﬂ—7)2+(%{_%%p)(£+%—ﬂ—7)
S(N+1-8-70+ 2l 1 n,
o= (3(N+1—ﬂ-—7) + N‘;’l_,,)_: )(E+§—ﬂ—7+£}§)

—(N+1—ﬂ—'y)3+7;r(£%-__%_—7+ro+r3,

(32)

(34)
where
3 K 4 K
Eﬂ =5(N+ﬂ,77+ ?)7)) Eﬂ.’:f(_N" 1+ﬂ+’7,77- ?1_7)7

K K
3=71(N+8,n+ 57 3=7(-N-1+8+7,7- =7

In order to compute the £ coordinates of the vertices of Rg , x we need the following relations

(35) (N+B8°+(N+1-8-7)° = 2N3+3N2-%N3/2+3(1+2ﬂ2—-2ﬂ)N

+3(ﬂ-1)\/1'v'+1+3(ﬂ—%)2+0<\/iﬁ),

(36) 3y (N +1-f—7)?= N3/’+3(1—ﬂ)\/_——+0(\/1-ﬁ),
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o el
o s 0-3) G- e (F)
(39) & (3(N+ﬂ)2+ %) +=3+0(5),

_Ky2
(40) & (3(N+1—ﬂ—7)2+ (Ninl_‘b)_7)2) +75= §+O(%).

Now using (35), (36), (37), (38), (39), (40) and the definition of o, & and 79, we arrive at
the following relations for the £ coordinates of the intersection points of the lines (31) and
(32) with the lines (33) and (34):
The intersection of (31) and (33):

do€+5-8) = E+6(5* -+ - o)V - ]
+3(8- 1)+ + 2 3G 10 (),
The intersection of (31) and (34):
o +3-8) = L 46(62- B+ f5 - FmIN -]
+3(0-9)"+ fr + P - PG+ 140 ()
The intersection of (32) and (33):
dp(6+3-B) = T +6(8° - B+ fw — FmIN - ]
+3(8-4) +fr+ S -0 _1i0(k),
The intersection of (32) and (34):
dp6+1-8) = MHE+6(8- B+ - F)N -]
+3(B- )+ B 1 114 0(F),

where

ds = 6(1—28)N - 3V'N + O(1).
Now we set
(41) K =v3N(1-7)

and choose the relation between 7 and § to be

(42) 1=van (5-137)
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in order to cancel the terms of order N. Note that the relation between 1 and 8 is linear. For
the parameter 3 we suppose 0 < 3 < 1/10. Denote by Rg the parallelogram Rg, k, where 7
and K are obtained by (41) and (42). Now we have the following formulas for the vertices of

Rp:
The intersection point between (31) and (33):
(¢ = —1+p+ 3 (2T 4+ 12(8-1)°+0(F)).

17 = (V487 + 55 (=R _at12(5- 1) +0 (F))

N
3N232
\ +(N + 8)% - 3 — 7o,
The intersection point between (31) and (34):

= e (SR o)
17 = &+ + @nfy) COPE e+ 26- )"+ 140 ()

3N332
\ +(N+:B)3__N'.T.%_-TO1
The intersection point between (32) and (33):

(¢ = -1+p+3 (2N 44 12(8-9)"-1+0(F)).
2 - 2
17 = 2(V+07+ ) (2 _ s 12(8-1)° - 1+0(F))
\ +H(N+8 - R~ - 5 +0(R),
The intersection point between (32) and (34):
(¢ = -1+8+4 (2 _sr12(8-1"+3+0(F)),
2 -
(o= b(oveors @) (EBE a2 924 3+0(4)
| AN - i 0 ().
Finally the center of R has the following coordinates
(¢ = —1+8+4 (T s 12(8-4)"+2+0(F)).
{7 = (W48 +fh5s) (2 —at12(8- 1) +3+0())
| AV -Tr -3+ 0 ()

When we shift 3 from 0 to 155, the shift of dg is O(N). Recall that
ds = 6(1 - 26)N — 3VN + O(1).
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But the difference with respect to £ of the intersection points between (31)-(33) and (32)-(33)
((31)-(34) and (32)-(34)) is O(#;). Hence we can assume

dg =6(1-2B)N.
Define the set V as

V={(r,€,n) t (r€) € Rpy = \/-N(/’—T) °<ﬂ—1(1)0}

The projection of R on the £ axis is with measure O(N~!). The distance between the lines
(31) and (32) is O(N~2). The gradient of the lines (31) and (32) has coordinates (O(N?),1)
in (r,€) plane. Hence the measure of Rg is O(N~!)O(N~2)O(N?) = O(N~!) and moreover
the measure of V is O(1). Further if (7,£,7) € V then we can easily see that || ~ N?,
|€] ~ O(1) and 7 ~ N (cf. the definition of 79, & and 7). Hence
2
(T,faﬂ) eV= T-§3+%‘ fSNz

Let V* be the following subset of V

1-9 49 51
* = : = - < B < —
1% {(r,&m) : n=V3N ([3 > ) 50z S B < Toqr (7€) belong to the

parallelogram with the same center as Rg, the sides being parallel to those

of Rp and the lengths of the sides are 1(1) 0 times the lengths of the sides of Rg}.

We easily see that
mes(V) ~ mes(V*) ~ O(1).

Denote by ¢ = (7,&,n) the coordinates in Ri,é,n' Next for each (/2 € V*, we try to find a
subset V¢ C V such that

mes(V¢) =cmes(V), VeC{{f : (G€V, (- eV}
where the constant c is independent of (. Let (/2 € V* be on the parallelogram Rg in V.

Up to a translation, we may assume that (/2 is the center of Rg. We choose V as follows:

Ve = {(ném) :n= V3N (ﬂl - —) |81 - (7, &) belong to the

Al < 1002’

parallelogram with the same center as Rp,, the sides being parallel to those

1(1) 5 times the lengths of the sides of Rp,}.
We have to check that for any (T € V¢ there exists (; € V such that
G=¢-¢.
Assuming this claim, we have that for (/2 € V*,
mes{(} : €V, (- €V} > mes(V) ~ mes(V) = O(1).

of Rp, and the lengths of the sides are
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Let ¢ = (1,&,n), (i = (m,&,m), ¢2 = (72,€2,m2). Since the points with coordinates
¢/2,¢1, ¢z belong to V, then there exist pairs (3, 7), (81, 71), (B2, 72) such that

n/2=~/§N(ﬂ—1—;1), m=x/§N(ﬂ1——1—'2'1), 172=\/§N( 2—5—‘2'—7).

If (; =( — ¢y then B2 = 203 — B;. Since
1 1
)]

we can assume that d is independent of 8 and write just d = dg = O(N) for 0 < 8 < 5i5. Let

Op be the center of Rg and d@g, bs be the half diagonals of Rg. We use the frame (O, @, bg)
to parameterize Rg as follows:

4

€ = —hepe gy OG0, 40,10(3p))
= f-(ﬂ,el,oz)’
17 = 3((v+pp +—N;%;s)( poa) e e ”))+(N+ﬂ)3 yea

~o -+ & ((V+8) + i+ )(401+302+O(1N) +8z8 40(4)
. = f(ﬂ,01,02),

where |0;|+|02] < 1. We shall prove that for (7 € V¢, there exists {; € V such that ¢ =¢—¢1.
Note that this is equivalent to prove that for |8 — 81| < gz and |6;] + 62| < 155, there exist
6, and 6, with |6]| + |6| < 1 such that 6y, 6,, 61, 6; satisfy:

{ g(2ﬂ_ﬂl)011,0§) = 2€(ﬂ,0,0)—£(ﬂ1,01,02),
7_-(2ﬂ —ﬂlvaivoé) = 27—-(510a0) —f(ﬂ1,01,02).
A straightforward computation shows that (43) is equivalent to

(43)

| 0+30, = 6 - 36 -246- A1) +0 (),
(1) { QA+ +G+a®)l = —1+aN)o - G+aN)e,

\ —~24(8- 1)’ +0 (Hy),
where
)= 1 im0 () =R - i vo ()

d 1 3 d 1
&i(N) = 2ﬂ1+——+0(——2>, c2(N) = ;\; 24N2+O(—1\ﬁ)'
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Clearly c;(N) ~ ca(N) ~ & (N) ~ &(N) ~ O (). Set

(v 1ram) ¥ (ram 1oc
X: ,Y= y
1+ c1(N) 34 c2(N) 1+ &;(N) §-+62(N))

© = (6,,6,)°, ©' = (8,63)", E=(1,1)"
Then (44) can be written in the form

1
Xo'=-Y0 (—24 -p1)*+0 (—)) E.
+ B-5)"+ i
We have that 3
1
det(X) = ca(N) - ch(N) =0 (N) .
Note that c2(N) — 3¢1(N) # 0, since d # 0 and hence det(X) # 0. Therefore we have that
1
o' =-X"'ve (—24 -B)*+0 (—-)) X7'E.
+ (B-p51)"+ N

We can easily obtain that

=gy (-am ) = (00 )

XY = —

1 c2(N) = §a(N)  §ez(N) - §aa(N)
det(X)

—a(N)+a(N) —a(N)+e(N)

- ((1) (1’)+(ﬂ—ﬂ1)(88§ 883)

Therefore we obtain that (43) can be written in the form

0 = —6+0()(B-A)OWE+0W)0:+8-8)+0 (H),
o = —0,+0(1)(8- )0 +01)8:+8-B1) +0(Hs)-

Now it is clear that for |6, + |6;| < 155, we can choose 6,6, with |6]| + |65 < 1 in (43).
Then we conclude that for (/2 € V*
1
(45) mes{(; €V : (-( €V} Wmes(V) ~ 0(1).
We take A and B as follows
A=V+(T0,€0a770)v B=V—(T01501770)°
We have that
AN{n=17"} C Rpuyr, BN{n=n"} C R
where

K=VaNa-7), 7' =VaN (s =157), i~ N,
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Therefore

2
7| <,
€

(T,E,T))G supp (AUB) = r—§3+ <1,

Using (45) we obtain
xa*xB(¢) Z xv+(¢/2).
Now we take W := V* + V* in order to complete the proof of Lemma 4.1.

€] ~ N.
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CHAPTER 6

The Cauchy problem for higher order KP equations

This Chapter essentially contains the joint paper with Jean-Claude Saut [49] (The Cauchy
problem for higher order KP equations, Journal of Differential Equations, 153 (1999), 196-
222).

Abstract.
We study the local well-posedness of higher order KP equations. Our well-posedness results
make an essential use of a global smothing effect for the linearized equation established in (5],
injected into the framework of Fourier transform restriction spaces introduced by Bourgain.
Our ill-posedness results rely on the existence of solitary wave solutions and on scaling argu-
ments. The method was first applied in the context of the KdV and Schrédinger equations

(cf. [7], (8]
AMS subject classification: 35Q53, 35Q51, 35A07.

1. Introduction

In this Chapter we shall study the Cauchy problem associated to Kadomtsev-Petviashvili
(KP) equations having higher order dispersion in the main direction of propagation. Such
equations occur naturally in the modeling of certain long dispersive waves (cf. [2],[35], [36]).
The study of their solitary wave solutions was done in [10],[11]. Thus we consider the Cauchy
problems in R?, d = 2,3

(1) { (Ut + Uz + Blzzzzs + uuz)r + Uy = 0

in the two dimensional case and
(2) { (ut + 0Uzzz + PUzrczz + uuz)z + Uyy + Uz = 0

U(O, z? y’ z) = ¢(z1 y’ z)
in the three dimensional case. The “usual” KP equations correspond to 3 =0 and a = -1
(KP-I) or @ = +1 (KP-II). We are interested in the local well-posedness of the Cauchy
problems (1) and (2). Following [7] and [24] we introduce the next notion for well-posedness
which will be convenient for our purposes.

DEFINITION 1. The Cauchy problem (1) (resp. (2)) is locally well-posed in the space X
if for any ¢ € X there ezists T = T(||¢||x) > 0 (T is a nondecreasing continuous function
such that lim,o T(p) = 00) and a map F from X to C([0,T); X) such that u = F(¢) solves
the equation (1) (resp. (2)) and F' is continuous in the sense that

|F(¢1) = F(82)ll(o.13:x) < M(||¢1 = ¢2l|x, R)
113
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for some locally bounded function M from R* x R* to R* such that M (S, R) = 0 for fized
R when S — 0 and for ¢1,$2 € X such that ||d1]|x + ||#2]lx < R.

We introduce the nonisotropic Sobolev spaces H*1*2(R?) equipped with the norm

el = / (€)% (my**=[a(€, m) |Pdedn,

where (.) = (1+]./%)/2 and = (n!, 9?) in the case of three space dimensions. By H*1*2(R?)
we shall denote the homogeneous nonisotropic Sobolev spaces equipped with the norm

Py = / €12 [0 [a(€, n) [*dedn,

Taking into account the specific structure of the KP-type equations we introduce the modified
Sobolev space H*1%2(R?) equipped with the norm

[0 = (€7 021+ €17 (e, m) P,

Note that any u € H**2 (R?) has (formally) a zero z mean value. We shall denote H%° by
L? . For b, 51,8, € R we define X%**2(R%*1) to be the completion of the functions of Cy°
with zero z mean value with respect to the norm

el y o002 = /(T +p(&, 1)) (n)®2 (1 + |€] 1) (7, €, )| *drdEdn,
where

2
p(€,m) = BE° — of® + %

If a or B vanishes then the equations (1) and (2) are scale invariant. If u(¢,z,y) is a so-
lution of (1) with 8 = 0 then so is ux(t,z,y) = Au(A3, Az, A%y) and |[ur(t,.)||gore =
A31+25241/2)14 (X3¢, )|| 41,0, - Hence one may expect local well-posedness (resp. ill-posedness)
in H*1*? of (1) for B = 0 when s; + 232 > —1/2 (resp. s; + 2s; < —1/2). Similarly if
u(t, z,y, ) is a solution of (2) with 8 = 0 then so is u\(¢, z, y, z) = A2u(A3t, Az, A%y, A%z) and
Nua(t, Mlgreres = A*1F25271/2||lu(X3, )| jyo1.0,- Hence one may expect local well-posedness
(resp. ill-posedness) in H*'*? of (2) for B = 0 when s; + 2s; > 1/2 (resp. 8; + 252 < 1/2).

If u(t,z,y) is a solution of (1) with @ = 0 then so is ux(t,z,y) = Atu(A%, Az, A\3y)
and |Jua(t, )|l goe = A1122%2||u(A5¢,.)||gore;. Hence one one may expect local well-
posedness (resp. ill-posedness) in H®*2 of (1) for @ = 0 when s; + 3s3 > —2 (resp.
81+2s2 < —2). Similarly if u(t, z, y, z) is a solution of (2) with @ = 0 then sois uy(¢,z,y,2) =
Mu(ASt, Az, Ay, A32) and [Jux(t,.)|| goy.0r = A*1F39241/2||4(A5¢, )|| groy.e, - Hence one one may
expect local well-posedness (resp. ill-posedness) in H*1+*2 of (2) for @ = 0 when s; + 3s3 >
—1/2 (resp. s; +3s; < —1/2).

Now we state the well-posedness result. The proof uses the Fourier transform restriction
norms introduced by Bourgain [12], [13], [14], in the context of Schrédinger, KdV or KP
equations. In the nonlinear estimates we shall make an essential use of the smoothing effects
for the linear group associated to (1) or (2) established in [5].
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THEOREM 1. Letd =2 and 8 <0,a€R. Then for any s; > —1/4, s; > 0 the Cauchy
problem (1) is locally well-posed in H*1+*2. Moreover there ezists b > 1/2 such that the solu-
tion u(t,z,y) satisfies u € X%*12,

Letd=3 and B <~0, a € R. Then for any s; > —1/8, sz > 0 the Cauchy problem (2) is
locally well-posed in H*1+*2, Moreover there ezxists b > 1/2 such that the solution u(t,z,y, 2)
satisfies u € Xbs192,

If 3 = 0 and @ > 0 (the “usual” KP-II equation) local well-posedness of (1) in L? is estab-
lished in [14]. The proof uses Fourier transform restriction norms, a dyadic decomposition
related to the structure of the symbol of the linearized operator and can be performed for
periodic initial data. Local well-posedness of KP-II in H 192 g1 > —1/4, 83 > 0is established
in [57].

The sign of B is crucial in the proof of Theorem 1. We do not know of a similar result
when 8 > 0 (KP-I type equations). In this case, however, it is easy to obtain global weak

solutions by energy methods (cf. [55]). The uniqueness of such solutions is unknown!.

In [7] it is shown that the solitary wave solutions can be used to construct examples
proving local ill-posedness for the (generalized) KdV equation. One considers the limit of the
solitary wave solutions as the propagation speed tends to infinity. In the favorable cases the
initial data tends weakly to a nonzero distribution (for example the Dirac delta function for
the KdV equation with cubic nonlinearity) while the solution at time ¢ > 0 tends weakly to
zero. Using the idea of [7, 8] together with the properties of the solitary waves of KP-I type
equations (cf. [10, 11]), we can prove the next Theorem.

THEOREM 2. Let d = 2. Ifa < 0 and 3 = 0 then (1) is locally ill-posed in H*° for
s < —=1/2. Letd = 3. Ifa < 0 and B = 0 then (1) is locally ill-posed in H***? for
s1+2s2=1/2,5 >0,5,>0. Ifa=0 and 8 > 0 then (2) is locally ill-posed in H*° for
s < -1/2.

Note that our well-posedness or ill-posedness results do not contradict with the scaling
argument. In fact the region {(s1,s2) : 81 > —1/4,5s2 > 0} is a subset of the region suggested
by the scaling argument {(s1,S2) : s1 + 3s2 + 2 > 0}, where well-posedness is expected to
hold in the case of two space dimensions when @ = 0, 3 < 0. The same holds for the region
{(s1,82) : &1 > —1/8,s2 > 0} which is a subset of {(s1,s2) : 51 + 332 + 1/2 > 0} in the
case of three space dimensions. If d = 2, @ < 0 and B = 0 then ill-posedness holds for the
pairs (s,0), s < —1/2 which can achieve the “critical” line s; + 2s; + 1/2 = 0, suggested
by the scaling argument. If d = 3, @ < 0 and 8 = 0 then ill-posedness holds for the pairs
{(s1,52) : 81 +2s3 = 1/2,5; > 0,5, > 0} which are a part of the line suggested by the scaling
argument. If d = 3, @ = 0 and 8 > 0 then the pairs (s,0), s < —1/2 can achieve the line
s1 + 3s2 + 1/2 = 0, suggested by the scaling argument.

The method for obtaining local well-posedness works just for KP-II type equations (i.e.
B < 0or =0, a>0) since one can recuperate the derivative J; in the non-linear term by
the aid of an algebraic relation for the symbol of the linearized operator. (cf. (16) below).

'In the next Chapter we shall prove a global well-posedness result for the fifth order KP-I equations
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In the case of KP-I type equations (8 > 0 or § = 0, a < 0) we can not gain the 8, derivative
using the relation (16). However, using the parabolic regularisation method it is possible to
prove local well-posedness of (1) in H?, s > 2 and local well-posedness of (2) in H?, s > 5/2
(cf. for instance [31] for an illustration of this method). The proof does not make use of the
specific structure of the KP-type equations and could be performed for quite general evolu-
tion equations. The conditions for s are in order to control the L* norm of the gradient of
the solution and they seem to be very restrictive. Hence there is still no satisfactory theory
for the local well-posedness of the Cauchy problem for KP-I type equations.

On the other hand our ill-posedness results are only valid for KP-I type equations since
the existence of solitary wave solutions is used in an essential way. In [10] using Pohojaev
type identities it is shown that the KP-II type equations do not possess localized solitary
wave solutions. Note also that we are forced to take a or B zero in order to keep the scale
invariance of the equation.

The rest of the Chapter is organized as follows. In Section 2 we recall the global smoothing
effects for (1) and (2) established in [5]. Then we inject these estimates into the framework
of the Bourgain spaces associated to (1) and (2). In Section 3 we prove the crucial nonlinear
estimate. In Section 4 we perform a fixed point argument to complete our well-posedness
result. Section 5 is devoted to the ill-posedness of (1) and (2). In Section 6 we remark that
the ill-posedness of the (generalized) KdV equations does not depend on the special form
of the solitary waves. Finally in an appendix we give the proof of a decay estimate for a
fractional derivative of the “lump” solitary wave of KP-I equation.

2. Estimates for the linear equation

Let us consider the linear initial value problem associated to (1) or (2)

'6, = D
®) { W

where D = (Dy, D3), when d = 2, D = (D4, Dy, D3), when d = 3 Dy = —i0;, D2 = —id, and
D3 = —i8,. We recall that p(&,n) = B€° —a€3 + ]%E We shall denote by U(t) = exp(—ip(D))
the unitary group which generates the solutions of (3). We have the following representation
for the solutions of (3), when d =3

u(t) z,Y, Z) = U(t)¢ = Gt * ¢)

where G, is the oscillatory integral
Gi(z,y,2) =c /Ra exp(itp(§, n) + i(z€ + yn' + 2n*))dédn.

A similar representation for the solutions of (3) holds when d = 2. We have in fact a global
smoothing effect for the solutions of (3).
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LEMMA 2.1. (cf. [5], Theorem 4.2) Let §(r) = d(3 — ). Then the following estimates
hold

8(r)
Dz U(t)ll Loy, ) < clléllze,  (d=2),

(z.9)

8(r)
DU lzgi, , ) < ellélzs,  (d=3),
provided ,
— = §(r).
== 5()

Next we shall prove an inequality which will be used in the proof of the nonlinear esti-
mates.

LEMMA 2.2. Letd =2 and
0<6<1, >0, 0<b<1/2+4¢.
Then the following inequality holds

(4) IF=2(1EMr + (€, m)) Pla(r, & m)); L Lz )| < cllullza,
where 2 6b (1-6)b 5(r)b

q 2ta’ ‘= 15ra AT iRt a)
Letd =3 and

0<60<1, e&>0, 0<b<L1/2+4¢.
Then the following inequality holds

(5) IF =21 + (& m) 1@ (r, & MI); L (L 4,2l < ellliza,
where 2 6b (1-6)b 5(r)b
- r
-—=1-—, 4(r)= y A= —————.
q 2re V=174 6(1/2+ €1)
Proof. Let d = 3. Using Lemma 2.1 and [23], Lemma 3.3 we obtain
&(r)
(6) 11Dz "¢ w5 L (L{z g )l < ellus X200,
provided
2
- =4(r).
7 (r)

Interpolating between (6) and
llus LELEz )l < llus X209,

(z.v)
we obtain
(7) 1Dzl u; LI(LE )l < ellu; X>OO,
provided
2 _q_ 6b 5(r) = (1-6)b _ o(r)b
q 1/2+€1’ 1/2-}-61’ 6(1/2-{-61)‘

But (7) is equivalent to (4) which completes the proof of Lemma 2.2 when d = 3. If d = 2
then the arguments are the same.



118 6. THE CAUCHY PROBLEM FOR HIGHER ORDER KP EQUATIONS

COROLLARY 1. Let d =2. Then the following inequalities hold

(8) 1724 + p(€, ) ~*l1a(r, & m); LE(LE )| < ellullz2,
where b > 1/2.
(9) IF 72 + p(&, 7)) Pa(r, & m)); LI(LEs )l < ellulize,

where25q500,b_>_0andq—b_%>%.

Let d = 3. Then the following inequalities hold

1) IFEM + o€ m) MR & m)); YL, ) < ellulze
where b > 1/2.
(11) ”}-—1(<T + p(Ev U))-bm(ﬂ f) 77)'); Lg(L%z,y,z))“ < C”’U”Lz,

where2$q$oo,b20and;§_%>%.

Proof. The proof of (8) follows from Lemma 2.2 (d = 2) applied with § = 1/2 and
b=1/2+¢;. Lemma 2.2 (d = 3) applied with § = 1/4 and b = 1/2+ ¢, yields (10). To prove
(9) and (11) we apply Lemma 2.2 with 6 = 1.

3. An estimate for the nonlinear term

LEMMA 3.1. Letd =2 and sy > —1/4, s2 > 0. Then for sufficiently small ¢ we have
(12) ||UU3”X-1/2+3¢,¢1,.2 S c||u|I2X1/2+2¢"l"2'

Letd =3 and sy > —1/8, s3 > 0. Then for sufficiently small ¢ we have
(13) “uuzl|x—l/2+3e,ll,¢2 S c”u”2X‘/2+3¢:'1-'2 .

Proof. We shall give the proof only when d = 3. In the case of two space dimensions
the arguments are similar. We set

@(r,&,m) = (T + p(€, ) 2¥2(E) (m)* (T, &, m),
g = ”(Taf,ﬂ)’—‘r*‘l’(f,n)’ oy = U(Tlaghnl)v g2 = U(T_lef—éhn—nl)'
Let ¢ = (¢,7n). Then (13) is equivalent to

[|(g) ~1/3H3e(g) 1o (22 //K(T»C, 71, ()W (1, G)B(r — 1, ¢ - Cl)dTldCIHL?r'O <

(14) c{llwllZz + llwllzalll Dzl wll g2 + [ Dl 7 |72},

where

E -8 f_f -3 -32 _ —3;
Knbma) = = ((01)11/>2+2c<(1<7712))1/2ize )

Hence by the self-duality of L2 we obtain that (14) is equivalent to
[ [ a6 m, )80, )80 = 7,¢ = (e, dndcrarg] <

(15) c{llwllza + llwllzalll Dzl " wliza + 1Dzl wl|Z2 Hivllza,
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where

(O (&) (€ -&)™ (m)*?

Kl (T7 C7 T1, Cl) = <01)1/2+2e(02)1/2+2¢(a)1/2_3¢ <,’71>32<7’ — 171)32

Since for s3 > 0

(m)*
(m)*2(n —m)=
we shall suppose that s; = 0 from now on. Without loss of generality we can assume that
@ > 0 and T > 0. We have the following relation, where = (9!, 7?) and 7, = (9}, 7?)

01+ 02— 0 = —5B6E(E — &1)(E% — €61+ €1) + 3a1€(E - &) +

&' —€n)? | (&an? - €nd)?
&1€(& - &) &1€(E-&)

< const,

(16)

+

One has the next Lemma.

LEMMA 3.2. There ezists a positive constant cg such that

(17) max{|a|, |o1],|o2|} > cl€1(€ - &)&3,  for |€] > co.
Proof. Since 8 < 0 we have that

3max{lol, loal, loal} 2 1646(€ - €0)|(~ 06" + 3e),

where we used the elementary inequality &2 — £&; + &2 > 3¢€2. If o > 0 then we obtain (17)
with ¢g = 0. If @ < 0 then for —%5[352 + 3a > 0 we have

3max{lol, ol loal} > I626(6 ~ E0)(~2?)

which completes the proof of Lemma 3.2.

We shall denote by J the integral in the left-hand side of (15). We shall divide the domain
of integration taking into account which term dominates in the left hand side of (17). By
symmetry we can assume that

lo1| 2 |o2].

Case 1. |£| < max(2,cp). We denote by J; the restriction of J on this region. In this
case we have that

(E)M/3(€ - &)1/8

KI(T,Cy Th(l) S <al)1/2+2e<02>1/2+2c<a>1/2—3€

Case 1.1. [§]| > 1, |€ — &1| > 1. We denote by Jq; the restriction of J on this region. In
this case we have that

|611/8)€ — &]/8
Kl (7') C) T1, Cl) < (0,1>1/2+2c(0-2)1/2+2c<0>1/2—3c
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Hence using Holder inequality (10) and (11) we obtain

Ju < |F () TVHG(r )l )

(31y13)
x“]_--1(|€1|1/8<al)—1/2—2<ﬁ(1'1, Cl))”Ls/s(L? )
t z,Y,2
X"]:-l(lf _ §1|1/8(32)‘1/2‘2‘@(1‘ -1,(— Cl))”LG/fi(Lz )
t z,Y,3

< dlwliZalivllze.

Case 1.2, [£;] < 1. We denote by J;; the restriction of J on this region. In this case we
have that

|€1]1781€ - & ]V/®

|€1 I (0’1>1/2+2C (0'2)1/2'*'25(0)1/2—35

Kl (T, C, 71, Cl) S

Hence using Holder inequality (10) and (11) we obtain
R < IF(0) (0 Ol )
X||F =2 (|€0]1/8(01) =/ 2= 2¢61 | 1@ (1, G)) I o3 1o
t ( (zly,x))
x| F-1(j€ - €l|1/8<0.2>-1/2-2€{5(1' -m,¢ - Cl))“L‘/"‘(L? )
¢ z,y,3
< cllwllzall| Da " wllz2llv]l e
Case 1.3. € — &;| < 1. This case can be treated similarly to Case 1.2.

Case 2. |£| > max(2, ¢o), |o| > |o1|. We denote by J, the restriction of J on this region.
In this case we have that

|a,|1/4—4c > c|€|3/4-126|€lll/4—46|€ _ €1|l/4—4e'

Hence

(6)1/4+31+12e<61>—31 +4e(£ _ El)—al-{—«ic
Ki(r,¢,m,G) < |€1[1/4]€ — &£1[1/4(0)1/242¢(ap) 1 /242¢ () /4 ¢

Case 2.1. [§;] > 1, |6 — &1| > 1. We denote by Js; the restriction of J on this region. In
this case we have that

|€1]1/3)€ — &,)V/®

< (01)1/2+2e(g ) 1242 (g)1/4 | ¢

KI(T1 C) T Cl)
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Using (10), (11) and Holder inequality we obtain

Ja < IFTH (o) AD( Oz, )

(=,9,2)
X"}'-l(lfl|1/8(0'1)_1/2—2€{5(r1’Cl))”lea(Lf )
t 2,9,
XIF7HE = &l oa) =220 (r = m, ¢ = Gl
t z,Y,3
< dlwliZallvlie.

Case 2.2. [§;| < 1. We denote by J2 the restriction of J on this region. In this case we
have that

&1]1/81€ — &,|1/3
|£1|(01)1/2+2°(02)1/2+2°<0)1/4 + €

Ky(1,¢,11,61) <

Using (10), (11) and Hélder inequality we obtain

Jn < NFH(@) VD Oz, )
><|[.7""1(|€1|1/8(01)_1/2-26151I—I’T’(Tl’Cl))”Lm(L? )
t I,,3
X||F1(|€ = & |8(o2) "2~ 2@(T — 11, { — Cl))”Lf/s(Lz

z.u.t))

< cllwl|zall| Dz~ wllgallvll za-
Case 2.3. € — &| < 1. This case can be treated similarly to Case 2.2.

Case 3. |¢| > max(2,cp), |o1] > |o|. We denote by J3 the restriction of J on this region.
In this case we have that

|dl|l/4—4c > C|€|3/4-12€|£1|1/4—4€|E _ €l|1/4—4c.

Hence

(£>1/4+31+12c(§1)-s1+4e<€ - El)—31+4€
Kl (T’ () T1, Cl) S |€1|1/4|£ _ El|1/4<a.l>1/4+6¢(02)1/2+2c<0)l/2—3€

Case 3.1. [&] > 1, | — & | > 1. We denote by J3; the restriction of J on this region. In
this case we have that

(€)1 (6r)te(€ — &)™

Kl(T, Cy T1, Cl) = (o,l>1/4+65<0.2>1/2+2c<0-)1/2—3€
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Using Lemma 2.2 and Holder inequality we obtain

=3¢ §(r
Jn < |FNETER S o)1 aa(r )

ML (L2, )

1/448¢ &(rp) -~
XIF (&5 o), ) )

X[ F =1 (1 - & T 8 (0312245 (r — 7y, C = )

e Lz, .)

< cllwliZallvllze

provided

2 _,_ 8(1/2-3¢ 5(rs) = (1-6)(1/2 - 3¢)

@ 1/2+¢ ! 1/2+ ¢

2 _,_6(1/4+6¢) 5(ra) = (1 - 6)(1/4 + 6¢)

a2 1/24+¢ '’ v 1/2+ ¢

2 _,_6(1/2+2) §(ra) = (1-6)(1/2+ 2

@ 124 ' VYT 124
Lyl lan, a(ra) 460 +8rs) = 3.

0 @ o
Now it is sufficient to take ¢; = 2¢ and § = 2/5 to ensure the restrictions of the Holder
inequality.

Case 3.2. [£;| < 1. We denote by J3; the restriction of J on this region. Using the
arguments of Case 3.1, we similarly obtain

Ja2 < cllwll 2|11 Dzl ™ wll g2 ll] vl a-

Case 3.2. |£ — &| < 1. This case can be treated similarly to Case 3.2.
This completes the proof of Lemma 3.1.

4. Proof of Theorem 1

In this section we shall give the proof of Theorem 1. Note that the equations (1) or (2)
are equivalent to the integral equation

(18) u(t) =U(t)p — /0 t Ut —t)u(t)oyu(t)dt.

Let ¥ be a cut-off function such that
Y € C3°(R), supp % C [-2,2],% =1 over the interval [-1,1].
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We truncate (18)

(19) u(t) = (E)UE)u(0) — $(t/T) / Ut - ¢')u(t)d,u(t')dt’

We shall solve (19) globally in time. To the solutions of (19) will correspond local solutions
of (18) in the time interval [-T,T]. We shall apply a fixed point argument to solve (19)
in X1/2+esu%2 for sufficiently small e. Now we state the estimates for the two terms in the
left-hand side of (19).

LEMMA 4.1. The following estimates hold for sufficiently small ¢ > 0
(20) “'/’(t)U(t)¢|lxl/2+2e-'1"2 = c”d’”yq 2)

t
(21) ||¢(t/T)£ U(t — t)u(t")0:u(t)dt'|| x1/242e01.0 < €T\ 0tz || x—1/243601 05 -

Proof. To prove (20) it is sufficient to note that
lull xb.01.02 = 1T (=)l gos01.050

where H%*1:%2 is equipped with the norm

Ny = / (€Y ()3 (1 + €] 1) [A(r, €, m) Pdrdedn.

The proof of (21) is a direct consequence of [23], Lemma 3.2 applied with b = 1/2 + 2¢ and
b’ = —1/2 + 3e. This completes the proof of Lemma 4.1.

Now we define an operator L

Lu(t) = (U ()u(0) - 59(¢/T) / Ut — )u(t') 0 u(t))) dt'.
We obtain from Lemma 3.1 and Lemma 4.1
(22) ”Lullxl/2+2¢-‘11‘2 S c”¢”ﬁl + CT€|Iu|l2X1/2+2¢"1'.2 .
Similarly we obtain
(23) |ILuw — Lv||xl/2+z¢,.1,.2 < cTé||u+ v||X1/7+2°"1"2 ||w — v“xl/2+2e.01,02
Using (22) and (23) we can apply the contraction mapping principle for sufficiently small T
which completes the proof of Theorem 1.

5. Proof of Theorem 2

It is known (cf. [10]) that in some cases (1) (resp. (2)) possesses solitary wave solutions.
We recall that a solitary wave is a “localized” solution of (1) (resp. (2)) of the form u(z —ct, y)
(resp. u(z — ct,y, z)). More precisely we have the following Theorem.

THEOREM 5.1. (cf. [10, 11]). Let 8 > 0 and o < 0. Then (1) (resp. (2)) possesses a
solitary wave solution u(z — ct,y) (resp. u(z — ct,y, z) ) such that

ueLz(Ll)ns—O H” ( resp. u € L(yz)(L:}:) s=0 Ha)
The same statement holds when § =0 and a < 0.
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We have (cf. [11]) that rPu € L2(R?), for § < 4, where r? = 22 + y?, when d = 2 and

r?2 = r24y?+ 2%, when d = 3. Hence using Cauchy-Schwarz inequality we obtain immediately
veLi(L;) (d=2), wel} ,(L}) (d=3).

The rest of the proof of Theorem 5.1 is contained in [10, 11]. Note that when 8 =0, @ < 0
an explicit form of a solitary wave can be derived by the inverse scattering method and we
will use it below. In the 3D case we will use essentially scaling arguments and no explicit
form of the solitary waves is needed. Actually, solitary waves for (1) or (2) (cf. [10, 11])
can be obtained by the aid of the concentration compactness principle for some pure power

nonlinearities and the method for obtaining ill-posedness could be extended to these cases
(see the end of the section).

e Letd=2,8=0and a <0. Then (1) has a solitary wave solution of the form
uc(t, z,y) = ¢c(z — ct,y), ¢>0

where

u(0,2,9) = (2, y) = cd1(c'?z, cy) := eg(c'*z, cy).
Here u, is the “lump”solitary wave of KP-I equation. Recall that
8¢(1 - £(z — ct)? + Sy?)
(1+ 5z - ) + 542
is a solitary wave solution of (1) with @ = —1 and § = 0. We will need a decay estimate of a
fractional derivative of ¢.. Obviously z¢. does not belong to L?(R?), but

LEMMA 5.1. (cf. Appendiz) Let € > 0. Then
|Dz|(z¢.) € L*(R?).

We shall denote by F, the partial Fourier transform with respect to z. One has

Fo(8)(6 8) = MUFL(9) (o ).

uc(ta z, y) =

Further we have

[8cliuo = [ (€0 1F0) (57 ) P

Hence for s < —1/2 Lebesgue theorem yields
lim [1gelifeo = llF2(8)(0, 22 = ealléliZz iy,
where .
Cs =/ (é)zad§°
—00

Similarly we obtain

(Gess ) = (21 R,(f)?’fz(cb)(cl%,y)f,(¢)(cl%, 2y)dedy,
1 2

where (.,.), stays for the H*? scalar product. Hence

lim  ($e)0c)s = el F=(#) (0, )lIZ:

€1,62—00,¢1 [c2—
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and

lim e, — bczllgs0 = 0.

€1,62—00,¢1 fc2—1

Now we have that

Fa(uc)(t,€,y) = cH/? exp(~itct) Fo(8) (€/c"/?, cy).

The presence of the oscillatory term exp(—itc{) makes the expression (u, (¢,.), ug,(t,.))s tend
to zero as n — oo by taking ¢; = n? and ¢, = (n+1)2. More precisely we have by integration
by parts

(‘u"n2 (ta -)1 u(n+l)2 (t$ ))3 =

clm ) [, (e €y 7. 0) (£ ) 720 (g, P y)deay =
2sc(nt) [, oz, (0) 5,0 o) (g, P ) deay +
cm A [ sl 5 1) einon & AL
A [ el (Do) Aoy P ey +
c(n, t)n¢ itznt1)e )% 3 ] § (n+1)? —
i [ e S r 0 D e (g P ndeay
(1) +(2)+(3)
where
n+1
e(mt) = in(2n + 1)t

Using Cauchy-Schwarz inequality and the estimate 1l < |4l we obtain

(n+1)2
n2

W < 2se(n, ) /R,<e>2’-‘u¢(.,y)nunas(., 2|1 dédy

cn

< e(mt) 1”¢”%§(L;)'
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It is clear that the last expression tends to zero as n tends to infinity. Further we have

celn 2s n
@ < X0 [ O 0 vilec 5y I
< 2ol ([, 170D:I ) E )Py
< Melml) DA,

where we used that [§|7(£)?* € L? and Lemma 5.1. Hence we obtain that for ¢ < 1/2 |(2)|
tends to zero as n tends to infinity. The term |(3)| can be estimated in a similar fashion.
Hence

nango(u(n+1)z(t, D), un2(t,.))s = 0.
Moreover
T [fuguays () = o 8, geo = 26401 7(8) 0, 1.
Therefore we obtain that (1) is locally ill-posed in H*°(R?) for # = 0 and o < 0, when
s< =1/2.
e Letd=3,8>0and a=0. Then (2) has a solitary wave solution of the form
uc(t, z,y,2) = ¢e(z — ct,y,2), ¢>0
where
u(0, 2, Y, 2) = (2,9, 2) = chy (¢, Py, 4z2) := cp(cM iz, iy, /42)
One obtain easily that

Fo(8:)(6:3,9) = PES) o /4, &%),

Further we have

8o = (€ 17(0) (75,9, ) Pdedyds

Hence for s < —1/2 Lebesgue theorem yields
B 1€elo = ll72(8)(0, M = callélZy _ za):

Similarly we obtain

= (&2)3 F () (= £ o o
(bers@ea)s = ()77 [0, (67 PO Gy AT G o ) eduds,

C1

where (.,.), stays for the H*? scalar product. Hence

Hm  (beysbes)s = sl Fu(9)(0, )22

c1,c2—00,c1 [ca =1
and
lim |6, = ¢cs llFe0 = 0.

€1,62—300,c1 /21
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Now we have that

Fo(uce)(t, €y, 2) = % exp(—itc) Fo(8) (€/c4, ey, cz).

The presence of the oscillatory term exp(—itc€) makes the expression (u, (¢, .), uc,(t,.))s tend
to zero as n — oo by taking ¢; = n? and ¢z = (n + 1)%. Let 2’ = (y, 2). Then

(un2 (t1 ‘)a U(n41)3 (t, )), =

e(n,?) /Rs 6e(e“<2““>f)<f>2’fz<¢)(n—f,—z,m')fx(«s)((n fl)m, et 2dgae’ =

286(11., t) /R tt(2n+1)€<€)23—2€}- (¢)( 1/2,2?,)]:;,(45)( § (n-:l- 1) )d{d +

CFEk
’t it(2n s ! 2 !
c,-(nn_m) /  etmti)e g2 f,(w)(%,z)a(@( m +£1)1/2’ (n :21) 2')dedz’ +

c(n’t) it(2n s E ! E +1 2 ) !
ml/—g/ e @) Fol9) (a7 ®) P09 Gy (n : ) ) deds! =

(1) +(2)+3),
where

(n + 1)3/2

1) = = .
e(m, 1) in3/2(2n + 1)t

Using Cauchy-Schwarz inequality and the estimate 1l < ||4l|L: we obtain

(n + 1)2

@1 < 2sclm) [ Ol pllél, e aded’

Cn2 2
< elm )=l -
(n+ 1) zl( z)

It is clear that the last expression tends to zero as n tends to infinity. Further we have

o1 s D [ (oHm el 25

z')|| 1 déda’

c(n,t) n?
a2 (n+ 1)2

IN

I8l o 17:(08) 77, ) P’}

c(n,t)nt/t  n?
D el et
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where we used that z¢ € L?(R3), which follows from the decay properties of the solitary
waves. Hence we obtain that |(2)] tends to zero as n tends to infinity. The term |(3)| can be
estimated in a similar fashion. Hence
r;li—rnolo(u(n+l)2 (¢,.),un2(t,.))s = 0.
Moreover
lim ”u(n+1)2( ) — Up2 (t7 °)”§I':° = 263”.7:,,((75) (0’ )“%2

n—o00

Therefore we obtain that (2) is locally ill-posed in H*°(R3) for 8 > 0 and a = 0, when
s< -1/2.

e Letd=3,8=0and o <0. Then (2) has a solitary wave solution of the form

uc(t, 2,y,2) = ¢e(z — ct, y, 2),
where
u:(0,z,y,2) = ¢:(z,y) = c¢(c1/2z, cy, c2).
We have that
Bulem) = (5 D).

Further we have
Bella.; = cri¥taif2 /Ra €121 |n|22|B(€, m) [Pdedn = o2~/ 21Dl g02-

Hence when s; + 252 = 1/2, 51 > 0, 53 > 0 we have that ||¢c||ge1.0, = [|8]| o152 - Similarly we
obtain

(¢c1;¢c2)31,32 = (52—)_3/2 /R3 |§|231|77|232$(§1 77)¢(( )1/25 “ﬂ)dfdﬂ,

C1
where now (.,.)s, s, stays for the H**2 scalar product. Hence using Lebesgue theorem we
obtain

lim (¢c1 ’ ¢cz)31,32 = ”¢”§{‘1:‘2 .

€1,62—00,¢1 [ca—+1
and
lim ”¢61 - ¢62”}'I'1v'2 =0.

€1,62300,¢c1 /c2—1
Now we have that

@(t,6,m) = /2 exp(=itct) B o5, D).

and furthermore

(e, (252) ey (25 ) s1,02 =

()90 [ exp(ite(er — ca) e 36, W)/, Tn)agan.

C1
Hence using Riemann-Lebesgue lemma arguments we obtain as above
nl-i_{gn(u(n_i_l)? (t, .), un2 (t, -))31'32 = 0-
Moreover

nll*m “u(n+l)2( ) = Up2 (t’ ')”%1'1” = ||¢“i'{01,02
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Therefore we obtain that (2) is locally ill-posed in H*1*2(R2) for 8 = 0 and a < 0, when
s1+2s2 =1/2 and s; > 0, s3 > 0. This completes the proof of Theorem 2.

There are some difficulties to extend the results of Theorem 2 to the two dimensional
case with higher order term. If d = 2, § > 0 and a = 0 then (1) has a solitary wave solution
of the form

uC(t1z’y) = ¢c(37 - ct,y), c>0
where
uc(0,2,9) = ¢e(2, ) = ey (c/*z, 3/ *y) := cp(c/ %z, 3/ 4y).
One has ¢
n 7 n
é(&,m) = ¢('CT/_4, .C?/—“)

and furthermore
29 [cllrnes = [ (€02 (13577, ) P

It is easy to see (cf. [11]) that ¢ does not belong to L%z,y). Hence one can not define the trace
of 3(5 ,7) at zero and therefore it is impossible to pass to the limit as ¢ tends to infinity in (24).

We conclude this section with some remarks for the generalized KP-I equation.

{ (ut + QUzzr + BUzzzrs + upuz)x + Uy +uz; =0
u(0,2,y,2) = ¢(z,y, 2)
If 8 =0 and u(t, z,y, 2) is a solution of (25) then so is

ur(t, z,y,2) = Az/pu(/\st, Az, /\2y, )\22)

(25)

and

||u,\(t, °)”11101.02 = ’\31+2,2+(5P-4)/2p”u(A3tv ')“}'I'wz .
In [10] it is shown that for 1 < p < 4/3 and a < 0 (25) possesses nontrivial localized solitary
waves of the form

u(taz’%z) = ¢c(z - ct,y,z), c>0,

where @.(z,y,2z) = c'/P¢(c'/?z, cy, cz), Using the arguments of the proof of Theorem 2 one
can prove that (25) is locally ill-posed in H?*12 for sy + 252 + (5p—4)/2p=0,s >0,32 > 0.
If @ =0 and u(t, z,y, 2) is a solution of (25) then so is

ur(t, ¢, 9, z) = AYPu(\%, Az, A3y, A32)
and
lun(t, Mlggores = X132+ ETO0) 0 (X%, )| gz -
In [10] it is shown that for 1 < p < 8/3 and 8 > 0 (25) possesses nontrivial localized solitary
waves of the form
u(t, z,y,2) = ¢c(z — ct,y,2), ¢>0,
where ¢.(z,y,2) = cMPp(ct/*z, /%y, 3/*z), Using the arguments of the proof of Theorem

2 one can prove that (25) is locally ill-posed in H*1%2 for s; + 253 + (8 — 7p)/2p = 0,
s1 > 0,s3 > 0. In particilar when p = 8/7 (25) is locally ill-posed in L2.
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Finally we note that when a < 0 and § > 0, the existence of solitary waves is known for
a suitable range of p's (cf. [10]) but the scaling argument leading to ill-posedness does not
work.

6. A remark on the (generalized) KdV equation

In this section we shall show that the example providing ill-posedness for the (generalized)
KdV equations uses just scaling properties and hence the special form of the solitary waves
is not needed. Consider the (generalized) KdV equation

(26) U + Ugzr + uPuy, =0

The local ill-posedness of (26) is studied in [7], [8]. It is known that (26) possesses solitary
wave solutions of the form

Ue,p(t, @) = be,p(z — ct),
where

4ep(0,2) = Fy(cha),  gy(a) = {5 (o + 2)seck?(5p2)}

Since the solitary waves of (26) decays exponentialy at infinity one can define the trace of
its Fourier transforms at zero and then prove local ill-posedness of (26) for p = 2 in H?,
s < —1/2 which is the result of [8). Actually if p = 2 then ¢.2(£) = ¢2(€/c/?) and one
obtains that for s < —1/2

lim Woeall. = lim (€ Fa(e/c/2)de = ei3(0)
and therefore one can easily obtain

lim (¢C1 ) ¢cg)a = C,&;(O)

c1,62—00,c1 [ca—+1
and moreover

lim |I¢61,2 - ¢cz.2”H' =0.
c1,c2—00,¢1 [e2—+1

Further we have .
F (ue2) (t,€) = exp(—ite€)ga(€/c*/?).

Due to the Riemann-Lebesgue lemma, the presence of the oscillatory term exp(—:tcf) makes
the expression (uc, 2(t,.), U, 2(t,-))s tend to zero as n — oo by taking ¢; = n? and c; =
(n 4 1)2. Therefore we obtain that (26) is locally ill-posed in H?® for p = 2 when s < —1/2.
In fact one can easlily show that the sequence ¢.2 converge strongly in H?, s < —1/2 to
V278 as c tends to infinity. Here & stays for Dirac delta function. Similarly we can see that
uc,2(2, .) converge weakly to zero in H®. Now the boundedness of ||@¢||zs, s < —1/2 provides
the locall ill-posedness.

Similarly when p = 1 (the “usual” KdV equation) one can prove that ¢.(z) converge weakly
in H%, s < — —3/2 to v/219:6(z) as c tends to infinity. We also have that u.,(t,.) converge
weakly to zero as c tends to infinity. We also have that

lluc (2, s = ligeallrs = /2l allare.

Since 0;6(z) € H®, s < —3/2 the last arguments strongly suggest local ill-posedness of (26)
in H*, s < —3/2 when p = 1. On the other hand, J. Bourgain has shown in [15] that if one
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requires that the map data solution up — u(t) be of class C® from H*(R) to H*(R) then the
rsult of [42] for the KdV equation (s > —3/4) is sharp 2.

7. Appendix

In this appendix we shall give the proof of Lemma 5.1. By scaling it suffices to prove that
|D.|(z¢) € L?(R?), where
1- 32 + y2
(1 +z2 4 y2)2 :

¢(z,y) =
We have \
1 2z
¢(Z,y)— 1+$2+y2 - (1+$2+y2)2
A simple computation shows that

= ¢1(z,y) + ¢2(z,y).

RED =F@En = s [C T
1$Y) =2 01)6Y) = (1+y2)1/2 1122 T
- a 12)1/2'63’(“""2)1’2|€l
+y
Hence
a¢1 S (6.4) = —sgne- (2]
and

[ 2 e sy = [ e ey

. |X|2e -2|X|dXd
= Jrr U+ )2 Yy < oo,

since € > 0. Let now ¢(z,y) = —%d)g(:c, y). A simple calculation yields

> 1 r2e—i(14v%)22¢
lb(f,y) = fz('ﬁ)(& y) = (1+y2)1/2 /R’ (1+2:2)2 d(E.
Write (—575 '1-_*_—:5' m and recall that (Cf [1])
1 = ekl
}-(1+z2)(£) =e
and )
F( )(€) = clé*/*Kaa(I€]),

(14 z2)?
where K3/, is the modified Bessel function of order 3/2 (cf. [1])

Kynle) = [ -1+ )

2In Chapter 8 we shall prove that C? regularity of the map data-solution suffices in order to construct
the example providing the local ill-posedness



132 6. THE CAUCHY PROBLEM FOR HIGHER ORDER KP EQUATIONS

Therefore

~ 1 _ 2\1/2 1 1
V) = om0 e () ()

I

1 1/2 T c
L SR ¢ e L 1 ‘/_ _c 2y1/2y ,—(1+4)1/2[¢|
(1+y2)1/2€ 2 (1+y2)1/2(1+|§|(1+y ) )e

_ 1-eVE areye \/— Ig]e=CHR 2

(1 + y2 1/2

= E(E; y) + %(Ea y)
The term @\1(5, y) leads to a computation similar to that of ¢;. Now

6%(5’) = —c\/g-sgns (eI |g](1 4 y?) 126~ (+9) el

= Y6, y) + ¥22(6,v)

Now we have that

ng €12 (%21 (€, y) Pdedy = ¢ /R , l[Pee204") Kl ggay

S G P
R 1+ y2)1/2+ce Yy < oo

since € > 0 and furthermore

/Rz €17 na(€, y)Pdedy = ¢ /R, |11 H2¢(1 4 y?) /26204 PRl ge gy

X2 ax
C/R2 WC | |dXdy< oQ.

This completes the proof.

Remark. We conjecture that the result of Lemma 5.1 is valid for any localized solitary
wave of KP-I type equation.



CHAPTER 7

The Cauchy problem for the fifth order KP equations

This Chapter essentially contains the joint paper with Jean-Claude Saut [50] (The Cauchy
problem for the fifth order KP equations).

Abstract

We study fifth order KP equations. In 2D the global well-posedness of the Cauchy problem
in the energy space for the fifth order KP-I is obtained despite the “bad sign” in the algebraic
relation related to the symbol (cf. (7) below). In the case of the fifth order KP-II, global
solution with data in L?(R?) for the corresponding integral equation are obtained, removing
the additional condition on the data imposed in [49]. The case of periodic boundary condi-
tions is also considered. In 2D the local existence for data in Sobolev spaces below L?(T?)
is obtained and in particular the global well-posedness for data in L?(T?). In 3D the local
well-posedness for data in Sobolev spaces of low order is proven.

AMS subject classification: 35 Q 53, 35 Q 51, 35 A 07.

Résumé

On étudie les équations de KP d’ordre 5. En dimension 2, on montre que le probleme de
Cauchy est localement bien posé dans ’espace d’énergie pour ’équation de KP-I d’ordre 5,
malgré le “mauvais signe” dans la relation algébrique liée au symbole (voir (7) ci-dessous).
Pour 1’équation de KP-II d’ordre 5, on obtient des solutions globales correspondant a des
données initiales dans L?(R2) pour I’équation intégrale associée, sans la condition supplé-
mentaire pour la donnée initiale imposée dans [49]. On considére aussi le cas des données
initiales périodiques. En dimension 2, on montre que le probleme de Cauchy pour 1’équation
de KP-II d’ordre 5 est localement bien posé pour des données initiales dans des espaces de
Sobolev plus gros que L2(T?). En dimension 3, on établit le caractére localement bien posé
du probléme de Cauchy pour des données appartenant a des espaces de Sobolev d’ordre petit.

Code Matiere AMS: 35 Q 53, 35 Q 51, 35 A 07.

1. Introduction

In this Chapter we continue the study of the fifth order Kadomtsev-Petviashvili (KP)
equations started in the previous Chapter. These equations occur naturally in the modeling
of certain long dispersive waves. For waves propagating in one direction, the fifth order

133
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Korteweg de Vries (KdV) equation
(1) v+ v0v+adv+03v=0, a==l,0,

has been derived in many physical situations when higher order dispersive effects are to
be taken into account. Kawahara [38] has introduced it (equation (1) is often called the
Kawahara equation) in order to model solitary waves with an oscillatory structure, which
can not be obtained from the usual KdV equation. More specifically, (1) with & = %1 has
been derived to model one dimensional gravity-capillary waves when the Bond number which
measures the surface tension effects is close to the critical value 1/3 (cf. [28, 26, 30]), or to
model surface water waves under the presence of an elastic ice plate [46]. On the other hand,
(1) with @ = 0 arises as the approximation to small amplitude, long waves at the surface of
shallow water having the critical depth 0.54 cm.

Taking into account weak transverse effects in the y direction leads (cf. [33]) to KP type
equations of the form

(2) (Oeu + a82u — O3u + wuz), + €uyy = 0.

Here ¢ = —1 corresponds to the “focusing” case (KP-I type), while ¢ = 1 corresponds to
the defocusing case (KP-II type). The solitary waves of these equations have been recently
studied in (2, 10, 11, 27, 29, 34, 35, 36]. We will deal here with the Cauchy problem.
Thus in the case of two space dimensions we shall study the following equations

(3) (Oru — B3u+ @82y + uug)y — uyy =0,  (fifth order KP-I)
and
(4) (Oeu — Bu+ ad3u + uug), +uyy =0,  (fifth order KP-II) .

Here u is a real valued function and (t,z,y) € R3. Both equations (3) and (4) are completed
by the initial condition

(5) u(0,z,y) = ¢(z,y).

The equations (3) and (4) are infinite dimensional Hamiltonian systems with Hamiltonian

@) =5 [1067+ 5 [100 25 [105%0,08 - ¢ [ &,

where the sign + (resp. —) corresponds to (3) (resp. (4)). The Hamiltonians are ( at least
formally) constant along the trajectories of (3), (4), i.e.

H(u(t)) = H(¢).
Note that the main contribution of the quadratic leading part of the Hamiltonian is positive
only in the case of KP-I. The L? norms are also conserved along the trajectories due to the

gauge invariance, i.e.
J = [ 1o

The equations (3), (4) can be written in the form
(6) 0+(Dy, Dy, Dy)u = —iuug,
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where Dy = —i0y, D; = —i0;, Dy = —i0, and o4 (Dy, Dz, D,) are Fourier multipliers with
symbols
2

U:i:(r)fv 7]) =T _65 - afaq: %

The symbol o corresponds to KP-I and o_ to KP-II. We have the following algebraic identity
for o4, which was first introduced in the context of the “usual” KP-II equation by J. Bourgain
(cf. [14))

01(7‘1,51,771) + Ui(T - Tlag - €1)77 - 771) - Ui(ryfyn) =

™) GEE-6){5(E -0 +€) 7 (f‘—”“—’f—”‘—)2 +3a

§1§(€ - &)
Note that in the KP-II case (7) permits to give a lower bound for the maximum modulus of
the three terms in the the left-hand side of (7). This bound enables one to compensate the
derivative loss in the nonlinear term uu, (cf [49)).

In [49] the local well posedness of (4) in Sobolev spaces of negative indices is obtained.
There are two main ingredients in the proof. The first one is a global smoothing effect for the
linearized equation (cf. [5]) injected into the framework of the Fourier transform restriction
spaces introduced by J. Bourgain. The second is the essential use of the algebraic relation
(7). In the case of o4 (i.e. KP-I) the relation (7) does not give a priori a lower bound.
Nevertheless, in this Chapter we shall be able to overcome this difficulty, mainly because of
the higher dispersion (cf. Theorem 1 below). Unfortunately our methods do not work at the
moment in the case of the “usual” KP-I equation

(8) (Oeu + 3u + uuz)z — uyy = 0.

On the other hand, using the parabolic regularisation method it is possible to prove local well-
posedness of (8) in H®, s > 2 (cf. [31]). The proof does not use the specific structure of the
KP equations and could be performed for quite general evolution equations. The condition
for s is in order to control the L* norm of the z derivative of the solution and it seems to be
very restrictive. Much deeper results concerning the KP-II equation have recently appeared.
The “usual” KP-II equation has the form

9) (Bru 4 O2u + uvuz)z + uyy = 0.

In [14] local solutions of (9) in L? are obtained with emphasize on the case of periodic bound-
ary conditions. The proof uses dyadic decompositions related to the symbol of the linearized
operator. The full space problem is also considered. A short proof of local well-posedness in
H*(R?), s > 0, which uses only Strichartz inequalities, is done in [58). The same result is
obtained in [32], where the nonlinear estimates make use of the simple calculus techniques
introduced by C. Kenig, G. Ponce and L. Vega in the context of the KdV equation (cf. [42]).
In [57] the local well-posedness of (9) in Sobolev spaces with negative indices with respect
to z variable is obtained. However, an additional condition on the initial data is imposed.
More precisely, it is assumed that [£|~1¢(&,n) € L?, which is rather restrictive. In [52] and
[58] this restriction on the data is removed. Due to the conservation of the L? norm the
solutions are extended globally in time for L? initial data. Global existence for data below
L? is established in [53] and [58]. The proof uses the local existence techniques and a new
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idea of decomposing the initial data in high and low Fourier modes due to J. Bourgajn' in the
context of NLS (cf. [15]).

The equation (3) possesses solitary wave solutions, i.e. solutions of type u(z — ct,y),
where c is the propagation speed (cf. [10],[11]). Actually by the aid of concentration com-
pactness principle solitary waves for some generalization of (3) could be obtained. Namely
one is allowed to consider uPu, instead of uu, as a nonlinear interaction in a suitable range
for p. In [49] solitary wave solutions were used in an essential way to prove local ill-posedness
results for some KP-I type equations (including (4) with a = 0).

In this Chapter we are going to prove the local well-posedness of (3) for initial data in a
suitable anisotropic Sobolev space. Further we extend the solutions globally in time due to
the conservation of the energy and thus we obtain the global well-posedness of the fifth order
KP-I equation in the natural energy space. Note that our result are the first of this kind for
KP-I equations. In [55] M. Tom got by energy methods the existence of global weak solutions
in the energy space but uniqueness was not proven. The proof of the local well-posedness
result uses the Fourier transform restriction method due to J. Bourgain. The global solutions
are obtained for data in the energy space, i.e such that H(¢) < co. In the case (4) local and
global well-posedness in L? are obtained, removing the restriction on the initial data imposed
n [49]. Now we state our results in the continuous case. A precise formulation will be given
in Theorems 4.1, 4.2, 5.1.

THEOREM 1. (local well-posedness for higher order KP-I) The initial value problem (3)-
(5) is locally well-posed for initial data satisfying:

Illzz + I1D=l*dllzz + Dy l*¢llzz < 00, s>1, k>0, [€]7'(¢,n) € S'(R?).

THEOREM 2. (global well-posedness for higher order KP-I) The initial value problem
(8)-(5) is globally well-posed for initial data ¢ € L*(R?) satisfying H(¢) < oo.

The next result removes the constraint on ¢ which was needed in [49)].

THEOREM 3. (global well-posedness for higher order KP-II) The initial value problem
(4)-(5) is globally well-posed for initial data satisfying:

o€ L |E|71b(¢,n) € S'(RY).

Remarks. There are several extensions of the Theorems above that we can think of. One
may conjecture that global well-posedness of (3)-(5) (KP-I) holds for data in L%. For that
purpose we need a further extension of the arguments of Case 3 of the proof of Theorem 2.1
below. On the other hand local well-posedness of (4)-(5) (KP-II) can be obtained in Sobolev
spaces with negative indices with respect to the z variable even without the restriction on the
data imposed in [49]. Then one could use the same arguments as in [58] in order to obtain
global well-posedness of (4)-(5) below LZ.

Now we turn to the periodic boundary conditions. We shall consider only the higher
order KP-II equation

(10) (Opu — O3u + uug) + Agu =0,
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where A; = 02 in 2D and A, = 32 + 8?2 in 3D. The equation (10) is completed with the
initial condition

(11) u(0)=¢ : TR, d=2,3.

Here T stays for the d-dimensional torus. One of the main difficulties in the case of periodic
boundary conditions is the absence of Strichartz inequalities. The point is that the free
evolution does not possess any dispersion property. However in the case of periodic KdV or
Schrodinger equations there is a partial knowledge of Strichartz inequalities (cf. [12, 13]).
Similar inequalities in the context of KP are not known. Nevertheless in [14] J. Bourgain
proves the local well-posedness for the 2D KP-II with periodic data by an analysis of multiple
Fourier series. In this Chapter we shall adapt this approach for the case of higher order KP-II.
In order to state our well-posedness results we define the Sobolev type space Y*(T9),d = 2,3
measuring the regularity with respect to z, equipped with the norm

6lly+ = 1Km)*B(m, Ml o e
Now we state the result in 2D.

THEOREM 4. Let d = 2. Then the Cauchy problem (10)-(11) is locally well-posed for
initial data:

€ Y*(T?), s> -1/8, [I“ ¢(z,y)dz = const.
In particular when s = 0 we have global well-posedness due to the L? conservation law.

In 3D we shall prove the following result.

THEOREM 5. Let d = 3. Then the Cauchy problem (10)-(11) is locally well-posed for
initial data:

$eY (T3, s>0, [I“ #(z,y, z)dz = const.

Notation. By “or F we denote the Fourier transform and by F~! the inverse transform.
||.|l» denotes the norm in the Lebesgue space LP. The notation a+ means a ¢ for arbitrary
small € > 0. Constants are denoted by ¢ and may change from line to line. A ~ B means
that there exists a constant ¢ > 1 such that 2[A| < |B| < c|A|. For any positive A and B
the notation A < B (resp. A 2 B) means that there exists a positive constant ¢ such that
A < cB (resp. A> cB). For A,B € R we set AV B = max{A, B} and AA B = min{A, B}.
By mes(A) we denote the measure of a set A.

2. Preliminaries

In order to prove Theorem 1, Theorem 2 and Theorem 3, we shall apply a Picard fixed
point argument in a suitable functional space to the integral equation corresponding to (3)
or (4)

(12) u(t) = UX(t)¢ - %/0: Ux(t —t')0-(u?(t)))dt’.

Here U%(t) are the unitary groups which define the free evolutions of (3) and (4), i.e.
U*(t) = exp(~itp*(Dz, Dy)),
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where p* (D, D,) are Fourier multipliers with symbols

2
pt(&,n) = -€ —afd - %, for the fifth order KP-I

and

2
p(&,n) = —€ — af® + % for the fifth order KP-II.

We define an anisotropic Sobolev space H2X(R?) by
Hyk(R?) = {¢ € S'(R?) : ||gllyar < 0},
where
160l gz = (1 = 82)/2(1 ~ 8))*/*¢lIrz ,

The spaces H;;';(RZ) are natural ones for the initial data of KP type equations since their
homogeneous versions are invariant under scale transformations which preserve the KP equa-
tions. Further we define the Bourgain type spaces associated to fifth order KP equations.
Let X*** be the Sobolev space equipped with the norm

llu; XP*R(R3)|| = [|(r)>(€)* (m)*a(r, €, m); L2 ¢ 4,
where (-) = (14| -|?)!/2. We denote by Bft""k (R?) the spaces equipped with the norm
(13) llu; BEH|| = 1T (=t)w; X**).

Since F(U%(-t)u)(r,€,1) = u(r — p*(£,7),&,1) we obtain that, in terms of the Fourier
transform variables, the norm of B:,:'"k can be expressed as

lus B = 1147 + 5 (6 M€Y () (7, & m); L e -
Let I C R be an interval. Then we define a localized Bourgain space Bg”k(l ) equipped with
the norm

Iullayory = inf (1wlyea,w0) = 9 o0 1)

The following inequality, proven in [49] is a version of the smoothing effect established in [5]
ProPOSITION 1. (cf. [49], Corollary 1 of Lemma 3). The following inequality holds
(14 1261 + p* € m) 180 6 Dl S lellze
We shall make use of simple calculus inequalities.

PROPOSITION 2. Lety > 1. Then for any a € R the following inequalities hold

(15) / J (a)77,

—oo (DYt —a)7 ™

a0 [ s 7"
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Let ¥ be a cut-off function such that
¥ € C5°(R), supp ¥ C [-2,2),% =1 on the interval [-1,1].

We consider a cut-off version of (12)

(17) o) = $OUO8 - 70/7) | Ut - £)0, (u2(t)) .

We shall solve (17) globally in time. To the solutions of (17) will correspond local solutions
of (12) in the time interval [T, T]. We have the following estimates for the two terms in the
right-hand side of (17).

PROPOSITION 3. (linear estimates) Let —3 < & <0< b< b +1,5>0andk > 0.
Then the following inequalities hold

(18) 1R (OU=()¢; B < 1ll 12,

t
(19) 1% (¢/T) / UE(t — t')8-(u?(t'))dt'; B**F|| < T2+ ||uu,; BY*||.
0

Proof. The proof of (18) is a direct consequence of definition (13). Clearly (19) is
equivalent to

(20) Lg; HYl < T*=**¥|1g; HY|),

where the operator L is defined by

t
(La)®) = w/T) [ a)ar.
Note that (20) is one dimensional and does not depend on the special structure of the equa-
tions (3), (4). In addition since b—b’ < 1, (20) asserts that the integration gains one derivative,
which is natural. For the proof of (20) we refer to [23], Lemma 3.2.
We shall apply Proposition 3 with b = 1+ and &' = —1+. A small factor will appear in

the right-hand side of (19). In order to apply a fixed point argument we need the following
crucial bilinear estimates which will be proved in the next sections.

THEOREM 2.1. (KP-I) Lets > 1 and k > 0. Then
2
(21) ”uuxlla:}#,c,h IS ”u”B_é.h.'k.
THEOREM 2.2. (KP-II) The following inequality holds

(22) “uuz“B-h,o.o S ”“”Zh,o.o’
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3. The bilinear estimates

3.1. The fifth order KP-I equation. Let { = (§,7) and set

2
ci=ap(r,)=r-8-a -1 o i=04(n,Q), 02:=04(r -7, - Q).

'
By duality, (21) is equivalent to
(23) J < Nlullzellvll zallwll 2,
where

= l//K(T,C, 71, 1) u(r1, (1) (7 — 71, ¢ — C1) (7, ()dmd(rdrd(
and

j€1(€)° (n)*
(1) (€ — £1)%(0) T~ (01) 7F (ag) 3+ (M) *(m — m)*

K(T1 Ca 71, Cl) =

Since for £ > 0 the quantity

(m)*
(m)*(n — m)*
is bounded we shall suppose that k = 0 hereafter. Without loss of generality we can assume
that ¥ >0, v > 0 and @ > 0. We consider several cases for (7, ({, 11,¢1)-

Case 1. €] < 100.

Case 1.1. |£;] > 200. In this case |[§ — & | > 100. By the aid of Proposition 2.1 we
estimate the contribution to J in this case by

IF (€013 (o1) ™3~ 8(ry, ) | pall F € = &ul (02) "3 8(r — 71, ¢ — Co)l| ol 2

llullz2llvllz2[|wll 2

Case 1.2. [§;| < 200. Denote by J;2 the contribution of this region to J. Cauchy-Schwarz
inequality yields

Ja s [ Ta(n) { [ty -mic- cl)|2dr1dcl}7 B(r, ()drdc.

where by the aid of (15) we obtain the following bound for I;2(7,()

)% (fl_ {/ (o1 + 02)1+ }%.

We perform the change of variables 7; — v

v=o0+ 09
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Then
ov

ov| _ 20¢(&n—&m)l
om

1€&1(€ — &)

20€] o + €61 (€ — 1) (567 — 5661 + 56 +3e) — v|?
€61( - &)1

> |1} |o+€61(€ — &) (56 — 561 + 562 + 30) — v|F

Now using (16) we arrive at

=

™

€13 dé1dv '
Lo(r,Q) § -
* (o)3- {/ / |a+s£1(s—el)(552-5551+5£%+3a)—vl%<u>1+}

N

o }f
{/ (0 + EE1(€ — &1) (562 — 5661 + 562 + 3a) — v)?
< const,
since |£;| is bounded. Hence using Cauchy-Schwarz we obtain

J1z S llullzallvll zal|wll 22

Case 2. €] > 100, min{|;],]|€ — &1|} < 1. Denote by J; the contribution of this region
to J. Cauchy-Schwarz inequality yields

J2 < /12(7', ¢) {/Ia(rl,fl)a("' -m¢ —Cl)lzdﬁdﬁ}i u(r, )drdc,

where due to (15)
€] g \*
R oF 1 <al+oz>l+} '

We perform the change of variables (&1, 1) — (4, )
p=E61(€ - &) (567 — 5EEL + 5E] + 3a), v=01+02.

Then

li’i = €€ - 261)|15€? — 10€€; + 1062 + 30

0

2 [61%1€ — 26| (since [¢] > 1)

~ (€17 VIEP — [EPEL(E - &)
> €13 VIER — 20l
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and
v | _2éllo+p—vl? | EPlo+u—v|
om|  jeaE-e)lz T |u?
Hence .
,3(51,771) < |ul2
O, v) 1™ |e|3|o + p — v]5(I€]5 - 2lul)?

and moreover

1 |7 dpdy :
L(r,¢) < ﬁ{ 1 7 }
3{rd) €] (o)~ /‘/|0+#—V|7(|€|5—2|#|)5<V)1+

Now a use of (16) yields

1 2
B(rQ) § =1 {/ lul 2y l} .
€15 {0)2 (0 + )2 (I1° - 2|ul)2
Since min{|&,], |€ — €1|} < 1 we have that |u| < 30]|¢|* and therefore

L

L _dp |
I 1( fs 3 s 2
2(7, ) €15 (o)3— [¢|3 {/mgclel‘ (0+#)5}

1 1
S — {0+
€l(a)E™ {oré+ el
< const.

Hence using Cauchy-Schwarz we arrive at

J2 S |l c2||vll 2 ||w]] 2.

Case 3. [¢| > 100, 155/€| < min{|€,],|€ — &1|}. Denote by J3 the contribution of this
region J. Clearly
|€1¢€)°

(61)* (€ - &)°

Therefore as in Case 1.1 we obtain a bound for J3
IF =2 (€01 ¥ (o1) =3 (ra, G|zl FHIE = &0l (o2)37(r = 71, ¢ = 1))l zallwll e

S llullzzllvllzallwl]l 2

< comst < |&|¥]€ - &4,

Thus in the rest of the proof of (23) we can assume:

. 1
(24) Ifl 2 100, 1 < mln{|£l|1 |§ - §1|} S io—olﬂ'
Case 4. (24) and |0} + 02 — 0| > 755/€|%. Denote by Jy the contribution of this region to
J. On the support of J4 one has

(25) max{|o1|, o2, o[} 2 €]*.
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Suppose that |o| dominates in (25). Then
|§1|L|§ &l

K(r,¢,m,01)
(01)3*(o1)3*
and therefore we bound J4 by
IF (€215 (o) =3y, )l zall F (1€ = &al(02)379(r = 71, ¢ = 1))l pallwll 2

[lellz2lloll 2 |l za-

. “Ll_ -1 Ly g=io
If |o1| dominates then |o;|"27|o|"2% < |o1|"2%|0| "2~ and we can use the same argument as
when |o| dominates just replacing o with ;. A similar argument could be performed when
|o2| dominates.

Case 5. (24) and |01 + 03 — 0| < 1551€[*. Denote by Js the contribution of this region to
J. By symmetry we can assume that |£;] < 155 [5 |. Consider the dyadic levels

(26) 1]~ K, K- dyadlc , K>1.
Denote by JX the contribution of (26) to Js. Since
Js S JI5
K

we need an estimate for JX. Cauchy-Schwarz inequality yields

3
JE < /st(‘f',C) {/lﬂ(ﬁ,Cl)ﬁ(T ’"TI,C_CI)lszldCl} w(r,)drd(.

Since (€)°(£;)~*(€ — £1)~* < cK~* we have the following bound for IX(r,()

@““°~Iﬂ{/fm+vﬁw}%

Perform a change of variables (§;,m) — (g,v)
p=E61(E — €) (56" — 5661+ 561 +3a), v=0o1+03-0.

We have similarly to Case 2

1 S [P - Vl*
|22t |52 R
Hence
3(51, 771) |#|% )
o(v) MIu—w(KP—ﬂmﬁ

Therefore we arrive at the following bound for I¥(r,()

1 |ul? dpdy }
KﬁK‘{//}#—wﬂKP—2w0ﬂV+aP+

WO

(¢ <
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Since |u| ~ K|€|* and |v| < 1551€|* we obtain

™

||
| — v

1 < L
(1615 — 2z ~ |€13

. dudv  |?
IF (o) 3 |§|2K" {/uI~K|€|‘ ‘/°° (V+d>l+}

~ !

=

Hence

[

A
iy
o
=
“
——
‘E\'
T
X
~
u
——
)=

IN

and furthermore

K <
Js S KJ_%”““L’“'JHL?”"””L?-
Summing over K provides a bound for Js. This completes the proof of (23).

3.2. The fifth order KP-II equation. Set

2
ogi=o_(n)=r--a+L, ori=0_(r,0), o2:=0_(r—7,(=C).

€
Due to the algebraic relation (7) we obtain
(27) max{|a|, |oul, |oal} 2 |€111€ — &ulI€P.

A duality argument writes (22) in the form

//K(Tv C’ 71, Cl)a(rl’ Cl)ﬁ(r - T, C - Cl)’lﬁ(T, C)dTIdCIdeC S

llullz2llvll L2, l|wll 22,
where

1€l
(0)3(01) 7+ (o) 7
Without loss of generality we can assume that 24 > 0, ¥ > 0 and @ > 0. The cases when
|€], |€1| or |€ — €| are near to zero can be treated exactly as in the proof of Theorem 2.1,
Case 1 and Case 2. When [§], |&1] and |€ — &;| are away from zero then we are in position to
apply the arguments of Case 4 of the proof of Theorem 2.1 since in this case (27) provides

the bound (25) needed for the proof (which is not always available in the case of higher order
KP-I).

K(Ts C) 1 Cl) =
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4. The local well-posedness

In this Section we shall prove the local existence results concerning fifth order KP equa-
tions with initial data defined on R2. We state the complete version of Theorem 1.

THEOREM 4.1. Lets > 1 andk > 0. Then for any ¢ € H3¥(R2), such that lE|=1p(,n) €
S'(R?) there ezist a positive T = T(||¢||H;,:) ( lim,40T(p) = o0) and a unique solution
u(t, z,y) of the initial value problem (3)-(5) on the time interval I = [-T,T] such that

1
w € C(I, HXER?) n BZT** (1),
Now we state the result for KP-II equation.

THEOREM 4.2. For any ¢ € L2(R?), such that |£|~1$(€, n) € S'(R?) there ezist a positive
T =T(||¢llz2) (limp—oT(p) = 00) and a unique solution u(t,z,y) of the initial value problem
(4)-(5) on the time interval I = [-T,T) such that

w e C(I, [{(RY)) n BIH*O(1).

Remark. The assertion of Theorem 3 is a direct consequence Theorem 4.2 due to the
conservation of the L? norm.

Proof of Theorem 4.1 and Theorem 4.2. Define the operators L*

I*u() = YU - 39/T) | Ut - )0, (43(t)) .

Then by the aid of Proposition 3 and Theorem 2.1 we obtain

+ < 04 2
lL u“B+§+,o,k < <||¢||H;:g +T “u”B,’f*""‘)

Similarly using Proposition 3 and Theorem 2.2 we obtain

IZ7ul jge00 S (II¢IIL2 + T0+”u”23§+,o,o)

and furthermore

IL¥u - L+v”B§+,o,k S Tlut ””Bh,.,k”u - ”“Bh,a,m
+ + +

”L_u - L—v”Bé-p,o,o ,S TO+”“ + v”32+.0.0 ”u - v”Bé-l».o,O'

Now we can use the contraction mapping principle for sufficiently small T to prove the local
well-posedness of the integral equation (12) on the time interval [-T,T]. Let u be a solution
of (12). Then u is a solution of the original equation (3) (resp. (4)) with initial data ¢ only
if an additional condition on ¢ is imposed. This is because of the singularity of the symbols
pE(7,&,m) at € = 0. In order to have a well defined time derivative of U%(t)¢ we should be

able to give a sense of |§|‘1$(§, 7). Therefore if we suppose that |§|'1$(§, n) € S’ then the
solutions of (12) are as well solutions of (3) (resp. (4)) with initial data ¢.
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5. The global well-posedness in the energy space (KP-I)

5.1. Local well-posedness in the energy space. In this Section we shall prove global
well-posedness of the fifth order KP-I equation in the energy space. Because of the specific
structure of the energy density for KP type equations, we shall prove first a local existence
result which requires more regularity on the data and in this sense weaker than Theorem 1.
But on the other hand we shall consider data which satisfy the constraints needed to give a
sense to the energy. Denote by E(R?) the space equipped with the norm

18llz = 1( + 1€1* + 1€1~ D) (&, Iz
The space E(R?) is related to the energy of the fifth order KP-I equation. Recall that
1 1 1
@) =g [0+ 3 [1o.or £ [1070,00 -3 [ &,

is the energy for (3). Note that if $ € E(R?) then H(¢) is finite. Denote by Y***(R3) the
space equipped with the norm

2\ b
<1' -8 -af - %—> €17 Inl*a(r, &, m)

(28)  [llullywsr = lullgseo +

2
Lr,(.n

= “'U”Ylb,a + ”u"},zb,k
Similarly to Bi”k(l ) we define the space Y***(I), where I C R is an interval. We remark
that Y®21(R?) is the Bourgain space associated to E(R?), i.e. the following relation holds
lullysan ~ 1UF (=t)ull go)-

In order to state the local existence result we define the space H sk (R?) equipped with the
norm

Il e = 111+ [€]° + 1€ 7 1n1%) (&, Mz -
Clearly H>!(R?) = E(R?). We have the following Theorem.

THEOREM 5.1. Let s > 1 and k > 0. Then for any ¢ € I?"k(Rz), there ezist a positive
T = T(||¢llgox) (limyu0T(p) = 00) and a unique solution u(t,z,y) of the initial value
problem (3)-(5) on the time interval I = [-T,T) such that
u € C(I, H**(R?)) n Y 3+2k(]),

The proof of Theorem 5.1 is in the spirit of the previous section once we obtain the crucial
estimate

(29) 10 (wo)lly - g4 u S Nully g llVlly 340
Due to Theorem 2.1 we obtain
(30) llax(uv)llyl_;+,. < IIUIIYI;+,.IIvIIY15+..

1

In the next Proposition we give a bound for the the Y2’+'k(R3) norm of the bilinear expression
L L

0z(uv) in terms of Y;? +"(R3) and Y2’+'k(R3) norms of u and v.
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PROPOSITION 4. Let s > 1 and k > 0. Then the following estimate holds
<
(31) 102 (00, o S {0l o0l + Tl gl 3o
Proof of (31). We have
100l _y.0 = 6z,

where
(n)*
(o)™

(0)3~ /lnlszlml +/Inlz2|m|

= II(T)§1 77)+I2(T7€177)

I(T,§,1)

/ﬁ(ﬁ,fl,m)ﬁ(T - m,§ = &1,n— m)dnid§idm

We claim that

52) s €l 5 Wl allol o
and
(33) 2(m: & Iz, < ||"||y1§+..llvll},2§+,k

Since if || > 2|m:| then |n| < 2|n— 71| the proof of (33) is essentially the same as that of (32)
via a symmetry argument. A duality argument writes (32) in the form

// (m¥&1l f(m1,$1)g(m = 11, ¢ = G1)A(T, {)drdCdmid(y
Inl<2lm| (@)™ (o1) 3 H(a2) T+ (€ — £1)*(m)*

S fllzallgllzallliza - (recall that ¢ = (€, 1), ¢ = (§1,m))-

The proof of (34) is similar to that of Theorem 2.1. Denote by J the left-hand side of (34).
Since on the support of J one has || < 2|m;| the quantity (n)*(m;)~* is bounded. Consider
different cases in order to prove (34). Let |&| < 1. If | — &| < 1 then we can perform
the arguments of Case 1.2 of the proof of Theorem 2.1. If | — &| > 1 then we can use
Proposition 2.1 as in Case 1.1 of the proof of Theorem 2.1. Hence we can assume that
|€1] > 1. Let 1 < |&;] < 2|€ — &;1|. Then by the aid of Proposition 2.1 the contribution of this
region J is bounded by

IF (1€ % (01) =2 Fra, G I F 2 (1€ = &4l (02) 278 (r — 71,¢ = C)llallRllza

< I fllzallglizallhll 2

Let |&;| > 1 and |£;] > 2|€ — &|- Denote by J the contribution of this region to J. In this
case we have

(34)

€< el <3iel => Jel~ el
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Hence we have to prove that

Inl<2im| (cf)2 (01)2+(02)=+<€ 61)’
Let [€ — ;1] < 1. We can estimate the contribution of this region as in Case 2 of the proof of
Theorem 2.1. Let [§ —&| > 1 and |0y + 03 — 0] > 1551¢|*. We can estimate the contribution
of that region to J as in Case 4 of the proof of Theorem 2.1. Let finally |£ — & | > 1 and
loy + 02 — 0| < ﬁ|§|4. We are in a position to apply the argument of Case 5 of the proof

of Theorem 2.1. This completes the proof of (31). Then (29) follows from (30) and (31) and
hence applying a contraction argument we can complete the proof of Theorem 5.1.

llgllz21lAll L2

5.2. Global extension of the solutions. Let ¢ € L?(R?) be such that H(¢) < oo.
Then ¢ € E(R?). Applying Theorem 5.1 with s = 2 and k = 1 we obtain a local solution of
(3)-(5) on the time interval [T, T] where T depends on

lu@)llz2 + lluzz(t)llz2 + 1107 By u(t)|a-
Since ||u(t)||z2 = ||®||L2, We need to prove that the quantity

= %/R’ {102u(t)|? + 107 0y u(t)|* }

remains bounded along the trajectories. Then a standard continuation argument provides
the global well-posedness. Recall that the Hamiltonian of (3) is (at least formally) constant
along the trajectories, i.e.

1 - 1
5 /R’ {laf,u(t)|2 + 0718y u(t)|? - §u3(t)} = H(¢).

In order to justify (35) we need some additional arguments. Let Y (R?) be an auxiliary space
equipped with the norm

(35)

Iglly = (L + €* + 11~ *In1) S(€, M2,

Then Lemma 3.2 of [47] yields that Y (R?) is dense in E(R?). Hence we can find a sequence
of smooth functions ¢, converging to ¢ in E(R2) and in addition ¢, € Y(Rz). Let u,, be the
solution of (3) with data ¢,. Since ¢, € Y (R?), Theorem 3.1 of [48] yields

H(un(t)) = H(¢n(t))-

Since ¢, converges to ¢ in E(R?) we have

On the other hand the local well-posedness (Theorem 5.1) yields

(36) /|a2u,, O + /|a 18, un(t +—+/|a2 |2+/|a 19, u(t

Further we have to prove that

@7 Jue— [w0
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In order to prove (37), write

[wo- [

< llun(t) = w(®)llzz (lun@lIZs + ()7

1 L
< lun(®) = w(®)llz2 (lun () 221102un (211221107 By un (B) 172
2, (13 (19-1 3
Hllu@)ll 210z u(®)l|Z2 107 "9y u(t)llf2),
where we used the Sobolev inequality (cf. [6]):

L 1 1
lullze < Nellfa N0zl 211070y ullfs,  w € E(R?).

Clearly un(t) converges to u(t) in L2(R?) and hence

[wo- [0

which proves (37). A use of (36) and (37) shows that H(u,(t)) converges to H(u(t)) and
hence H(u(t)) = H(¢). Now via a Sobolev inequality (cf. [8]) we obtain

— 0,

1 1
Vﬂs(t)‘ < 20u(t)l|Z2l102u()l17.1107 0y u (D) 117,
4 1
< 4lglita + 7Q0).
and finally we arrive at
24 16
< — —|1él32-
QW) < SH@) + 411

Hence Q(t) is bounded by a quantity which remains constant along the trajectories. This
completes the proof of Theorem 2.

We conclude this section with a remark on the global behavior of the solutions obtained
in Theorem 2 and Theorem 3. Due to the local existence argument we have that for any
finite interval I C R the global solution u of (3)-(5) belongs to the localized Bourgain space

Y 3+21(]) associated to the energy space E(R?). One may ask whether the solution u belongs

to the global (in time) Bourgain space Y%""z"(RS). The answer to this question is negative,
since in [10] solitary wave solutions of (3) are obtained and clearly they do not belong to any
global Bourgain space. On the other hand similar a statement is not valid in the context of
KP-II type equations because it easily results from Pohojaev type identities that there are no
localized solitary waves for KP-II type equations. We do not know if the global solutions of
KP-II type equations belong to the corresponding global Bourgain spaces. Finally we remark
that in [16], J. Bourgain proves that the absence of solitary waves (defocusing case) leads to
global properties of the solution in the context of the H!-critical 3D semi-linear Schrédinger
equation.
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6. The case of periodic boundary conditions - 2D

We suppose that

(38) [I“ #(z,y)dz = 0.

Actually we can always suppose (38). In the general case a lower order perturbation of the
equation appears which does not affect the analysis (cf. [13, 14]). Now we define a Fourier

transform restriction space where the solutions shall be obtained. Denote by Xg”(R x T?)
the completion of C°(R x T?) with zero z mean value with respect to the norm

ol = Jar (= + 2 tmyite,m
(m n) € Z*
m#0

<r -md+ "—2>2b+%
+ Z /dr |m|m (m)2|@(r, m, n)|2
(m,n) € Z°
m#0

The next estimate is crucial in the proof of Theorem 4.
1
PROPOSITION 5. Let u € X0’+"(R x T?), s > —1/8. Then the following inequality holds

2
(39) el s S 112 3.0

Once we obtain (39), the proof of Theorem 4 results from a contraction argument slightly
different from that in the proof of Theorem 1 because of the second term in the definition of

Xg”(R x T?). This argument will be presented at the end of the next section.

6.1. Proof of (39). Set ( = (m,n) € Z% and

2
c=o(r,()=1-m°+ %, o1=0(m,¢1), o2=0(1—1,{—G).

0= @’ 0y =0(r1,¢1), O2=0(r —11,{— 1)
|m|2

By duality, (39) is equivalent to
|m|<m (0)1‘(7-11(1)0(7-711( Cl)@( C)

dry | dt
IGZZzCGXZ:z/ / (ma)?(m — my)*(1)(8:)(0) 3 (01) 3F (a2) 3+

(40) S Wl (Rr) a1l )
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where u(m,¢1),9(7 — 71,{ — ¢1) and @(r,() can be assumed to be positive. Consider the
dyadic levels in (7, ¢, m1,{1) space:

Dfl}]f{l};} _ <U)NK1 (UI)NKI) (UZ)NK21
1 Im|~ M, |mi|~M,, |m—mi|~ M,

Due to the zero z mean value assumption, we can suppose that M > 1, M; > 1, M, > 1.
Denote by J the left-hand side of (40) and by J ]{;ﬁ"{} the contribution of Dﬁﬁlﬁz to J.

Then
KK K,
UBS > IMM My
K|K1 1K2 |M1M1)M2
Let

R iZ(rl,Cl), when (Ul>~K1, |m1|~M1
uKlMl (TI)CI) =

0 elsewhere.

Similarly one can define the localized v and @ denoted respectively by:

aKzMz (T - TI’C - Cl) and @KM(ﬂ C)

1+s K*
M <1 + M__{) / alel (Tlicl)BKgMz(T— TI;C Cl){EKM(Ti C)
pKK1K;

1 1
K%-KE+K§+ MM, My
MIM3 1+ 1+
2 ;,‘; J;

where [ pKKiK; IMeans integration with respect to 7, 7; and summation with respect to ¢, ¢;

M My M
on the range of D,’&’If}lﬁz. In order to estimate the expression

Hence we have

JKK1K2
MM M, N

)

/DKKIK: uk, My (71, C1) VM, (T — 71, € = ) Wrem (T, €)
MM M3

we shall use two main tools. The first one is the algebraic relation for the symbols o, o1 and
04, where the KP-II nature is essentially used. The second one is a convolution lemma in the
spirit of [14]. State the algebraic relation

(myn — mn;)?

o1+0,—0= 5m1m(m - ml)(m — mmy + ml) + mlm(m - ml) |

Hence on Df{f}l};}z we have

(41) max{K, K, K2} > MMXM2,
(42) max{K, K, K2} > MoM*MZ,
(43) max{K, K, K2} > M*M, M,.

Now we state the convolution estimate.



152 7. THE CAUCHY PROBLEM FOR THE FIFTH ORDER KP EQUATIONS

PROPOSITION 6. Let uy(1,m,n) and uy(1, m, n) be two functions defined on R x Z?% with
the following support properties

2
If (T) m, n) € supp u; then |m| .11 T—m® + = ~ Kj7 J=12,
where M; > 1. Then the following inequality holds
(44) (w1 * w2) (7, my 2) || Lar jm|~Mim) S
% .L (M1M2)

(K1 A K2)% (K1 V Ka)% (M) A My)? lurll L2l u2l| L2

4

The proof of Proposition 6 will be performed in the next section. In order to estimate
JKIA{,,‘ M, We distinguish the cases taking into account which of the symbols |0}, |a1], |o2]
dominates. By symmetry we can assume that |o;| > |o;|. Note also that M < (M; + Ma).

Hence
(45) M S (MyV My).

The inequality (45) will be used intensively hereafter without explicit mention. We shall
consider only the cases s = 0 and s = —1/8. Then the proof for s € (—1/8,0) results from
the three lines theorem. The case s > 0 can be treated as the case s = 0 below.

e Let s=0, |o| dominates and K% < M7. Then due to Proposition 6 and (41) we

estimate the contribution of this region to J ﬁﬁl‘},}z by

cM
Ki-KiT Kt

(umM1 * VK, My, WK M) L2

M3 (My A M3)3 (M M) (K1 A K2)3 (K1 V Kp)+
1
ME= (M M) - Ko+ K3 G

A

[lullz2llvllz2llw]lz2

1
S worllullvllz ol

Since K 2 M3M M,, K 2 K, and K 2 K, a summation over dyadic K, K;, K, M, Mj,
M, yields the needed bound in this case.
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e Let s=0, |o| dominates and K3 > M3. Then due to Proposition 6 and (41) we
. . . . . KKK
estimate the contribution of this region to Jyss37 by

1
cM:
1 1
Ki-KTK:T

(UK, M, * VKM, , WK M) L2

M-}(Ml/\Mz)%(Mle)%(Kl/\Kz)%(K1VK2):-
3_ 3_ ot st it
M~ (M M) Ko+ K K

A

lullzallol ol
< 1
S worlulmlolslvlz

Since K 2 M3M;M,, K 2 K, and K 2 K, a summation over dyadic K, K;, K,, M, M;,
M, yields the needed bound in this case.

The additional term in the definition of the Fourier transform restriction space Xg"(R X
T?) is introduced in order to deal with the cases when |o| dominates. The advantage of

Y
this term is an additional small factor K, * (or M ‘%) in the estimate. On the other hand a

1
factor M also appears. That factor is easily canceled by using the convolution lemma.

e Let s=0, |0;| dominates and K& < M3. Note that in this case

Kt 1
1+W<M1§
P
K K3
14 1
wE

Then due to Proposition 6 and (42) we obtain the following bound for the contribution of

this region to J ﬁﬁ‘f{}z

1
cM M}

Ky KPR

(WK M * Ok, My, BK, M, ) L2

L
MMZ? (M A M)¥(MMy)3 (K A K2)7 (K V K3)*
1 5 1
MEME ™ (MMy)3- K3+ KO+ K

A

llullzallll L2 llwli L2

1
S 7{?—+Ilullmllvllmllwllu~

Since K; 2 M3M;M,, K, 2 K and K, 2 K, a summation over dyadic K, K1, K2, M, M,
M, yields the needed bound in this case.
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e Let s=0, |o,| dominates and K& > M3. Note that in this case

S

Op= [ o

M
M

— —
+ |+
PR

Then due to Proposition 6 and (42) we obtain the following bound for the contribution of

this region to J 1{{!}1&1}1&2

1
cM?2M? o A -
I %+<wKM*‘UK2M21uK1M1)L2
K2"K? K;

1
M2 MZ (M A My)3 (MM,)% (K AK2)2 (K V Kp)4
1 1_ 1
MIMP (MMy)\-Kit KO K3

A

l[ellzallvllzallwll 2

1
K—?+I|UI|L2 l|vllz2|lwl| L2

A

Since K; 2 M3M;M,, K; 2 K and K; 2> K, a summation over dyadic K, K, K2, M, M,
M, yields the needed bound in this case.

o Let s=—1/8, |o| dominates and K& < MZz. Then due to Proposition 6 and (41) we

estimate the contribution of this region to J ﬁﬁlﬁz by

cM (M M,)
1 141
K2 K} K;

1
8 —~ o~ o~
- (Uk, M, * Uk My, WKM) L2

M3 (My A My)3 (MyM,)3 (Ky A K3)5 (K V Ko) %
1 1
M3~ (M Mp) - Ko+ KV K F

N

llullzallvll L2 l|wl| L2

1

S orllullzallvllzallwllza.

Since K 2 M3MiM,, K 2 K, and K 2> K, a summation over dyadic K, K, Ko, M, M;,
M, yields the needed bound in this case.
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e Let s=-1/8, |o] dominates and K% > M3. Then due to Proposition 6 and (41) we

estimate the contribution of this region to J A’;’f,‘f;}g by

+ (alel *6K2M2) {I)KM)LQ

M%(Ml A Mg)%(Mle)g(Kl A Kg)%(Kl \% Kg)%
Iy 1
ME~ (M M) - Ko+ KT K 2T

N

l[ellz2llvll 2 llwl| 2

1
S orllullzallvllzallwllza.

Since K 2 M3MM,, K 2 K; and K 2 K, a summation over dyadic K, K, K2, M, M,
M, yields the needed bound in this case.

e Let s=-1/8, |o;| dominates and K& < M%. Note that in this case

Kt 1
7 P
1

g~
K K3
1-}——1}—1 1

Then due to Proposition 6 and (42) we obtain the following bound for the contribution of

this region to J ﬁf}f;}z

00)rs

1
CM'Z-M]‘2 (M1M2)
1

1 s_ 14 (GKM*6K2M218K1M1>L2
K¥YKP K]

1
MEM? (M M) (M A My)3 (MMy)s (K A K3)7 (K V Kg)3

1 5_ L
MEM? ™ (MM;)i- K3+ KO K2t

llullz2llvll 22 l|wl| 2

N

1
S 'Ko—+||"||L2||v||L=||w||L2-
1

Since K; 2 M3M;M,, K, 2 K and K, 2 K, a summation over dyadic K, K1, K, M, Mj,
M, yields the needed bound in this case.

o Let s =-1/8, |0;| dominates and K& > M?. Note that in this case

1+

ST L NI

,SM
M

1+

siRER
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Then due to Proposition 6 and (42) we obtain the following bound for the contribution of

this region to J ﬁ}{{lf;}?

00

L
cMs M7 (M My)
1y 33+
KitK? K2

(WM * VK, My, UK, M, ) L2

1
M%Mf (MIMZ)%(M/\ Mg)%(MMz)%(K A KZ)%(KV KQ)% ”u”
Y5 1 L2
M} My (MMz)l'K%‘*K?*’K,;*"

S lvllzallwll L2

1

S ;{F“u”L?”v“D“w”L’-

Since K; > M3M;M,, K, 2 K and K; 2 K, a summation over dyadic K, K1, K2, M, My,
M, yields the needed bound in this case.

This completes the proof of (39)

Proof of Theorem 4. Let Y2 (R x T?) be the completion of C$°(R x T?) with zero z
mean value with respect to the norm

n2 2b R
e = X [ar{romte ) e m

Then clearly
(46) ol g~ el + 1l ey

We shall apply a Picard fixed point argument to the following integral equation corresponding
to the Cauchy problem (10)-(11)

(47) o) = $OSO8 - 1900 | St - )Pt/ T)0u(u2(t)) .

Here S(t) = exp(—t(—03 + 0;102)) is the unitary group describing the free evolution of the
fifth order KP-II equation with periodic boundary conditions and %(t) is the cut-off function
used in the proof of Theorem 1. Clearly a solution of (47) on R corresponds to a solution of
(10)-(11) on [=T,T). We shall apply the contraction mapping principle to (47) in the spaces
Xg"(R x T?). We start we the following Proposition which helps to provide a small factor
in the iteration scheme.

PROPOSITION 7. Let 1/2 > b > b” > 0. Then there ezists > 0 such that for T € (0,1)
and s € R the following estimate holds

(48) ”¢(t/T)u”XO"’"’ < Tollu“Xo-b”,- .
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Proof of Proposition 7. If 0 < b<a <1/2and T € (0,1) then there exists § > 0 such
that

(49) 19/ T)ully-en < T°|lully-s.0.

The inequality (49) is proven in [42] in the context of the KdV equation (cf. (3.29) in [42]).
Actually the proof does not depend on the particular choice of the unitary group the Bourgain
spaces are associated to. Now we obtain via (46)

W/ T)ullygpue ~ I/ T)ullyvn + 1B/ T)ul iy
< T l[ully, 7. + Tozllully—b”{-i,u-&

~y

S Tl

This proves (48). The next Proposition contains the estimates needed to apply the contraction
mapping principle.

PROPOSITION 8. For any ¢ € Y*(T?), s € R, there ezists > 0 such that the following
inequalities hold

(50) 4SO 440 < lISlly

(51) Hw(t) /0 tS(t — ) (t/T)0:(u?(t"))dt’

< T)|uu .
X°*+" ~ “ 1'”Xo-§+,a

Proof of Proposition 8. The proof of (50) follows directly from the definition of the

spaces Xg"(R x T?) (an observation similar to (13)). In order to prove (51) we first note
that the following inequality holds

(52) Uw(t) [ se-owemo.ena

< T° C1es
oo ST ||uuz||Y°o 1-,s,
provided 1/2 < b < 1. In order to prove (52), we first apply the linear estimate in the

framework of the Bourgain spaces (cf. (19) and (20) above with T' = 1). Then we gain a
small factor T? by the aid of (48). Now we write via (52)

v [ St O)p(t/T) B (A (H))

T L P

< TO|uug| _yy, + TO%|vug]l g4
-4 -Fat
] V]

)
S Tolusel -y

This completes the proof of Proposition 8.
Now Proposition 9 and Proposition 8 allow us to apply a fixed point argument in order to
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complete the proof of Theorem 4.

Remark. The exponent —1/8 which appears in the statement of Theorem 4 is not
optimal. It is of technical nature and is chosen in order to make the computations more
transparent. Actually a slight modification of the above argument carries out the bilinear
estimate for s > —1/4.

6.2. Proof of the convolution lemma. We shall follow the idea of the proof of Lemma
4.1 of [14]. Note that Young inequality yields

||y * uz||p2 < |luallpr || uzllL2-

Hence the expression in front of [|u;||z2||uz||z2 in the right hand-side of (44) is a bound for
the volume which appears when estimating the L! norm of the characteristic function of a
bounded set in the terms of the L? norm. Clearly

lur * uz||22 = Z/dr
m,n

The Cauchy-Schwarz inequality in the (71, m;,n;) variables yields

2
Z /drl uy (11, M1, nq)ug (T — T, m = my,n —ny)| .

my,n

s % w2l|2(r it ) S SUP(r,m,n)MES{ Arman }Hlua|22]|uz]|32,
(7,]m|~M,n) ( )
where A;mn C R x Z2 is the following set
Armn = {(n,m1,m1):  (n1,m1,m) € suppuy, (7 —71,m—my,n—ny) € supp uz}.

First we eliminate 7. Set p(m,n) = —m5 + ";2 If (1, m1,n1) € supp uy and (7 — 1, m —
my,n — ny) € supp uz then

|71 + p(my, )| S K1, |7 — 71+ p(m—my,n—n)| < Ko.
Hence
|7+ p(ma, m) +p(m = my,n = )| S (K1 V Ka).
Also for fixed (my,n;) the maximal range for 7, is bounded by ¢(K; A K3). Therefore
mes{A;mn} < (K1 A K2)mes{B;mn},
where Bymn C Z? is defined as follows
B‘rmn = {(mhnl) € Z2 : |ml| ~ Ml’ |m - mll ~ M2s

|7+ p(my1, 1) + p(m — my,n —ny)| < (K1 V K2)}.

Note that m; should range in an interval of size smaller than M; A M;. Fix now m;. We
shall estimate the size of the section with n;. We have to estimate the number of n; such
that

|7 + p(mi,n1) + p(m — my,n — ny)| < (K1 V K3),
for fixed (7, m,n, m;). Note that

p(m1,m) + p(m —my,n—n;) = p(m,n)+5mm(m — m;)(m? — mm; + m?)

(min — mn,;)?

mym(m — my)’
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Hence the expression
(min — mn,)?
mym(m — m;)

has to value in an interval of size ¢(K; V K2). Therefore, for fixed m;,n;, m the integer n;
has to range in an interval of size

[C(K‘VK”ZT‘(’” ml)] < (K K)I(Mﬂfﬁ

Hence we bound the measure of B,,, with the product of the projection on the m; line and
the maximum of the sections with lines parallel to the n; axis. Thus

mes(Byma) < (K1 V K2)} (M A MZ)(MIIMM.
2

and furthermore
(M, Mz) %

2

es(Armn) < (K1 A K2) (K1 V K2)7 (My A My)

This completes the proof of Proposition 6.

7. The case of periodic boundary conditions - 3D

As in 2D we can suppose that
(53) [t sz =0,

Denote by Xg's"’i(R x T3) the completion of C(R x T3) with zero z mean value with
respect to the norm

2 2b
lull? o500 = > dr <r -m’+ — —+ £ > (m)®|a(r, m,n,1)|?

° (m,n,l) € Z?

m#0
1' S + + >2b
+ [ dr iyl m D

(m,n l) e€z?

m#0

The next Proposition contains the bilinear estimate crucial for the proof of Theorem 5.

PROPOSITION 9. Let u € X’+€’°+2’ #3544 (R x T3), s > 8 and € > 0 be an arbitrary
small number. Then the followmg inequality holds

2
(54) “uuz‘”xo—}+¢,§+26,a,§+4c rs Ilullxé+g’§+2¢'g,&+4¢ .
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Once we obtain (54) the rest of the proof of Theorem 5 follows the lines of the proof of
Theorem 4 and hence will be omitted.

Proof of (54). Set ( = (m,n,!) € Z3 and

n? 2
a=a(r,C)=T—-m5+—n;+-T-n-, o1=0(n,¢1), o2=o0(r—1,{~-G).

y 01=0(n,6), O2=0(r-1,(-C).

A duality argument writes (54) into the form

> 5 [an [ ar Imlmr @it - ¢ o)

G2 (T (ma)*(m = my)*(81)(02)(0)3 (1) 3+ (2) 3+

(55) S llull (RxT?) IleILz(Rsz)IIwIILg(RxTS)v

where 4(m,¢1),0(r — 11,{ — (1) and @(7,() are supposed to be positive. Similarly to 2D we
consider the dyadic levels

KKKy _
DMM1M2 -

(0) ~K, (o1)~ K;, (o2)~ Kj,
|m| ~ M, |my|~ M, |m — my| ~ M,

?}elnote by J the left-hand side of (55) and by Jﬁﬁf;}z the contribution of Dﬁf}lﬁz to J.
en

IS Y T
K,K;,K2,M, M, M,
Let
u(r,¢1), when (01) ~ Ky, |my| ~ M,
0 elsewhere.

N AGHNNE {

Similarly one can define the localized v and @ denoted respectively by:

EKQMQ (T -7, C - Cl) and '&)KM(T’ C)

Hence we have

M1+3 (1 + K*"’?c)
KK\ K, Mi+e g, My (11, C1) VroM, (T — 11, ¢ = C1) BWrem(T, )
J <
DKK1K2

MM M, ~ 1_ L+3 l+¢ §+2¢ &+2¢ !
K27*K} K? MM, M, sAqfs K K
MIM3 |1+ _IF—MI o 1+ —2}_M2 T
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where [ pKKik; Means integration with respect to 7, 7, and summation with respect to {, {;

MM M
on the range of Dﬁﬁlﬁz. In 3D the algebraic relation has the form

o1+02—0 = 5mym(m —m;)(m? - mm,; + m?)

(min —mny)?  (myl = ml;)?
miym(m —m;)  mym(m—m,;)’

Hence on Dﬁ’,f,}l{,f}z we have
(56) max{|o|, |01, |02} 2 { MMM, + MMIMZ + MyM* M7} .

Now we state the convolution estimate in 3D.

PROPOSITION 10. Let uy(r, m,n,l) and uz(r,m,n,l) be two functions defined on R x Z3
satisfying the support properties

2 2
If (r,m,n,0)€ suppu; then |m|~M; |r—m°+ %-}- l; ~K; j=1,2,
where M; > 1. Then the following inequality holds
(57) | (w1 * u2) (7, m, 2| 3(r jm|~Mont) S

(M [

L L My M
(K1 A Ko (K1 v Ka)b (M, A M)y 0 M2)2 ;Wf) || 2 ||zl 22
2

Proof of Proposition 10. The proof is similar to that of Proposition 6. Write
2

[lug % uz||22 = Z /dr Z /drlul(rl,ml,nl,ll)ug(r-Tl,m-ml,n—nl,l—ll)

m,n,l my,ny,h
Set ¢ = (m,n,!). The Cauchy-Schwarz inequality in the (7, my, n1,1;) variables yields
ller % w2l 2y pmpmtiny S SUP(rcymes{Arc}luallZalluallZ2,
where A,¢ C R x Z3 is the following set
Are={(m,¢1): (m,1) € supp u1, (7 —71,{—(1) € supp uz}.
First we eliminate 7. Similarly to 2D we obtain
mes{A,¢} < (K1 A K2)mes{B¢},
where

Br¢ = {C1 € 2% : |my| ~ My, |m — my| ~ My, |7+ p(C1) + (¢ — C1)| < e(K1 V K2) }

and p(¢) = —m® + ',‘n—z + % Note that m; should range in an interval of size smaller than
M; A M,. Fix now m;. We shall estimate the surface of the section (n;,l;). We have to
estimate the number of (ny,1;) such that

(58) I7+p(G1) +p(¢ - G1)| S (K1 V K3),
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for fixed (7,{,m;). Note that
p(G) +p(¢ =) —p(Q) = 5Smim(m—my)(m?® — mm; +m?)

(min—mny)?  (myl — mi;)?
mim(m—m;)  mym(m-m;)’

Hence the expression
(mln - mn1)2 + (mll - mll)2
mym(m — my)
has to value in an interval of size ¢(K; V K3). Now we set

~

m=mm(m-m;), a=71+p)+5n, K=c(K1VK,).

Note that @, and 7 do not depend on (n;,!;). Now it is easily seen that the measure of
(n1,1;) such that (58) holds is

—ﬁzk—a'n”?, min\ 2 ml2 ﬁzl?—aﬁz
on{i S ) () )
which is clearly equal to )

cK|m|
m2

M\ M,
M
Hence we can bound the measure of B;; with the product of the projection on the m; line

and the maximum of the surfaces of the sections with planes parallel to the (n;,{;) plane.
Thus

~ (K1 VK2)

MM,

mes(BT<) 5 (Kl \% Kz) (Ml A Mz)

and furthermore
MM,

mes(A,-C) 5 (Kl A K2)(K1 \% Kg)(Ml A Mz) M

This completes the proof of Proposition 10.

Asin 2D, in order to estimate J 1{;’]&‘5}2 we distinguish the case taking into account which

symbol dominates in the left-hand side of (56). By symmetry we assume that |o;| > |o2].

e Let |o| dominates and K #+2 < M3+% Then due to Proposition 10 and (56) we

obtain the following bound for the contribution of this region to Jf,,f,‘f,f}?

M? cM
Mi’M; K%—QK].';‘+¢K2%+€

(UK, M, * VK, M,, WK M) L2

M3 (My A My)3 (M M;)7 (Ky AK,)3 (KL V Ka)?
ME=2 (M My) -t Ke K 7T K

N
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1
S wllullzzlvliz o).
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Since K 2 M3MM,, K 2 K, and K 2 K2 a summation over dyadic K, K;, Ko, M, M,
M, yields the needed bound in this case.

e Let |o| dominates and K3+% > M3+, Then due to Proposition 10 and (56) we

JKK1K2
MM, M;

obtain the following bound for the contribution of this region to

M:? CM%—“
SA(S 3 lie 1.,
MiM; gi-3 k37 K}

(aKlMl *6K2M2) mKM)Lz

(My A My)5 (M My) 57 (Ky A K3)3 (K V K3)3 |
— PP v |ul| 2 ||v]| 2| w]| L2
M3=2e(MyM,) i8¢ Ke K2 " K

N

(My A M,)3
M%—a-}-s(Ml Mg) -}-}-s—Sng

N

lullallvollz2llwliz - (since s > 8e)

1
S 'R—,||"”L=|IUHL2||'U|1L2-

Since K > M3M M,, K 2 K, and K > K, a summation over dyadic K, K1, K2, M, My,
M, yields the needed bound in this case. Note that this is the only case when we use the
assumption s > 0.

e Let |o;| dominates and K32 < M3+4, Note that in this case

Kt Ly4

1 + M +4¢ < M12+ ¢
~ 1

Kt K3t*

Then due to Proposition 10 and (56) we obtain the following bound for the contribution of

this region to Jﬁf,‘f,f}z

1
5>+4e
s 2
M cMM;
MiM3 14 %'*” %'*"
1Mz gateg 3K
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< 1 llullzz]lvllzzllwl|lzz  ( considering the cases My < M, and M; > M3).
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Since K; 2 M3MM,, K, 2 K and K; 2 K, a summation over dyadic K, K;, K3, M,
M;, M, yields the needed bound in this case.

e Let |o1| dominates and K32 > M3+4, Note that in this case

K*‘"?‘ 1.4
Lt b Mgt
K§+2c ~ M§+4e

Then due to Proposition 10 and (56) we obtain the following bound for the contribution of

this region to J ﬁﬁf{é

1
M? cM%—«teMlz +4e

MM} ghpch Rt

(WrMm * VK, My, UK, M, )12 ( since K; 2 K)

L_gep 5tH4e 1 Lao—% 1 1
M3=% M2 (M AM;)s(MM;)2 M, *(K A K)2(K V Kj)32
M~ (MM) -2 KK K™

IN

llull g2 llvll L2l wll 2

M3=%(M A My)3

M~ (MMy)d=% K

N

llull 2ol 22l wl| 2

1 .
< F”"”L’”””L?”U’”L? ( considering the cases M; < M, and M; > M,).
1

Since K, 2> M3MM;, K, 2 K and K; 2 K; a summation over dyadic K, K, Ko, M, M,
M, yields the needed bound in this case.

This completes the proof of (54).



CHAPTER 8

Remark on the local ill-posedness for KdV equation

This Chapter essentially contains the paper [59] (Remark on the local ill-posedness for KdV
equation, to appear in C.R. Acad. Sci. Paris).

Abstract. We prove that the Cauchy problem for KdV equation is locally ill-posed in ",
8 < —3/4 if one asks the flow map u(0) — u(t) to be C? (in [15] C?® regularity is needed).

Remarque sur le probleme de Cauchy pour ’équation de KdV.

Résumé. On remarque que I’on peut construire un exemple tel que le probleme de Cauchy pour
I’équation de KAV soit mal posé dans H*(R), s < —3/4, si on suppose que I’application qui & une don-
née initiale associe la solution & I'instant ¢ soit de classe C? (dans [15], une régularité C2 est supposée).

Version francaise abrégée
On considere le probleme de Cauchy pour I’équation de KdV
(1) { Ut + Ugzz + vz =0,
u(0,z) = ¢(z).

On a le résultat suivant di & J. Bourgain (voir [15]).

THEOREME 1. Supposons que s < —3/4. Alors il n'eziste pas de T > 0 tel que l’application
Sy:p—ru(t), tel0,T]
pour (1) soit Fréchet différentiable de classe C* en zéro de H*(R) dans H*(R).

Dans [42] il est démontré que (1) est localement bien posé a données dans H*(R), s >
—3/4. En fait, 'application S; est analytique réelle de H*(R) dans H*(R). Le point essentiel
de la preuve est une estimation bilinéaire dans le cadre des espaces “restriction de Fourier”
introduits par J. Bourgain (voir [12, 14]). Dans[42] on trouve un exemple qui démontre que
I’estimation bilinéaire cruciale n’est plus satisfaite pour s < —3/4. Dans [15], un exemple
similaire est donné pour démontrer le théoréme 1. En effet, on ne posséde plus la régularité
suivant les directions ¢(z) telles que

(E) ~ YNy 43] (€) + Ty ) 6,

ou 14 est la fonction caractéristique de I’ensemble A. La relation entre N et y est y ~ N -3
Le but de cette note est de montrer qu’une régularité C* suffit pour démontrer que le probleme
de Cauchy (1) est mal posé dans les espaces de Sobolev H*(R), s < —3/4. La relation entre
N et v est ¥ ~ N=2. On a le théoréme suivant.
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TQEOREME 2. Le théoréme 1 reste vrai si on demande que S, soit de classe C? de H*(R)
dans H*(R).

Consider the initial value problem for KdV equation

Ut + Uggg + uuz = 0,
) { u(0,2) = $(a).

We have the following result due to J. Bourgain (cf. [15]).
THEOREM 1. Suppose that s < —3/4. Then there is no T > 0 such that the map
Si:pr—>u(t), tel0,T]
for (1) is C3 Fréchet differentiable at zero from H*(R) to H*(R).

It is known that (1) is locally well-posed for data ¢ € H?*, s > —3/4 (existence, uniqueness,
continuous dependence with respect to the data) (cf. [42]). In fact the map data-solution
turns out to be real analytic. The essential ingredient of the proof is a bilinear estimate in the
Fourier transform restriction spaces introduced by J. Bourgain (cf. [12, 13]). In [42] is given
an example which shows that the crucial bilinear estimate fails for s < —3/4. In [15] a similar
construction is performed in order to prove Theorem 1. Actually the C3 differentiability fails
along the directions ¢(z) such that

$E) ~ NN —ay-N 441 ) + Ty N441 (6),
where 14 is the characteristic function of the set A. The relation between the frequency N

and the parameter v is y ~ N =%. Our aim is to show that C? regularity of the map data
solution suffices to construct the needed example. In our example the relation between N
and v will be ¥ ~ N~2. We have the following Theorem.

THEOREM 2. Theorem 1 is valid if one asks S; to be of class C? from H*(R) to H*(R).
Proof. Similarly to [15] we consider the Cauchy problem

(2) Ut + Uzzz + UUz = 0,
u(oiz) = 5¢(z)’ é € R,

where ¢ € H*(R), s < —3/4, will be chosen later. Suppose that u(é,¢,z) solves (2) and S;
to be C2. We have that

t
u(é,t,) = SU()b(z) + / Ut - £)u(s, ', 2)us(5, ¥, 2)dt,
0
where U (t) = exp(—t32). Note that

S04z = UWE) = m(ta),
0%u

¢
W(O,t,m) = 2/ Ut —t)u(t, 2)0:uy (¢, z)dt' := uy(t, z).
0

We can define in a similar fashion u(t,z) as %%%(O,t, z), k = 3,4,---. Taking into account
that u(0,¢,z) = 0 we can formally write a Taylor expansion

3) u(d,t,z) = duy (¢, 2) + 8%uy(t, z) + 3us(t,z) + - - -
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Our aim here is to show that in some sense the first two terms of (3) are the main contribution
to the solution of (2). The assumption of C? regularity of S; yields

(4) llua(t, g < cllgllZ,.
We seek for data ¢ such that (4) fails. Consider initial data of type

. \ 2y
#(z) = 7‘%N" {exp(—iN:c) (/1 exp(z’zé)df) + exp(iNz) (/ exp(iz{)d{) } .
Y v
Here N > 1, v < 1 and the relation between N and « is to be fixed later. We have

B = 77N {1y, (6) + 42 (6}
Clearly ||#|| s ~ 1. Let Iy =[-N,—N ++] and I = [N 4+ 7, N + 2v]. We have that

Fome(u1) (8, €) = exp(it€®)(€)

and hence

uy(t,z) ~ Y IN" exp(iz€ + it€3)dE.
fehul;

A straightforward computation gives
(r-€%) _q

wta)= [ [ cexpling +itg®) g @+ ) (r drde.
Since uy(r,€) = 6(T - 53)$(§) (6 stays for Dirac delta function) we arrive at
(@1 %) () = /_ 5(r = & = (€ - €)*)$(E0)B(€ — &1)déar.
Hence

~ =1 p7—-2s : 13
ua(t,2) TN /elellufz,e-g,erlurg Sexp(izt + i) €61(E- &) !

e—it6(§-41) 1

Further we have

' e—te6(€-&) _ 1
Forre(uz)(t,€) ~ 77N> exp(it€)¢

1
eehuh i—-6enu,  §6(E—&1)

~ 7'1N'2"exp(it§3)§{/ +/ et }
AL(6) As(§) As(¢)

~ g1 (t1€) + g2(t1 E) + g3(t1§))
where

A@)={&a:Gehé-&enh}, Al ={a:&€hé-&EDL},
A§)={&:4ehf-Gehor&ehE-&€n}.
Let fj = F;3,(9;), 5 = 1,2,3. Then clearly
uz(t, z) ~ fi(t, ) + fa(t, 2) + f3(2, 2).
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We shall first give an upper bound for the H® norm of f;. If & € I, and € — & € I, then
€1l ~ |€ = &] ~ |€] ~ N and hence
It Yge S 7 INTEN"2y N>z ~ 3N T2
Similarly
1
I fa(t, lgs < ey2N7*72

Now we shall show that with a proper choice of 4 and N the main contribution of the H*
norm of uy(t,.) is that of f3. If & € I and € — & € Iy or & € I; and £ — & € I; then

|€1] ~ |€ = &1| ~ N and |£| ~ v. Therefore |€£,(€ — &;)| ~ N%y. Choose N and 7 such that
N2y =0(1). Hence for £, € I and £ — &, € L or & € I; and € — & € I, one has

e—iteE1(E=61) _ 1
E&(E - &)

> const

and therefore 3
“f3(t1 )”Hs > CN—2"75+’ ~ N—4s—3.

Hence

1~ ol >l )llgs
W f3(ts Mgze = 1 F1 (6 Mlgre = 1 f2(25 )l o
cN~473 _cN—*3,

Hence N™%73 < ¢(14+ N~*73). Let -3 < s < —3/4. Then N~%~3 < ¢. Contradiction for
N > 1. Let s < —=3. Then N™%=3 < ¢cN~*~3 and hence N~* < ¢. Again contradiction for
N > 1. This completes the proof of Theorem 2.

v

v

The proof of Theorem 2 uses the arithmetic fact involving the symbol of the linearized
KdV equation

(5) (n-&)+(r-n-(E-&)) - (r-€) =3¢a(E - &).

The relation (5) was used in [13, 15, 42] to prove local existence results for KdV equation.
We can regard (5) as a smoothing effect which helps to recuperate the loss of one derivative
in the nonlinear term. We note that in the example performed here the frequencies &, £ —§;

and £ are chosen so that the quantity ££; (& — &) be small, which somehow means the loss of
the smoothing relation (5).

The fact that s = —3/4 turns out to be the critical exponent for the local well-posedness
in H*(R) for the KdV equation is surprising, since it differs from the scaling exponent. The
scaling exponent for KdV equation is s = —3/2, since the norm H~3/2(R) is invariant under
the scale transformations

u(t, z) — ur(t, z) = A2u(A\3, Az),

which preserves the KdV equations.

In general, one can try to prove local well-posedness for the Cauchy problem of any evo-
lution equation by considering some exact solutions. KdV equation possesses solitary wave
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solutions of type u.(t,z) = ¢(z — ct), where ¢(z) = {3/2sech?(z/2)}'/2. One check that
uc(0,.) converges weakly in H®, s < —3/2 to v/270,6(z) as c tends to infinity. A similar
consideration shows that u.(t,.), t > 0 converges weakly to zero as c tends to infinity. We
also have that ||uc(t, .)||zrs = c*/?||$||gr+- Since 8,6(z) € H®, s < —3/2 (the scaling exponent)
the last arguments strongly suggest local ill-posedness for KdV equation assuming that S; is
continuous from H*(R) to H*(R), s < —3/2.
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