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Abstract

We construct and study the Yang-Mills measure in two dimensions. According to the informal
description given by the phisicists, it is a probability measure on the space of connections modulo .
gauge transformations on a principal bundle with compact structure group. We are interested
in the case where the base space of this bundle is a compact orientable surface.

The construction of the measure in a discrete setting, where the base space of the fiber
bundle is replaced by a graph traced on a surface, is quite well understood thanks to the work
of E. Witten. In contrast, the continuum limit of this construction, which should allow to put
a genuine manifold as base space, still remains problematic.

This work presents a complete and unified approach of the discrete theory and of its contin-
uum limit. We give a geometrically consistent definition of the Yang-Mills measure, under the
form of a random holonomy along a wide, intrinsic and natural class of loops. This definition
allows us to study combinatorial properties of the measure, like its Markovian behaviour under
the surgery of surfaces, as well as properties specific to the continuous setting, for example,
some of its microscopic properties. In particular, we clarify the links between the Yang-Mills
measure and the white noise and show that there is a major difference between the Abelian and
semi-simple theories. We prove that it is possible to construct a white noise using the measure
as a starting point and vice versa in the Abelian case but we show a result of asymptotic inde-
pendence in the semi-simple case which suggests that it is impossible to extract a white noise
from the measure.

Keywords : Gauge theory, Yang-Mills, continuum limit, random holonomy, white noise, zero-
one law.

MSC Classification : 58D20, 81T13, 81T27, 81Q70, 60F20, 60H40.
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Introduction

Cette thése est consacrée a la construction et & 1’étude de la mesure de Yang-Mills en deux
dimensions. L’équivalent quadridimensionnel et pseudo-riemannien de cette mesure est utilisée
par les physiciens pour rendre compte des interactions fondamentales, dans le cadre des théories
de jauge comme I’électrodynamique et la chromodynamique quantiques. Elle apparait dans des
intégrales dites de chemins, qui sont des intégrales dont la description, souvent informelle, ne
suffit pas & prouver l’existence. Si I’on s’en tient a cette description, la mesure de Yang-Mills
est une mesure de probabilités sur ’espace des connexions modulo transformations de jauge sur
un fibré principal dont le groupe de structure est compact. Nous nous intéressons ici au cas ot
la base de ce fibré est une surface compacte orientable. L’expression informelle de la mesure est
alors la suivante: .

dp(w) = 7 e72°¢) Do, (1)

olt S désigne 1’action de Yang-Mills, qui est la norme L? de la courbure. La constante Z est une
constante de normalisation et la mesure Dw une hypothétique mesure invariante par translation
sur I’espace des connexions.

La construction de la mesure dans un cadre discret, ot la base du fibré est remplacée par un
graphe tracé sur une surface, est comprise dans ses grandes lignes depuis les travaux de Witten
[Wi]. En revanche, le passage a la limite continue de cette construction, qui doit permettre
de considérer une véritable surface comme espace de base, est resté jusqu’a maintenant prob-
lématique. Plusieurs travaux menés dans cette direction ont amené des progres, sans toutefois
aboutir a des résultats entierement satisfaisants.

Ce travail présente une approche compléte et unifiée de la théorie discréte et de son passage
3 la limite continue. Il aboutit & une définition géométriquement cohérente de la mesure de
Yang-Mills sous la forme d’une holonomie aléatoire le long d’une grande classe de lacets, intrin-
seéque et naturelle. Cette définition permet d’étudier aussi bien les propriétés combinatoires de
la mesure, comme son comportement markovien lors du découpage et du recollement des sur-
faces, que ses propriétés plus spécifiques au cadre continu, par exemple des propriétés a I’échelle
microscopique. En particulier, on clarifie les liens entre la mesure de Yang-Mills et le bruit blanc
et on met en évidence une différence profonde entre les théories & groupe de structure abélien et
semi-simple. On montre qu’il est possible de passer de la mesure au bruit blanc et vice versa dans
le cas abélien, alors qu’on établit dans le cas semi-simple un résultat d’indépendance asymp-
totique compte tenu duquel il est certainement impossible d’extraire un bruit blanc de la mesure.

Nous présentons tout d’abord une construction de la mesure, basée sur I’approche com-
binatoire du probléme, initiée par A.A. Migdal en 1975 [Mi] et prolongée par E. Witten en
1991 [Wi]. Nous construisons en premier lieu la théorie discréte, sur un graphe, en complé-

11



12 INTRODUCTION

tant la méthode de Witten, puis nous en réalisons le passage a la limite continue, en deux
étapes. Nous commencgons par prendre la limite projective des mesures associées a une famille
de graphes. Nous montrons ensuite que certaines propriétés de régularité permettent, par un
procédé d’approximation, d’aboutir & une définition intrinséque de la mesure de Yang-Mills.

Parallélement & cette construction générale, nous étudions le cas particulier ou le groupe de
structure est abélien, en prenant l’exemple du groupe U(1). Ceci nous conduit a proposer une
autre construction de la mesure, spécifique au cas abélien, basée sur le caractére gaussien de
la théorie en deux dimensions. Cet aspect avait déja servi de point de départ aux travaux de
B. Driver [Drl, Dr2] et A. Sengupta [Sel, Se2], dans le cas général. Or il nous a semblé que
les constructions auxquelles avaient abouti ces travaux n’étaient pas entierement satisfaisantes
et que la raison pouvait en étre que ’approche gaussienne était mal adaptée a un groupe de
structure non abélien. En étudiant successivement la mesure de Yang-Mills a petite échelle dans
les cas abélien et semi-simple, nous mettons en évidence une différence structurelle importante
entre ces deux théories, qui explique a posteriori les difficultés auxquelles Driver et Sengupta se
sont trouvés confrontés.

Enfin, nous étudions le comportement de la mesure vis-3-vis de la chirurgie des surfaces.
Nous démontrons une propriété de Markov du champ aléatoire qui étend un résultat prouvé
dans le cadre discret par C. Becker et A. Sengupta [BS]. Nous étudions ensuite ce que devient la
mesure lorsque 1’on recolle deux surfaces, ainsi que lorsque I’on coupe ou recolle une anse d’une
surface. Cette étude conduit naturellement a celle des fonctions de partition conditionnelles,
dont 'importance avait déja été mise en évidence par Witten [Wi].

Position du probleme. Le contexte géométrique est le suivant: on se donne une surface M,
un groupe de Lie G et un fibré principal P sur M. La surface M est une variété différentiable
réelle de dimension 2, compacte, orientable, avec ou sans bord. Elle est munie d’une mesure o
qu’on suppose équivalente a la mesure de Lebesgue dans toute carte, avec une densité strictement
positive et lisse. Le groupe G est un groupe de Lie compact connexe, qui sera choisi abélien ou
semi-simple dans la plupart des exemples. Le fibré P est un fibré principal sur M de groupe de
structure G.

Rappelons qu’une connexion sur P est le choix d’une distribution horizontale G-invariante
dans P et que ce choix peut étre représenté par une 1-forme w sur P 3 valeurs dans ’algébre de
Lie g de G. La courbure de la connexion w est la 2-forme 2 sur P & valeurs dans g définie par

QX,Y) = dw(X,Y) + [w(X),w(Y)]. (2)

Cette 2-forme peut également étre vue comme une 2-forme sur M & valeurs dans le fibré ad P
associé a P par l'action adjointe de G sur g. Quitte & choisir une orientation de M, on peut
alors identifier 2 avec une section de ad P. La donnée d’un produit scalaire sur g invariant par
adjonction permet de munir le fibré ad P d’une métrique et de définir la norme || Q || de la
courbure, qui ne dépend pas du choix de ’orientation. On définit alors 'action de Yang-Mills
sur ’espace A des connexions sur P par

S:A — R+
v —s S(w):/ 122 do.
M

Le probleme qui nous occupe maintenant est de donner un sens & l’expression (1). L’obstacle le
plus manifeste est qu’il n’existe aucune mesure invariante par translation sur A qui est un espace
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affine de dimension infinie. Une autre difficulté provient du fait que ’action de Yang-Mills est
invariante par I’action d’un groupe énorme, le groupe de jauge de P. Ce groupe, noté J, est
le groupe des difféomorphismes de P au-dessus de I'identité de M qui commutent & ’action de -
G. 11 agit par pull-back sur A et préserve S, car son action sur la courbure d’une connexion
est une conjugaison en chaque point, qui préserve la norme dans le fibré ad P. Du fait de cette
invariance, la constante Z doit &tre proportionnelle au volume de 7, donc infinie. On remédie
a ce probleme en cherchant a construire la mesure non plus sur A mais sur l’espace quotient
A/J. Ceci implique qu’on ne pourra intégrer contre la mesure de Yang-Mills que des fonctions
invariantes par transformations de jauge, en accord avec le principe physique selon lequel toutes
les grandeurs mesurables sont invariantes de jauge. En revanche, la structure géométrique de
I’espace quotient est beaucoup plus compliquée que celle d’un espace affine, si bien qu’on évite
en général de travailler directement dessus, pour lui préférer un espace de fonctions, comme
nous verrons un peu plus loin qu’il est possible de le faire. A ce titre, les travaux de D. Fine
[Fil, Fi2] font exception, puisque ’auteur y analyse la structure géométrique du quotient A/J
pour interpréter plus précisément I’expression (1).

La mesure de Yang-Mills comme holonomie aléatoire. La premiére question qu’on
peut se poser est de savoir quelles fonctions on veut &tre capable d’intégrer contre la mesure de
Yang-Mills. La réponse donnée par les physiciens est la suivante: on veut intégrer les fonctions
appelées boucles de Wilson. v

La donnée d’une connexion w sur P permet d’y définir un transport paralléle le long de
chemins réguliers sur M. Etant donné un chemin ¢ : [0,1] — M, le transport paralléle, ou
holonomie, le long de c est un difféomorphisme G-équivariant de la fibre P, (o) dans la fibre Fy;),
noté hol(w, ¢). Si c est un lacet et si on choisit un point p dans la fibre P(0), ce difféomorphisme
peut étre représenté par I’élément g de G tel que hol(w, ¢)(p) = pg. Si on choisit un autre point
dans F(p), on trouve un autre élément de G conjugué & g. Ainsi, pour toute représentation p
de G et tout lacet I, on peut définir la boucle de Wilson W, par

Wi,p(w) = trp(hol(w,1)).

Les fonctions que 1’on .veut intégrer sont donc des fonctions centrales de I’holonomie le long
des lacets. Nous venons de voir que, lorsqu’on fixe une connexion, ’holonomie le long d’un
lacet détermine une classe de conjugaison dans G. Il nous faut également prendre en compte
l’action du groupe de jauge, qui conjugue par un méme élément de G les holonomies de tous les
lacets basés en un méme point. Notons LM I’ensemble des lacets réguliers sur M, F(M,G) et
F(LM,G) les ensembles des fonctions de M et LM dans G. Un élément j du groupe F (M, G)
agit sur un élément f de F(LM,G) de la fagon suivante:

3-f(1) = §0) T f()3(1(0)).

Il est alors possible de définir une application de .A/J dans le quotient F(LM,G)/F(M,G),
qui associe 3 une connexion la classe de I’holonomie qu’elle définit le long des éléments de
LM. Un argument de Sengupta [Sel] prouve que cette application est injective. Ceci nous
conduit & changer de point de vue: on cherche désormais a construire une mesure sur ’espace
F(LM,G)/F(M,G),qu’on voit comme un espace de connexions généralisées. En fait, on va con-
struire une mesure sur (LM, G) dont on prendra ensuite le quotient par I’action de F(M,G).
Autrement dit, c’est bien une holonomie aléatoire qu’on cherche a construire et non plus une
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connexion aléatoire. L’avantage est qu’il existe des outils classiques pour construire des mesures
de probabilités sur des espaces de fonctions.

A ce stade de ’analyse du probléme, il est nécessaire de disposer d’une caractérisation plus
précise de la mesure de Yang-Mills. Pour cela, on peut soit examiner ’expression informelle de
la mesure de plus pres, soit chercher auprés des physiciens d’autres descriptions de la mesure.
La seconde approche est celle que ce travail met en ceuvre, indépendemment de la nature du
groupe de jauge. Elle s’appuie sur la description combinatoire donnée par Migdal et Witten.
La premiére approche en revanche est celle qui met & profit le caractére gaussien de la théorie
et il semble qu’elle soit mieux adaptée au cas d’un groupe abélien. C’est ’approche décrite et
utilisée par Driver et Sengupta [Drl, Sel, Se2].

Interprétation gaussienne : courbure de la connexion aléatoire. Supposons que G
soit abélien, par exemple G = U(1). Dans ce cas, la relation (2) qui définit la courbure d’une
connexion devient linéaire en w. Un changement de variables formel permet de réécrire (1)
comme suit:

du(Q) = %e-éuﬂuz Da. 3)

Comme G est abélien, le fibré ad P est trivial, on peut l'identifier & M x g. On reconnait alors
dans (3) ’expression d’une mesure gaussienne sur ’espace de Hilbert des fonctions de carré
intégrable sur M a valeurs dans g. Ceci est le coeur de toutes les interprétations de (1) et
constitue une sorte de principe heuristique: sous la mesure de Yang-Mills, la courbure aléatoire
d’une connexion est distribuée de facon gaussienne, c’est un bruit blanc sur M d’intensité o a
valeurs dans I’algebre de Lie du groupe de structure.

Cet argument dépend bien entendu du fait que le groupe de structure est abélien, puisque
la courbure est en général une fonction quadratique de la connexion. Cependant, la théorie en
deux dimensions présente la particularité qu’étant donné une connexion, il est toujours possible
de se ramener 3 la situation précédente par un choix de jauge approprié. Développons un peu
cet argument.

Si on choisit une trivialisation locale de P sur un ouvert U C M, c’est-a-dire une section
locale s : U — P de P, on peut tirer sur M par s* tous les objets définis sur P, en particulier
les formes de courbure et de connexion. On note traditionnellement A = s*w et F = s*Q.
Ces formes sur M vérifient une équation de structure F = dA + [A, A] identique & (2). Soit
maintenant j un élément du groupe de jauge J. On peut le faire agir de deux fagons dans ce
contexte, soit en transformant la section s en j o s, soit en transformant les formes w et €2 en
J*w et 7*Q. Ces deux actions sont pergues de la méme fagon sur M, puisque (jos)* = s*j5*. On

notera donc par exemple A’ la forme (j 0 8)*w = s*j*w, sans ambiguité.

Le fait particulier 3 la dimension deux est que pour toute connexion w, il existe localement
une section s telle que A = s*w vérifie [A, A] = 0. Vu depuis M a travers une section locale
donnée, ceci se reformule en disant que pour toute connexion A, il existe un changement de jauge
j tel que [A7, A7] = 0. En effet, choisissons un ouvert assez petit pour posséder des coordonnées
locales z,y. Posons m = (0, 0) dans ces coordonnées et choisissons p dans la fibre P,,. On définit
s le long de ’axe des y comme le relevé horizontal de cet axe partant de p. Maintenant, partant
d’un point (0, yo) dans U, on définit s le long de la droite y = yo comme le relevé horizontal de
cette droite partant de s(0, yo). Il en résulte une section lisse et horizontale le long de toutes les
droites paralleles & Paxe (Oz). Ainsi, A = s*w s’écrit A = A,dy et on a [A, A] = 0. A travers
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une telle section s, le raisonnement fait au début de ce paragraphe fonctionne, & ceci prés qui
la section a travers laquelle la courbure est censée étre une fonction linéaire de la connexion
dépend elle-méme de la connexion.

Suite de I'interprétation gaussienne : de la courbure a I’holonomie. L’étape suivante
consiste a extraire de sa courbure aléatoire ’holonomie aléatoire de la connexion. On s’appuie
pour cela sur les liens déterministes entre courbure et holonomie. Supposons encore que le
groupe de structure soit U(1) et plagons-nous non pas sur une surface compacte mais sur R2.
Etant donné une connexion w sur le fibré R? x U(1) et un lacet simple / qui borde un domaine
D, la formule de Stokes permet d’écrire

hol(w,l):expifA:expi/ dA:expi/ F =expi(F,1p)2
i D D

L’avantage de cette formulation est qu’elle s’étend aisément 3 la situation aléatoire. En effet,
choisissons un bruit blanc W sur R?, c’est-a-dire une isométrie de L2(R?) dans un espace
gaussien. On peut alors remplacer formellement F par W dans la derniére expression et définir
une holonomie aléatoire H; le long de [ par

H; = expiW(1p).

La construction spécifiquement abélienne que nous présentons au chapitre 3 est une adaptation
de ce procédé au cas de surfaces dont la topologie n’est pas toujours triviale et ou la notion
d’intérieur d’un lacet demande & étre précisée.

On peut ici expliquer plus en détail les problemes rencontrés par Driver et Sengupta. Ils ont
cherché a utiliser la méthode que nous venons de décrire lorsque G n’est pas commutatif. Or
dans ce cas, I’holonomie ne s’écrit plus exp fl A, mais Pexp fl A, qui est une notation condensée
pour la solution de I’équation différentielle

{m=Ammm
ho = 1.

Dans ce cadre, la formule de Stokes ne s’applique pas. En quelque sorte, il faudrait choisir I’ordre
dans lequel on multiplie les petits éléments de G obtenus par exponentiation de l'intégrale de
F sur des petits carrés inclus dans D. De fait, la connexion étant fixée, Driver et Sengupta
utilisent les coordonnées qui ont permis de construire la section 3 travers laquelle [4, A] = 0
pour choisir I’ordre dans lequel ils intégrent le bruit blanc & 'intérieur de D. L’inconvénient est
que la classe de lacets le long desquels ils parviennent & définir I’holonomie aléatoire est un peu
restreinte et surtout dépend compléetement de ce choix de coordonnées.

Notons que L. Gross [Gr] et B. Driver [Dr2] ont introduit un nouvel objet local pour tenter
de remplacer le bruit blanc dans ce contexte. Il se peut qu’il y ait 1& un début de solution & aux
problémes que nous venons d’évoquer.

Bien que ce point ne soit pas abordé dans le travail que nous présentons, il est impossible de
finir cette introduction sans mentionner 'importance du passage a la limite semi-classique de la
mesure de Yang-Mills. Le phénoméne remarquable est que lorsque la surface totale de M tend
vers 0, la mesure de Yang-Mills se concentre sur ’espace des connexions plates sur M et tend
vers la mesure de volume correspondant a la structure symplectique naturelle sur cet espace. Ce
probléme est 1’objet d’une littérature assez abondante (voir par exemple [Fo, BS, KS, Se3, Liu]),
car il est intimement 1ié & I’étude de la géométrie de certains espaces de modules [AB].



16 INTRODUCTION

Présentation des résultats

Nous allons maintenant présenter en détail les résultats essentiels de ce travail, profitant du fait
que nous ne donnons pas de preuves pour en modifier parfois un peu l'ordre.

Construction de la mesure sur des graphes. Notre point de départ est la description
combinatoire de la mesure qu’a donnée Witten [Wi] a la suite de Migdal [Mi]. Elle consiste
a se ramener 3 la construction d’une mesure sur un espace de dimension finie, en remplagant
la variété M par un graphe tracé sur M. On cherche alors a définir ’holonomie aléatoire le
long des chemins qu’on peut parcourir dans ce graphe. On s’intéresse également & des versions
conditionnelles de ces mesures, qui serviront a traiter le cas des surfaces a bord dans le cadre
continu et qui permettent surtout de définir des objets analytiques trés importants, les fonc-
tions de partition conditionnelles. On examine ensuite les liens entre les mesures associées a des
graphes différents et on prouve la propriété principale de la théorie discréte qui est I'invariance
par subdivision. Cette propriété est un des ingrédients essentiels du passage a la limite continue.
Enfin, dans le cadre de la théorie discréte, nous commengons & étudier certaines spécificités du
cas ol le groupe de structure est abélien.

Nous choisissons une surface compacte M, avec ou sans bord, munie d’une mesure de sur-
face 0. Nous choisissons également un fibré principal P sur M de groupe de structure G.
Commencgons par préciser la classe de chemins avec laquelle nous allons travailler.

Définition 0.1 On appelle chemin sur M une classe d’équivalence a reparamétrisation crois-
sante prés d’applications c : [0,1] — M qui sont des concaténations de plongements lisses. On
note PM [’ensemble des chemins de M.

Pour discrétiser M, il nous faut définir une notion de graphe

Définition 0.2 On appelle aréte sur M un chemin injectif. On appelle graphe un ensemble fini
d’arétes qui ne se rencontrent deur & deuz, le cas échéant, qu’en leurs extrémités et tel que les
. propriétés suivantes soient vérifiées : _

1. Le support du graphe, c’est-a-dire la réunion des images de ses arétes est connexe et contient
le bord de M si celui-ci n’est pas vide.

2. Toutes les faces, c’est-a-dire les composantes connezes du complémentaire du support, sont
difféomorphes a des disques.

La condition 2 implique qu’un graphe rend correctement compte de la topologie de M. Plus
~ précisément, 'inclusion du support du graphe dans M induit une surjection des premiers groupes
d’homologie entiere (cf. 1.2.4).

Soit I' = {ay,...,a,} un graphe. On note I'* 'ensemble des chemins qu’on peut parcourir
dans I', qui s’identifie avec I’ensemble des mots formés avec les arétes et leurs inverses. La
restriction de P au support de I est triviale et on I'identifie & Supp(T') x G. Une version discréte
de I’holonomie consiste a attribuer un élément de G & chaque chemin de I'*. Comme I’holonomie
le long du composé de deux chemins est le produit, dans I’ordre inverse, des holonomies le long
de chaque chemin, il suffit d’attribuer un élément de G' & chaque aréte de I'. Ainsi, ’espace

des connexions discrétes est GI'. A tout chemin ¢ de PM est donc associée une holonomie
ke :GF — G.
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On consideére ensuite les transformations de jauge discrétes, celles qui n’agissent que sur les
sommets de I'. Si V(T') désigne I’ensemble des sommets de T, le groupe de jauge discret est GV(T)
et il agit sur GT de la fagon suivante: si g est une connexion discréte et j une transformation de
jauge,

9= ((a1(1) 915 (a1(0)), - - -, 5 (ar(1)) "gri(ar(0)))-

Nous allons construire la mesure de Yang-Mills discréte sur GT, invariante par I'action de GV(D),
Nous partons de la mesure la plus naturelle sur GT, le produit des mesures de Haar, qui est
noté dg. La mesure de Yang-Mills va étre définie par sa densité par rapport a dg. Cette densité
est un produit de fonctions centrales de I’holonomie discrete le long de lacets, ce qui en assure
I’invariance sous I’action de GY(D). Pour toute face F de T, le bord JF est défini aux choix prés
d’une orientation et d’une origine. La fonction hsr est donc définie & conjugaison et inversion
pres. Soit (p¢):>o la solution fondamentale de ’équation de la chaleur sur G munie de sa métrique
biinvariante normalisée afin que son volume total soit égal & 1. La fonction p,(z)(haF) est alors
bien définie car p; est précisément invariant par conjugaison et inversion. Nous définissons la
densité D : GT — Ry et le nombre Z par :

D= ][ porlher):G" — R,
FeF(D)

Z = D dg.
Gr

On définit alors la mesure P sur (G', Bor(GT)) par

dP = % D dg.

La loi d’un n-uplet de variables (hc,,...,h.,) sous P est par définition la loi de ’holonomie
discréte le long de ¢y, ...,c,. Cette holonomie satisfait la méme propriété de multiplicativité
que I’holonomie déterministe.

Etant donné des lacets simples disjoints Ly, ..., L, de I'*, dont I'image est soit intérieure &
M, soit égale & une composante de son bord, on construit une désintégration de P par rapport
a la variable (hz,,...,hr,) (cf. section 1.5). On la note (zi,...,2,) = P(z1,...,2,). Tout
comme P, elle a une masse naturelle qui n’est pas 1 et qu’on note Z(zy,...,,).

Définition 0.3 Etant donné deuz graphes I'y et I'y, on dit que I'y est plus fin que I'y et on note
Iy < Ty si toute aréte de I'y est un chemin de I';.

Considérons deux graphes I'; et I';. Supposons que I'; soit plus fin que I'y et posons I'; =
{ay....,a,}. Par définition, chaque aréte a; de I'; est un chemin de I'; et permet a ce titre
de définir une fonction h,, : GI'? — G. Le r-uplet formé par ces fonctions en constitue une
nouvelle, (hg,,...,Rq,) : GF2 — G" = GT que nous notons fr,r,. L’invariance par subdivision
peut alors étre exprimée de la fagon suivante:

Théoréme 0.4 (1.6.1) 1. L’application fr,r, : G'> — G est surjective.
2. Elle vérifie de plus : (fr,r,), PT2(21,...,2,) = P (zy,...,2,).
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Ce résultat essentiel exprime que la loi de I’holonomie discréte le long d’une famille de chemins
reste inchangée si on remplace le graphe initial par un graphe plus fin. Il permet également de
montrer que les masses naturelles des mesures P et P(zy,...,2Z,), c’est-a-dire les fonctions de
partitions, sont invariantes par raffinement du graphe (cf. 1.6.5).

On peut également utiliser I'invariance par subdivision pour établir sans calcul que la loi
de 'holonomie discréte le long d’un chemin ouvert est uniforme sur G. (cf. paragraphe 1.8.1).
D’une fagon générale, elle est essentielle dans tous les calculs explicites car elle permet, dans une
certaine mesure, de choisir le graphe dans lequel on se place. Ainsi, dans le paragraphe 1.8.2,
on estime la loi de ’holonomie le long du bord d’un petit disque. Notons, pour tout élément z
de G, p(z) la distance d(1, z).

Lemme 0.5 (1.8.3) /Gp(g)“pt(g) dg = O(t?).

En utilisant cette propriété de régularité du semi-groupe (p:)t>0, on prouve l’estimation
fondamentale suivante:

Proposition 0.6 (1.8.5) Soit 'un graphe sur M. Soient Ly, ..., L, des lacets simples disjoints
deI™ et zq,...,2, des éléments de G. Soit | le bord d’un disque D dont l’adhérence ne contient
complétement aucun L;. Il existe deux constantes positives s et C qui dépendent des L; mais
pas des z; telles que si o(D) < s, alors

/Gr p(h) dP(a1, ..., 2,) < C/o (D).

Cette estimation sera une des clés du passage a la limite continue. La mesure vérifie une autre
propriété d’invariance, qui est 'invariance par les difféomorphismes qui préservent la surface.

Proposition 0.7 (1.7.1) Soient (M,,0,) et (Mz,03) deux surfaces et ¢ : My — My un dif-
féomorphisme tel que ¢.oy = 0. Soit 'y un graphe sur M; et Ty = ¢(T'1) le graphe correpondant
sur M. En notant encore ¢ : G'' —» GT2 la bijection induite, on a:

¢*Prl(x11---7l’q) =PF2($1,...,.’EQ).

L’importance de cette propriété vient du fait que le groupe des difféomorphismes qui préservent
la surface est trés gros: la théorie ne dépend de M que par ses invariants sous l’action de ce
groupe, qui sont son genre, le nombre de composantes de son bord et sa surface totale. Ceci
jouera un role notable dans I’étude des fonctions de partition conditionnelles.

Etude de I’holonomie discréte lorsque G = U(1). Dans ce cas, la fonction A associée
a un chemin ¢ € I'* ne dépend que du nombre de fois ol ¢ parcourt chaque aréte de I'. Plus
formellement, elle ne dépend que de I'image de ¢ par le morphisme de monoides I'* — ZT qui
envoie ’aréte a; sur (0,...,1,...,0), avec un 1 en i-iéme place. Réciproquement, tout élément
de ZT' permet de définir sans ambiguité une fonction de U(1)F dans U(1). C’est pourquoi nous
nous intéressons 3 I’holonomie aléatoire le long d’éléments de Z', plus précisément le long des
cycles, qui sont les combinaisons linéaires de lacets. On note CT I’ensemble de ces cycles et CoI’
’ensemble des cycles homologues a zéro.
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Notons g le genre de M. Si le bord de M s’écrit M = Ny U...U Np, il existe 2g lacets
£1,...,494 sur M tels que y,...,€24, Nq,..., Np_1 forment un systéme de représentants d’une
base de H;(M;Z) (cf. 1.9.1). Un cycle ¢ € CT s’écrit alors de fagon unique

c= )\1[1+...+/\29£29+I/1N1+...+I/p_.1N_1+C'L, (4)
avec ¢t € Cyr.

Proposition 0.8 (1.9.2) Si M n’a pas de bord (resp. a un bord), les bords de toutes les faces
de I' sauf une quelconque (resp. de toutes les faces de ') forment une base du sous-module CoI'
de CT.

Notons Fy, ..., F, les faces de I". Nous pouvons, d’aprés ce résultat, encore décomposer c:
c= )\1£1 + ...+ )\29£2g + V1N1 + ...+ Vp_]_N -1+ ulaFl +.. .+un8Fn,

d’une fagon qui n’est pas unique si M est fermée. Quoi qu’il en soit, la multiplicativité de
I’holonomie montre que la loi de la famille (h.)cecr est déterminée par celle de la famille finie
suivante, qu’on appellera systeme fondamental:

(hgl,...,hgzg,th,...,th_l,haFI,...,hapn).

Proposition 0.9 (1.9.4) Posons ¢ = z1...2, si M a un bord et ¢ = 1 sinon. Pour toute
fonction f continue sur G*9t™*P on q

/GP f(hel,...,hgzg,th,...,hNP_l,hapl,.‘.,haFn) dP(z1,...,%p) =

/G2 . fut, .o 2, 8150 ey Tpa1, V1, + o3 Un)Po() (V1) - - - Po(Fn) (Un) dUa - . . dugg duz (vs, . . ., vn),
g+n

ot dv? est le produit des mesures de Haar sur U(1)™ conditionné a ce que le produit des facteurs
vaille z.

Ce résultat montre en particulier que I’holonomie le long de cycles homologiquement non
nuls est indépendante de celle le long de cycles homologiquement nuls. Il montre également que
la partie la plus intéressante de la loi est celle qui concerne ’holonomie le long du bord des faces
de I'. Une étude plus détaillée de cette holonomie va mettre en évidence le caractére gaussien
de la mesure de Yang-Mills dans ce cadre commutatif.

Proposition 0.10 (1.9.5) Soient Yi,...,Y, des variables gaussiennes réelles indépendantes
telles que Y; ~ N (0,0(F;)). Soit S=Y; +...+Y, leur somme. Pour tout i =1,...,n, posons
o (F3)
=Y — .

Soit T une v.a. réelle indépendante des Y;, dont la loi, discréte, est la suivante:
-1
— 32 — t2 .
P(T — t) — Z e 20(M) e 2o(M) g e =2

s,ets=x
0 sinon,
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ol, comme précédemment, * = T1...T, st M a un bord et ¢ = 1 sinon. Alors, pour toute
fonction f continue sur G™ on a,

i o(Fy) i n a(Fn
/ f(hor,, - ., hor,) dP(zl,...,a:p)zEf(e (+5GHT) | (Xt SR T)).
Gr

Notons que la loi de T est celle d’une variable (0,0 (M)) conditionnée a prendre ses valeurs
dans exp~!(z). Ce résultat montre une réalisation possible de la loi de I’holonomie le long des
bords des faces de I & partir de variables gaussiennes réelles. Il est cependant possible d’aller
plus loin en montrant comment ces variables gaussiennes sont naturellement associées aux faces
de I'. Pour cela, nous remarquons que les fonctions

o(F)
=1 —
WE SR T S0
définies pour ¢ = 1, ..., n forment un n-uplet (uy,...,u,) isométrique a (Xi, ..., X,). Soit alors

W un bruit blanc sur M in dépendant de T, c’est-a-dire une isométrie

W:I}M,0) — G
v — W(u)

a valeurs dans un espace vectoriel G de variables aléatoires gaussiennes indépendantes de T'.
Nous pouvons traduire la proposition 0.10 comme suit:

Proposition 0.11 (1.9.9) On a l’égalité en loi suivante:
(horyy .- har,) = ( (W(uapl)+"7(517T) -(W(uaFn)+:(Fn T)) .

Nous allons généraliser ce résultat a tous les cycles de CoI'. Pour cela, il faut étendre la définition
de la fonction u; a tous les cycles. Ceci nécessite le choix sur M d’une métrique riemannienne
dont le volume coincide avec la mesure o. II-en existe, car o est équivalente a la mesure de
Lebesgue avec une densité lisse dans chaque carte. Une telle métrique permet de définir sur M
un opérateur de Hodge * sur les 1-formes différentielles et un laplacien A. Ce laplacien posséde
une fonction de Green, c’est-a-dire qu’il existe une fonction lisse G : M X M — R définie et
lisse hors de la diagonale, symétrique, qui vérifie les propriétés suivantes:

fM z,y) do( )—0 Vz € M lorsque OM =0
*dGy =0 sur M Vz € M lorsque OM # 0,

oll G désigne la fonction y — G(z,y).

Définition 0.12 (1.9.6) Soit ¢ un chemin sur M. On appelle potentiel de double couche de ¢
la fonction u. définie sur M hors de l’image de c par :

uc(z) = l*de.

Lemme 0.13 (1.9.8) Le vecteur (uy,...,u,) est égal a (usF,, ..., UsF,)-
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Le potentiel de double couche est la généralisation la plus naturelle au cas d’une surface
de la notion classique d’indice d’un lacet autour d’un point dans le plan. Pour généraliser la
proposition 0.11 & tous les cycles de Col', il faut encore généraliser le terme o(F;)/o(M). On
définit ainsi ojne(c) pour tout ¢ € Col' par oip(c) = o(a)/o(M), ol a est une 2-chaine bordée
par ¢. On a alors le résultat suivant:

Proposition 0.14 (1.9.10) Soient (cy,...,ck) des cycles de CoI'. On a I’égalité en loi suivante:

(hc“ e th) £ (ei(W(ucl }4+Cint (CI)T)’ . e’i(W(uck)+0int(Ck)T)) _

Théorie continue abélienne. La notion de potentiel de double couche permet en fait de
définir une holonomie aléatoire le long de tous les cycles sur M, c’est-a-dire le long des com-
binaisons linéaires de lacets de PM. Soit ¢ un tel cycle. Nous avons déja noté qu’il lui était
associé un cycle homologue & zéro ct, par:

ct=c- (/\1@1 +...+ Azgfzg +viN1+...+ Vp_le_l).

Soient Uy, ..., Uy des variables aléatoires uniformes sur U(1), indépendantes de T et de W. On
pose alors

0. =U".. .Ué\;ga:’l’l sz
Soit (€2, P) un espace de probabilités qui supporte T', W et les U;.

Définition 0.15 (3.1.1) Pour tout cycle c € CM, on définit la variable aléatoire suivante sur
(@, P):
WH, = exp i(Wo(u,r) + Oins(cH)T) O..

Cette famille de variables aléatoires a; sur toute famille de cycles qui peut s’inscrire dans un
graphe, la loi de ’holonomie aléatoire sous la mesure de Yang-Mills. Un résultat d’unicité que
nous énoncerons plus tard montre qu’il suffit de prouver une propriété de régularité de cette
famille pour montrer que sa loi compléte est celle de I’holonomie aléatoire de Yang-Mills.

Pour parler de régularité, il faut munir I’espace des chemins d’une topologie. La premiére qui
vienne & I’esprit est la topologie induite par la distance uniforme pour une métrique riemannienne
sur M, mais il s’avére qu’elle n’est pas assez fine. Une métrique étant fixée, on note £(c) la
longueur d’un chemin ¢. On pose alors

di(c,c) = dw(c, &) + |€(c) = £(c))-

La topologie que cette distance induit sur PM ne dépend pas de la métrique et c’est elle que
nous adopterons systématiquement. Cette distance s’étend a ’espace C'M des cycles sur M et
on a le résultat de régularité suivant:

Proposition 0.16 (3.1.9) L’application c — WH, est continue de (CM,d;) dans l’espace des
variables aléatoires de carré intégrable sur (Q2, P).
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Passage & la limite continue. Reprenons I’étude du cas général 1a olt nous I’avions laissée.
La premiére étape vers la limite continue consiste & considérer une famille de graphes de plus en
plus fins et & prendre la limite projective des espaces de probabilités qui leurs sont associés. En
fait, nous utilisons la famille des graphes dont les arétes sont géodésiques par morceaux pour
une certaine métrique sur M. Nous disposons alors d’une holonomie aléatoire le long de tous
les chemins géodésiques par morceaux. La deuxiéme étape consiste & montrer qu’un procédé
d’approximation naturel de chemins quelconques par des chemins géodésiques par morceaux
permet de définir I’holonomie aléatoire le long de tous les chemins de PM, de facon indépen-
dante de tous les choix effectués. Notons que les surfaces a bord requierent, pour des raisons
techniques, un traitement particulier mais qu’on obtient un résultat final identique pour des
surfaces & bords et des surfaces fermées. La loi de la famille de variables aléatoires qui est
alors construite est une mesure sur l’espace F(PM,G). On la transforme en une mesure sur le
quotient F(LM,G)/F(M,G) et c’est cette mesure que nous appelons mesure de Yang-Mills.

Nous nous restreignons pour l'instant au cas ot M n’a pas de bord. Nous fixons ¢ lacets
simples disjoints Ly, ..., Ly sur M. Pour choisir une métrique sur M, nous utilisons le résultat
suivant:

Proposition 0.17 (2.2.1) Il existe une métrique riemannienne sur M dont le volume rieman-
nien est égal a o et telle que les L; soient géodésiques.

On définit alors I’ensemble G des graphes I' dont les arétes sont géodésiques par morceaux
et qui sont tels que Ly,...,L, € I'*. Cet ensemble est ordonné par la relation de plus grande
finesse et satisfait la propriété suivante: :

Proposition 0.18 (2.2.5) Etant donné I'y,T';y dans G, il existe I's dans G tel que I'y < '3 et
Iy <T3.

Cette propriété découle des propriétés locales des géodésiques, qui ne peuvent se couper plusieurs
fois sans étre confondues. Elle peut sembler anodine mais c’est parce que I’ensemble de tous les
graphes sur M ne la vérifie pas qu’il est si compliqué de passer a la limite continue. En effet,
deux chemins, méme trés réguliers, peuvent découper une infinité de composantes connexes dans
M, auquel cas il n’existe aucun graphe qui les contienne tous les deux.

Cette propriété était le dernier maillon manquant pour pouvoir affirmer que la famille des
espaces de probabilités (GT, Pl (zy, ..., z,)), I € G constitue, avec les fonctions fr,r,, un systeme
projectif. Le fait que tous ces espaces de probabilités soient boréliens compacts permet alors
d’affirmer qu’ils possédent une limite projective, qui est un espace (R, P(zy,...,%,)) sur lequel
sont simultanément définies toutes les variables définies sur les GI'. Autrement dit, pour tout
chemin géodésique par morceaux (, il existe une variable H, définie sur  qui est I’holonomie
aléatoire le long de (.

Il faut maintenant prouver un résultat d’approximation. Pour deux variables aléatoires X
et Y définies sur le méme espace et & valeurs dans G, nous notons dp(X,Y) = Ed(X,Y). La
notion de convergence que nous utiliserons pour les variables aléatoires est celle induite par cette
distance. Le résultat fondamental est le suivant.

Proposition 0.19 (2.6.6) Soit ¢ un chemin de PM. Pour toute suite (0n)n>0 de chemins
géodésiques par morceauz qui converge d extrémités fizées vers c, la suite (Hy,)n>0 converge
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vers une variable aléatoire qui ne dépend que de c et que nous noterons H.. De plus, pour tout
€ >0, il existe § > 0 tel que si ¢’ est un autre chemin de PM de mémes exirémités que c et si
di(¢e, ) < 6, alors dp(H.,Hy) < €.

Pour prouver ce résultat, on commence par s’intéresser aux chemins dont ’image est une
sous-variété de M. Ces chemins ont I’avantage de posséder un voisinage tubulaire qu’on peut
paramétrer en utilisant des coordonnées de Fermi. Ces coordonnées permettent un contréle com-
mode de ’approximation par des chemins géodésiques par morceaux. Pour estimer la distance
entre les variables aléatoires, on utilise un résultat de combinatoire des chemins qui permet de
décomposer n’importe quel chemin raisonnable en un produit de chemins élémentaires appelés
lassos (voir figure 2.1). L’estimation fondamentale présentée dans le cadre de la théorie discréte
(proposition 0.6) permet de contréler ’holonomie le long de lassos dont la boucle n’est pas trop
grosse. Une fois le résultat acquis pour les sous-variétés, on I’étend aisément aux chemins de
PM qui en sont des concaténations.

A ce stade, on a certes construit une holonomie aléatoire, mais il faut vérifier qu’elle ne
dépend pas, au moins en loi, du choix de la métrique riemannienne qui a servi au passage a
la limite. Dans ce but, on montre qu’on peut approcher un graphe quelconque sur M par
des graphes géodésiques par morceaux en préservant la structure de ce graphe (cf. 2.7.3).
On en déduit "indépendance souhaitée et on montre au passage que la fonction de partition
conditionnelle ne dépend pas du graphe dans lequel on la calcule.

Il est alors temps de s’occuper des surfaces & bord. Si M en est une, on la plonge dans
une surface M; obtenue en bouchant les trous de M avec des disques. L’idée est de définir
’holonomie aléatoire sur M comme la restriction aux chemins de M de celle qu’on sait déja
construire sur- M;. Cependant, et cette remarque anticipe les propriétés markoviennes de la
mesure de Yang-Mills, si nous voulons que ce procédé donne un résultat qui ne dépende que de
M et pas de la fagon dont on ’a fermée, il faut conditionner I’holonomie sur M; par rapport a
sa valeur le long de chaque composante du bord de M. Le probleme est qu’on ne souhaite pas
forcément conditionner la mesure sur M. On commence donc par montrer qu’il existe une loi
naturelle de I’holonomie le long du bord d’une surface, lorsqu’on ne la conditionne pas ou pas
complétement: dans le résultat qui suit, on n’impose la valeur de I’holonomie que le long de &
composantes de @M parmi p. '

Proposition 0.20 (2.8.1) Soit T un graphe sur M tel que Ly, ...,Lq € T'*. La loi de la variable
aléatoire (hn,, ..., hn,, hr,,- - ., hL,) définie sur l’espace de probabilités (GT, P(z1,- -, Tk Y1y - - - Yg))
ne dépend pas de T'.

On construit ensuite I’holonomie sur M conditionnellement 3 sa valeur sur toutes les com-
posantes de M et on intégre les mesures obtenues pour restituer a ’holonomie le long du bord
sa loi naturelle.

On aboutit au théoréme central de la construction. Notons qu’il ne définit pas encore la
mesure de Yang-Mills.

Théoréme 0.21 (2.9.1) Soit (M, o) une surface avec ou sans bord munie d’une mesure de
surface. Soient Ly,..., L, des lacets simples disjoints de PM, dont l’image est soit intérieure
da M, soit égale a une des composantes de son bord. Etant donné des éléments zi,...,T, de
G, il existe un espace de probabilités (R, A, P(zy,...,%,)) et une famille de variables aléatoires
(H)cepm 6 valeurs dans G définies sur cet espace, telle que: '
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1. Pour tout graphe T' = {ay,...,a,} sur M tel que Ly,...,Ly € T*, la loi de (H,,,...,H,,)
est la mesure de Yang-Mills discréte P¥(zy,...,z,) sur GT.

2. Pour tout chemin ¢ de PM et toute suite (cn)n>0 de chemins de PM tels que cp —d—l) ca

eztrémités fixées, on a H,, if—) H..

La loi de cette famille de variables aléatoires est complétement déterminée par ces deuzx pro-
priétés. De plus, elle a les propriétés supplémentaires suivantes:

3. Sici et cy sont deur chemins qu’on peut concaténer pour former cicz, alors on a presque
sirement l’égalité H. ., = H,H,,.

4. St : M — M est un difféomorphisme tel que .0 = o, alors ¢ induit une permutation de
Uensemble PM et les familles (H;)cepm €t (H<p(c))c€pM ont la méme loi.

L’unicité établie par ce théoréme assure que la famille de variables qu’on a construite en
utilisant un bruit blanc dans le cas ou G = U(1) a bien la méme loi que celle qu’on obtient par
la méthode générale.

La loi dont ce théoréme établit I’existence et l'unicité est une mesure po(zi,...,z,) sur
l’espace F(PM,G) muni de la tribu engendrée par les cylindres. Cependant, cette mesure ne
mérite pas encore le nom de mesure de Yang-Mills. Comme nous I’avons expliqué au début de
cette introduction, la donnée d’une classe de connexions modulo transformations de jauge permet
de déterminer une classe du quotient F(LM,G)/F(M,G), mais pas mieux. Nous allons donc
prendre successivement 'image de po(z1, ..., 2,) par I’application de restriction 7(PM,G) —
F(LM,QG) puis par la projection canonique F(LM,G) — F(LM,G)/F(M,G).

Pour définir une tribu sur F(LM,G)/F(M,G), on commence par y définir une famille de
fonctions. Notons G™/ Ad le quotient de G™ par I’action diagonale de G définie par g.(g1,...,9,) =
(Ad(g)g1,--.,Ad(g)gn). Nous désignerons par [g1,...,gn] la classe d’un élément (g1,...,gn).
Notons H;,l € LM le processus canonique sur F(LM,G), qui est muni de la tribu engendrée
par les cylindres C. Etant donné n lacets [y,...,[/, basés au méme point, la classe de conjugai-
son conjointe [H,, ..., H;, ] est une fonction invariante par P’action de F(M, G) et nous notons
1,1, la fonction qu’elle induit sur le quotient. La tribu A que nous considérons est la tribu
engendrée par ces variables aléatoires. Un autre choix naturel aurait été celui de la tribu des
éléments invariants de C. Un argument utilisant le théoreme de Blackwell permet au moins
de montrer que ces deux tribus concurrentes ont la méme complétion par rapport a la mesure
po(®1,...,z4). Nous pouvons maintenant définir la mesure de Yang-Mills:

Définition 0.22 (2.10.4) On appelle mesure de Yang-Mills sur M et on note pups la projection
sur espace (F(LM,G)/F(M,G),A) de la mesure pg. De méme, étant donné des éléments
t1,...,ty de G/ Ad, on appelle mesure de Yang-Mills conditionnelle par rapport @ L,,...,L, et
on note pp(ty,...,ty) la projection sur (F(LM,G)/F(M,G),A) de la mesure po(z1,...,2,),
ot les z; sont des représentants des t;.

Il est implicite dans cette définition que la projection sur A de po(z1,...,2,) ne dépend que
de la classe de conjugaison des z; (cf. 2.10.3). Il est par ailleurs également possible de voir A
comme une tribu sur F (LM, G) et de considérer la mesure de Yang-Mills comme une mesure sur
F(LM,G) invariante par ’action de F(M,G). Aprés avoir étendu de fagon naturelle la distance
dp aux variables a valeurs dans G/ Ad, on montre la propriété de régularité suivante, qui est
une conséquence de la régularité de la famille (H;)iernm.
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Proposition 0.23 (2.10.7) Soit ((I1,.-.,Ink))k>0 une suite de n-uplets de lacets telle que

1. pour tout k > 0, les lacets I i, ..., 1, x sont basés au méme point,
2. pour tout i =1,...,n, i existe un lacet I; tel que I; ; A l;.
Alors

dp
Hll,k 1-~~sln,k — 7-Lll y"-yl‘n *

On remarque enfin que si ’on fixe un point m dans M et que I’on ne considére que les lacets
basés en m, on a encore acces a toute I’information disponible dans la tribu .A. Ce résultat sera
mis a profit pour ’étude du découpage et du recollement des surfaces.

Structure a petite échelle de la mesure de Yang-Mills: le cas abélien. La construction
. étant maintenant terminée, il est possible d’examiner plus en détail les liens entre les deux
constructions dont nous disposons dans le cas ot G = U(1). Nous avons montré que la mesure
de Yang-Mills pouvait étre construite a partir d’un bruit blanc, nous allons montrer qu’on
peu reconstruire un bruit blanc & partir de la mesure de Yang-Mills. Ceci revient a calculer la
courbure de la connexion aléatoire sous-jacente a I’holonomie aléatoire, pour autant qu’on puisse
parler de connexion aléatoire. En effet, comme toujours lorsqu’on prétend construire une mesure
sur un espace de fonctions lisses, on la construit en fait sur un espace de fonctions beaucoup
moins réguliéres, voire de distributions. Ainsi, la probabilité pour que ’holonomie aléatoire que
nous avons construite soit celle d’une vraie connexion lisse est nulle.

Nous considérons sur M une suite de graphes (I'z)n>0 telle que pour tout n, T, ait exactement

n faces Fj,, j = 1,...,n. On suppose également que o(F},) = dnﬂl et que le diamétre de ces
faces tend uniformément vers 0, c’est-a-dire que sup; diam(Fj ) — 0, une métrique quelconque
étant choisie sur M. Nous choisissons une orientation de M et orientons les bords des faces selon
la convention usuelle. Pour tout couple (j,n), n > 0, 1 < j < n, on abrége par H; la variable
HaF,,, définie sur (R, pp(21, - - -, zp)) et on identifie cette variable avec une variable & valeurs
dans C en identifiant U(1) avec {z € C, |z| = 1}.

Nous imitons alors la construction d’une intégrale de Wiener classique. Pour tout » > 0,
soit F, ’espace des fonctions sur M constantes sur chaque face de I',,. La réunion des E, est
dense dans L?(M, ). On définit sur chaque E, une forme linéaire I,: si f, € E, et si fj, est

sa valeur sur Fj,, on pose

L(f) = 33 fin(Hin — D).
7=1

Théoréme 0.24 (3.2.1) Soit f une fonction de L*(M) et (fn)n>o une suite de fonctions
convergeant vers f dans L? et telle que f, € E,. Alors la suite (In(fa))n>0 converge dans
L(Qp, pm (21, - - -, Tp)) vers une variable aléatoire I(f) qui ne dépend que de f. On peut décrire
la loi de cette variable comme suit. Soit W}’ une v.a. gaussienne réelle centrée de variance

I f ”%%:” f- ET}\T)fM fdo ||2,. Soit T une variable N'(0,0(M)) conditionnée d prendre ses

valeurs dans exp~!(z), indépendante de W?. On a Uégalité en loi suivante:

I(f)éW?+(T+%)d—1M5A4fda.
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Ceci montre que I’application f — I(f) restreinte aux fonctions de moyenne nulle est un bruit
blanc. Ceci permet aussi d’interpréter la variable T comme la courbure totale de la connexion
aléatoire, qui ne dépend dans le cas déterministe que de la topologie de P.

Structure a petite échelle de la mesure de Yang-Mills: le cas semi-simple. Dans
le cas abélien, le fait qu’on puisse construire un bruit blanc a partir de ’holonomie le long de
petits lacets montre que la tribu asymptotique engendrée par ces petits lacets contient presque
toute 'information sur la mesure, plus précisément toute I’information qui concerne les lacets
homologues & zéro. Nous montrons que dans le cas ou G est semi-simple, par exemple lorsque
G = SU(2), la situation est radicalement différente.

Soit L un lacet simple sur M qui est le bord d’un ouvert D difféomorphe a un disque. Pour
chaque n > 0, considérons un graphe sur D qui a exactement n faces Fj,,..., F, , telles que
o(Fipn) = ﬂnﬂl pouri=1...n.

Si G était abélien, on aurait 1’égalité entre cycles L = 8F1, + ...+ (?Fn,n, pourvu que les
orientations soient les bonnes. Ceci entrainerait Hr = Hsr, , - --HsF, , et pour toute fonction
f continue sur G/ Ad = G, on aurait :

E[f(HL)|HoF, ps---> HoF, ] = f(HL).

Lorsque G est semi-simple, la comportement de la mesure est diamétralement opposé.

Théoréme 0.25 (4.1.1) Pour toute fonction f continue sur G/ Ad, on a la convergence suiv-
ante:

2
E[f(Ho)[Horyp, - - HoFnn) 2 Ef(H1).

Ainsi, il ne reste aucune information lorsqu’on regarde la mesure a 1’échelle microscopique,
en tout cas lorsqu’on la regarde de cette fagon. Ceci indique que partir d’un bruit blanc sur M
pour construire la mesure dans ce cas risque fort de mener a une impasse.

La preuve de ce théoréme repose principalement sur deux points techniques, qui sont l’utilisation
de la théorie des caractéres sur G et 1’étude du processus x,(Bi) lorsque (B;):>0 est un mouve-
ment brownien sur G et a une représentation irréductible de G.

Découpage et recollement de surfaces. Nous consacrons enfin un chapitre a ’étude de la
chirurgie des surfaces du point de vue de la mesure de Yang-Mills. Deux idées principales s’en
dégagent. La premiére concerne le caractére markovien de la mesure de Yang-Mills. En termes
informels, il s’agit du fait que si Pon sépare une surface en deux morceaux en tracant un ou
plusieurs lacets simples dessus, les holonomies aléatoires le long de lacets qui restent de part et
~d’autre de la frontiére sont indépendantes conditionnellement & la valeur de ’holonomie le long
de la frontiere. Donnons un énoncé précis.

Soient M; et M, deux surfaces orientées dont les bords s’écrivent respectivement dM; =
NiU...UNp, UBiU...UB, et IM; = N{U...UN;2UB{ U...U B,. On suppose p > 0.
Soit M la surface obtenue en identifiant chaque B; avec B; par un difféomorphisme qui renverse
lorientation. Notons Ly, ..., L, des lacets de M don’; les images sont B; = —Bj,...,B, = —B;,.
Considérons la mesure de Yang-Mills sur M comme une mesure sur (F(LM,G), A). Il y a deux
sous-tribus naturelles de .4 dans ce contexte, qui sont les A; = o(H,,,..1,, Ik € LM;), i = 1,2.

De plus, toute fonction f; sur F(LM;, G) permet de définir une fonction f; sur F(LM,G) et il
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est équivalent de dire que f; est .A;-mesurable ou de dire que ﬁ est A;-mesurable. De ce fait,
nous identifions A; et A;, ainsi que f; que f;.

Théoréme 0.26 (5.1.1) Les tribus A, et Az sont indépendantes sur (F(LM,G), A, pn) condi-
tionnellement a la variable aléatoire (Hr,,...,Hr,). Soient f, et fo deuz fonctions mesurables
sur (F(LM,,G), A;) et (F(LM;,G), A;) respectivement. Alors le produit f)f; peut étre vu
comme une fonction A-mesurable sur F(LM,G) et pour tous ty,...,t, € G/ Ad, on a l’égalité
suivante:

E#M[flelHLx =t, "’77{[4;: = tP] = :u'M(tlv "°7tp)(flf2) = »u'M1(t1v' . -vtp)(fl):uMz(tl’°"7tp)(f2)'

Enfin, le théoréme reste vrai si on remplace les mesures pn, pm, , LM, par leurs versions condi-
tionnelles par rapport & des variables choisies parmi Hy,, ..., Hn, , 'HN{, .. "HN}IQ.

En appliquant ce théoreme a la situation la plus simple ou une surface fermée M est obtenue
en recollant deux surfaces M; et M; dont le bord a une seule composante, on obtient la relation

Zaruna (f) = /G 1 D OB OR) Zot (¢ e (471 52

qui prouve que les objets qui se recollent le plus naturellement ne sont pas les mesures de
probabilités mais les mesures munies de leurs masses naturelles.

L’examen de la situation ou I’on coupe une anse d’une surface le long d’un cercle conduit a
un théoreme de découpage semblable au précédent (5.1.3).

La deuxiéme idée importante de ce chapitre est celle qui guide les deux théorémes de rec-
ollement. Il ne semble pas qu’elle soit déja apparue dans la littérature, aussi allons-nous la
développer un peu. Le probléme consiste & déterminer s’il est possible de reconstituer la mesure
de Yang-Mills sur une surface M obtenue par recollement de deux surfaces M; et M; le long d’un
cercle & partir des mesures de Yang-Mills sur M; et M,. Choisissons un point sur ce cercle. Il est
commode de voir les mesures de Yang-Mills sur M;, M; et M comme des mesures sur les espaces
de fonctions de lacets basés en m. La connaissance des mesures sur M; et M, nous donne accés
3 la classe de conjugaison conjointe des holonomies le long de tous les lacets de L, M; d’une
part et le long de tous les lacets de L, M, d’autre part. La probléme consiste a recoller ces deux
classes conjointes. Prenons ’exemple du groupe SO(3). La classe de conjugaison conjointe de
plusieurs rotations est la donnée non seulement de leurs angles mais également des positions rel-
atives de leurs axes dans R3. Ainsi, dans la situation décrite par la figure 5.2, nous connaissons
les angles des trois rotations Hr, H,, H,, nous connaissons également d’une part la position
relative des axes de Hy, et Hj, et d’autre part celle des axes de Hy et Hj,. Ce n’est pas suffisant
pour retrouver la classe jointe du triplet Hy, H;,, Hy,: il manque une information qui est une
rotation autour de I’axe de Hp, c’est-a-dire une conjugaison par un élément du centralisateur de
Hp,. Ceci montre qu’il est nécessaire d’ajouter quelque chose aux mesures de Yang-Mills sur M;
et M, pour pouvoir les recoller, en I’occurence une mesure sur le centralisateur de I’holonomie
le long du bord qu’on recolle. Nous obtenons finalement le théoréme suivant. On note C'(z) le
centralisateur d’un élément z et dz la mesure de Haar sur C(z) qui est un sous-groupe de G.

Théoréme 0.27 (5.2.6) Soient Q; et Q; les espaces sur lesquels sont définies les mesures de
Yang-Mills sur M, et M,. Soit t un élément de G/ Ad et = un représentant de t. Soit Qg
Uespace Q1 x C(z) x Q muni de la mesure ppy, (1) @ dzQ up, (t71). 1l existe sur Qp une famille
de variables aléatoires dont la loi est la mesure de Yang-Mills pp(t) sur M.
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Nous examinons également le cas ou l’on ajoute une anse a une surface en recollant deux
composantes de son bord. Le probléme se pose dans les mémes termes et on montre un théoreme
tout a fait similaire (cf. 5.2.10).

Fonctions de partition conditionnelles. Au cours de la preuve des résultats de découpage,
il apparait que les fonctions de partition conditionnelles, qu’on a définies initialement comme les
masses naturelles des désintégrations de la mesure de Yang-Mills discréte, vérifient des propriétés
remarquables qui constituent un pendant algébrique a la combinatoire des surfaces. En se servant
de 'invariance de la mesure de Yang-Mills par les difféomorphismes qui préservent la surface, on
montre que la fonction de partition conditionnelle d’une surface M par rapport aux composantes
de OM ne dépend en fait de M que par son genre g, sa surface totale T et par le nombre p des
composantes de @M. On prouve alors un théoréme qui rassemble les propriétés principales de
ces fonctions. Notons que ce théoréme avait été déja essentiellement démontré par Witten [Wi].

Théoréme 0.28 (5.3.1) Pour tout (p,g,T) € N? x R%, la fonction Z,,1 est continue et
symétrique sur (G/ Ad)P. On peut en donner au moins deur expressions:

Zp,g,T(tl, ooy tn) = / po'(M) (y;1$1y1 .o ,yp'la:pyp[al, bl] e [ag, bg]) daldbl .o .dagdbgdyl .o .dyp,

G2g9+p

P
z: . aogg —2@ 7 TT Xa(ti)

Zpg1(t1y---stp) = A(dlma) 9o~ 2 I l d; ;’
a€G =1

cette derniére étant un développement en série de caractéres de représentations irréductibles de
G. De plus, pour tout (p',g',T') et tous t1,...,tp,13,...,t, € G/ Ad, on a les relations suiv-
antes:

L/ » Zpt1,6,T (b1 -1ty 8) Zpgy g (7 80,y ) dE = Zp gt gagr T (F1y ey By e e E),

/ Zp+2,g’T(t1, ey tp, t, t_l) dt = Zp,g+11T(t1, ceey tp).
G/ Ad

On a dit que les propriétés algébriques de ces fonctions correspondaient aux propriétés com-
binatoires de la chirurgie des surfaces, or toute surface peut étre obtenue a partir d’un petit
nombre de surfaces élémentaires par des opérations de recollement: il suffit par exemple de dis-
- poser de disques et de pantalons, c’est-a-dire de sphéres a trois trous. Comme on s’y attend, les
fonctions de partition vérifient une propriété correspondante.

Proposition 0.29 (5.3.2) La famille de fonctions Z, , T est complétement déterminée par les
fonctions Zy o et ZzoT, T > 0.

Reste & identifier ces fonctions élémentaires.

Proposition 0.30 (5.3.3) La fonction Z, o1 est la projection sur G/ Ad de la solution fonda-
mentale de ’équation de la chaleur pr sur G.
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La fonction Z3o T est d’interprétation moins immédiate. Tout d’abord, remarquons que toutes
les fonctions Z, 4 7, vues comme des fonctions centrales sur GP, sont des solutions de I’équation
de la chaleur par rapport a chacune de leurs variables (cf. 5.3.4). Ceci explicite la dépendance
en T de ces fonctions. Pour comprendre la nature de Z3 o T, on utilise le produit de convolution
des fonctions centrales sur G. On démontre:

Proposition 0.31 (5.3.5) Soient f et g deuz fonctions centrales de L*(G). Alors on a I’égalité
suivante dans L2(G):

/G2 fi(z1) fa(z2) Z30,7(1, 22, T) dz1dT2 = [C_T%(fl * f2)] (z).

Autrement dit, a la limite lorsque T tend vers 0, Z3 ¢ T est le noyau distributionnel de I'opérateur
de convolution. '

" Enfin, on montre que les fonctions de partition conditionnelles peuvent étre vues comme les
fonctions de transition du champ aléatoire markovien que la mesure de Yang-Mills définit. Dans
cet ordre d’idées, nous montrons qu’une partie de la loi de ’holonomie aléatoire peut étre écrite
explicitement en ne se servant que de ces fonctions de partition.






Introduction

This thesis is devoted to the construction and to the study of the Yang-Mills measure in two
dimensions. The quadridimensional and pseudo-Riemannian equivalent of this measure is used
by physicists in gauge theories such as quantum electrodynamics and quantum chromodynamics,
in order to describe the fundamental interactions. It appears in path integrals, which are known
to be often ill defined. Physicists describe the Yang-Mills measure as a probability measure
on the space of connections modulo gauge transformations on a principal bundle with compact
structure group. We are interested in the case where the base space of this bundle is a compact
orientable surface. The informal expression of the measure is the following:

du(w) = 5 ¢35 Do, (1)

where S is the Yang-Mills action, that is, the L? norm of the curvature. The constant Z is a
normalization constant and the measure Dw should be a translation invariant measure on the
space of connections.

The construction of the measure in a discrete setting, where the base space of the fiber
bundle is replaced by a graph traced on a surface, is quite well understood thanks to the work
of Witten [Wi]. In contrast, the continuum limit of this construction, which should allow to put
a genuine manifold as base space, still remains problematic. Several works in this direction have
led to substantial progress but not yet to an entirely satisfactory solution.

This work presents a complete and unified approach of the discrete theory and of its contin-
uum limit. We give a geometrically consistent definition of the Yang-Mills measure, under the
form of a random holonomy along a wide, intrinsic and natural class of loops. This definition
allows us to study combinatorial properties of the measure, like its Markovian behaviour under
the surgery of surfaces, as well as properties specific to the continuous setting, for example,
some of its microscopic properties. In particular, we clarify the links between the Yang-Mills
measure and the white noise and show that there is a major difference between the Abelian and
semi-simple theories. We prove that it is possible to construct a white noise using the measure
as a starting point and vice versa in the Abelian case but we show a result of asymptotic inde-
pendence in the semi-simple case which suggests that it is impossible to extract a white noise
from the measure.

Statement of the problem. We are given a surface M, a Lie group G and a principal bundle
P over M. The surface M is a differentiable two-dimensional compact orientable manifold, with
or without boundary. It is endowed with a measure o which is equivalent to the Lebesgue
measure in any chart, with a positive smooth density. The group G is a compact connected
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Lie group. In most examples, it will be either Abelian or semi-simple. The fiber bundle P is a
principal fiber bundle over M with structure group G.

Recall that a connection on P is a G-invariant choice of a horizontal distribution in P and
that this choice can be represented by a g-valued 1-form w on P, where g is the Lie algebra of
G. The curvature of the connection w is the g-valued 2-form Q on P defined by

QX,Y) = do(X,Y) + [w(X),w(Y)]. (2)

The curvature can be considered an ad P-valued 2-form on M, where ad P is the fibre bundle
associated with P by the adjoint representation of G on g. If we choose an orientation on M, Q2
can be identified with a section of ad P. An ad-invariant scalar product on g allows to define a
metric on ad P and hence the norm || © || of the curvature. This norm does not depend on the

choice of the orientation of M and the Yang-Mills action is defined on the space A of connections
on P by

S: A — R+
W — S(w):/ Q| do.
M

Our aim is to give a sense to the informal expression (1). The first problem is of course that
there is no translation invariant measure on the infinite dimensional affine space .A. Another one
is the invariance of the action S under the action of a huge group, that of gauge transformations
of P. This group, denoted by J, is the group of diffeomorphisms of P over the identity of M
that commute with the action of G. It acts by pull-back on A and preserves S, since it acts
on the curvature by pointwise conjugation, which does not change the norm in ad P. Because
of this invariance, the constant Z should be proportional to the volume of 7, hence be infinite.
To avoid this problem, we try to construct the measure on the quotient space .A/J instead
of A. This means that we will be able to integrate only gauge-invariant functions against the
Yang-Mills measure, in agreement with the physical principle saying that observable quantities
must be gauge-invariant. On the other hand, this quotient space has a much more complicated
structure than an affine space. This is why one usually tries to avoid to work directly on it and
prefer to work on a function space, as we explain below. The work of D. Fine [Fil, Fi2] is an
exception from this point of view, since the author analyzes the geometrical structure of A4/J
in order to give sense to (1).

The Yang-Mills measure as random holonomy. A starting point may be to ask what
functions we want to be able to integrate against the Yang-Mills measure. Physicists’ answer
this question is that we must be able to integrate Wilson loops.

A connection w on P defines a parallel transport along regular paths on M. The parallel
transport along a given path ¢ : [0,1] — M is a G-equivariant diffecomorphism of the fiber
P,(0) into the fiber P), denoted by hol(w,c). If ¢ is a loop and if we fix a point p in the fiber
P,(0), this diffeomorphism can be represented by the element g of G such that hol(w, c)(p) = pg.
If we choose another point in Fg), we find another element of G conjugate to g. So, for any
representation p of G and any loop /, one defines the Wilson loop W; , by

Wi p(w) = tr p(hol(w, 1)).
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The functions that we want to integrate are central functions of the holonomy along loops.
We just noticed that the holonomy along a loop determines a conjugacy class in G. We must
also take into account the action of the gauge group, which conjugates by the same element of
G the holonomies along all loops based at the same point. Let LM denote the set of regular
paths on M and F(M,QG), F(LM,G) the sets of G-valued functions on M, LM. An element j
of the group F(M, G) acts on an element f of F(LM,G) by:

7-£(1) = 3 (10) 7 £ ()5 (1(0)).-

It is possible to define a map from .4/J into the quotient F(LM, G)/F(M,G), mapping a con-
nection to the class of the holonomy that it determines along the elements of LM. An argument
of Sengupta [Sel] proves that this map is injective. Thus, we change our point of view: we seek
now a measure on the space F(LM,G)/F(M,QG), viewing this space as a space of generalized
connections modulo gauge transformations. In fact, we shall construct a measure on F(LM, G)
and take the quotient of this measure by F (M, G). In other words, we really want to construct
a random holonomy instead of a random connection. This will be easier because we can use the
classical tools of probability to construct a measure on a function space.

At this point, it is necessary to characterize more precisely the Yang-Mills measure. Either
one tries to extract more information from the informal expression of the measure or one looks
for other description of this measure. The last option is the one that we choosed in this work,
using the combinatorial description given by Migdal and Witten. The first one is based on the
Gaussian character of the measure and was used by Driver and Sengupta [Drl, Sel, Se2].

Gaussian interpretation: curvature of the random connection. Assume that G is
abelian, for example G = U(1). The relation (2) between a connection and its curvature becomes
linear. A formal change of variables in (1) gives

au(®@) = e 49 Do, 3)
Since G is abelian, the fiber bundle ad(P) is trivial and may be identified with Mx g. We
recognize in (3) the expression of a Gaussian measure on the Hilbert space of square integrable
g-valued functions on M. This leads us to the main idea of the interpretation of (1): under the
Yang-Mills measure, the random curvature of a connection has a Gaussian distribution, it is a
g-valued white noise on M with intensity o.

This argument is of course specific to the abelian case, since in general, Q2 is a quadratic
function of w. Nevertheless, the fact that M is two-dimensional allows to overcome this problem:
it is always possible to get back to a situation similar to the abelian case by a gauge fixing
procedure. This requires a word of explanation.

If we choose a local trivialization of P on an open subset U C M, i.e. a local section
s : U — P of P, we can pull-back by s all objects living on P, in particular the connection
and curvature forms. One denotes usually A = s*w and F = s*Q. These forms on M satisfy
a structure equation F = dA + [A, A] identical to (2). Let j be an element of the gauge group
J. This element can act in two different ways in this situation, either by transforming the
section s into j o s or by transforming the forms w and Q into j*w and j*(2. These two ways are
indistinguishable from the base space, since (j o s)* = s*j*. So, we denote without ambiguity
§*j*w = (j o 8)*w by A.
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What is specific to the two-dimensional case is that given a connection, it is possible to
choose s in such a way that [A, A] = 0. Choose U small enough to admit local coordinates z, y.
Set m = (0, 0) in these coordinates and choose p in P,. Then define s along the y-axis by lifting
it horizontally, starting at p. Now, starting from each point (0,yo) in U, define s on the line
through (0, yo) parallel to the z-axis by lifting it horizontally, starting at s(0,yo). The section
s is smooth and horizontal along all lines parallel to the z-axis. Thus, A = s*w takes the form
A = Aydy and [A, A] = 0. When one looks at P through s, what one sees is similar to the
abelian case, up to the fact that the section through which the relation between connection and
curvature should be linear depends on the connection.

From the curvature to the holonomy. The next step is to define a random holonomy
using the random curvature. The method is based on deterministic links between holonomy and
curvature. Assume that G = U(1) and take R? as base space, although it is not a compact
surface. Given a connection w on the fiber bundle R? x G and a simple loop ! which bounds a
domain D, the Stokes formula gives

hol(w,l):exp_ifA:expi/ dA=expi/ F =expi(F,1p)re2.
i D D

This formulation is easily extended to the random case. Indeed, pick a white noise W on R?,
i.e. an isometry from L?(R?) into a vector space of Gaussian random variables. One can replace
F by W in the last expression and define a random holonomy along ! by

H; =expiW(1p).

The construction that we present in the abelian case in chapter 3 is an extension of this procedure
to surfaces whose topology is non trivial and where the interior of a loop is not well defined.

It is possible here to understand better the difficulties of Driver and Sengupta. They tried
to use this method in the case of a non-Abelian structure group. But in this case, the holonomy
is not exp f; A, but Pexp fl A, which is a compact notation for the solution of the differential

equation ) )
{m=Ammm
ho =1.

The Stokes formula does not work in this frame. In some sense, one has to choose in which order
one multiplies the small elements of G obtained by integrating F' over small squares inside D.
It is not surprising that Driver and Sengupta had to use the coordinate system that allows to
define a section through which [A4, A] = 0 in order to determine this order. The problem is that
the class of loops along which they are able to define the random holonomy depends strongly
~on this choice of coordinates.

It should be noted that B. Driver [Dr2] and L. Gross [Gr] introduced a new local object in
order to replace the white noise in this context and that this could lead to a way around the
problem.

Although we do not treat this point in our work, we cannot conlude this conclusion without
mentioning the semi-classical limit of the Yang-Mills measure. The remarkable fact is that, when
the total surface of M tends to 0, the measure concentrates on the set of flat connections over
M and tends to the volume measure associated with the natural symplectic structure on this

space. There are a lot of references on this subject which is closely related to the geometry of
some moduli spaces [Fo, BS, KS, Se3, Liu, AB].
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Combinatorial approach. Our starting point is the combinatorial approach initiated by
A.A. Migdal in 1975 [Mi] and improved by E.Witten in 1991 [Wi]. The idea is to replace the
base space of the fiber bundle by a graph on a surface. This leads to a finite dimensional
problem, where we define the random holonomy only along the paths of a graph. We also define
conditional versions of the random holonomy. These conditional versions will play a technical
role in the continuous construction on surfaces with boundary and lead also to the definition of
very important objects, the conditional partition functions. The main property of the discrete
theory is the invariance by subdivision. It explains that, up to some restrictions, the law of the
random holonomy is independent of the graph in which one works.

The next step towards the continuum limit is to take the projective limit of the discrete
measures associated with the graphs whose edges are piecewise geodesic for some Riemannian
metric on M. This allows us to define a random holonomy along all piecewise geodesic paths on
M. Then, we prove that this random holonomy can be extended by continuity to the set PM
of piecewise embedded paths on M, using a very natural approximation procedure. The law of
this new random holonomy is a measure on F(PM, G) which is proved to be independent of all
choices made during the construction. This measure is pushed forward on (LM, G)/F(M,G)
and then becomes what we call the Yang-Mills measure. This measure is characterized by its
consistence with the discrete theory and a continuity property. It is multiplicative, as a random
holonomy is expected to be, and invariant by area-preserving diffeomorphisms.

All along the discrete construction, we study the special case G = U(1). This analysis leads
us to a second construction of a random holonomy, specific to the Abelian case, based on the
Gaussian character of the measure in two dimensions. The characterization of the Yang-Mills
measure given earlier allows us to prove that this random holonomy has the same law as that
defined by the general procedure. Then we show that the holonomy along very small loops can
be used to construct a white noise on M, by means of a Wiener-like integral.

It is then natural to try to adapt the extraction of the white noise to the general case. We
prove a result in the semi-simple case that strongly suggests that this is impossible. Indeed, the
o-algebra generated by the holonomies along very small loops seems to satisfy a zero-one law.

In the last part of this work, we study combinatorial properties of the measure. We prove
the Markov property of the random holonomy, extending to the continuous setting a result that
was proved in the discrete setting by C. Becker and A. Sengupta [BS]. Then, we study how
it is possible to glue together the Yang-Mills measures on two surfaces M; and M3 in order to
get the measure on M, the surface obtained by gluing M; and M, together. We show that the
measures on M; and M, do not determine the measure on M. There is a lack of information
that can be parametrized by the centralizer of the holonomy along the common boundary of M;
and M,. Finally, we summarize the algebraic properties of the conditional partition functions,
whose importance had already been recognized by Witten [Wi]. We prove that a few of them
generate all others by algebraic transformations and identify these elementary functions. We
also show that the partition functions may be considered the transition functions of the random
holonomy as a Markov field and discuss to what extent they determine the Yang-Mills measure.






Chapter 1

Discrete Yang-Mills measure

In this chapter we construct and we study the discrete Yang-Mills measure. It is both the basis
of the construction of the continuous Yang-Mills measure and the frame in which computations
are possible. The main results are the invariance by subdivision of the discrete measure and the
estimation of the law of the random holonomy along small loops.

1.1 Notations

Throughout this work, M will denote a surface, i.e. a real differentiable two-dimensional mani-
fold, compact, connected, orientable, with or without boundary. It is endowed with a Lebesguian
measure o, i.e. a measure which has positive smooth density with respect to the Lebesgue mea-
sure in any chart.

The boundary of M, if it is non empty, is the disjoint union of circles Ny,...,N,. Let us
make explicit what we call smooth objects on M and introduce the very useful notion of closure.

Definition 1.1.1 A closure of M is a triple (i, M, M,), where M, is a closed surface, i.e. a
surface without boundary and i : M — M, is an embedding. If the complementary of i(M) in
M, is diffeomorphic to a disjoint union of disks, the closure is said to be minimal.

Given two closures (i1, M, M;) and (iz, M, M3) of M, i,(M) and iy(M) have diffeomorphic
neighbourhoods in M; and M,. So it makes sense to say that an application (resp. a bundle,
a section,...) is smooth on M if it is the restriction of a smooth application (resp. bundle,
section,...) defined on an open neighbourhood of M in one of its closures.

The second basic object is G, a compact connected Lie group, that will be chosen to be
Abelian or semi-simple in most examples.

Let P be a principal G-bundle over M. If M has a boundary, M retracts on a bunch of
circles and P is trivial. But if M is closed, the possible topological types for P are classified
by m1(G). A pleasant way to see this is to cut M along the boundary of a small disk. We get
two disjoint pieces. The restrictions of a bundle P over M to both pieces are trivial and the
topology of P is completely determined by the transition function along the boundary of the
disk. This transition function is a map S! — G and it is a fact that two homotopic maps give
rise to two homeomorphic bundles.

If G =U(1), the element of 71(U(1)) ~ Z determined by P corresponds to the Chern class
of the complex line bundle associated with P. Note that when G is semi-simple, 71(G) is finite.

37
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A connection w on P is a choice at each point p of P of a subspace in T),P supplementary to
the vertical subspace of vectors tangent to the action of G. Moreover, this distribution, called
the horizontal distribution, has to be invariant by the action of G.

Let ¢ : [0,1] — M be a regular path on M. A connection w allows to lift ¢ to a horizontal
path in P starting at any prescribed point in P,g). The function that maps a point p of P to
the end point of the horizontal lift of ¢ starting at p is called the parallel transport or holonomy
of w along c. It is a G-equivariant map hol(w, ¢) : Pyq) —* F.(1). If ¢1 and c; are two paths
such that ¢;(1) = ¢3(0), then the path c¢;c; exists and we have

hol(w, ¢1¢2) = hol(w, ¢2) o hol(w, ¢1).

A gauge transformation is a diffeomorphism j of P over the identity of M that commutes
with the right action of G. Let w be a connection on P. Let ¢ : [0,1] — M be a piecewise
C?! path. A gauge transformation j allows to define a new connection j*w whose holonomy is
related to that of w through the relation:

hol(j"w, ¢) = j(¢(1)) ™" o hol(w, ¢) 0 5(c(0)).

Remark that these holonomies are conjugate if ¢ is a loop. More detailed presentations of the
theory of fiber bundles and connections can be found for example in [KN, BI].

1.2 Graphs on M

In order to reduce to a discrete setting, we will replace M by a graph drawn on M and adapt
the notions of fibre bundle, connection and gauge transformation.

1.2.1 Pregraphs

We say that an application ¢ : [0,1] — M is smooth (resp. an embedding) if it is the restriction
of a smooth application (resp. embedding) defined on an open interval containing [0, 1].

Definition 1.2.1 A parametrized path on M is a mapping c : [0,1] — M which is the con-
catenation of a finite number of smooth embeddings.

Two parametrized paths are said to be equivalent if they differ by an increasing reparametriza-
tion. :

Lemma 1.2.2 The equivalence of parametrized paths preserves their orientation, image, end
points, injectivity, injectivity on (0,1).

Equivalence classes of parametrized paths are called simply paths. The set of paths on M is
denoted by PM.

A path whose end points are equal is called a loop and a loop which is injective on (0,1)
is said to be simple. Given a path a, we denote by a~! the path obtained by reversing the
orientation of a. An edge is an injective path a such that a([0,1]) N M is empty or a finite
union of segments. -
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Definition 1.2.3 A pregraph on M is a set T = {ay,...,a,} of edges that meet each other only
at their end points, i.e. such that for each distinct i and j between 1 and r, one has

ai([0,1]) N a;([0,1]) = a;({0,1}) N a;({0,1}).

We call support of a pregraph I' the union of the images of its edges. A pregraph I is said
to be connected if its support Supp(T') is connected.

We call faces of a pregraph I' the connected components of M\ Supp(I'). We denote by F(T')
the set of these faces.

Proposition 1.2.4 Let I' be a connected pregraph on M. Suppose that every face of T is
diffeomorphic to a disk. Then the map H,(Supp(I); Z) — H (M;Z) induced by the inclusion
18 surjective.

Proof. Let c: [0,1] — M be a loop. There exists on each face of T a point that is not in the
image of c. Let us fix such a point in each face and remove it from M. The remaining open set
U retracts on the support of I' because each face with a point removed retracts on its bound-
ary. This retraction induces a homotopy from ¢ to a loop whose image is included in Supp(T’).
So each loop of M is homotopic, thus homologous to a loop of Supp(I’). This proves the result. O

1.2.2 Graphs

Given a pregraph I', we call path in I" a concatenation of edges of I', with natural or reverse
orientation. We denote by I'* the set of these paths.

Definition 1.2.5 A graph on M is a connected pregraph I' whose faces are diffeomorphic to
disks and such that for each component N; of M, there exists an element of I'* whose image is
equal to N;.

The reason for which we choose these properties is that we want a graph to take the whole
topology of M into account, including its boundary.

Definition 1.2.6 Let I'y and I'; be two pregraphs. We say that Ty is finer than I'y and write
I'y < T2 if each edge of Ty is a path of T';.

Proposition 1.2.7 Let I'o be a pregraph on M. There exists a graph T' which is finer than
To. Moreover, if Supp(Lo) is contained in an open set diffeomorphic to a disk, it is possible to
construct T' in such a way that it has the same number of faces as I'y.

Lemma 1.2.8 A pregraph whose faces are diffeomorphic to disks is necessarily connected.

Proof. Let T be a pregraph with faces diffeomorphic to disks. Suppose that I' = IV UT", where
IV and I'” have disjoint supports. Each face of I is a disk, so it has a connected boundary, which
is included either in the support of IV or in that of I'”. The closures of the unions of faces whose
boundary lies in Supp(I”) (resp. Supp(I')) form a partition of M into two closed sets, which is
in contradiction with connectedness of M. o
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Before to prove proposition 1.2.7, let us recall some classical facts about the topology of M.
If M has no boundary and is not a sphere, its universal covering is diffeomorphic to a plane.
In this plane, it is always possible to choose a polygonal fundamental domain for the covering
map, namely a 4g-gonal domain if g is the genus of M. This means that it is possible to see
topologically M as the result of the identification of some edges of a polygon. If M is a shpere,
it can be seen as a disk whose upper and lower half of the boundary have been identified. If M
has a boundary, there are holes in the universal covering, one for each boundary component in
a fundamental domain. It is possible to choose a fundamental domain such that the holes are in
its interior. Thus, it is possible to represent a surface with boundary by a picture like picture 1.1.

[ ——

I

. » . . . .
Figure 1.1: Fundamental domain in the universal covering for a torus with one hole.

Proof of proposition 1.2.7. By definition of an edge, the set Supp(Ig) N OM is a finite union
of segments. Cutting some edges of I'g in several pieces if necessary, we can assume that these
segments are exactly images of edges. Then, it is possible to add to I'y edges in such a way that
Supp(To) NOM = M. If Supp(lp) did not meet a component of M initially, it is necessary
to add at least two edges on this component. So we can construct a pregraph I'; which is finer
than I'g, whose support contains M.

Each face of I'; is homeomorphic to the interior of a compact surface with boundary. On
any such surface, there exists a graph, for example a triangulation. We add to I'; the edges that
are necessary to transform it into a graph on each face which is not diffeomorphic to a disk.
All faces of the resulting pregraph I'; are diffeomorphic to disks. By the preceding lemma, it is
connected. Thus, it is a graph. The first part of the proposition is proved.

If Supp(I'y) is contained in a disk, it is possible to move this disk by a diffeomorphism of
M into any prescribed disk. It is possible to get the situation described by the picture, in the
universal covering, where the disk is in the interior of a fundamental domain. Then it is easy to
complete I'g into a graph with the same number of faces and get back to the initial situation by
the inverse diffeomorphism. - O

1.3 Discrete holonomy and gauge transformations

Choose a graph I' = {ay,...,a,} on M and denote by 7 : Supp(I') — M the canonical injection.
Consider the fiber bundle ¢*P on Supp(T’). It is a trivial bundle, whatever the topology of P
was. We identify ¢* P with Supp(I') X G. Let V(I') denote the set of vertices of T.

Lemma 1.3.1 Letw; and w; be two connections on i* P. Suppose that w; and we have the same
holonomy along each edge of I'. Then there exists a gauge transformation j of i*P that leaves
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the fibers over the points of V(T') invariant and such that j*w; = ws.
Proof. Choose a parametrization of a; € T'. Set

J(a1(t)) = hol(wy, alI[O,t]) o hol(ws, (a1|[0’t])‘1).

Then
hol(wz, a1jo,g) = 7 (a1(t)) ™! 0 hol(wy, aro4) = hol(j*ws, ayjo,g)-
The assumption about w; and wp makes sure that it is possible to extend the construction of j
to the whole graph and that j(m) = Idp,, for all vertex m of I.
This implies that w; and j*w; have the same holonomy, hence the same horizontal paths, so
they are equal. m]

In the discrete setting, we expect to be able to compute the holonomy only along edges of
the graph. So we identify a connection with the holonomy that it determines along the edges
of I' and, according to the preceding lemma, consider gauge transformations that act only on
the fibers over the vertices of I'. Finally, using the identification ¢*P = Supp(l') x G, we can
identify holonomies and gauge transformations with elements of G, defining for example A.(w)
and j(m) by hol(w, ¢)(c(0),1) = (¢(1), he(w)) and j(m, 1) = (m, j(m)).

This leads us to the following definitions.

Definition 1.3.2 A discrete connection on I is a map from T into G. A discrete gauge trans-
formation is a map from the set V(I') of vertices of ' into G.

A discrete gauge transformation j : V(I') — G acts on a discrete connection g = (g1, ..., gr)
by :
j+9=(i(a1(1))'915(a1(0)), - .-, 5(ar(1)) "' gr3 (- (0)))-
A discrete connection g = (gi,...,9r) determines a multiplicative application from I'* into
G. Given a path ¢ = a]! ...a", &; = £1, we can compute g;” ...g;! (With reversed order!). In

in)?

other words, any path ¢ of I'* gives rise to a map h. from G to G defined by

hc(.q17 .. '1gr) = gf: .. 'gfll'

This map is well defined because there is only one way to decompose a path in product of edges.
To see why, it is enough to consider the times at which a path crosses a vertex of T

Proposition 1.3.3 Let ¢; and c; be two paths such that cicq is also a path. Then
heye, = heyhe, .

This basic property of the discrete holonomy will be refered to as the multiplicativity of the
holonomy.
A gauge transformation j transforms h. in Ao 7, with

he o j = j(e(1)) " hej(c(0)).-

At this stage, it may be noticed that central functions of the holonomy along loops are
invariant under gauge transformations. This is why they will play such a major role in the
sequel.
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1.4 Discrete Yang-Mills measure

We keep a graph I' = {ay,...,a,} on M. In the discrete setting, a probability measure on the
quotient space A/J of connections modulo gauge transformations is represented by a probability
measure on G invariant under the action of GV(D),

The basic example of such an invariant measure is the product of Haar measures. We shall
construct the discrete Yang-Mills on GT as

dP = P dg,
dg
where dg = dg1 ®...®dg,. The dens1ty w1ll be a product of central functions of holonomies
along loops, a feature that makes P 1nvar1ant Recall that a function p is said to be central on
G if p(zy) = p(yz), or equivalently p(y~'zy) = p(z) for all z,y in G.

Each face F of I has a boundary which is the image of a path defined up to the choice of
an origin and an orientation. So the function hgr : GT — G is defined up to conjugation and
inversion. For any central function p invariant by inversion, the function po hgr is well defined.

Let us denote by (p:):>o0 the fundamental solution of the heat equation on G endowed with
its biinvariant Riemannian metric, normalized to have total volume equal to 1. It satisfies

(0 — —A)pt 0 on R} XG,

and for any function f continuous on G,

[ fawto) dg = 1.
G -

For any positive t, p; is a positive central function, invariant by inversion, such that f, p:(g) dg =
1. For the moment, the choice of the heat kernel may seem to be quite arbitrary. We shall discuss
this point at the end of section 1.6.

For each face F' of T', the function p,(r) (hap) G' — R} is well defined, with o denoting
the surface measure on M. Set

D= [] powlhor):G" — Ry, (1.1)
FeF(T)
7 = D dg (12)
GT
Now define P on (G', Bor(G")) by
dP = -;- D dg. (1.3)
Given n paths ¢y,...,¢, in I'*, we define the law of the discrete holonomy along ¢y, ...,c, as

the joint law of the n-uple (h,,...,he,) under P.

1.5 Conditional Yang-Mills measure

When M has a boundary, it is natural to want to impose the holonomy along the components
of M. It may also be useful to be able to impose holonomy along some other loops even if M
has no boundary.
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1.5.1 Conditional Haar measure

Proposition 1.5.1 Let n be a positive integer. Let = be an element of G. There exists on G®
a measure vy such that g, ...g1 = ¢ v}-a.s. and such that for any function f continuous on G™
and any i between 1 and n,

v (f) = F(915- 1 9icty (9 - 9ix1) 2 (gic1 - -01) 71, Gints - -1 Gn) A1 ... dg; .. . dg.
Gn-1

Moreover, one has

20 =1m [ o1 00) pelan-r3™) das...dgn.

t—0

Finally, fG v} dz = dg, as measures on G".

Proof. Pick i between 1 and n, and ¢ > 0. By centrality of p; and then right invariance of dg;,
one has

/f(gl,---,gn)pt(gn---glr‘l)dg:/ fg1, -1 0n) Pe(9i(gi=1---91)2 " (gn - - -giv1)) dg
Gn Gn

= /Gn fg1, 1 9i-1,9i(Gn - - - Giv1) " 2(Giz1 - - -91) " s Git1s - - - Gn) P(9:) dgidgs . . .dg; .. .dgn

;—* f(!h, ceey Gi-1, (!]n- . -gi+1)_1$(gi—1 .. -91)_1,gi+1, .- -7gn) dgi...dg;...dgn.
—0 Gn-1

Thus the limit exists and the last expression does not depend on ¢. It defines a probability

measure on G".

If f vanishes on the hypersurface {g; ...gn, = z}, then v?(f) = 0. Sowedo have g, ...g1 =z

vZ-a.s. '
Finally, since [ p:(g) dg =1,

/ f(g1y--+19n) Pt(gn-..g127") d:cdg=/ f(g1,---,92) dg,
GJGn Gn

which implies the last statement when ¢ tends to zero. m|

1.5.2 Conditional Yang-Mills measure

Let Lq,...,Lq be disjoint simple loops of I'* whose image is either a component of OM or
contained in the interior of M. We want to choose the law of (hr,,...,hr,). For this, it is
enough to be able to impose a deterministic value to each hr,. Let (z1,...,2,) be an element

of G9. Let I denote the set of edges of I' that do not appear in the decomposition of any L;.
We denote by dg’ the product of Haar measures on GT'. The fact that the conditional Haar
measure is not invariant by permutation of the factors on G” leads either to a very heavy or
to an elliptic notation. We will choose the second option, except during a few lines. Suppose
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1 1 q .
that L; = a:f .. .a;"‘ yeonLg=a3 ...a:;", with €} = +1. We denote by dv;, ...dv,,dg’ the
1 n 1 ngq

1
following measure on G':

1 el q el
n1 (€1 ny Ng( €1 nq /
dvy! (gii - .,gz.;'1 ). ..dvz] (gﬁ, . ”gi?,q )dg'.

With this notation, set:

Z(z1,...,29) = | Ddvg, ...dvg,dg, (1.4)
GT
1
Z(T1y...,%q)
The function Z(z,,...,z,) is called conditional partition function on M with respect to
Ly,...,L,.

dP(zq,...,24) = D dy,, ...dvy dg'. (1.5)

Proposition 1.5.2 Choose r < q and Z;41,...,24 € G. The law of (hr,,...,hr,) under
P(zr41,...,24) ts equal to:
Z(x1,...,%q)
Z(Trg1y...,Zq)
where each element x; corresponds to the loop L;. In particular, the law of (hr,,...,hr,) under
Pis 2Z(zy,...,z,) dzy .. .dz,.

dzy...dz,,

Proof: The last part of the statement is just the case r = q. Let f be a continuous function on
G". We have:

1
/GP f(hLl')o.-’hL,.) dP(:E,-+1,...,:z:q) = Z(

Trgl, -

.y Tg) /GF f(heyy.. o b, )D dvg, ... dvg dg’

—_ 1 - /
= T o) /r/gr f(hrys.. . he,)D dvg, ...dvy dg' dz; .. .dz,
1
= Ti,een, Ty dez...duxd’} dz;...dz,
./G" flor )[Z(mrﬂ,---,%) e ' e
ACHINL) dzy ...dz,. m)

= T1y..ey Ty
Grf( ! )Z(zr.i.l,...,xq)

Corollary 1.5.3 The map (z1,...,24) = P(z1,...,24) is a disintegration of the measure P
with respect to the random variable (hr,,...,hr,). This means that

1. (hLyy---yhL,) = (21,...,24) P(z1,...,24)-a.s.

2. denoting by n the law of (hr,,...,hr,) under P, we have

P =/ P(zy,...,29) dn(z1,...,24).
Ga

Proof. The first part is a direct consequence of the definition of P(zy,...,z4). A simple
computation proves the second one:

1
P(zy,...,2q) dn(zy1,...,24) = 7 P(zy,...,24)Z(x1,...,%4) dz1...d2,4
Ga Gq
1
= = GqDVzl...vzq dg' dzy ...dz,

= P
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|
This corollary says that the P(zy,...,z,) are really what we expected them to be. Now,
given a measure J on G?, we can choose the law of (AL,,...,hL,) to be 3 by putting the measure

Ps = [5q P(1,...,2q) dB(z1,...,2,) on GT.

1.5.3 Gauge transformations

Let us compute how the measure P(zy,...,2,) is transformed by a gauge transformation.

Lemma 1.5.4 Let j be a discrete gauge transformation. The following equality holds :
JWP(z1,...,2q9) = P(ylarlyl'l, .. .,yqzqu_l),

where y; = j(Li(0)).

Proof. For sake of simplicity, let us write the proof in the case ¢ = 1, the general case being
exactly similar, only with heavier notations. Suppose that L; = a; ...a,,. Let f be a continuous
function on GT.

WPE)(f) = ‘z'(l—r) /G ] oerl;I(F)pa(F)(haF) Y (G1r- s Gm) gt - - - dgs
—---—1 > — m(; . -
= 760 ) anp"‘”(ha”f Y o (e (D)erd(ar (0)) 7 .

.. .,j(am(l))gmj(am(O))'l) dgm+1 - - -dgr

1 m
= m/mf FEI-;I(F)pa(F) (hoF) Vj{L, (@)mri(Ea (@)= (912 -2 Im) dGm 1 - - dGr

-1
= g(—zg'(x—;ly)l—)P(ylxlyfl)(f)v

with y; = j(L1(0)). Setting f to be identically 1, we get Z(y1z1y7") = Z(z1)- =

Let us state the invariance property of the partition function that we just proved :
Proposition 1.5.5 For any y1,...,y, in G, one has
Z(yl‘l:vlyl, .. .,yq'la:qu) =Z(z1y...,%q)-

According to this result, the conditional partition function can also be viewed as a function
on (G/ Ad)?, where Ad is the adjoint action on G given by Ad(y)z = y~'zy. We will use this
point of view in the next paragraph.

It is clear now that P(z1,...,%,) is not gauge invariant in general. We will explain how to
overcome this problem.

Let t be an element of the quotient G/ Ad, that is, a conjugacy class in G. Let z be an
element of this class. The measure [ d,,,-1 dy does not depend on the choice of z in t. We
shall denote it by &;. Similarly, we denote &, ® ...Q® &, by &, .1, Set

P(ty,...,tg) =/G P(z1,...,2q) 0yy,..t(T1y - -+, Tg)-
q
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Proposition 1.5.6 The measure P(t1,...,t;) is gauge invariant.

Proof: Let j be a discrete gauge transformation and set y; = j(L;(0)). According to the lemma
1.5.4, we have:

j*P(tla--"tq) = /qu*P(zl)"'vmq) 6t1,...,tq(zlv--'7zq)
= [ PO 0 Bty 20)
q

0,-1,-1 0,-1,~1
= / P(y121212] Yy - -1 Yg2qTq2q Yg ) d21...d2
G1

= P(z7'23z,. .., z; :cgzq) dzy...dz,
Ga
= / P(21,...,2q) b4y,...,(T1, - -, Tg)
Ga
= P(t1,...,t),
where each z? was an arbitrary element of ¢;. O
It will emerge later that the measures P(ty,...,t;) are in fact more natural than the

P(zy,...,24).

1.6 Invariance by subdivision

The invariance by subdivision is the main feature of the discrete theory. It allows to prove that
the law of the discrete holonomy along given loops does not depend on the graph in which one
computes it.

The fact that the heat kernel (p:)¢>o is a convolution semi-group will play a central role in
the proof. This means that for any € G and any s,¢ such that 0 < s < ¢,

/ pa(ey)pe(y) dy = pe(z).
G

Let I'; and I'; be two graphs on M. Suppose that I'; is finer than I'; and set 'y =
{a1....,a,}. By definition, each edge a; of I'; is a path in I'} and it gives rise to a func-
tion kg, : G2 — G. The r-uple of those functions constitutes a single function (hq,,. .., A, ) :
G2 — G” = G that we denote by fr,r,. the invariance by subdivision is expressed by the
following result :

Theorem 1.6.1 LetT'; and 'y be two graphs on M such that 'y is finer thanT'y. Let Ly, ..., L,
be disjoint simple loops of I'. Let xy,...,24 be elements of G. Then
1. The map fr,r, : G'* — G is surjective.
2. This map satisfies : (fr,r,), P'?(z1,...,2,) = Pl (21,...,2,).

From now on, it will be sometimes necessary to write explicitely the graph in which we
consider objects such as P, Z, D.

We begin by proving that it is always possible to go from one graph to a finer graph by a
finite sequence of elementary transformations.
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Lemma 1.6.2 Let ' and I’ be two graphs such that T' < I''. There ezist an increasing sequence
of graphs To =T < Ty < ...< T, < ... stationnary of limit ' and such that for any nonnega-
tive n, one can transform I'y, into I'y1q by one of the two following elementary operations:

(V) Add a vertex to Ty, i.e. replace an edge a by two edges b and c such that a = be,

(E) Add an edge to T, this new edge joining two vertices of T'y.

Proof. We proceed by induction on n. Iy is given, equal to I'. Suppose I';, given, with ', < I".
Recall that V(T') denotes the set of vertices of I'.
e We have V(T',) C V(I'Y) N Supp(T'y). If this inclusion is a strict one, pick an element of
(V) nSupp(l',))\V(I'n). It is a vertex of I'' which is on an edge of I, whithout being one of
its end points. By an operation (V), we add this vertex to I', and get I'y+; which is still finer
than I'V. Note that Card(['p41) = Card([',) + 1. . '
o If V(I',) = V(I') N Supp(T»), then each edge of T', is an edge of I'. In other words, I',, C I".
If this inclusion is a strict one, there exists an edge of I which is not an edge of I, and by
connectedness of I'' we may assume that this edge has at least one of its end points on Supp(I',,).
By an operation (E), we add this edge to I';, and get I'n41 which is still connected and finer than
I'. The pregraph I',;; is a graph. Indeed, we just noticed that it is connected and it is finer
than T, so that its support contains M. It can happen that the operation (E) cuts a face in
two pieces, but they are still diffeomorphic to disks. We also have Card(I'n+1) = Card(T',) + 1.
oIf '), =T, just set ['yyq =Ty

At each step, the fact that I';, is a graph implies that I'n4; is also a graph : connectedness
is preserved, as well as boundary properties. The faces of a graph are not modified by an
operation (V) and it can happen that an operation (E) cuts a face into two pieces, which are
still diffeomorphic to disks.

For each n, I';, < I implies Card(T',) < Card(I). On the other hand, elementary operations

increase strictly the cardinal of the graph. Thus, there is necessarily only a finite number of
such operations before the sequence becomes stationnary. O

Figure 1.2: Examples of elementary transformations of a graph.

Lemma 1.6.3 LetI'; < I'y < '3 be three graphs. Then
frirs = fryr, © fr,rs-
Proof. It is the associativity of the product in G. a

This lemma shows that it is enough to prove the theorem 1.6.1 when I'; can be deduced
from I'; by an elementary operation. One recovers the general case by composition.
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During the proof, we set 3 = §(, . ., and adopt the notations P3 = P(z1,...,%,) and

Zg = Z(z1,...,%,) in order to make the expressions shorter.
Proofof theorem 1.6.1 : 1. We prove that fr,r, is surjective. If I'y can be deduced from I'; by
an operation (E), fr,r, is just the projection that forgets the factor associated with the new
edge. It is of course surjective. In the case of an operation (V), fr,r, preserves all factors except
those associated with the two new edges, that are multiplied. It is also surjective.

2. Let us begin by the case of an operation of type (E). We fix some notations. Set I'; =
{a1,...,a,} and Ty = {ay,...,a,,b}. The new edge b is located in a face Fy of I';. Two
situations are possible : either b has one end point on dFp or it has both. In the first case, Fp is
still a face of I'y, with a new factor bb~! in its boundary. In the second case, Fy is cut into two
faces F; and F3 by b. Let us consider this second case. The boundaries of Fy, F; and F, can
be written respectively 0Fy = cyc2, 0F; = ;0! and F; = bcy. Let f be a continuous function
on G,

r.y _ 1 -1
Lplfd((frlrz)*Pﬁz) = Z_§2 -~ f(91, -1 9r)Po(F) (9r 1P )Po () (Bey 9r41)

H Pory(hoF) dvg, . . .dvg, dg,
FeF(I'1)\Fo

where g,41 is the element associated with 4. Since the L;’s are paths in I';, the new edge b is not
involved in their decomposition. Thus we can isolate dg,+; in dg’ and integrate against it. We
use the fact that the heat kernel is a convolution semi-group. We get the following expression :

1
= o5 / - f91, -0 97)Po(R) 4o (R) (Res hea) H po(F)(hoF) dvg, .. .dvg, dg’
g /G FeF(T)\Fo
zh
— B ¥
= 7 f dPs.

Setting f =1, we get ZL! = Zg’ and the result.

The case where the new edge does not cut Fp into two faces is even simpler : the factor bb~1
vanishes in all computations, because f does not depend on the factor associated to b.

Now consider the case of an operation (V). Set I'y = {ay,...,a,} and I'; = {b,c, ay,...,a,},
with a; = be. The edge a; can be on the boundary of one or two faces, depending on the fact
that it is on OM or not.

1
C2) I !
/Gn fd((frlrg)*Pﬁ ) =7 /Gr2 f(9c90:92,---19) D" (9cGbr 92, - -+ 9r) Vi, - - -V, 0,

where (gs, gc, 92, - - -,8-) denotes the generic element of G'2. We have to discuss two cases :
either @, is involved in the decomposition of one of the L;’s, say Ly, or it is not. If it is not, we
can isolate dgydg. in the dg’ term. By integrating against dgs, the dependence in g. disappears
by right invariance of dg; and we get '

I
1 Zg'

[ 10000 8)D™ 0,00 g) iy ey dg = o [ PR
8 G Zﬂ Gr1

. oo —

Z
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and we conclude as before. If a; is involved in the decomposition of L;, we can suppose that
Ly =a;...an, with m > 2. We write dv,, in a convenient way, putting the contioning on g,,,
which is necessarily distinct from g;. We get :

1 —_ —_~
E /C;ﬁ f(gcgb,g2, ceeyGmy - - '1gr)DF2 (gcgb’g% ey Gmy - - "gr) dgbdgcdg2 .. 'dgm—lyxz .- -V:z:ngly
8

where g = 21(gm—1---929.9)~*. This is equal to

1
T

Lr f(g’g%--'y%w-'vgr)Drz(gng?“-angy'-"gr) dgdg’.’--'dgm—lyzz ---Va:ng,v
1

with g,, now equal to z;(gs, - ..g29)~!. This is one more time equal to

z
e | fdpy
Z,% JGTi
8
and we get the result. a
Corollary 1.6.4 Let cy,...,c, be paths that are simultaneously elements of I'; and I'}, where
I’y and Ty are two graphs such that Ty < T';. Then the law of the discrete holonomy along
Cly...yCpn 18 the same onT'y and T'y. In other words, the law of (h{;, ey h&) on (GFI,P[I;‘) and

the law of (hL2,...,hl2) on (Gr‘?,Pg?) are equal.

Proof. It is enough to verify that (hgl, ..yBIYo frur, = (h}:f, ...,hL2). This is true if the ¢;’s
are edges of I'y, thus it is true in general by multiplicativity. m]

During the proof of the theorem, we also proved an impoﬂrta,nt result about the conditional
partition function:

Proposition 1.6.5 Let I'y and I'; be two graphs such that Ty < T';. Take Ly,...,L; and
T1,...,%4 as usual. Then

ZM (21,...,2,) = ZM2 (24, ..., 2,).

Let us discuss briefly the choice of the heat kernel in the definition of P. This choice is the
key of the physical relevance of the theory. It is a physicist, A. Migdal [Mi], who suggested first
to use the heat kernel in the mathematical formulation of the theory. Nevertheless, it is possible
to construct a discrete theory using any other convolution semigroup. For example, Albeverio,
Hgegh Krohn and Holden investigated some properties of the random fields obtained this way
[Al]. But it would probably be much more difficult to construct a continuous theory without
the nice regularity properties that characterize the heat kernel among all other convolution
semigroups.
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1.7 Invariance by area-preserving diffeomorphisms

The manifold M is given with its differentiable structure and the Lebesguian surface measure
o. Let T be a graph on M and ¢ : M — M a diffeomorphism such that ¢.c = o. Then
¢ transforms T into a graph #(I') and induces a bijection between faces of I' and ¢(I') that
preserves the surface. Thus, the natural bijection induced between G and G*(T) preserves the
discrete Yang-Mills measure. Let us state in a slightly more general way this invariance property.

Proposition 1.7.1 Let (M, 01) and (Ma, 02) be two surfaces and ¢ : My — M, a diffeomor-
phism such that ¢.0; = 03. Let 'y be a graph on My and I'; = ¢(I'1) the corresponding graph
on M,. Still denoting by ¢ : G¥'* — GT2 the induced bijection, one has

$. P (@1, .e0r2g) = P2 (zy,.. . Tg)-

Thus, for each family (cy,...,c,) of paths in T'}, the law of the discreté'holonomy along
(¢1,---,¢n) equals the law of the discrete holonomy along (#(cy),. .., ¢(cn))-

1.8 Examples

In this section, we will compute the law of the discrete holonomy im two basic situations.

1.8.1 Holonomy along an open path

Let T be a graph and ¢ € ™ be an open path, i.e. a path such that ¢(0) # ¢(1). Let Ly, ..., L,
be disjoint simple loops of I'* and ¢, ..., %, be elements of G/ Ad. Let us compute the law of A,
under P(ty,...,t;). We will use the gauge invariance of P(ty,...,%,).

Let f be a continuous function on G and j a discrete gauge transformation. Recall from the
proposition 1.5.4 that j.P(ty,...,t;) = P(t1,...,t,), so that:

/ flhe) dP(ty, ... tg) = /"‘f(hcoj) dP(ty,...,tq)
Gr Gr

- /GP £ (1)) hai (€(0))) dP(tr, - - tg).
Thus the law of h, is right and left invariant on G : it is the Haar measure.

1.8.2 Holonomy along the boundary of a small disk

Let I' be a graph on M, Ly,..., L, be disjoint simple loops of I'*. Let ! be a loop of I'* which is
the boundary of a disk D such that L;([0, 1]) is not constained in D for each i. We will estimate
the law of A; on (GT, Pp).

Let p be the function defined on G by p(z) = d(1, z), where d is the biinvariant Riemannian
distance. We want to estimate the size of p(h;).

1
ph1 dP, =—/ ph1 Do haF dI/x ...dl/z dg'.
/Gr()ﬁzﬁcr()kl;[(r) (7 hor) do, ...,

We need a result about graphs.
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Lemma 1.8.1 Let M be a surface and I a graph on M. There exists a subgraph of I' which
has only one face.

Proof. If a graph has more than one face, there exists an edge which is on the boundary of
two different faces. If we remove this edge, the resulting pregraph is still a graph. Indeed, this
removed edge was necessarily in the interior of M, thus boundary properties are preserved. The
faces of the new pregraph are those of the old one, except two faces that were glued along a
segment. So the new face is diffeomorphic to a disk and by lemma 1.2.8, we know that the new
pregraph is connected. In a finite number of such steps, one gets a subgraph of I' with only one
face. m

The pregraph constituted by the L;’s cuts M into several pieces homeomorphic to surfaces
with boundary M;,...,M;. The graph I' induces a graph on each M;. By the preceding
- lemma, there exists a subgraph IV of ' that has exactly one face on each M; and such that
Ly,...,Ly € T™. Now add to I" the edges required to form [ and, if necessary, a simple path
connecting ! with Supp(I"). Finally, the assumption that the image of L; is never contained in
D shows that it is possible, maybe by adding some vertices to I/, to be sure that each L; has an
edge outside D. We get a graph I'” which is included in I' and in which we will compute, using
the invariance by subdivision. We use the notation Pz and Zg.

/P(hz) dPj = / p(hi) dF"
Gr Grll

1
- /G o) T ety(hor) dvs, . dvadg'

Zs FeF(")

Lemma 1.8.2 The function t —|| p; ||oo s decreasing on (0,00).

Proof. Let 0 < s < t be two positive times. Let  be an element of G. We can estimate p;(z)
in the following way, keeping in mind that p; is a positive function on G :

pt(w)=/c;ps(my'l)pt_s(.tj) dy <|| s lloo /Gpt_s(y) dy <|| ps lloo - =

Recall that each L; has at least an edge outside D. For each L;, we put the conditioning of

dv;; on one of these edges.
On the other hand, each face F' of I’ which is not included in D is included in a face of I,
i.e. in a M;: its surface is greater than o(M;) — (D). We assume that (D) < %inf;o(M;).

Then
l l dg’

/ , p(h1) dP < 51—
Gr s F¢D FcD

The last integral is nothing but an integral against the discrete Yang-Mills measure on D, which
is a surface with boundary. Using the invariance by subdivision inside D, we can replace the
graph induced by I' by a very simple graph whose support is just D = ([0, 1]). This leads to

k
1
h) dPy < —[] Il Powas oo/ o dg. 1.6
/Grp( 1) 5 <751k IIP_(_;m I Gp(g)p (0)(9) dg (1.6)

We are led to a problem of estimation of the heat kernel at small time.
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Lemma 1.8.3 The following estimates hold :

Loorntado=0@), [ poymia =00, [ s@)nto) dg = O(V).
Let d denote the dimension of G. We use the following result proved in [Va](V.4.3):

Proposition 1.8.4 There exists a positive constant C such that for allt € (0,1), all g € G,

2 2
St < p(g) < Ot

Proof. The first estimate implies both others. We use normal coordinates at the identity of G.
Let Dg be a geodesic disk of radius R around 1, with R such that exp is a diffefomorphism from
B(0, R) C T1G onto Dg. We cut the integral according to G = Dgr U D%. One D%, we have:

2 2
/ p(9)*p:(g) dg < Ct=% diam(G)‘*e'% <Cptfe &
DC

R

For the part corresponding to Dp, we use spherical coordinates (r,8) on exp~!(Dg) = B(0, R).
Note that on B(0, R), the image of the Haar measure by exp~! can be compared to the Lebesgue
measure, so:

/ p(9)'p:(9) dg < Cq / rpy(exp(r, 8))r?~! drdé
Dp [0,R]x §4-1
2

d R T
< Cgt‘E/ rdt3e=Ct dr
0

This estimation remains true if we replace R by R’ < R. Thus, for ¢ small enough, we have:

/G pl9)'plg) dg = /D

1
< Cf2+Cit 57T = O(t2). O

p(9)*pi() dg + / p(9)*pe(g) dg
1):1/4

1/4

Finally, we deduce from relation 1.6 and the preceding lemma the following proposition:

Proposition 1.8.5 Let I be a graph on M. Let L;...., L, be disjoint simple loops of I'* and
T1,...,Z4 be elements of G. Let l be the boundary of a disk D such that none of the L;’s has
its image contained in D. There ezist two positive constants s and C depending on the L;’s but
not on the z;’s such that if (D) < s, then

/G plh) dP(a1, ., 25) < CY/o(D).

This regularity property will play an essential role in the construction of the continuous
measure. :
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1.9 Discrete Abelian theory

1.9.1 Decomposition of cycles

Until now, we only used the compactness of G. We will finish this first chapter with a detailed
study of the case G = U(1). All results could be extended without conceptual problems to the
case G = U(1)", i.e. the general compact Abelian case, but this would also make the notations
much heavier.

We fix M, o as usual and a graph I' on M. Our aim is to analyze the law of the family
(he)eers- Set {ai,...,a,} =T. Since G is Abelian, the function h, : G — G associated with
a path ¢ depends only on the number of occurences of each a; in the decomposition of ¢, not on
the order of the edges in this decomposition. In other words, the function k. depends only on
the image of ¢ by the natural morphism of monoids I'** — ZT which sends a; to o,...,1,...,0)
with a 1 at the i-th place. Conversely, each element of Z' determines without ambiguity a
function from U (1) into U(1).

So, the natural index space in this context is Z! instead of I'* and this allows to consider
linear combination of paths. Let us denote by CT C ZT the set of linear combination of loops,
also called cycles. We are especially interested in the law of (h;).ccr. The reason for which we
consider only loops will become clear at the end of chapter 2. Basically, it is because for an
arbitrary G, the holonomy along an open path is not a gauge-invariant function of a connection.

Let us recall a classical result about the homology of M.

Theorem 1.9.1 Let g be the genus of M and p the number of connected components of OM.
Then 7% i 0
1 =
H(M;Z) ~ {Z29+”‘lpif p>0.

If p > 0, one can construct a system of loops representing a basis of H; (M) by taking p—1
components of dM and 2g loops of M that generate the H; of a minimal closure of M, i.e. a
surface obtained from M by gluing a disk along each boundary component.

So, let us choose such a system composed by £, ...,€24 in I'* and p —1 loops Ny,..., N,y
that we denote just as the corresponding boundary components, with an abuse of notation. We
can obtain the £;’s by deforming an arbitrary system of generators using the same technique as
in the proof of the proposition 1.2.4.

Now let ¢ be a cycle in CT. There is an unique decomposition

c=Mly 4 ...+ Agglog + 11 N1+ ...+ V1 Npg + ¢4,

with A;,v; € Z and ¢t € CT a cycle homologous to zero. Let us denote by CoI' the submodule
of CT spanned by the cycles homologous to zero.

Proposition 1.9.2 If M is empty (resp. non empty), the boundaries of all faces except one
chosen arbitrarily (resp. of all faces) form a basis of the submodule CoI' of CT.

We will prove this proposition very soon. Set F(T') = {Fj,..., F,,} and choose for each F; a
cycle F; whose image is the boundary of F;. We can write :

c= /\131 +...+ /\2g£2g + 1/1N1 +...+ I/p_lN -1+ ,ul(?Fl +.. .+#n8Fn, (17)
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the decomposition being non unique if M is closed. The relation 1.7, together with the multi-
plicativity of the holonomy, shows that the law of the family (A.).ecr is completely determined
by the law of what we will call a fundamental system :

(Reys- -y heygy BNyy - ooy BN,y ROF - - o5 hoF,)-

Proofof proposition 1.9.2 : To begin with, suppose that M has no boundary. We proceed by
induction on n = Card F(T'). If n = 1, the only loop in CT is OF and it is homologically trivial.

Now suppose that the result is true for a graph with n — 1 faces. Let I' be a graph with »
faces. There is an edge of I, say a,, which is on the boundary of two distinct faces, say F,_;
and F,. Let I = {aj,...,a,—1} be the graph obtained by removing a,. It has n — 1 faces
F,...,F,_2,F,_1UF,. Let ¢ be a cycle of CoI'. We can decompose it uniquely in ¢ = ¢o+ pa,
with p € Z and ¢g € CT'. We can also write 8F,_; = a, + b with b € CT'. So , we have
¢ = (co — pb) + pdF,_1. By induction, ¢g — pb, which is homologous to zero in I”, is a linear
combination of 8Fy,...,0F,_3. Thus, 0F,...,0F,_; generate the submodule of homologically
trivial cycles in CT'. On the other hand, dF},...,0F,_2 are linearly indendent by induction
and 0F,_, is independent of the submodule that they generate, because it contains the edge a,.
This gives the result when M is closed.

If M has a boundary, consider a minimal closure ¢; : M — M) of M and identify M with
i1(M). Let ¢ be a cycle homologous to zero in M. It is also homologous to zero in M; and can
be decomposed using the result on M; into :

c= Y wOF+wuNi+...4+ v Ny,
FeF(T),F;,cM

because the N;’s are the boundaries of the faces of I' on M; — M. This decomposition gives, in
H, (M)’
[C] =0= VI[NI] +...+ Vp—l[Np—1]1

implying 1 = ... =vp_1 =0 and ¢ = u;0F; + ...+ p,0F,. The independence of the 9F;’s on
M, implies their independence on M. m]

1.9.2 Study of a fundamental system

We want to study the discrete Yang-Mills measure conditioned by the holonomies along the
boundary components of M. Let 24,...,z, be elements of U(1). Under Pg = P(zy,...,zp), the
law of (Any, ..., hn,_,) is deterministic, equal t0 8(z,,...z,_,)-

- Proposition 1.9.3 Under the measure vy @ ...Q vz, ® dg’ on GT, the vamables Boyye -y By,

hspy, ..., haF,_, are uniform and independent on U(1).
Proof. We compute the characteristic function of (hq,, ..., he,,, hoF,,-- -, hoF,_,), seen as a
C29t"=1_valued random variable. In order to simplify the notations, we choose an orientation of

M and assume that each N; C @M and each JF; is oriented according to the usual convention.
Let A1,..., Aggy 1, ...y in—1 be integers.

A n—
F(Alr-")A_2gnu’1,'°-1u'n.—l) = /U(l)r‘ h?ll . ‘hE;:hg;'l thnl—x dPg
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= /U o PArt1+ ..t Daglag+ut OF +.tun—1 0Fn_y GF5

/U - h...h%r dPg,

where Y. \l; + Z]- p;jOF; = ), arak. Suppose that the a;’s are labeled in such a way that
Ni=a R PR .,Np_= Qip_14+1 .-G with 1< a; <.. . <. Qi

F(A\iyuj) = / (RS .. haty .. (ha? T EL L haP)hoiEt L KT dPg

@iy 141 * o llay Cip+1
U@)r ? .

o Qi 1+1 o .
= gt ...g. "t dv / 9; P -9, P dy / g°"P+1dg.../ % dg.
/[;(1)I‘ 1 11 z1 U(l)r p—1+1 ip Zp U(l)r‘ U(l)l"g g

' This product is zero if one of the ay’s with k& > 4, + 1 is nonzero. Otherwise, M is non
empty and the cycle Y Aif; + Y p;0F; has all its edges on M. Thus, we have an equality

2g n—1 P
Z Al + Z p;iOF; = Z”’“N"’
=1 J=1 k=1

which, in Hy (M), implies v[Np] = 37 Mi[i] — 3 -r,, vk[Nk]- Since [Np] = =[N1] — ... — [Np_4],
this implies A; = 0 for all ¢ and v = v, for all k. We get

n-1 P n
Z,uj(?Fj = I/ZN,- = VZBF}.
=1 =1 J=1

Since 0Fy,...,0F, are independent, the comparison of the coefficients of the dF,’s gives v = 0
and then p; = 0. Finally, the cycle Y A\;¢; + Y- p;0F; is equal to zero and F(A;, ;) = 1. Thus,
we proved that F(A;, ;) is equal to zero, except if all A;’s and u;’s are zero, in which case it is
equal to 1. This proves the result. O

* The last element to study in the fundamental system is hyp,. We have
‘ P n-1
OF, =Y N;-) 0F;,
=1 =1
so that har, = z; .. .:cphe;}l e .hg}.n_l under vz, ® ...Q v, ® dg’.

Proposition 1.9.4 Set 2 = z;...2, if M has a boundary and x = 1 if M is closed. For any
function f continuous on G¥#tntp,

F(htys -y Btggs By« oy BNy ROF - - - hoE,) AP(21, - .., Tp) =
GT

/G2 . fur, .. u2g, 1y oy Tpe1, U1y« o oy V) Po(Fy) (V1) - - - Po(Fn) (Un) dy - . . dugg dv vy, .. oy Un)-
grn .

Note that, in the Abelian setting, the measure v} is invariant by permutations of the factors in
u@n.
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1.9.3 Gaussian aspect of the Abelian theory

We proved that the law of the whole family (h;).ecr is determined by the law of a fundamental
system and we just described this law. So we could consider that the proposition 1.9.4 is the
answer to our question. In fact, it is possible to be much more explicit by taking the gaussian
character of the Abelian theory into account. The crucial part of the law of a fundamental
system is of course that of (hsF,, ..., har,). We will concentrate on this law.

Proposition 1.9.5 LetYy,...,Y, be independent centered real gaussian random variables with
Y; ~N(0,0(F,)). Let S =Y, +...+ Y, be their sum. For eachi=1,...,n, set

_ 9(F)
too(M)

S.

Let T be a real random variable, independent of the Y;’s, with the following discrete law :

-1
52 t2 .
o[ () e

s,etd=zx
0 otherwise,

where, as before, = z1 ...z, if M has a boundary and x = 1 if M 1is closed. Then, for any
function f continuous on G™,

; o(Fy) o(Fn)
/Gr f(hor,.-.,hor,) dPg = E f (e (x1+ 254 T), (X~+ (M) )) (1.8)

The law of T described in this theorem is just that of a A'(0,0(M)) random variable condi-
tioned to take its values in exp~!(z), where exp(t) = €. We shall discuss the meaning of this
variable in section 3.2.2.

Proof. In this proof, we set 0; = o(F;) and op = o(M). One easily computes

EX:X; = §;j0; — 24
oM
and ) X; = 0 a.s. The law of (X}, ..., X,) has no density with respect to Lebesgue measure
on R", but that of (Xj,..., X,_1) does, on R®"1. Denote by C the (n—1) X (n — 1) covariance
matrix of (X1,...,Xn-1). One easily checks that C~! is given by

&;; 1
(CNii=—L+—.

g; Opn

So the density of the law of (X3,...,X,) is:

1.1—1

dn(ty,...,th—1) = —exp—— (Z Z . ) dty...dt,.
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Let us fix a number tg such that eo = z. We also set ¢, = —t; — ... —t,_;. We can compute
the right term of (1.8): it is equal to

gecey

. . OCp— .
1 Z / (ezt1+a—°;\14—(to+2k1r) gtn-1+ :Ml (to+2k1r)’€1t,.+a£;-(to+2k1r))
kez S

t, to + Qkﬂ')
exp —— (Z Z ) T dtl .o -dtn—l

=1 1,7=1

— i Z f(eitl,.. ,eitn_17ei(tn+to)) .
7 _ .
kley-"yqn—lez [0,27!’]" !

exp (_EZ &—i(tz +2mg; — 5‘7\4—(% + 2km))°+

=1

n—1 2
1 . o (to + 2kr)?
+E (; i+ 277% o (tO + 2:’071')) ) exp -W dt1 ves dtn-—l .

We do not care about normalization constants, since two probability measures with pro-
portional densities are equal. Now we compute the left hand side of (1.8) using the following
expression of the heat kernel :

. 1 _!t—2p1r!2
ps(e“) = —-Ze 25,
pEZ
which is just the image by the exponential map of the heat kernel on R. We get

/GF f(hoF,,.-.,hoF,) dPg = /n f1,.- 0, 00) Doy (V1) -+ - Do, (V) Vg (V14 -+ -5 Un)

n—1
= Z / ..., eitnm1 giltntto)) oy 1 Z (t; — 2pim)?
0 27r]"‘1 2 & o;
P1,.- 1pn€z i=1
_ 2
(o)
2 On
The result will be a consequence of the following equality:
I exp (_%'i (t:i — 2@%)2 N _;_(tn +10— 2pn7r)2) _
P1yeeyPn€Z =1 df On
~(to+2km)2 1331 o; ,
> e VD) > —(t: + 2mgi = —(to + 2km))" -
k,qu'-'1Qn~—1€Z M =1 1 M
1 n—1 2
20_n <Zt + 277% - ‘—(to + 2](777))
Setting ¢, = —q; — ... — gn—1, We have
n-1 n-1

1 1
Z = (ti + 2rg; — ;—(to + 2k))? Zt +2rg; — —(to + 2k7))? =

i=1 i=1
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-y s + 2mgi] = T (b0 + 2km)) 2 + — ([—tn — 27qn — (to + 2k7)] + 2 (to + 2k7r))2
o oM On oM

1 2 20 o; 2
= E — |(t;i + 27q;)* — — (i + 27q;) (to + 2k7) + ——(to + 2km)"| +

1 2
+= [(—tn — 21 gy — (to + 2km))? + —2-(to + 2km) +
On oir

20,
+270 (—t, — 21gn — (to + 2k7)) (to + 2k1r)]
oM
iy 1 o o
_ 1. AV 2 i | On
- ; > (t;i + 27q;)? + — (to + 2k7) (; — + O'M)
9 n—1 9 n—1 -
- > (ti + 27 gi) (o + 2km) +—= Z(t,- + 27¢;) (to + 2k7)
=1 1'—1
2 2 1 2
——(to + 2km)* + — (=t — 27q, — (to + 2k7))
oM On
n—1

— 1 2 1 2 1 2
= D (ti+2mg)’ + (b 410+ 27, + 2km)” — — (10 + 2k)".

i=1

Setting p1 = ¢1,..-,Pn—1 = @n—1 and p, = —¢q, — k, we get the result. o

1.9.4 The double layer potential

To go further, we would like to represent isometrically the vector (Xi,...,X,) by a vector of
functions of L%(M, o) naturally associated with Fi,...,F,. To begin with, remark that the
vector (1f,,...,1F,) has the same covariance as (Yl, .,Y;). Now set

1, o)
IRTI)

The vector (u1,...,u,) has the same covariance as (Xi,...,X,). Each u; can be seen as the
orthogonal prolectlon of 15, on the hyperplane L3(M, o) of functions whose mean is equal to
zero. In fact, the u;’s are the most natural generalizations on M of the classical index of a loop
around a point in the plane. We will give a more direct definition of u;.

To do this, we endow M with a Riemannian metric whose volume coincides with o. There
exist a lot of such metrics, because ¢ is equivalent to the Lebesgue measure in any chart with a
smooth density, as well as the Riemannian volume of any Riemannian metric on M.

The choice of a compatible metric on M gives rise to a Laplace operator A and to a Hodge
operator * on A!(T*M). There exists on M a Green function G : M x M —» R, defined
outside the diagonal which is symmetric, smooth and such that

Sy G(z,y) do(y) =0 Yz € M when M =0 (1.9)

{AG( V=6~ s Ve e M
*dG; =0 on OM Yz € M when M # 0,
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where G, denotes the function G(z,-). A proof of this fact can be found in [Au]. Note that
when M has a boundary, there exists a solution to AG, = §,. Nevertheless, this choice would
be incompatible with the condition *dG; = 0 on dM which implies f mAG: =0.

Definition 1.9.6 Let ¢ be a path on M. We call double layer potential of c the function u,
defined on M outside the image of ¢ by :

uc(z) = /*dGm.

Note that the double layer potential is additive: if ¢; and ¢z are two cycles of CT', then
Uy dcp = Ue, + Ue, O-a.e. on M.

- Proposition 1.9.7 Let ¢ be a simple loop which is the boundary of a subset U of M. Set
V =U¢. Then
o(U) |

_ o) -
BT (7 R )

1
In particular, u. € L*(M, o) and || u. ||2= (a SUZI)V )2’

Proof. Let z be in U. Since *dG; = 0 on dM, we have:

uc(m)=/3U*de=—/av*dGz=—/v5,;—U—(IM-)-=:((x[)).

Now let z bein V.

1 o(U)
uc(z) = *dGz.=/5— =- .
@=, o "0 - Ta(V)
The last part of the statement follows easily. a
Corollary 1.9.8 The vector (uy,...,uy) is equal to (usF,, ..., UsF,)-

To go from functions usr, to random variables X;, we need an isometry of L?(M, o) into a
gaussian space, in other words a white noise on (M, o). Let us consider a white noise

W:L*M,0) — G

such that for any u,v € L?(M), W(u) and W (v) are real centered gaussian random variables
such that E[W (u)W(v)] = (u,v)z2. The proposition 1.9.5 can be rewritten in the following
form:

Proposition 1.9.9 The following equality holds in law:

; o(Fy) , o(Fn
(o) (07, One3))
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We would like to extend this result to arbitrary cycles homologous to zero. Let ¢y,...cx be
cycles of CoI'. For each 1, ¢; is a linear combination of the @F; thus u,, is well defined and is in
L%*(M). So, W (u,,) is well defined.

We have to generalize the term Z—g—,}% Since ¢; is homologous to zero, it is the boundary of
a two-chain denoted by a. If M has a boundary, H2(M) = 0 and a is well defined by fa = c.
We identify o with a 2-form on M and set o(a) = |(o, @)|, using the natural pairing between

2-forms and 2-chains. So the number

(@)

Tint(€) = (1)

is well defined. If M is closed, Ho(M) ~ Z and « is defined up to a multiple of [M]. So the
number oiq¢(c) is only defined modulo 1. But in this case, T takes its values in exp~1(1) = 272
so that exp toint(¢)T is well defined.

Proposition 1.9.10 Let (cy,...,ck) be cycles of CoI'. Then the following equality in law holds:

(hcu ooy hey) 2 (ei(W(ucl Haim(ol)T), ceey ei(W(uc"HUi“‘(ck)T)) .

Proof. By proposition 1.9.9, the result is true when (cy,...,cx) = (0F,...,0F,). Since the
boundaries of the faces constitute a basis of Col', it is sufficient to show that the new set of
variables defined using the white noise satisfy the same multiplicativity property as (h¢)cec,r-
On one hand, W is linear and the double layer potential is additive, so that exp iW (u¢,4¢,) =
exp W (uc, ) exp iW (uc,). On the other hand, ¢; = da; and ¢; = oy imply ¢; 4¢3 = 0(ay +a2),
SO Ojnt is also additive. This proves the result. O

The results that we proved in this section are the starting point of the more detailed in-
vestigation that will be done in chapter 3, after the continuous Yang-Mills measure has been
constructed.

Some properties of the double layer potential will be proved in the next chapter, using a
favorable technical context. Nevertheless, it is necessary to state here a fundamental property
that will be proved at the end of the chapter 3.

Theorem 1.9.11 For any path ¢ of PM, the function u. is in L*(M, o).



Chapter 2

Continuous Yang-Mills measure

In chapter 1, we defined a random holonomy along the paths of a graph on M. Our aim in this
chapter is to extend this definition to all paths on M. The problem is that there are families
of paths that cannot be realized as subfamilies of any I'*, T being a graph on M: even two
smooth paths can cross each other an infinity of times an give rise to an infinity of connected
components on M, a situation in which we are unable to write the joint law of their holonomies
using the tools of the preceding chapter.

The two properties of the discrete theory that are essential to our purpose are the invariance
by subdivision, expressed in theorem 1.6.1 and the regularity property of the proposition 1.8.5.
Our basic idea is to cover M with finer and finer graphs and to prove that the discrete measures
on these graphs converge in some sense to a continuous object that will be called continuous
Yang-Mills measure.

2.1 Projective systems

Let (I')xea be a family of graphs on M, which approximates correctly M, whatever this means
exactly. In sections 1.4 and 1.5, we explained how to construct a family of probability spaces
corresponding to this family of graphs. We will now consider the projective limit of this family
of probability spaces.

Definition 2.1.1 Let A be an ordered set such that for all \,u € A, there exists v € A such
that A < v and p < v. A projective family of probability spaces indezed by A is a family (2, Py)
of probability spaces together with a family of measurable maps f\, : Q, — Q) defined for all
A < p, such that

1. fax =Udg,,

2. fav=fawofuw fFA<p <y,

3. fou(u) = Qy,

4 (f/\u.)*Pu = Pj.

The projective limit of such a system is by definition the set

lim @) = Q= {(w:)rer € [J O IVA <oy frulws) = wa}-
AeA

61
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For each A € A, the projection on the A-th coordinate defines a map f\ : @ — Q). The
main result is that, under certain conditions, there exist a o-algebra and a probability measure
on 2 which are consistent with all Py via the maps f).

Theorem 2.1.2 ([Ck] 2.2) If all Q) are compact Borel probability spaces, then there ezist a
o-algebra and a probability measure P on Q such that, for all X in A, f\,P = P\. The space
(R, P) is called projective limit of the family (Q, Px; fau)-

It would be appealing to take the family of all graphs as index set A, with the order defined
in 1.2.6. The problem is that given two graphs, it is not always true that there exists a third
graph which is finer than both others, just because two edges belonging to two different graphs
can intersect very badly. So, the first assumption about the ordering on A would not be satisfied.

2.2 Piecewise geodesic graphs

We are led to consider a family of graphs small enough for that problem not to occur. A
convenient family is that of graphs with edges piecewise geodesic for some Riemannian metric
on M. Another possibility is to consider graphs with piecewise real analytic edges for some
complex structure on M. This has been investigated by Ashtekar and Lewandowski [AL].

We fix a surface (M, o). For technical reasons, we suppose that M is closed, until the section
2.8 where we shall derive the general case from the case without boundary.

Let us choose ¢ disjoint simple loops Ly,..., L, on M whose image is a smooth submanifold
of M, in other words, ¢ disjoint embeddings of S! into M. We will sometimes think of these
loops as the boundary of a submanifold of M or just as loops along which we want to contition
the holonomy.

Proposition 2.2.1 There ezists a Riemannian metric on M whose Riemannian volume coin-
cides with o and such that Ly, ..., L, are geodesics. -

Proof. If q=0, let us choose an arbitrary metric on M. Its Riemannian volume is equivalent to
o, with a smooth density. Multiplying the metric by an appropriate smooth positive function,
we get a new metric, conformal to the first one, whose Riemannian volume is exactly o. .

If ¢ > 0, the proof is more complicated. Let us first construct a metric for which all L;’s
are geodesic. Fach L; has a tubular neighbourhood in M which is diffeomorphic to a cylinder
S x (-1,1) 3 (6,t), with L; = {t = 0}. In these coordinates, L; is certainly geodesic for
the metric df? + dt%. If the tubular neighbourhoods were chosen small enough to be disjoint,
_ this procedure defines a Riemannian metric on the reunion of these cylinders and we extend it
arbitrarily to a metric go on the whole surface M. The loops Ly,..., L, cut M into submanifolds
with boundary M, ..., M. Multiplying go by a good positive function which is identically equal
to 1 in a neighbourhood of each L;, we can obtain a new metric g; for which all L; are still
geodesics and also such that

vol o, (Mi) = o(M;) Vi=1...k. 2.1)

Now we must redistribute the surface inside each M;. We adapt a proof of Moser’s theorem,
which is for example proved in [BG].
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Theorem 2.2.2 (Moser) Let o and 3 be two 2-forms on a closed compact surface M such

that
Lok

There exists a diffeomorphism ¢ : M — M such that ¢*8 = a.

We choose two forms o and § representing respectively o and voly,. We know more about
them than what is needed in Moser’s theorem, but we also want to prove more: we would like
to find a diffeomorphism of M that sends a to § and also that preserves the L;’s, so that they
remain geodesic after pulling back g; by the diffeomorphism.

For each i = 1...q, let j; : L;([0,1]) — M denote the canonical injection. The fact that
Sy B—a = 0 implies that there exists a form v € AY(T*M) such that dy = 8 —a. We show that
4 can be chosen such that j*y = 0 for all ¢, or in other words such that y(X) = 0 for any vector
X tangent to a L;. Pick v such that dy = 8 — a, consider the element (le Yyenny qu 7v) of RY
and the g-uple ([L1],...,[L,]) of vectors of H1(M;Z). Suppose that ny,...,n, are integers such
that >, n;[L;] = 0. Then >, n;[L;] is the boundary of a 2-chain in M, which is necessarily a
linear combination of Mj,..., M. Thanks to (2.1), this implies fZ mp: Y =0=21 1 [1 7.
We proved that a relation Y n;[L;] = 0 implies }_ n; [ ;7 = 0. Thus there exists a linear form
¢ on Hy(M;Z) such that (¢, [Ls]) = [, 1, 7- This linear form can be represented by an element of
H'(M;R) and this element can be represented by a closed 1-form on M that we still denote by

¢. The form v — ( satisfies:
{d(v—C)=d7=/3—a

Jo7=¢=0 Vi=1...q

This last relation proves that for each ¢, 57 (v — ) is exact on L; and can be written du; with
u; € C*(L;). Let u be a smooth function on M such that w;;, = u; for each i. The form

v — ¢ — du satisfies:
{d(v—c—dU)=ﬂ—a
J¥y-¢—du)=0 Vi=1...q.

We proved that it is possible to choose v such that 7(X) = 0 for each vector X tangent to
a L; and we choose 7 in that way. The end of the proof is similar to that of Moser’s theorem.

For each t € [0,1], set a; = (1 —t)a+tf and define the vector field X; on M by ix,o; = —7.
The field X; depends smoothly on ¢ and induces a flow (#:):¢[o,1]- We compute the derivative of
@} oy. For any to € (0,1),

4
dt

d
(Prar) =

t=tg

(Ph,at)-

t=t t=ig

" d
°(¢t O‘to) + a
The second term of the r.h.s. is equal to

. [ @
¢to (E

We denote by Lx, the Lie derivative with respect to the field X; and use Cartan’s relation
Lx, =doix, +1ix, od. We find that the first term is equal to

Lx,, $ry0t = d (ix,, $1y0t0) = A7y 8%, 010) = —d(8,7) = —3, (d7) = =63, (6 — @)

at) = ¢:o (IB - a)'
t=tp
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Thus, %¢’t"at = 0, so that ¢;8 = ¢jay = Pyap = a. For any vector X tangent to a L;, the
equality a;(X;, X) = ix,a:(X) = v(X) = 0 proves that the field X; is tangent to L;. So the
flow ¢; preserves the L;’s.

The Riemannian volume of the metric g = ¢7g; is ¢* voly, = 0. Moreover, ¢; is an isometry
from (M, g) into (M, g;) that preserves the L;’s. Since they are geodesics for g, they are also
geodesics for g. a

From now on, we fix on M a metric given by the last proposition. Let us recall a classical
result that summarizes the main property of the geodesics that we will use. A proof of a local
version of this theorem can be found for example in [dC] (proposition 3.4.2). The compactness
of M allows to globalize the result.

Theorem 2.2.3 There ezists a positive real number Ry, called convexity radius of M, such
that if = and y are two points of M contained in a ball of radius smaller than Ry, they are
joined by a unique piece of minimizing geodesic and this piece of geodesic stays inside the ball.

This theorem implies in particular the following result:

Proposition 2.2.4 Let {; and (2 be two finite pieces of geodesics. The intersection of (; and
(2 is the union of a finite number of isolated points and at most two segments.

Proof. If {; and (> meet at an infinity of points, it is easy to check that there exists a couple
(t1,t2) of times such that (i (t;) = C2(22) and (3 (t1) = Ca(t2). So they are two pieces of the same
infinite geodesic. If this geodesic is periodic, ¢; and {2 can intersect along one or two segments.
Otherwise, they have one segment in common plus a finite number of isolated points. O

We denote by G the set of graphs whose edges are piecewise geodesic and such that Ly,..., L,
are in I'*. The set G is ordered by the relation <.

Proposition 2.2.5 Given two graphs I'y,T'y in G, there exists '3 in G such that T’y < I's and
I'; <T3. ' ]

Proof. The idea is to superpose I'; and T';. Given an edge a of I'z, we know that a([0,1]) N
Supp(T'y) is a finite reunion of segments and points. So, it is possible to add a finite number of
new vertices and new edges to I'; in such a fashion that a becomes a path in the new graph.
Repeating this procedure for each edge of I'; gives the result. ]

Let us fix an element (z1,...,24) of G?. With each graph I' € G, we associated a space
(GT, P'(zy,...,2,)). The last proposition states the last property that was missing for the fam-
ily (GT, Pt (z,.. -1Z4)),T € G to be a projective family of probability spaces. Each G is com-
pact, so theorem 2.1.2 asserts that this projetive family has a projective limit (R, A, P(z1,...,2,))
which is a probability space endowed with functions fr : @ — GT such that fr, P(z1,...,2,) =
Pl(zy,..., z4). This space contains in itself the same information that is contained in all spaces
(GF, PF(z4,...,2,)): each random variable h; : GT — G gives rise to a random variable

H:Qf6h X ¢
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and the law of a n-uple (h¢,,...,h¢,) computed in any graph of G is always equal to that
(H¢yy ..., He,) under P. Moreover, since any piecewise geodesic path can be seen as a path
in a graph, there is a well-defined random variable H¢ on Q associated with any such path (.
Remark that the multiplicativity property is preserved:

Proposition 2.2.6 Let (; and (2 be two piecewise geodesic paths such that (;(1) = (2(0). Then
H¢, = HpHe, as.

From now on, we use greek letters to denote the piecewise geodesic paths and denote by
PGM the set of these paths.

2.3 Preliminary results

2.3.1 Lassos

Definition 2.3.1 A lasso is a simple loop or a path of the form | = cbc™1, where c is an injective
path and b a simple loop which meets ¢ only at its base point. The loop b is detetermined by [
and is called the buckle of the lasso .

A notion of lasso close to this one has already been used by Driver in [Dr2]. In [GKS], Gross,
King and Sengupta also suggested that the use of lassos might be helpful in this construction.

Lassos are useful at least for two reasons: the first one is that it is easy to compute the law
of their holonomy and the second one is that any reasonable loop can be decomposed in some
sense into a product of lassos. Let us begin with this second point.

There is a natural equivalence relation between paths, which is the following;:

Definition 2.3.2 Two paths are said to be basically equivalent if one of them can be written
c1C2Cy l¢s and the other one cic3, where cy, ¢y, c3 € PM. Two paths ¢ and ¢ are equivalent, and
we denote ¢ =~ ¢, if there exists a finite chain ¢ = cg,...,cn = ¢ such that any two successive
terms of this chain are basically equivalent.

Lemma 2.3.3 Let (; and (2 be two paths of PGM and suppose that {; ~ (3. Then H¢, = Hg,
P(z1,...,74)-a.s.

Proof. This is a consequence of the multiplicativity of the random holonomy. O

Let us define the class of paths that can be decomposed into a product of lassos.

Definition 2.3.4 A path ¢ € PM is said to have finite self-intersection if there exists a graph
I’ such that ¢ € T*.

Remark that this definition is not the usual one of finite self-intersection. Indeed, our definition
allows for a path a finite number of points and also a finite number of segments as auto-
intersection set. In particular, the proposition 2.2.4 shows that a piecewise geodesic path,
which is a concatenation of injective pieces of different geodesics, has finite self-intersection in
the sense of 2.3.4. .

The Riemannian metric chosen on M allows us to compute the length of a path c, that we
denote by £(c).
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Proposition 2.3.5 Let ¢ be a path with finite self-intersection.

1. If ¢(0) # ¢(1) then c is equivalent to a unique product ¢~ Iy ...l,c', where the l;’s are lassos
which are non equivalent to a constant loop and ¢’ is an injective path joining c(0) to c(1).
Moreover, if b; denotes the buckle of the lasso l; for each i, the following inequality holds:

o) > Zp:e(b,-) +£(c).
i=1

2. If ¢(0) = ¢(1), the result remains true after removing ¢’ of all expressions.

Proof. We proceed by induction on the number of edges in a decomposition of ¢ as a path in a
graph. If ¢ is an edge, we are in the first case and the result is true. Suppose that c =aq;...aq,.
If ¢ is an injective path or a simple loop, the result is true. Otherwise, the idea is to trace ¢
out until the first time it intersects itself. Let 7 be the smaller integer such that there exists
1 < j < i verifying a;(0) = a;(1). Such an ¢ exists, and (7, ) # (r,1). We have:

-1
c~ay...qj-1+a...0;-(@1...@5-1)7 +@1...Qj_1 Ciy]...0r.

It can happen that the first piece or the last piece of this decomposition are empty, respec-
tively if j = 1 or ¢ = r, but these two situations cannot coexist. If j = ¢ — 1, it is possible
that a; = aj'l so that aja; is equivalent to a constant path. This cannot happen if j < ¢ — 1,
in which case a;...a; is a genuine simple path. Thus, the product of the three first terms
is either equivalent to a constant path, or is a simple loop (if 7 = 1), or a lasso. The prod-
uct of the two last terms is the product of a number of edges which is positive and strictly
less than p. So by induction, this path € is equivalent to l;...l;c/, or to ly...l; if cis a
loop. Note that £(c) = £(a1) + ...+ £(a,) = £(c) + £(a;) + ...+ £(a;). So, by induction,
£(c) > £(b1) +...+£(bg) +£(c) +£(a;) +...+£(a;). In the case j = i —1 and aj = a] ', we have
¢ ~ ¢ and the result is true with a strict inequality. Otherwise, there exists a lasso Iy such that
¢ ~ lgc¢ and the length of the buckle of this lasso Iy is exactly £(a;) + ...+ €(a;). m]

a) /) , DO

Figure 2.1: a) A lasso. b) An example of decomposition.

2.3.2 Holonomy along small piecewise geodesic loops

In order to estimate the holonomy along a small lasso, we need, according to the proposition
1.8.5, to know the area enclosed by its buckle. This area can be controlled by the length of the
buckle using an isoperimetric inequality. We recall a classical fact about open covering of metric
compact sets. A proof can be found in [Ma].
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Lemma 2.3.6 Let M be a metric compact set. Let (O;)icr be an open covering of M. There
exists a positive real number R called Lebesgue number of this covering, such that for any ball
B of radius smaller than R in M, there exists an ¢ € I such that B C O;.

Proposition 2.3.7 There ezxist R > 0 and K > 0 such that any simple loop | contained in a
ball B of radius smaller than R is the boundary of an open set U C B such that

o(U) < Ke()2.

Proof. Let Ry be such that any closed geodesic ball of M of radius smaller than Ry is diffeomor-
phic to a disk. Let By,..., B, be a covering of M by open balls of radius Ry. Let us denote by
g the metric on M and go the euclidean metric on R2. For each i, there exists a diffeomorphism
#; : B; — D(0,1) C RZ. Since the metrics g and ¢*go can be compared on B;, the usual
isoperimetric inequality on D_(O, 1) gives rise to an inequality on B;, with some constant K;. Let
K be the supremum of Kj,...,K,. Let R be a Lebesgue number of the covering B, ..., B,.
Then the statement holds with this choice of K and R. O

Now we can estimate the holonoiny along a small lasso:

Proposition 2.3.8 There exist Lo > 0 and K > 0 such that if A is a piecewise geodesic lasso
whose buckle B has a length smaller than Lo, then

Ep(H)) = Ed(H, 1) < K£(B).

Proof. The lasso A can be written 80!, so thanks to invariance by conjugation of the distance
on G, we have Ep(H)) = Ep(Hpg). Let Lo be shorter than the shortest length of a loop non
homotopic to a point and also shorter than the radius R given py the proposition 2.3.7. Then
the hypothesis ¢(8) < Lo implies that 3 is the boundary of a small disk D. Using proposition

1.8.5, we get
]

Ep(Hs) < Cv/a(D) < K4(B).

This result suggests that it will be possible to prove regularity results for the random holon-
omy using the following distance between G-valued random variables:

Definition 2.3.9 Let X andY be two G-valued random variables defined on the same probability
space. The distance dp(X,Y) is defined by:

dp(X,Y) = Ed(X,Y),
where d is the bitnvariant Riemannian distance on G.

The first example of such regularity results is the following one:

Proposition 2.3.10 Let  be a piecewise geodesic loop of length smaller than Lg. Then

dp(H,1) < K£(()-
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Proof. Since ( is piecewise geodesic, it has finite self-intersection. So it is equivalent to a product
of piecewise geodesic lassos: ¢ ~ A;...Ap. This gives:

dp(He, 1) dp(H), ...H)‘p,l)

dp(H), .. .I{,\p,ff,\2 .. .H,\p) +...+ dp(H)‘p_lH,\p,H)‘p) + dp(H,\p, 1)
dp(Hx,1)+.. .+dp(H,\p, 1)

K(£(B1) + - .. £(Bp))

IA N IN A

2.3.3 Double layer potential of small piecewise geodesic loops

Using the same techniques as in the preceding pararaph, we will estimate the double layer
potential of a small loop. This is the first step in the proof of the proposition 2.6.8, that will
play an important role in the study of the Abelian theory.

Recall that the definition of the potential (see 1.9.6) depends on a Riemannian metric on M
whose Riemannian volume is equal to . For the moment, we only know that the potential of
any element of PM is in L?(M, o) (see theorem 1.9.11).

Proposition 2.3.11 Let ! be a lasso with buckle b. Suppose that £(b) < Lo, where Lo is the
length given by 2.3.8. Then
| wi ||z2< K£(b).

Proof. The length Ly is such that b is necessarily the boundary of a disk D whose area satisfies
o(D) < K£(b)%. Thus, by proposition 1.9.7,

Il us [lz2= (ﬁ%@y < (D)7 < K£(b).

Since u; = u; a.e., we have the result. a

Asin the preceding paragraph, this result can be extended to loops with finite self-intersection.

Proposition 2.3.12 Let ! be a loop with finite self-intersection and of length smaller than L.
Then
Il i |2 < K£(1).

Proof. Let us write that c is equivalent to a product of lassos: ¢~ ...l,. Two paths that are
equivalent have the same double layer potential almost everywhere, so that

ucllee < llwy + ... 4w, |22

< ey llze +-o o+ [l w, (22

< K(€(by) +...+4£(by)

< K(c). =
The fact that the propositions 2.3.10 and 2.3.12 are very similar will allow us later, in

proposition 2.5.3 for example, to transpose directly some regularity results about the random

variables H to the double layer potential.
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2.3.4 Topology on the space of paths

According to the proposition 1.8.5, it seems to be necessary to control the surface left between
two loops in order to control the distance between their holonomies. Given a Riemannian metric
on M, the uniform distance defined as follows:

doo(c1, c2) = inf sup d(c1(t), c2(t))
t€[0,1]

?

allows to control this surface, where the infimum is taken over all reparametrizations of ¢; and
Cy.

In the paper [Be], C. Becker says that the double layer potential of a loop depends con-
tinuously of this loop in norm L? when the set of loops on M is endowed with the topology
induced by the uniform norm. His proposition 3.2 depends on the validity of this assertion,
which is probably true if one restricts to simple loops, but not if one allows loops to have a
self-intersection, even a finite one. Let us describe a counterexample. Becker stated his result
on R?, but this does not change the situation very much. Let M be the sphere S? embedded as
usual in R3, endowed with the standard metric. Let us consider the pencil of planes (Pr)teo,4r)
containing the horizontal line 2 = 0,y = —1, indexed in the following way: denoting by C;
the intersection of $? with the lower half-space bounded by P;, we have ¢(C;) = t. For any
t € [0,47), denote by c; a loop based at (0, —1,0) whose image is the intersection of P; with S,
oriented negatively with respect to the z axis. Let 0 < ¢t; < ... < t, < 47 be n distinct times
and set c= ¢, ...c,. For each ¢, u;; = 1lc,, - :—;’r. Thus,

9 o (1. +tn)? ti4...+t
Il we “L2 = | 1Ct1 +...+1c, “L2 + 1672 - -2 ar - ’ ]'Ctl +...+1c, 12
n2t? n2t2
> n?ty 4+ —L - —n,
z nht 1672 27

Suppose that t; = 1 and ¢, = 2. Then || u. ||, is of the order of n, so it grows to infinity
when 7 tends to infinity. But at the same time, the loop ¢ tends to the constant loop equal to
(0,-1,0) in the topology induced by the distance do,. The potential of this constant loop being
equal to zero, this contradicts the continuity.

Therefore, it is necessary to endow the space of paths with a topology finer than that induced
by do if we expect some kind of continuity of the double layer potential and of the random
holonomy. It has emerged in the last paragraphs that the length plays a role in the continuity
results.

Definition 2.3.13 On the set of paths PM, we define the distance di by
dy(c1,€2) = doo(c1, c2) + [€(c1) — £(c2)|-

Proposition 2.3.14 The topology induced on PM by the distance d; does not depend on the
Riemannian metric chosen on M.

Proof. By compactness of M, two different metrics induce two equivalent Riemannian distances
on M and thus two equivalent distances d; on PM. O
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2.4 Approximation of embedded paths

We want to extend the definition of the random holonomy to all paths in PM, by approximation.
Since any path of PM is, by definition, a concatenation of embedded submanifolds of M, it is
natural to begin with those paths who are embedded submanifolds themselves.

2.4.1 Tubular neighbourhoods and Fermi coordinates

These paths have the following nice property: they possess a tubular neighbourhood that can
be described using Fermi coordinates. Let us fix a path ¢ which is an embedded submanifold.
The proof of the following result can be found in [Gy]. Let us fix a parametrization of ¢ and a
vector field N along ¢, unitary and normal to c.

Proposition 2.4.1 There exists a positive real number r such that the mapping

$:[0,1]x [-r,r] — M
(t,5) > exPy(y)(SNe(y))

s a diffeomorphism onto its image, which is called tubular neighbourhood of ¢ or tube around c.
The coordinates (t,s) are called Fermi coordinates. They satisfy:

1. For any fized to, the curve s — (to, s) is a piece of geodesic normal to c.

2. For any couple (t,s) € [0,1] x [-r, 7], d(¥(¢, s),¢([0,1])) = s.

We shall always assume that the radius of the tubular neighbourhoods that we consider are
smaller than the convexity radius Rps of M, defined in 2.2.3.

2.4.2 Piecewise geodesic approximation

The path c is fixed until the end of the next section, together with a tubular neighbourhood of
radius r.

Proposition 2.4.2 Let z,y, z be three real numbers such that 0 < z < y < z < r. There exists
a piecewise geodesic path o such that

1. 0(0) = 4(0,y) and o(1) = ¥(1,y),

2. o((0,1)) € ¥((0,1) x (=, 2)),

3. o is injective.

We construct o as an approximation of the path ¢, : t — 9(t,y), in the same way as one
would approximate a curve in R? by piecewise linear paths.

Lemma 2.4.3 Set é6,(c,) = sup d (cy (%) ) Cy (%)) . Then é,(cy) — 0.

0<k<n—~1 n—+00

Proof: The norm of the velocity of ¢ is bounded. (m]

For n large enough and for each £ = 1...n, the points cy(’c 1) and cy( ) are close enough
to be Jomed by a unique minimizing geodesm Cn,k that stays at a distance smaller than §,
of cy( ). We will always assume that n is large enough for this property to be true and set

Cn - Cn,l C n,n
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Lemma 2.4.4 Forn large enough, (, is the graph of a continuous function in Fermi coordinates.
More precisely, there ezists a continuous function ¢ : [0,1] — (—r,r) such that for each t €

[0,1], G (®) = #(t, (1))

Proof. It is sufficient to prove that each (, x is the graph of a continuous function defined on
kn;l, ;’i—] and that these functions can be put together to form ¢. Let n be such that §, < 5¥.
We show that (, stays inside the tubular neighbourhood of c.

The first point is that {, x cannot meet the horizontal boundary ([0, 1] X {-r,r}), because
this boundary is at distance r of ¢ and (, x stays at distance smaller than , +y < r.

The vertical part of the boundary ¥%({0,1} X [—r,r]) is made of two pieces of minimizing
geodesics, so that (, k, which is also minimizing, cannot meet twice one of these pieces without
belonging to the same infinite geodesic. This is impossible because the geodesics supporting the
vertical boundary meet c, only once.

The only way (, x could exit the tube around ¢ would be to exit through one piece of the
vertical boundary and get back through the other. Suppose that n is large enough for 4, being
smaller than 1d(¢({0} x [—r,7]), ¥({1} X [-r,7])). Then the situation described above cannot
happen, since any two points of the image of {, x are at distance smaller than d,. So, (, i stays
inside the tube.

Each vertical slice ¢ = to of the tube is a minimizing piece of a geodesic that meets c only
once inside the tube, so that it meets ¢, » at most one time. Thus, {, x is the graph of a smooth
function defined on the segment [kn;l, %], equal to y at both end points of this segment. All
these functions can be put together to make ¢, which is continuous. O

Proof of proposition 2.4.2. Choose n be large enough for (, to be the graph of a function in Fermi
coordinates and such that &, < inf(z — y,y — z). As a graph, (, is necessary injective, which is
statement 3. The inequality |¢(t) —y| = d(¢a(t), ¢y) < 6, shows that {, staysin ([0, 1] X (z, 2)).
Together with the fact that {, meets at most once each vertical boundary, this gives statement
2. Statement 1 is a direct consequence of the definition of {,,. So o = (, has all the properties
required. O

2.5 Random holonomy along embedded paths

We suppose that the surface of the tube is smaller than the constant s given by the proposition
1.8.5. We prove that the random holonomy along a piecewise geodesic approximation of ¢ con-
verges in probability to a random variable and that this limit does not depend on the particular
choice of the approximation. '

2.5.1 Existence of a limit random holonomy

For n > 0, set , = 5357, Yn = %#, Zn = 7w and let o, be a path given by the proposition
2.4.2. For each n > 0, let A\, denote the vertical segment joining (0,0) to (0,y,) and p, the
vertical segment joining (1, y,) to (1,0). Finally, set a, = A\,0npn.

Propositibn 2.5.1 The sequence of random variables (Ha,)n>0 is a Cauchy sequence with
respect to the distance dp.
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Proof. Let m > n be two integers. We want to estimate dp(Ha,,, Ha,) = dp(H, o1, 1)

But a e, is equivalent to a simple loop which is the boundary of an open set conta.med in
¥([0,1] x [0, %]). Thus, the assumption on the surface of the tube allows us to apply proposition

1.8.5. We get: ’
dp(Hom Hap) < Co (9 (10,11 [0,2])) < &

This proves the result. O

Figure 2.2: Definition of the sequence (ay).

The space of G-valued random variables on (£, A, P3) endowed with the distance dp is
complete: it can be isometrically embedded in a L! space by embedding G isometrically in some
R"™. So the sequence (Ha,)n>0 has a limit that we denote by H., anticipating the fact that this
limit does not depend on the choice of the sequence (a,). :

2.5.2 Unicity of the limit random holonomy

Lemma 2.5.2 For all € > 0, there exists § > 0 such that if o is an injective piecewise geodesic
path with the same end points as ¢, such that «((0,1)) C ¥((0,1) x (-r,7)) and such that
deo(c,a) < 8, then dp(H,, Hy) < €.

In this statement, it is not necessary to control |£(a) — £(c)| because o is assumed to be
injective.

Proof. Let C be the constant given by the proposition 1.8.5. Let n be such that dp(H,, H,,,) <
€/2 and Co(¥([0,1] x [~ 5=, %])) < €/2. Set § = z=r and suppose that deo(c,@) < §. Then
~ a meets oy, only at its end points. Thus a,a~! is the boundary of an open set included in
$([0, 1] X [~ £, 1), so that

dP(HC7 Ha)

IA

dP(HC’Han) +dP(Han7H )

3+ (¢ (00 3 :])

IA A
™

O

The control of the length of a allows to drop all restrictive conditions on «, unless those
concerning end points. The main result of this section is the following:
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Proposition 2.5.3 For all € > 0, there exists § > 0 such that if o is a piecewise geodesic path
with the same end points as ¢ and such that dy(c,a) < 8, then dp(H., H,) < €

Lemma 2.5.4 For all § > 0, there exists 7 > 0 such that if ¢ is another path such that
deo(c, ) < n, then £(c') > £(c) — 6.

Note that this result is not symmetric in ¢ and ¢’. Indeed, it is true that there exists 7’ such
that doo(c, /) < 7’ implies £(c) > £(c’) — 6, but 7 may be much smaller than 7 (consider for ¢’ a
- zigzag approximating a straight line for example). One could reformulate this result by saying
that for any sequence ¢, converging uniformly to ¢, liminf ¢(c,) > £(c).

Proof: Let n be large enough for the following inequality to hold:

n—1

)~ 3 d(e(8), e() < 3.

k=0

Let d be a pa,th With fixed parametrization such that dw(c,¢) < %. Then, on one hand,

£(c) > Z d(c k+13)). On the other hand,

d(e(), c(((k+1)/m) < dle(£), /(%) + d((£), ¢ (582)) + d(e(582), e(=42))
< o d(d(2), ().

Thus, £(c) > Zd(c(g), c(&tL)) — -g > £(c) — 6. We see that n = % is a possible choice. i
Proofof proposition 2.5.3. Denote by dp the distance between c¢(0) and ¢(1). Assume that
doo (0, ¢) is smaller than inf(r,do/5). Recall that r is assumed to be smaller than the convexity
radius of M (see 2.2.3).

The points a(0) and «(1) are respectively in the balls By = B(c(0),2d«(a,c)) and B; =
B(c(1),2doo(a, ¢)). These balls are disjoint, hence there exists a last time 7o at which « exits
By and a first time 7; at which it enters B;. The points a(m) and a(7;) are necessarily inside
the tube, for the points of M at distance smaller than r of ¢ are inside the tube or in By U B;.
In Fermi coordinates, we can write a(mo) = (o, o) and a(m) = (t1,51). Note that ¢; > 0 and
t1 < 1: otherwise, we would have |so| or |s;| equal to 2d (e, ¢).

Let 4o be the path that follows c from time 0 to ¢y and then the geodesic normal to ¢ from
(20,0) to (to, So). Similarly, let v; be the path that follows the normal geodesic from (¢;,s;1) to
(t1,0) and then ¢ from time t; to 1. We write a in the following way:

a= a|[0,-ro]70_1 * Yo7y, ] 71 * 71-104[7'1,1]'

The first and the third terms are small loops that we shall study later. Let us consider the
central term Yo[;, -,;71- It is contained in the tube around c and has the same end points as c.
Let us decompose it according to 2.3.5 into a product A;...A,€, where the );’s are lassos based
at ¢(0) and £ is an injective path between ¢(0) and ¢(1). It is obvious that de(c,§) < deo(c, @).
This tells us, by proposition 2.5.2, that H, can be made arbitrarily close to H, by taking d (c,@)
sufficiently small.



74 CHAPTER 2. CONTINUOUS YANG-MILLS MEASURE

Let us fix a positive € and §; such that d(c, @) < &, implies dp(H,, H¢) < /2. It is enough
now to control dp(H¢, Hy). :

dp(He,H,) = dp(He, H, 1Hy, ...Hy\ HeH

@jfo,m] o " on ,11)

p
< D_de(Ha ) +dp(Hyy, ooy D) +dp(Ho gy, 1),

=1

We are led to consider the random variables associated with loops with finite self-intersection.
According to 2.3.8, it it is sufficient to control their lengths. We already know by 2.5.4 that we
can have £(§) > £(c) — /8 provided &; and so de(c, &) is small enough. If we impose now that
di(c, a) < 8y, instead of do(c, @) < 8y, then we also get £(a) < £(c) +¢/8.

Then 0 < £(a) — £(§) < €/4. Let us denote by f1,..., 8, the buckles of the lassos Ay, ..., Ap.
By 2.3.5,

£(E) + D _€(B:) < £(%0) + £y m) + (1),

and so
- - £
D E(B) + Eleqompve ) + L0 ey,) < 5 +2£(70) +26(m1).-

T

Since £(vi) < 2do(c, @) + £(c([0,1]) N B;), the lengths appearing in the right hand side can
be made small by taking do(c, @) small enough. This is exactly what was needed to control
dp(Hg, Hy). This gives us a 62 such that dy(c, o) < 2 implies dp(H,, H,) < €. O

Corollary 2.5.5 Let (B,)n>0 be any sequence of piecewise geodesic paths with the same end
points as ¢ that converges to c. Then the sequence (Hg,) converges to H..

This proves that the variable H. does not depend on the particular choice of the sequence
of paths approximating c.

2.5.3 Continuity of the double layer potential (1)

Following step by step the proofs of propositions 2.5.2 and 2.5.3 and replacing statements about
- random variables by statements about the double layer potential, according to the remark made
at the end of paragraph 2.3.3, we get the following results:

Lemma 2.5.6 For alle > 0, there exists § > 0 such that if « is an injective piecewise geodesic
path with the same end points as c, such that a((0,1)) C ¥((0,1) x (=r,r)) and such that
deo(c,a) < 6, then || uq — uc ||g2< €.

Proposition 2.5.7 For all € > 0, there exists § > 0 such that if o is a piecewise geodesic path
with the same end points as ¢ and such that dy(c, ) < 8, then || uy — u. ||2< €.
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2.6 Random holonomy along arbitrary paths

2.6.1 Construction of the random holonomy

Let c be an element of PM. By definition, it can be written ¢ = ¢;...c,, where the ¢;’s are
embedded paths, but this decomposition is far to be unique. Nevertheless, we prove that the
random variable H., ... H., depends only on c.

Lemma 2.6.1 Let ¢ be a path. There ezists a sequence of piecewise geodesic paths with the
same end points as ¢ that converges to c.

Proof. Given a decomposition ¢ = ¢;...¢, of ¢ into a product of embedded paths, we con-
catenate sequences of paths that converge to each ¢; with fixed end points and get the required
sequence. i

Proposition 2.6.2 Let (an) be a sequence of piecewise geodesic paths that converges with fized
end points to c. The sequence (H,,) converges to the product H.,...H.,,.

The following corollary is in fact the main result of this paragraph.

Corollary 2.6.3 The product H, ...H., is independent of the choice of the decomposition of
¢ and it is equal to the common limit of all sequences (H,,) associated with sequences (o) of
piecewise geodesic paths converging to ¢ with fized end points. We shall denote it by H.,.

Proof of proposition 2.6.2. We cut a, in a way that corresonds to the decomposition of ¢. Let
us fix a parametrization of ¢ such that ¢; = Clrist, iy Let us also fix a parametrization of each
'p

oy, such that the uniform convergence d(c,a,) — 0 holds with these parametrizations. Set
Qi = On(izL ij- Let us show that for each ¢, o4, —3 Ci.
’ n—00

p'p
The first point is that deo(c;, @in) < doo(c, o) — 0, parametrizations being fixed. Now
n—roo

let us choose £ > 0 and n large enough siich that for all i = 1,...,p, #(ain) > £(c;) — £ (using
lemma 2.5.4) and (o) < £(c) + €. Then :

—~

< laip) —Lc) = Llan) = L) = Y (E(ajn) — £(c5))

i

S| ™

< 2e.

So we also have £(a; ) — £(c;) for all i. Consider now for each i and each n the path &,

which is @;, concatenated at both end points with a minimizing piece of geodesic in order to
have the same end points as ¢;. If n is large enough, a, is close enough to ¢ for these pieces
of minimizing geodesic to be uniquely defined. So, these geodesic segments cancel out in the
product & p, .. .0, Which is equivalent to @y, ...apn. On the other hand, we have &; , i) .

Indeed, the small geodesic pieces stay close to each ¢; and their length converges to zero. Thus,
the corollary 2.5.5 implies Hy, — H., which gives the result:
™ n—00
H,, = Hj

p;n"'Hal;n n:;o Hcp...Hcl. O
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2.6.2 Continuity of the random holonomy

At this point, we constructed a random holonomy along each path ¢ of PM. This random
holonomy is a G-valued random variable on the probability space (2, A, P(z1,...,%,)). Let us
state some of its basic properties.

Proposition 2.6.4 Let ¢, ¢y, c, be elements of PM.

1. H~1 = H? as.

2. The variable H, depends only on the equivalence class of ¢ for the relation ~.
3. If ¢1 and cy satisfy ¢1(1) = ¢2(0) then H.,., = H., H,, a.s.

Proof: (3) is obvious by putting together two decompositions of ¢; and ¢z and (2) is a direct
consequence of (1). To prove (1), just note that this is true for piecewise geodesic paths by

. . d _ d -
construction, and that if o, —3 ¢, then o;;! = ¢71. i
n—oo n—o00

We still have to prove that the law of this random holonomy does not depend on choice of
the Riemannian metric used in the construction. For this, we need a regularity property which
is the object of the next proposition.

Proposition 2.6.5 Let ¢ be a path of PM. For any € > 0, there exists § > 0 such that if ¢’ is
another path of PM with the same end points as ¢ and if di(c,c’) < &, then dp(H., Hyv) < €.

Proof. Let & > 0 be given by the proposition 2.5.3 such that for any piecewise geodesic path o
with the same end points as ¢, di(c, @) < 8o, implies dp(H., Hy) < €. Let § = %Q. Suppose that
c’ is a path of PM with the same end points as ¢ such that dj(c,¢’) < 6. Let o be a piecewise
geodesic path such that, simultaneously, dy (o, ¢’) < é and dp(Hy, H,) < §. Then di(c, @) < do,
so that

dp(H.,Ho) < dp(HyHy) + dp(Hqy, Hy) < €. =

Let us state a result that summarizes the results of the procedure of piecewise geodesic
approximation. It is in fact the center of the continuum limit procedure. We put together the
propositions 2.6.2, 2.6.3 and 2.6.5.

Proposition 2.6.6 Let ¢ be a path of PM. For any sequence (0n)n>0 of piecewise geodesic
paths converging to c with fized end points, the sequence (H,, )n>0 converges to a random variable
that depends only on ¢ and that we denote by H.. Moreover, ?or any € > 0, there exists § > 0
such that if ¢/ is another path of PM with the same end points as ¢ and if di(c,c’) < & then
dp(H;, H.) < e. -

2.6.3 Continuity of the double layer potential (2)

One more time, we transpose directly the preceding arguments to the double layer potential and
get the following result:

Proposition 2.6.7 Let ¢ be a path of PM. For any € > 0, there exists § > 0 such that if ¢ is
another path of PM with the same end points as ¢ and if di(c,c) < §, then || uc — uy ||[2< €.

Corollary 2.6.8 Let l be a loop of LM. For any € > 0, there exists § > 0 such that if I is
another loop of LM and if di(I,1') < &, then || u; — up ||z2< €.



2.7. LAW OF THE RANDOM HOLONOMY : 7

Proof. Let &g be given by the preceding proposition and set § = 2. Let I’ € LM be such that
di(l,1'y < 8. We have in particular d(I(0),7(0)) < 6. Let o be a m1n1m1z1ng geodesic from /(0)
to (0). Then U = ol'c™! satisfies uj = uy a.e. and dl(l ) < éo. Moreover, 1" has the same
end points as /. Thus,

| wr = wr || 2=l w — ug ||2< e =

2.7 Law of the random holonomy

For the moment, we are only able to write down the law of the holonomy along piecewise geodesic
paths. We want to show that the law of the holonomy along arbitrary families of paths with
finite self-intersection is what we expect it to be, namely that given by the discrete theory. The
goal of this section is to prove the following proposition:

Proposition 2.7.1 LetT = {a1,...,a,} be a graph on M such that Ly,...L, € T*. For any
function f continuous on GT, we have:

Ef(Hal,...,Ha,)=/GrfdP};.

A very important consequence of this result is the independence of the construction with
respect to the Riemannian metric:

Corollary 2.7.2 The law of the family (H.).cpm does not depend on the choice of the Rieman-
nian metric that was used throughout the construction.

Proof. Consider two families of variables obtained with two different choices of metric. By the
preceding proposition, these families have the same law on the set of paths that are piecewise
geodesic for, say, the first metric. By proposition 2.6.5, both families are continuous in a sense
that is strong enough to guarantee that their laws coincide on the whole set PM. o

In order to prove the proposition 2.7.1, we need a technical result about the approximation
of graphs by piecewise geodesic graphs. Before to state this result, let us make some remarks
about the edges and faces in a graph in M.

Recall that a path and hence an edge must by definition have non-zero derivatives at its end
points. This avoids pathological behaviours. For example, consider all edges that share a given
vertex of a graph and a small geodesic circle centered at this vertex. If the radius of this circle
is small enough, each edge cuts it only once, and the order of the intersection points, which does
not depend on the radius of the circle, defines a cyclic order on the set of these edges.

Now, consider two edges that are adjacent for this order. They bound at least one common
face. Thus, if M is oriented, a couple of adjacent edges determines a face of the graph (see
fig. 2.3). Conversely, given a face, any two consecutive edges of the boundary of this face are
adjacent at the vertex that they share, or eventually at both vertices if they share two.

Proposition 2.7.3 LetT = {ay,...,a,} be a graph such that L;,...,L, € I'*. For anye >0,
there ezists a graph T, = {a, ..., a,} with piecewise geodesic edges such that:
1. Tc and T’ have the same vertices,
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2. Foreachi=1,...,r, di(04,a;) <€,

3. Ly,...,Ly €T%,

4. Foreachi=1,...,7, a; and o; are in the same connected component of the complementary
of the unions of the images of the L;’s.

Let us denote by a : T* — 't the multiplicative map that sends a; to o;. It is possible to
construct ', in such a way that this map induces a one-to-one correspondence still denoted by
a: F([) — F(T.) such that 0a(F) = o(0F) and o(F — OF) < €, where — denotes the
symmetric difference.

az

ay
as

Figure 2.3: The face determined by two adjacent edges.

Proof. The property 4 is a consequence of 2 and 3. Indeed, if @; is in a given connected
component, @; meets this component if € is small enough, by 2. But «; could only exit this
component by crossing L; at a point which is not an end point of a;, which is impossible by 3
and by the definition of graphs.

Let V(T') = {s1,...,5p} denote the set of vertices of I'. Let r be a positive real number that
”localizes the vertices of I'”, i.e. small enough to satisfy the following properties:
1. The balls B(s;,r) are pairwise disjoint.
2. For every pair (a;,s;) with a; € T' and s; an end point of a;, a; meets only once and
transversally any circle centered at s; and of radius smaller than r. Moreover, the length of the
portion of @; in the corresponding ball is smaller than £/16.
3. For any pair (a;, s;) where s; is not an end point of a;, a; does not meet the ball B(s;,r).
4. The sum of the surfaces of the ball B(s;,r) is smaller than £/2.
5. r < /16 and r < Rps, where Ry is the convexity radius of M.
All properties remain true for ' < r once they are true for r, so that it is not a problem to get
them simultaneously. -

Let t be a positive real number such that o({d(-,T') < t}) < §. Let @; denote the portion of
~ a; outside the disks of radius r around its end points. Let § be the smallest distance between the
images of two distinct @;. For each 1, let 4; be an injective piecewise geodesic path with the same
end points as @;, such that d;(y;,@;) < inf(/4,6/2,t) and that never meets the balls B(s;,r),
except at its ends. This last condition can be obtained because a; cuts B(s;,r) transversally:
in a neighbourhood of each end point of @;, there is a half-tube around @; that does not meet
-B(sj,r). It is possible around each end point of @; to construct +; inside this half-tube. By
definition of §, the +;’s are disjoint.

Now define «; for each ¢ such that a; is not piecewise geodesic as the concatenation of the
minimizing geodesic from a;(0) to @;(0), of v; and of the minimizing geodesic from @;(1) to
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a;(1) (see fig. 2.4). Assumption 5 ensures. that these minimizing geodesics are well defined.
Assumptions 2 and 5 imply that dy (s, a;) < €. The edges of the decompositions of the L;’s are
already piecewise geodesic. Hence we only rename them, setting a; = a;.

The ¢;’s are edges. Moreover, they were constructed in such a way that they meet only at
their ends: we already noticed that they do not meet outside the balls around the vertices of
I, and they cannot meet more than once inside these balls according to the local properties of
geodesics. Thus, the graph I'c = {0y, ..., .} exists and has the same vertices as I'.

B(Shr)

Figure 2.4: Definition of the edges of the graph I..

We just proved that properties 1 and 2. Property 3 is true because we kept the edges
corresponding to the L;’s and property 4 follows, according to the remark made at the beginning
of the proof. It remains to prove the last part of the statement.

Consider edges of I" that share a given vertex. They are given a cyclic order. By definition,
the corresponding «;’s cut the circle of radius r around this vertex in the same order, so that
the multiplicative application o : I'* — T’ defined by @(a;) = c; preserves the cyclic order at
each vertex. “ '

Given a pair of edges of I that determine the face F, the pair of corresponding edges of T’ is
a pair of adjacent edges that determine a face of I'.. This face does not depend on the particular
choice of the edges that represent F and we denote it by a(F). By construction, we have the
relation d(a(F)) = a(0F).

The symmetric difference of F and a(F) is contained in the reunion of the balls B(s;,r) and
the sets {d(-,@;) < t}. By assumption 4) and by definition of ¢, we know that the total volume
of these sets is smaller than £. Thus, vol(F — F) < €. Moreover, this inequality characterizes
a(F) among the faces of I'. that have a(0F) as boundary, if there is more than one, provided
o(M) is greater than 2e. o

Proofof proposition 2.7.1. For each integer n, the preceding proposition gives a graph I'1 =

{o1ny-..,arn}. Foreachi=1,...,r, the sequence (a; ) converges to a; with fixed end points,
so that Hy,;,, — H,,. In particular, we have the convergence in law:

law
(Hal,n’ M '7Har,n) — (Ha11 sy Ha.,-)-

n—roo
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Thus, for any function f continuous on GT,

. 1
Bf(Hayy.oiHoy) = Jim — [ I | G
1
. 1 /
= (nlggo -ZT;) /G ] flg1,---,9r) F!j:[(r)pa(p)(hap) dvg, ...dvy, dg',

using the fact that o(a(F)) tends to o(F) when n tends to infinifty.

Recall from proposition 1.6.5 that the conditional partition functions computed in two
graphs, one being finer than the other, are equal. But given two piecewise geodesic graphs,
there exists a third one which is finer than both others, as was proved in 2.2.5. Thus the parti-

tion function is the same for all piecewise geodesic graphs, and the sequence (Z %‘) is constant.

Its value can be computed by setting f identically equal to 1: we find that it is equal to ZT.
This proves the result. O

By the way, we proved the following important result:

Proposition 2.7.4 Let I be a graph such that Ly,...,Ly € I'*. Then the value of the condi-
tional partition function Z¥ (zy, ..., z,) does not depend on T'.

2.8 Surfaces with boundary

At the beginning of this chapter, we restricted ourselves for technical reasons to surfaces without
boundary. In this section, we will extend the construction of the random holonomy to the case
of surfaces with boundary.

2.8.1 Natural law of the holonomy along the boundary

Let (M, o) be a surface with a boundary M = NyU...UN,. In order to construct the holonomy
along the paths of M, we shall embed M in a minimal closure and use the construction described
in the preceding sections. But if we want this procedure to give a result independent of the
closure of M, and we do, it is necessary to condition the holonomy along every component of
OM. If this was not our first intention, say if we expected only to impose the holonomy along
Nj, to be equal to z for example, we need to know the natural law of the holonomy along the
whole boundary under P(z). Then, we will artificially impose this natural law when working
on the closure of M. We begin by defining this natural law.

Let Li,..., Ly be disjoint simple loops on M whose image is included in the interior of M.
Let Nj,..., Ni be the components of M along which we want to impose the holonomy. Let
Tiy..-yTky Y1, .., Yq be elements of G. The k first elements correspond to the components of

OM, the q others to the interior loops.

Proposition 2.8.1 LetT be a graph on M such that Ly, ...,Ly € I'*. The law of the random
variable (AN, , ..., hn,, hr,, ..., h1,) defined on the probability space (GT, P(zy,..., Tk y1,- - 1Y)
does not depend on I'. We will denote it by B(z1, ..., Tk, Y1,---,Yq)-

Lemma 2.8.2 The propositions 2.7.3 and 2.7.4 hold on surfaces with boundary.
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Proof. Note that 2.7.3 implies 2.7.4, using the computation done at the end of its proof. Thus,
it is sufficient to prove that 2.7.3 holds. For this, embed M in a minimal closure M;. A graph
I on M induces a graph on Mj, which can be approximated by piecewise geodesic graphs. If
each component of M is the image of one of the L;’s, then the property (4) says exactly that
the approximating graphs stay inside M. O

Proofof proposition 2.8.1. Let us endow M with a Riemannian metric for which Ny,..., N,
Ly,..., L, are geodesics. The law of (An,,..., N, hL,,--.,hL,) does not depend on T provided
it is piecewise geodesic, by invariance by subdivision.

Now consider an arbitrary graph I'. According to the preceding lemma, we can approximate
it by piecewise geodesic graphs, for which the law we are interested in is always the same. The
convergence of the joint law of the holonomy along all edges proves the result. i

The lemma 1.5.2 gives us an expression of 3(z1,..., %k, Y1,-..,Yq). We state it here again.
Lemma 2.8.3 The following equality between measures on GP*? holds:

ﬂ(xlv"'yxhyl,'-',yq) =
Z(T1ye oy Thy Thpqr e vy Tpy Yty -+ -1 Yg)
Z(mh"'vxkvylw'-qu)

/ ’
6(x1,...,a:k) ® d$k+1 e d.’le ® 6(y1,...,yq)'
In the particular case where we do not want to condition the measure at all, the last expres-
sion is still true, with the convention that a conditional partition function without parameters
is equal to 1.

2.8.2 Definition of the random holonomy

Let M; be a minimal closure of M endowed with a surface measure o; that extends 0. We
see Nq,...,Np, Ly,..., L, as loops on M;. There is a measurable space (€;,.4;) on which we
constructed a family of measurable functions (H.)c.epm,. On this measurable space, we put the
following probability:

P = - P(ah, ...,z Yy Uh) d(B(Z1, -, Thy Y1y -+ 1 Ya)) (@15 e o3 Ty Y1y - -1 Yp)-
PTq
In other words, we insist on the law of (Hn,,...,Hn,,HL,,..., HL,) being the natural one
under P(Z1,...,Zk,Y1,---1Yq)-

We consider the restriction of the family (H;)cecm, to M, i.e. we restrict the index set to
PM.

Proposition 2.8.4 The law of the restriction (H.)cepm does not depend on My. IfT' =
{a1,...,a.} is a graph on M such that Ly,...,L, € T*, then the law of (Hg,,...,H,,) un-
der P, is the discrete Yang-Mills measure Py(21,..., Tk, Y1y-++1Yq)-

Proof. The regularity property 2.6.5 of the random holonomy on M is still true for its restriction
to M. Thus, the second assertion implies the first one, using the fact that any family of paths
on M, can be approximated by piecewise geodesic families.
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Let T be a graph as in the statement and f be a continuous function on GT.

EPIf(Ha1a°'-7Har) =/ d(ﬂ(xh-"7$kvy11--'7yq); LF f(gly---agr)

Grt+a ZMl(IEi, ...,Z';,,yi, . “’y‘ll
H Poy(F)(hoF) dvgs .. .dvgrdyy: .. . dvy dg'.
- FeF(T),FCcM,

In Mj, the loops Ny, ..., N, bound p disks Dy,...,D, which are the only faces of I' that are not
inside M. Thus,

’ ! / /
ZMy (T -y Tpy Y1y - - > Yg)

/;;1" H Po(F) (haF) Hpo‘1 (Ds) (hN.)

FeF () FcM i=1
/
vy, .. .dvgdvy .. .dvy dg

P
= Hpc,l(D'.)(wi)ZM(m'l,...,m;,yi,...,y;).

=1

Using this last relation, we get:

d(B(z1,. s ThyY1y---
Ep f(H,,...,H,) = f (Blas b9 yq»/ f(g1,---,9-)Diy
GP GT

7
+a ZM(yy - oy Ty Yo -+ Yg)
’
dl/a,r1 .o .dl/,_-;pdl/yi .o .dl/ya dg
’ ’ ’
_/ Z(T1y- oy Thy Thpqs -9 Tpy Y1y - -1 Yg) dzj,,-.-dz,
Gp-k Z(zl,---7$k1y17---qu) Z(zly-")xkyaz;c.;.l?”'7w;3’yla'°°1yq)

./Gl“ flg1,---,9,) D%y dvg, .. .duackduac;=+l cedugdyy, .. dyy, dg’

1

: r
= Z(xla ey Thy Y1y .-,yq) LP f(gl" '°7gr)DM del ...dVdeVyl o 'dyyq dg,

=P(x1,..-,-’£k7y1,---qu)(f)' =

2.9 Summary of the properties of the random holonomy

2.9.1 Existence, unicity in law and main properties

Let us summarize what has been done in this chapter. We started with a surface (M, o), with
- or without boundary. We choosed on M disjoint simple loops Ly, ..., L, whose image is either
a boundary component of M or contained in the interior of M. We picked g elements z,,...,2z,
in G. We almost proved the following theorem:

Theorem 2.9.1 There exists a probabilty space (2, A, P(zy,...,24)) and a family of G-valued
random variables (H.).cpm on this space, such that:

1. For any graph T’ = {ay,...,a,} on M such that Ly,...,L, € T*, the law of (H,,,...,Ha,) is
the discrete Yang-Mills measure PF (zy,...,2,) on GT.

2. For any path c of PM and any sequence (cn)n>o0 of paths of PM such that c, %—) ¢ with
- n—oo
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fized end points, we have H,, ——) H..

The law of this family of mndom varzables is uniquely defined by these two properties. Moreover,
it has the following properties:

3. If ¢ and cy are paths that can be concatenated to form cicy, then H; ., = H.,H., a.s.

4. If o : M — M s a diffeomorphism such that p.0 = o, then ¢ induces a permutation of the
set of paths PM and the families (H.)c.cpm and (Hy())cePm have the same law.

Proof. We already proved the existence of the family. When M has a boundary, the probability
space is that associated with a minimal closure of M. Let us prove the uniqueness in law. This
law is a probability measure on the set F(PM,G) endowed with the o-algebra generated by
cylinder sets. So it is characterized by its finite-dimensional marginals. Since any family of
paths can be approximated by families of paths in graphs, for example piecewise geodesic paths
for some metric, the law of the random holonomy along an arbitrary finite family of paths is
determined by properties (1) and (2).

Property (3) was already proved in proposition 2.6.4 for closed surfaces. For surfaces with
boundary, the construction by restriction of the random holonomy on a minimal closure obviously
preserves the multiplicativity.

Property (4) was proved at the discrete level in proposition 1.7.1. Since the law of the whole
family is determined by discrete laws, it is also true is the continuous setting. O

Given (M, o), L1,...,Lg, ©1,...,24, the l]aw whose existence and uniqueness is stated by
this theorem is a measure on (F(LM,G),C), where C is the o-algebra generated by the cylinder
sets. We shall denote this measure by po(zy,...,2,), or just yo if ¢ = 0. We keep the notation
(H_)cepm for the canonical process on the space (F(LM,G),C).

2.9.2 Disintegration formula

Consider a surface (M, o). Recall from proposition 1.5.3 that the conditional discrete measures
constitute a disintegration of the free discrete Yang-Mills measure. We want to extend this
result to the continuous setting. As usual, Ly,..., L, are loops on M.

Proposition 2.9.2 The map (z1,...,24) = po(21,...,2,) provides a disintegration of the mea-
sure po on (F(PM,G),C) with respect to the random variable (Hg,,...,HL,).

Proof. By construction, (Hz,,...,Hr,) = (€1,...,%) po(21,...,2,)-2.s. Let (c1,...,¢n) be a
family of paths of PM. We need to prove that, for any function f continuous on GY,

E;Lof(Hcl 3oy ch) = Lq Euo(a:l,...,zq)f(ch sy ch) dn(wh . '7zq)7

where 7 is the law of (Hf,,...,Hr,) under po. We already know that this result is true if
ci,...,Cp are paths in a graph. If they are not, we can approximate them in the d;-topology
by paths in graphs so that both expectations appearing in the formula converge. Since G is
compact, f is bounded and the dominated convergence theorem applies. O
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2.10 Yang-Mills measure

2.10.1 Definition of the Yang-Mills measure

In this paragraph, we will explain why and how the measure po defined in the preceding sec-
tion still has to be transformed in order to become something that might be called Yang-Mills
measure.

According to the formal description, Yang-Mills measure should be a measure on the quotient
space A/J of connections modulo gauge transformations. But an element of this space does
not determine a holonomy along each path on M that could be intrinsically represented by an
element of G. Indeed, the holonomy along an open path ¢, i.e. such that ¢(0) # ¢(1), can be
transformed into any other G-equivariant diffeomorphism of the fiber over ¢(0) into the fiber over
¢(1) by an appropriate gauge transformation. The fact that the law of the random holonomy
along an edge is always uniform on G could be thought of as a reflect of this geometric property.
This is why we will restrict to the set LM of loops on M instead of PM. Thus we will consider
the family (H;);ernm whose law is a probability measure on (F(LM,G),C), where we keep the
notation C for the o-algebra generated by the cylinders.

But it is still not true that an element of .A/J determines an element of G as holonomy
along each loop. Gauge transformations act by conjugation on the holonomy along loops. More
precisely, they conjugate in the same way the holonomies along loops based at the same point.
Let us denote by Ad the diagonal action of G on G™ defined by:

Ad(g)(91,---,9s) = (Ad(g)g1,---,Ad(g)gn)-

Orbits of this action will be called joint conjugacy classes and the joint class of (g1, ..., gn) will
be denoted by [g1,...,9n]- We can reformulate our observation by saying that an element of
A/J determines the the joint conjugacy class of the holonomy along all loops based at the same
point. Sengupta proved the converse of this statement (prop. 2.1.2 in [Sel] ):

Proposition 2.10.1 ([Sel]) Letw; and wy be two connections on M. Let mo be a point on M.
Suppose that along any finite family of loops l,...,1, based at mg, the joint conjugacy classes
of the holonomies defined by w; and wy are equal. Then w; and wy belong to the same class in

AlT.

Let the group F(M,G) act on F(LM,G) in the following way: if j € F(M,G), f €
F(LM,G) and | € LM, set

(G- £)®) = 30)) " f ()5 (1(0).

This action extends the action of a discrete gauge transformation. We can summarize our
observations as follows:

Proposition 2.10.2 The holonomy allows to define an injective map
A/T — F(LM,G)/F(M,G).

This result says that the quotient space F(LM,G)/F(M,G) can be viewed as an extension
of the space of connections modulo gauge transformations. We want to define the Yang-Mills
measure on this space. To begin with, we must define a convenient o-algebra.
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There is a set of natural functions on the quotient space: given = loops Iy, ..., I, based at the
same point, the joint class [Hj,, ..., H;,] is a well-defined function that we denote by #;, ;..
We will consider the o-algebra A generated by the set of these functions. Of course, we want to
be able to consider random variables associated with families of loops that are not based at the
same point. We claim that the o-algebra A allows to do this. Indeed, let I4,...,[, be a family
of loops that we rewrite (l1,...,4;),..., (liy+1,---,n), putting together the loops based at the
same points. Then we can define the variable H;,, .1, by

Higyn = Mgy s oo os Hlipptonln)

and this random variable is measurable with respect to \A. Remark that .A may also be seen as
a o-algebra on F(LM,G), invariant by the action of (M, G), since the functions Hi,, .1, are
also naturally defined on this space. Another natural choice for A would have been to consider
the F (M, G)-invariant sets of the cylinder o-algebra C. We shall discuss this point at the end
of this section.

Proposition 2.10.3 Let (M, o) be a surface. Let Ly,...,L, be disjoint simple loops on M
whose image is either a component of the boundary of M or contained in the interior of M. Let
(z1,...,%4) be an element of G¢. The restriction of po(z1,...,%,) to A depends on each z; only
through its conjugacy class.

Proof. The point is to understand how po(zi,...,24) is transformed under the action of
F(M,G). Similarly to what we proved in 1.5.4, if j is an element of F(M,G), then, setting
v = §(Li(0)), we have

j*P(iBl, . ')wq) = P(yflxlylv i '7yq_1mqu)'

Indeed, we already know that this equality holds when we evaluate these measures against
functions of the holonomy along paths in a graph, and we extend it to general measurable
functions by the usual approximation scheme.

Thus, the po(z4, ... ., z4)-measure of sets invariant under the action of F(M, G) depends only
on the conjugacy classes [z4],...,[zg]. ' i

We denote by ¢; the conjugacy class of each z;.

Definition 2.10.4 We call Yang-Mills measure on M and denote by p the image measure
of po on the quotient space (F(LM,G)/F(M,G), A), or equivalently the restriction of po to
(F(LM,G), A).

Similarly, we call conditional Yang-Mills measure with respect to L1, ..., Ly and we denote by
p(t1, - - ., tq) the image measure of po(z1, .. .,24) on the quotient space (F(LM,G)/F(M,G), A),
or equivalently the restriction of po(z1,...,zq) to (F(LM,G),A).

The first point of view keeps track of the quotient structure of the space .A/J. Nevertheless,
the second will often be technically more convenient.

Proposition 2.10.5 The map (t1,...,t,) — p(t1,...,t;) defined on (G/ Ad)? provides a dis-

integration of the measure p with respect to the random variable Hr,,...,Hr,.
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Note that since the L;’s are not based at the same point, the variables Hp,, ., and
(Hr,,-.-,Hr,) are equal.

Proof. Let (t1,...,t,) be an element of (G/Ad)? and (zy,...,2,) € G™ be such that [z;] = ¢;
for each ¢. Then ([Hg,},...,[Hr,)) = ([z1],-- ., [24]) po(z1,...,24)-a.5., 50 that

(Hryy-- s He,) = (t1,- -0 tg) plts, ..., t) — as.

By 1.5.2, we know that the law of (Hf,,..., Hr,) under uq is Z7YZ(z4,...,2,) dzy .. .dz,. We
also proved in 2.9.2 that ug is disintegrated by the po(z1,...,2z,), so that
1
po = — Z(z1,...,2q)po(21,...,24) dzy...dzq.
Ga
If we evaluate these measures on sets of A and use the invariance by conjugation of the condi-
tional partition function stated in 1.5.5, we find:

1
po = = | Z([z1),-.-, [z po([z1], - -, [24]) dz1 .. .dxg
Z Gq
1
= E Z(tl,...,tq),uo(tl,...,tq) dtl...dtq,
(G/ Ad)s

where dt is the image measure on G/ Ad of the Haar measure. The last equality restricted to
A-measurable sets proves the result. ]

2.10.2 Regularity properties

In order to study Yang-Mills measure, we need to say more about the set of joint conjugacy
classes G™/ Ad. We regard it as a set of compact subsets of G™ and endow it with the Hausdorff
distance, defined in general between two compact sets by

d(K1, K,) = inf ~d(k, k2), inf d(ky, k3)).
(K1, K?) S“p(k?‘é%kz’é’xz (b1, k2) ;gg’?k;gm (k1, k2))

Lemma 2.10.6 The canonical projection G — G™/ Ad is 1-Lipchitz.

Proof. Let (g1,...,9s) and (hy,...,h,) be two elements of G™.
d(lg1, -, 9n]s[h1y ..., hn]) = sup }zrelfad(Ad(g)(gl, .v-9n), Ad(R)(h1, ..., hy))

g€G
= ggfad((gh7gn))Ad(h)(h17,h'n))
< d((91y--++9n), (h1y...,hy)). O

As before, this distance on G™/ Ad allows to define the distance
dp(X,Y) = Ed(X,Y)

between G™/ Ad-valued random variables defined on the same probability space. The regularity
property 2.6.5 of the random holonomy becomes the following regularity property for the Yang-
Mills measure:
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Proposition 2.10.7 Let ((I1k,---,Ink))k>0 be a sequence of n-uples of loops such that

1. for each k > 0, the loops Iy k, ...l x are based at the same point,
2. for each i =1,...,n, there exists a loop l; such that I; k—d—1> l;.

—00
Then

dp
Hll,k w-:ln,k k::o %11 ,...,ln .

Proof. The loops I; are necessarily based at the same point, denoted by m. Denoting by mj the
base point of the [;;’s, we have m; — m. For each k, let z; denote an arbitrary path joining

m to my. Then for each ¢ zkli,kzk"l i) l; with fixed basepoint, so that

zkli k2

Since the projection on G™/ Ad reduces the distances, this implies

d
1] —P) [H]l,...,Hln].

H ~1,...,H -
[ zkllykzkl’ P zkln k2 k=00

The left hand side terin is equal to
[H'H,  H.,,....H'H, H,)=[Hy,,,....H,,],

so that the result is proved. m]

2.10.3 Remarkable subfamilies of random variables

We study two special subfamilies of random variables defined on (F(LM,G)/F(M,G), A, p),
using the results proved in the preceding paragraphs.

We begin by the family (#;)ierym. Each variable is G/ Ad-valued and this family satisfies a
very nice regularity property:

Proposition 2.10.8 Let | be in LM and (I,),>0 be a sequence of loops that converges to l.
dp -
Then H;, — H;.

This is the only situation where we can forget about end points. Unfortunately, this family
does not generate A, since it does not contain any information about joint conjugacy classes.

Now fix a point m € M and consider the set L,, M of loops based at m. We are interested
in the family (Hi,,...1,)1;eL.M- It has the same property as that stated in 2.10.7, the condition
on end points being always satisfied. What is interesting here is the following fact:

Proposition 2.10.9 The family (Hi,,...1.)i1:cL.M generates the o-algebra A.

Proof. Let ly,...,1l, be n loops on M based at a point m;. Let ¢ be a path joining m to m;.
Then the equality
HCI]C_I,...,CI,;C_I = Hll,...,ln

proves that it is always possible to get back to loops based at m. a
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This subfamily satisfies also a multiplicativity property. Indeed, the joint conjugacy class
of some elements of G determines the joint class of all products of these elements. For ex-
ample, there is a well defined map from G™/ Ad to G®"!/ Ad that sends [g1,...,gn-1,9xs] to
[91,-- -y 9n—2, gngn—-1]- The multiplicativity can be expressed by saying that for any /y,...,1, €
L., M, this maps sends almost surely H;, . 1, to Hi,, .1, il,-

Remark. Let us discuss the definition of the o-algebra A. For this, we consider the Yang-Mills
measure an invariant measure on the space (L, M,G), because in this setting, the action of
the gauge group is that of the finite dimensional group G. We use this fact below in order to
integrate functions over the orbits of this action.

We could have made another natural choice of an invariant o-algebra on F(L,, M, G), namely
that of invariant sets of the cylinder o-algebra C on F(L,,M,G). Let us denote by Cz this o-
algebra. It is clear that A C Cz and it is very likely that this inclusion is in fact an equality. We
prove that the completions A and C7 with respect to ups(z) are equal.

We use the separability of L,, M proved in the next lemma.

Lemma 2.10.10 Let M be a surface and m a point of M. The loop space L,, M endowed with
the d;-topology is separable.

Proof. We construct a countable dense subset of L,, M. The first point is that M itself is sep-
arable. Choose a countable dense subset Il C M containing m. Endow M with a Riemannian
metric such that @M is geodesic if it is non empty. Let Rps be the convexity radius of M: two
points at distance smaller than Rps are joined by a unique minimizing geodesic. Define A to
be the set of loops obtained by concatenation of a finite number of geodesic segments joining
two points of Il at distance smaller than Rps. The set A is countable because it is equipotent
to a subset of finite sequences of II. We claim that it is dense in L,,M. Indeed, any geodesic
segment of length smaller than Rps can be approximated by segments joining points of II,
since a small piece of geodesic depends continuously on its end points. Thus, the d;-closure of A
contains the set of piecewise geodesic loops and we already know that this set is dense in L,,, M.O

Let A C L, M be a countable dense subset. Let A® denote o(#y, ...\, € A). Let CA denote
o(Hyx, A € A) and (C?)7 denote the invariant sets of this o-algebra. It is clear that A C (CY)r.
It is also clear that A is a separable o-algebra. Finally, one easily checks that any atom of A2 is
contained in an atom of (C*)z. Thus, Blackwell’s theorem implies (see [DM]) that AL = (CM)z.

We use this equality to prove the inclusion C7 C .A which implies the result. The point is
that the continuity in probability of the map ! — #; and the density of A in L, M 1mply that
CA contains C and that AM contains s A. This last inclusion implies the equality AL = 4. Thus,
it is sufficient to prove that Cz C AR, Let f be a Cz-measurable function. As a C-measurable
function, it is pps(z)-almost surely the limit of a sequence (f,,) of CA-measurable functions. Let
us integrate these functions f,, over the orbits of the action of G on F(L,,M,G), using the Haar
measure on G. We get a sequence of (CA)I—measurable functions still converging to f. Thus, f

is measurable with respect to the completion (CA) = A and we get the result.



Chapter 3

Abelian theory

In this chapter, we continue the investigation of the case G = U(1) started in section 1.9. Recall
that we had reconstructed the random holonomy along loops homologous to zero in a graph,
using a white noise on M (see proposition 1.9.10). We extend now this reconstruction to all
cycles of M, using the unicity properties of the Yang-Mills measure proved in chapter 2.

Then we show that it is possible to proceed backwards, namely to extract a white noise on
M from the Yang-Mills measure on M, more precisely, using the random holonomy along very
small loops. This makes clear the relationship between the random holonomy and the white
noise in this Abelian case.

3.1 The random holonomy as a white noise functional

As usual, M may have a boundary OM = Ny U...U N,. Choose elements z,...,z, in U(1)
and set £ = z;...zp or z = 1 if M has no boundary. We denote by CM the set of cycles on M,
i.e. the set of linear combination of loops with integer coefficients and by CoI" the set of cycles
homologous to zero. The family of random variables (H;)iernm, that we used in 2.10 to construct
the Yang-Mills measure pp(z1,...,2;,), extends by multiplicativity to the cycles of CM and
gives rise to a measure on F(CM,U(1)). In this Abelian setting, the action of F(M,U(1)) is
trivial. '

We seek a result similar to 1.9.9, valid for all cycles on M. We begin by defining a family of
random variables using a white noise on M and prove later that it has the law of a Yang-Mills
random holonomy. ‘

Recall that we proved earlier that the holonomies along a system of loops representing a
basis of Hy(M;Z) are independent uniform variables on U(1), independent of the holonomies
along loops homologous to zero (see proposition 1.9.4).

3.1.1 Deﬁhition of the white noise functional

Recall that g denotes the genus of M. In order to define the double layer potential (see 1.9.6),
we need a Riemannian metric on M, that we choose such that the boundary of M is geodesic.
Let 44, ...,43, be piecewise geodesic loops such that

B = ([fl]v ey [Z2g]v [Nl]’ sy [Np—l])
is a basis of Hy(M;Z).

89
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Let ¢ be a cycle of CM. We can decompose it in Hy(M;Z):
[C] = )\1[61] + ...+ Agg[fgg] + [Nl] +...+ Vp—l[Np—l]-

Let Uy, ..., Uz, be 2g independent uniform random variables on U(1). Set

— ™M A2g 11 Vp—1
©.=U". Uzg gtz

There is a cycle ¢t of CoM, i.e. a cycle homologous to zero, associated with c, defined by
ct=c- ()\]_f]_ +...+ /\2gegg +urNi+...+ I/p_lN _1).

Recall that u,. denotes the doule layer potential of ct. The cycle ¢t is the boundary of a
2-chain o. We defined an element ojn(ct) of R (resp. R/Z) when M has a boundary (resp. no

boundary) by gini(ct) = K?_ll

Let W be a white noise on M, independent of the U;’s. Let T be a variable mdependent
of W and the U;’s, whose law is that described in proposition 1.9.5. Finally, denote by Wy the
projection of W on the hyperplane of zero-mean functions: for any function u € L%(M, o),

Wo(u)=W(u— ﬁﬁ/Mu da) .

We are able to define what will be proved to be a second realization of the random holonomy
along cycles. Denote by (2, P) a probability space that supports W, T and the U;’s.

Definition 3.1.1 For each cycle c € CM, define the following random variable on (2, P):

WH, = exp i(Wo(u,L) + int(c1)T) O..

3.1.2 Regularity of the new random holonomy

In order to prove that this family has the law-of the random holonomy, we will check that this
is true for a restricted class of paths, namely piecewise geodesic paths, and extend this partial
result by continuity. This is why we are interested in the regularity of this new family.

We begin by extending the distance d; to the space CM of cycles.

Definition 3.1.2 Let ¢ = nily + ...+ ngly and ¢ = nili + ...+ nl,1}, be two cycles on M,
written as combinations of loops. If k # k', set di(c, ') =1. If k= k' let (c, c') be the set of
permutations T € Sy such that n’ i) = M foralli=1,... k. Ifw(c,d) =0, set di(c,d/) = 1.
Otherwise, set

di(c,d) = inf Zn,dl l,,l,,(1

TE(c, c')

We will use proposition 2.6.8 about the continuity of the double layer potential of loops to
prove the next proposition. Recall that 2.6.8 was proved only on surfaces without boundary.

Proposition 3.1.3 Suppose that M has no boundary. Let c be a cycle and (cp)n>0 be a sequence

2
of cycles such that c, 4y ¢, Then U, L .
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Proof: Decompose ¢ as nily + ...+ nglg. Let N =ny +. + ng. Fix € > 0. For each [;, there
exists ; < 1 such that dy(},[;) < 6 implies || uy —uy “L2< zw for any loop ;. Suppose that n is
such that dj(cn, ¢) < inf é;. Then ¢, can be written nli+. ..+ ngl}, with Z nidy(l;,1]) < inf &;.
For each 4, we have in particular d;(/;,1}) < &;. Thus,

k kNe

I Uen = e “L2S;ng ll Uy — Uy ||L2<W~s -

The homology class of a cycle ¢ depends continuously on ¢, even for the distance d.,. Thus,
1 and hence u,. depends continuously on ¢, and, by continuity of the white noise which is an
isometry, the map ¢ — Wy(u L) is continuous for the L? norm when M is closed. We want to
extend this result to surfaces with boundary. For this, we study u. when ¢ is homologous to
zero.
Let M be a surface, with or without boundary and fix ¢ € CoM. Let z and y be two points
of M outside the image of ¢. If necessary, we modify locally the ¢;’s in a neighbourhood of z
in order to make sure that z meets none of them. Let £, be the boundary of a small disk D,
around z, small enough not to meet ¢ and not to contain y. The module H;(M — {z,y}) is
generated by [£1], ..., [€2g], [N1], ..., [Np=1], [€z], [€y). In M — {z,y}, we have the equality

for some p € Z. This equality also holds in M, where [c] = [€;] = [¢,] = 0, and this proves that
Ai =vj = 0. Thus, [c] = p[;] + ¢[¢,]) in M — {z,y}.

Lemma 3.1.4 With the preceding notations, u.(z) — u.(y) =p — q.

Proof: Recall the definition of the Green function G(-,-) from equation (1.9), and the value of
the double layer potential of small loops from proposition 1.9.7. The 1-form *dG; — xdG, is
closed on M — {z,y}. So,

uc(z) —uc(y) = /*dG, — *dG,

= p / +dGy — +dGy +q / +dG, — +dG,
4

z £y
= (s () ~ e (1) + a0y &) — 6, )
= (10,0~ 22— 15, + 20 ) + 4 (1, (0) - 10, )
= p-q o

Remark. If M is closed, then [{;] + [¢,] = 0 in Hy(M — {z,y}). In this case, p and ¢ are
defined up to an additive constant but the difference p — g is well defined.

Corollary 3.1.5 1. When M has no boundary, the double layer potential of cycles of CoM
does not depend on the choice of the metric.
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2. The potential u. is constant on each connected component of the complementary of the image
of c.

3. If My is a minimal closure of M and if we identify M with a submanifold of My, then for
any ¢ € CoM, the potentials uM and ulh M computed respectively in M and M, differ only by
an additive constant.

Proof: 1. The lemma determines the potential of any cycle of CoM up to a constant. When M
has no boundary this constant is determined by the condition | a Ue do = 0.

2. Given a fixed point yo, u.(z) —uc(yo) depends only on the homology class of cin M —{z, y},
which does not change if z stays in a given connected component.

3. Both functions 4™ and uM1,, satisfy the property shown in the lemma, with the same
values of p and ¢. Indeed, if [c] = p[€;] + ¢[¢,] in H1(M), then the same equality holds in
H{(M — {z,y}). Thus, they cannot differ by more than an additive constant. a

Proposition 3.1.6 Even if M has a boundary, the map ¢ — Wy(u.L) is continuous.

Proof: By property (3) of the preceding corollary,
1 1
M _ M _ .M M
UL o )/Mucl da_ch_IM —U(M)/MUCJ‘ do.

Together with 3.1.3, this shows that u,. depends continuously on ¢y. This was the only missing
point. O

Now we study the term oj,t(c), when ¢ € CoM. We will show that it can be extracted from
the double layer potential of c.

Lemma 3.1.7 Let ¢ be a cycle of CoM.
1. If M has no boundary, oint(c) is the element t € R/Z such that u. takes its values in Z —t.

2. If M has a boundary, consider My a minimal closure of M. Then oin(c) is equal to —%AA%Z
times the value of uMt at any point of My — M.

Proof: 1. Let z be a point of M outside the image of c¢. Denote by « a 2-chain such that ¢ = da.

Then
do
uc(x) -—L*dGz = /Q6$— ;—(m

I (e
= o) (mod1).

2. Let z be a point of M; — M. We have

i[5 4o _ ool __o(n)
2t0) = [ 8= S5 = ~tin) =o)L o

2
Let (cn)n>0 be a sequence of cycles of CoM such that ¢, — ¢. Since u,, L) 1. and since

all these functions are locally constant, there is pointwise convergence outside the image of c.
This implies:
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Proposition 3.1.8 The map c — oin(c) defined on CoM is continuous.
Finally, the map ¢ — O, is locally constant on CoM. We proved:

Proposition 3.1.9 The map ¢ — WH, is continuous from (CM,d;) into the space of square
integrable random variables on (Q, P).

The last property that we need is the multiplicativity:

Proposition 3.1.10 For any cycles ¢; and c; in CM,
WHC1+02 = WHC] WHC2 P— a.s.

Proof: This follows immediately from the following facts: ¢t depends linearly on c, the double
" layer potential is additive, the map ¢ — o(c) is also additive and the map ¢~ O, is multiplica-
tive. ]

3.1.3 Identification of the random holonomies

We are now able to prove the main theorem of this section:

Theorem 3.1.11 The family of random variables (WH.).ecm has the same law as the family
(Hc)eecm under ppr(zy, ..., p).

Proof: According to the unicity statement of the theorem 2.9.1 and to the regularity property
3.1.9, it is enough to prove the equality of the laws for piecewise geodesic cycles. Let I' be a
piecewise geodesic graph such that £;,...,¢2, € I'*. Recall that these loops generate the first
homology group of a minimal closure of M. Denote by Fj,..., F, the faces of I'. The arguments
developped in 1.9.1 explain why it is enough to prove the equality of the laws for the fundamental
system (El, oo °1£2g’ Nl, ey Np, 6F1, .o ,aFn)

On one hand, £ = ... = {3, = 0, so that WHy, = U; for all i = 1,...,2g. On the other
hand, Nt =...= N;'_l =0 and sz“ = N1+ ...+ Np. Thus, aint(N;;L) =1 and uyy is equal to
zero so that Wo(uN;.) = 0. This implies WHy, = z; forall j =1,...,p— 1 and also for j = p.
Finally, we already proved in 1.9.9 that (WHsF,,..., WHsF,) and (Hsr,, ..., Har,) have the
same law. This terminates the proof, since we know that (Hsf,,..., Har,) and (He,, .. .,'Hezg)
are independent under the Yang-Mills measure. O

3.2 Small scale structure of the Yang-Mills field

3.2.1 Extraction of a white noise

In the first part of this chapter, we explained how the data of a white noise on M and a bit
more alea allows to reconstruct the Yang-Mills measure. We proceed now backwards: we try to
extract a white noise from the Yang-Mills measure on a surface. In some sense, this amounts to
compute the curvature of a Yang-Mills random connection.
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As usual, (M, o) is given, as well as elements zy, ..., z, of G, associated with the components
of M and z = z; ...z, or z = 1 if M has no boundary. We denote by (s, pr(z1,...,2p))
the space of the Yang-Mills measure on M.

In order to study the measure at small scale, we construct on M a sequence of partitions in
the following way. Let (I'n),>0 be a sequence of graphs on M such that ', has exactly n faces
denoted by Fj,, j = 1,...,n. We assume that o(F},) = ‘-’@—Q and also that the diameter of
the faces decreases uniformly to 0, i.e. that for any metric on M sup; diam(Fj,) — 0. We fix
an orientation of M and assume that the boundaries of the Fj,’s are oriented with the usual
convention. For each couple (j,n) with » > 0, 1 < j < n, we denote the random variable HsF; ,
defined on (Qar, pm(21,...,2p)) by H;jn and see it as a C-valued random variable, identifying
U(1) with {z € C,|z| =1}.

For each n > 0, let E, denote the space of functions on M constant on each face of I',,.
Set Eo, = UpEy. The assumption on the diameter of the faces F;, imply that any continuous
function on M can be uniformly approximated by functions of F. Thus, F., is dense in
LY(M, o) and L?(M, o) with their respective usual norms.

In order to define a kind of white noise, we will proceed as for the construction of the standard
Wiener integral. We define a linear form I, on each E,,. Let f, be a function of E, and let f;,

be its value on F;,. We set
1 n
n) = ; Z;fj,n(ﬂj,n - 1)
]=

Theorem 3.2.1 Let f be a square-integrable function on M and (fn)n>0 a sequence of functions
converging to f in L% norm and such that f, € E,. Then the sequence (In(fn))n>0 converges
in L2(Qp, pm (21, - - -, Tp)) to a random variable I(f) that does not depend on the choice of the
sequence (fn). The law of this random variable can be described in the following way. Let W?

be a centered gaussian random variable with variance || f ||%g=|| f- ;(%5 Jar fdo |22, Let T be

a N(0,0(M)) random variable conditioned to take its values in exp~!(z), independent of W7.
Then, the following identity holds in distribution:

()= w9+ (T+ ) U—(}TI—)/Mfda. (3.1)

This proves in particular that the law of I(f) does not depend on the choice of the orientation
of M.

Proof: To prove this theorem, it is convenient to use the white noise realization of the Yang-
Mills measure. Let (2, P) be a probability space on which a pair (W, T) is defined, consisting in
a white noise W and a random variable T independent of W, whose law is that described in the
theorem. We do not need the variables U;, because we are only computing the holonomy along
loops that are homologous to zero. Set

1
Y],n—WlF'J, n—z}fgn, Jn—Y nsn.

We know by the theorem 3.1.11 that the law of the sequence (I.(f,)) can be represented on
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(2, P) by

i(Xj,n*'%) —_ .
(15 (et )

We will prove the theorem for this sequence. For this, we study the following Lagrange inequality:

n

j};lf (it >_1)-szJ, ( int = )+ Zf,, ( M+T)2
Zlfml

7=1

<

T?
Xjm+ —

(3.2)

We will often use of the following lemma:

Lemma 3.2.2 For each positive integer p, there exists a constant C, such that

EIX',nlp < 9_27_’_.
n?2

Proof: This is just a consequence of the fact that a centered gaussian random variable X of
variance t satisfies E|X|P = C’pti}’z for come constant C}, independent of ¢ and that X, has

variance ﬂ:—ll - ﬂﬂ%”—l O

We begin by showing that the right hand side term converges to zero in L%(Q, P).y

6
T
E|X;n + 2( )E[XMIS kE! | < n3’

so that

n 3 2 on 3 3
T T T

ZIfJﬂ"-l XJ, + = Z |fj,n||fk,n|E Xj,n+ ; Xk,n+;z‘
j=1 7k=1

< (jlipnll( it T ||Lz) (Z 'f””')

2
< Sl alf 20

Now look at the second order term of the left hand side of (3.2). Let my = d(—le Jog fn do

denote the mean of f, and f? = f, — my denote its zero-mean part. We will use several times
the fact that 3° f?, = 0. We have

Zf,n(X,,n+ ij, Xjn+ = )+ng(X,n+ Ty (3.3)

j=1 Jj=1
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Let us study the first term of this decomposition. In all estimations, C' denotes a constant,
i.e. a number that depends neither on j nor on n. It may denote different constants at different

lines.
n T n n
Z .gn(Xj,n + '7';)2 = Zfﬁn nt 22 X], T. (3'4)
Jj=1- Jj=1

The first term of the right hand side term can be written:

Z m J’“ Z Zfa, J,n_QZ YJ, Sn-

On one hand,

2
n 0 0|2

2
C n | C
) ’ 2
E f;)n in =F E : ;Lnn}{;?n = 527; I ],nl ” f')?. ”LG—wo) 0,

j=1 7=1

since £ Ian,nl2 depends neither on j nor on n.
On the other hand,

c

| YinSa I32= E(V,52) < n(EY2,) + BYf, < =

im S
implies

'n 0
I Z LEYnSn 2 < Z IYJ, Sn |lz2< oF | fa llze =2 0.

We proved that the first term of the r.h.s. of (3.4) tends to 0. To study the second one, note
that c

| X;aT 3= EX2, BT < 2,
so that

n
f° |
| § : L2 XjnT ||L2< 1 Xiim T ll2< I fJ,n llzs — 0.
\/— n—»oo0

We proved that the zero-mean part of frn does not contribute to the second order term. Let
us study the last term of (3.3).

n

a3 (Xin ) = e X S i T

j=1 j=1

We have 3. X;» = 0 a.s. and ﬂz'5T2 —» 0 a.s. . It remains

ngan_ngYz +Zng2 Qn_ =S
j=1

Since the law of S2 does not depend on 7, the two last terms tend to zero. In order to determine
the limit of the first one, we compute

z 2 1 2Y7 Cc 1 2 _C
B Y-y ZE ZE(an+—-%)=Zﬁ+n—z—§$ﬁ

Jj=1 7=1 j=1

,n
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Thus, .
& 1 2 . 1
D V=300 = D iy = i [ o
J=1

j=1

We are done with the second order term. We finish the proof by studying the first order one.

ZfJ, ( J,n+T> = Zfojaan,n+mnT

=1

= mnT-}-ZfJOn im

J_

= m,T+ W(Z fialF; )

=1
= (f°)+mnT—>Wf°+ /fda

We have proved that

This limit does not depend on the choice of the sequence (f,). Thus the sequence (I,(f»))
converges also to a limit I(f) that does not depend on the choice of (f,) and whose law is the
law announced in the theorem. m]

3.2.2 Meaning of the variable T

As a conclusion for this chapter, we will spend a few lines to suggest a geometric interpretation
for the variable T', whose meaning could -seem to be quite mysterious.

In a deterministic setting with a smooth connection w, a construction similar to that of the
map f — I(f) would have given the map:

£ /M fFw)

where F(w) is the curvature-2-form of w. As long as we consider zero-mean functions, the
comparison between this formula and (3.2) is in agreement with the heuristic principle saying
that the curvature of a Yang-Mills random connection is a white noise, as explained in the
introduction.

If we take the function f identically equal to 1 in the deterministic setting, we get the total
curvature f,, F(w) of the fiber bundle P on which w lives. This quantity is well known to be
independent of w and to be a topological invariant of P, namely its first Chern class. The
probabilistic counterpart of this total curvature seems then to be I(1) = T, droping out the
imaginary part. This discussion becomes really meaningful when M is closed, because P is not
necessarily trivial. We mentioned at the beginning of the discretization procedure in section
1.3 that we had lost any topological information about the structure of P. If we compute the
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“random Chern class” of P at the end of the construction, we find a weighted sum of all possible
Chern classes, with the smallest weights for the most complicated types of bundles. This was
already suggested by Witten [Wi].

On the other hand, we can change our point of view in the following way: we have an
expression of the random holonomy which depends explicitely on the Chern class of P. So if we
replace T by a deterministic multiple of 27 in the definition 3.1.1, we are able to construct a
random holonomy consistent with any prescribed type of bundle P.

3.3 Square-integrability of the double-layer potential

In this section, we prove the theorem 1.9.11. We claim that it is enough to prove the theorem
on closed surfaces. Indeed, we did not use the square-integrability of the double-layer potential
to prove the results 3.1.4 and 3.1.5, which show that the result on a surface with boundary can
be deduced from the result on a minimal closure of this surface. Thus, we assume that M is
closed.

Proposition 3.3.1 There exists Rp > 0 such that for all embedded path ¢ € PM such that
{(c) < 3R, the double layer potential u. of c is in L°(M).

This proposition implies obviously the theorem. It implies even more, namely that the dou-
ble layer potential of any path is in L*°.

Proof. The proof relies on three facts. The first one is that we know the divergence near the
diagonal of the Green function in an open subset of R2. The second one is that, according to
a classical theorem due to Gauss [Ch], any metric on M is locally conformally flat. The third
point is that the Green function is conformally invariant.

Since M is compact, the second remark implies that there exists a radius Rp such that any
geodesic ball of M of radius smaller than R is conformally flat. Let us choose an embedded
path c of length smaller than Rr/4. For each r > 0, we denote by B, the ball B(c(0),r). Since

£(c) is smaller than Rp/4, c is contained in B, 1Ry . Since the Green function G is smooth outside

the diagonal, u. is smooth outside B1 Tt is enough now to prove that it is bounded on B; SRy

for example. Set r = %Rp. . .
The values of u. inside B depend only on the restriction of G to B, X B,. On this set,
G satisfies AG; = 6, ——5 Our idea is to substract smooth functions to G until we get

something easier to compute than G itself. Denote by G° the solution of:
0_ __L_
GO( ) =Gz(y) Yy € OB:.
It is a smooth function inside B,. The function G! defined by G* = G — GP satisfies

{AG; =5,
Gl(y) =0 ¥y € 3B,.

So, G! is the fundamental solution of A inside B, with Dirichlet boundary conditions. We can
decompose u.(z) for any z in B, according to:

uc(z) = /*ng + /*dG; = ud(z) + ul(z).
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The first term is smooth and we are led to study the second. This is where conformally flat
coordinates are useful: we choose a local chart ¢ : U — B,, where U is an open subset of R?,
such that the pull-back of the metric g of M by ¢ is conformally equivalent to dz? + dy? on
U. The point is that ¢*G* is not only the fundamental solution of A,+, with respect to the
measure induced by ¢*g, but also the fundamental solution of Ag = 82 + 82 with respect to
the flat metric on U, by conformal invariance of the Green function. This tells us that ¢*G!
diverges like ;- logd(-,-) on the diagonal. In other words, there exists a smooth function G2 on
B, x B, such that ¢*G = L logd(:, ) + ¢*G2.

What we want is to prove that ul(z) is bounded inside B It is equivalent to prove that
ul o ¢ is bounded on U. But for any y € U,

wopl) = [+dGhy = [ 6.
¢=1(e)

Note that in this last term, the Hodge operator * is that of the metric ¢*g. It is not the
same operator as that of the flat metric on U. Fortunately, the fact that these two metrics are
conformally equivalent implies that their Hodge operators are pointwise proportionnal, i.e. one
is deduced from the other by the multiplication by a positive bounded smooth function. Thus,
it is sufficient to prove that y — f(p_,(c) *d<p"‘G21, is bounded, the Hodge operator being now that

of the flat metric. As already noticed, we can remove a smooth part of G' and keep only the

part
1

yp o *dlogd(y, ).

A short computation shows that 1/47 x dlogd(y, -) is nothing but 1/27 times the angle form df
of the polar coordinates centered at y. This allows us to estimate very easily the integral of this
form along a path.

For example, we know that the integral of this form along a simple loop is bounded by 1.
On the other hand, it is obvious and easy to prove by a direct computation that the integral of
this form along a straight segment is bounded by 1/2.

Consider the path ¢~!(c). It is injective, hence it is possible to transform it into a 51mple
loop by concatenating it with a finite number of segments. So, we can make the function that
we want to estimate to be bounded by adding to it a finite number of bounded functions. This
gives the result. O






Chapter 4

Small scale structure in the
semi-simple case

The theorem 3.1.11 shows that it is possible to construct the Yang-Mills measure in a short and
quite pleasant way when G = U(1), using a white noise on M as main ingredient. Is it possible
to do something similar in general? The works of Sengupta and Driver [Dr2, Sel, Se2] lead to
an ambiguous answer to that question. Indeed, in these works, the authors have constructed
random holonomies, starting from a Lie algebra-valued white noise on M. Nevertheless, the
family of loops along which they are able to define the holonomy is strongly dependent of a
particular choice of coordinates on M, as we explained in the introduction. We think that this
is more than a simple technical problem. Although there might exist some generalization of
the construction made in section 3.1, we will show that a white noise is probably not the right
object to start with.

Our idea is the following. Was it possible to realize the random holonomy using a white
noise, it would be possible to find a lot of information by looking at the random holonomy at
small scale, i.e. along very small loops. For example, the theorem 3.2.1 basically says that when
G = U(1), almost all the information about the holonomy along homologically trivial loops
is available at infinitesimally small scale. We prove that, when G is semi-simple, there is no
information at all available at infinitesimally small scale, at least when one looks at it in the
same way that we did in the Abelian case.

4.1 Statement of a zero-one law

We begin by stating the main result. The surface is (M, o) as usual. We assume that G is a
compact connected semi-simple Lie group, for example SU(2). We choose 21,...,7, in G and
consider the probability space (s, pam(z1,...,p)).

Let L be a simple loop on M which is the boundary of an open set D diffeomorphic to a
disk. For each n > 0, consider a graph on D which has exactly n faces F},,..., Fy , such that
o(Fin) = U_(NQZ for each ¢. This is very similar to the situation described in the section 3.2.

Was G Abelian, we would have the equality of cycles L = 0F;, + ...+ 0F, ,, provided
orientations are well chosen. This would imply Hr = HsF,, - --HaF, , and for any function f
continuous on G/ Ad = G,

E[f(HL)|MoF, n» - - - HoFn,) = f(HL).

101
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When G is semi-simple, the situtation is the opposite.

Theorem 4.1.1 For any function f continuous on G/ Ad, the following convergence holds:

2
E[f(HL)|Hor, ns- -y HoF, ) n—-L—‘;)o Ef(HL).

4.2 Proof of the zero-one law

4.2.1 Computation of the conditional expectation

In this section, we will compute the conditional expectation appearing in the statement of the
theorem, keeping n fixed. We abbreviate F; , in Fj.
For each F;, consider a sequence (L;)x>o of simple loops whose image is inside the interior

of F; and such that L; k—d3-> OF;. The proposition 2.10.8 shows that the following convergence
—00
holds in probability:
P
(%Ll PERE "HLn,k) — (’HaFm .- ‘7%3Fn)'
’ k—o0

Let f and f; be continuous functions on G/ Ad and (G/ Ad)™ respectively. This convergence
implies the following one:

ELf(HL) fu(Hor, - Hor,)] = Jim EUf(HE)fi(Heypn- - H,0))

We are led to the computation of the second expectation, keeping k fixed. We abreviate tem-
porarily L;x by L;.

We construct a particular graph on M such that L, Ly,...,L, € I'* (see fig. 4.1). Outside
D, it has only one face. Its support contains the components Ny,..., N, of 0M, paths cy,...,¢p
joining L(0) to the N;’s and simple loops ay,...,a4,b1,...,b, that represent a basis of the H;
of a minimal closure of M.

M D

Figure 4.1: Aspect of I" outside and inside D.

The boundary of the unique face outside D is L‘lclNlcl‘1 .. .cprc;l[al, bi]...[ag,by], where
[a,b] denotes the commutator aba~16~1 of a and b. This notation is the same as that of joint
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conjugacy classes, but the context will always make our meaning clear. Inside D, the support
of I' contains » paths dj,...,d, joining L(0) to the L;(0). These paths meet pairwise only at
L(0). Inside D, this graph has n + 1 faces: n whose boundaries are the L;’s and the last with
boundary Ld,L;1d;!.. .dlLfldl'l. We denote by t the surface of this last face and, for each
t=1,...,n, by t; the surface of the face bounded by L;.

We compute E[f(Hr)fi(HL,,---,HL,)] in this graph. It is equal to

1
Toa] o FOD ALY o Bz () o (1)
pe(hg R hay - hg AT haohi)po(ne) ([hs)  hay ] - - [yt s oA v B, - - B Ay ey BT

dvg, ...dvg,dg’

m L2(9+ﬂ)+p+1 f([g])fl([glL LERE) [ n])Ptl (gl) e Pty (gﬂ)

Py 97 01 -9 9 Yn9)Po (Do) ([ag, byl - - -[a1, ]2y  2p2p . 2T 21200
dg dg:...dgn dy,...dy, dz;...dz, day .. .day db; .. .db,.

We used the fact that under vz, ...v;,dg’, AN, = z; a.s. and hy and all by, h,, hs;, he; ha; are

uniform and independent. When & tends to infinity, each ¢; tends to ﬂngl and ¢t tends to zero.
So, according to 1.5.1, we can drop g and replace it by y7'gn¥n . .y; *g1y1. This terminates the
proof of the following proposition:

Proposition 4.2.1 The following equality holds:
E[f(HL)HoF nr -+ s HoFanl =

-1
</ Po(De)([ag, bg) - - -[a1, bl]zp“l:cpzp .. .zl_lxlzlyflKlyl U K Yn) dy,-dzida;db,') .

/f(y,:lKnyn .. .yl—lKlyl)pa(Dc)([ag, by] .. .[a1, bl]zglxpzp v mny KTy oy K )
‘ dy,-dz,-da,-db,-

where Ky, ..., K, are arbitrary representatives of HaF, ,,- -+, HoFn -

Since we are dealing with functions on G/ Ad, it is natural to use the theory of characters
on G. We give a very short account of the results that we will use. For a detailed presentation
of the subject, see for example [Br, Si].

4.2.2 Characters of a semi-simple Lie group

A representation of G is a smooth morphism of groups p from G into the linear group of some
C". The integer n is the dimension of p. Since G is compact, we may always assume that
p(G) is included in the unitary group. A representation is said to be irreducible if there are
no subspaces of C™ invariant by all p(g) except C™ and 0. Two representations p; and p;
of same dimension n are said to be equivalent if there exists a linear isomorphism ¢ of C"
such that p; o ¢ = ¢ o ps. . The character of p is the C-valued function X, defined on G by
X»(9) = trp(g). Two equivalent representations have the same character. In fact, this is also a
sufficient condition of equivalence. The usual properties of the trace imply that it is a central
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function on G, that is, x,(g) depends only on the conjugacy class of g. Since all representations
are unitary, the relation x,(9~!) = x,(¢9)* holds, the star denoting the complex conjugation.
Note that x,(1) = dim p. The main theorem is the following:

Theorem 4.2.2 (Peter-Weyl theorem) The set of characters of equivalence classes of ir-
reducible representations of G is an orthonormal basis of the space of central square-integrable
functions on (G, dg). Moreover, the algebra generated by this set is dense in the set of continuous
C-valued central functions on G endowed with the uniform norm.

According to this theorem, any continuous function can be approximated by linear combi-
nations of products of characters. But it is a fact that such combinations can always be written
as linear combinations of characters of irreducible representations. Thus it is sufficient to prove
our theorem when f is the character of an irreducible representation.

Characters satisfy orthogonality relations that give rise to useful formulas. We will mainly
use two of them.

Proposition 4.2.3 For any z,y,z € G and for any irreducible representation o,

| xelevein de = gxa@xa), (1)
/G2 Xa([@, b]z) dadb = mXQ(m). (4.2)

Let us endow G with its biinvariant metric normalized to have total volume equal to 1. This
metric gives rise to a Laplace operator on G. A remarkable property of the characters is that
they are eigenfunctions for this operator. More precisely, for any irreducible representation a,
there exists a positive real number c3(a) such that

Axy = —C2 (a)Xov

A nice application of these properties is the computation of the character expansion of the
heat kernel on G. Let us denote by G the set of classes of irreducible representations of G.

Proposition 4.2.4 The following equality holds in L?(G,dg) and also pointwise on G:
. 2@,
P = Zdlmﬁ e~z ‘xg.
BeG
Proof: We first prove the L% convergence. For any ¢ > 0, the function 23 is a central L? function
on G. Thus it admits a decomposmon
= Cst)xs

BEG
The differential equation (3A — 8;)p: = 0 implies that (c2(8) + 8:)Cp(t) = 0. Thus, Cs(t) =
Cp(O)e‘cz(ﬁ)%. The constants Cg(0) are determined using the fact that p; tends to é; as ¢t tends
to 0. It is easily checked that C3(0) = dim 3 is a convenient choice. Formally, it amounts to
check that 5 dim By = 4.
To see that the convergence holds pointwise, note that the expansion of ps is a series of

continuous functions that converges normally. Since p; is continuous, it is not only the sum of
this series in the L? sense, but also in the sense of the uniform convergence. m|
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4.2.3 Character computations

We go back to the big expression obtained in proposition 4.2.1. From now on, we fix an irre-
ducible representation & and put f = x,. We compute the numerator N,, of the conditional
expectation. The computations using characters presented in this section and the next one are
very close to those done by Witten in [Wi], when he expands explicitely partition functions in
order to compute the symplectic volume of the moduli space of flat connections.

We begin by developing the heat kernel p,(pc) using proposition 4.2.4. We get a sum over 3
of integrals of x, of something times xg of something else. We integrate over the variables that
appear only as arguments of xg, first a; and b1, and so on until a; and by, using (4.2). Each
integration against a; and b; produces a factor (di_mlm-f‘ Then we integrate against zq,..., 2,
using (4.1). Each integration gives a factor xg(z;)/dim 8. At this stage, the arguments of x,
and xg are inverse of each other. Using the relation xg(¢7!) = X3(9), we obtain:

14
. T, P _Cz(ﬁ) c * - - .
N, =) (dimg)'~%-P "2 (P )Hxa(xi)/G XaXp(Un Knyn - -97 ' K191) dyy .. .dy,
geG =1 "

We use the formal developement of the central function xax3 = ZWG@(XaXE, X~)12 X~- We have
now a sum over 3 and v but only X~ under the integral. We integrate against y;,...,y, using
(4.1). Note that the factor g — produced by the last integration cancels out with the remaining
X~(1) . We find

< ﬁ -
N, = Z (dim B)1~297P(dim v)~ (n=1) ¢~ 2o (D )(XQX‘@’X')')LZ HXﬁ HX—y(Kn)7 (4.3)
BeG =1 =1

with (XaX5, X222 = Jo Xa(9)X5(9)X5(9) d9 = (Xas X5X~) L2-
A similar and simpler computation leads to the following expression for the denominator D,

of 4.2.1:
D, =) (dim§)*~%P "¢~ 2o (D¢ )]‘[ X5 :c,,)H xs(K. (4.4)

BeG

Remark that it is equivalent to evaluate a character at K; or on Hsfr;. In order to prove the
convergence, we need to know the asymptotic behaviour of an expression like

1 n
@ gyt Lo ar)
The following result will be proved in the next section:

Proposition 4.2.5 For any 8 € @, the following convergence holds:

2(8)
WHX,@ (Har:) ——> dim B e™ 2 2 4(D).
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The inequality |xs(g)] < dim S shows that the sequence is uniformly bounded by dim 8.
This allows us to permute this convergence with the summation over 3. We get the following
L?-limit for the numerator:

P
. —9g—p 28 (pec . _20)
E (dlmﬂ)1 29-p =3~ 0(D°) l Ixﬁ(zp) (Xas XBX~) L2 dim ye™ "2 o(D)
BveG i=1

By the same kind of arguments that we used to derive the expressions of D,, and NV, it is easy
to check that this expression is equal to the following:

/ Xa (Q)Pa(D)(g_l)pa(Dc) (97 z1zy2t .. .zpa:pzp‘l[al, bi)...[ag, by]) dgdzida;db;. (4.5)
Gprt29+1

For the denominator, we find the following L2-limit:

P
: —20p —20) (D) +o
Z(dlmﬂ)2 29-pg="7 (0(D)+ (D))HXH(%),

which is equal to:
/G . pU(M)(zlmlzl_l o 2Ty Hay, by] . . . [ag, b)) dzidaidb; = Zy(zy,...,Tp). (4.6)
PT<9

Using the fact that p,(p) (7Y = Ps(D)(g), We see that the quotient of (4.5) by (4.6) is equal to
Exa(Hz). This proves the theorem, up to the proposition 4.2.5 that was admitted.

4.2.4 Zero-one law on the plane

In order to prove proposition 4.2.5, we begin with the following result, which can be seen as a
reformulation of the zero-one law when the manifold M is the plane R2.

Proposition 4.2.6 Let (B}):«cR, n>0 be a sequence of independent Brownian motions on G.
For any irreducible representation B of G and any positive real number T, the following conver-
gence holds in distribution:

1 - 7 law .. _2@
WEM( ) =% dimfe s T

This result is really the center of the whole proof of the theorem. It is the place where the
fact that G is semi-simple will be used, in the following way. Given a representation p of G, the
differential at 1 of p is a linear map from TG, the Lie algebra of G, into £L(C"). The following
statement is proved in Bourbaki (Lie, chap. I, § 6, N°2, corollary of the th. 1) [B2]:

Proposition 4.2.7 Let G be a semi-simple group and p a representation of G of dimension n.
Then

dlp(TlG) C 5[n(C),

where sl,(C) denotes the set of endomorphisms of C™ whose trace is equal to zero.
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Proofof proposition 4.2.6: We consider a Brownian motion (B;) on G and study the process
Xa(Bt). There is a convenient way to represent (B;), as a solution of a Stratonovich stochastic
differential equation [IW]. Recall that the data of a biinvariant metric on G is equivalent to that
of a scalar product on the Lie algebra of G, invariant by adjunction. Let (X3,..., X4ing) be a
basis of T7G orthonormal for this scalar product. Each X; is seen as a left-invariant vector field
on G. Let W1,... WdimG be independent real Brownian motions. Then the Brownian motion
on G satisfies:

{dBt=ZdlmGX Oth (4 7)
By=1 '
The meaning of this notation is that, for any continuous function f on G,
dimG
f(B) = +Z/Xf(B)dW’+ /Af
We apply this relation to f = xq. Using Xo(1) = dim & and Axy = —c2(@)Xxa, it becomes:
Xo(Bt) _ 1— c2(0‘) diaj X )dW1 c2(a) ( (Bs) — dim a) ds
dimo 2 d1m " iXa(Bs 2dima J, @ )
Set
2d1ma/( — dim @) ds,
dimG

Zy =

dlma Z / Xixo(B,) dW..

We keep the notation p(g) for the biinvariant distance d(1,g) when g € G. This p has nothing
to do with a representation of G !
For any X € T1G, we have:

dixa(X) = 4] tra(exptX) = trdia(X) =0,

dt t=0

according t0 4.2.7. Thus the differential of Xo at 1 is zero. This implies that |x4(g) — dima| =
O(p(g)?) in a neighbourhood of 1. Using the lemma 1.8.3,we get:

2

t
ElYy? = CE/(XO,(BS)—dima) ds
0

IA

t
Ct E/ |xa(Bs) — dim a|? ds
0

IN

t
Ct E/ p(Bs)* ds
0

t
Ct/ s? ds
0

Ct*. (4.8)

IA

IN
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Foreachi=1,...,dimG, the function X;x4 is smooth and X;x4(1) = 0. Thus, | X;xa(9)| =
O(p(g)) in a neighbourhood of 1. Thus,

dimG
E|Z} = CE Z / X,xaB)dW‘
dlmG 2
= C Z E|| Xixa(Bs) dW;
dlmG

= C Z E/ | Xixa(Bs)|? ds

CdimG/ Ep(B;)? ds
0
< Ct. (4.9)

The preliminary study of the process xo(B;) is now finished. We consider a sequence (B}})
as in the statement of 4.2.6, defined on a probability space (£2, P). We look at the product

IA

Xn= H 2 a) + Z1pn + Yi),

where the random variables with dlfferent exponents are independent. We would like to take
the logarithm of this product. This requires some precautions. Set

Q = {\Z;l/n+Y}/n < % Vi = ln}

A Chebishev inequality gives

1
P(th+Yt| < g) >1-9E|Z;+ Y>> 1-C#,

implying : CT2
n—+00

We do not change any convergence in distribution on Q if we replace X,, by 1 outside ©,. So
we set

)?n = X,lq, + 1gc.

Then Log)? is well defined, Log being the principal determination of the complex logarithm.
In fact, we have more than that. If n is such that <~ T is smaller than %, then each factor of

X, is of the form (1 - z) w1th |z| < 3. For such a z,we have |log(1 — z) + 2| < |2|%. Thus, the

equality Log(X,) = 1q, Zlog a)T + Z /n Y; /n) implies
T 2 | ca(a)T 2
Log X, + Z ( tm=Yim )| < 12, 2n) T/n = Yim| +
i=1 =1

"< cy(a)T
E T T/n YT/'n

=1

1Qc

n

(4.10)
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The last term tends to 0 in probability because P(£2;) tends to 0. Using (4.8) and (4.9), we

find
CT?
< YR

C2 (OZ)T

E 2m - Z’.zl’/n - YT/n

so that the first term of the right hand side of (4.10) tends to 0 in L! norm.
Now let us study the left hand side. On one hand, (4.8) implies 3, Y\ /n L 0, because

1Q

n
<D BVl <o

On the other hand, using 4.9 and the fact that EZ}., = 0, we also have 3, Zyn L, 0,

because

n ; C

=1

n 2
E ZZ}/n

=1

We deduce that Log 5(:,, converges in probability to —cl(z_jﬂ. This implies that )?n, and so
()T
X, converge in probability to e~ z . Finally, we get
()T
dim o X, B dim o e~ 22 ,
n—00

proving the proposition. m]

The proof of the theorem is almost finished. It remains to prove that the proposition 4.2.6
implies the proposition 4.2.5.

Proofof proposition 4.2.5: We set T' = o(D). Let F be a continuous function on R.

1 - 1 1 -
(amten)] - (e )

Pr/n(91) - -P1/n(90)Po(De) ([ag: b] - - -[a1, b1) 25 @p2p - - 27 012197 97 0 - - U 0 )
' dg;da;db;dy;dz;.

E

We develop the heat kernel p;(pc) and integrate against all variables except g1,...,g,. We find

1 . —oun 200 (Do) T
— N (dimy) "% D) oy (2p)
Z(wl,...,zp)é( ) ,1;[1 TP

1 - 1
A PR n) dgi . . .dgn
/Gn F ((dimﬂ)"—l ,-|=I1 Xﬁ(gz)) @m )T | IX'y ) Pr/n(91) - - -PT/n(9n) dg1...dg

The proposition 4.2.6 says exactly that this last integral converges to

F(dim fe~ % ”(D))dim'ye"%m”(m.
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Thus,
1 n
g [F ((dim By gx"(%aﬂ‘))] oo
p

_ 1 di 2-2g—p —EZQU(M)_______.1 (z;) F(di ﬂe—fzé—ﬁ)-a(D))
Z(ar,. o ay) 2 dim) ¢ (dim 7)1 L1 Xy (@e) Fdim

Lo ®p) 22 LR
Z((El,...,l'p) . _EZl_ﬁla-(D)
Z(wl,...,zp)F(dlmﬂe 2 )-

This proves that the announced convergence holds in distribution. We already noted that the
function xg is bounded on G by dim . So, the sequence that we study is uniformly bounded by

dim B. The result follows, since the convergence in distribution of a uniformly bounded sequence

to a deterministic limit implies its L? convergence. m]



Chapter 5

Surgery of surfaces

In this chapter, we study the effect of the surgery of surfaces on the Yang-Mills measure. This
means that we consider a surface M obtained by gluing two surfaces M; and M, together and
that we study the relationships between the Yang-Mills measures on M, M; and M,.

The first result is the Markov property of the Yang-Mills measure, which explains how the
random holonomy on a piece of M is embedded in the whole probability space supporting pas.
This corresponds to the operation of cutting a surface into smaller pieces and had already been
partially studied by Becker and Sengupta (see below).

The second type of results corresponds to the operation of gluing surfaces together: we
explain why the random holonomy on M is not generated by its restrictions to smaller pieces of
M and show how it is possible to reconstruct the holonomy on M using these restrictions and
some extra information.

Then, we study the conditional partition functions, which arose naturally in the first part of
the chapter. We show that they play the role of the transition functions of a Markov random
field and discuss to what extent they determine the law of the random holonomy.

5.1 Cutting surfaces

5.1.1 Markov property of the Yang-Mills field

The first problem is the following: given a surface M cut into two pieces M; and Mj, how is it
possible to deduce the Yang-Mills measure on M; and M; from that on M? We already met
this problem in the section 2.8 when we constructed the random holonomy on a surface with
boundary starting from that 6n a minimal closure of this surface. In fact, we already proved a
part of the theorem 5.1.1 in a special case.

This problem has been solved by Becker and Sengupta in the discrete setting, in [BS] (th.
3.1). The proof of the theorem 5.1.1 is inspired by this work.

It should be noted that the notion of Markov stochastic cosurface, introduced by Albeverio
et al. in [Al], is a general point of view on random fields like the Yang-Mills measure which have
the same kind of Markov property.

Let M; and M; be two oriented surfaces with boundary and denote 9M; = N;U...UN,, U
B1U...UB,, 0M; = NjU...UN, UBjU...UB,. We assume only that p > 0. In this chapter,
we always orient the boundary of oriented surfaces according to the usual convention. For each
i=1...p, let ¥; : B — B be an orientation-reversing diffeomorphism. Let M be obtained by

111
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gluing M; and M; along %1, ...,%,. Finally, denote by Li,..., L, p loops of LM whose images
are By = —By,..., B, = —B,,. We identify M; and M; with submanifolds of M.

The probabilty space that supports the Yang-Mills measure on M is (F(LM,G), A). Recall
that A = o(My,, . 1.,li € LM). There are two special sub-o-algebras on this space, namely
A; = o(Mi,,..inr Ik € LM;), i = 1,2. Note that a function f; on F(LM;, G) gives rise to a
function f; on F(LM,G) and that it is equivalent to say that f; is A;-measurable or to say that
fi is .Z,'- measurable. Thus, we identify A; and .Z,-, as well as f; and f;.

Theorem 5.1.1 The o-algebras A; and A, are independent on (F(LM,G), A, um) condition-
ally to the random variable (Hr,,...,Hr,). Moreover, let fi and f, be two measurable functions
on (F(LM;,G), A1) and (F(LM2,G),Az) respectively. Then the product fifa can be seen as
a A-measurable function on F(LM,G) and for any ti,...,t, € G/ Ad, the following equality
holds:

E#M[f1f2l7'lL1 =t1,.. "HLp = tp] = /“M(tlv .- '7tp)(f1f2) = UM, (t17 .. '7tp)(fl)/"'M2 (t17 .. "tp)(fZ)'

Finally, one can replace the measures pin, pipr, , pm, by their conditional versions with respect to
some variables among Hn,, ..., "N, , Hyg, - .,?{len and all statements remain true.

This theorem says two things. It says that the random holonomy on M; is independent
of that on M, conditionally to the holonomy along the common boundary of M; and M; and
it also says that the restriction to A; of the measure pp(ti,...,%p) is equal to the measure
g (t, - .-, tp), that is, the Yang-Mills measure on M;.

Figure 5.1: Two surfaces glued together.

Proof. Let I be a graph on M such that L,,..., L, € I'". Denote by I'; the graph induced by T’
on M;,:=1,2and by I's the graph induced on MyNM,. Let f1, f2, fa be three continuous gauge-
~ invariant functions defined respectively on GI't,GT2,Gl'e. We choose y = (Y1y---,Up,) € GP1,
¥ = (¥1,---,Yp,) € G and compute the conditional expectation Ep(,,)[f1f2|f5] under the
conditional discrete Yang-Mills measure P(y,y’) on GT, where each y; corresponds to N; and
each y; to N/. In order to avoid too long expressions, we use sometimes the following natural
abbreviations: z = (z1,...,2,), 71 = (:cl'l,...,m;l), dz = dz;...dzp, dvy = dvy, ...dv,,
dvy =dyy, ...dvy, , dvy = dvy .. .dVy;,2 .

5 1 !
./Gl“ fif2fa dP(y,y) = m/@ fifafo H Po(F)(hor) dvydvydg

FeF(T)
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1 1
= o N z 1 Ty ") dz / Dd rd dv..dad’
Zm(y,9") /c;p w2y) Z(@.5.9) Jor fif2foD dvydv,dv,dg

1
W/GP fo(2)Z(y,z,y) dz

! 1 T1\Te / I, T2\Tg
Z(y, x, y') Lra [/(:,'r'l \T le dVydg P2\ sz dl/y/dg de

The two last integrals are gauge-invariant functions on GTe. So, they depend only on the
values of hr,,...,hr, and we can drop the integration against dv; over GTe. Setting f; and f;
identically equal to 1, we get:

L) = g [ 1o(0) 200 0,207 )

But according to 1.5.2, the left hand side is equal to Zny(y,v")™! [5p fo(2) Zum(y, z,y7?) da.
Since the equality holds for any continuous function f5, the measures on both sides are equal.
We deduce the following important relation:

ZM(y7 z, y’) = ZM1 (y7 :E)ZM2(:E-1, yl)’

using which we see that [ fi fafs dP(y,y’) is equal to:

1
, D' dv.d 'Fx\l“a}
o ')/ fo(®)2(,2.¥) 7203 )[/Grl\rafl vdg i) (@)

—1—___ FZ /FQ\Fa
7@y [,/Gl“z\l‘a faD*? dvydg (z) dz
1

= m./ap f5(z) [/Grl f1 dPu, (y, z)] [/;;Fg fa dPMz(a:—l,y’)] Z(y,z,y) dz.

This proves the theorem for the functions f; and f;. If we choose a Riemannian metric on M
and use piecewise geodesic approximations of arbitrary paths, we can extend the last relation to
arbitrary functions measurable with respect to A;, Az and o(HL,,...,#HL,), which terminates
the proof. - ' O

It is worth stating separately the relation between conditional partition functions that was
established during the proof. -

Proposition 5.1.2 For all ¢ = (z1,...,2p), ¥y = (Y1,---+Yp,) and ¥’ = (¥1,---,Yp,), the fol-
lowing relation holds:

Zn (v, 2, 9) = Zar, (v, ) Zagy (€71, o).

5.1.2 An example

We give an example of this situation. Consider a closed surface M of genus two realized as con-
nected sum of two toruses. Let M; and M, denote the two halves of M. Set L = dM; = —0M,.
Let f; be a function on (F(LM;,G), A1) and f; a function on (F(LM3,G), A;). Then f; f2 can
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be seen as a function on (F(LM,G), A). We just proved that, for all t € G/ Ad, pup(t)(fif2) =
paty (B) (f1)pat (671) (f2)- Since ppr = fG/Ad pm(t)Zp(t) dt (see proposition 2.10.5), we get:

1

pm(fife) = 7o G/AdZM(t)NM(t)(ﬁfz) di

1

Z_ ZM1 (t)le (t) (fl) ZM2 (t_l):uMz (t—l)(f2) dt.
M JojAd

We rewrite this last equality in a more symmetric form:

Zaun(f) = /G o 20 Ot O(R) s 6™ s 671 1)

The point here is that the analytic objects that glue together in a simple way are not the
probability measures, but the measures with their natural weights.

5.1.3 Cutting a handle

The other situation that can arise when one cuts a surface along a circle is that the surface
remains connected. This is the second problem we want to investigate. As in the first section,
it is easier to describe the geometrical setting starting from the end.

Let M; be a surface with boundary M = Ny U...UN, U B; U B;. Let ¥ : By — B; be
an orientation-reversing diffeomorphism and let M be obtained by gluing M; along 1. Let L
be a loop whose image is B; = —B. Note that, in contrast to the preceding situation, M; is
not embedded in M, it is only immersed. Nevertheless, this immersion is enough to map LM,
into LM. So, a function f on F(LM;,G) can be seen as a function f on F(LM,G) and f is
measurable with respect to .A; if and only if f is measurable with respect to Ay = o(H,,...1,.,1 €
LM;). As before, we identify f and A; with fa,nd Al

There is no conditional independence in this case, but only a statement very similar to the
second part of the theorem 5.1.1. :

Theorem 5.1.3 Let f be a measurable function on (F(LM,;,G),.A1). Then for any uy,. .., up,t €
G/ Ad, the following equality holds:

g (U, - ooy upy ) (F) = gy (s -« oy gy £, 81 (F).

Proof. The proof is similar to that of theorem 5.1.1. Let ' be a graph on M such that L € I'™*.
Let I'; be the graph on M; that is mapped onto I' by the immersion of M; into M and such
that the diffeomorphism % sends an edge of I'; to another edge of I';. Let f be a continuous
gauge-invariant function on GT*. Let yy, ..., yp, = be elements of G. We abbreviate (y1,...,¥p)
by y, dvy, ...dvy, by dv,. We compute the expectation Ep(, ; ,-1)[f] under the conditional
discrete measure P(y,z,z~!) on G't.

-1 — l I‘1 7
Grlf dPy, (y,z,27%) = T o, D™ dvydvydv,-1 dg

dv,dv, -1
— Sttt 2Rl DI dv.dd'.
/Gl"a Zu, (Y, z,271) Jorivrs f S
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The last integral is a gauge-invariant function on GT®. So, it depends only on the value of hB,
and hp,. Since these values are equal, with the right orientations, this integral has the same
value as the corresponding integral over GT. Thus,

1

-1y _ r ’
GFIfdPMl(yﬁv,:v ) = T2 Jo fD" dvgdvydg
_ ZM y,a:

- ZM; Y, , z‘l)/ fdPM(y,IL‘)

= / f dPum(y, z).
GI‘

To see that the partition functions are equal, we just set f identically equal to 1. The theorem
is proved for f and we extend this partial result to the general case by the usual approximation
procedure, described in the proof of 5.1.1. ]

One more time, a very interesting relation between the partition functions arised, namely:
Proposition 5.1.4 For anyt,,...,t,,t € G/ Ad, the following equality holds:

Zmt,y - e tpy 6,871 = Zagy (t1y - - -y Epy B)-

5.2 Gluing surfaces

5.2.1 Gluing two surfaces together

In this section, we go back to the situation described at the beginning of this chapter: two
surfaces M; and M- are glued together along one circle to form another surface M. The circle
along which M; and M, are glued is the image of a loop L in M. We choose a conjugacy class
t € G/ Ad and consider the Yang-Mills measures ppz (t), pa, (¢71) and ppr(t). According to
the proposition 2.10.9, we can use the spaces of functions on based loop spaces to represent
these Yang-Mills measures: we fix the point m = L(0) and set Qp;, = F(LnM;, G)/ Ad, Qp =
F(LmM,G)/ Ad. The o-algebras A;, A2 and A on these sets are generated by the random
variables H;, .. 1, with l3,...,l, in L, M;, L, M, and L,, M respectively.

The theorem 5.1.1 says that the probability spaces (Qaz,, A;, s, (1)) are naturally isomor-
phic to two independent subspaces of (Qs, Anr, ar(t)). It is natural to ask whether these two
subspaces generate Q) or not, in other words whether the inclusion A; V A; C A is an equality
or not. Let us start with an example.

5.2.1.1 Study of an example

Consider two disks D; and D, glued together to form a sphere S with equator L. In order to
compare A; V Ay and A, choose l; € L,,D; and I3 € L, D;. The random variable #;, 11, is A-
measurable, but is it 4; V A;-measurable? The following informal argument answers negatively
to this question.

The random variables #;, 1 and Hp;, are respectively A;- and Aj-measurable. It seems
reasonable to believe that they provide the whole information about #;, 1, available in .A; V. A;.
Let us explain why they do not determine #,,,4,- For this, we take the example G = SO(3)
and describe more carefully conjugacy classes and joint conjugacy classes in G.
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If r € SO(3) is neither the identity nor a symmetry, it has an angle and an axis, which can
be oriented in such a way that the angle is an element of (0, 7). Thus, r has a half-axis and an
angle. This angle characterizes the conjugacy class of r (this is still true for the identity and

the symmetries). Now, consider (ry,...,7,) and (r{,...,r,) two n-uples of rotations that have
half-axes and angles (u;, §;), (u},6}). They belong to the same joint conjugacy class if and only

if ; = 6} for all = 1...n and if there exists a rotation R € SO(3) such that u} = R(u;).
The random variables H;, 1, and Hr 1, determine the angles of the three rotations and the
relative position of the half-axes of H;, and Hy, on one hand and Hy, and Hj, on the other hand.

N
> Hl2
~ ]

Figure 5.2: Lack of information about the joint class [Hr, H;,, Hi,] when G = SO(3).

But this is not enough to determine the relative position of the three half-axes (see figure
5.2). There remains an undetermined rotation around the axis of Hy. Algebraically, we know the
joint class [Hj,, Hr,, H,] up to the conjugation of Hj, by an element z such that z~'Hpz = Hy,,
that is, an element of the centralizer of Hy.

Now we claim that, under mild conditions on /; and [z, the variable H;, 1, is essentially
what has to be added to A; V Ay to get A. More precisely, the completion of the o-algebra
A1V A2V o(Hi,, 11,) with respect to the measure ups(t) contains A. The point is that, provided
H;,, Hr, and H;, have different axes, the variable H;, 11, determines the rotation around the
axis of Hy, that was missing. An algebraic proof of this fact will be given in the next paragraph.
The mild conditions on /; and I3 are the following: we need to be sure that the axes of H;,, Hp,
and H;, are almost surely different. This happens if the law of #;, i, has a density with respect
to the natural measure on G2/ Ad. This holds for example if /; and I, are small disjoint simple
loops, according to the computations of laws done in the first chapter.

5.2.1.2 The general case

In the general case, we follow the scheme of this example. The first important result is the
following:

Theorem 5.2.1 Set N =dim G —rankG+1. Let L3,...,L}; and L2,..., L% be disjoint simple -
loops of LMy and L., M, respectively, whose images do not meet the boundaries of My and
M;. Then the completion of the o-algebra AyV ApVo(Hpy | 11 112, 12) with respect to uy (®)
contains A. '
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Note that the value of N given in this theorem is an upper bound: it may happen, as in the
case of SO(3), that the result is true with a smaller number of loops.

The proof of this theorem requires some preliminary results. We choose on M a Riemannian
metric such that L is geodesic. This is not essential for the proof of 5.2.1 but it will be useful

at the end of this paragraph. The set of piecewise geodesic loops on M based at m is denoted
by PGL,, M.

Lemma 5.2.2 On the space Qypy, the o-algebra A is contained in A3, which is the completion
of o(Hx,,..an1 A1y e - oy An € PGL My U PGL,,, M3) with respect to pps(t).

Proof. By the multiplicativity of the random holonomy described at the end of section 2.10.3,
the holonomies along loops that are finite products of loops of L,,M; and L,,M; are A;;-
measurable. According to the continuity property stated in 2.10.7 and to the fact that the
holonomy depends only on the equivalence class of the loops, the result depends on the fact
that any loop of L,, M can be approximated by loops that are equivalent to finite products of
loops of PGL,,M; and PGL,,M,. Consider a piecewise geodesic loop of L,, M. This loop cuts
L transversally at most a finite number of times, hence it is equivalent to a finite product of
loops of PGL,,M, and PGL,, M;. Since any loop of L,,M can be approximated by piecewise
geodesic loops, the result is proved. ]

Lemma 5.2.3 Let G be a compact connected Lie group of dimension n and rank k. Set N = n—
k+1. There ecists a Borel subset Sy C GV of full Haar measure such that for all (gy,...,gN) €
SN, the closed subgroup of G generated by g1,...,g9n is G itself.

Proof. The key of this result is that almost every element of G is regular, i.e. generates a
maximal torus [Si]. Let g; be such a regular element. It generates a subgroup G; = T of G
of dimension k. If G; is a proper subgroup of G, then dimG; < dim G since G is connected.
Thus, the complementary of G; has full measure as well as the set of regular elements outside
G1. Let g, be such an element and Tj the torus that it generates. Denote by G the subgroup
generated by {g1,g2}. Denote by g1, g2 and t; the Lie algebras of G, G2 and T; respectively.
The fact that t; € g, and go D g1+t; shows that dim G, > dim G;. Repeating this procedure
N = n—k+1 times, we get a subgroup G which is equal to G. It is clear from this construction
that the set Sy of convenient N-uples has full Haar measure in GV. m]

Before to prove the theorem, let us recall that, by a classical result of Kuratowski [Ku], a
one-to-one measurable map between two Polish spaces sends Borel subsets to Borel subsets. We
will use this result several times in the sequel to prove measurability results.

Proof of the theorem 5.2.1. The assumptions on Li,..., L}, L?,..., L% ensure that the laws of
the random variables Hy1  r1 and Hpz 12 have densities with respect to the natural measure

on GV / Ad and hence are almost surely in Sy/ Ad. Pick p loops l4,...,I, in L, M; and g loops
1re- .,l; in L,, M,. We abbreviate by I,1’, L! and L? the corresponding families of loops.

We show that the random variables #; 11, H2  and Hp1 72 determine H;p if the values of
M1 and Hp2 are in S/ Ad. By lemma 5.2.2, this is enough to prove the theorem. We do not
even restrict ourselves to piecewise geodesic loops. Since H; is just a continuous projection of
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Hyp1,r2,0, it is sufficient to write this last variable as a function of the three given variables. For
this, we construct a map:

(GP x Sn)/ Ad xs,, (Sn x Sv)/ Ad x5, (Sy X G)/ Ad = (GP x Sy x Sy x G%)/ Ad.

The symbols x s, above mean that the map « is only defined on the set of elements of the form
(w1 r Upy g1,y - - -, GND, (90 - 1 O By - - o BN) [Py - - o Bvy w1, - ., 0g]) such that [gy,...,gn] =
l91,.--,95] and [hy,...,hn] = [RY, ..., A}].

We claim that it makes sense to construct « such that the image of such a triple is the
unique element [z1,...,Zp,71,.+., TN, 81, -+, SN, Y1, - - -, Yg] Such that, with compact notations,
[z,r] = [u, 9], [r,s] = [¢/,~'] and [s,y] = [h,v]. It is not difficult to see that such an element
exists: if z, and 2, are two elements of G such that Ad(z;)g = ¢’ and Ad(zp)h = A/, then
[Ad(zg)u, ¢’, h', Ad(z,)v] is a possible choice.

Suppose that [z, r,s,y] and [z/, 7/, §’,y] are two candidates. Since [z,r] = [z’, '], there exists
zr € G such that Ad(z,)z = z’ and Ad(z,)r = r’. Similarly, there exists z, such that Ad(z,)y =
¥ and Ad(z,)s = s'. Now, [r,s] = [r',s'] implies [r, s] = [Ad(z,)r, Ad(z;)s] = [Ad(z,2;1)r, 5]
This forces 2,2, to be an element of Z(G), so that Ad(z,) = Ad(z;) and the two candidates
are equal.

We have pps(t)-almost surely H; p1 r2p = k(Hy 1, Hp g2, Hizp), so that it remains only
to prove that x is measurable. To see this, remark that k™! is easier to define than x: it is a
restriction of three continuous projections defined on (GP x GV x GN x G?)/ Ad. Moreover,
since k is well defined, k™! is injective. Thus, by the result of Kuratowski mentionned above,
k™! sends Borel subsets to Borel subsets, which means exactly that x is measurable. O

Now we will take a slightly different point of view. When we studied the case of G = SO(3),
we said that the difference of information between A; V A and A seemed to be parametrized
by the centralizer of Hy. This is what we want to develop now. This will lead us to construct a
version of the Yang-Mills measure on M, using those on M;, M, and a uniform random variable
on C(Hp). Since the centralizer of an element of G does not depend only on its conjugacy
class, we must choose a fictive value of Hy, inside the class Hy =t in order to speak about the
centralizer of Hy. So, we choose ¢ € t and compute as if we knew that Hy, = z.

Lemma 5.2.4 There ezists a measurable section T : (t x GN)/ Ad — {z} x GV.

Proof. We use a theorem of Bourbaki (Topologie, chap. IX, § 6, N°9, th. 5) [B1], which says
that there exists a Borel subset R of ¢ x GV that meets once and only once each orbit of the
action of G. This subset R allows to define a section 7. To prove that 7 is measurable, consider
a Borel subset B C t x GN. The fact that 7=1(B) = p(BNR), where p: t xGN — (txGN)/G
is the natural projection, together with the result of Kuratowski mentionned above, shows that
7-1(B) is a Borel subset. Thus, 7 is measurable. O

From now on, we fix such a section 7. In order to justify the next construction, we
spend a few lines to explain how the random variable 1 7, ;> and the section 7 determine
almost surely a random variable with values in C(z)/Z(G). Indeed, suppose that Hy1 7 12 =

[u1,...,uN,,1,...,0N]. Set (z,41,--.,9N) = 7([z, w1, ..,un]) and (2, hy,. .., AN) = 7([z, v1, .

Then there exists z € G such that [Ad(z)g,z, k] = [u, z,v]. It is easily seen that z € C(z) and

.+, UN]).
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that the class of £ modulo Z(G) is well defined, provided u,v € Sny. The conditional indepen-
dence and gauge invariance of the measure pups(t) imply that the law of this variable is left and
right invariant: it is uniform.
The centralizer C(z) of = is a subgroup of G whose generic element will be denoted by 2
and on which we put the Haar measure dz. Choose elements u = (u1,...,up,) € (G/Ad)”,
/ /

v = (u},...,ul, ) € (G/ Ad)P2, corresponding to the boundary components of M; and M, and

cey Upy
consider the space

(Qr, AR, ur(u, t,u')) = (U, X C(2) X Uty A1 ®Bor(C(2)) @ Az, iy (u, ) ®dzQ@pm, (t—ly u')).

Our goal is to construct a family of random variables on this space whose law is the Yang-
Mills measure pas(u,t,u’). According to the lemma 5.2.2, it is sufficient to construct a variable
My, 0. o0 Qg for any Ay,..., A\, € PGLy My U PGLy M,. In what follows, we choose 2NV
piecewise geodesic loops Li,...,L, L3,..., L% as in the theorem 5.2.1 and keep them fixed.

Let i be fixed, equal to 1 or 2. For any subset £ of L,,M; containing L,L’i, .. .,Lj\,, the
spaces F(L,G)/ Ad and F(L,G) are endowed respectively with the o-algebra generated by the
function Hy,....1,, l1,...,In € £ and with the cylinder o-algebra. The two cases of main interest
are the case of finite £ and the case £ = L,, M;.

Proposition 5.2.5 For any subset L of L., M; containing L, L}, .. .,L]lv, the section T defined in
lemma 5.2.4 determines a measurable section oz : F(L,G)/ Ad — F(L,G) defined pr(u,t,v)-
a.s. such that for allw € F(L,G)/ Ad, os(w)(L) = =.

Proof. Set £' = L —{L,L},...,L%}. Let w = [h,hy,..., N, (h)iec’] be an element of (¢ x
Sy x G')/ Ad. Set (z,g1,...,9n) = 7([h, h1,...,hN]). Let (z,g1,-..,9N, (1)) be an element
of {z} x Sy x G*' such that [z,g1,..]= [k, h1,.. ). If (z,91,...,9N)GN41,---) is another such
element, then for each ! € L', we have in particular [g1,...,9N, 9] = [91,-- -, 9N, gj]. This implies
that g] = zg;2~! with z € C(g1)N...NC(gn) = Z(G) the center of G, so that g; = g;. This proves
that the section 7 extends uniquely to a section o : (t x Sy x G*')/ Ad — {2z} x Sy x G*'.
Since the random holonomy along Li, ..., Ljv has a density with respect to the Haar measure,
the set (t x Sy x G*') has full up, (t)-measure in F(L,,M;,G)/ Ad.

It remains to prove that o, is measurable. For this, we show that each coordinate of o is
measurable. For the N + 1 separate coordinates, this follows from the measurability of 7. For
lo € L', we write the lp-th coordinate o, as a composition of mappings:

(t x Sy x GF)/ Ad 2 Sy x (Sy x G)/ Ad == Sy x G =% G,

with u([R, b1, ..., N, (B)ice]) = (91,. -+, 9N, [P1, ..., AN, hig]), Where we set (z,g1,...,9N) =
T([h7h17°"’hN])’ v(glv "°7gN7[h17' °')hN1hIo]) = (glv"'ygN)glo) and w(gla "'agN,gl) = 4qi.
Since u and w are obviously measurable, it is sufficient to show that v is measurable. Note that
v is bijective. We consider v~! and prove that it maps a Borel set to a Borel set, using for the
third time the same result of Kuratowski. The first point is that v~! is continuous. The second
point is that Sy X G is a Borel subset of the Polish space GN*1, 50 that the theorem applies
and proves that v is measurable, finishing the proof. O

By construction, the sections o satisfy the following interesting property: if £, and L are
two subsets of L, M; such that £; C Ls, then o, and o, coincide on £;. This means that
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any element w € F(L3,G)/ Ad determines by restriction an element & € F(£;,G)/ Ad and that
0, (W) = 01, (@)

We are now able to define variables H on Qpr. We use the notations oy = or,,m, and
o2 = or,.M,. Choose Ay,..., Ay € Ly My and A|,..., A, € L, M,. Choose wg = (w1, 2,ws) in
Qp. We set

y, (WR) = [01(@1) (A1), - 01 (@1) (An), 27 02 (w2) (M) 2, - . ., 27 02 (w2) (M) 2]

The fact that we choosed piecewise geodesic loops will only allow us to compute the laws
of the variables H during the proof of the following theorem, which is the second important
statement of this section:

%Alv 1)\117)‘11 R

Theorem 5.2.6 The family of random variables H has the same law as the family H under the
Yang-Mills measure ppr(u,t,u’) on M.

Proof. The first point is that the law of the whole family of variables ’H is characterized by the

individual law of each variable. Indeed, the law of a finite family like (7‘[11 el 2 ’H,p Ipp) is
just the projection on G™ /Ad x ... x G™/ Ad of the law on G™++7¢ / Ad of ’H,x ...... 2,
Let Aq,..., A, be loops of PGL mMy and Aj,..., X, be loops of PGL,,M;. Let f be a

continuous function on G™**'/ Ad.

EUf By, ppip,) / 1@ A, -+ o1 (@) (M),

27 og(w2)(A) 7, . ., 27 oa (wa) (M) 2) dpr(wy, z,ws).

By the preceding remark, o (w;)(\:) and o2(w2)(A;) depend only on the restrictions of wy to £1 =
{L,L3,..., LY, Ay, ..., A0} and of wy to Lo = {L,L3,..., L%, \},...,AL,}. In other words, the
expectation E[f(H), . M, ,)] appears to be a function of the variables My 11 11, .
and Hp rz 12 ar K it is equal to

/Q floes(Mrpt, pid ) Qs M) 27000, (M2 rzx,v (AL -0 An)2) dpr (w1, 2,02).
R

Let 'y and I'; be graphs on M; and M; such that Ly,...,Ln,A1,..., A €T and Ly, ..., Ly,

Ayeeny ,\;, € I';. Such graphs exist because we chosed piecewise geodesic loops. Then the last

expression is equal to

f(aﬁl(hi,h},, hL1,h,\l,...,h}\")()\l,...,kn),

z- Uﬁ?(hL’hLQ’ th ,h /l,...,hi;l)(/\i, .y n/) )dPMl(y,af)dZdPMz(y, 1).

,/Gf‘l xC(z)xGF2

Since Al = z Py, (y, z)-a.s., there exists a C(z)-valued random variable z; on GI* such that
UCl(hL7hL1’ hLl ’h/\17""h§\n)(A1"" A )—le(h/\l, h}\n)ZI.
Similarly, there exists a C(z)-valued random variable z; on GT such that

UC2(h%,h§€, hL2 ,h/\l, hz, )( , o :1,) —22 (hzi,...,h?\:‘,)zz-
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The integration against dz allows to drop z; and 27, using left and right invariance. Thus, the
expectation that we compute is just equal to

/Gf‘GC( < f(hf\l,...,h}\n,z_lh?\iz,...,z'lhiglz) dP, (y, a:)dzdPMz(y',:c;l).
T

Let us fix the variable z. Let j be the discrete gauge transformation on I'; equal to 27! at

L(0) and identically equal to 1 elsewhere. This transformation preserves Pz, (y’,z!) because
z € C(z) and it transforms 271h2,z into h%,. We find

_ / dz / F(RL,, o B B3 B3 ) AP (v, 2)dPag (o, oY)
C(z) GF1xGr2 ! nf
= EuM(y,y’,z)f(%/\l,...,)\n,/\’l,...,/\;,)

according to the property of conditional independence. O

5.2.2 Making a handle

To complete the picture of the properties of the Yang-Mills measure with respect to the surgery
of surfaces, we consider now the situation decribed in section 5.1.3 and look for theorems similar
to 5.2.1 and 5.2.6.

We keep the notations of 5.1.3. Recall that we glue together two components of the boundary
of a surface M; to get the surface M. We denote by ¢ the natural immersion of M; into M and
by L a loop on M whose image is +(B;) = —t(B;). Set m = L(0) and define m;, m; to be the
preimages by : of m on B; and B; respectively.

M1 Bl Bz L - M

Figure 5.3: The new handle of M.

As in the preceding section, it is convenient to use based loops spaces: we set Qp =
F(LmM,G)/ Ad and Qpr, = F(Lm,M1,G)/ Ad. The o-algebra A; on Qp, can be seen as
a sub-o-algebra of A and we want to study the inclusion A; C A.

Let us fix a path ¢ from m; to mg on M;. Although c is an open path in M, it becomes a
loop on M, so that the holonomy along c is well defined on Qs but certainly not .4;-measurable.
Once again, there is some information about #, in .A; but there is also something missing, which
is closely related to the centralizer of Hy. Indeed, denote by L and L’ two loops based at m;
and m; and whose images are B; and — B, respectively. Since the holonomies along L and L'
must be equal after the gluing procedure, we choose arbitrarily an element = € ¢ and compute
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as if H, = Hy» = z. The variable H, .1/.-1 is A;-measurable and determines to some extent the
holonomy along c: we interpret its value as that of [z, H 'z H.] and this determines the value
of H. up to left and right multiplications by elements of the centralizer C(z).

The result corresponding to the theorem 5.2.1 is the following:

Theorem 5.2.7 Set N = dimG — rankG + 1. Let Ly,...,Ly be disjoint simple loops of
L, M, that do not meet 0M;, except at their base point. Then the completion of the o-algebra
A1V o(Her,,. Ly) with respect to the measure pp(t) contains A.

We endow M with a Riemannian metric such that L is geodesic and choose Ly,...,Ly
piecewise geodesic for this metric. This metric on M induces by pull-back by 2 a metric on M;.
We need a result similar to the lemma 5.2.2.

Lemma 5.2.8 On the space Qy, the o-algebra A is contained in the completion of the o-algebra
(M, hms ALy ooy An € (PGLy, My U {c})) with respect to the measure pup(t).

Proof. Just as in the proof of 5.2.2, the point is to prove that any loop of L,, M can be approx-
imated by loops that are equivalent to finite products of loops of ¢(PGL,,, M1 U {c}). Consider
a piecewise geodesic loop. Since it cuts at most a finite number of times L transversally, it is
equivalent to a finite product of loops of PGL,,M that are the images by 2 of loops based at
my or at mg or of paths with endpoints m; and mjy. Conjugation by ¢ or left or right mul-
tiplication by c transform all these paths on M; into loops based at m;, hence the holonomy
along our piecewise geodesic loop can be expressed in terms of the holonomies along the path
of (PG Ly,, My U {c}). Since any loop of L, M is a limit of piecewise geodesic loops, the result
is proved. O

Proof of the theorem 5.2.7. The hypothesis on Ly, ..., Ly ensure that the law of their holonomy
has a density with respect to the natural measure on GV /Ad. Thus, Hy,,. 1y takes almost
surely its values in Sy. Let [y, ..., I, be p loops of s(PGLy,, M; U {c}). Since this proof is very
close to that of 5.2.1, we do not write all details. The variables H.r,, .. 1y and Hr,, . Ly,
determine #H.,,...1, because they determine H.L,, . Ly,h,..l,- This is proved using a map

I yeendp

(G x Sn)/ Ad x5, (Sy x GP)/ Ad =5 (G x Sy x GP)/ Ad.

It is easily checked that this map can be defined in such a way that H. 11 = £’ (Hc,z, Hr,1). The
fact that ' is measurable terminates the proof. O

We want also a theorem like 5.2.6 describing more explicitely how to construct a version of
the random holonomy on M using that on M; and a random variable on C(z). So we consider
the probability space

(Qr, Ag, kr) = (U, X C(z), A1 ® Bor(C(z)), pag, (u, t,t7) ® d2).

We want to construct on this space a family of random variables ﬁlly--«yln’ with Iy,...,1, €
t(PGLm, My U{c}). We need a result similar to 5.2.5. We fix a section 7 given by 5.2.4 as well
as a new measurable section 7/ : C(z)\G — G of the natural projection. The existence 7/ is
given by an argument very similar to the proof of the lemma 5.2.4.
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Lemma 5.2.9 For any subset L of L,,, My containing Ly, ...,Ly,L,cL'c™}, the sections T and
7/ determine a measurable map o : F(L,G)/ Ad — F(LU {c},G), defined ppr, (u,t,t71)-a.s.,
such that for any w € F(L,G)/ Ad,

{Ua(w)(L) =z

oc(w)(c)lzos(w)(c) = og(w)(cL'e™?).

Proof. Take w in F(£,G)/ Ad. By the lemma 5.2.5, we know that 7 and w determine a map of
F(L,QG) that satisfies the first property, namely that takes the value z on the loop L. The point
is to choose the value o(c) in a convenient way. For this, we use the value y = o(w)(cL’c™?)
which is already defined. This y is par, (u,t,t71)-a.s. in the class t € G/ Ad, so that there exists
u € G such that y = v~!zu. This u is not uniquely defined, but its class in the quotient C(z)\G
is defined. We take for o (w)(c) the image by 7’ of this class. The map o defined in this way
is measurable and has the properties wanted. O

As in the preceding section, the maps o, and o, defined for two subsets £; C L2 coincide
on £;. We also denote by o the map O Ly M, -

We are now able to define the variables. Choose Ay, ..., A, in ¢(PGLny, M;) and wg = (wy, 2)
in Qp. We set

Hapodme(WR) = [0(W1) (A1), - -+, (@1) (M), 0 (w1) (€) 2]

Theorem 5.2.10 The family of random variables H has the same law as the family ‘H under
the Yang-Mills measure ppr(u,t) on M.

Proof: The proof is once again similar to that of the theorem 5.2.6. The argument invoked at
the beginning of the proof of the theorem 5.2.6 shows that it is sufficient to prove the equality
of the individual laws of the variables H and #.

Let f be a continuous function on G™"*!/ Ad. Let Ay,..., A, be elements of «(PGLy,, M).
We have

Bf(oy,nd) = [ oy TOEDO) 1,70 (o), 0 61) ()2) dia (8, 7") )

By the remark preceding this theorem, o(w;)()\;) and o(w;)(c) depend only on the restric-
tion of wy to £ = {Ly,...,LN,L,cL'¢™!,\1,..., ,}. Thus, the expectation is a function of
HLy,oLy,LcL/c=1 Ay, A » RaMeElY:

/ Floc(HL,,... Ly LieL/e=1 Apyesdn) (ALy -y An),
(O XC(:L‘)
0c(He,,..Ly LeL'c=1 A1,0n) (€)2) A, (4, t71) (w1)dz.

Let I be a graph on M such that Ly, ..., Ln,t(A1),.-.,%(An),2(c) € T*. Let I'y be the graph
on M, deduced by 2=1. Then the expectation Ef(Hy,, . a..c) is equal to

/ f(aﬁ([hLla vy hLN, hL1 th'c"17h)\17 ceey h)\n])(/\ly .. "A'n)7
GT1xC(x)

0c([ALyys- -y BLyy ALy Bepre=1y Bays - - - BALD) (€)2) dP(y, z, a:'l)dz.
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where y = (y1,...,Yp) € GP represents u € (G/ Ad)?. There exist two C(z)-valued random
variables on GT! 23 and 24, such that '

Bf i) = [ Flaahaiateoe sha,5? uheses) dP(y, 2,07V
GT1xC(z)
= / F(Ragy- ey Ban, he2) dP(y,z,z"1)dz
GT1 xC(z)

= / dz f(hagy- e ey Ban, Be) dP(y,z,271)
C(z) GT1
E i) f(Ho(r)t(hn)s0)-

Between the first line and the second one, we used the biinvariance of dz together with the
invariance of f by the diagonal action of G on its arguments. Then we used for each z the
discrete gauge transformation j identically equal to 1 except at mg, with j(m2) = 27!, This
gauge transformation preserves dP(y,z,z~'),because z € C(z) = C(z7!). The last equality
follows from the theorem 5.1.3. a

5.3 Conditional partition functions

The propositions 5.1.2 and 5.1.4 show that the conditional partition functions deserve to be
studied separately. We are interested in the conditional partition functions with respect to the
boundary components of a surface. The importance of these functions had been pointed out by
Witten [Wi]. He already proved their algebraic properties using character expansions.

5.3.1 Algebraic properties of the partition functions

Let us summarize the properties of the conditional partition function that were proved at dif-
ferent points in the preceding chapters. “ ‘
Let (M, o) be a surface, with a boundary M = N;U...UN, or without boundary. For any
graph T on M and any zi,...,z, € G, the number [.r DT dv,, .. .dvy, dg’ is well defined (see
section 1.5). By the lemma 1.5.5, it depends only on the conjugacy classes of the z;’s: it is a
central function of the z;’s. By the proposition 2.7.4, which is true on a surface with boundary
by the lemma 2.8.2, this number does not depend on T. If ¢; = [z4],...,t, = [2,], Wwe denote
this number by Za(t1,...,tp), or just Zps if M is closed.
v Consider now an area-preserving diffeomorphism between (M, ) and another surface (M’, o’),
i.e. a diffeomorphism that sends o to ¢’. Then an expression like fGF Dl dy,, .. .dvg, dg’ is ob-
viously invariant by this diffeomorphism. Thus, the function Zjs depends on M only through its
class modulo area-preserving diffeomorphisms. As a consequence of Moser’s theorem, that we ex-
tended to the case of surfaces with boundary in the proof of 2.2.1, this class is easily parametrized
by a triple (p,g,T) € N? x R, where p is the number of components of M, g the genus of M
and T the total surface of M. Another consequence of this invariance and of Moser’s theorem is
the symmetry of Zys. Indeed, given any two components of dM, there exists a diffeomorphism
of M that permutes these components, hence an area-preserving diffeomorphism. Thus, for any
iand jsuch that 1 < i< j<p, Zm(tay e ostiveestyyeeayty) = Zp(te, ooty tiye ooy tp).
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Let us give an expression of the function Zp; that makes clear that it depends on M only
through p, g, T. We consider a graph with only one face on M, such that the boundary of this face
is [a1,b1]...[ag, bg]c; ' Nycy . ..c; Nycp, where a;,b; are the edges of a polygonal fundamental
domain in the universal covering of M and each ¢; joins N; to a point on the boundary of this
fundamental domain. We find

ZpoT(t1y. o tn) = / p,,(M)(yl'lxlyl .. .y;la:pyp[al, b1]...[ag, b)) daidb, ...daydbydy, .. .dy,,

G29+p
(5.1)
where the z;’s are arbitrary representatives of the t;’s, and
Zogr = / Poqaay([a1,b1] .. [ag, b,)) daydb, ... daydb, (5.2)
G29+p

_when p =0, i.e. when M is closed. From now on, we index the function Z by the triple (p, g, T)
instead of the surface M.

The expression 5.1 shows also that Z, ;T is a smooth central function on G and a continuous
function on (G/ Ad)?. On the other hand, the symmetry of Z, , 1 is less obvious in this form.
Using character expansions, it is possible to give a manifestly symmetric expression of Z, ;7.
The reader which is not familiar with the characters of a compact Lie group should read the
beginning of the section 4.2.2 before to go further. Using the expansion of the heat kernel proved
in proposition 4.2.4, we transform (5.1) and (5.2) into:

. _ag 22l Xa (ti)
Zpgr(t1y- - rtp) = %(dxm )22~ 5T 11 o, (5.3)
ag -
Zo,gT = Z (dim 04)2_296-22;29171. (5.4)
aeé

Before to state these results in a theorem, recall that G/ Ad is endowed with the image
measure of the Haar measure by the canonical projection G — G/ Ad. As we said at the
beginning of this section, this theorem was essentially already proved by Witten.

Theorem 5.3.1 For each (p,g,T) € N% x R, the function Zg,p,T s a continuous symmetric
function on (G/ Ad)P. Moreover, for any (p',¢',T') and any t1,...,tp,t},...,t, € G/ Ad, the
following relations hold:

/G/ N Zpt1,g,T(b1y - o oty ) Zp g g (8 oo ) b = Zpy gt gt T4 (B 3 By By - o oy Epr),
(5.5)
/ Zp42,5T(t1y - s tpy byt 1) dt = Zy gy1.7(t1y - - - Ep)- (5.6)

G/ Ad

Proof. The symmetry and continuity of Z,, 7 were already discussed. The relation (5.5) is a
consequence of the proposition 5.1.2. Indeed, in this proposition, the number of components of
the boundary of M is p; + p2 — 2, where p; and p; are the number of components of dM; and
OM; and its genus and total surface are the sums of those of M; and Mj. This gives:

/ Zp+1,g,T_(t1,...,t,,,t)Z,,/H,g,,T,(t‘l,t’l,...,t;,,)dt:/ ZM(t1, - s tpr b8y, oy ty) dE.
G/ Ad G/ Ad
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In this last partition function, the variable ¢ corresponds to an interior loop of M, not to a
component of the boundary. If we compute this function using an expression like fGP Dl dy,...
where [z] = t, we see that the conditioning with respect to this interior loop disappears if we
integrate over z, so that the last integral is exactly equal to Zpypr oo/ 741/ (t1, - - o5 Ips E1y - - - E)-

Similarly, the relation (5.6) is a consequence of the proposition 5.1.4. In this gluing operation,
the surface M; had lost two components of its boundary and gained one handle. Thus,

/ Zpt+2,9,T(t1y -+ - tpy t™l) dt = / Zpm(ty,. .., tp,t) dt.
G/ Ad G/ Ad

Just as above, ¢ disappears when we integrate against dt and we find Z, g11,7(t1, ..., tp). i

5.3.2 Building bricks of the theory

The two relations (5.5) and (5.6) are the analytic counterparts of the behaviour of the Yang-
Mills measure under the two basic surgery operations. It is well known that a few elementary
surfaces are enough to build any surface by a sequence of these basic operations, namely a disk
and a three-holed sphere (see fig. 5.4). It is not surprising that a corresponding result holds for
the conditional partition functions.

Figure 5.4: An example of decomposition in three-holed spheres and disks.

Proposition 5.3.2 The family of functions Z, 4 is completely determined by the functions
Zio,1 and Zz o1, T > 0, and the relations (5.5) and (5.6).

Proof. We choose g,p and construct the functions Z;, 7, T > 0, starting with the functions
Zyo,r and Z3oT-

Suppose first that.p + 2g > 3. In this case, repeated applications of (5.5) to the function
 Z3p,r allow to compute Zp1q407 for any T > 0. Now, g applications of (5.6) to Z,4240,1 give
the function Z, ;7.

The case p + 2g = 2 happens when (p, g) = (0,1) or (2,0). The first case is that of a closed
torus. Start with a three-holed sphere and glue two components of its boundary. We get a torus
with one hole. This corresponds to (5.6) applied to Z3 01 to get Z; ;7. Now, it remains to glue
a disk on the hole of the torus. In other words, the relation (5.5) applied to Z;,1,7 and Z1 o7
gives Zo 1 1. The case (p,g) = (2,0) is that of a cylinder, which is obtained by gluing a disk on
a three-holed sphere. So, Z; o T is obtained by applying (5.5) to Zs o, and Z; 0,1

The case p+2¢ = 1 happens only when (p, g) = (1,0) and the corresponding function is one
of our building bricks.
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Finally, p = g = 0 is a closed sphere, which can be obtained by gluing two disks together.
So, (5.5) applied to Zy 0,1 gives Zpo,T. O

The natural question arising from this result is to identify the elementary functions Z; o1
and Z3,0’T.

Proposition 5.3.3 The function Zy o1 is the projection on G/ Ad of the heat kernel pr on G.
Proof. Any expression of Z; o 1, for example (5.1), proves this assertion. O

The meaning of Z3 1 is less obvious. Let us consider it a central function on G.

Lemma 5.3.4 For any (p,g) € N2, any T,T' > 0, the following relation holds between central
functions on G:

TA
€' 2 Zp g, (21, - - -3 Tp=1,) (%) = Zp,g,7+1(T15 - - -3 Tp-1,T).
In other words, Z, ;T is a solution of the heat equation in each of its variables.

Proof. Given the fact that Ay, = —ca(a)xq for any irreducible representation a, this assertion
is a simple consequence of 5.3. O

This lemma shows that the algebraic meaning of Z3 ¢ 1, if there is one, is contained in the
formal limit lim7_ Z30,7. Let us look at a three-holed sphere with a very small surface (see
fig. 5.5).

At the T — 0 limit, there remains only two adjacent circles that form a graph. If we remind
that the conditional partition function is the density of the natural law of the holonomy along
the boundary of a surface (see 2.8.1), we see in this case that Z3o 1 is closely related to the
multiplication in G.

Figure 5.5: A thiner and thiner three-holed sphere.

Recall that the convolution product of two function f,g € L%(G,dz) is defined by f*g(z) =
Jo f(¥)g(y~'z) dz. It is also a square-integrable function. Let us denote by L*(G)C the space
of central L? functions on G. It is easily checked that the convolution product is a commutative
operation in L2(G). Indeed, let f and g be two central functions. Using the left invariance of
the Haar measure and its invariance by inversion, we get:

fro(e)= fG f@)o(v™'z) dy = /G ey dy = /G o) fy'z) dy = g * f(z).
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It remains to check that f x g is central.

fxg(zy) = /Gf(z)g(z'lmy) dz = /Gf(z)g(yz'lz) dz = /Gf(:vzy)g(z_l) dz =g * f(yz)

and the result follows by commutativity of .
This product on L?(G)® is what remains from the product on G when one considers conju-
gacy classes. The following result relates Z3 o 1 to this product.

Proposition 5.3.5 Let f and g be two functions of L?(G)€. Then the following equality holds
in L*(G)C:

| e o) Zor(on,o0,0) dardes = [T (i )] (0)
G?

This gives the interpretation that we were looking for: formally, Z3 ¢ is the distributional
kernel of the operator * : L?(G)® ® L*(G)® — L*(G)®. From this point of view, the commu-
tativity of * finds its geometric counterpart in the fact that two holes of a three-holed sphere
are indistinguishable under area-preserving diffeomorphisms.

Proof. We use the fact that any central square-integrable function can be expanded into a series
of characters. Thus, it is sufficient to prove the theorem when f; and f; are the characters of
two irreducible representations a and 3. We use the expansion of Z3o 1 given by (5.3).

1)
/G2xa(ﬂﬂl)Xﬁ(zz)Za,o,T(zl,zz,ﬂﬂ) doidesy = Y (dim7) ™7 Txy (a)
V€@

[ xalenoten) don [ xalas)es ) dao
G G

. -1 20
= Z(dlm')’) le= Tx4(2)8a,205.,4

v€G
-2 1 Xa (:L‘)
0o p€” 2 ima (5.7)

On the other hand, the orthogonality relations between characters imply:

—_ -1 _ Xa(z)

X * Xp(2) = /G Xa(¥)xp(y™ 2) dy = bap g~
Finally, the fact that Ay, = —c}(a)xa shows that the expression (5.7) is exactly equal to
: exp(T%)(xa * X3)- O

5.3.3 Transition fonctions of the Markov field

Consider the following very simple example. Take M to be a cylinder S* x [0, 1] endowed with
the Riemannian volume of the standard product metric, with total volume equal to 1. Pick two
elements o and ¢; in G/ Ad and consider the Yang-Mills measure ppr(ty 1 t).

For each s € [0,1], let I, be a loop whose image is the slice S! x {s} in M. The family
of random variables H;,,s € [0,1] is a G/ Ad-valued process with index set [0,1]. The Markov
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property of the Yang-Mills field (theorem 5.1.1) implies that this process is a Markov process.
Let us compute its transition functions. Choose 0 < s; < s; < 1. Let f; and f, be two
continuous functions on G/ Ad. We know by the proposition 1.5.2 that

1

Zaoa(t3 5, 1) fi(w) fa(u2) Zu (857 ua, ua, t1) duydug,
Zaoata L 01) Jiay aay 1 (w1) f2(u2) Zar (51, wa, ug, t1) duydug

EuM(to‘l,tl)[fl (’qu ) f2 (7'[1,2 )] =

where the partition function in the integral is taken with respect to lo,ls,,/s,,11. Using the
proposition 5.1.2, we find that the expectation E, «, +\[f1(Hi,,) f2(#H1,,)] is equal to

1

Thus, the conditional expectation E[fi(Hi, )|Hi,,] is equal to

/(G/ a2 fi(u1) fa(u2) Zao,s, (85 u1) Z2,0,55—s1 (U7 1y U2) Z2,0,1—5, (ug ', t1) durdus.

1
Zapa(tyt,ts)

/G ad F1(w) 20,5, (8" 4) Z2,0,50-5, (W71, Ha,, ) 220000 (H 1) dl

lO lsl l32 ll

-~
~
~

-— -

\ AN A -

Figure 5.6: Transition functions on a cylinder.

The transition functions of the process are exactly the functions Z; g 7. This suggests that the
functions Z, 4 7 determine to some extent the law of the random holonomy. This was essentially
the content of the proposition 1.5.2. More precisely, this proposition shows that it is possible
to write down the law of the holonomy along a family of disjoint simple loops using only the
partition functions. Using the continuity of the random holonomy, we can extend this statement
a little bit. Indeed, let [;,...,l, be simple loops on M that can be approximated by families
of disjoint simple loops in such a way that none of the components of M delimited by these
families has a surface tending to 0. Then the density of the law of the variable (Hi,, ..., H,)
is the limit of the densities of the holonomies along the approximating families. Since Z, T
depends continuously on its parameters and also on T provided 7' > 0, this limit density is also
a combination of the functions Z, ; 7.

Nevertheless, one cannot hope to express the law on G2/ Ad of a variable like #;, 1, using
partition functions when /; and I3 are based at the same point. Indeed, partition functions are
functions on the space (G/ Ad)? which is much smaller than the space GP/ Ad.
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