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Chapitre 1

Introduction

I. Soit (M, g) une variété riemannienne compacte sans bord & courbure négative ou nulle. L’en-

tropie volumique hyo(g) de (M, g) est définie par la formule

1
hvol (g) = lim - log(vol(B(:v, T‘))),
r—oor
ot B(z,r) désigne la boule de rayon r centrée en un point z du revétement universel M de M.

Conjecture (Gromov). Les métriques localement symétriques sur une variété ¢ courbure négative
ou nulle de dimension au moins 3 sont caractérisées, parmi toutes les métriques riemanniennes, par

leur volume volg (M) et leur entropie volumique hyo(g).

Cette conjecture a été démontrée pour les variétés & courbure strictement négative par Besson,
Courtois et Gallot dans leur travail séminal [BCG]. Leur méthode permet en outre de donner une
démonstration totalement nouvelle du théoréme de rigidité forte de Mostow pour les variétés locale-
ment symétriques de rang un. Une démonstration avait été précédement donnée par Katok [Ka] dans
le cas spécial des métriques dans la classe conforme d’une métrique hyperbolique sur une surface

compacte orientable.

Théoréme (Besson-Courtois-Gallot). Si X est de dimension > 3 et posséde une métrigue lo-
calement symétrique go de rang un, alors pour toute métrique riemannienne g vérifiant vol(X, g) =
vol(X, go) on a

hvol(g) > hyot (gO)

avec €égalité si et seulement si g est isométrique a go.
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La conjecture de Gromov est encore ouverte pour les métriques localement symétriques de rang
supérieur. Connell et Farb 1’ont démontrée dans le cas spécial d’un produit d’espaces symétriques

de rang un [CF].

Soit X un graphe fini connexe dont nous notons VX et EX l’ensemble des sommets et des arétes
orientées respectivement. Pour une distance de longueur d sur X, déterminée par les longueurs des
arétes {I(e)}ecex € (R*)IEX!, nous posons voly(X) = 3 3. px l(€), que nous appelons le volume

total de (X, d). A un tel graphe métrique, on associe son entropie volumique, définie par
1
hvol(d) = lim - 1og(vol(B(ac,r))),
=0T

ol le volume désigne la somme des longueurs des arétes (ou de la partie des arétes) contenues dans
la boule B(z,7) C X du revétement universel X de X muni de la distance relevée de d, ol  est un

point fixé de X.

Théoréme 1.0.1 (Theorem 2.2.1). Soit X un graphe fini conneze quelconque, dont tous les sommets
x € VX sont de valence ky + 1 au moins égale a 3. Il existe une unique distance de longueur d sur
X telle que voly(X) = 1, qui minimise l’entropie volumique hy,o1(d). L’entropie volumique minimale

est donnée par la formule

1
huin = 5 > (kg +1)log ks,
zeVX

et la distance de longueur minimisant cette entropie volumique est déterminée par ses longueurs
d’arétes
log(ki(e)ke(e))

> (kg +1)logks’
zeVX

Ve € EX, {(e)=

Remarquons que nous donnons une formule close a la fois pour ’entropie volumique minimale et
pour la métrique réalisant ce minimum. Cette derniére est complétement déterminée localement, i.e.
la longueur de chaque aréte dépend uniquement de la valence des sommets qu’elle relie. Notons aussi
la similitude avec la métrique combinatoire de Bourdon sur le graphe dual d’un immeuble fuchsien
X a angles droit, qui atteint la dimension conforme de Pansu, i.e. qui minimise la dimension de

Hausdorff de la frontiére par rapport aux métriques dans la classe quasi-conforme de 4X ([Bo2]).

Les graphes réguliers peuvent étre considérés comme analogues aux variétés riemanniennes possédant
une métrique localement symétrique. Dans ce cas spécial, le résultat ci-dessus a aussi été démontré

indépendamment par Kapovich et Smirnova-Nagnibeda ([KN]) par une méthode différente (3 1'aide
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de chemins aléatoires). Le méme résultat dans ce cas spécial était aussi mentionné implicitement
sous une forme analogue, mais non équivalente, dans un prépublication de Rivin ([Riv]). Enfin,
sous I’hypothese supplémentaire que le graphe X admette un groupe d’automorphismes hautement
transitif, ce résultat apparait précédement dans Robert [Rob]. A Paide du théoréme ci-dessus, on

peut déduire :

Corollaire 1.0.2 (Corollaire 2.2.3, Theorem B dans [KN]). Considérons l’ensemble des graphes
métriques finis, sans sommets de valence 1 ou 2, et dont le groupe fondamental est un groupe libre
de rang v > 2 fizé. Alors parmi toutes les distances de longueur de volume total un, l’entropie
volumique est minimisée pour tout graphe trivalent équipé de la métrique donnant a chaque aréte la

méme longueur.

Il est possible de généraliser encore le théoréme 2.2.1 au cadre des graphes finis de groupes finis
(X, G,). Dans ce cas, le degré k;+1 de chaque sommet z est défini par k,+1 =Y e € EX, i(e) =z g:
(i.e., la valence d’un relévement Z de = dans I'arbre de Bass-Serre X de (X, G,)), et la notion cor-
respondante de volume total de (X, G,,d) est donnée par vola(X,Ge) = 3 3. ‘lé—ee)I Notons que cette

définition coincide, & un facteur pres, avec la notion usuelle de volume total d’un graphe de groupes

dans le cas d’un graphe régulier.

Théoréme 1.0.3 ([L2]). Soit (X, G,) un graphe fini de groupes finis dont le degré k, +1 de chaque
sommet x est au moins 3 . Parmi toutes les distances de longueur sur X de volume total un dans
(X, G,), il en existe une unique minimisant l’entropie volumique. Pour cette métrique, la longueur

de chaque aréte est proportionnelle a log(kic)k(e)) et lentropie minimale est

1 kz+1)logk
hmin(Xy Go) = 5 Z UIG%
zeEVX z
Enfin, nous montrons, & ’aide du théoréme ci-dessus, que pour un revétement a n feuillets de

graphes de groupes ¢ : (Y, H,) — (X,G,), on a
h‘UOl (Ya Hoy d)vOZ(Y’ HO’ d) 2 n hvol (X7 GO7 dO)UOI(Xy G., d0)1

avec égalité si et seulement si la métrique d sur (Y, H,) réalise le minimum de ’entropie volumique
(parmi les métriques de méme volume total), et si I'application ¢ est un revétement métrique de
(Y, H,,d) sur (X,G,,Adp) pour un A > 0. Ce résultat peut étre vu comme I’analogue précis du

théoréme principal de [BCG] dans le cas des graphes.
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La preuve de Besson, Courtois et Gallot utilise de maniére essentielle la rﬁesure de Patterson-Sullivan
et ’application barycentre. L’inégalité voulue découle alors du calcul précis du jacobien d’une certaine
fonctionnelle et de ses dérivées secondes.

Les mesures de Patterson-Sullivan pour les arbres ont été introduites par Coornaert et Lyons
([C], [Ly]). Etant donné qu’il ne semble pas exister d’analogue utile de la dérivée seconde pour une
fonction définie sur un arbre, notre stratégie pour démontrer le théoréme 1.0.5 est de n’utiliser que
cette mesure de Patterson-Sullivan. Si X — X est un revétement universel du graphe X, sie € EX
est une aréte de sommet inital iZ, notons Cylz(€) 'ensemble des rayons géodésiques d’arete initial
¢. Notons qu’une densité h-conforme sur X est uniquement déterminée par les pz(Cylz(€)) pour
e € EX, ol € est n'importe quel relevé de e, et T = i(€). Soit A la matrice d’adjacence des arétes
du graphe X, et posons z. = pz(Cylz(€)). Nous montrons que les nombres positifs (z.)ecgx sont
solutions du systéme d’équations

Te = Z e~ hiey,,.
e'€EX,A =1
Notons que ’équation est obtenue dans le chapitre 3, sans la relation explicite entre les z.’s et la
mesure de Patterson-Sullivan (voir [KN] pour cette interprétation). Voici une autre maniere d’in-
terpréter la méthode de démonstration du théoréme 2.2.1. La matrice d’adjacence des arétes de X
code le flot géodésique du graphe combinatoire X. Lorsqu’on fait varier la métrique sur X, la matrice
A code P'application de premier retour sur Pensemble des sommets. Etant donné que, comme nous
le montrons dans la proposition 2.4.3, ’entropie volumique est égale & ’entropie topologique du flot

géodésique, nous sommes amenés & étudier le flot de suspension de ’application de premier retour.

Remarque. L’avantage de ce point de vue est qu’il permet d’entrevoir une généralisation de cette
méthode aux immeubles hyperboliques de dimension supérieure. Par example, notons I 4 I'immeuble
hyperbolique & angles droits de Bourdon. Soit X le graphe dual du 1-squelette de I, 4. Fixons aussi
un quotient compact Y = I'\X de X, et considérons toutes les métriques obtenues en variant les
longueurs des arétes de Y. Chaque appartement de I, 4 est une copie de H? pavée par des p-gones &
angles droits. On peut, pour simplifier les choses, prendre comme quotient Y une 2-cellule Cj fixée.

On peut alors formuler la question ouverte dans ce cadre : trouver I’entropie volumique minimale
dans ’ensemble des métriques sur Y obtenue en faisant varier Cp tout en maintenant fixe la somme

des longueurs des cotés de Cp.
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Le codage du flot géodésique sur certaines surfaces compactes a été considéré par C. Series [S], en
utilisant les géodésiques qui prolongent les cotés d’un domaine fondamental. Nous savons montrer
que le flot géodésique sur I, ; est un systéme sofique en nous fondant sur le fait que, sous certaines
hypotheses, il n’y a qu’un nombre fini de composantes connexes de la frontiere de H? délimitées
par les sommets des murs des arbres contenant les arétes de Cy. Cette question n’est pas contenue
dans cette thése, mais nous espérons obtenir prochainement des résultats qui généralisent ceux du

théoreme 3.2.1.

II. On appelle réseau tout sous-groupe discret I' d’un groupe localement compact G qui admet un
domaine fondamental de mesure finie. Si I' est un réseau dans G, alors il existe, & une constante
multiplicative prés, une unique mesure de probabilité ug G-invariante, la mesure de Haar, sur I'\G.
Si G est un groupe de Lie, alors la mesure pug peut étre représentée par une forme de volume lisse
sur la variété I'\G (pour cette raison, on note souvent pg par vol). Un réseau I' est appelé uniforme
ou cocompact si la variété I'\G est compacte. Un surréseau IV de I" (d’indice n) est un réseau dans
G qui contient ' (avec indice n). Les réseaux dans les groupes de Lie ont fait 'objet d’une étude
intensive depuis plus d’un siécle, et cette théorie est maintenant devenue un domaine classique des
mathématiques (voir, par exemple, [Ra], [Mar]). Parmi les propriétés importantes des réseaux dans

les groupes de Lie semisimples, citons I’existence d’un covolume minimal pour les réseaux :

Théoréme (Kazhdan-Margulis). Pour tout groupe de Lie semisimple G sans facteur compact, il

eriste une constante € > 0 telle que, pour tout réseau T’ C G, on ait vol(G/T') > e.

Les groupes des automorphismes des arbres et des immeubles semblent partager beaucoup des
propriétés des groupes de Lie semisimples, et un programme a été ébauché dans le but de comparer
ces deux classes de groupes (voir, par exemple, [BL] et les références qui s’y trouvent). Il est connu
([BK]), néanmoins, que le théoreme ci-dessus est faux dans le cas d’un groupe d’automorphisme d’un
immeuble, ce qui ameéne naturellement & se poser la question de la vitesse de croissance du nombre

de réseaux de petit covolume.

Bass et Kulkarni [BK] ont construit des exemples de tours de réseaux {I'y1 C 'y C ---} dans
le groupe G des automorphismes d’un arbre localement fini, sans sommet terminal, et tels que
tllrnt;lo vol(G/T;) = 0 (rappelons qu’'un arbre sans sommet terminal est un immeuble de dimension
un). Bass a de plus montré que pour un réseau uniforme I' fizé, il n’existe qu’un nombre fini ur(n) de

surréseaux d’indice n de I' dans G. Ceci amene naturellement & se poser la question du comportement
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asymptotique de ur(n). Ce probléme, soulevé par Lubotsky dans [BL], peut étre considéré comme
le probléme de croissance des “surréseaux”, un pendant & la théorie importante de la croissance des
sous-groupes ([Lub], [LS]).

Dans le chapitre 2, nous apportons une réponse a cette question : nous obtenons une majoration
globale pour ur(n), valable pour un réseau quelconque I' dans un arbre localement fini quelconque,
et nous donnons aussi une minoration de ur(n) pour un certain type de réseaux dans les arbres

réguliers.

Théoréme 1.0.4 ([L1]). Pour tout réseau I' dans le groupe des automorphismes d’un arbre locale-

ment fini, il existe des constantes positives c et € telles que
Vn € N— {0}, ur(n) < cnelog™

Pour certains réseaux I', nous construisons explicitement des tours de réseaux dont les stabilisa-
teurs des sommets et des arétes sont des p-groupes, et nous en déduisons une borne inférieure pour

ur(n).

Théoréme 1.0.5 ([L1]). Soit p un nombre premier. Si ' est un réseau sans inversions d’arétes
dans un arbre 2p-régulier dont le graphe de groupes quotient est isomorphe & une boucle donc le
groupe de sommet est un groupe cyclique d’ordre p, et le groupe d’aréte est trivial, alors pour tout
N, il existe n > N tel que

Up(n) > nEl'd log,, n-4

Le chapitre 2 s’appuie principalement sur la théorie de Bass-Serre des graphes de groupes ([Ba],
[Se]). Nous définissons une notion correcte d’isomorphisme de revétements de graphes de groupes,
et nous établissons une bijection naturelle entre I’ensemble des surréseaux d’un réseau I' donné, et
I’ensemble des classes d’isomorphismes de revétements du graphe de groupes T'//T" correspondant.
Nous utilisons certains résultats profonds de la théorie des groupes finis dus & Pyber [P] sur le
nombre de classes d’isomorphismes de groupes d’un ordre donné, ainsi que sur le nombre minimal
de générateurs d’un tel groupe [Luc], [Gur], et nous en déduisons une borne supérieure pour ur(n).

Pour obtenir une borne inférieure dans le cas décrit plus-haut, nous classifions tous les revétements
fidéles de graphes de groupes dont le graphe quotient est une boucle d’indices (p,p), et dont les
groupes de sommet et d’aréte sont tous des p-groupes, par le graphe de groupes isomorphe & une

boucle donc le groupe de sommet est un groupe cyclique d’ordre p, et le groupe d’aréte est trivial.
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Nous décrivons ensuite précisément la structure de ces groupes de sommet et d’aréte, ainsi que celle

des morphismes locaux définissant le revétement.

Notons que ces résultats sont, & ce jour, les seuls connus décrivant le comportement asymptotique du
nombre de surréseaux, en dehors du cas extréme traité par Goldschmitt en 1980 [Go] (classification
des (3 — 3) amalgames (rappelons qu’un (3,3)-amalgame est un graphe de groupes dont le graphe
muni des indices des groupes d’arétes dans les groupes de sommets est réduit & une aréte avec les
deux indices des deux arétes (opposés, donc) égaux & 3), qui entraine que ur(n) = 0 pour n grand

pour certains réseaux dans un arbre 3-régulier).

La théorie des graphes de groupes de Bass-Serre a été généralisée & une théorie des complexes de
groupes par Haefliger ([H1], [BH]), dans 'optique de coder les actions de groupes sur des complexes
polyhédraux. Cette théorie est développée dans le cadre des petites catégories sans boucles (“scwol”)
dont remplacent ’espace sous-jacent. A chaque action d’un groupe G sur un scwol x est associé un
complexe de groupes G()) sur le scwol quotient Y = G\X.

Prenons pour x un scwol simplement connexe, par exemple obtenu par subdivision barycentrique
d’un immeuble hyperbolique ou euclidien. Soit I un réseau dans Aut(x), et notons encore ur(n) le
nombre de surréseaux de I' dans Aut(x) d’indice n.

Dans le chapitre 4, nous étudions le comportement asymptotique de ur(n). Il y a plusieurs
difficultés & surmonter : tout d’abord, la théorie de Haefliger restreinte aux scwol de dimension
un n’est pas équivalente & la théorie de Bass-Serre (ceci répond & une question posée dans [BH]);
ensuite, tous les complexes de groupes ne proviennent pas de I’action d’un groupe sur un scwol. On

dit d’un complexe de groupes pouvant s’obtenir de cette maniére qu’il est développable.

Soit I" un réseau uniforme du groupe des automorphisms d’un scwol simplement connexe localement
fini, nous introduisons d’abord la notion de fidélité d’'un complexe de groupes, analogue & celle de
graphe de groupes donnée par Bass, dans la Section 4.3.3. Nous établissons une correspondance
bijective entre I’ensemble des surréseaux de I' d’indice n et ’ensemble des classes d’isomorphisme
de revétements & n feuillets d’'un complexe de groupes développable, par I'\\X. Notons que cette

correspondance est valable dans un cadre trés général, plus large que celui des immeubles.

Théoréme 1.0.6 (Théoreme 4.1.4). Pour tout réseau uniforme I' dans le groupe des automor-

phismes d’un scwol X simplement conneze et localement fini, il existe deur constantes positives € et
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c telles que

Vn €N, ur(n) < cnelos™,

Dans le cas d’un réseau I' d’'un immeuble hyperbolique dont le scwol associé est noté X, nous
démontrons que la propriété d’étre développable pour un complexe de groupes revétu par X, est une
conséquence de la courbure négative de 'immeuble, et nous avons également une borne inférieure
pour ur(n), déduite de celle construite pour le cas des arbres dans [L1] pour certains T

Nous fixons un complexe de groupe quotient G()) d’un immeuble hyperbolique n’ayant qu’une
cellule de dimension 2, dont le stabilisateur de la cellule de dimension 2 est trivial, et dont le scwol
indexé sous-jacent est comme ci-dessus. Nous fixons également un graphe de groupes G(X) dont le

graphe indexé sous-jacent est une boucle d’indices (p, p).

Pour tout revétement de graphes de groupes G(X) — H(X) nous construisons de maniére
fonctorielle, par une méthode inspirée de [Th], un plongement fidele de H(X) dans un complexe de

groupes H(Y), lui-méme revétement de G(J).

Théoréme 1.0.7 (Theorem 4.1.5, [LT]). Pour tout réseau T (& stabilisateur de face trivial) dans le
groupe des automorphismes d’un immeuble hyperbolique de Bourdon a angle droit, dont le complexe
de groupes quotient a un scwol indexé sous-jacent comme ci-dessus, il existe c1,co > 0 tels que, pour

tout N > 0, il existe n > N vérifiant

up(n) > eyn®@losn,

Les immeubles hyperboliques ont fait I’objet de nombreuses recherches de la part de Tits, Bour-
don, Cartwright, Gaboriau, Haglund, Paulin, et autres. On trouve des exemples en dimension deux

dans les travaux de Bourdon ([Bo], [Bo2]), et en dimension trois dans ceux de Haglund et Paulin
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[HP]. Nous avons ’intention d’étudier le comportement asymptotique de ur(n) pour ces exemples
d’immeubles hyperboliques.

Ce mémoire est organisé comme suit. Le chapitre 2 porte sur ’entropie volumique minimale pour
les graphes, qui est partiellement tiré de notre article [L2], avec deux sections supplémentaires & la
fin (Section 2.4. et 2.5) décrivant quelques autres caractérisations de I’entropie volumique pour les
graphes. Dans le chapitre 3, nous traitons du probléme du comptage des surréseaux dans les groupes
d’automorphismes d’arbres localement finis. Cette partie est plus ou moins la version “mise & jour”
de notre premier article ([L1]). Dans le chapitre 4, nous traitons des probléme de comptage des
surréseaux, cette fois dans les groupes d’automorphismes de scwols localement finis et simplement
connexes. Nous donnons une borne supérieure universelle pour le cas général, ainsi qu’une borne
inférieure pour certains groupes agissant sur certains immeubles hyperboliques. Méme si le résultat
concernant la borne supérieure du chapitre 4 implique le résultat analogue du chapitre 2, les notions
de revétement de graphes de groupes et de revétement de complexes de groupes sont différentes, et
donc les deux preuves du théoréme central, établissant la correspondance bijective entre ’ensemble
des surréseaux d’une part et ’ensemble des classes d’isomorphismes de revétements de 1’autre, sont
différentes. Cette différence subtile est expliquée dans la derniére section du chapitre 4. Les résultats

de ce dernier chapitre sont le fruit d’une recherche en commun avec Anne Thomas [LT].



Chapitre 2

Volume entropy for graphs

2.1 Volume entropy and path growth

Let us consider a nonempty connected unoriented finite graph X without any terminal vertex.
We will denote the set of vertices by VX and the set of oriented edges of X by EX. We denote again
by X the geometric realization of X. For every edge e, let us denote by i(e) and ¢(e) the initial and
the terminal vertex of e, respectively. We define a length distance d on X by assigning a positive real
number £(e) = £(€) for each unoriented edge {e, €} of X, and by letting d = dp : X x X — [0, 00]
be the maximal distance which makes each half-edge of an edge e containing a vertex, isometric to
[0, %ﬂ] For a length distance dg, let lpnax = erélg);( £(e) and lpin = e?g}( £(e). Define the volume of
X by

Vol(X,d) = % > ),
e€eEX

i.e., the sum of the lengths of the unoriented edges. We denote by A(X) the set of all length distances
d = dg on X normalized so that Vol(X,d) = 1.

For a fixed length distance d, let us consider a universal covering tree X — X equipped with the
lifted distance d of d. For any connected subset S of X, let us denote by £(S) the sum of the lengths

of (the maximal pieces of) the edges in S. We define the volume entropy hyoi(d) = hyo1(X, d) as
1
hvol(d) = limsup - log Z(B(.’Eo, T))a
r—co T

where B(zo, ) = Bq(xo, ) is the ball of radius r with center a fixed vertex g in (X, d). The entropy
hvoi(d) does not depend on the base point z, and we may sum either on the oriented or on the

non-oriented edges. Note also the homogeneity property

1
hvol(dal) = ahvol(dé)y (2'1)

10
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for every a > 0. Remark that hy (X, d)vol(X,d) is invariant under dilations, therefore to minimize
the entropy with constant volume, it suffices to consider the length metrics of volume 1.

If m X is not cyclic, or equivalently (as X has no terminal vertices) if X is not reduced to one
cycle, then hyol = hyo(d) is strictly positive, which we will assume from now on (see for instance
[Bo]). It was shown by Roblin ([Robl]) that the upper limit above is in fact a limit. This implies
that as r — oo,

£(B(@o, 7)) = ehwicar+o(r),

By a metric path of length r in X, we mean the image of a local isometry f : [0,7] — X. Note
that the endpoint of a metric path is not necessarily a vertex. By a combinatorial n-path of length
r in X, we mean a path p = ejez-- - e, of consecutive edges in X without backtracking such that

):7;11 £(ej) <7 < 37 1 €(e;). A combinatorial path is a combinatorial n-path for some 7 in N.

Lemma 2.1.1. Let N,(zo) be the cardinality of the set of combinatorial paths of length  in X
starting at xo € VX. Then the number Ny(zo) satisfies

7—00 T

lim Supw =
r—00 T

= hvol .

Proof. Tt follows directly from £(B(xzo, 7)) = elhvar+e() that for any [ > 0,

limsupIOge(B(mo’r) = B(zo,r = 1) _ lim log £(B(zo, ) — B(zo,T — 1))

r—00 T 7—00 r

= hvol-

Now let N/ (zo) be the cardinality of the set of metric paths of length r starting at . As X has no

terminal vertices, for any € > 0,
€N, _.(zo0) < €(B(zo,7) — B(zo,7 — €)) < eN/(z0).

Therefore
log Ny(zo) _ |, log Ny(zo)
T

lim sup
T—00 T

T—00

= hvol .

It is clear that we get a combinatorial path of length r by continuing a metric path of length r until it
meets a vertex. Also, two distinct combinatorial paths of length r cannot be extensions of one metric
path of length r by the strict inequality in the definition of a combinatorial path. It follows that

Ny (zo) = N/(zo), thus N,(zo) has the same exponential growth rate as N/ (zo), which is hyo. O

Let A = A(X) be the edge adjacency matriz of X, i.e. a |[EX| x |[EX| matrix such that A.; has

value 1 if ef is a combinatorial 2-path, i.e. if t(e) = i(f) and € # f, and value 0 otherwise. It is
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easy to see that the entry A7; of the matrix A™ is nonzero if and only if there is a combinatorial
(n + 1)-path starting with e and ending with f. (Note that the definition of A,y implies that such
a path does not have backtracking.)

It is easy to show that for any connected graph without any terminal vertex, which is not a
cycle, the matrix A is irreducible. Recall that a nonnegative matrix M is irreducible if for every ¢, 7,
there exists an integer n > 0 such that (A™);; > 0. Let us give a detailed proof for completeness. By
connectedness, it is sufficient to show that for every edge e € EX, there exists an edge path without
backtracking from e to €. Since the graph of not a cycle and has no terminal vertex, there are at least
two cycles C, C’ containing e. Let z,y be two vertices which are the end points of CNC'. Let [z,y]c
and [z, y]cr be the two disjoint paths in the set C — C’ and C’' — C. Now the edge path starting at e,
following C N C’, until say z, then following [z, y]c until it arrives at y, and then following [z, y]c/

until it arrives at z, then following C’ without backtracking, clearly passes through e.

Now consider the matrix A’ = A’(d, h) defined by A,; = A.re="*(), depending on h and the length

distance dy on X. The matrix A’ is clearly irreducible since A is irreducible.

Theorem 2.1.2. Let X be a connected finite graph without any terminal vertex, which is not a
cycle, endowed with a length distance d = dy. The volume entropy hyo) is the only positive constant
h such that the following system of linear equations with unknowns (ze¢)ecex has a solution with

ze > 0 for everye € EX.

o= Y Agehlhg,, (2.2)
fEEX

for everye € EX.
Proof. By the assumption on the graph, for every h > 0, we can apply Perron-Frobenius theorem
(see [Gan] for example) to the irreducible nonnegative matrix A’ = (A, fe‘he(f )), which says that the
spectral radius of the matrix A’(h) is a positive eigenvalue A(h), which is simple, with an eigenvector
(ze = z.(h)) whose entries are all positive. The function A : R>g — Ry is clearly a continuous
function of h since the characteristic function of the matrix A’ is a polynomial in {e~"¥®) : e € EX},
and A(0) > 1 since A(0) is the spectral radius of an irreducible nonzero matrix A’(0) of nonnegative
integer coefficients. Also, A(k) — 0 as h — o0, since the coefficients of A’(h) tends to 0 as h — oo.
By the mean value theorem, there exists an h satisfying A(h) = 1.

Now assume that h > 0 satisfies (2.2) for some positive z.’s. Fix an arbitrary edge e € EX, and

choose a vertex zg in a universal cover X of X which is an initial vertex of a fixed lift € of e in X.
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Let us fix a positive constant r > £yax.

Let Pr(e) be the set of combinatorial paths of length r in X starting with e. We will denote a
combinatorial path in X by p = ejez--- ey, its terminal edge by t(p) = e, and its metric length
by £(p) = 37— £(ei). For n > 2, denote by Pr(e) (resp. Pj(e)) the set of combinatorial k-paths of
length r with k¥ < n (resp. combinatorial n-paths of m-length strictly less than r) in X starting with
e. Remark that P, (e) NP, (e) = 0 and if n is large enough, P,(e) = P,(e) and P, (e) = 0.

Let us rewrite the equation (2.2)

ehee)y — z e—he® Zu(p):
PEP2(e)UP}(e)

Let us replace each z;(,) in the above equation by Y py(p)re ")z; whenever £(p) < r, i.e.
- fEEX -
when p € P;(e). The resulting equation is
PEP3(e)UP}(e)
Repeat this process : at each step, for each p € P (e), replace z;(,) on the right hand side of the

previous equation by Y Ay e M zy, to get
fEEX

e-he(e) Te = Z e_he(B)zt(g) .

EG‘PH+1(8)U'P:‘+1 (e)

For n large enough, the resulting equation is

e—hl(e)me= Z e_he(g)zt(z_))-
Eepr(e)

(In the case when the lengths of the edges are all equal to 1 and r is a positive integer, we
continue until we get the equation = A"~ !z.) For more formal proof, see Lemma 2.1.4 at the end
of this section.

Then in the resulting equation, the number of times each z; appears on the right hand side is
exactly the number N, (e, f) of combinatorial paths of length r in X with initial edge € and terminal
edge some lift of f in X. Note also that the metric length of such a path is at least r and less than

7+ lmax- Thus

Z Ny (e, fe MrHm)g . < ehble)g, < Z Nr(e, fle " z;.
fEEX fEEX
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Now for integers 7, by multiplying by e#"—?4€)z-1 and taking the r-th root and the log on each

part of the equation above, we deduce that

1 1
~1og (e, etV L) < < Liog (T M (e e MOZL),
r Te T Te

thus

o1 ~h(lmax+2(e)) Tf 1 —he(e) Tf
i Liog (Y No(e. e 2) < h< lim 2iog (30 Nele, e @)

Now since < N,(zo)e ™ 3"z and N,(zo) has exponential growth rate hyo by the Lemma

2.1.1, the right hand side is bounded above by hyo. As Np(zo) = > Ny (e, f), where
e,fEEX, i(e)=m(z0)

7 : X — X is the universal covering map, there exist some e and f, depending on 7, such that

N,(e, f)e=hr > ﬁ;Nr(azo)e"". Therefore the left hand side is bounded below by hyop as well. O

Remark. Hersonsky and Hubbard showed in [HH] that the Hausdorff dimension of the limit set
of a Schottky subgroup of the automorphism group of a simplicial tree satisfies similar systems of

equations.

Supplement for the proof of 2.1.2  Let us recall that X is a tree without terminal vertex. Let

U C X be the closure of the connected component of X — {o(€)} containing &.

Definition 2.1.3. A good subtree is a connected subtree K C U containing €, satisfying the following
property :
for any edge e € EK, the valency of t(e) in K either is one, in which case e is called a terminal

edge, or equals the valency of t(e) in X , in which case e is called a transit edge.

The radius of K is the maximal number of edges in a path in K going from o(€é) to a terminal

vertex.
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For a terminal vertex f of K, let p(f) be the unique path in K U {€} going from o(€) to f.

Lemma 2.1.4. Let K be a good subtree, and let TEK be the set of terminal edges of K. Then

e"he(e)ze= Z e"he(p(f))z,,(f), *)
FETEK

where 7 is the natural projection from X to X.

Démonstration. We proceed by induction on the radius Rad(K) of K. If Rad(K) = 0, then VK =
{i((e),t(¢)} and EK = {&}, and the left hand side and the right hand side of the equation (*) are
identical.

Let n > 0. Let us assume that (*) is true for any good subtree of radius n. Let K be of radius
n+1. Let TEK<, (TEKpn41) be the set of terminal edges f of K such that p(f) contains at most
n edges (respectively n + 1 edges). Let FEK,, be the set of transit edges w for which p(w) contains
exactly n edges.

Let K’ C K be the subtree obtained by deleting all terminal edges in TEK,,;1. Then K’ is good
and TEK' = TEK<, || FEK,. By induction hypothesis,

e—he(®) — Z e—hl(p(f'))m"(f.)

feTEK'

- —he(p(f)), . —he(p(f), .
= Y MWz 5t B MOy g
fETEK <, feFEK,

Any terminal edge e in TEK,, is adjacent to exactly one transit edge in FEK,,, and any edge

in U following a transit edge in FEK, belongs to TEK,.;. Using z; = 3 psee "9z, and
geEX

L(p(3)) = Lp(f)) + £(x(§)) if § € TEKn41 and f € FEK,, satisfy i(3) = t(f), we have

_ 7 ~he(p(f —he(n(g
Z e he(p(f))x”(f)= Z e~ he(e()) Z e P @ g o

feFEK, feFEK, GEEX,i(g)=t(f)
= Y e
§GTEKn+l

Since TEK = TEK<y || TEKn+1, we conclude that

—he(& —he(p(f —he(p(f
e~ he@) — Z e (p(f))%(f) + Z e (p(f))xﬂ(f.)
fETEK<, fETEK 41

—he(p(f
- Z e (p(f))x"(f)’
feTEK

thus the equation (*) holds for K as well. O
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2.2 Minimal volume entropy

In this section, we prove the main theorem announced in the introduction, using Theorem 2.1.2.

Theorem 2.2.1. Let X be a finite connected graph such that the valency at each vertex x, which
we denote by kz + 1, is at least 3. Then there is a unique d in A(X) minimizing the volume entropy

hvol(d). The minimal volume entropy is

1
humin(X) = 5 > (ke +1)log ks,

zeVX

and the entropy minimizing length distance d = dg is characterized by

log kie)ki(e)

> (kz+1)logks’
zeVX

Ve € EX.

Le) =

Remark. Since we can eliminate all the vertices of valency two without changing the entropy, the
existence of d in A(X) minimizing the volume entropy, with minimal value given by the same
formula, holds for any graph who does not have a terminal vertex and is not isometric to a circle.
What is uniquely defined at such a minimum is the length of each connected component of X where

the vertices of valency at least three are removed.

Proof. By assumption, k; > 2 for every z € VX. By Theorem 2.2.1, the volume entropy h = hy

satisfies
Te = Z Aefe_he(f)mf,
fEEX
for each edge e € EX for some positive z.’s. Set y, = e (), > 0 for each edge e. Then the above
equations implies
1/k;
My = 3 Agyr >k [ /" (2:3)
feEX fEEX, Aes=1

The last inequality is simply the inequality between the arithmetic mean and the geometric mean of
Y5's, since there are exactly ki) = ki(r) edges f such that Aey = 1. Multiplying over all the edges,

we get

. 1/k;
H ehg Ye 2 H (kt(e) H yf ) ).
e€EX e€EX fEEX, Aey=1

On the right hand side of the equation, each term y;/ ki

appears exactly k;(s) times, since each

edge f follows exactly k;(s) edges with terminal vertex i(f). Canceling [] y. > 0 from each side,
e€eEX

we get
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&> ] ko= [T A=+, (24)
e€cEX zeVX

since Y, £(e) = 2. The equality holds if and only if equality in the inequality (2.3) holds for each
. e€cEX
e€ EX,ie. the y;’s, for f € EX following e, are all equal.

Suppose that the equality in the inequality (2.4) holds. In particular,

h= %zezv:x(kz + 1) log k.
Since the valency at each vertex is at least 3, we can choose another edge g # f followed by e and
conclude that y; depends only on the initial vertex i(f) of f. Let 25y = y; > 0. Then the equation
(2.2) in Theorem 2.1.2 amounts to

"Oaiey = Y Aeszi(r) = kre)21(o)-
fEEX

Since £(e) = £(€), we also have e"(€)zy(,) = k(o) 2i(e). Thus 2i(e)/ze(e) = ki(e)/€"® = M) [k;(e)

and
ehé®) = \/ Kice)kt(e)s
so that
log ki(e)ks(e)
le) = . 2.5
@)=~ +Dlogk @5)
zeVX

In particular, £ is uniquely defined by this formula. The length distance defined by the formula (2.5)
clearly satisfies the equations (2.2), with
h=13 (ke +1)logh
=3 T Og Kz,
zeVX

and z.’s defined, uniquely up to constant, by setting
Te = kt(e)-

By uniqueness in Theorem 2.1.2, the positive number h given above is the volume entropy of the

given length distance, and it is the minimal entropy of the graph. O

Corollary 2.2.2. If X is a (k1 + 1, kg + 1)-biregular graph, with ky > 1,kg > 1, then the volume
entropy of the normalized length distances on X is minimized exactly when the lengths of the edges

are all equal, and the minimal volume entropy is @4&[ log(k1k2).
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Proof. Suppose that X a (k; + 1, k2 + 1)-biregular graph, i.e. kic)ki(e) = ki1k2 for any edge e. Let
d = dy € A(X) be the entropy-minimizing length distance. Then {(e) = ﬁlog(klkg) does not
depend on e, thus £(e) = ﬁ[ From () = /k;(¢)ky(e), the volume entropy of this length distance
is b = EXl log(k: k). O

Corollary 2.2.3. If X is a (k + 1)-regular graph, with k > 1, then the volume entropy of the
normalized length distances on X is minimized ezactly when the lengths of the edges are all equal,

and the minimal volume entropy is J%)ﬂ logk.
Proof. This is a special case of the above corollary with ky = k; = k. O

Remark. The last corollary appears implicitly in a preprint of I. Rivin ([Riv]). There he considers
graphs with weights given on the vertices rather than the edges. The directed line graph L(X) of
a graph X is an oriented graph defined so that VL(X) = EX and EL(X) = {(a,b) € EX? :
t(a) = i(b),a # b}. To a given set of weights on the edges {¢(e)}rx, is associated a set of weights
{€(z)}vL(x) on the vertices of L(X). One can sees that paths on X without backtracking correspond
to paths with backtracking on L(X), see [Riv] page 14. The minimum of volume entropy of the
graph L(X) with vertex weights h((¢'(z)))vL(x) (computed by L. Rivin) lies in the image of the map
(£(e)) — (¢'(z)) only when the graph is regular. It seems that for general graphs, one result cannot

be deduced from the other.

Remark. Corollary 2.2.3 was also shown independently by I. Kapovich and T. Nagnibeda [KN] by a
different method (using random walks). Note that one of their main results, on the minimal entropy
among all graphs having a fixed fundamental group, can be deduced from Theorem 2.2.1 as in the
following corollary. A special case when the graph has a highly transitive automorphism group had

been shown earlier by G. Robert ([Rob]).

Corollary 2.2.4. ([KN] Theorem B) Consider the set of all finite metric graphs without a verter
of valency one or two, whose fundamental group is a free group of given rank r > 2. Then among
volume 1 length metrics, the volume entropy is minimized by any (regular) trivalent graph in this

set, with the metric assigning the same length for every edge.

Proof. Let (X, d) be such a graph. Suppose that there is a vertex z of valency k; + 1 strictly greater
than three, with outgoing edges ey, ..., ek, +1. Let us introduce a new vertex y and a new edge f,

and replace x and its outgoing edges e1,- - , ek, +1, by two vertices z and y, with outgoing edges
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f.es, -+ ek +1 and ey, ez, f, respectively. Repeat the operation on z, until the valency of z reduces
to three, to get a new graph X’. The graph X’ has k, — 2 more vertices than X, all with valency
three.

Let do and dj be the unique normalized entropy-minimizing length distances on X and X',
respectively. By the formula in Theorem 2.2.1, since for ¢t > 3, (¢t + 1) logt¢ > (¢ — 1)3log 2, it follows
that

1
hvol (X, d) 2 hvol(X, do) = 5 > (ke+1)logk, + (kz +1)logk,
zeVX—{z}

> (ke +1)logk, + (kz — 1)3log2 = hyol(X', do).
zeVX—{z}

N =

Repeat the operation until we get a regular trivalent graph. Now by Corollary 2.2.3, the volume

entropy is minimized when all the edges have the same length. O

2.3 Entropy for graphs of groups

As another corollary of Theorem 2.2.1, let us show the analogous result of Theorem 2.2.1 for graphs
of groups. Let (X,G.) be any finite connected graph of finite groups. (Basic references for graphs
of groups are [Se] and [Ba].) Let T be a (Bass-Serre) universal covering tree of (X,G,) and let
p: T — X be the canonical projection. The degree of a vertex z of (X, G,) is defined by

|G|
2 G

e€EX,i(e)=z

Note that this is usually different from the valency of z in the graph X. It is easy to see that it is
equal to the valency of any lift of z in VT, and we will denote it again by k, + 1. We define a length
distance dp on (X, G,) as a length distance d, on the underlying graph X. The volume of (X, G, dy)

for a given length distance d; on (X, G,), is defined by

1 {(e)
Volg(X,Go) =5 Y ==
2 e€cEX |Ge|

Note that in the case where £(e) is equal to 1 for every edge e and T is k-regular, the volume
Vole(X, G,) is k/2 times the usual definition of the volume ) . x 1/|Gz| of a graph of groups since
k=3 ccrx,i(e)=z |Gzl/|Ge|. The volume entropy hyvot(X, Ge, de) of (X, G,,dp) is defined to be the

exponential growth of the balls in T for the lifted metric as in the case of graphs.
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Proposition 2.3.1. Let (X, G,) be a finite graph of finite groups such that the degree at each vertex
z of (X,G,) is at least three. Among the normalized (i.e. volume one) length distances on (X, G.,),
there ezists a unique normalized length distance minimizing the volume entropy. At this minimum,
the length of each edge is proportional to log(kic)ki(e)) and the minimal volume entropy is
hon(x,G) =} 3 Gt Dol
2%
Proof. Let T be a fundamental group of the graph of groups (X,G,). There exists a free normal
subgroup IV of T of finite index (see [Se]), say m. The group I" acts freely on T, hence the quotient
graph X’ = IV\T is a finite connected graph. It is easy to see that each z in VX (resp. e in EX)

has Ig‘—zl(resp. IGﬂeT) lifts in VX’ (resp. EX') by the canonical map = : X' — X, since

Zz’eVX' 1
EzGVX 1/IG¢CI

(see [Ba] for example). It is clear that for every y in EX’, the valency ky + 1 is equal to the degree

=[:I]=

Er(y) + 1. Any length distance d¢ of volume one on (X,G,) can be lifted to X’ to define a length
distance dp normalized so that ¢'(e) = ¢(w(e)) for every e in EX’, and
Vole(X) =3 3 le)=3 3l =m
e€EX' e€EX

The volume entropy of (X’,d;) is equal to the volume entropy of (X,G,,d) as they have the
same universal covering metric tree. By the homogeneity property 2.1, we can apply Theorem 2.2.1
to conclude that among the length distances of volume m on X', there exists a unique entropy-
minimizing length distance dj = dp on X’. By uniqueness in Theorem 2.2.1, the length distance dj
is invariant under the group I'/T"”. In particular, there is a normalized length distance dy = d; on
(X,G.) whose lift to X’ defines dj. The minimal volume entropy of (X, G,) is clearly the volume

entropy of (X', dj) since for any length distance d on (X, G.),
hVOI(Xa Gtad) = h(Xlad,) _>. h(X/a (/3) = hvol(Xa Gh dO),

where d' is defined as the lift of d on X’. Since the length #'(e) of an edge e is proportional to
log(ki(e)ks(e)) = log(knr(ice))kn(t(e))) for every edge e in EX’, so is true for every edge e in EX. Since
each vertex z in VX appears ]Gﬂz[ times in X’ and the degree k; + 1 is equal to the valency ks + 1
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of any lift z’ € #~!(z) of z in X', the minimal volume entropy of (X, G,) is

1 1
hao(X,Ga) = h(X',dg) = ~h(X',=ds) = = 3" (K, +1)logk},
m m z'eVX/'
1 m 1 (kz + 1) logk,
=— Y (ke +1)logh, =5 Y ==
2m:c€VX|Gzl 2a.-ezvx |Gal

O

Now we want to consider a more general situation than in Proposition 2.3.1. The main theorem in
[BCG] says that if f : (Y,g) — (X, go) is a continuous map of non-zero degree between compact
connected n-dimensional Riemannian manifolds and gg is a locally symmetric metric with negative
curvature, then

h‘n()/a g)VOl(Yv g) 2 'deg fihn(Xv gO)VOl(Xa gO),

and the equality holds if and only if f is homotopic to a Riemannian covering.

Let (X, Go,do = dg) be a finite (connected) graph of finite groups endowed with the normalized
length distance minimizing the volume entropy. Let (Y, H,, d) be another finite graph of finite groups
with a length distance. Let ¢ = (¢, de,70) : (Y, Ho) — (X,G,) be a (Bass-Serre) covering of graphs

of groups (see [Ba]). The value

IR < R S <A
Sl VA w P DA

ves1(a) res ol
does not depend on the vertex = nor on the edge e of X since the graph X is connected, and it is
an integer. A covering graph of groups with the above n is said to be n-sheeted (see [L1]).
When (Y, H,) and (X, G,) are graphs (of trivial groups), the next corollary can be considered as

an analog of the main theorem in [BCG].

Corollary 2.3.2. Let ¢: (Y, H,) — (X,G,) be a n-sheeted covering of graphs of groups and let do
be the entropy-minimizing length distance on (X, G,) of volume one. Suppose that the degree at each

vertez of (X,G,) and (Y, H,) is at least three. Then there holds
hvol(Y" H,, d)’UOl()/, H,, d) >n hvol(X7 G., dO)UOI(X, G, dO)

The equality holds if and only if the length distance d on (Y, H,) is a length distance minimizing
entropy among the length distances of the same volume, and in that case the map ¢ is a metric

covering from (Y, H,,d) to (X,G., Adp), for some A > 0.
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Proof. By the homogeneity property (2.1), we may assume that vol(Y, H,,d) = 1. Applying Propo-
sition 2.3.1 to (Y, H,) and (X, G,), it follows that there exists a unique length distance dy = dy on

Y minimizing the volume entropy and that

1)1
hyol(Y; Hey d) > humin(Y, Ha) =% v byt Dloghy _ “Ll;} ‘I"g’“ DD (ks + 1) log kg +|H |°€k
yevy :cGVXyEd: 1(z)
_1, Z (kz +1)logks _ Nhmin (X, Ge) = nhyot(X, G, do).
2 zeVX |G|

By Proposition 2.3.1, the equality holds if and only if d = dj. In that case, the length of each edge e
in EY is proportional to log(kice)ki(e)) = log(Ki(g(e))kt(o(e)))> thus proportional to the length of the
edge ¢(e). More precisely, let £'(e) = c'log(ki(e)ki(e)) for every e € EY and let £(e) = clog(ki(e)ks(e))
for every e € EX. From the assumption voly(X, G,) = voly (Y, H,) = 1, it follows that

1 5~ ¢log(kigg)ke(g)) ¢’ log(ki(o)ki(g)) nc’ log(ki(e)K(e))
=g 5 Solhiaho) L5 5 Zosliabi) ) 5o o osthioh)

2g€EY lH | eEEXge¢ 1(e) ‘H | e€EX IG [

and therefore

, 1 c
CcC = = -
2 3 log(kieyke(e)) )’
2 Ge
e€EX

in other words, #'(e) = £(e)/n.

We conclude that for any length distance d on (Y, H,), there holds
hvot(Y; He, d)vol(Y, He,d) > 1 hyot(X, Ge)vol(X, Ge, do).

By Proposition 2.3.1 the equality holds if and only if d is proportional to df, say d = Andy for some
A > 0. Then the length of each edge e in (Y, H,,d) is A(¢(e)), and the map ¢ is a metric covering
from (Y,dp) to (X, X do). O

2.4 Volume entropy and topological entropy of geodesic flows

Throughout this section, let d = d; be a length metric on X, and M = M (d) be the diameter
of X. Set 4, = min |z — y|. For every § > 0, let us choose L = L(d) big enough so that
Tz#yYeVX
/, £° e~tdt < ﬁd. We will denote by X a fixed universal cover of X and by d the pull-back distance
induced by d on X.
Let GgX denote the set of isometries f:R— X such that f(0) is a vertex of X. Let G4 X denote

the set of local isometries f : R — X such that f(0) is a vertex of X. There is a surjective map
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p:GaX — GgX, defined by p(f) = mo f where m : X — X is the natural projection. In other words,
GaX = GoX /T where T is the fundamental group of the finite graph X, acting by composition in
the target on GgX.

Proposition 2.4.1. The space of geodesics GgX is a compact space for the compact open topology
(which coincides with the quotient topology of the compact open topology on G4X ). Its topology is

induced by the metric

D(f,q) = / A1), o(t))edt.

—o0
Proof. This is well-known (see for instance [Bo]). Here we give a proof for the sake of completeness.
Recall that the compact open topology on Co(R, X ) is equal to the topology of uniform convergence
on compact sets since X is a metric space. Suppose that we are given an arbitrary sequence (fr)nen
of local geodesics in X. We want to show that there exists a subsequence converging to a local
geodesic on X.

For any natural number m, consider the sequence (fn|r,,)nen Of fn restricted to the interval
I, = [-m,m]. Since f, are geodesics, the sequence is equicontinuous and bounded. By Arzela-Ascoli
theorem, there exists a uniformly converging subsequence. By passing to subsequences if necessary
as m increases, we conclude that the sequence f, converges to a fixed geodesic g uniformly on any
interval I,,. Therefore G4X is a compact space.

Let us show that the topology is induced by the metric given in the proposition. To show that
any open ball of radius € for the metric D is an open set with respect to the compact open topology
T, let us show that the complement C = {g € G4X : D(f,g) > €} is closed for 7. Suppose that
the sequence (gn)nen in C converges to g for 7. Take an arbitrary small positive number 4. By the
definition of the compact open topology, there exists n big enough such that d(g,(t), g(t)) < i& for
every t in [—L, L]. Then

£ = §
D(gn,9) < /_L d(gn(2), g(t))e~"t1dt + 2M/L eMldt < 6/2+2M 1 = 6
It follows that
D(f,9) 2 D(f,9n) — D(gn,g) 2 € - 4.

Since 4 is arbitrary, we conclude that ¢ is in the set C, thus C is a closed set.
It remains to show that any open set containing f with respect to the compact open topology

contains an open ball containing f with respect to the given metric. Let us recall that the collection
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of subsets {f : f(K) C U} for a compact set K and an open set U forms a subbasis of the compact
open topology. Let K1, -, K, be fixed compact sets in R and Uy, -+ ,U, be fixed open sets in X.
Let B={f€GsX: f(K;)CU;, Vi=1,---,n} bean element of the basis. We want to show that
there exists an € > 0 such that if D(f,g) < € and f € B, then g € B.

From D(f,g) < ¢, it follows that [, d(f(t),g(t))e~!tl < e. Since f and g are local geodesic lines
(parametrized by arc length), the slope of the real function ¢t — d(f(t), g(t)) (outside the countably
many t for which f(t) or g(t) is a vertex) is one of 2, 0 and —2. By the triangular inequality,
for every to, if d(f(to),g(to)) > 6, then d(f(t),q(t)) > —g— for any t € [to — 8/4,to + /4], thus
fKi d(f(t),g(t))dt > -g— min{%, diamK;}. Therefore by letting ro = % min {diam K3, - - - ,diam K, %},
we conclude that if fK‘, d(f(t), g(t))dt < dro, then d(f(t),g(t)) < & for any ¢ in K;. For each 1, set

m; = min{e~ "l : t € K;}, so that Jx, d(f(t), g(t))e~ldt < € implies d(f(t),g(t)) < 75 for any ¢ in
K;.

Now choose €; > 0 such that the ¢;-neighborhood B(f(K;),€;) of f(K;) is still contained in
U;. Then, by choosing € such that € < e;m;rg, it follows that fd(f(t),g(t))e"tldt < € implies
Jx, d(f(t), g(t))e"tldt < € for each 4, thus it implies that d(f(t), g(t)) <
therefore g(t) € U; for any t € K;. O

< ¢ for any t in K;,

€
miTo

There is a natural flow ¢ = (¢°)ser on GgX defined by the R-action on the domain, i.e., by the
rule ¢° f(t) = f(t + s). This flow is called the geodesic flow on G4 X.

Proposition 2.4.2. The map ¢*: f — {t — f(t+ s)} is a homeomorphism of G4X onto itself. In

particular, the time-one map ¢! is a homeomorphism.

Proof. Let us first show that ¢! is a homeomorphism. The map ¢! is obviously bijective. Let € be a

given positive number. Choose & so that §(e~! + €) < €. Suppose that D(f,g) < 6. Then
1 oo
D(8'(f),¢'(9) = /_ d(f(lt),.ci(t))et‘ldt+/1 d(£(t), 9(t))e’ *dt
[0 ¢ °° t
=e” d , d d , ~td
et [ dUsea+e [ d),at)ear

+/01d(f(t),g(t))et_1dt_/Old(f(t),g(t))el_tdt'

Since e!=! < 1 on [0, 1], the value of the last two terms

/ 1 d(f(t), g(t)e" " dt — / 1 d(f(t), g(t))e' dt = / ld(f(t) o(B)(e! — ——)dt
0 ’ 0 ’ o ’ ei-1
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is at most 0. Thus D(¢'(f),¢'(g)) < (e~! +e)d < e. We just showed that ¢! is continuous (and even
(e + e~1)-Lipschitz). The map (¢!)~! maps ¢ to f(t — 1), and the proof of its continuity (and being
(e + e~ 1)-Lipschitz), is analogous to the proof for phi!. Therefore ¢! is a homeomorphism of GgX
to GgX. In exactly the same way, we can show that ¢® is a homeomorphism for any s between 0
and 1 since e=* < 1 on [0, 1]. On the other hand, since ¢! is a homeomorphism, the map ¢" is a

homeomorphism for any integer n. Thus ¢° is a homeomorphism for any real number s. O

Let h(¢) = hsop(¢) be the topological entropy of the flow ¢. Let us recall that the number h(¢)
is independent of the choice of metric on G4X but depends on d and that it is defined in the two
following equivalent ways.

Remark. The topological entropy h(¢!) where ¢! is a map coincides with the entropy defined below
(see [Man] for instance).

A subset Y of GyX is called a (T, d)-separated set for ¢ if for any two different f and g in Y,
there exists some t, 0 < t < T such that D(¢'f, ¢'g) > 4. Let N(T,d) be the maximum cardinality
of a (T, d)-separated set. Then

h(¢) = sup limsup M‘D_
>0 T—oo T

A subset Z of G4 X is called a (T, d)-spanning set for ¢ if for any f in G4X, there exists g in Z
such that D(¢!f, #tg) < & for every t with 0 <t < T. Let M(T,4) be the minimum cardinality of a
(T, 6)-spanning set. Then, h(¢) = sup h(¢,d) where

6>0

h(¢,d) = limsup M’—?—).
T—oo T

In [Man|, Manning showed that for a compact Riemannian manifold of non-positive curvature,

h(¢) = hyoi(d). Here is the analogous result, claimed without proof in [Gui].

Theorem 2.4.3. The volume entropy h = hyo(d) is equal to the topological entropy h(¢) of the
geodesic flow on G4 X.

Proof. If X (which has no terminal vertex) is reduced to a cycle, then A = 0. Hence we assume that
m1(X) is not cyclic. We will call a subset Y of X 6-separated if for any z,y in Y, the distance d(z, )

between them is at least 4. For simplicity, let us denote B(r) = Bx j(zo,7)-



CHAPITRE 2. VOLUME ENTROPY FOR GRAPHS 26

Let us consider an “annulus” B(r + §/2) — B(r). By the definition of hy,(d) and the remark

following it, for any € > 0, there exists ¢ such that
exp((h — O)r) < U(B(r)) < exp((h + €)r),
for any r > r.. Moreover, there exists a sequence (r;);en covering to oo such that for every i € N,
exp((h — €)r;) < €(B(ri +8/2) — B(r;)) < exp((h + €)r3),

for otherwise, by a summation argument, the growth rate of ¢(B(r)) would be bounded above by
h—e.
Let us choose such an r in (7;);en and take a maximal 28-separated subset Q, of B(r+46/2)—B(r).

Then

¢B(r +6/2) — B(r))

1Qrl 2 sup{(B(z,9))
zeX

> csexp((h — €)r).

For any ¢ in Q,, let f; be a geodesic line from xo to g such that f4(0) = 2. We want to show that
the set of geodesics {mof, : ¢ € Qr} in GgX is a (r, §)-separated set. For let fg and fg be two geodesics
with ¢ # ¢'. Since d(fq(r),q) < §/2 and d(fy(r),q’") < 6/2, we have d(f,(r), fg(r)) > 26 -6 = 4.
Thus there exists s such that 0 < s < r and that fy = f» on [0, s] and f; # fg on |s, s+ Imin]. Note

also that m(f,) # 7(fy) on ]s, s+ L] since they coincide from time 0 to s. Therefore,

Imin/4+1
elmin/4

Imin/4
D (n(f,)), & (x(fy)) > / 2te~tdt = 2(1 - )> 6,

if 4 is small enough. Thus

h(¢) > lim sup % >h-e

n—o0 n

Since ¢ is arbitrary, the topological entropy h(¢) is greater or equal to the volume entropy h.

Now for the inequality h(¢) < h, let us choose a bounded fundamental domain F of X in X
which contains the vertex zo and let a be the diameter of F'. Let @, be a maximal §-separated set
in an “annulus”, this time, B(F,r) — B(F,r —a) ={z € X : r — a < d(z, F) = yuellf"' J(x, y) <r}.
Let E be a maximal d-separated set in F.. With L = L(J) as in the beginning of Section 2.4, let
S=8(E,L)={z e X :3ye E,d(z,y) = L}. Since the set E is finite, so is S.

Claim. The set {mo fpoq:P €S, 0 € E, q € Q,} where fp,4 is a fixed geodesic line through p, q

such that fp ,,4(0) is of distance at most é from o is an (r — L, 49)-spanning set in G4 X.
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Proof of claim. For any element of G4X, we can find a geodesic line g € GgX which represent the
given element of G4X such that g(0) is in the fundamental domain F. Since F is a maximal §-
separated set, there exists o € E such that d(g(0),0) < 4. Since @, is a maximal d-separated set,
there exists g € @, such that d(g(r),¢) < 4. Choose a point p in S such that d(g(—L),p) < 4. Then
the geodesic from p to g passes through a é-neighborhood of a point o € E, and if L and r are large
enough, we can normalize so that d(fp,0,4(0),0) = (there are only two possible choices). Then for

every s in [0,r — L],
o0
D(¢°T 0 g,0°T 0 fpoq) < / d(m 0 g(t), T 0 fpoq(t))etdt
-0

—L+s L+s oo
< / Melt=2ldt + / 3oe~lt=sldt + Melt=slgt
0o —L+s L+s

L
<68/2+ 35/ e ltdt +6/2
-L

<d+65(1—eL)<70

The second inequality above holds since L + s < r and d(g(t), fp,0,4(t)) < 38, for every t in [-L,7],
as d(fp,o,q(o)a 9(0)) < 24. O

By the above claim, we have a (r— L, 7§)-spanning set in G4 X of cardinality at most 2|S|-|E|-|Q|.
Thus h(¢,8) < limsup Mﬁ“&u < limsup log(ISIIElIBx a(zorte)l) _ hvoi(d). The second

T
7—00 T—00

inequality holds simply because the @, is a subset of the ball B j(,g(xo, T + a) and the last equality

holds by definition (and since |S||E| are constants once ¢ is fixed). Since ¢ is arbitrary, we conclude

that h(¢) < hvol(d). m|
2.4.1 Entropy associated to the first return map of geodesic flows

Consider the space GgX(©® = {f € GaX : f(0) € VX} of geodesics whose value at time 0 is
a vertex of X with the induced topology. The first return map of geodesic flow is the map Ry :
GaX©® - Gy X defined as follows. If 7 : GgX(©) — R is the first return time of the geodesic flow in
Ga(X)9, e 7(f) = inf {t>0:¢'f(0) € VX}, then Ry(f) coincides with ¢"(F)(f). (Note that the

map ¢ on the right side depends on the metric d.) In other words, GgX ©O=y U B,
z€VX ecEX,i(e)=z

where B, = {f € G4X : f([0,7(f)]) = €} is an open and closed subset of G4X(®) (but not open in

GaX). (Recall that i(e) is the initial vertex of the edge e.) On each B, the map Ry coincides with

¢l(e)‘

Proposition 2.4.4. The space GaX(©) is compact and R4 is a continuous map on GgX©@.
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Proof. Recall that G4X is a compact space with the quotient topology of the topology of uniform
convergence on compact sets. Then if a sequence of geodesics (fn € GaX(®),en converges to a
geodesic f € G4X, the sequence (fn(0))nen converges to f(0) € X. Since f,(0) € VX for every n
and VX C X is discrete (thus closed), it follows that f(0) € VX. Hence G4X(? is a closed subset
of a compact space, thus it is compact.

As G4X© is the union of the open sets B, for e in EX, and Ry coincides with the continuous

map ¢'(®) on B,, the map Ry is continuous. O

Let hiop(R4) be the topological entropy of the continuous map Ry. We will see in the next section

that it is a combinatorial object and it depends only on the graph structure of X.

2.4.2 Symbolic coding for the first return map of the geodesic flow

Let F be a finite set, equipped with the discrete topology. Consider the space £ = FZ with the

product topology. For n; < ng < --- <ng and aq,--- ,ax € F we call

Coviimk ={w e Tp:wp, =0, forj=1,--,k}

a cylinder and k the rank of that cylinder. Cylinders form a base for the product topology of Xf.

The topology is given by any metric

d)‘(w,w’) — )max{neN: wk=wy, |k|<n}

with A € (0,1). Then any symmetric cylinder C, """, of rank 2n + 1 is a A™-ball. Let ¢ be the

shift on ¥ : o(w)n = wnt1. Then (Xp, o) is called a symbolic dynamical system.

Now let X be a finite oriented graph. Consider the space of two-sided sequences of edges EXZ where
EX is the set of oriented edges of X. We can define the product topology, and a shift ¢ on it as
in the previous paragraph. Let (Xgx, o) be the symbolic dynamical system defined in this way. Let
A = (Acf)e,seex be a matrix with entries a.y = 1 if the terminal vertex of e coincides with the

initial vertex of f and f # e, and A = 0 otherwise. Let
Yp={weZpx: Awnwn+1 =1,Vn € Z}.

The set X4 is obviously o-invariant. The restriction o|x, = o4 is call the subshift of finite type

associated to A.
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Remark. For any geodesic flow on the unit tangent bundle of a compact C*®-Riemannian manifold of
negative curvature, or more generally for Anosov flow, Bowen and Ratner constructed a suspension
flow of a subshift of finite type “more or less” representing the given flow. In [CP], Coornaert and
Papadopoulos studied symbolic coding for the geodesic flow associated to word hyperbolic groups.
Since (Ga X (), R,) is purely combinatorial, i.e., it does not depend, up to isomorphism of continuous
dynamical systems , on the length distance d on X, its coding is obtained in a similar way (see [CP]

p. 488-489 where the case when X is the Cayley graph of a free group is described).

Proposition 2.4.5. The dynamical system (GaX®, Ry) is topologically conjugate to the two-sided

subshift of finite type (X4,04).

Proof. We want to show that there exists a homeomorphism q : GgX(©) — T, satisfying go Rq =
ogp0Q.

Since every geodesic line f is entirely determined by the sequence
z=z5= (- ,2-1,20,%1," ") € EN

of its consecutive edges such that i(zq) = f(0), the map g is naturally defined by sending f to the
sequence ¢ where i(x,) = (Rq)" f(0) is the n-th edge of the geodesic f along the positive direction.
The sequence z is clearly an element of ¥ 4. It is also clear that T o ¢(f)n = g 0 Ry(f)n-

Let us show that ¢ is continuous. Recall that G4X(® is equipped with the restriction of the
topology of uniform convergence on compact sets where as ¥ 4 is equipped with the product topology
of EXZ with discrete topology on EX, in other words, the topology of pointwise convergence.
Suppose that the sequence (fn)nen of local geodesics converges to a local geodesic f. Then f,(0)
converges to f(0). Since f,(0) € VX and VX is discrete, f,(0) = f(0) for large enough n. Similarly
for any k in Z, (Rq)* f,(0) converges to (Ra)*f(0), thus the k-th edge of f, coincides with that of
f for large enough n. Therefore for large enough n, ¢(fn)r = q(f), thus g(fr) converges pointwise

to q(f)-

The inverse map ¢!

sends z to a local geodesic line f whose n-th edge is z,, for every n € Z. If
z., converges to x pointwise, then again by the discreteness of EX, z,, = (z,) for any large enough

n, thus ¢~ ((zn)m) = ¢71((zn)). Therefore ¢~ is also continuous. O

By the above proposition, the topological entropy of (G4X(?), Ry) is equal to that of ($4,04).

Let us recall that the topological entropy of a subshift of finite type is the spectral radius of A (See
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[HK], pp. 120-121 for instance). In fact, we can also find the entropy maximizing measure as follows.
For the given irreducible matrix A (see section 3.1), let ¢ = (g1, - ,qn) and v = (v, - ,VN)
be positive eigenvectors of A and AT with positive eigenvalue A equal to the spectral radius of A,
respectively, normalized so that EfV:I g;v; = 1. These vectors exist and are unique up to scalars by
Perron-Frobenius theorem. Let IT = (;;) be the matrix given by m;; = "—/{JUIJ’—‘ It is easy to see that
II is a stochastic matrix. The Markov measure pur of Il on ¥4 (which is o4 invariant) is called the

Parry measure and it is the unique measure of maximal entropy. (See [HK] pp. 174-177.)
2.4.3 Suspension flow on finite subshift and the geodesic flow

Now let us fix a length metric dg on the graph X. Let r : £4 — R* be the height function defined

by r(x) = £(zo). We define the suspension flow (£%,0%) on £ 4 as follows :
a={(t) T4 xR:0<t <r(2)}/(z,7(z)) ~ (0(2),0),

oa(z,t) = (0a(2), ).

Proposition 2.4.6. The geodesic flow (G4 X, ¢:) is topologically conjugate to the suspension flow
(2%, 07) of the subshift of finite type (Xa,0).

Proof. A geodesic line f in G4X determines a unique sequence z = (---,Z_1,%g,Z1, ) of its
consecutive edges, such that f(0) belongs to zo, and does not belong to z; (but f(0) can belong to
both z_; and z if it is the origin of zg). Let us define a map g : GgX — X7 by sending f to (z, s)
where s is the distance between the initial vertex i(zo) of the edge at time 0 and the point f(0).

1

The inverse map ¢~! sends (z, s) to a local geodesic line f whose n-th edge is z,, and such that f(0)

is of distance s from i(zo). The maps g and ¢~ ! are clearly extensions of the functions ¢ and ¢~ 1,

respectively, defined in the proof of Proposition 2.4.5. The proof continuity of ¢ and ¢~! is similar

to the proof of Proposition 2.4.5. O

By the above proposition, hZ,(d) = hiop(07). Now hiop(0f) = mazzha(o) where hz(ah) is

the measure theoretic entropy of (X7,0%) and the maximum is over all o%-invariant probability
measures [i on X7.

There is a one-to-one correspondence between the o-invariant probability measures on ¥4 and
o-invariant probability measures on ¥7. Let u be a o-invariant probability measure, and h,(o)

be the measure-theoretic (metric) entropy of o with respect to . If we denote by i = p x dt the



CHAPITRE 2. VOLUME ENTROPY FOR GRAPHS 31

probability measure on £’ corresponding to u, then

halo) = hf—(‘;-gl (26)

(see [ADb]).

Remark. The characterization of the volume entropy described in this section gives an alternative
approach to find the minimal volume entropy, namely, by finding the minimal value of h,(c4)/ [ rdu

where p varies over all o-invariant probability measures on ¥ 4.

2.5 Another characterization of the volume entropy

In this section, we give another characterization of the volume entropy, using Equation 2.6 in the
last section. As in the last section, 4 denotes a o-invariant probability measure, &z the (o7) 4-invariant
probability measure, and hz the measure-theoretic entropy of o7 with respect to f.

Now let us calculate the metric entropy of the suspension flow. Let P,, be the set of admissible
sequences of length m in ¥ 4. For simplicity, let us denote any admissible sequence apa; - - ap—1 in
P by a. For any a € Py, let Cgk m+k=1 e the set of bi-infinite sequences  whose entries Ty
are a;, for i = 0,--- ,m — 1. Let Bf, be the collection of cylinders C¥=*™+*=1 where g run over
all the elements in P,,. Denote B,, = BY, and Cg"" m=1 = C, for simplicity. For every a € Py,, let
by = Loy +Lay - +Lg, _,,andlet pg = p(By,). Let Sir(z) = r(z)+r(0z)+r(0%z)+- - +r(c™ 1z) =

£(zo) + -+ + &(Tm—1). If we let Hyy = —L 37 pglog g, it is well known that hy(o4) = Jim Hop,.
€Pm -

For any o 4-invariant probability measure p, it is easy to see that [rdu = 1/m [ Sprdu. Therefore

by the last equality in Section 2.4.3,

H a€P.
~ Ty 1 ___rn_____z l acFm
h#(a_A) mllnoo (1/m)fsmrdu ml—lrnoo # Hala
a€Pm T
— 2 Malogpa
= lim 2P~
m—=co 3. Hala
a€Pm

Lemma 2.5.1. Letn>1, andlet0 < p; <landa=3 i, p; € (0,1). Let 4; >0, fori=1,--- ,n,

be given positive number which are not all equal. Then the function

Y milogpg
f(,ula' ,ﬂ'n)_ Z/—“igi
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is mazimized when p; = exp(—ct;), where c is the unique positive constant which satisfies

n
Z exp(—ct;) = a.
i=1

Proof. Let us use calculus of variation. The maximum is attained when V f = AVg for some constant
. )
A, where g : (1, , fin) — Dty Hi. Since % = 1, we should find y;’s so that 5£ does not depend

on j.
Of _  (L+logp;)(3 pits) — o pilogm)ty _ |
Em,- (Z l"iei)2

It follows that (log pj — log ps)(3- pils) = (Ij — 1:)(3 pilog i), for every 4, 5. Let log uj = c1 + c24;.
Then

Of __(ta+et)(FCmb) - Cpla+et)l (G pb)+a(pmb —al)) 238)

Op; (O (mati))? (X (miti))?

Thus ¢; = 0, unless all the ¢; are of the same length. Therefore the extremal value is attained when

@.7)

p; = exp(—cf;) where c satisfies ) ;- ; exp(—c#;) = a. The value of f at this point is ¢ and since
QL, = — =1 < 0 for all j at this point, it is a maximal value. On the boundary, say when u; =0
al‘-; > pibs

for example, by the same calculation, the value of f is ¢’ where Y !, exp(—c'¢;) = 1. Since ¢’ < c,
the value of f on the boundary is strictly smaller than c. Thus the global maximum of f is attained

at p; = exp(cs;) with maximum value c. O

By Lemma 2.5.1, we have the inequality

- 2 Malogpa
a€Pm

————— < tm;
> Hala
Qe‘P‘m

where c,, is the only positive number such that Y e~¢mfa =1,
a€Pm

Lemma 2.5.2. lim c,, ezists.
m—00

Proof. Let n < m. Since any path of length m is a concatenation of a path of length n and a path of
length m —n, we have BS, ¢ BANBY,_, = {Co "t nCR ™ _ :iag- -an-1 and an---am-1

Qn, - ,Gm—1

are admissible paths}. It follows that

Z e—cmfg z e—-cme_c_ > Z e—leg =1.

bePn C€Pm—n a€Pnm,

Thus for every n < m, either ¢, < ¢ OF ¢ < Cm—n, and clearly ¢, < ¢p/q for any d which

divides m. Therefore ¢, < inf{supcp,, - ,¢n, : m € Nnj +--- + Nn,}.



CHAPITRE 2. VOLUME ENTROPY FOR GRAPHS 33

Now let ¢ = linrg iorclf ¢, and let € > 0. By the above observation, it suffices to find two integers p
and g relatively prime such that ¢, < ¢+ € and ¢4 < ¢+ €. (Then any big enough integer m can be
written as a linear combination of p and g, thus ¢, < ¢+ ¢, thus lime, <c.)

Suppose that such p and g do not exist. Let d = min{ged(p,q) : ¢, < c+€,¢g < c+¢€} > 1. Fix

D € dN such that ¢p < ¢+ e. By the definition of d, cpi4+1 > ¢ + € for any integer ¢.

1< > exp(—cperila) < (D exp(—cpt+1lp))*( D exp(—cpriile))

a€Ppi41 bePp c€P,
< (D exp(—(c+ )" (Y exp(—(c+e)le))
bePp c€P,
Therefore
T < (3 vt ow)

ce P1 ée Pp

Since cp < ¢+ ¢, it follows that ( e (c+9%) < 1, which leads to a contradiction since the
bePp
right hand side in the above equation tends to 0 as t tends to infinity, where as the left hand side

of the equation is a positive constant. Therefore we conclude that d = 1 and the infimum limit

¢ = liminf ¢, is in fact the limit of ¢,, as m — oco. Od
m—00
Therefore
- 2 Halogug
hz(c%) = lim 2€Pm <ec
I"( A) oo 2 La (la)
a€Pm

We just showed that for any o-invariant probability measure p, we have h, < c. Since the volume en-
tropy hvol(d) is the supremum of the metric entropy hj(c7) over all o-invariant probability measure

[ on the space ¥7, we conclude that hyo(d) < c.
Proposition 2.5.3. hy, =c.

Proof. First notice that ¢ = lim ¢, < ¢, for any m since ¢, is decreasing for any geometric
m—0o0

sequence m;. It follows that for any integer m,

> AT > D Al = D eenta=1. (2.9)

i,jEEX i,J a€Pnm
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To show the inequality ¢ < hyol, let us use the criterion from Theorem 2.1.2 : the volume entropy

is the unique positive number h such that the matrix A(h) defined by a(h);; := a;jexp(—h¥;) has

the largest eigenvalue 1. If ¢ > hyo, then the entries of A(c) are strictly smaller than A(hvo1), thus

all the absolute values of eigenvalues of A(c) are strictly less than 1. Thus A(c)” tends to the zero

matrix as n — oo, which is a contradiction to the equation 2.9.

Proposition 2.5.4. If the graph X is regular, then lim ¢, (4o) < lim ¢, (£) for any € # £o.

Proof. We want to show that ¢, (€o) < cm(€) for any m, for any £ # 4.
By strict convexity of the function e™*, we have that

|Pl_l Z e—eml(@) 5 g=om Tt
m

a€Pm

Note that

{a€Pm:g;j=e}=km"

since once we fix an alphabet at position j, we have k choices for each position ¢ # j, where the

graph is k + 1-regular. Since we have |EX| choices for the alphabet at position j, we have

|Pml| = |[EX|E™1L.

Therefore

D la)=> > {a€Pn:a;=e}e)

a€Pm =1 e

m
=) k™ l(e) = mk™ Y h(e)

j=1 e e

l(e
= 1Pmim =2 = Prltote)
> Ua)
(the last equality comes from the definition of £y). We just showed that “er;;"ml

conclude that

1= 3 emonl0l s [P, Jecn®8@ = T gmem(toa _ 1,
a€Pm a€Pm

i.e, cm(lo) < em(l) for any m, therefore c(lp) < c(l).

The following theorem is a corollary of the above proposition.

= fo(a), thus we

Theorem 2.5.5. If the graph X is regular, then h , > h%  i.e., the volume entropy is minimized

vol = "“vol’

when the length of the edges are all equal.



Chapitre 3

Overlattices in automorphism
groups of trees

3.1 Overlattices and coverings of graphs of groups

In this section, we briefly recall some background on group actions on trees and the theory of
graphs of groups, and we explain the correspondence between overlattices and coverings of graphs
of groups. We refer the reader to [Se], [Ba] and [BL] for details on the standard material, gathered

in section 3.1.1.

Throughout the paper, we denote by T a locally finite tree, i.e., a tree having finite valence at
each vertex. We denote by Aut(T) the group of automorphisms without inversions of the tree T. A
subgroup I of Aut(T) is discrete if the stabilizer T';, is finite for some, thus for every, vertex = of T.

The covolume of T' is defined by

Vol (W)= 3 iFL

zel\VT z|

A discrete subgroup is a lattice if its covolume is finite. In this case, Aut(T") is unimodular, and
the covolume is equal (up to a constant depending only on T') to the volume of I'\ Aut(T") induced
by the Haar measure on the locally compact group Aut(T) [BL]. A lattice T is called cocompact if
the quotient graph I'\T is finite. An overlattice of T is a lattice of Aut(T) containing I' with finite

index.
3.1.1 Cocompact lattices and finite graphs of finite groups
By a graph of groups (X, G,), we mean a connected graph X, groups G, and G, = G assigned

to each vertex z in VX and each edge e in EX, together with injections G, — G for each edge e

35
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In [P], Pyber showed that the number of isomorphism classes of groups of order n with a given
Sylow set, namely the set of Sylow p;-subgroups defined up to conjugacy, is at most n?5#*+1¢. Together

with the result of Sims ([Si]), namely f(p*) < p%“s*'%kg, we get the following upper bound for f(n):

o~

2 43, 1,8/3
fn) < piﬂkﬁzkt n75u+16

o
Il
A

2+ Lp%/3 4750416

N

n

IA

Let g(n) = Zu%(n) + 24%/3(n) + 75u(n) + 16 so that f(n) < n9™).

On the other hand, Lucchini and Guralnick showed that if every Sylow subgroup of G can be
generated by d elements, then d(G) < d + 1 ([Luc], [Gur]). Combining with the basic fact that
d(H) < n for any group H of order p™ ([Si]), we deduce that

dG)<p+1.
Using these results, we obtain the following upper-bound for u(n).

Theorem 3.2.1. Let T be a cocompact lattice of Aut(T). Then there are some positive constants

Co and C; depending only on ', such that
Vn > 1, ur(n) < Concll"gz(").

Lemma 3.2.2. Any covering ¢o = (¢, ¢z,7z) : (X,Ge) — (Y, H,) is strongly isomorphic to a
covering ¢, = (¢',¢5,7%) : (X,Ge) — (Y', H]) where each «., for x € VX UEX is a word, in
hy € Gy’s (y € VY') and the edges e € EY', of length at most 12K, where K 1is the diameter of X.

Proof. Fix o € X. Associated to ¢, is a lattice IV C Aut((X,/a;,/a:o)) containing m (X, G, zo).
From (X, G,.,xo) we construct (R, S, g.) such that the quotient of (X,/C-v'\;,/wo) by m1(X, Ge,z0) is
exactly (X, G,). Namely, first fix a maximal tree 7 in X. We may choose R to be the set of paths
ey -en from zg in 7, S to be the set of paths e; - - - epen41 such that e;---e, is a path in 7 and
ge =€) ---eleny1™ €171 where €] ---¢€] is a path in T from zg to t(e), and where e is the edge
connecting e; - --e, to ej---epy1. In particular, g. is a product of at most twice the diameter of
X number of generators of II(X,G,). Now we choose R’,S’ subsets of R,S in such a way that
the restriction of the projection (X,/G\;,/a:o) — Y \(X,/G\.,/mo) on R’ is bijective for vertices (resp.
the restriction of S’ is bijective on edges). We also choose g, in a similar fashion as above, hence

g, is also a product of at most twice the diameter of X number of generators of II(X,G,). From
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(X, Ge, o) = 7[x0,Zo] acts on (X,G,,xzo) by the natural left action. The graph (X,/a:,/mo) is
a tree and moreover, for any other universal cover (T,T) of (X,G,), there is an isomorphism 1
between I" and 71 (X, G., o) and a Y-equivariant graph isomorphism between T and (X,/G\.Txo),

see for example [Se].
A graph of groups is called faithful (or effective) if there is no edge subgroup family (Ne)ecex
satisfying the following conditions :

i) for each e and €’ in EX such that o(e) = o(e’), the images of N, and N coincide : a.(Ne) =
aer(Ner). Let us denote it by No).
ii) For each z in VX, N, is a nontrivial normal subgroup in Gj.

It is shown in [Ba] that the graph of groups (X, G,) is faithful if and only if its fundamental
group I is a subgroup of Aut(T') for its universal cover T, i.e., if and only if the map ' — Aut(T)
is injective. The fundamental group of a faithful finite graph of finite groups is a cocompact lattice
in the automorphism group of its universal covering tree and conversely, a quotient graph of groups
of a cocompact lattice in the automorphism group of a locally finite tree is a faithful finite graph of

finite groups.

In [Ba], Bass defines a covering of graphs of groups in such a way that the induced map between

the corresponding fundamental groups is a group monomorphism.
Definition 3.1.1. Let (X,G,) and (Y, H,) be two graphs of groups. We call a morphism of graphs
of groups, which we denote by do = (¢, bz, 7z) : (X,Ge) — (Y, H,), the following data

(i) a graph morphism ¢ : X —Y,

(ii) group homomorphisms ¢ : Gz — Hy(z) and ¢, : Ge — Hy(e), for every verter x and every
edge e of X,

(i) families of elements (vz)zevx € m (Y, He, () and (Ve)ecex € (Y, H,)

such that for every edge e of X with origin z, we have y; 7. € Hy(;y and the following diagram

commutes.
Ge = Gz
lfbe 1%
Hy(o —202102%00
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The induced homomorphism of path groups ® = ®,, : II(X,G,) — II(Y, H,), is defined as
follows on generators (see [Ba)) : ®(g) = 12b:(9)7; " for g € G, and z € VX, ®(e) = yed(e)v; ' for
e € EX. The induced homomorphism on path groups restricts to a homomorphism m; (X, G, zo) —
m1(Y, He, #(z0)), which we will denote again by ®.

The induced homomorphism ® = ®,, : m1(X, Ge, o) — ™1 (Y, He, ¢(20)) gives a ®; -equivariant
graph isomorphism ¢ : (X,/a._,/xo) — (Y, H/.,Néﬁ/(:co)) defined by

[9] € 7[z0,2]/Gz — [(9)7V2] € T[d(20), ¢(2)]/ Hp(z)-

A morphism ¢¢ = (@, bz, 7z )zevxuex Of graphs of groups is an isomorphism of graphs of groups
if ¢ is a graph isomorphism and ¢, are all group isomorphisms. In this case, ¢7! = (¢~ 1, bys Ty)

where ¢}, = ¢4-1(y) and v, = &7 (y4-1(y)) ! for y e VY UEY.
Definition 3.1.2. A morphism of graphs of groups @ is furthermore called a covering if

(a) the maps ¢ and ¢, are injective for all z and e,

(b) for every edge f of Y with origin ¢(x),where z is in VX, the well-defined map

(I)z/f : H Gz/ae(Ge) _’H¢(z)/af(Hf)
e€¢p~1(f),0(e)=z

[g]e — [¢m(g)7;1'7e]f
is bijective.

By the condition () in Definition 3.1.2, we have > %} = l—?{,ﬁﬂ for every edge f of
e€p1(f).0(e)=z
Y with origin ¢(z). Summing over all vertices z such that ¢(z) = y, it follows that the value of

H H
e S ||
=, |Gsl = |Gel
z€H~1(y) e€d~1(f)
does not depend on vertices and edges, since the graph Y is connected. Note that n is an integer

since ¢.(G;) is a subgroup of Hy for each x such that ¢(z) = y. A covering graph of groups with
the above n is said to be n-sheeted.

Note also that by the condition (b), a covering of graphs of groups induces a covering of the
corresponding edge-indexed graphs. Recall that a covering ¢ : (X,1) — (Y,1) of edge-indezed graphs
is a graph morphism ¢ such that 3, ,-1(¢1) o(e)=z i(€) = i(€’), for every z and for every e’ of origine

¢(z).

Theorem 3.1.3 ([Bal, Prop. 2.7). The morphism ¢s is a covering if and only if ® : 71(X,Gs,x0) —

m1 (Y, He, ¢(z0)) is injective and ¢ (X,/C?.,/zo) — (Y, Ho, ¢(z0)) is an isomorphism.
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3.1.2 Counting overlattices
Let I' be a cocompact lattice in Aut(T). Set
U(n) =Ur(n) ={I":T cI' C Aut(T), [I":T]=n}

and let u(n) = ur(n) = |U(n)| be the number of overlattices of I' of index n. It is shown in [BK]
that u(n) is finite. We are interested in the asymptotic behavior of u(n). For that purpose, we will
show in this section that there is a bijection between overlattices of I' and isomorphisms classes of

coverings of graphs of groups by the quotient graph of groups of I, in the following sense.

Definition 3.1.4. Let ¢¢ = (@, ¢z, Vz) : (X, Ge) — (Y, H,) and Yo = (¥,%z,7%) : (X,G,) —
(Y', H.) be two coverings of graphs of groups. An isomorphism between them is an isomorphism of
graphs of groups 0, = (0,0y,p,) : (Y,H,) — (Y’',H,) such that 6 o ¢ = ¢ as a map of graphs and
the corresponding induced diagram of isomorphisms between universal covers

& —_—~—

(X, Ga,@0) — (Y, Ha, $(z0))

(Y, H', (o))

commutes.

It will also be useful to consider a more restricted notion of isomorphism of coverings. (As for
now, we do not know whether the notions of isomorphism and strong isomorphism are equivalent.
We use the following definition of strong isomorphism to prove the bijection between the set of

overlattices and the isomorphism classes of coverings of complexes of groups.)
Definition 3.1.5. Let ¢ = (¢, ¢z,7z) : (X,Ge) — (Y, He) and Yo = (¥,%z,7%) : (X,Ge) —
(Y',H]) be two coverings of graphs of groups. A strong isomorphism between them consists of a
pair {8s = (8,6y,py) : (Y, Hs) — (Y', H]), (Cz)sevxuex} where 6, is an isomorphism of graphs of
groups (Y, H,) — (Y, H]) and (¢z) € Hy, are such that

a) 6o =1 as a map of graphs,

b) For any z € VX UEX, we have ¥, = ad((;')0y(z) © #c as maps Gz — Hyy,

¢) Yz = O(Vz)Pp(z)Cz for anyz € VX UEX.

Lemma 3.1.6. Any two strongly isomorphic coverings ¢e = (@, ¢z,7z) : (X,Gs) — (Y, H,) and
Ve = (U, ¥z,7) : (X,Ge) — (Y, H,) are isomorphic.
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Proof. We have a triangle of morphisms of path groups

(X, G.) —— TI(Y, H.)
\ le
I(Y', H))
We claim that this triangle commutes. It is enough to check it on generators : let z € VX and
s € Gy. We have ®(5) = v,¢2(5)7: 1, ¥(s) = v.1z(s)7v.~" and on the other hand
8 0 ®(s) =6(712)0(¢2(5))0(1z) "
=0(2)Pi(x)0p(2) (B=(5)) Py O (1) (3.1)
=0(72)Pg(x)Sa ¥z (8)¢z  Ppy ©(12) ™"

(using property (b) of strong isomorphism of coverings), and this is equal to

= Yta(s)” = U(s)
by property (c) and the definition of ¥. Similarly, for e € EX,
© 0 ®(e) =6(7.)O(¢(e))O(7e) !
=@(’7e)P¢(e)9(¢(€))P;(lg)e(’yé)_1 (3.2)

=0(7e)Po(e)¥(€) P50 (1) T = Vitb(e)vs -

The last equality comes from the fact that since (. € H, 1’1}( ey by definition of the fundamental group,

v(e) = Cp(e)G .
Thus we have a commuting triangle of morphisms of fundamental groups

7T1(X, G.,zo) 'L) ﬂl(Yi H, (}5(1‘0))

\4
e

S (Yla Hla 'd)(xo))
(where © is an isomorphism), and a triangle of isomorphisms of trees, which is equivariant with
respect to the above triangle of groups :

5 —_—~—

(X, Ga,20) — (Y, Ha, $(x0))

Sk

—

(Y, H',¢(z0))-
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We claim that this triangle is also commutative. Indeed, by definition, if g € 7[zo,z]/G; C (X,/G\.,/:co)
then
8(4(9)) = 0(2(9)7z) = ©(2(9))0(72)Ps(a)
= V(9)7a¢:" = ¥(9): = P(9)

where we used relation (c) together with the fact that ¢; € Hy,,,. Observe that

U(g)vs € W[w(mo)v'ﬁb(m)]/H;(z)-

The Lemma is proved. O
For a given overlattice I of ', we can construct a covering m! of graphs of groups as follows.

Let Y =T"\T and p’ : T — Y be the canonical projection.

Define subtrees R’ and S’ of R and S, respectively, in the following way. For each vertex y of
Y, choose one vertex from each set {p’ ()} N VR and call it §. Let R’ be the subgraph of R with
vertices {§ : y € Y'}. Since R is a tree, we can choose vertices § so that R’ is connected. Let S’ be
the maximal subtree of S containing R’ such that p’|s is injective on the edges. For e € EY, choose
elements g, € I such that glo(€) = of(\g). The graph of groups (Y, H,) is defined with respect to R/,
S’ and ¢'’s, as (X, G,) is defined in section 1.1.

Now the covering of graphs of groups, which will be denoted by m = m!" : (X,G,) — (Y, H,),
is defined as follows. For the graph morphism m : X — Y, take the natural projection w. For the
group morphisms my : Gz — Hp(s), take an element o, in I which sends & to n/zTa:/) We can choose
o, =1if £ € VR'UES’. Note that m(z) is a vertex of Y, thus T;L-ZCE/) € R’ whereas z is a vertex of X,
thus # € R. Let m, = ad(o;) o ¢ be the injection followed by the conjugation (g — o,go;!). Since
G, stabilizes £ € VT U ET, the group 0,Go;! stabilizes z;(;) € VT U ET, thus it is a subgroup
of Hp(gy = I";;(;), for z € VX U EX. For the elements vz, 7. in (iii) of Definition 1.1, take v, = 0!

and Ve = geo; g ¢y It follows that

ad(7; 17e) © Ctm(e) © Me = ad(7; 1) © ad(gy c)) © ad(ae)
= ad(azgeo'e_lg:;(le)) ° ad(g:-n(e)) o ad(oe)

= ad(0zg.) = ad(0z) o ad(ge) = Mz 0 re.

Since v;'s are the elements of IV, the map mT is a morphism of graphs of groups. The maps

my are clearly injective, thus it remains to show that the map ®,/; (in Definition 3.1.2 (b)) is
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bijective. Suppose that for e,e’ € EX and g,g' € Gz, we have [¢,(9)7; vels = [#2(9')7z 1ver]s in
Hy(z)/cpHy. In other words,

Ve 1202(97 9" )72 M ver € ap(Hy)
-1 _-1 -1/ -1 -1 -1 d / H
Im(e)0ede Oz 029 07 0900, Gm(e) € ad(gy)(Hy)

0eg; 197 g'9er0" € Hy = Stabr(f)

Since o, sends € to f and o, sends €’ to f , the element g;1g~1g’ges of T should send e’ to &. We
conclude that e = ¢’ since no element of T sends & to e’ where ¢’ # e in X ~ I'\T. We conclude that

r

e=¢ and g~1¢' € G,, ie. [g]e = [¢']er. Therefore m!" is indeed a covering of graphs of groups.

Proposition 3.1.7. Let I' be a cocompact lattice of Aut(T) and (X,G,) be its quotient graph of
groups. The map I — mTl " induces a bijection m between the set of overlattices of T' of index n and

the set of isomorphism classes of the n-sheeted coverings of faithful graphs of groups by (X, G.).

The following lemma shows that the map m : I — mr” is well-defined.

Lemma 3.1.8. LetT be a lattice in T, and let IV O T be an overlattice. Fiz (R, S, ge) giving rise to a
graph of groups structure (X, G,) onT\T (as in section 1.1.). Let (R', S, g%) (resp. (R",S",g")) be a
data giving rise to a graph of groups structure (Y, H,) (resp. (Y',H.)) onT'\T, and let (0})zev xuEX
(resp. (02)zevxuEx) be a data giving rise to a covering ¢pe = (¢, dz,7.) : (X,Ge) — (Y, Ha) (Tesp.
Yo = (U, ¥, V) : (X,Ge) — (Y', H.) ). Then the two coverings ¢o and e are strongly isomorphic.

Proof. Recall that by definition, we have o/, : & d:(\m/) and ol : Z — ’lz-(\.’l:/), where o/, and o are in
-1 -1 -1 -1 -1 -1
I'. Recall also that v, = 037,77 =07 forz € VX and v, = ge0e™ gi(e) > Ve =9eTc o)
for e € EX. Now we want to construct a strong isomorphism {6, : (Y,H.,) — (Y’',H,),(z} of
coverings of graphs of groups. First notice that there is a canonical bijection § : Y ~ I'"\T ~ Y.
It lifts to a bijection 6 : ' — R” and it extends to a unique bijection 6 : &’ — S”. Let us choose

—_—

arbitrary elements §, € I for y € VY U EY such that £,(7) = 6(y) and define maps

Gy H Hy = F;; — Fléaj—) = Hé(y)’h — £yh€y_1

We have a morphism of graphs of groups 8, = (6,0y,p,) : (Y, Hs) — (Y’, H,) by setting p, = £, for

y € VY and p. = g;'lfe_l gg(e) for e € EY . It is clear by construction that this is an isomorphism of
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graphs of groups (all maps are isomorphisms of groups). Note that there is a commutative diagram
of isomorphisms
(Y, Hy,yo) — 2T/
le lld
(Y, Hy,0(30)) —> T
where we have denoted by iy, i}, the isomorphisms m1(Y, He,y0) ~ I, and m (Y’, H,,0(yo)) ~ T,
respectively.

AP

Finally, put (; = £4(z)0;0% !, For any vertex z, there holds

Ad(C o) 82 = ad((02)(04) T €5) © ad(Eoga) © ad(0)

= ad((a':’nl)) =1

as desired. A similar computation holds for ¥, : G, — H:b(e) when e € EX. This proves condition (b)
in the definition of strong isomorphism of coverings. Condition (c) follows from the very definition
of ¢z, 04,7, and 7. 0O

Now let us define the inverse map ¢, — I'y of m as follows. Set 'y := m (Y, H,, $(z0)) C
Aut((Y, m:co))) We define an embedding i4 : 'y — Aut((X,/é\.,/xo)) as follows :

ig(u) - v= ¢ (u- (v)) forueTlyandv € V(X,/a:,/xo) u E(X,/G\.,/xo).

Let us denote by I'y C Aut((X,/G'\.,/mo)) the image of iy. The following lemma shows that this map

is well-defined.

Lemma 3.1.9. If ¢, : (X,Gs) — (Y,H,) and ¢s : (X,G.) — (Y',H]) are isomorphic co-
verings of graphs of groups, then the corresponding subgroups I'y C Aut((X,/G\;,/xo)) and Ty C
Aut((X, G, z0)) coincide.

Proof. By definition of isomorphic coverings, we have a triangle of isomorphisms of trees

(X,/G\:zo) ;{T’ (Y, mwo))

Sk

——

(Y’ H',%(z0))

which is equivariant with respect to the action of the corresponding fundamental groups. Define

—~——

'y C Aut((Y, He,$(z0))), an embedding iy : 'y — Aut((X,/é\.,/a:o)) and put I'y = Im(iy) C
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Aut((X,/G\.,/xo)) as above, and define I'y, in the same fashion. We claim that I'y = I'y. Indeed, if
u € I'y then O(u) € 'y and for v € (X,/C?.-,/mo) we have
ip(u) v =0""(u-§(v)) = 6 (67 (O(u) - 6($(v)))
=971(0() - P(v) = iy(O(u)) - v.
We deduce that Ty C I'y. Replacing 6, by its inverse and exchanging the roles of 1, and ¢ we

obtain the reverse inclusion I'y C I'y. Thus 'y = 'y as desired. O

Proof of Proposition 8.1.7. It remains to show that the map @, — I'y is the inverse map of m. To
see this, let I O I" be an overlattice of I'. The quotient graph of groups I'\\T = (X, G,) is formed
relative to some datum (R, S, g;) ; let us similarly choose datum (R’, S, g.) inducing a quotient graph
of groups (Y, H,) = I'"\\T. Recall that by [Se|, §5.4, there are, for any o € VX and yo € VY,
canonical isomorphisms I ~ 71 (X, G, o), T ~ (X,/G\.,/xo) and IV ~ (Y, He, y0), T ~ (Y,/Hx.,/yo).
Choosing furthermore some elements o,’s as in the proof of Lemma 3.1.8 we get a covering (see [Ba],
Section 4.2)
m' : (X,G.) — (Y, H.).

From [Ba], Proposition 4.2, the following diagrams commute :

P T

l |

o~ T o~
(X, G, z0) = (Y, Ha, o)

r——m——r
l l
71(X, G, 70) 22 m1 (Y, Ha, 30)
where we denote MT the morphism of path groups induced by the covering m!" .

In particular, the pullback of 1 (Y, He, yo) via the composition of isomorphisms 7" ~ (X,/G\;,/:co) 'E»;/
(}/,/I{\.,/yo) is equal to I. This shows that ¢, — Ty is a left inverse of IV - mT .

To prove the other direction, let ¢, : (X,Gs) — (Y, H,) be a covering of (X,G,) and set
I"=Ty C Aut((X,/G:.Tmo)). Now let (Y’, H.) be the quotient graph of groups associated as in Section
3.1.1 to the action of IV on (X,/G\._,/a:o), relative to some choices, and let ¥, : (X,Gs) — (Y/,H') be a
covering constructed as in Section 3.1.2. By construction there is an isomorphism ¥ : (X,/G\.Txo) 35

(Y, H{,%(x0)), equivariant with respect to an embedding ¥ : m1 (X, G.,z0) — m (Y', H., ¥ (z0)),
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and by the first part of the proof of Proposition 3.1.7., we have I = iy (m1(Y’, H,,¥(z0))). Thus,
composing %~! with ¢ and ¥~! with & yields an isomorphism of trees 6 : (Y’,m(mo)) -t
(Y, mzo)) which is equivariant with respect to an isomorphism © : 7, (Y’, H.,%(z0)) = m1(Y, He, ¢(z0))-

At this point, we use the following Lemma :

Lemma 3.1.10 ([Bal], Prop. 4.4, Cor. 4.5.). Let (Z,K,) and (W, J,) be two graphs of groups.
For any isomorphism of trees & : (Z,/I-(\.,/zo) 5 (W,/E,/wo) which is equivariant with respect to
an isomorphism of fundamental groups ¥ : m1(Z, K,,20) — m (W, Js,wp) there exists a (unique)

isomorphism of graphs of groups we(Z, K,) — (W, J,) such that £ =& and £ = Q.

Using the above Lemma, we conclude that there exists an isomorphism 6, : (Y', H,) — (Y, H,)

making the diagram

—~— 5 —_
(X7 G.,:L‘o) (}/7 H07 ¢(IO))
X l-
6
((YI’ H, d’("”O))
commute. Hence the coverings ¢, and v, are indeed isomorphic as desired.
Finally, we check that the above bijection sends an overlattice of index n to an n-sheeted covering.

Let I be an overlattice of I' of index n. We claim that m' is an n’-sheeted covering with n = n’.

Indeed, we have

n'

In B YRPY rem imi
n=[":T]= vol(I\T) - me;x C- _ YEVYzes~i(y) Gl _ yez‘;y o =
S G I o=~ o= Sl >
ye

yeVY yevYy

n'.

Note that the first equality comes from the fact that T is a left I-set (and I'-set) with finite

stabilizers (see [BL], page 16). O

It follows from Proposition 1.7 that to find u(n), it suffices to count the number of isomorphism

classes of coverings of faithful graphs of groups by (X, G,).

3.2 Main results
3.2.1 Upper bound
Let G be a group of order n and let n = H:=1 pf" be the prime decomposition of n. Let u = u(n)

be the maximum of k;. We denote by d(G) the minimal cardinality of a generating set of G and by

f(n) the number of isomorphism classes of groups of order n.
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In [P], Pyber showed that the number of isomorphism classes of groups of order n with a given
Sylow set, namely the set of Sylow p;-subgroups defined up to conjugacy, is at most n’5#*+1¢. Together

with the result of Sims ([Si]), namely f(p*) < p%ks*'%kg, we get the following upper bound for f(n) :

t
233, 1,;8/3
K34 1kS
f(n) < Hp? itak; n7ou+16
i=1

< pF i +5utP+T5u+16

Let g(n) = Zu%(n) + 245/3(n) + 75u(n) + 16 so that f(n) < n9™).

On the other hand, Lucchini and Guralnick showed that if every Sylow subgroup of G can be
generated by d elements, then d(G) < d + 1 ([Luc], [Gur]). Combining with the basic fact that
d(H) < n for any group H of order p™ ([Si]), we deduce that

dG)<p+1.
Using these results, we obtain the following upper-bound for u(n).

Theorem 3.2.1. Let T be a cocompact lattice of Aut(T). Then there are some positive constants

Co and C; depending only on T', such that
Vn > 1, ur(n) < Concll"gz(").

Lemma 3.2.2. Any covering ¢o = (¢, ¢z,7z) : (X,Ge) — (Y, H,) is strongly isomorphic to a
covering &, = (¢, 95, 7%) : (X,Gs) — (Y',H]) where each ., for € VX U EX is a word, in
hy € Gy’s (y € VY') and the edges e € EY', of length at most 12K, where K 1is the diameter of X.

Proof. Fix o € X. Associated to ¢, is a lattice IV C Aut((X,/a;,/a:o)) containing m (X, G, Zo).
From (X, G,.,xo) we construct (R, S, g.) such that the quotient of (X,/C-v'\;,/wo) by m1(X, Ge,z0) is
exactly (X, G,). Namely, first fix a maximal tree 7 in X. We may choose R to be the set of paths
ej---en from zg in 7, S to be the set of paths e; - - - epen41 such that e;---e, is a path in 7 and
ge =€) ---eleny17 €171 where €] - €] is a path in T from zg to t(e), and where e is the edge
connecting e; - --e, to e ---epy1. In particular, g. is a product of at most twice the diameter of
X number of generators of II(X,G,). Now we choose R’, S’ subsets of R,S in such a way that
the restriction of the projection (X,/G\;,/a:o) — Y \(X,/G\.,/mo) on R’ is bijective for vertices (resp.
the restriction of S’ is bijective on edges). We also choose g, in a similar fashion as above, hence

g, is also a product of at most twice the diameter of X number of generators of II(X,G,). From
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this data, we construct a graph of groups (Y’, H,) as usual, and we have a canonical injection
I C TI(Y’, H.). For z € X there exists a unique lift Z € R and a unique z’ € R’ in the I'—orbit
of . Choose 6, € I" C TI(X,G,) such that 6,(Z) = =’ and such that 6, is a product of at most
I(&, ©o) + l(, ') generators of II(X, G,) : here I(a, b) is the distance in the tree R between a and b.
This is possible since we may first choose a path in the path group II(X, G,) from Z to Z, of length
< l(%,Zp) and then a path from zp to z' of length < (o, g ). Observe that since we chose R’ C R,
we have |(§, W) < K for any vertices w,y € VX. We do the same thing for edges in S, to define
6. € II;(X,G,) such that 6.(¢) = €’ and 0, is a product of at most 2K generators of II(X,G,).
Then we can construct from 6, and 6.’s a covering ¢, : (X,G,) — (Y', H,), with v, = 67! and
v, = ge07'g.", which are both products of at most 6K generators of II(X,G,). Observe that a
word of length [ in generators of II(X, G,) belonging to I'" is also expressible as a word of length [ in

generators of II(Y’, H). Finally, by the proposition on bijection of isomorphism classes of coverings

and overlattices, ¢ : (X, Ge) — (Y, H,) is isomorphic to ¢,. O

Proof of Theorem 8.2.1 Let us fix a quotient graph of groups (X, G,) of I as in section 1.1. There
exist only finitely many coverings of edge-indexed graphs by the edge-indexed graphs underlying
(X,G,), thus it is enough to show the assertion for the number of overlattices with a fixed edge-
indexed graph. Thus we want to count isomorphism classes of n-sheeted coverings of graphs of
groups ¢, : (X, G.) — (Y, H,) such that Y is a fixed quotient graph (with fixed indices) of X and
¢ : X — Y the natural projection.

If two coverings are isomorphic, then the corresponding groups Hy, are isomorphic. Thus we count
the number of isomorphism classes of Hy, and we consider fixed H,’s. They are of order nc,.

If two such coverings are isomorphic, then the corresponding graphs of groups (Y, H,) are iso-
morphic. Up to isomorphism of graphs of groups, to prescribe the edge groups Hy and the mono-
morphisms oy : Hy — H,(y), it suffices to consider, for each y, a subgroup H} of H,(y), whose index
is ¢o(s)/cy, and an isomorphism ¢ : Hf — H}.

We thus count the number of subgroups of index c,(s)/cy of a group of order nc,(y), for each f,
and the number of isomorphisms between two groups of order ncy for each f.

Let c; = |G| for any z in VX UEX and let ¢, = ( Zl c;1)~1. By the definition of n-sheeted
covering, the cardinality |H,| satisfies |Hy| = ncy, for Zenq; y(zﬁl VYUEY.

Now we claim that for any group H of order n, there are at most (m!)#(™+1 subgroups of index
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m. For to any transitive H-action on the set {1,---,m}, we can associate a subgroup of H with
index m, namely the stabilizer of 1. This map {p : H — S} — {H' C H|[H : H'] = m} is
surjective since for any subgroup H’ of H with index m, the action of H on the cosets H/H' gives
(among many) an action on {1,--- ,m}, where we let 1 stand for the trivial coset H'. Again by the
theorem of Lucchini and Guralnick ([Luc] [Gur]), there are at most (m!)#(™*! transitive H-action
on the set {1,--- ,m}, as claimed.

There are at most [] .y (cyn)9¢v™) isomorphism classes of Hy’s. By the above claim, the num-
ber of subgroups o (Hy) of Hy is at most ((cy/cs)!)*(®v™*+1. There are at most [ ;¢ gy (cfn)H(er™+!
isomorphisms ¢ : ayH; — afHy and at most [[ ¢y x (Cozyn)*(°=)*! injections ¢y : Gz — Hy(z).
By Lemma 3.2.2, there are at most (3, cyy |H,|)*2X choices for each v, or 7., where K =
diameter of X. Hence

#(er)} < ] yﬂel%(cyn)m‘ [T mex(c,n)2X

1%
zeVX ecEx Y€

which is bounded by (Mn)12K)IVXIHEXD) where M = max ¢, .
yeVYUEX
Note that by the condition of injectivity and the commutativity of the diagram,

Qe

G, Gz
1¢€ l‘ﬁz
ad(v; e )oaye)
Hye) Hy(z)

the group morphism ¢, : Ge — Hy(e) is completely determined by the morphism ¢, : G, — Hy.

Let M LB, Cy, b p(Mn). Let ¢ = |VY|, 1 = |EY]|, c2 {}rez%:‘c/){( 2 )}, let
c3= ) p(cz)+ 1. Combining all the estimates above, we get the following upper bound for u(n),
zeVX

ur(n) < H (cyn)y(cw) H (%(m)n)u(%)ﬂ H (cfn)u(cm)H

yevy zeVX fEEY

T ((cotey/ce))eeon*t . ((Mn) 2K AV XI+IEXD)
fEEY

< H (Mn)9(Mn) H (Mn)H(c=)+1 H (Mn)#Mm)+1
yevy zeVX fEEY

H (cg)Pmnt1. ((Mn)12K(|VXI+IEXI))
fEEY
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ur(n) S(Mn)cog(Mn)+03+cl(M(Mn)+l)(c2)c1(u(Mn)+1)(Mn12K([VX|+|EX|))
<(Mn) %cou2+%°-u5/3+(7500+2c1)u+(l6co+2c1+cs)cgl(#+1) ((Mn)12K(|VX|+IEX|))
<(Con)*" < (Con)%i0es™”
where Cy = maz{M,c2}, C; = co(% + % + 75+ 16 + 2) + 6¢1 + ¢c3 + 12K (|[VX| + |EX]) and
Cl = (ocky- O
3.2.2 Study in the case of a loop

Let p be a prime number. From now on, we assume that T is a 2p-regular tree and that I' is a

cocompact lattice in Aut(T") with a quotient graph of groups given by

Zipz Q {1}

The aim of this section is to give, in this situation, a smaller upper bound on ur(n) than the

previous one, as well as a lower bound.

Theorem 3.2.3. Let n = p‘(§°p’1°1 ---pf‘ be the prime decomposition of n with pg = p. We fiz

t,p1,...,Dt,k1,...,kt’s and let ko tend to infinity. Then there exist positive constants cg,c; such
that lim sup%{,ﬁ},—, < co. Forn = pfo (ko > 3), we also have ns$-1 < up(n) < nA+,
ko—*OO

In the following lemma, we denote by [g, h] the commutator ghg='h~! in G.

Lemma 3.2.4. Let A = (as)1<s,t<k—1 be a lower triangular matriz with coefficients in 0,--- ,p—1

and G = G(A) be a group defined by the generators go, g1, -+ , gk and the following relators

#=1 i=0,1,- k
[Gi,Git1] = 1, i=0,1,--- ,k—1
[gi,gi+2] =g;l-}l.’117 i=0)17"' ak—2 (**)
[giygi+3] =g:.§2.’1lg?-:’22a 1=071’ ,k—3
(Gis i) = Gor 1 Giga ™ Geret ™, i=0.

Then any element of G can be written as gf," e gf: where 0 < i; < p, and G 1is a group of order at

most pFt1.
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Proof. We proceed by induction on k > 1. It is clear for the case k = 1 since the generators go
and §; commute. Now suppose that the assertion is true for all £ < m — 1. For k = m, consider
the subgroup G generated by go, g1, ,gm—1- It is a quotient of G(A’) with A’ = (as+)1<s,t<k—2,
by induction hypothesis, any element of G; can be written as 5780 . -g,",;"_‘l‘ where 0 < i; < p. Now
we only need to consider the elements of G — G;. By an easy induction, it suffices to consider the

elements ImGi = [giagm]_lgigm for i = 0717 M — 1. Since [gugm] € [G7 G] c Gla the element

[3i> Gm)~13; is an element in Gy, thus can be expressed as g gi! - - -gom=} for some i; in {0,--- ,p—1}.
Therefore we get Gmi = gi - -- gf,;"_‘f Gm. It follows that G has order at most p*+?. O

Lemma 3.2.5. Let G be a group of order p**'(k > 1), Gy and G2 be two isomorphic subgroups of
indez p in G and ¢ be an isomorphism from Gy to G2. Suppose that Gy contains no subgroup N

which is normal in G and p-invariant. Then
(a) there exist elements g; in G for i = 0,--- ,k, such that ©(g;) = git+1 fori = 0,--- ,k — 1,
G = (g0, ,9x) and G1 = (go," " , Gk-1);

(b) There exists a lower triangular matrix A with coefficients in 0,--- ,p — 1 such that the map

Y : G(A) — G defined by g; — g; is well-defined and is an isomorphism.

Proof. We proceed by induction on k > 1, using the fact that any maximal proper subgroup of a
p-group is normal, see for instance [Su].

We first consider the case k = 1, that is when G has order p2. Since G; and G, are maximal,
they are normal. Thus they are not equal by the normality assumption and G = (G, G2). Let go
be an element in G — G2 and set g1 = ¢(go). Then clearly G1 = (g0), G2 = (g1) and G = (go, 91)-
Moreover, since |G| = p?, G is abelian [Su]. Thus [go, 1] = 1 and G = {gi®g! : 0 < 49,31 < p — 1},
which shows that ¥ in (b) is well-defined and surjective. Since G(A) has cardinality at most p? by
Lemma 3.2.4, and G has cardinality p?, the map 1 is an isomorphism.

Now suppose that the assertion is true for all ¥ < m. For k = m, consider G,G;,G2 and ¢ as
in the statement of the lemma. As above, G; and G; are normal, distinct and G = (G, G2). Since
[G2 : G2 NG4] < [(G1,G2) : G1] = p, we have [G2 : G1 N Gy) = p and similarly [G; : G1 N Gq] = p.
Therefore G; N G2 is maximal, thus normal in G; and Gs. Since G is generated by G; and G3, the

subgroup G; N G2 is normal in G. By the assumption, p(G; N G2) # G1 N Gs.

Claim. If a subgroup N of G; N G; is normal in G2 and @-invariant, then N is normal in G.
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G

2
\ / ¢\
G1 NGy —>(P(Gl NGs)

N,

Proof. Consider gNg~*, for any g € G1. As p(gNg™") = ¢(9)p(N)p(9)™! = w(9)Nep(g)~' = N

Gy

(since ¢(g) € G2) and ¢ is an isomorphism, we deduce that gNg=! = p~1(N) = N. Therefore
G1 € Ng(N) and similarly Go C Ng(N). Thus G, as a group generated by G; and Ga, is also
contained in Ng(N). Hence N is normal in G. O
By the above claim, we can use the induction hypothesis on G’ = G2, G| = G1NGs, G5 = p(G1NG2)
and ¢ = ¢|g,nG,. It follows that there is an element g; in G such that G2 = (g1, - ,gm),
GiNG2={g1, " ,gm-1) and @(g;) = giy1 for i =1,--- ,;m—1.

Let go = ¢~ 1(g1). If go € G1NGa, then g1 € p(G1NG2), which contradicts G NGz # p(G1NG2).
Thus go is an element of G; — G5. Since G2 is maximal in G, the group G is generated by G2 and
9o, i-e., G = (90,91, "+ ,gm)- It is clear that G; = (9o, - , gm—1) a8 G1 N G2 is maximal in G; and
9 € G1— (G1 N G2).

3,1 ..

To prove the assertion (b), note that [go, g;] = ¢~ 1([91, gi+1]) = ¢ (g5

ai,i

9

Qi

) =91 g
for 1 <i<m-—1and g =1, for all > 1 by induction hypothesis. Thus we only need to consider
(g0, gm] and goP. The element go clearly has order p since ¢ is an isomorphism and g1 = ¢(go) has
order p. It is easy to see that if two subgroups H and K are normal subgroups of a group G, then so is
the commutator subgroup [H, K| and we have [H, K] C HNK. Since go € G; and g, € Gy, it follows
that [go, gm] € G1 N G2 = (91,92, -+ , gm—-1), which proves that 1 is a well-defined homomorphism.
By the previous paragraph, it is surjective. Since G and G(A) are of cardinality p**! and at most

p**1 respectively, the map 1 is an isomorphism. O

Lemma 3.2.6. Let A be the set of (k — 1) x (k — 1) lower triangular matrices with coefficients in
{0,1,-+ ,p — 1}. There are at least p‘T5=2(£=2) elements A in A such that the group G(A) is of

order pF+t,

Proof. The idea is to consider only the nilpotent groups of degree 2 (with large center) among the
groups G(A)’s of A. Let us consider the subset of A which consists of matrices A = (a; ;) such that

aj_1:=0foralltifj< [Sklandt=1,--,[ - &]-1,[4+&]+1,---,j—1if j > [%]. Then
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the group G is a group described in Lemma 3.2.4 with the following additional relations :

- -— 3 y ; 9
[6:,9;] = 1, if 7 —i[ < {iﬁk
J
g ey o 9k
996431 = 935 g) Tipgagy 92 [E

where [a] denotes the largest integer smaller than or equal to a.

Now we claim that the group G is isomorphic to a semidirect product
G = (z/pz)* 1% x @/p2) ]+,

defined as follows. Let go, - - - 9k —[2%] and I [s]+10" " 9k be generators of the group (Z/pZ)k—[%]
and (Z/ pZ)[%]H, respectively.

For every integer ¢ such that 0 < ¢ < k — [%] — 1, we define a linear automorphism o; of

@/p2) [+ by

9 9
; =g, | i+ | — i < k— | —
0i(gu) = gu if u<i [mk}’ i<k [mk]

i ‘% . |9k
a'i(gi+j) = g;:‘_[%_L ...gi+[%-+_l%]gi+j’ 7> l:ﬁ] .

10

Then 0;(g.) and 0;(g;+;) are all of order p since g, are of order p and o;(g;+;) are in the center.
The automorphisms ¢; mutually commute i.e. 0;0;(g9.) = 0;0:(g.) since o;(g;) are all in the center.
Note also that o; are of order p, because every g,’s appears in 0;(g;+;) are are all in the center.
Therefore there is an action by automorphisms of (Z/ pZ)k'[%] on (Z/pZ)[%]H.

Now for every matrix described in the beginning of the proof, it is easy to see that the group G(A)
is isomorphic to the semidirect product described just above : the relations we get from the definition
of a semidirect product g;g;g; ' = 0i(g;) (where 0> i <k— [%] —1and k— [%] —1>j > k) are
precisely the relations on commutators in the definition of G(A). Hence the group G(A) is clearly a
group of order p**1. Note also that the subgroup G’ generated by go, - - - , gr—1 may also be described
as a semidirect product, hence is a group of order p*. There are

k-1 ) )
> ([3+5l-[-%) 2 (5-2) G-2)
i=[%
components a;; of A which are not zero, thus there are at least p(%“z)(g"z) elements of A which

are of order p*+1. O
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Proof of Theorem 8.2.8 By Proposition 3.1.7, the number wu,, is the number of isomorphism classes
of n-sheeted coverings of faithful graphs of groups ¢, : T\\T — (X, G,). As already seen, we may

assume that X = I'\T. The following commutative diagram summarizes the data defining ¢, :

|

Let’s first consider the case when n = p*. Let G = G,, G1 = @.(Ge) and G2 = az(G.). The

— Z/pZ
.
e T> Gz

cardinality of G is p**! since it is the index n times the cardinality of Z/pZ.

By the condition of faithfulness, G; and G2 are distinct as they are normal subgroups of G.
Hence if we let ¢ = az 0o, ! : G1 — Ga, then ¢ is an isomorphism and there is no subgroup of Gy
which is normal in G and y-invariant. Thus we can use Lemma 3.2.5 to find an element g in G such
that Gz = (90, 91, - - - gk) Where ©(g;) = g;+1. Moreover, the group G is isomorphic to G(A) for some
matrix A, which is determined by A. (note that A also determines G, and the maps e, and c;.) Thus
we have at most pz;;ol J choices for G, Ge, e and oz, which is exactly the number of choices of
(ast)1<t<s<k—1. Once we have fixed G, G, o and ag, an injection i from Z/pZ into G is determined
by the image of a generator in the domain, which implies that we have at most |G| = p**! choices
for i. Therefore we have an upper bound ur(n) < pZ?;f dphtt = pUFE R+t pk_z‘%m.

Now let us construct mutually non-isomorphic faithful coverings of graphs of groups to deduce
a lower bound of u(n). Let A’ be a subset of A consisting of lower triangular matrices A = (as)

1<t < s< k-1 such that furthermore ax_; ; =0 for j =0, .-,k — 1. Note that there are at least

S ([ b= () ¢

elements of A’. Let us fix a matrix A in A’ and let G; = G(A) be the group described in Lemma
3.2.6.

p to the

Let us define the covering graph of groups ¢.(A) = (Idr\r,®e,%) : T\\T — G, and we show
that there are many elements A’s of A’ which give rise to mutually non-isomorphic coverings of
graphs of groups. Let G, be the subgroup of G, generated by go, - - ,gk—1. Let the injection o, be
the inclusion map and the other inclusion c; be defined by az(g;) = Gi+1 € Gz, which is indeed a
monomorphism by the definition of G(A) (for every A in A. Therefore, the group morphism ¢ = ¢4

defined by ¢(g;) = gi+1 is an isomorphism from ae(Ge) onto az(G). For any nontrivial element
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h= g;.f}’ g;j' in G (with nonzero i;,), p*~Jt(h) = g;ﬂo-rkﬁ, . --gfj‘ ¢ G,. Therefore the data G,
defines a faithful graph of groups, as there is no y-invariant subgroup of G..
Let g be a generator of Z/pZ and set ¢.(g9) = Gogk. This defines a group monomorphism ¢ :

Z/pZ — G, since the order of gogx is p by assumption. Let vz = 7 = 7¢ = 1. Then map

D,/ Z/pZ/ae(1) = Gz/ae(Ge) ~ (gk)
[gle + [gogx]e
@,z 1 Z/pL]as(l) — Gu/ae(Ge) ~ (go)

[g]é = [gogk]é

clearly satisfies the condition (b) of Definition 3.1.2 for a covering of graphs of groups since gogx is
nontrivial and has order p in G,/ae(Ge) ~ (go) and has order p in G;/a:(Gs) ~ (gk). Thus we
have constructed a covering of graphs of groups. Now suppose that the coverings of graphs of groups
de(A) and ¢e(A’) : I\\T — (X, G,) are isomorphic. Now we want to show that there are sufficiently

many A’s which give rise to mutually non-isomorphic coverings.

Lemma 3.2.7. For a given A, there are at most p?**+4 number of A’ such that ¢e(A) and ¢e(A’)

are isomorphic.

Proof. Let A and A’ be in A’. Let ¢¢(A) and ¢ (A’) be the corresponding coverings, respectively.
Let (Gz,Ge = G&, e, az) and (Hy, H. = Hg, e, z) be the vertex group, the edge group, and the
injections of the target graphs of groups of ¢e(A) and ¢.(A’), respectively.

Let us denote by go,--- ,9n and hg,- - ,h, the generating set of G, and H, defined by the
matrices A and A’, respectively.

Now suppose that 8 = (Idr\7,0.,ps) : (X,Gz) — (X, H;) is an isomorphism of coverings.
Since the map on the universal covers commute, and the elements v, 7e, vz are all trivial for ¢4(A)
and ¢e(A’), the map 6 on the universal covers of (X,G,) and (X, H,) maps [gogk] to [hohk]. In
other words, pz0z(gogk)p; ' (hohi)™! € H,. Since 6;(gogr) and (hohi)~! are elements in Hyy), we
conclude that p, € Hy, and p. € Hg(y). By substituting p, by 1 and p. by p; 1pe (with the same
maps 0, and 6.), we may assume that p, = 1.

Therefore, by the definition of morphisms, there are elements p., ps € H, such that the following

diagrams commute.
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Ge—> -G, Ge—>2 -G,
|- R |-
Ad(pe)ocge Ad(pe)oag
Hye) e Hy(z) Hy e e, Hy(z)

Let us define the isomorphisms ¢ and  so that the diagrams

Ge—2——G: H, = H,
lae lae lae lae
@e(Ge) —2—> a5(Ge)  @e(Ge) ——2——> ag(He)

commute.

Combining these diagrams, we obtain the following commutative diagram

@e(Ge) ——2— a(Ge)
laeoea;‘ lagega;l
oo (He) — 2 az(Hz).
By definition of isomorphism of graphs of groups, we have 6.(G.) = H,. Since the groups a.(H.) is
stable under the adjoint action by any element of H, (recall that the commutators are in the center
and the center is a subgroup of a.(G.) and az(Gz)), we have Ad(p.)(ce(He)) = ce(He). Thus, by

definition of morphisms, we have
0z(e(Ge)) = Ad(pe)(@e(0e(Ge))) = ae(He),

and similarly

0 (aé(Gé)) = aé(Hé)~

Now let us define a group isomorphism 1 so that the following diagram commutes.

Qe (Ge) z ag(Gg)aé_l
le, 101
¥
ae(He) az(Hg).

We claim that 9 is completely determined by p. and pe. Indeed, ¥ maps 6, (ce(9)) = pz (e (6e(9)))pe
t0 0z (0 (e (9))) = 0z(ae(9)) = p3 *(e(fz(g)))pe for any g € Ge. In other words, ¥ maps p; 'up. to

pz 1 B(u)pe for every u € ce(He), i.e. ¥ = Ad(pep; ')B.
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Next, we will show that, under 6, the subgroups Gy; ;; = (gi, -+ ,9j) C G are necessarily
mapped to certain subgroups fI[i,j], uniquely characterized by a.(H.), az(Hz) and the map 3. Let

us define the subgroups I?[i,j] by descending induction on i — j|. We have

H[O,n-—l] = H[O,n—l] = a.(He) = w(G[O,n-I]) = o-‘r(G[O,n—l])

and

H{l,n] = H1,n) = ae(He) = Y(G1,n) = 02(Ga,n))-
Assume that ﬁ[i,j] is defined for all pairs (i,5) such that |i — j| > [ and that 6,(G[;,5)) = I:T[i,j] for
all such (3, 7).

If n—1>1>0, then we set
ﬁ[i,i+t] = ﬁ[i_1,i+z] N ﬁ[i,i+l+1]-

Note that ﬁ[i,i+l] = 02(Gi-1,i41) N Oz(Gli;irn) = 02(Gpsivy) so that |ﬁ[i,i+l]| =p.

If i = 0, then we put

H[O,l] = ¢'_1(E’[1,z+1])-

Note that 6,(Gjo,g) = 02(0 ™ (Gpii+y) = ¥ 102(G1,141) = ¥~ Hpr 41y = Hioyy-

If i =n — 1, then we set

H[n-l,n] =1 (ﬁ[n—l-l,n—l]) .

Again, note that 0;(Gn—in]) = E’[n—z,n]-

At the end, we have thus defined groups ITI[,-,,], purely in terms of pe,ps and B such that we

necessarily have 0,(Gj;q) = H li,j]- Let 710 be a generator of ITI[O,O], and set E- = 1/;’710, so that

Hence, 6, necessarily sends g; to 717‘ for some v; € (Z/pZ)*. In fact, since o(g;) = g;4+1 and
11)(71,-) = ﬁ,-.H we even have ~; = v, Vi.

Thus if (6e, pe, pe) : (X,G) — (X, H) is an isomorphism of coverings, there exists v € Z/pZ such
that

HI:GI—>I-II
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But then
is completely determined by pe, ps,v and G.

In other words, for a given A’, there are at most p?(*+Vp(p — 1) < p?**4 possible A such that

¢(A) and ¢(A’) are isomorphic coverings. O

Combining Lemma 3.2.6 and Lemma 3.2.7 there are at least p(15—3)(§-1-2k—4 thys at least

pk(k/50-37/10) non-isomorphic coverings ¢(A)’s.

Now let’s consider the general case. Recall that |G.| = H:=o p¥ and |G| = Mook =
p§°+l H:=1 pf“, thus the order of the Sylow p;-subgroup of G, and that of G, are the same for
all i # 0. Let GP) be a Sylow pi-subgroup of G.. For i # 1, let GP) = ae(Ggp*)). Choose one
p-Sylow subgroup G;”) of G, containing ae(Ggp )).

We are now going to show that the faithfulness condition is inherited to the Sylow p-subgroups
G&” ), G;(cp ) of G. and G, from which we can use the upper bound given in the first part of the proof.
Conjugating az by an element of G, if necessary, we may assume that ag(Ggp) ) C G;”) , thus we

have the following diagram :

Qe
Ge—=%0,
€

Qe
Ggp) :» G&”)

Suppose that N <t G and N = ae(N) = az(N) < GP). Let N = (gNg~! : g € G.) (respectively
N = (gNg=! : g € G;)) be the smallest normal subgroup of G, (respectively G;) containing N
(respectively N).

Note that a; (i = e, €) induces a bijection between left cosets

Ge/Ggp) - Gz/chp)
9GP — i (a)G.

{P) which is a p-group

For since «; is injective, if G is mapped to G{), then g is in a;(Ge) NG
in ;(G.) containing o;(GP). Since 0;(GP) is a Sylow p-subgroup, a;(G¥) N G¥ is equal to
ai(Ge.). Thus o;(g~'h) is contained in G if and only if g1k € G and the map is injective. It is

surjective since the source and the target have the same cardinality. Thus any element g in G can
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be written as o;(g')h; for some g’ € Ge, h; € G¥) and we have gN'g~! = (') Nh  oi(g ") =
oi(¢)Nai(g'™") (i = 1,2). Therefore a; (N) = a(N) = N and it is normal in G,. As a consequence,
G&”) and G;” ) satisfy the condition of faithfulness, i.e., there is no subgroup N of G&” ) such that
0e(N) = ag(N) is normal in G¥P. By the first part of the proof, this implies that the number of
choices for GP, G&”),ae|cg,,) and ael ¢ is at most pia.t,";o_ﬁ‘

Since all the other G.(f’ ) and Ggf’ *) have fixed cardinality, we have a constant total number of
choices for them and the injections aetG:’i, say co. Recall that once all the G(;’ )% and Ggp )5 are
chosen, the number of G, with a given fixed Sylow system is at most (pn)73#(P™)+16([P]). Recall also
that the injections c. are determined by its restriction to Sylow subgroups of G, since they generate

the group. Finally we have the following upper bound.

(kg+1)2+(kg+1)+2 k3+5ko+8
up < cop 5 (p,n)75p.(pn)+16 < CO(CI) 5 (pn)75u+16

where ¢; = p and p = u(pn). a

Remark. Tt follows from the proof above that each prime factor of |G| is less than or equal to p,

thus in the case p = 2, u(n) = 0 if n is not a power of 2.



Chapitre 4

Overlattices in automorphism
groups of buildings

4.1 Introduction

The theory of graphs of groups describes group actions on trees; see [Se|, [Ba] and [BL]. The
theory of complexes of groups, due to Gersten—Stallings [GS], Corson [Co| and Haefliger [H2], [BH],
generalizes Bass—Serre theory to higher dimensions. Our first aim is to develop some basic tools for
complexes of groups, analogous to those in [Ba], and which do not appear in [BH].

We recall Haefliger’s theory of complex of groups in Section 4.2.4. Briefly, the action of a group
G on a simply connected polyhedral complex K induces a complex of groups G()’) over the quotient
Y = K\G. The fundamental group m (G(Y)) of G(Y) then acts on the simply connected universal
cover c’:?ﬂ of G()), with m1(G(Y)) isomorphic to G, and é(\y’) equivariantly isometric to K. An
arbitrary complex of groups G()) is developable if it is induced by a group action in this way. A
key difference between Bass—Serre theory and complexes of groups is that complexes of groups need
not be developable. However, if a complex of groups has nonpositive curvature (see Section 4.2.4),
it is developable.

In [Ba], Bass developed a “covering theory for graphs of groups”. To translate in the framework
of complexes of groups the general theory of coverings of étale groupoids, Haefliger developed a
covering theory for complexes of groups ([H2]), similar to the covering theory of Bass. It seems
interesting to compare two theories and to complete the analogy between them. We hope that the
following additional results will be useful.

Our first main result describes the functoriality of coverings, and corresponds to Proposition 2.7, [Ba].

59
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Remark. Haefliger, by a personal correspondence, explained to us that Theorem 4.1.1 and Pro-
position 4.1.2 are also consequences of a functorial 1-1 correspondence between the coverings of an
etale groupoid and the coverings of its classifying space. He furthermore indicated that if there is
a covering from G()) to G()') then G(Y) is developable if and only if G()') is developable, an
assertion stronger than Proposition 4.1.2. Here we present our results as they are proved without

refering to the theory of etale groupoid.

Theorem 4.1.1. Let A : G(Y) — G'(Y’) be a covering of developable complezes of groups. Then A

induces a monomorphism of fundamental groups
A7 (G(Y)) — m(G'(V))
and a A-equivariant isometry of universal covers
L: C% — C?(\j)/’ )-

We prove Theorem 4.1.1 in Section 4.3.2, using material from Section 4.3.1. The proof that L is an
isometry is more difficult for complexes of groups than for graphs of groups, because, unlike trees, a
local isometry of polyhedral complexes is not in general an isometry.

In Section 4.3.3, we characterize the group
N = ker (m GY)) — Aut(éfi)))

where G()) is developable. This corresponds to Proposition 1.23, [Ba]. If N is trivial, then the
complex of groups G()) is said to be faithful, and we may identify the fundamental group m;(G()))
with a subgroup of Aut(CT(\y/)).

We also develop other, more technical, results. For example, the material in Section 4.3.4 corres-
ponds to Section 4, [Ba]. As described in Proposition 2.1 of [Th], Haefliger’s definition of morphism,
when restricted to complexes of groups over 1-dimensional spaces, is not the same as a morphism
of graphs of groups. Also, the universal covers of graphs of groups and of complexes of groups are
defined with respect to different choices. Hence, our proofs differ in many details from those of [Ba).

An additional consideration for complexes of groups, which has no analogue in Bass—Serre theory,

is the relationship between coverings and developability. In Section 4.3.5, we show :

Proposition 4.1.2. Let A : G(Y) — G'()’) be a covering of complezes of groups.

1. If G'(Y') is developable, then G(Y) is developable.
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2. If G(Y) has nonpositive curvature (hence is developable), then G'(Y') has nonpositive curva-

ture, hence G'()') is developable.

We then apply this covering theory to the study of lattices in locally compact groups (see Sec-
tion 4.2.1 for the basic definitions concerning lattices). Let K be a locally finite polyhedral complex,
so that Aut(K) is a locally compact topological group (see Section 4.2.2). Let I" be a cocompact lat-
tice in Aut(K). An overlattice of T of index n is a lattice I' < Aut(K) containing I with [I : '] = n.
Let ur(n) be the number of overlattices of I' of index n. By arguments similar to those for tree lattices
(Theorem 6.5, [BK]), ur(n) is finite.

The asymptotics of ur(n) in the case K is a tree are treated in Chapter 3. In higher dimensions,
suppose K is the building associated to a higher-rank algebraic group G, such as PSL3(Qp). Then
G has finite index in Aut(K). It follows that for any I', ur(n) = 0 for large enough n, since the
covolumes of lattices in G are bounded away from 0 (Borel-Prasad [BP]). In contrast, if K is a right-
angled hyperbolic building, such as Bourdon’s building I, ; (see [Bo2]), then Thomas [Th] showed
that Aut(K) admits infinite ascending towers of cocompact lattices. Hence there is a I' such that
ur(n) > 0 for arbitrarily large n.

In order to further study the growth rate of ur(n), in Section 4.4 we specify the relationship
between coverings, and subgroups of Aut(K) containing I'. We define isomorphism of coverings (see

Definition 4.4.1) so that the following bijection holds :

Theorem 4.1.3. Let K be a simply connected polyhedral complez, and let T be a subgroup of Aut(K)
(acting without inversions) which induces a complez of groups G(Y). Then there is a bijection bet-
ween the set of subgroups of Aut(K) (acting without inversions) which contain T', and the set of

isomorphism classes of coverings of faithful, developable complezes of groups by G(Y).

The main ingredients in the proof of Theorem 4.1.3 are Theorem 4.1.1 above, and the results of
Section 4.3.4.

We then apply Theorem 4.1.3 above to obtain upper and lower bounds for ur(n). As a corollary
to Theorem 4.1.3, we show that there is a bijection between n-sheeted coverings, and overlattices of

index n. Then in Section 4.5.1, we prove the following upper bound, for very general K :

Theorefn 4.1.4. Let K be a simply connected, locally finite polyhedral complexr and T' < Aut(K)

a cocompact lattice. Then there are some positive constants Cp and C1, depending only on T, such
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that

Vn>1,  up(n) < (Con)Crog’™

This result is asymptotically the same as the upper bound for tree lattices in [L1], and the proof
uses the same deep results of finite group theory. However, the definition of covering of complexes of
groups makes this bound easier to obtain (thus giving an alternative proof of the result for trees).

The lower bound below, proved in Section 4.5.2, is for certain right-angled hyperbolic buildings.

Theorem 4.1.5. Let q be prime and let X be a Bourdon building I, 54. Then there is a cocompact

lattice T in Aut(X), and constants Cy and Ci, such that for any N > 0, there exists n > N with
UF(TL) > (Con)cl logn

In fact, we construct I', and prove this lower bound for more general right-angled buildings. The
proof relies on Proposition 4.1.2 above, and applies the Functor Theorem of [Th] to a construction
for tree lattices in [L1].

Theorems 4.1.4 and 4.1.5, together with the examples given above for buildings, are presently

the only known behaviors for overlattice counting functions in higher dimensions.

4.2 Background

We begin with the basic theory of lattices, in Section 4.2.1. Since the quotient of a simplicial
complex by a simplicial group action is not in general a simplicial complex, it is natural to define
complexes of groups over polyhedral complexes instead. In Section 4.2.2, we discuss polyhedral com-
plexes and the topology of their automorphism groups. Small categories without loops, or scwols, are
algebraic objects that substitute for polyhedral complexes. These are described in Section 4.2.3. We
conclude this background material by, in Section 4.2.4, summarizing Haefliger’s theory of complexes

of groups, as presented in Chapter III.C of [BH].
4.2.1 Lattices

Let G be a locally compact topological group with left-invariant Haar measure p. A discrete
subgroup I' of G is a lattice if its covolume u(I'\G) is finite. A lattice is called cocompact or uniform

if T'\G is compact.
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Let S be a left G-set such that, for each s € S, the stabilizer G is compact and open. For any

discrete subgroup I' of G, the stabilizers I'; are finite groups, and we define the S-covolume of T as

1<<>o

Vol(I\8) = 3 T <

sel’\§
It is shown in [BL], Chapter 1, that if G\S is finite and G admits a lattice, then there is a norma-
lization of the Haar measure p, depending only on S, such that for every discrete subgroup I' of
G,
#(I\G) = Vol(T'\\S)

It is clear that for two lattices I' C I of G, the index [I' : T is equal to the ratio of the covolumes

u(I\G) : w(\G).
4.2.2 Polyhedral complexes

Let M7 be the complete, simply connected, Riemannian n-manifold of constant sectional cur-
vature k € R, where n > 2, and M! = R for k < 0 and M} = S1/x, a sphere of radius 1/« for
k> 0.

Definition 4.2.1 (polyhedral complex). An M, -polyhedral complez K is a CW-complez such that :

1. each open cell of dimension n is endowed with an isometry to the interior of a compact convex

polyhedron in M ; and

2. for each cell o of K, the restriction of the attaching map to each open codimension one face

of o is an isometry onto an open cell of K.

Theorem 4.2.2 (Bridson, [BH]). An M -polyhedral complez with finitely many isometry classes of

cells endowed with the canonical length metric is a complete geodesic metric space.

Let K be a locally finite, connected polyhedral complex with finitely many isometry classes of
cells, and let Aut(K) be the group of cellular isometries, or automorphisms, of K. Then Aut(K)
is naturally a locally compact group, with a neighborhood basis of the identity consisting of auto-
morphisms fixing larger and larger balls. With respect to this topology, a subgroup I" of Aut(K) is
discrete if and only if for each cell o of K, the stabilizer T, is finite. A subgroup I' of Aut(K) is said

to act without inversions if whenever g € I' preserves a cell of K, then g fixes that cell pointwise.
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4.2.3 Small categories without loops

In Chapter III.C of [BH], complexes of groups are presented using the language of scwols, or
small categories without loops. As we explain in this section, to any polyhedral complex K one may
associate a scwol X, which has a geometric realization |X| isometric to the barycentric subdivision
of K. Morphisms of scwols correspond to polyhedral maps, and group actions on scwols correspond

to actions without inversions on polyhedral complexes.

Definition 4.2.3 (scwol). A small category without loops (scwol) X is a disjoint union of a set

V(X), the vertez set, and a set E(X), the edge set, endowed with maps
i: BE(X) > V(X) and t:E(X)—-V(X)
and, if E®(X) denotes the set of pairs (a,b) of edges where i(a) = t(b), with a map

E®(X) - E(X)

(a,b) — ab

such that :
1. if (a,b) € E@(X), then i(ab) = i(b) and t(ab) = t(a);
2. if a,b,c € E(X) such that i(a) = t(b) and i(b) = t(c), then (ab)c = a(bc) ; and

3. if a € E(X), then i(a) # t(a).

For a € E(X), the vertices i(a) and t(a) are called the initial vertex and terminal vertez of a
respectively. If (a,b) € E(?)(X) we say a and b are composable, and that ab is the composition of a
and b. We will sometimes write @ € X for a € V(X) U E(X). If o € V(X) then i(a) = t(a) = a.

The motivating example of a scwol is the scwol X associated to a polyhedral complex K. The
set of vertices V(X) is the set of cells of K (or the set of barycenters of the cells of K). The set
of edges E(X) is the set of 1-simplices of the barycentric subdivision of K, that is, each element
of E(X) corresponds to a pair of cells T C S, with initial vertex S and terminal vertex T. The
composition of the edge a corresponding to T' C S and the edge b corresponding to S C U is the
edge ab corresponding to T C U.

Conversely, given a scwol X', we may construct a polyhedral complex, called the geometric rea-
lization. For an integer k > 0, let E*)(X) be the set of sequences (a1,a2,...,ax) of composable

edges, that is, (aj,aj4+1) € E@(X) if k > 1, EO(X) = E(X), and E(X) = V(X). The geometric
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realization |X| of X is defined as a polyhedral complex whose cells of dimension k are standard
k-simplices indexed by the elements of E(*)(X), with the obvious attaching maps. For the details of
this construction, see [BH], pp. 522-523. If X is the scwol associated to an M,-polyhedral complex
K, then |X| may be realized as an M,-polyhedral complex isometric to the barycentric subdivision
of K.

For a scwol X, let E(X) be the set of oriented edges, that is, the set of symbols a* and a™,
where a € E(X). For e = a*, we define i(e) = t(a), t(e) = i(a) and e™! = a~. For e = a~, we define
i(e) = i(a), t(e) = t(a) and e~! = a™.

An edge path in X joining the vertex o to the vertex 7 is a sequence (e, ea, ..., e,) of elements
of E%(X) such that i(e1) = o, i(ej41) = t(ej) for 1 <j <n—1andt(ep) =7.

A scwol X is connected if for any two vertices o,7 € V(X), there is an edge path joining o to
7. Equivalently, X is connected if and only if the geometric realization |X| is connected. A scwol is

simply connected if and only if its geometric realization is simply connected as a topological space.
Definition 4.2.4 (morphism of scwols). Let X and X' be two scwols. A morphisml: X — X' isa
map that sends V(X) to V(X') and E(X) to E(X’), such that

1. for each a € E(X), we have i(l(a)) = l(i(a)) and t(l{(a)) = l(t(a)); and

2. for each (a,b) € E®)(X), we have I(ab) = l(a)(b).

A nondegenerate morphism of scwols is a morphism of scwols such that in addition to (1)
and (2),
3. for each vertex o € V(X), the restriction of l to the set of edges with initial vertex o is a

bijection onto the set of edges of X' with initial vertez (o).

An automorphism of a scwol X is a morphism [ : X — X which has an inverse. Note that

Condition (3) in Definition 4.2.4 is automatic for automorphisms.
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Definition 4.2.5 (covering of scwols). Let X be a (nonempty) scwol and let X' be a connected
scwol. A nondegenerate morphism of scwols | : X — X’ is called a covering if, for every vertex o of
X, the restriction of | to the set of edges with terminal vertex o is a bijection onto the set of edges

of X' with terminal vertez l(o).

Let X and X’ be scwols associated to polyhedral complexes K and K’ respectively. A non-
degenerate polyhedral map (i.e. a map which does not decrese dimension of every maximal cell)
K — K’ induces a morphism of scwols X — X', and conversely, a morphism [ : X — X’ induces a
continuous polyhedral map |I| : |X| — |X’| (see [BH], p. 526). The morphism [ is nondegenerate if
and only if the restriction of || to the interior of each cell of K induces a homeomorphism onto the
interior of a cell of K, and [ is a covering if and only if |I| is a (topological) covering. A morphism

l: X > X is an automorphism of X if and only if |!| : K — K is an automorphism of K.

Definition 4.2.6 (group actions on scwols). An action of a group G on a scwol X is a homomor-

phism from G to the group of automorphisms of X such that :
1. for alla € E(X) and g € G, we have g - i(a) # t(a) ; and

2. forallg € G and a € E(X), if g-i(a) =i(a) then g-a = a (no “inversions”).

The action of a group G on a scwol X induces a quotient scwol Y = G\X, defined as follows.
The vertex set is V()) = G\V(X) and the edge set E(Y) = G\E(X). For every a € E(X) we have
i(Ga) = Gi(a) and t(Ga) = Gt(a), and if (a,b) € E?®)(X) then the composition of Ga and Gb is
Gab. The natural projection p : X — ) is a nondegenerate morphism of scwols.

Let X be the scwol associated to a polyhedral complex K, and let I" be a subgroup of G = Aut(K).
Then I' acts on X, in the sense of Definition 4.2.6, if and only if I' acts without inversions on K.

In the case K is locally finite, we define the covolume of a discrete subgroup I' < G acting on
X by taking the set of vertices V(X)) (which corresponds to the set of cells of K) as the I'-set S in
Section 4.2.1. From now on, we normalize the Haar measure p on G so that

uI\G) = VolT\WV(x) = 3 ——

g€l\V(X) ITs|
4.2.4 Complexes of groups

In this section, we recall Haefliger’s theory of complexes of groups. We mainly follow the notation

and definitions of Chapter IIL.C of [BH], although at times, such as in Proposition 4.2.23 below, we
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indicate choices and define maps more explicitly. Section 4.2.4 defines complexes of groups and their
morphisms. Section 4.2.4 then discusses groups associated to complexes of groups, in particular the
fundamental group, and Section 4.2.4 discusses scwols associated to complexes of groups, in particular
the universal cover. In Section 4.2.4 we describe the role of local developments and nonpositive
curvature. All references to [BH] in this section are to Chapter III.C, which the reader should consult

for further details.
Objects and morphisms of the category of complexes of groups
Definition 4.2.7 (complex of groups). Let ) be a scwol. A complex of groups G(Y) = (G, Ya, Ga,b)
over Y is given by the following data :
1. for each o € V(Y), a group G, called the local group at o ;
2. for each a € E(Y), an injective group homomorphism v, : Gi(a) — Gy(a) ; and
8. for each pair of composable edges (a,b) € E?)(Y), a twisting element g, € Gia) s
with the following properties :
(i) Ad(ga,b)¥ab = Yatbb, where Ad(gep) denotes conjugation by gq b ; and
(ii) Ya(9b,c)9a,bc = Jabdab,c, for each triple (a,b,c) € EG(Y).

For example, any group G is a complex of groups over a singleton Y = {x} = V()), with G, = G;

since E()) = ¢, no other data is necessary.

Definition 4.2.8 (morphism of complexes of groups). Let G(Y) be as in Definition 4.2.7 and let
G'(YV') = (GL,%ar, garpy) be another complez of groups over a scwol Y'. Let 1 : Y — Y be a
morphism of scwols. A morphism ¢ = (¢o, P(a)) : G(Y) — G'(V') of complezes of groups over 1

consists of
1. a group homomorphism ¢, : G, — Gf(a), called the local map at o, for each o € V()); and
2. an element ¢(a) € Gy, for each a € E(Y);
such that :
(i) Ad(é(a))Vi(a)Pi(a) = Pt(a)¥a ; and
(1) Be(a)(9a,0)B(ab) = $(@)¥1(a) ($(0))9u(a) i(v), for every (a,b) € EA(P).

We define a morphism ¢ = (¢4, 9(a)) : G(YV) — G from a complezes of group G(Y) to a group

G as a data consisting of a group homomorphism ¢, : G, — G’ for each o € V()) and an element
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¢(a) € G’ for each a € E(Y) such that
Be(a)Va = Ad(#(a))Pi(a)

and

Bt(a)(9a,b) = #(a)9(b).

A morphism ¢ is an isomorphism if [ is an isomorphism of scwols and ¢, is a group isomorphism
for every o € V()). A morphism ¢ is injective on the local groups if ¢, is injective for every o in
V().

The composition ¢’ o ¢ of a morphism ¢ = (ds, #(a)) : G(¥) — G'(Y’) over | and a morphism
&' = (¢L,¢'(a)) : G'(Y') = G"(Y") over U is the morphism over !’ ol defined by the homomorphisms
(# 0 B)o = i) 0 b and the clements (¢' 0 8)(a) = d}y(a)(#(2))8 (1(e)).

Definition 4.2.9 (homotopy). Let ¢ and ¢’ be two morphisms from G(Y) to a group G', given
respectively by (¢, d(a)) and (¢, ¢'(a)). A homotopy from ¢ to ¢’ is given by a family of elements
ko € G', indexed by o € V(Y), such that

1. ¢, = Ad(ko)¢o for allo € V() ; and

2. ¢'(a) = kt(a)gﬁ(a)ki‘(;) for all a € E(Y).

Let G be a group acting on a scwol X with quotient ) = G\X, and let p : X — ) be the
natural projection. The complez of groups G(¥) = (G, ¥a, ga,p) associated to the action of G on X
is defined as follows.

For each vertex o € V()), choose a vertex @ € V(X) such that p(g) = 0. For each edge a € E(Y)
with i(a) = o, there exists a unique edge @ € E(X) such that p(a) = a and i(a) = 7, by the 'no
inversion’ assumption. Choose h, € G such that h, - t(@) = m. For each o € V()), let G, be the
stabilizer in G of @ € V(X). For each a € E(Y), let ¥, : Gj(a) — Gy(a) be conjugation by h,, that
is,

Ya : g+ haghg!
For every pair of composable edges (a,b) € E? (), define g, = hahph. Then G(V) = (G, Ya, gap)
is a complex of groups.

When precision is needed, we denote the set of choices of @ and h, in this construction by C,,

and the complex of groups G(Y) constructed with respect to these choices by G(Y)c,. If C., is
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another choice of @', hj, then an isomorphism ¢ = (45, #(a)) from G(Y)c, to G(Y)c; is obtained
by choosing elements k, € G, such that for each o € V(}), k, - & = &. Then put ¢, = Ad(ks)|a,
and ¢(a) = ky(a)ha kz(a)h’ 1

When G(Y) is a complex of groups associated to an action of a group G, there is a canonical

morphism of a complex of groups G(Y) to a group G, ¢; : G(Y) — G, given by ¢; = (ds, d(a)),
with ¢, = G, — G the inclusion, and ¢(a) = h,

Definition 4.2.10 (developable). A complex of groups G(Y) is developable if it is isomorphic to
a complex of groups associated to the action of a group G on a scwol X in the above sense, with

Y =G\X.

Proposition 4.2.11 (Corollary 2.15, [BH]). A complez of groups G(Y) is developable if and only

if there exists a morphism ¢ from G(Y) to some group G which is injective on the local groups.
We now define coverings.

Definition 4.2.12 (covering of complexes of groups). Let ¢ : G()) — G'()') be a morphism of
complezes of groups over a nondegenerate morphism of scwols 1 : Y — V', where Y’ is connected.
The morphism ¢ is a covering (of G'(Y') by G(Y)) if for each vertex o € V(}),

1. the group homomorphism ¢, : G5 — Gf(a) is injective, and

2. for every a' € E(Y') and o € V() with t(a’') = o' = (o), the map

I Go/ba(Gita) = Go/thar (Gigar)
acl™(a’)
t(a)=o

induced by
g+ ¢o(9)¢(a)
is bijective.
From Condition (2) of this definition, it follows that

Gol _ 1Gh|
IGi(a)l |G2(al)l

acl™(a’)
t(a)=0o

Since )’ is connected, the value of

G, i(a |
ni= 3 IIGc,I' Z ()
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is independent of the vertex o’ and the edge a’. A covering of complexes of groups with the above
n is said to be n-sheeted.
We will often use Definition 4.2.13 below, which defines a morphism of complexes of groups

induced by an equivariant morphism of scwols.

Definition 4.2.13 (induced morphism). Let X and X' be simply connected scwols, endowed with
actions of groups G and G, and let Y = G\X and Y’ = G'\X’ be the quotient scwols. Let L : X — X'
be a morphism of scwols which is equivariant with respect to a group morphism A : G — G’. Let
1:Y — Y be the induced morphism of the quotients.

For any choices Cy = (6,h,) and C, = (o', ha') of data for the actions of G and G’ on X and
X', and for any choice N, of elements k, € G’ indezed by o € V(Y) such that k, - L(7) = I(0),

there is an associated morphism of complezes of groups

A=Xc,cine G, = G (V)ey
over l, given by

)\o» . Ga» — G;(O')

g kaA(g)kc:l

and

Ma) = ky(ayA(ha)ki Ly i)

(see Section 2.9(4), [BH].)
The fundamental group of a complex of groups

There are two definitions of the fundamental group of a complex of groups, which result in

canonically isomorphic groups. Both definitions involve the universal group.

Definition 4.2.14 (universal group). The universal group FG(Y) of a complex of groups G()) over

a scwol ) is the group presented by the generating set

II 6. |I[E*)

oceV(Y)

with the following relations :

1. the relations in the groups G, ;
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2. (a¥)'=a" and (a”)" ! =at;
8. atb* = g, p(ab)*, for every (a,b) € E®(Y); and
4. ba(g) = a*ga~, for every g € Gy(a).

There is a natural morphism ¢ = (i4,t(a)) : G(¥) — FG(Y), where the injections ¢, : G, —
FG(Y) takes G, to its image in FG()), and t(a) = a™.

Proposition 4.2.15 (Proposition 3.9, [BH]). A complez of groups G(Y) over a connected scwol Y

is developable if and only if v : G(Y) — FG(Y) is injective on the local groups.

The first definition of the fundamental group of a complex of groups G()’) involves the choice of
a basepoint gg € V(). A G(Y)-path starting from og is then a sequence (go, €1, 91,€2, - -, €n, gn)
where (e1,€2,...,€n) is an edge path in Y starting from oo, we have go € Go,, and g; € Gye;) for
1 < j < n. A G(Y)-path joining o to oy is called a G(Y)-loop at gy.

To each path ¢ = (go, €1,91,€2, - --,€n,gn), We associate the element 7 (c) of FG()) represented
by the word goe1 g1 - - - €ngn. Suppose now that ¢ and ¢’ = (gg, €1, 9%, -- -, €n, g5,) are two G())-loops
at oo. We say c and ¢’ are homotopic if w(c) = m(c’), and denote the homotopy class of ¢ by [c]. The

concatenation of ¢ and ¢’ is the G(Y)-loop

/ ' / 7 /
C*xC = (907617'"7en7gn907eli"'aen’1gn’)

The operation [c][¢/] = [c*¢'] defines a group structure on the set of homotopy classes of G())-loops

at op.

Definition 4.2.16 (fundamental group of G()) at o). The fundamental group of G(Y) at oq is
the set of homotopy classes of G())-loops at oo, with the group structure induced by concatenation.

It is denoted by m(G(Y), 00)-

Different choices of basepoint g9 € V()) result in isomorphic fundamental groups (in fact, as
subgroups of FG()), the induced fundamental groups are conjugate). In fact, as subgroups of FG()),
they are conjugate.

The second definition of the fundamental group of a complex of groups involves the choice of a
maximal tree T in the 1-skeleton of the geometric realization |)|. By abuse of notation, we will say

that T is a maximal tree in ).
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Proposition 4.2.17 (Theorem 3.7, [BH]). For any mazimal tree T in ), the fundamental group
m1(G(Y), 00) is isomorphic to the abstract group m(G(Y),T), presented by the generating set

( 11 Ga) [TE*®)

ceV(Y)

with the following relations :

1. the relations in the groups G ;

2. (a*)'=a" and (a”)" ' =at;

3. atbt = gop(ab)*, for every (a,b) € E?(Y);

4. Ya(g9) = atga~, for every g € Gy(q) ; and

5. at =1 for every edge a € T'.
If Y is simply connected, then m1(G(Y), T) is isomorphic to the direct limit of the diagram of groups
G, and monomorphisms 1,. The isomorphism 71 (G(Y),00) — 71 (G(Y),T) is the restriction of the
natural projection FG(Y) — m1(G(Y), T). Its inverse kr is defined in the proof of Proposition 4.2.23
in Section 4.2.4 below.

Let ¢ : G(Y) — G'()’) be a morphism over a morphism of scwols [ : ) — )’. Then ¢ induces

a homomorphism F¢ : FG(Y) — FG'()'), defined by Fé(g) = ¢-(g) for g € Go, and Fe(at) =

@(a)l(a)T. The restriction of F¢ to m1(G(Y), 0o) is a natural homomorphism
m1(¢,00) : m(G(¥),00) = m(G'(¥'), (00))
In the particular case of a morphism ¢ : G())) — G, where G is a group, the induced homomorphism
m(¢,00) : m(G(Y),00) = G
is defined by g — ¢,(g) for g € G, and a* — ¢(a).
Developments and the universal cover

To any morphism from a complex of groups to a group is associated a scwol, called its develop-

ment.

Definition 4.2.18 (development). Let ¢ : G())) — G be a morphism from a complex of groups
G(Y) to a group G. The scwol D(Y, ¢), called the development of G(Y) with respect to ¢, is defined

as follows.
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The set of vertices is

V(D(Y,¢)) = {([g],o) 1o eV(Y), [g] € G/¢0(Ga)}

and the set of edges is

E(D(y, ¢)) = {([g]va) ‘a € E(y)7 [g] € G/¢i(a)(Gi(a))}

The maps to initial and terminal vertices are given by

i([g], @) = ([g],%(a))

and
t([9), @) = ([9¢(a) "], t(a))
and the composition of edges ([g], a)([h],b) = ([h], ab) is defined where (a,b) € E@(Y), g,h € G and
97 he(b)7! € i(a)(Gi(a))-
The group G acts naturally on D(Y, ) : given g,h € G and o € Y, the action is h - ([g],a) =
((hg), @).

Proposition 4.2.19 (Theorems 2.13, 3.14 and 3.15, [BH]). Let G(Y) be a complex of groups over
a connected scwol Y and let G be a group.

1. Let ¢ : G(¥Y) — G be a morphism which is injective on the local groups. Then G(Y) is the
complez of groups (with respect to canonical choices) associated to the action of G on the
development D(), @), and ¢ : G(Y) — G equals the canonical morphism ¢1 : G(Y) — G (1
is defined just above Proposition 4.2.10).

2. Suppose G(Y) is a complex of groups associated to the action of G on a simply connected scwol

X, and ¢1 : G(Y) — G is the canonical morphism. Then ¢, induces a group isomorphism
m1(¢1,00) : 1(G(Y),00) = G

(see the paragraph after Proposition 4.2.17), and there is a G-equivariant isomorphism of
scwols

@ : DYV, 1) > X

given by, forg € G and a € ),

(lgl,@) = g-2.
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The following result, on the functoriality of developments, is used to prove Theorem 4.1.1, stated

in the Introduction.

Proposition 4.2.20 (Theorem 2.18, [BH]). Let G(Y) and G'(Y’') be complezes of groups over

scwols Y and )'. Let ¢ : G(¥) — G and ¢’ : G'(Y') — G’ be morphisms to groups G and G’ and let

A: G — G’ be a group homomorphism. Let X : G(Y) — G'()') be a morphism overl:Y — Y'.
Suppose there is a homotopy from A¢ to &'\, given by elements k, € G’ (see Definition 4.2.9).

Then there is a A-equivariant morphism of the developments
L:D(Y,¢) - D(V',¢')
given by, forg € G and a € ),
(lgh @) — (Alg)kihy), 1(a))
Moreover, if ¢ and ¢' are injective on the local groups, and A and A are isomorphisms, then L is an
isomorphism of scwols.

We now define the universal cover.

Definition 4.2.21 (universal cover of a developable complex of groups). Let G(Y) be a developable

complex of groups over a connected scwol Y. Choose a mazximal tree T in ). Let
tr: G(Y) - m(G(Y),T)

be the morphism of complezes of groups mapping the local group G, to its image in m(G(Y),T),
and the edge a to the image of a* in m(G(Y),T). The development D(Y, 1) is called a universal
cover of G(Y).

Theorem 4.2.22 (Theorem 3.13, [BH]). The universal cover D(Y,r) is connected and simply

connected.

As described in Definition 4.2.18, the fundamental group 71 (G(Y), T) acts canonically on D(), vr).

A group action on a scwol induces the following explicit isomorphisms of groups and scwols.

Proposition 4.2.23. Let G be a group acting on a simply connected scwol X, and let G() be the
induced complex of groups (with respect to some choices Co = {G, h,}). Choose a mazimal tree T in

Y and a vertex oo € V(). For e € EX(Y), let

hoo{ ha ife=at
¢ kil ife=a"
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Foro e V(Y), let c, = (e1, €2, .., en) be the unique edge-path contained in T, with no backtracking,
which joins og to o, and let hg = he hey -+ - he,, -
Then there is a group isomorphism
Ar :m(GD), T)-G
defined on generators by
g —hegh! for g€ G,
at Hht(a)hahi‘(;)
and a Ar-equivariant isomorphism of scwols
Lr:DY,ur) - X
(l9), @) = AT(g)hi(a) - @

Proof. For 0 € V()), let 7, = e1€2 - - e, be the element of FG(Y) corresponding to the edge-path

¢o- Then by Theorem 3.7, [BH], there is a canonical isomorphism
kr : m(G(Y), T) = m(G(Y), 00)
defined on generators by

g megm, ! for g € G,

a"’ Hﬂt(a)a+1r,i(a).

By Proposition 4.2.19, the canonical morphism of complexes of groups ¢; : G()) — G induces a
group isomorphism 7 (¢1,00) : m(G(Y),00) — G. Composing kr with m1(¢1,00), we obtain the
group isomorphism Ar : m(G(Y),T) = G defined above.

We now have the square

G(Y) —>m(GY),T)

)\=Id1 lAT
1

GY) —G.
This commutes up to a homotopy from Arer to ¢1), given by the elements k3! for ¢ in V(Y). Thus,
by Proposition 4.2.20, there is a Ar-equivariant morphism of scwols
Lt : D(Y,ir) = D(Y, ¢1)

(9], @) = ([AT(9)hi(a)]; )
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which is an isomorphism since ¢r and ¢, are injective on the local groups, and both A and Ar
are isomorphisms. Composing Lt with the G-equivariant isomorphism ®; : D(),¢1) — X (see

Proposition 4.2.19), we obtain a Ar-equivariant isomorphism of scwols

br:DW,ur) - X
(lgh @) = Ar(o)hica) - @
as required.
Local developments and nonpositive curvature

Let K be a connected polyhedral complex and let ) be the scwol associated to K, so that |}
is the first barycentric subdivision of K. The star St(c) of a vertex o € V()) is the union of the
interiors of the simplices in |Y| which meet o. If G())) is a complex of groups over ), then each
o € V(Y) has a local development, even if G(Y) is not developable. That is, we may naturally
associate to each vertex o € V(Y) an action of G, on some simplicial complex St(&) containing a
vertex &, such that St(o) is the quotient of St(&) by the action of G,. If G()) is developable, then
for each o € V(), the local development at o is isomorphic to the star of each lift & of o in the
universal cover D(Y,tr).

We denote by st(&) the star of & in St(6) (here we follow the notations of Haefliger in [BH], but

sto, St(o) would be more natural notations).

Lemma 4.2.24 (Lemma 5.2, [BH]). Let A : G(Y) — G'()') be a covering of complezes of groups,
over a morphism of scwols | : Y — Y'. Then for each o € V()'), Condition (2) in the definition

of a covering (Definition {.2.12) is equivalent to the ezistence of a \,-equivariant bijection st(5) —

st(l(e))-

In the case that ) is the scwol associated to a polyhedral complex K, each local development
St(&) has a metric structure induced by that of K (see p. 562, [BH]). A complex of groups G(})
has nonpositive curvature if for all o € V()), the local development at o has nonpositive curvature
(that is, St(&) is locally CAT(«) for some x < 0) in this induced metric. The importance of this

condition is given by :

Theorem 4.2.25 (Theorem 4.17, [BH]). If a complex of groups has nonpositive curvature, then it

is developable.
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We will use the following condition to establish nonpositive curvature :

Lemma 4.2.26 (Remark 4.18, [BH]). Let Y be the scwol associated to an My-polyhedral complex
K, with K < 0. Then G(Y) has nonpositive curvature if and only if, for each vertex T of K, the

geometric link of T in st(7), with the induced spherical structure, is CAT(1).

4.3 Covering theory for complexes of groups

In this section we present results for complexes of groups analogous to those for graphs of groups
in [Ba]. We consider the functoriality of morphisms of complexes of groups in Section 4.3.1 and
that of coverings in Section 4.3.2. Section 4.3.3 discusses faithfulness of complexes of groups. A key
technical result, the Main Lemma, is proved in Section 4.3.4. We describe the relationship between

coverings and developability in Section 4.3.5.
4.3.1 Functoriality of morphisms

Proposition 4.3.1 below gives explicit constructions of the maps on fundamental groups and

universal covers induced by a morphism of developable complexes of groups.

Proposition 4.3.1. Let A : G(Y) — G'()') be a morphism of complezes of groups over a morphism
of scwols | : Y — Y', where Y and V' are connected. Assume G(Y) and G'()') are developable.
For any choice of oo € V(YY) and mazimal trees T and T’ in Y and Y’ respectively, A induces a

homomorphism of fundamental groups
Arg = Appo: m(GQ), T) - m(G'(V'), T')
and a At 1 -equivariant morphism of universal covers
Ly : DQYV,ir) = DV o).
We also have AT, = (A1)~ .

Proof. Let o = l(0g). Recall from the proof of Proposition 4.2.23 that there is a canonical isomor-
phism
kr : m(G(Y),T) — m(G(Y),00)

and from the paragraph below Proposition 4.2.17 that the morphism A induces a group homo-

morphism 71(\, 00) : m(G(Y),00) — m(G'(Y’),00) which is the restriction of the morphism
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F): FG(Y) — FG'(Y'). The group homomorphism
Arg i m(G(Y),T) = m(G'(YV), T')
is defined by the composition k7" o 1 (), 09) 0 K :
m(G(Y),T) = m(G(Y),00) — m(G'(V'),05) — m(G'(Y'), T")

We now have a square

G(Y) —==m(G),T)

3| |

G'(V) > m(@ (). T)
We claim that that there is a homotopy from Ap 1/ our to tproX. For 0 € V(Y) let 1, = eje2--- e,
be the element of FG()) corresponding to the unique path (ey, ez, ..., ep) in T without backtracking
from oy to o, and similarly for wf(a) € FG'(Y'). Then for g € G,, we have
(At 0u7)(9) =Ar1(9)
=rm' o m1 (A, d0) o kr(g)
=k o mi (X, 00)(magm; )
=k7" (FA(T5) A0 (9)(FA(m5)) ")
=5t (FA®) (i) ™) (270 M) (9) 5" (i) (FA(m)) ™)
Setting
Uy = K (FA(ma) (i) ™!) € m(G'(Y),T')
we conclude
(A1, 017)(9) = Uo (117 0 As)(9) uz" = Ad(us) (e 0 A)(9)
Similarly, if a € E(Y), we compute
(A1 0 ur)(a) = k' o mi(A, 00) 0 kr(at)
= kit om (A, ao)(ﬂt(a)a"'wi_(;))
= ut(a))\(a)l(a)J'ui_(;)
= Ug(a) (17 © /\)(a)ui-(;)

The last equality comes from the definition of composition of morphisms,

(¢ 0 N)(a) = (¢1)i(t(a)) (M (@))er (I(a)) = A(a)l(a)*
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Hence the desired homotopy from A1/ ot to t+ o X is given by the elements u;?.

By Proposition 4.2.20, there is thus a Az 7/-equivariant morphism of universal covers
Ly : D(Y,ur) = DV, u17)
given by
([g), @) = ([Ar, 1 (9)ui)], L))
The last assertion holds by definition.

Corollary 4.3.2 below says that if a diagram of morphisms of developable complexes of groups
commutes, then the corresponding diagrams of the induced maps on fundamental groups and uni-

versal covers, defined in Proposition 4.3.1 above, also commute.

Corollary 4.3.2. With the notation of Proposition 4.8.1, let G"()") be a developable complez of
groups over a connected scwol V", and assume there is a morphism X' : G'(Y') — G"(Y"). Choose

a mazimal tree T" in )". Then the composition
N =XoA

induces a group homomorphism Arr» : m(G(Y),T) — m(G"(Y"),T") and a Ay r~-equivariant

. . "
morphism of universal covers Lﬁ\",T“ : D(Y,vr) = D(Y', 1), such that
”n ’
LT,T” = L"II\'\/,T// o L;"‘,Tl

and

AT,TH = ATI’TH (o] AT,T’

Proof. The proof follows from the constructions given in Proposition 4.3.1 above, and the definition

of composition of morphisms.
4.3.2 Functoriality of coverings

In this section we prove Theorem 4.1.1, stated in the Introduction. The maps Ar 1/ and Lﬁ\“,T'

are those defined in Proposition 4.3.1 above.

Proposition 4.3.3. Let A : G(Y) — G'(Y') be a covering of complezes of groups over a morphism
of scwols I : Y — )', where Y and Y’ are connected. Assume G(Y) and G'(Y') are developable.
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For any choice of oo € V()) and mazimal trees T and T' in Y and )’ respectively, the induced

homomorphism of fundamental groups
Az m(G),T) — m(G'(V), T")
18 a monomorphism and
L3,z : DY,ur) = DV, ur)
is a A 1/ -equivariant isomorphism of scwols.
Proof. We begin with Lemma 4.3.4 below, which shows that L'q\“,T/ is a covering of scwols (see

Definition 4.2.5). Corollary 4.3.5 of this lemma shows that L3 1 is an isomorphism of scwols. We

then use this result to show that Ap - is injective.
Lemma 4.3.4. The morphism L{,\,T, is a covering of scwols.

Proof. Let g € m(G(Y),T) and o € V(). We first show that L3, 1 is injective on the set of edges
with terminal vertex ([g], o). Suppose a; and ag are edges of Y (with ¢(a1) = t(az) = o), that for
some hy, he € m(G(Y),T)

t([h], a1) = (lg], 0) = t ([he], a2)
and that

Ly.qv ([1], 1) = L7 v (he), a2)
By definition of L}, 1, we then have I(a1) = l(a2) = o’ say, with t(a’) = I(t(a1)) = l(0) = ¢’. Also,
by definition of the map t : E(D(Y,tr)) — V(D(Y,tr)), we have, for some h € G,

hiay = h;a;h_l

1

Now by definition of Lé,T,, it follows that the group G’.(a,) contains

(AT,T'(hl)ui(al))_l (Az,7(h2)Ui(ay))
= Uja,) AT, (a1 haF) tiay)
= ui_(;l)ui(al)l(al)‘)\(aI)_lut'(‘lh)uc,)\a(h)u;lut(az))\(az)l(az)'*ui"(}n)ui(w)
=a'"Aa1) o (h)A(az)a'*

Thus by the relation a’tka’'~ = 1, (k), for all k € G/

i(a’)’

Aa1)™ A (h) A(az) € Yo' (Clary)
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That is, A(a1) and As(h)A(a2) belong to the same coset of Ya/(Gj(,)) in G5.. By Condition (2) in
the definition of a covering (Definition 4.2.12, this implies a; = a2 = a, say, and h € ¥a(Gi(q)). It
follows that h; and h; belong to the same coset of G;(q) in m1(G(Y), T). Thus L%T, is injective on
the set of edges with terminal vertex ([g], o).
We now show that L}.p., surjects onto the set of edges of D()’,i7v) with terminal vertex
L} 1.([g], ). Suppose
t([n'],a') = L7 (9], 0)

where b’ € m(G'()'),T"), @’ € E()'). Then t(a’) = ¢’ = (o) and by definition of LQ\’T,,
ha'~ = AT,T’ (g)uaka' (41)

for some ko, € G.,. By Condition 2 in the definition of a covering, there exists an edge a € E(Y)
with l(a) = @’ and t(a) = o, and an element k, € G4, such that \,(ks)A(a) and ko belong to the

same coset of q/(Gi(ar)) in G,,. Let h = gk,at € m1(G(Y),T) and note that by Definition 4.2.18,

t (B, a) = ([gkoa™er(a)7"),t(a)) = ([gkoata™), 0) = ([gks], ) = ([9], o)
We claim
Ly ([R), @) = ([, @)

By Equation (4.1) above, the choice of a and k, and the relation ¥4/ (k') = a’tk'a’~ forall k¥’ € G;(a,),

we have
At (h)uie) = A1 (g)ua)‘a(ka)u;lut(a))‘(a)l(a)+ui_(;)ui(a)
= ha'"k; )\ (ko) A(a)a'*
€ WG
Hence,

L,T\',T’ ([h]ya) = ([AT,T'(h)ui(a)] 7a,) = ([h,]v al)
We conclude that L}, 7 is a covering of scwols.

Corollary 4.3.5. Under the assumptions of Proposition 4.3.3, the morphism Lﬁ\",T' : DY, 1) —

D(Y',v1+) is an isomorphism of scwols.

Proof. By Lemma 4.3.4, L} 1 is a covering morphism. Since D(),ur+) is connected, L3, 7 is sur-
jective, and since D(Y,tr) is connected and D()”,¢7) is simply connected, Lé\*,T' is injective. See

Remark 1.9(2), [BH].
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We complete the proof of Proposition 4.3.3 by showing that Ar 7+ is a monomorphism of groups.
Suppose g € 71 (G(Y),T) and Ar7/(g) = 1. Since L%,T, is injective and Ar rs-equivariant, g must

act trivially on D(Y,¢r). In particular,

g+ ([1},90) = ([g], 00) = ([1], 00)

so g € G4,. We then calculate

Arzi(g) = K7 o (X, 00) 0 K7 ((17) o0 (9))

= K'T_,l()\a-o((LT)ao (g)))

=1
Since né,?,l, Moo and (u1)s, are each injective, this implies g = 1. Thus Ar 7~ is injective.

Corollary 4.3.6. Let A : G(Y) — G'(Y') be a covering of complezes of groups. Suppose for some
k € R that the scwols Y and )’ are associated to M, -polyhedral complezes with finitely many isometry
classes of cells. If G(YV) and G'(Y") are developable, then the geometric realizations of their respective

universal covers are isometric (as polyhedral complezes).

4.3.3 Faithfulness

Definition 4.3.7 (faithful). Let G(Y) be a developable complez of groups. We say G(Y) is faithful
if the natural homomorphism 1 (G(Y),T) — Aut(D(Y,tr)) is a monomorphism, for any choice of

mazimal tree T in ).

If G(Y) is a complex of groups associated to the action of a group G on a scwol X, then G())
is faithful.

Proposition 4.3.8 below may be used to give sufficient conditions for faithfulness.

Proposition 4.3.8. Let G(Y) be a developable complex of groups over a connected scwol Y. Choose
a mazimal tree T in Y, and identify by v each local group G, with its image in 71(G(Y),T) under

the morphism vp. Let
Np =ker(m(G(Y),T) — Aut(D(Y,t1)))
Then
1. Nr is a vertex subgroup, that is Ny < G, for each o € V()).

2. Nr is Y-invariant, that is 94(N1) = Nt for each a € E()).
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3. Nt is normal, that is Ny Q G, for each o € V().

4. Nr is maximal : if Ny is another Y-invariant normal vertez subgroup then N < Nr.

Proof. If h € Nr, then for every o € V(Y),

h- ([1]"7) = ([h]’a) = ([uaa)

thus h € G,,. This proves (1). Since N7 is normal in 71 (G(Y), T') it is normal in each G,, proving (3).
To prove (2), let a € E(Y). In the group m(G(Y),T) the following relation holds for each
9€Gi@):
Ya(g) = a*ga”

Since Nt is a subgroup of Gj(q) and Nt is normal in 7 (G(Y),T), it follows that
'g[)a(NT) = a+NTa' = Nr

as required.

To prove (4), we have, for all g € 71(G(Y),T) and a € ),

Nz - ([g],a) = gNrg™" - (lg), @) = g (1], @) = ([g], @)

since Ny is normal in 71 (G(Y), T) and Ny is a subgroup of G;(). Hence N7 is contained in Nr, as

claimed.

4.3.4 Other functoriality results

This section contains results similar to those in Section 4, [Ba].
We first prove the following useful characterization of isomorphisms of complexes of groups. This

result corresponds to Corollary 4.6, [Ba).

Proposition 4.3.9. Let A : G(Y) — G'()') be a morphism of developable complezes of groups over
a morphism of scwolsl : Y — Y', where Y and Y’ are connected scwols. For any choice of og € V()
and of mazimal trees T and T’ in' Y and )’ respectively, )\ is an isomorphism if and only if both of

the maps L) 1 and A7+ are isomorphisms.
ps LT \ TP

Proof. If X is an isomorphism, it is clearly a covering. Proposition 4.3.3 thus implies that L&\",T' is
an isomorphism of scwols and Az 1 is a monomorphism of groups. Since A~! is also a covering,

A7l = (Ar,7v)7! is also a monomorphism, hence Arz is an isomorphism.
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Conversely, suppose A is not an isomorphism, thus one of A and A~! is not a covering. Without

loss of generality, we assume A is not a covering. Then either
1. there exists ¢ € V())) such that the homomorphism A\, : G5 — G;(a) is not injective, or

2. there exists a’ € E()') and o € V(Y) with t(a’) = ¢’ = (), such that the map

H Ga/wa(Gi(a)) - G;’/wa’(Gg(a’))
a€l~(a")
t(a)=0o

induced by
9+ As(9)A(a)
is not bijective.

Condition (1) implies that the map A7 7 is not a monomorphism at G, thus Ar 7 is not an
isomorphism. Condition (2) implies that L%‘T, is not a local bijection at St(&) (see Remark 5.3, [BH]),
thus the map L%,T, is not an isomorphism.

The Main Lemma below, which corresponds to Proposition 4.4, [Ba], will be used many times in
Section 4.4. The data for the Main Lemma is as follows.

Let X and X’ be simply connected scwols, acted upon by groups G and G’ respectively, with
quotient scwols Y = G\X and )’ = G"\A". Let G(¥)c, and G'()')c: be the quotient complexes of
groups associated to the actions of G and G’, with respect to choices Cs = (7, hs) and C., = (o7, ha).

Suppose L : X — X’ is a morphism of scwols which is equivariant with respect to some group
homomorphism A : G — G'. Let [ : ) — )’ be the induced morphism of quotient scwols. Fix og € Y
and let o = l(0p). Let No = {k,} be a set of elements of G’ such that k, - L(z) = I(o) for all
oe V().

With respect to these choices, there is an induced morphism A = A¢, o1 .~, : G(Y) — G'(V')

(see Definition 4.2.13). For any choice of maximal trees T and T” in ) and ), respectively, let
Ay p i m(GY), T) — m(G'(V), T")
be the homomorphism of groups induced by A and let
Ly : DVyur) = D', er)

be the associated AQ\YT,-equivariant morphism of scwols (see Proposition 4.3.1). By Proposition 4.2.23

we have isomorphisms of scwols

Lr:DW,u) % and Lp: DOV,up) = X
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which are equivariant with respect to group isomorphisms

~

Ar :m(G(), T) G and Ar :m(G'Q),T)=G
respectively.

Main Lemma 4.3.10. Suppose C, and C. are chosen so that L(35) = l(00) = op, and N, is

chosen so that ks, = 1. Then the following diagrams commute :

1.
A p
m1(G(Y),T) : m(G'(V'), T')
lAT lATI
G A G
2,
Ly
D(y;LT) —;——_)D(ylil’T’)
X L X'

Proof. We first show the commutativity of (1), and then use this diagram and equivariance to prove
that (2) commutes.

By construction,
Ar =m(¢1,00) o kr and  Ap = (¢}, 00) ° K7

where ¢; : G(Y) — G and ¢} : G'()’) — G’ are the canonical morphisms. Also, A} 7, = [

71 (A, 00) o k. Therefore it is enough to show that the following diagram commutes :

m1(A,o
11(GOY), 00) —= 2%, 1 (G'(V), 0b)
lm(m ,00) lﬂ'l(‘ﬁ’l ,00)
G A Vel

Let z € m(G(Y),00). Then z has the form
T = gdoelgd1 e eﬂgdn
where (9oo, €1,904 - - - » €ny 9o,.) 15 @ G(Y)-loop based at og = oy It follows that

m (¢l’ 0'0)(.’2) = gdohe1g0’1 e hen.gan
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where the elements h.; are as defined in Proposition 4.2.23. We now compute
m1($1,90) © m(A, 00) ()
= (koo A(goo)kiy ) (koo Alhe, ) g huges) (ks Algoy )i - (Ko Mg K,
= koo Mgoohe 9o, heo o k7!
= Aom(¢1,00)(x)

since ks, = ks, = 1. Thus (1) commutes.

To prove that (2) commutes, let
f/ = .Z/Tl o L%‘,T' o E}I—-vl.

We will show that L = L. By the equivariance of the morphisms of scwols used to define L, and
the commutativity of (1), we have that L is A-equivariant. Thus it is enough to check (for example)
that L(hie)@) = L(hi(e)@) for all @ € Y = V(¥) U E(Y). By Proposition 4.2.23,
L(hi(e)@) = L1 o L3 1 (1], @)
= Z/T’([ui(a)]a Ua))
= A (uiga))Riqua)l(@)
Let m;(q) = e1€2 - - - e, be the element of FG()) which corresponds to the non-backtracking path in

T from o9 to i(a), and similarly for m;, ) = €je5 - €5, in FG'(Y’). Then

A7/ (tia)) = Arr o k1! (F)\(Wi(a))(ﬂi(z(a)))—l)
= m1(#4, 96) (FA(Tia)) (mla)) ™)
= m1(91,00) (FM(e1) FAM(e2) -+ FA(en)ers ' €57 "el™)
= koo Alhe, k5, Koy Alhe, )K7, Koy Alhe, )5 TR, - hgth!
= kooA(hehey -+ e, )k ! (heyhey - her )7
= Ahi(o) k5, h’i—(ll(a))

since ks, = 1. Substituting, we obtain finally
L(hue@) = Alhiey)ks, ()
= A(hi(a))k; oy l(@)
= A(hi())L(@)

= L(hi(a)a)
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as desired. Note that ki’(;)l(a) = L(@) for a € V()) by definition of k, and it holds for o € E(Y)
as well by the ’no inversion’ assumption on the group action.

This completes the proof of the Main Lemma.

The following result makes precise the relationship between a developable complex of groups G())
and the complex of groups induced by the action of 71 (G(Y),T) on D(Y, 1), for some maximal tree

T in Y. It will be used to prove the Corollary to the Main Lemma below.

Lemma 4.3.11. Let G()) be a developable complez of groups over a connected scwol Y. Choose a

vertex o9 € V() and a mazimal tree T in Y. Let Z be the quotient scwol
Z=m(G),T\DY,er)
and let f be the canonical isomorphism of scwols
f:Y—-Z
ar m(GY),T)- (1],0)
Let C, be the following data for the action of m1(G(Y),T) on D(Y,r) :
fa)=(1],e) and hj@) =at

and let G(Z)¢, be the complex of groups associated to this data. Then there is an isomorphism of
complezes of groups
0:G(Y) — G(Z)
over [ such that
0 _ A-1 0 _7-1
AT sy =Apry ond Ly gr) =Ly
where f(T) is the image of T in Z.
Proof. We define 6 by 6,(g) = g for each g € G,, and 6(a) = 1 for each a € E(Y) (here we are

identifying G, with its image in m (G(Y),T)).
We then have

A%f(T) oAsr) = n;(lT) om(6,00) o kr o T (1, f(00)) © Ky(T)

We claim that
7(1(0,0’0)0KT01F1(¢1,f(0'0)) =1 (42)
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Let g € m1(G(Z), f(00))- Then g = gof(e1)g1 - - - f(€n)gn for some G(Z)-loop (go, f(e1), 91, -, f(en), gn)
based at f(og) = f(on), and so
kT 0 m1(¢1, £(00))(9) = KT (gohs(e)91 * h(en)9n)
= To090T g KT (R (e1))Tor 175 - KT (Rf(en)) Ton 9T
where 7, is associated to the unique non-backtracking path in T from oy to 0. Now, applying
hf@) = a* and kr(a*) = ﬂt(a)aﬂri—(;), as well as 7,, = m,, = 1, we have
m1(6, 00) 0 kT © M1 (91, f(00))(9) = 71(8,00)(g0€191 " * - €ngn)
=gof(e1)91 - f(en)gn
=g

and so Equation (4.2) holds. Thus A%’ £(1) © Ag(ry = 1. By conjugating Equation (4.2), we obtain

Apryo AT sy =1

and conclude that A% .7y = A7ip.

0 _ F-1
To show that LT, 5T = L 7Ty let

-1
-1
Us = Kpr) {F 8(7s) ("'f(a)) }

be the elements of 71 (G(Z), f(T')) with respect to which L%’ s(r) is defined. Here m, denotes the

non-backtracking path in T from oq to o, and similarly for ﬂ’f(a) and f(T). By definition of 6,
Fe(ﬂ'a-) = ﬂ‘lf(a)

hence u, = 1 for all ¢ € V()). Also, for each o € ), the element h;(¢(q)) € m1(G(Y), T) with respect
to which L 7(r) is defined is a product of oriented edges a* with a € T. Hence hi(fa)) = 1.

Applying these facts, we have, for g € 71(G()),T) and o € Y,

Lyry o Ly sy (l9) @) = Ly ([Af 5oy (9)); F(@))
= Ag(r) © AT (1) (9) (s (@) F(@)
= g([ll’ Ol)

= ([g]’a)
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and

LY sy © Ly ((9), £(@) = L. 5y (A g1y (9) (@)
= Lg‘,f(T)([Af(T) (9)], @)
= ([Ag‘,f(T) o Asry(9)), f(@))

= (lg], /(=)
Thus LY. ¢y = L7(py.
T,f(T) f(T)
The following result corresponds to Corollary 4.5, [Bal.

Corollary 4.3.12. Let G(Y) and G'(Y’) be developable complezes of groups over connected scwols
Y and Y', and choose mazimal trees T and T' in'Y and ' respectively. Suppose L : D(Y, 1) —
D(Y',vr+) is a morphism of scwols which is equivariant with respect to some homomorphism of

groups A : m(G(Y), T) — m(G'(Y'), T"). If there is a o9 € V(Y) such that
L([1},00) = ([1]’06)

for some afy € V()'), then there ezists a morphism X : G(Y) — G'(Y') of complezes of groups such
that L == L%\*,Ti and A - A%‘,T’ .

Proof. Let the quotient scwol Z, the isomorphism f : J) — Z, the data C,, the complex of groups
G(Y)c, and the isomorphism 6 : G()) — G(Z) be as in the statement of Lemma 4.3.11 above, and
similarly for Z', f’, Ci, G'()')c; and ¢'. Let | : Z — Z' be the map of quotient scwols induced by L

and A. By definition of [, C, and C,, and by the assumption on L, we have
L(50) = I(00)
so we may choose N, with k,, = 1. Let
1= pc..cyn, : G(Z)c, = G'(Z)c,

be the induced morphism of complexes of groups.
Let
A=0"lopuol:GQ) - G'()

We claim that A = A}, 1, and L = L}, 1. By Corollary 4.3.2, it is enough to show that

9’ - 6
A= (AL pay) ™ 0 My gy © AT pmy
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and
. 6’ -1 [’}
L= (Lg:,piry) ™" @ Liyry gy © L1y

The result follows from the Main Lemma applied to u, and Lemma 4.3.11 above. O
4.3.5 Coverings and developability

This section considers the relationship between the existence of a covering and developability.

Lemma 4.3.13. Let G(Y) and G'()') be complexes of groups over nonempty, connected scwols
Y and )'. Assume there is a covering ¢ : G(Y) — G'(V'). If G'(Y') is developable, then G(Y) is
developable.

Proof. Let ¢/ : G'()') — FG'()’) be the natural morphism defined after Definition 4.2.14 in Sec-
tion 4.2.4. By Proposition 4.2.15, since G'()”’) is developable, ¢’ is injective on the local groups.
Thus, as ¢ is a covering, the composite morphism ¢/ o ¢ : G(Y) — FG'()’) is injective on the local
groups. Hence, by Proposition 4.2.11, the complex of groups G(Y) is developable. O

We do not know if the converse to Lemma 4.3.13 holds in general. (According to Haefliger, the
converse is true by a functorial 1 — 1 correspondence between the coverings of an étale groupoid and
the coverings of its classifying space.) However, in the presence of nonpositive curvature, we have the
following partial converse to Lemma 4.3.13. Recall that an M-polyhedral complex is a polyhedral
complex with n-dimensional cells isometric to polyhedra in the simply connected Riemannian n-

manifold of constant sectional curvature .

Lemma 4.3.14. Let ¢ : G(Y) — G'(Y') be a covering of complezes of groups, over a morphism of
scwols | : Y — ). Suppose that for some k < 0, Y and Y’ are the scwols associated to connected
M, -polyhedral complezes with finitely many isometry classes of cells K and K' respectively, and
that || : |Y| — |V'| is a local isometry on each simplez. If G(Y) has nonpositive curvature (thus is

developable), then G'()') also has nonpositive curvature, thus G'()’) is developable.

Proof. By Lemma 4.2.26, to show that G’()’) is nonpositively curved, it suffices to show that for
each vertex 7' of K’, the geometric link of 7' in the local development st(7'), with the induced
spherical structure, is CAT(1). We first show, using the following lemma, that if 7/ is a vertex of K’,

then 7/ = f(7) for some vertex 7 of K.

Lemma 4.3.15. The nondegenerate morphism of scwols | : Y — Y’ associated to the covering ¢ :

G(Y) — G'()') surjects onto the set of vertices of V'.
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Proof. Let 0 € V() and l(c) = o' € V()'). From the definitions of nondegenerate morphism of
scwols and covering of complexes of groups, it follows that every vertex of )’ which is incident to
an edge meeting ¢’ lies in the image of [. Since )’ is connected, we conclude that ! surjects onto
V(). O

Let 7’ be a vertex of K’. By Lemma 4.3.15, 7/ = I(7) for some 7 € V())). Suppose 7 is not a
vertex of K. Then there is an a € E()) such that i(a) = 7. It follows that i(l(a)) = I(i(a)) = 7/, so
l(a) € E()') has initial vertex 7’. This contradicts 7’ a vertex of K’. Hence 7 is a vertex of K.

Since G(Y) is nonpositively curved, the geometric link of 7 in the local development st(7), with
the induced spherical structure, is CAT(1). By Lemma 4.2.24, there is a ¢,-equivariant bijection
st(7) — st(7'). We claim this bijection is an isometry in the induced metric, which completes the
proof.

By definition of the induced metric, the action of G, on st(7) induces a simplicial map st(7) —
st(7) which is a local isometry on each simplex. Similarly, the action of G, on st(7') induces
st(7) — st(7) which is a local isometry on each simplex. By assumption, the restriction of |I| to st(7)
is a local isometry on each simplex. Hence, the bijection st(7) — st(7') is a local isometry on each

simplex, and thus an isometry. O

4.4 Coverings and overgroups

In this section we prove Theorem 4.1.3, stated in the Introduction. We first define the notion
of isomorphism of coverings. In Section 4.4.1 we define a map from overgroups to coverings, and in
Section 4.4.2 a map from coverings to overgroups. Then in Section 4.4.3 we conclude the proof of

Theorem 4.1.3 by showing that these maps are mutual inverses.

Definition 4.4.1 (isomorphism of coverings). Let A : G(YV) — G'(Y’) and X : G(Y) — G" (V") be
coverings of developable complezes of groups over connected scwols. Fix og € V(Y). We say that A
and X' are isomorphic coverings if for any choice of mazimal trees T, T' and T" in Y, V' and Y"
respectively, there exists an isomorphism X' : G'(Y') — G"(Y") of complexes of groups such that

the following diagram of morphisms of universal covers (defined in Proposition 4.8.1) commutes

A

Lz,
DY, r) —— D', i)
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Note that by Corollary 4.3.2, this diagram commutes for one triple (7, 7”,T") if and only if it
commutes for all triples (T, 7",T"). By Proposition 4.3.3, since A and A’ are coverings, LQ\’T, and
L%"T,, are isomorphisms. By Proposition 4.3.9, since \” is an isomorphism, the map Li\"l:,T" is an
isomorphism. Hence, two coverings are isomorphic if and only if they induce a commutative diagram
of isomorphisms of universal covers.

For the remainder of Section 4.4, we fix the following data :

— X, the scwol associated to a simply connected polyhedral complex K,

T, a subgroup of Aut(K) which acts on X, with quotient Y = T'\ X,

a vertex oo € V()), and

a set of choices Co = (7, h,) giving rise to a complex of groups G(Y)c, = (Go, Ya, 9a,p) induced
by the action of " on X.

Let Over(I') be the set of overgroups of I' which act without inversions, that is, the set of
subgroups of Aut(K) containing I' which act without inversions. Let Cov(G())) be the set of iso-

morphism classes of coverings of faithful, developable complexes of groups by G()).
4.4.1 The map from overgroups to coverings

In this section we construct a map
a: Over(I') — Cov(G(}))

We first show in Lemma 4.4.2 that an overgroup induces a covering of complexes of groups. Then
in Lemma 4.4.3 we show that, without loss of generality, we may apply the Main Lemma to this

covering. In Lemma 4.4.4, we define g and show that g is well-defined on isomorphism classes of

coverings.

Lemma 4.4.2. Let I be an overgroup of ' acting without inversions. Let G'(Y')c; be a complex of
groups over Y' = T"\X induced by the action of IV on X, for some choices C.. Let L=Id: X — X

and let A : T < I be the inclusion, inducing | : Y — )'. For some choices N,, let
A=2xc, N 1 GV)e, = G'(V)cy

be the morphism of complexes of groups over | induced by L and A (see Definition 4.2.13). Then A

is @ covering.
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Proof. By definition, A\, = Ad(k,), up to inclusion, where k,G = Z(—aj. The local maps A\, are thus
injective.

We write [g], for the coset of g € Gy(a) in Gi(a)/¥a(Gi(a)), and similarly for [g']o when ¢’ € G;(a,).
It now suffices to show that for every a’ € E(Y’) with t(a’) = ¢’ = (o) € V()), the map on cosets

[T To/haCigphe’ — Tigy/Ro (T

a€l™(a")
t(a)=c

[9la — [Ao(9)A(@)]a
is bijective. Suppose [Ay(9)A(a)]ar = [Ao(R)A(D)]ar- Then by definition of A,

Ry kiwyhy 'k koh ™ gk Ykyayhaki )y (Ry) ™! € B F(a,)(h;,)-l

t(b)"Vo i(a)

hence

kiwhy "h 7 ghakil) € s

Since k() and k;(p) send i(a) and 7(b) respectively to i(a’), the element h,:lh‘1 ghe in T sends i(a)
to i(b). Since I(a) = (), this implies that a = b. Hence h='g maps i(a) to itself, thus [h], = [g]a-
Therefore the map on cosets is injective.

Let us show that the map on cosets is surjective. Let [h],» be an element of the target set. Let
b = k;h'h,a. Since h' € I'Z;, we have t(b') = 7. Let ¢ = p(b'), where p is the natural projection

X — Y =T\X. Let g € I'5 be such that gh.c = b'. We claim that [g]. maps to [h']s’, that is,

R~ Ykoghck LA/t € B!, TL—h!71

i(c) "a’ i(a’) "o’

Since k;, sends i(a’) to i(c), and the element k,gh, sends i(c) to i(ksb') = i(h'h.,(a’)), it follows

z(c
that h'7'h'~ 'k, ghe kt( o) fixes i(a’), which proves the claim. O
We now show that every covering A induced by an overgroup, as in Lemma 4.4.2, is isomorphic

to a covering X' to which the Main Lemma may be applied. More precisely :

Lemma 4.4.3. With the notation of Lemma 4.4.2, fiz a vertex oo € V(). Then there is a choice
C! of data for I’ acting on X such that 55 = (00), and a choice N, = {k,} such that ki, =1, so

that )\ is isomorphic to the covering
XN'=Xg, cong 1 G)e. = G"(V)ey

where G"(Y")cy is the complez of groups induced by cl.
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Proof. By definition of [, there is a choice C! so that &g, determined by C,, equals 1(o0) determined
by C”. We now define a collection N/ = {k/} such that k.7 = (o) for all o € V().

Choose a section s : V(') — V() for I. That is, for each o’ € V()), choose s(c’) € V(Y) such
that I(s(c’)) = o’. In particular, if oy = l(00), let s(ag) = oo.

For each s(o’) € V()), choose an element k;(a,) € I such that k;(d,)s(a’) = o', where s(0’) is

determined by C, and o’ by C7'. Since s(cg) = g0, and by choice of C/, we have k[, 55 = l(00) = 0,

so we may choose kj, = 1. For all other o € V' (), let

-1
ko = Koy ke ke (4.3)

where N, = {k,}. Note that

koT = ky(ito)katiion FoT = Koo Fsaon(0) = Koy slle)) = Uls)

This defines a collection Ny = {k} with k, = 1. Let X' : G(¥)c, — G"()")c; be the covering
induced by N.
We now construct an isomorphism of complexes of groups p : G'(’) — G”()") such that the
following diagram commutes
GY) =GV (4.9)
RN
G"(Y")
By Corollary 4.3.2, it follows that ) is isomorphic to X'.

Let f : V' — )" be the identity map (both )’ and Y are the quotient I\ X). We choose a
collection N2 = {k”,} of elements of I such that k”.o’ = f(o’) as follows. By Equation (4.3), if
l(o1) = l(02) then K, k;! =kl k;}. Given ¢’ € V()), it is thus well-defined to put

k! = Kk
for any o € I=1(0’). We check

ko' =k ko' = k.5 =0 = f(d’)

as required. Define u = pcy co Ny @ G'(V)e; — G"(¥V")cy. Since G'(Y') and G”(Y") are both

associated to the action of IV on X, u is an isomorphism.
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By definition of composition of morphisms, for g € G, we have

(BoN)a(9) = puo) © Ao (9)
= Ad(kj(,)) © Ad(ks)(g)
= Ad(kj(,)ks)(9)
= Ad(k;)(g)

=X (9)
and for a € E(Y)
(roA)(a) = pie(ay)(A(a))u(l(a))
= Ad(Ki{¢(a)) (ke(ayhak; gy Patay Kt (ay) Pica) (Kilucay) ™ P i)

-1 —- —-
= kllzt(a))kt(a)ha ki(a) (k;,(l(a))) lhf(ll(a))

= kiayha (ki) " A7 ay)

= X(a)
hence the diagram at (4.4) commutes. a

Lemma 4.4.4. Let IV be an overgroup of T'. Let C., Ny and C, N. be any two choices as in Lemma

4.4.2, and let
AcuciNe 1 G)e, = G' V), and g, cpn; i GV)e. = G'(V)ey
be the associated coverings. Then X and N are isomorphic coverings. Thus the map
a: Over(I') — Cov(G(Y))
taking an overgroup I of T to the isomorphism class of the covering X\ is well-defined.

Proof. Fix a vertex ag € V() and let o = l(00). By Lemma 4.4.3, we may without loss of generality
assume that the Main Lemma may be applied to A and ). As in the proof of Lemma 4.4.3, choose
a collection N/ = {kl,} with k, = k[, k;! = 1. Then we may apply the Main Lemma to the

& aooo

isomorphism of complexes of groups

N = AC‘,C‘I’N" : G’(yl)C‘ - GII(yI,)C"
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Choose maximal trees T, T' and T” in Y, )’ and )" respectively. We need to check that the
triangle
Ly
D(y, LT) —_> D(y/) LT’) (45)

A’l
\ lLT/’T”
Lyn

D", vpn)

commutes. Using the Main Lemma three times, we obtain the diagram

D(Y,er)

and see that the commutativity of (4.5) is equivalent to the commutativity of the tautological triangle

x 2 x

Id
R

X

which is obvious. O

4.4.2 The map from coverings to overgroups

We now show that there is a map
b: Cov(G(Y)) — Over(T).

Let A : G(Y) — G'()') be a covering of complexes of groups, where G’())’) is faithful and developable.
For any maximal subtrees T' and T” of ) and )’ respectively, let App : w1 (G(Y), T) — m1(G'(Y'), T")
be the associated group monomorphism, and La\‘T, :D(Y,vr) — D(Y', 1) be the associated Ag 7-
equivariant isomorphism of scwols. Composition with the isomorphism ﬂ;l (see Proposition 4.2.23)

yields an isomorphism of scwols

Lyt =Ly oLzt : X —» D(V',ur)
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which is equivariant with respect to Ar.zv o Az : ' — m1(G'("), T"). We set b()\) to be the group
b(A) = Ly 1 (m(G'(¥), T')) Loz

which acts on X. Since G'()') is faithful, 71 (G'(Y’), T") acts faithfully on D()”,¢1+). Hence we may
identify b(\) with a subgroup of Aut(K') which acts on X. As A 7 is injective, b()) is an overgroup
of I'.

Lemma 4.4.5 below shows that b is well-defined, that is, only depends on the isomorphism class

of the covering .

Lemma 4.4.5. Let A : G(Y) — G'(Y') and N : G(Y) — G"(Y") be isomorphic coverings of
complezes of finite groups, with G'(Y') and G"(Y") faithful and developable. Then b(\) = b(\').

Proof. By definition, there exists an isomorphism X’ : G'(Y’') — G”()"”) such that, for any choice

of maximal trees, we have a commuting triangle

L
D(nyT) e D(yleT’)

)\Il
x lLT, P
LT,TII

D", vrn)

and thus, composing with I:;l, a commuting triangle

L ’
X —5DV, i)

L'\”
L)\I,TII T/,7"

D", vrn)
Since )" is an isomorphism, by Proposition 4.3.9 the group homomorphism Ap: 7+ : 71 (G'(Y'), T") —

m (G"(Y"), T") is an isomorphism. Thus, as L:_,\',',T,, is A Tv-equivariant,
BN) = Lyt (m1(G” (V") T") L
= L3 (L3 1) " (ma (G V"), T") LY o Lz
= L3 (m(G' V), T")) L

=b(})

Therefore b is well-defined. O
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4.4.3 Proof of Theorem 4.1.3

We now complete the proof of Theorem 4.1.3. Let a : Over(I') — Cov(G(Y)) be as defined in
Section 4.4.1 and b : Cov(G(Y)) — Over(I") be as defined in Section 4.4.2.

Proposition 4.4.6. The maps a and b are mutually inverse bijections.

Proof. We first prove that boa = 1. For this, let I be an overgroup of I' acting without inversions,
and let a(I'") = A : G(Y) — G'()') be an associated covering over a morphism of scwols [ : Y — ).
By Lemma 4.4.3, we may assume that we can apply the Main Lemma to A. For any maximal subtrees

T and T’ of Y and )’ respectively, we have then a commuting diagram of (equivariant) isomorphisms

of scwols
Ly
D(y, LT) —— D(yl) LT’)
| i
X L=Id X
Thus

b(\) = L33 (m(G'(V'), ")) La 1
= Ly 0 LzY) 7 (m(G'(V), T")) Ly o o L
= Lr(m(G'(Y'),T")) L7/}

=T

since L+ is equivariant with respect to the isomorphism Ag : m(G'(Y'),T'") — I'. We conclude
that b a(T") =T".

We now prove that aob = 1. Let A : G(Y) — G'()’) be a covering of a faithful developable
complex of groups G’()’) over a morphism of scwols [ : Y — Y’. Choose a vertex ao € V() and
maximal trees T'and T” in ) and )’ respectively. Without loss of generality, we identify G'()’) with
the complex of groups induced by the action of 71 (G’()’), T') on D(}, t+), using the isomorphism
¢’ defined in Lemma 4.3.11 above. By abuse of notation, we write X for 6’ o A. Let I = ().

Let 4 = a(I'') be a covering u : G(Y) — G"(Y")cw over a morphism of scwols I : Y — )", where
G"(Y") is a complex of groups induced by the action of IV on X. By Lemma 4.4.3, we may assume

that G5 = I(00) so that we can apply the Main Lemma to . We now show that A and u = ab()\)

are isomorphic coverings.
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The map b induces a group isomorphism
Ay :m(G'(V'),T') — b(N)
with, for each ¢’ € m(G’()'),T’) and each a € X,
Ap(g') - a= L3 1(g" - Lar(a)).
By construction, Ly ¥ : D()',t1/) — X is Ap-equivariant. Let f : )’ — ) be the induced map of
the quotient scwols
V' =m(GQ),T)\DQ',¢er) and Y'=T"\X
Since Ap and L:\',IT, are both isomorphisms, f is an isomorphism of scwols. We claim that the following

diagram of morphisms of scwols commutes :

y—sy

\N g
y/l.
Let @ € ). Then a = I'e with @ € X'. We identify I(a) € Y’ with the orbit w1 (G'(Y’), T')([1], l(a)) =
m(G'(V'), T')([ui(o)); {(e))- Then
f(U(a)) = I'Ly 1 ([ui(ey)s U(@)) = Thyya = T'a = I'(e)
proving the claim.

We next choose elements ko, € IV such that, for each o’ € V())'),

kor Ly ([1],0") = f(o").
We claim that L3 1. ([1],1(d0)) = f(I(00)). Now

Ly (f{l{00))) = L7 o Lz (fU{00))) = L3 1+ ([1], 00) = ([1], {(00))

since hi(f(i(00))) = 1 and u,, = 1, which proves the claim. Hence we may, and do, choose k;; = 1.
The elements k,+ then induce a morphism ¢ : G'()’) — G”(Y”) over f, given by ¢,(g') =

ko' Ap(g')k;! for ¢’ € G',, and $(a’) = kt(a/)Ag(a"")ki‘(;,)hf_(la,) for a’ € E()'). Since A, and f

are isomorphisms, ¢ is an isomorphism of complexes of groups. Moreover, the following diagram

commutes up to a homotopy from Ayf, to ¢Y®, given by the elements {k,+} :
o
G'(YV)——=m(GY)T)
¢ Ap

"
$

G (yu) I
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Hence, by Proposition 4.2.20, there is a Ap-equivariant isomorphism of scwols
LQ : D(yl’ LT’) - D(y”a d’,ll)
given explicitly by
(g1, &) = ([Anlg ek £(@))

We now choose a maximal subtree T of )" and compose L, with the isomorphism Lz, :

D(Y",¢!) — D(Y",T") to obtain an isomorphism of scwols
L:DQ) vr) — DY, 1)
which is equivariant with respect to the composition of group isomorphisms
Azh oAy : m(G'(V'), T') = TV = m(G"(V"), T")
Since k,; =1 and hjor) = 1,

Ly([1), 00) = ([koy), £(90)) = ([s(ap))s f(@0)) = Lz ([1], f(o0))

hence L([1],05) = ([1], f(cf)). We may thus apply the Corollary to the Main Lemma to L. We
now have L = L%-’,,T,, for some morphism X : G'(Y') — G"(Y"). By Proposition 4.3.9, since L is
an isomorphism of scwols which is equivariant with respect to an isomorphism of groups, )\’ is an
isomorphism of complexes of groups.

To complete the proof, it now suffices to show that the following diagram commutes :

A

LTT’
D(vaT)_"—)D(y/,LT')

L=LX,
L“T,X l T! T

DY, vrn)

By definition of L, it suffices to show that
Lyo Ly, = Lyw o Ly 1

Let g € m(G(Y),T) and a € Y. We write u;\(a) for the element of 71(G'()’),T’) with respect to

which L. 1 is defined, and similarly for Uj(oy € T(G"(Y"),T"). Then

Lyo Lr(lgh @) = ([Ae { A (9)ue) } Kihay ] - £ (1))
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and
Lrwo L ru(lg), ) = ([AT" {AT,T" (g)Uf(a)} hi(l’(a))] J'(a))

Since f ol =10, it suffices to show that

Ay {AT,T/(Q)UE\((,)} kittay f (@) = Agw {AT T”(g)uz(a)} hig@pl' (@) (4.6)
By definition of the elements k,-, the left-hand side of (4.6) equals
Mg { Az (gudy } L (1), (o)
=Ly (AT,T’ (9)uiay - ([1, l(a))) since Ly 7, is Ap-equivariant
= L3 (Azz(9) - ([l Ue))
= LK‘IT: (A, (9) - L%‘,T’([l]? @)
= L3 o Ly(lg),e) since L} 1 is Arqv-equivariant

= iaT([g], «) by definition of Ly 7
On the right-hand side of (4.6), we have, by definition of Ly,

Ags { Az (9)ulgy } Lo (11, (@)
= Lyv (Ao (g)uliyy - (11,0/(@))  since L is Aru-equivariant
= Lpv (Arze(9) - (i) V(@)
= Lo (A (9) - Ly (1), )

= Lrw o L 1u([g], @) since L. v is Ar,rw-equivariant

But by the Main Lemma applied to u, we have a commuting square

Loy

DY, vr) — D", 1)
| |
XX
hence equation (4.6) holds. O

4.5 Counting overlattices

We now apply Theorem 4.1.3 to obtain estimates for the number of overlattices of a given lattice

I'. We first establish a bijection between n-sheeted coverings and overlattices of index n.
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Corollary 4.5.1. Let K be a simply connected, locally finite polyhedral complez, and let T be a
cocompact lattice in Aut(K) (acting without inversions) which induces a complezx of groups G(J).
Then there is a bijection between the set of overlattices of I' of index n (acting without inversions)

and the set of isomorphism classes of n-sheeted coverings of faithful developable complezes of groups

by G(Y).

Proof. By the definition of n-sheeted covering, the bijection of Theorem 4.1.3 sends an isomorphism
class of finite-sheeted coverings to an overgroup containing I' with finite index.

Since I' is cocompact, the quotient scwol Y is finite and the local groups G, of G(Y) are finite
groups. Let A : G(Y) — G'()) be a finite-sheeted covering, where G'()’) is a faithful, developable
complex of groups. Then ) is finite by Lemma 4.3.15, and the local groups G/, are finite since A is
finite-sheeted. It follows that the overgroup b(}) is a cocompact lattice acting without inversions on
K.

It remains to show that the bijection a sends an overlattice I'V of index n to an n'-sheeted covering,
with n = n'. Let A = g(I) : G() — G'()') be a covering associated to I, over the morphism of
quotient scwols [ : [\X — I'"\X. Then

> 6
VOIT\V (X))  oevy)

n= [FI . F] = —
Vol(I"\\V (X)) > 1

a'eV(y') Cor

B DR
— a'eV(Y’) o€l=1(a’) 7 _ '€V (Y’) Gd/ .,

- 1 = — =

a'eV(Y') Cor a’eV(Y’) Cor
as required. _

4.5.1 Upper bound

Let K be a simply connected, locally finite polyhedral complex. In this section, we establish an
upper bound on the number of overlattices of a cocompact lattice in Aut(K), using deep results of
finite group theory.

Suppose G is a group of order n. Let n = Hf=1 pf" be the prime decomposition of n and let
p(n) = max{k;}. We denote by d(G) the minimum cardinality of a generating set for G, and by f(n)
the number of isomorphism classes of groups of order n. By results of Lucchini [Luc], Guralnick [Gur]
and Sims [Si],

d(G) < p(n) +1
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and by work of Pyber [P] and Sims [Si], we obtain

fn) < A k() +36%3(n)+75u(n)+16

Let g(n) = Zu(n)? + 14%3(n) + 75u(n) + 16, so that f(n) < nd(™).

Theorem 4.5.2. Let T’ be a cocompact lattice acting on X, where X is the scwol associated to a
simply-connected, locally finite polyhedral complex. Then there are some positive constants Cp and

C1, depending only on T, such that
Vn>1, up(n) < (Con)Ci'og’™

Proof. Fix a quotient complex of groups G())¢, for the action of I on X. By Lemma 4.3.15, since Y
is finite there exist only finitely many scwols )’ such that a covering may be defined over a morphism
Y — Y'. Thus it is enough to show the upper bound for the number of overlattices with a fixed
quotient scwol. We count the n-sheeted coverings of complexes of groups A : G(Y) — G'(Y') =
(GL/,%ar, gar pr) over morphisms [ : Y — )’, where )’ is fixed. Note that we do not insist on the
complex of groups G’()’) being faithful or developable.

For o € V(Y), let ¢, = |Gs|, and for ¢’ € V(') let

-1
Co! = Z C;l
oel=1(o’)

By definition of an n-sheeted covering, the cardinality |G.,| is equal to nc,.

There are at most Ha,ev(y,)(ca:n)g(cv’") isomorphism classes of groups G/,. There are at most
]_[a,eE(y,)(ct(a/)n)”(cz‘(a’)")'” monomorphisms Yq' : G,y — Gy(,ry @nd at most [, ¢y (y) (cyo)m)Hiea)+1
injections A, : G5 — G{(U). There are |G:‘.(l(a))| = ncy(i(a)) choices for each A(a).

Let M = agl‘?,é}) max{cy, (o)} and p = p(Mn). Let co = |[V(Y)| > |[V(Y')| and ¢; = |E(V)| >
|E(Y")|. The number ur(n) is at most the product of the number of isomorphism classes of groups
G’,, the number of monomorphisms v+, the number of twisting elements g, ¢v, the number of local

maps g, and the number of elements A(a). Combining all the estimates above, we get the following

upper bound for ur(n) :
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ORI | INCOG N | I CTLY et | (I (e

a'eV(Y') ao'€E(Y’) a'€E(Y')
II oy I mewuay
ceV(Y) a€E(Y)
< H (Mn)g(Mn) H (Mn)u(Mn)+l+l H (Mn)u(MH1 H nM
a’eV(Y') a’€E(Y’) aeV(y) a€E(Y)

S(M,n)cog(Mn)+c1(M(Mn)+2)+co(,u(M)+l)+c1 < (M’n)cl"2 < (Con)ci(bg n)?

where C1 = ¢0(2/27+1/2+ 75+ ¢co + ¢1 + 16 + 3¢o + ¢1) and C] = C1/log 2. a
4.5.2 Lower bound for right-angled buildings

In this section we establish a lower bound on the number of overlattices, for certain right-angled
hyperbolic buildings. See Theorem 4.5.4 below for a precise statement.

We first define right-angled hyperbolic buildings. Let P be a compact convex polyhedron in H",
with all dihedral angles 7, and let (W, I) be the right-angled Coxeter group generated by reflections
in the (n—1)-dimensional faces of P. Each face of P then has the type of a unique subset J C I such
that W, the subgroup of W generated by j € J, is finite. In particular, each (n — 1)-dimensional
face of P has the type of a unique ¢ € I, and so we will refer to the corresponding (n— 1)-dimensional
face of P as an i-face.

A hyperbolic building of type (W, I) is a polyhedral complex X equipped with a maximal family of
subcomplexes, called apartments. Each apartment is polyhedrally isometric to the tesselation of H™
by the images of P under W, and these images are called chambers. The apartments and chambers
of X satisfy the usual axioms for Bruhat-Tits buildings :

— each chamber is contained in an apartment ; and

— for each pair of apartments A and A’, there exists a polyhedral isometry from A onto A’ which

fixes AN A’

For i € I, an {i}-residue of X is the connected subcomplex consisting of all chambers which
meet in a given i-face of X.

An example of a right-angled hyperbolic building is Bourdon’s 2-dimensional building I,, 4 (see [Bo2]).
Here, P is a regular right-angled hyperbolic p-gon and each {i}-residue consists of q copies of P,

glued together along a common edge. Right-angled buildings exist only in dimensions 2, 3 and 4
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(see [PV]).
The following result classifies right-angled hyperbolic buildings.

Proposition 4.5.3 (Proposition 1.2, [HP]). Let (W, I) be a right-angled Cozeter system and {¢;} a

family of positive integers (q; > 2). Then, up to isometry, there exists a unique building X of type
(W, I), such that for each i € I, the {i}-residue of X has cardinality g;.

In the 2-dimensional case, this result is due to Bourdon [Bo2]. According to [HP], Proposition 4.5.3
was proved by M. Globus, and known also to M. Davis, T. Januszkiewicz and J. Swiatkowski.

Let T = Ty, be the 2p-regular tree, where p is prime. In [L1], Lim constructed many non-
isomorphic coverings of faithful graphs of groups with universal cover T, of the form shown in

Figure 4.1.

O —= o
2/pzd Y1} — ¢ )H
b

F1G. 4.1 — Coverings of graphs of groups

If T is the cocompact lattice in Aut(T") associated to the left-hand graph of groups, this yields the
lower bound up(n) > n3*=3), for n = p* and k > 3.

We now explain how to use these constructions to prove the following :
Theorem 4.5.4. Let X be a right-angled hyperbolic building of type (W, I), with chambers P and
parameters {g;}. Assume that for some i1,i2 € I, 11 # ia,

1. ¢;, = qi, = 2p where p is prime; and

2. the i1- and iz-faces of P are non-adjacent (equivalently, m;, ;, = oo in the Cozeter system

associated to X ).

Then there is a cocompact lattice T, acting without inversions on X, such that forn = p*, and k > 3,

ur(n) > n¥ 1

Proof. First, we take the “double cover” of the graphs of groups in Figure 1 above to obtain coverings

of faithful graphs of groups with universal cover T, of the form
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{1} VH ~
— — > A=G G
Ay =Z/pZ <{1}>Z/pZ a@al

FiG. 4.2 — “Double covers” of Figure 4.1

We now carry out a special case of the Functor Theorem, [T3]. Let A be the graph with two
edges underlying the graphs of groups in Figure 2. Let P and P’ be two copies of P. Glue the i;-face
of P to the i;-face of P’ in a type-preserving manner, and similarly with the ip-faces, and let the
resulting polyhedral complex be Y. If ) is the scwol associated to Y, then each edge and each vertex
of A may be identified to a vertex of }. Also, each face of P and P’ may be identified to a vertex
of ), so that the vertices of ) now have types J with W} finite.

Let Ap and A be as in Figure 2. Then A induces a complex of groups G()’) over ), as follows
(the construction for Ag is similar). First fix the local groups induced by the identification of A with
some of the vertices of ). Each map from edge to vertex groups in A then induces a monomorphism
1), along an edge a of Y. For each i € I, let G; be a group of order g;.

Let J be a subset of I such that W is finite. If J does not contain i; or 45, then the local group

at the vertices of ) of type J is
H x H Gj
j€J
The monomorphisms between such local groups are natural inclusions. Now consider J containing
one of ¢y and iy (since m;, ;, = 0o, J cannot contain both i; and i3). Without loss of generality
suppose J contains ;. Then the face of type J in Y is contained in the glued ¢;-face, and the local

group at the vertex of ) of type J is

G x H GJ'
jeJ
J#i
The monomorphism from G to this local group is inclusion onto the first factor. For each J' C J

with ¢; € J, the monomorphism

Gx[[Gi-Gx]]6G;
jeJ’ jE€J
Jj#i J#Fi
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is the natural inclusion. For each J’ C J with i; € J, the monomorphism

H x H Gj — G x H G;j
e b
is a monomorphism H — G from the graph of groups A on the first factor, and natural inclusions
on the other factors. Put all g5, = 1 and we have a complex of groups G(J).

Let G())o be the complex of groups induced in this way by Aq. It is not hard to verify that
G(Y)o has nonpositive curvature and is thus developable, and that its universal cover is the scwol
associated to the hyperbolic building X. Also, every covering as in Figure 2 induces a covering of
the associated complexes of groups G())o — G(Y). By Lemma 4.3.14, since G(Y)o has nonpositive
curvature, each G()) is developable. The arguments used to show faithfulness of the graphs of groups,
together with Proposition 4.3.8, imply that each G()) is faithful. Moreover, by Lim’s construction,

non-isomorphic coverings of the form in Figure 2 induce non-isomorphic coverings G(Y)o — G(J).

By Theorem 4.1.3, this completes the proof. a
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