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Chapitre 1

Introduction

I. Soit (M, g) une variete riemannienne compacte sans bord a courbure negative ou nulle. L’en- 

tropie volumique hvoi(g) de (M, <7) est definie par la formule

hvoi{g)= lim-log(voZ(B(z,r))),
r—+oo r

oil B(x,r) designe la boule de rayon r centree en un point x du revetement universel M  de M.

Conjecture (Gromov). Les metriques localement symetriques sur une variete a courbure negative 

ou nulle de dimension au moins 3 sont caracterisees, parmi toutes les metriques riemanniennes, par 

leur volume volg(M) et leur entropie volumique hvoi(g).

Cette conjecture a ete demontree pour les varietes a courbure strictement negative par Besson, 

Courtois et Gallot dans leur travail seminal [BCG]. Leur methode permet en outre de donner une 

demonstration totalement nouvelle du theoreme de rigidite forte de Mostow pour les varietes locale­

ment symetriques de rang un. Une demonstration avait ete precedement donnee par Katok [Ka] dans 

le cas special des metriques dans la classe conforme d’une metrique hyperbolique sur une surface 

compacte orient able.

Theoreme (Besson-Courtois-Gallot). Si X  est de dimension > 3  et possede une metrique lo­

calement symetrique go de rang un, alors pour toute metrique riemannienne g verifiant vol(X,g) = 

vol(X,go) on a

hvoiig) — hvoi(go) 

avec egalite si et seulement si g est isometrique a <70 ·

1
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La conjecture de Gromov est encore ouverte pour les metriques localement symetriques de rang 

superieur. Connell et Farb Pont demontree dans le cas special d’un produit d’espaces symetriques 

de rang un [CF].

Soit X  un graphe fini connexe dont nous notons VX et E X  Pensemble des sommets et des aretes 

orientees respectivement. Pour une distance de longueur d sur X , determinee par les longueurs des 

aretes {l(e)}e£EX € nous posons vold{X) = \ Yle€ExKe)i Que nous appelons le volume

total de (X, d). A un tel graphe metrique, on associe son entropie volumique, definie par

hvoi(d) = lim - \og(vol(B(x,r))),
r—+ oo T

ou le volume designe la somme des longueurs des aretes (ou de la partie des aretes) contenues dans 

la boule B(x, r) C X  du revetement universel X  de X  muni de la distance relevee de d, oil x est un 

point fixe de X .

Theoreme 1 .0.1 (Theorem 2.2.1). Soit X  un graphe fini connexe quelconque, dont tous les sommets 

x e V X  sont de valence kx + 1 au moins egale a 3. II existe une unique distance de longueur d sur 

X  telle que νοΙ^(Χ) = qui minimise Ventropie volumique hvoi(d). L ’entropie volumique minimale 

est donnee par la formule

hmin — λ ^  v fox + 1) log kx,
x £VX

et la distance de longueur minimisant cette entropie volumique est determinee par ses longueurs 

dJ aretes

lo gfoi(e)kt(e))
Ve € EX, £(e) =

Σ3 fox i) kx
xevx

Remarquons que nous donnons une formule close a la fois pour l’entropie volumique minimale et 

pour la metrique realisant ce minimum. Cette derniere est completement determinee localement, i.e. 

la longueur de chaque arete depend uniquement de la valence des sommets qu’elle relie. Notons aussi 

la similitude avec la metrique combinatoire de Bourdon sur le graphe dual d’un immeuble fuchsien 

X  a angles droit, qui atteint la dimension conforme de Pansu, i.e. qui minimise la dimension de 

Hausdorff de la frontiere par rapport aux metriques dans la classe quasi-conforme de dX ([Bo2]).

Les graphes reguliers peuvent etre consideres comme analogues aux varietes riemanniennes possedant 

une metrique localement symetrique. Dans ce cas special, le resultat ci-dessus a aussi ete demontre 

independamment par Kapovich et Smirnova-Nagnibeda ([KN]) par une methode differente (a l’aide
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de chemins aleatoires). Le meme resultat dans ce cas special etait aussi mentionne implicitement 

sous une forme analogue, mais non equivalente, dans un prepublication de Rivin ([Riv]). Enfin, 

sous l’hypothese supplemental que le graphe X  admette un groupe d’automorphismes hautement 

transitif, ce resultat apparait precedement dans Robert [Rob]. A l’aide du theoreme ci-dessus, on 

peut deduire :

Corollaire 1 .0.2 (Corollaire 2.2.3, Theorem B dans [KN]). Considerons I ’ensemble des graphes 

metriques finis, sans sommets de valence 1 ou 2, et dont le groupe fondamental est un groupe libre 

de rang r > 2 fixe. Alors parmi toutes les distances de longueur de volume total un, Ventropie 

volumique est minimisee pour tout graphe trivalent equipe de la metrique donnant a chaque arete la 

meme longueur.

II est possible de generaliser encore le theoreme 2 .2.1 au cadre des graphes finis de groupes finis 

(X, G#). Dans ce cas, le degre kx+ 1 de chaque sommet x est defini par kx+l = Y^e £ E X , i(e) =

(i.e., la valence d’un relevement x de x dans l’arbre de Bass-Serre X  de (X, G.)), et la notion cor- 

respondante de volume total de (X, G .,d) est donnee par vold{X, G .) = \ Notons que cette

definition coincide, a un facteur pres, avec la notion usuelle de volume total d’un graphe de groupes 

dans le cas d’un graphe regulier.

Theoreme 1.0.3 ([L2]). Soit (X , G.) un graphe fini de groupes finis dont le degre kx + 1 de chaque 

sommet x est au moins 3 . Parmi toutes les distances de longueur sur X  de volume total un dans 

(X yG.), il en existe une unique minimisant Ventropie volumique. Pour cette metrique, la longueur 

de chaque arete est proportionnelle a log(ki^kt^ )  et Ventropie minimale est

U / V r* \ _  1 (kx + l)\ogkx — y . .
x€VX  '

Enfin, nous montrons, a l’aide du theoreme ci-dessus, que pour un revetement a n feuillets de 

graphes de groupes φ : (Y, Hm) —► (X , G ,), on a

hvoi i H* > d)vol{Y) > d̂  ^  τι hyoi (X , G*, do^vol(X , G#, cio)?

avec egalite si et seulement si la metrique d sur (y, H9) realise le minimum de l’entropie volumique 

(parmi les metriques de meme volume total), et si l’application φ est un revetement metrique de 

(Y,H .,d) sur (X, Gm,\do) pour un Λ > 0. Ce resultat peut etre vu comme l’analogue precis du 

theoreme principal de [BCG] dans le cas des graphes.
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La preuve de Besson, Courtois et Gallot utilise de maniere essentielle la mesure de Patterson-Sullivan 

et l’application barycentre. L’inegalite voulue decoule alors du calcul precis du jacobien d’une certaine 

fonctionnelle et de ses derivees secondes.

Les mesures de Patterson-Sullivan pour les arbres ont ete introduites par Coornaert et Lyons 

([C], [Ly]). Etant donne qu’il ne semble pas exister d’analogue utile de la derivee seconde pour une 

fonction definie sur un arbre, notre strategie pour demontrer le theoreme 1.0.5 est de n’utiliser que 

cette mesure de Patterson-Sullivan. Si X  —> X  est un revetement universel du graphe X , si e € E X  

est une arete de sommet inital ix, notons Cylx(e) l’ensemble des rayons geodesiques d’arete initial 

e. Notons qu’une densite h-conforme sur dX  est uniquement determinee par les Hx(Cylx(e)) pour 

e € EX , oil e est n’importe quel releve de e, et x = i(e). Soit A la matrice d’adjacence des aretes 

du graphe X , et posons xe = ^x(Cyl%(e)). Nous montrons que les nombres positifs (xe)e£EX sont 

solutions du systeme d’equations

xe = ^ 2  e~hl ê>)xef.
e' £EX,Aee, =  1

Notons que Tequation est obtenue dans le chapitre 3, sans la relation explicite entre les xe’s et la 

mesure de Patterson-Sullivan (voir [KN] pour cette interpretation). Voici une autre maniere d’in- 

terpreter la methode de demonstration du theoreme 2.2.1. La matrice d’adjacence des aretes de X  

code le flot geodesique du graphe combinatoire X . Lorsqu’on fait varier la metrique sur X , la matrice 

A code 1’application de premier retour sur l’ensemble des sommets. Etant donne que, comme nous 

le montrons dans la proposition 2.4.3, l’entropie volumique est egale a l’entropie topologique du flot 

geodesique, nous sommes amenes a etudier le flot de suspension de l’application de premier retour.

Remarque. L’avantage de ce point de vue est qu’il permet d’entrevoir une generalisation de cette 

methode aux immeubles hyperboliques de dimension superieure. Par example, notons ΙΡΆ l’immeuble 

hyperbolique a angles droits de Bourdon. Soit X  le graphe dual du 1-squelette de ΙνΆ. Fixons aussi 

un quotient compact Y = T\X de X , et considerons toutes les metriques obtenues en variant les 

longueurs des aretes de Y. Chaque appartement de Ip q̂ est une copie de H2 pavee par des p-gones a 

angles droits. On peut, pour simplifier les choses, prendre comme quotient Y une 2-cellule Co fixee.

On peut alors formuler la question ouverte dans ce cadre : trouver l’entropie volumique minimale 

dans l’ensemble des metriques sur Y obtenue en faisant varier Co tout en maintenant fixe la somme 

des longueurs des cotes de Co·
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Le codage du flot geodesique sur certaines surfaces compactes a ete considere par C. Series [S], en 

utilisant les geodesiques qui prolongent les cotes d’un domaine fondamental. Nous savons montrer 

que le flot geodesique sur ΙνΆ est un systeme sofique en nous fondant sur le fait que, sous certaines 

hypotheses, il n’y a qu’un nombre fini de composantes connexes de la frontiere de H2 delimitees 

par les sommets des murs des arbres contenant les aretes de Co. Cette question n’est pas contenue 

dans cette these, mais nous esperons obtenir prochainement des resultats qui generalisent ceux du 

theoreme 3.2.1.

II . On appelle reseau tout sous-groupe discret Γ d’un groupe localement compact G qui admet un 

domaine fondamental de mesure finie. Si Γ est un reseau dans G, alors il existe, a une constante 

multiplicative pres, une unique mesure de probability μο G-invariante, la mesure de Haar, sur T\G. 

Si G est un groupe de Lie, alors la mesure μο peut etre representee par une forme de volume lisse 

sur la variete T\G (pour cette raison, on note souvent μο par vol). Un reseau Γ est appele uniforme 

ou cocompact si la variete T\G est compacte. Un surreseau Γ' de Γ (d’indice n) est un reseau dans 

G qui contient Γ (avec indice n). Les reseaux dans les groupes de Lie ont fait l’objet d’une etude 

intensive depuis plus d’un siecle, et cette theorie est maintenant devenue un domaine classique des 

mathematiques (voir, par exemple, [Ra], [Mar]). Parmi les proprietes importantes des reseaux dans 

les groupes de Lie semisimples, citons l’existence d’un covolume minimal pour les reseaux :

Theoreme (Kazhdan-Margulis). Pour tout groupe de Lie semisimple G sans facteur compact, il 

existe une constante e > 0 telle que, pour tout reseau Γ C G, on ait vol(G/T) > e.

Les groupes des automorphismes des arbres et des immeubles semblent partager beaucoup des 

proprietes des groupes de Lie semisimples, et un programme a ete ebauche dans le but de comparer 

ces deux classes de groupes (voir, par exemple, [BL] et les references qui s’y trouvent). II est connu 

([BK]), neanmoins, que le theoreme ci-dessus est faux dans le cas d’un groupe d’automorphisme d’un 

immeuble, ce qui amene naturellement a se poser la question de la vitesse de croissance du nombre 

de reseaux de petit covolume.

Bass et Kulkarni [BK] ont construit des exemples de tours de reseaux {Γι C Γ2 C · · ·} dans 

le groupe G des automorphismes d’un arbre localement fini, sans sommet terminal, et tels que 

lim vol(G/Ti) = 0 (rappelons qu’un arbre sans sommet terminal est un immeuble de dimension
£—►00

un). Bass a de plus montre que pour un reseau uniforme Γ fixe, il n’existe qu’un nombre fini ur{n) de 

surreseaux d’indice n de Γ dans G. Ceci amene naturellement a se poser la question du comportement
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asymptotique de ur(n). Ce probleme, souleve par Lubotsky dans [BL], peut etre considere comme 

le probleme de croissance des “surreseaux”, un pendant a la theorie importante de la croissance des 

sous-groupes ([Lub], [LS]).

Dans le chapitre 2, nous apportons une reponse a cette question : nous obtenons une majorat ion 

globale pour ur(n), valable pour un reseau quelconque Γ dans un arbre localement fini quelconque, 

et nous donnons aussi une minoration de ur{n) pour un certain type de reseaux dans les arbres 

reguliers.

Theoreme 1.0.4 ([LI]). Pour tout reseau Γ dans le groupe des automorphismes d’un arbre locale­

ment fini, il existe des constantes positives c et e telles que

Vn £ N — {0}, ur(n) < cnel°9 71.

Pour certains reseaux Γ, nous construisons explicitement des tours de reseaux dont les stabilisa- 

teurs des sommets et des aretes sont des p-groupes, et nous en deduisons une borne inferieure pour 

ur(n).

Theoreme 1.0.5 ([LI]). Soit p un nombre premier. Si Γ est un reseau sans inversions dyaretes 

dans un arbre 2p-regulier dont le graphe de groupes quotient est isomorphe a une boucle done le 

groupe de sommet est un groupe cyclique d’ordre p, et le groupe d’arete est trivial, alors pour tout 

N , il existe n >  N  tel que

u r ( n )> n * logPn-4.

Le chapitre 2 s’appuie principalement sur la theorie de Bass-Serre des graphes de groupes ([Ba], 

[Se]). Nous definissons une notion correcte d’isomorphisme de revetements de graphes de groupes, 

et nous etablissons une bijection naturelle entre l’ensemble des surreseaux d’un reseau Γ donne, et 

1’ensemble des classes d’isomorphismes de revetements du graphe de groupes Τ//Γ correspondant. 

Nous utilisons certains resultats profonds de la theorie des groupes finis dus a Pyber [P] sur le 

nombre de classes d’isomorphismes de groupes d’un ordre donne, ainsi que sur le nombre minimal 

de generateurs d’un tel groupe [Luc], [Gur], et nous en deduisons une borne superieure pour ur(n).

Pour obtenir une borne inferieure dans le cas decrit plus-haut, nous classifions tous les revetements 

fideles de graphes de groupes dont le graphe quotient est une boucle d’indices (p,p), et dont les 

groupes de sommet et d’arete sont tous des p-groupes, par le graphe de groupes isomorphe a une 

boucle done le groupe de sommet est un groupe cyclique d’ordre p, et le groupe d’arete est trivial.
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Nous decrivons ensuite precisement la structure de ces groupes de sommet et d’arete, ainsi que celle 

des morphismes locaux definissant le revetement.

Notons que ces resultats sont, a ce jour, les seuls connus decrivant le comportement asymptotique du 

nombre de surreseaux, en dehors du cas extreme traite par Goldschmitt en 1980 [Go] (classification 

des (3 — 3) amalgames (rappelons qu’un (3,3)-amalgame est un graphe de groupes dont le graphe 

muni des indices des groupes d’aretes dans les groupes de sommets est reduit a une arete avec les 

deux indices des deux aretes (opposes, done) egaux a 3), qui entraine que ur{n) = 0 pour n grand 

pour certains reseaux dans un arbre 3-regulier).

La theorie des graphes de groupes de Bass-Serre a ete generalisee a une theorie des complexes de 

groupes par Haefliger ([HI], [BH]), dans l’optique de coder les actions de groupes sur des complexes 

polyhedraux. Cette theorie est developpee dans le cadre des petites categories sans boucles (“scwol”) 

dont remplacent l’espace sous-jacent. A chaque action d’un groupe G sur un scwol χ est associe un 

complexe de groupes G (y) sur le scwol quotient y  = G\X.

Prenons pour χ un scwol simplement connexe, par exemple obtenu par subdivision barycentrique 

d’un immeuble hyperbolique ou euclidien. Soit Γ un reseau dans Aut(\), et notons encore ur(n) le 

nombre de surreseaux de Γ dans Aut(\) d’indice n.

Dans le chapitre 4, nous etudions le comportement asymptotique de ur(n). II y a plusieurs 

difficultes a surmonter : tout d’abord, la theorie de Haefliger restreinte aux scwol de dimension 

un n’est pas equivalente a la theorie de Bass-Serre (ceci repond a une question posee dans [BH]); 

ensuite, tous les complexes de groupes ne proviennent pas de Taction d’un groupe sur un scwol. On 

dit d’un complexe de groupes pouvant s’obtenir de cette maniere qu’il est developpable.

Soit Γ un reseau uniforme du groupe des automorphisms d’un scwol simplement connexe localement 

fini, nous introduisons d’abord la notion de fidelite d’un complexe de groupes, analogue a celle de 

graphe de groupes donnee par Bass, dans la Section 4.3.3. Nous etablissons une correspondance 

bijective entre Pensemble des surreseaux de Γ d’indice n et l’ensemble des classes d’isomorphisme 

de revetements a n feuillets d’un complexe de groupes developpable, par Γ\\Λ\ Notons que cette 

correspondance est valable dans un cadre tres general, plus large que celui des immeubles.

Theoreme 1.0.6 (Theoreme 4.1.4). Pour tout reseau uniforme Γ dans le groupe des automor- 

phismes d’un scwol X  simplement connexe et localement fini, il existe deux constantes positives e et
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c telles que

Vn E N, ur(n) < cnelog2n.

Dans le cas d’un reseau Γ d’un immeuble hyperbolique dont le scwol associe est note A', nous 

demontrons que la propriete d’etre developpable pour un complexe de groupes revetu par A, est une 

consequence de la courbure negative de l’immeuble, et nous avons egalement une borne inferieure 

pour ur(n), deduite de celle construite pour le cas des arbres dans [LI] pour certains Γ.

Nous fixons un complexe de groupe quotient G(y) d’un immeuble hyperbolique n’ayant qu’une 

cellule de dimension 2, dont le stabilisateur de la cellule de dimension 2 est trivial, et dont le scwol 

indexe sous-jacent est comme ci-dessus. Nous fixons egalement un graphe de groupes G(X) dont le 

graphe indexe sous-jacent est une boucle d’indices (p,p).

■ £ >

Pour tout revetement de graphes de groupes G{X) —> H(X) nous construisons de maniere 

fonctorielle, par une methode inspiree de [Th], un plongement fidele de H(X) dans un complexe de 

groupes H(y), lui-meme revetement de G(y).

Theoreme 1.0.7 (Theorem 4.1.5, [LT]). Pour tout reseau Γ (a stabilisateur de face trivial) dans le 

groupe des automorphismes dJun immeuble hyperbolique de Bourdon a angle droit, dont le complexe 

de groupes quotient a un scwol indexe sous-jacent comme ci-dessus, il existe ci,c2 > 0 tels que, pour 

tout N > 0, il existe η > N verifiant

ur {n) > c\nC2log n.

Les immeubles hyperboliques ont fait l’objet de nombreuses recherches de la part de Tits, Bour­

don, Cartwright, Gaboriau, Haglund, Paulin, et autres. On trouve des exemples en dimension deux 

dans les travaux de Bourdon ([Bo], [Bo2]), et en dimension trois dans ceux de Haglund et Paulin

zP
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[HP]. Nous avons l’intention d’etudier le comportement asymptotique de ur{n) pour ces exemples 

d’immeubles hyperboliques.

Ce memoire est organise comme suit. Le chapitre 2 porte sur l’entropie volumique minimale pour 

les graphes, qui est partiellement tire de notre article [L2], avec deux sections supplementaires a la 

fin (Section 2.4. et 2.5) decrivant quelques autres caracterisations de Pentropie volumique pour les 

graphes. Dans le chapitre 3, nous traitons du probleme du comptage des surreseaux dans les groupes 

d’automorphismes d’arbres localement finis. Cette partie est plus ou moins la version “mise a jour” 

de notre premier article ([LI]). Dans le chapitre 4, nous traitons des probleme de comptage des 

surreseaux, cette fois dans les groupes d’automorphismes de scwols localement finis et simplement 

connexes. Nous donnons une borne superieure universelle pour le cas general, ainsi qu’une borne 

inferieure pour certains groupes agissant sur certains immeubles hyperboliques. Meme si le resultat 

concernant la borne superieure du chapitre 4 implique le resultat analogue du chapitre 2, les notions 

de revetement de graphes de groupes et de revetement de complexes de groupes sont differentes, et 

done les deux preuves du theoreme central, etablissant la correspondance bijective entre l’ensemble 

des surreseaux d’une part et l’ensemble des classes d’isomorphismes de revetements de l’autre, sont 

differentes. Cette difference subtile est expliquee dans la derniere section du chapitre 4. Les resultats 

de ce dernier chapitre sont le fruit d’une recherche en commun avec Anne Thomas [LT].



Chapitre 2

Volume entropy for graphs

2.1 Volume entropy and path growth

Let us consider a nonempty connected unoriented finite graph X  without any terminal vertex. 

We will denote the set of vertices by VX and the set of oriented edges of X  by EX. We denote again 

by X  the geometric realization of X . For every edge e, let us denote by i{e) and t(e) the initial and 

the terminal vertex of e, respectively. We define a length distance d on X  by assigning a positive real 

number £(e) = £(e) for each unoriented edge {e,e} of X , and by letting d = de : X  x X  —» [0 , oo[ 

be the maximal distance which makes each half-edge of an edge e containing a vertex, isometric to 

[0, ^φ·]· For a length distance g ,̂ let Zmax = max £(e) and lmm = min £(e). Define the volume of
e€EX e£EX

X by

Vol(X,d) =  i  £  t{e),
e£EX

i.e., the sum of the lengths of the unoriented edges. We denote by Δ (Χ ) the set of all length distances 

d = de on X  normalized so that Vol(X, d) = 1.

For a fixed length distance d, let us consider a universal covering tree X  —» X  equipped with the 

lifted distance d of d. For any connected subset S of X , let us denote by £(S) the sum of the lengths 

of (the maximal pieces of) the edges in S. We define the volume entropy hvo\(d) = hvo\(X,d) as

hvo\(d) = limsup - \og£(B(x0,r)),
r—>oo V

where B(xo, r) = Bd(xo, r) is the ball of radius r with center a fixed vertex xo in (X, d). The entropy 

hvo\{d) does not depend on the base point Xq, and we may sum either on the oriented or on the 

non-oriented edges. Note also the homogeneity property

v̂ol {β>αί) = “ ^vol(^)> (2*1)

10
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for every a > 0. Remark that hvo\(X, d)vo\(X, d) is invariant under dilations, therefore to minimize 

the entropy with constant volume, it suffices to consider the length metrics of volume 1.

If π\Χ is not cyclic, or equivalently (as X  has no terminal vertices) if X  is not reduced to one 

cycle, then hvo\ = hvo\(d) is strictly positive, which we will assume from now on (see for instance 

[Bo]). It was shown by Roblin ([Robl]) that the upper limit above is in fact a limit. This implies 

that as r —> oo,

t(B(x0,r)) = βΛ™1<-)Γ+ο(Γ>.

By a metric path of length r in X , we mean the image of a local isometry /  : [0,r] —» X. Note 

that the endpoint of a metric path is not necessarily a vertex. By a combinatorial n-path of length 

r in X , we mean a path p = eχβ2 · · · en of consecutive edges in X  without backtracking such that 

Σ^=ι £(ej) < r ^  Σ"=ι ^(ej)· A combinatorial path is a combinatorial n-path for some n in N.

Lemma 2.1.1. Let Nr(xo) be the cardinality of the set of combinatorial paths of length r in X  

starting at xq G VX. Then the number Nr(x0) satisfies

iimsopΜ ϊ ί ΐ  = Iim ! £ i i w  =
r—>oo T r-+ oo r

Proof It follows directly from £(B(xo,r)) = ê hvoi+° ^ r that for any I > 0,

lim=uplog^ g ^ 0,r  ̂~ B (x° 'r ~ 1)) = iim lose(B (xo,r)-B(xo,r- l)) = ^
1—>oo r r-> oo r vo ’

Now let iV'(x0) be the cardinality of the set of metric paths of length r starting at xo· As X  has no 

terminal vertices, for any e > 0 ,

eN'r_e{xo) < i(B(x0,r) - B(x0lr - e)) < eN^(x0).

Therefore

lim logA CW  _  llm lo z K M  _  ^
r-voo T r->oo T

It is clear that we get a combinatorial path of length r by continuing a metric path of length r until it 

meets a vertex. Also, two distinct combinatorial paths of length r cannot be extensions of one metric 

path of length r by the strict inequality in the definition of a combinatorial path. It follows that 

Nr(xo) = A '̂(xo), thus iVr(xo) has the same exponential growth rate as N^(xo), which is hyo\. □

Let A = A(X) be the edge adjacency matrix of X y i.e. a \EX\ x \EX\ matrix such that Aej has 

value 1 if ef is a combinatorial 2-path, i.e. if t(e) = i(f) and e Φ /, and value 0 otherwise. It is
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easy to see that the entry A™j of the matrix An is nonzero if and only if there is a combinatorial 

(n -f l)-path starting with e and ending with /. (Note that the definition of Aef implies that such 

a path does not have backtracking.)

It is easy to show that for any connected graph without any terminal vertex, which is not a 

cycle, the matrix A is irreducible. Recall that a nonnegative matrix M  is irreducible if for every i, j, 

there exists an integer n > 0 such that (An)ij > 0. Let us give a detailed proof for completeness. By 

connectedness, it is sufficient to show that for every edge e E E X , there exists an edge path without 

backtracking from e to e. Since the graph of not a cycle and has no terminal vertex, there are at least 

two cycles C, C' containing e. Let x,y be two vertices which are the end points of CDC'. Let [x,y\c 

and [;x, y\cf be the two disjoint paths in the set C — C' and C' — C. Now the edge path starting at e, 

following C Π C", until say x, then following [sc, y)c until it arrives at y, and then following [x, y]cf 

until it arrives at rr, then following Cf without backtracking, clearly passes through e.

Now consider the matrix A' =  A'(d, ft) defined by A!ê  = Aefe~hi^\ depending on ft and the length 

distance du on X . The matrix A! is clearly irreducible since A is irreducible.

Theorem 2.1.2. Let X  be a connected finite graph without any terminal vertex, which is not a 

cycle, endowed with a length distance d = de- The volume entropy hvo\ is the only positive constant 

h such that the following system of linear equations with unknowns (xe)e£EX has a solution with 

xe > 0 for every e E EX .

= Σ  Aefe-M{f)xf , (2.2)

f e E X

for every e E EX .

Proof By the assumption on the graph, for every h > 0, we can apply Perron-Frobenius theorem 

(see [Gan] for example) to the irreducible nonnegative matrix A1 = (Aefe~hl^ ) ,  which says that the 

spectral radius of the matrix A!(K) is a positive eigenvalue Λ(h), which is simple, with an eigenvector 

(xe = xe{h)) whose entries are all positive. The function Λ : R >0 —> K>o is clearly a continuous 

function of h since the characteristic function of the matrix A! is a polynomial in {e~h t : e € EX}, 

and A(0) > 1 since A(0) is the spectral radius of an irreducible nonzero matrix A'(0) of nonnegative 

integer coefficients. Also, λ (ft) —> 0 as ft -* oo, since the coefficients of Af(h) tends to 0 as ft —► oo. 

By the mean value theorem, there exists an ft satisfying A (ft) =  1.

Now assume that ft > 0 satisfies (2.2) for some positive rre’s. Fix an arbitrary edge e E E X , and 

choose a vertex x q  in a universal cover X  of X  which is an initial vertex of a fixed lift e of e in X.
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Let us fix a positive constant r > £max.

Let Pr(e) be the set of combinatorial paths of length r in X  starting with e. We will denote a 

combinatorial path in X  by p = e\62 - • • en, its terminal edge by t(p) = en and its metric length 

by £(p) = Y17= i For n ^  2, denote by Vn(e) (resp. V ^e))  the set of combinatorial fc-paths of 

length r with k < n  (resp. combinatorial n-paths of m-length strictly less than r) in X  starting with 

e. Remark that Vn(e) fl V ^e)  = 0 and if n is large enough, Vn{e) =  Pr(e) and V!^(e) = 0.

Let us rewrite the equation (2.2)

e -M(e)xe =  X ) e -W(E)**<u>-
p £ V 2(e) U ? '(e )

Let us replace each x t(p) in the above equation by Pt(p)f£~hê X f  whenever t(jp) < r, i.e.
“  f £ E X  ~

when p G V2 (e). The resulting equation is

e~M^ x e =  X e ' W (- ^ ( p ) -

p € V  3( e )u ? '(e )

Repeat this process : at each step, for each p € V'n{e), replace xt(p) on the right hand side of the

previous equation by At^ f e ~ M^ X f ,  to get 
f e E X  ~

e~M<-e)xe = X  e~M® XtW .
p e v n+1(e)uV'n+1(e)

For n large enough, the resulting equation is

(In the case when the lengths of the edges are all equal to 1 and r is a positive integer, we 

continue until we get the equation x =  Ar~1x.) For more formal proof, see Lemma 2.1.4 at the end 

of this section.

Then in the resulting equation, the number of times each Xf appears on the right hand side is 

exactly the number iVr (e, / )  of combinatorial paths of length r in X  with initial edge e and terminal 

edge some lift of /  in X.  Note also that the metric length of such a path is at least r and less than 

""t” ¿max • Thus

X  iVr (e, f)e~h(r+lm**^xf  < eM^ x e < ^  Nr{eJ)e~hrx f .
i & E X  f e E X

I

e— h£(e)
£

pePr(e )

e—h£{p)
x t(p)'

(6¿)
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Now for integers r, by multiplying by ehr ĥ x e 1 and taking the r-th root and the log on each 

part of the equation above, we deduce that

thus

Now since < Nr(xo)e ΗνΣ χί and Nr(xo) has exponential growth rate hyo\ by the Lemma

2.1.1, the right hand side is bounded above by hvo\. As Nr(xo) = Σ  Nr(e,/), where
e j G E X ,  i (e)=K(x0)

π : X  —» X  is the universal covering map, there exist some e and /, depending on r, such that 

Nr(e, f)e~hr > Nr(xo)e~hr. Therefore the left hand side is bounded below by hvo\ as well. □

Remark. Hersonsky and Hubbard showed in [HH] that the Hausdorff dimension of the limit set 

of a Schottky subgroup of the automorphism group of a simplicial tree satisfies similar systems of 

equations.

Supplement for the proof of 2.1.2 Let us recall that X  is a tree without terminal vertex. Let 

U C l  be the closure of the connected component of X  — {o(e)} containing e.

Definition 2.1.3. A good subtree is a connected subtree K  C  U containing e, satisfying the following 

property :

for any edge e € EK , the valency oft{e) in K  either is one, in which case e is called a terminal 

edge, or equals the valency oft(e) in X , in which case e is called a transit edge.

edge

The radius of K  is the maximal number of edges in a path in K going from o(e) to a terminal

vertex.

-  log ( Nr {e, /ie -M im ax+^ e))^  
r  V

i h <  -  log | Vr(e , / ) e - W ( e ) £ /« Λ

lim -  log (
r —*oor \ ‘

Nr ( e , f ) e - h^ x+e(-e'>'>^] < h <  lim -  log
X e ]  Γ - 4 0 0 Γ

Nr {e , f )e ~ M

1 · "  transit, '  
edge
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For a terminal vertex /  of K , let p (f)  be the unique path in K  U {e } going from o(e) to / .  

Lem m a 2.1.4. Let K  be a good subtree, and let T E K  be the set of terminal edges of K . Then

e-W*)X e= £  e~hi^ x < f ) , (*)
f e T E K

where n is the natural projection from X  to X .

Démonstration. We proceed by induction on the radius Rad(K)  of K.  If Rad(i^) =  0, then V K  — 

{¿((e),£(e)} and E K  = {ë }, and the left hand side and the right hand side of the equation (*) are 

identical.

Let n  >  0. Let us assume that (*) is true for any good subtree of radius n. Let K  be of radius 

n +  1. Let TE K < n (T E K n+i) be the set of terminal edges /  of K  such that p(f)  contains at most 

7i edges (respectively n  +  1 edges). Let F E K n be the set of transit edges w for which p(w) contains 

exactly n  edges.

Let K ' C K  be the subtree obtained by deleting all terminal edges in T E K n+i. Then K ' is good 

and T E K ' =  TE K < n ] J F E K n. By induction hypothesis,

e-M(e-) =  e-he(p(f))x ^

feTEK'

Any terminal edge e in T E K n+\ is adjacent to exactly one transit edge in F E K n , and any edge 

in U following a transit edge in F E K n belongs to T E K n+\. Using x j  = ^  Pfge~hi^ x ĝ  and
g e E X

t(p(9)) = t(p(f))  +  9 € T E K n+i and /  G F E K n satisfy i{g) = t ( f  ), we have

Since T E K  = T f f i < n [ ] T M n+i, we conclude that

E
f £ T E K < n

e X *■(/) + E
f e F E K n

e X*UY

f e F E K n
E e-h£(p(f)) X *■(/) E

f e F E K n

E
9

e~ht(p(f))

e

E
-h £ (p (g ) )

x n(g)-

g e E X  ,i(g)=t(f)

e-he(n(g))
x ir{g)

thus the equation (*) holds for K  as well.

e -he(ë) E
f e T E K < n

E
f e T E K

e

e

~h£(p(f)) X *■(/)

X 7r(/)’

+ E
f  e T E K n+i

e- h e ( P(f)) x *•(/)

(/)

ht íp(f)) hi(p(/))

t (тгm if

GТ Е К n +  l

hi (p(/))
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2.2 Minimal volume entropy

In this section, we prove the main theorem announced in the introduction, using Theorem 2.1.2.

T h eo rem  2.2.1. Let X  be a finite connected graph such that the valency at each vertex x, which 

we denote by kx 4-1, is at least 3. Then there is a unique d in A(X)  minimizing the volume entropy 

^voi(^)- The minimal volume entropy is

hmiD( X )  =  \  £  (kx +  l ) l o g k x, 
xevx

and the entropy minimizing length distance d =  de is characterized by

¿(e) =  . , ' i e e E X .
(fcx +  i)iogfcx

xevx

Remark. Since we can eliminate all the vertices of valency two without changing the entropy, the 

existence of d in A(X)  minimizing the volume entropy, with minimal value given by the same 

formula, holds for any graph who does not have a terminal vertex and is not isometric to a circle. 

What is uniquely defined at such a minimum is the length of each connected component of X  where 

the vertices of valency at least three are removed.

Proof. By assumption, kx > 2 for every x G VX. By Theorem 2.2.1, the volume entropy h =  hyo\ 

satisfies

for each edge e £ E X  for some positive xe’s. Set ye =  e hi^ x e > 0 for each edge e. Then the above 

equations implies

cM<«)„e = X  A e f Vf  >  h ( e )  ]1  ' (2‘3)
f £ E X  f € E X , Aef=1

The last inequality is simply the inequality between the arithmetic mean and the geometric mean of 

y f  s, since there are exactly /ct(e) =  &i(/) edges /  such that Aef =  1. Multiplying over all the edges, 

we get

n «"■*. S n (*«.> n
e £EX e £EX f e E X ,  Aef=1

On the right hand side of the equation, each term ylj klU) appears exactly k ^  times, since each 

edge /  follows exactly k ^  edges with terminal vertex i ( f ). Canceling Yl ye > 0 from each side,
e £EX

we get

X q £
f € E X

Ae/e - h t Xf ,

У
l/ki (/)
/

y
1Ik,if)
f )•

(/)

loé k i ( e ) k t ( e )
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e™ > II fc‘ (e) =  II 4 fcl+1)-
e e E X  x e v x

(2.4)

since E  £(e) =  2. The equality holds if and only if equality in the inequality (2.3) holds for each
e € E X

e € E X , i.e. the y f  s, for /  £ E X  following e, are all equal.

Suppose that the equality in the inequality (2.4) holds. In particular,

Since the valency at each vertex is at least 3, we can choose another edge g ^  f  followed by e and 

conclude that y j  depends only on the initial vertex i ( f )  of / .  Let =  y j  > 0 .  Then the equation 

(2.2) in Theorem 2.1.2 amounts to

e  ̂ ẑ i(e) ~  ^   ̂ A ef Z i ( f )  =  k t (e)Zt (ey  

f £ E X

Since £(e) =  £(e), we also have eM(e)zt(e) =  fci ( e )Zi ( e ).  Thus zj(e) /z t(e) =  fct(e) /e w(e) =  

and

so that

e{e) =  E  ( V + i S ' i o g f c /  (2'5)
x e v x

In particular, £ is uniquely defined by this formula. The length distance defined by the formula (2.5) 

clearly satisfies the equations (2.2), with

h =  ^ X  (kx +  l ) \ o g k x ,
x € V X

and x e’s defined, uniquely up to constant, by setting

x e =  \ J k t ( e )  •

By uniqueness in Theorem 2.1.2, the positive number h given above is the volume entropy of the 

given length distance, and it is the minimal entropy of the graph. □

C o ro lla ry  2 .2 .2 . If X  is a (k\ +  l,fc2 +  l)-biregular graph, with k\ >  1, /̂ 2 >  1, then the volume 

entropy of the normalized length distances on X  is minimized exactly when the lengths of the edges 

are all equal, and the minimal volume entropy is log(fci/c2).

h =
1

2 E
x £ V X

{ k x  1 ) log k x  •

zHf)

eh£(e) ki (e) kt (e) ,

x GVX

\EX\
4

log (e)kt(e)

eh£(e)
/ ki (e)
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Proof. Suppose that X  a (ki + 1 ,fc2 + l)-biregular graph, i.e. k^e)h(e) = ^1^2 for any edge e. Let 

d = di e Δ (Χ ) be the entropy-minimizing length distance. Then £(e) = ^ lo g ^ ifo )  does not 

depend on e, thus £(e) = f ^ j ·  Prom ehi^  = y/k^e)h(e)^ the volume entropy of this length distance

ieft=i^llog(fciJIS2). □

Corollary 2.2.3. If X  is a (k 4- 1)-regular graph, with k > 1, then the volume entropy of the 

normalized length distances on X  is minimized exactly when the lengths of the edges are all equal, 

and the minimal volume entropy is logk.

Proof. This is a special case of the above corollary with k\ = &2 = k. □

Remark. The last corollary appears implicitly in a preprint of I. Rivin ([Riv]). There he considers 

graphs with weights given on the vertices rather than the edges. The directed line graph L(X) of 

a graph X  is an oriented graph defined so that VL(X) = E X  and EL(X) = {(a, b) € E X 2 : 

t[a) = ζ(ό),α Φ b}. To a given set of weights on the edges {^(e)}#*, is associated a set of weights 

{£'(%)}v l (X) on the vertices of L(X). One can sees that paths on X  without backtracking correspond 

to paths with backtracking on L (X ), see [Riv] page 14. The minimum of volume entropy of the 

graph L(X) with vertex weights ft((^(a:)))vL(X) (computed by I. Rivin) lies in the image of the map 

(^(e)) 1—> (£'{x)) only when the graph is regular. It seems that for general graphs, one result cannot 

be deduced from the other.

Remark. Corollary 2.2.3 was also shown independently by I. Kapovich and T. Nagnibeda [KN] by a 

different method (using random walks). Note that one of their main results, on the minimal entropy 

among all graphs having a fixed fundamental group, can be deduced from Theorem 2.2.1 as in the 

following corollary. A special case when the graph has a highly transitive automorphism group had 

been shown earlier by G. Robert ([Rob]).

Corollary 2.2.4. ([KN] Theorem B) Consider the set of all finite metric graphs without a vertex 

of valency one or two, whose fundamental group is a free group of given rank r > 2. Then among 

volume 1 length metrics, the volume entropy is minimized by any (regular) trivalent graph in this 

set, with the metric assigning the same length for every edge.

Proof. Let (X , d) be such a graph. Suppose that there is a vertex x of valency kx -f 1 strictly greater 

than three, with outgoing edges e i,. . . ,  efcx+i. Let us introduce a new vertex y and a new edge /, 

and replace x and its outgoing edges βχ, · · · ,β*χ+ι, by two vertices x and y, with outgoing edges
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/, e3, · · · , β̂ χ+ι and βχ, β2, / , respectively. Repeat the operation on x, until the valency of x reduces 

to three, to get a new graph X f. The graph X ' has kx — 2 more vertices than X , all with valency 

three.

Let do and d'0 be the unique normalized entropy-minimizing length distances on X  and X ' , 

respectively. By the formula in Theorem 2.2.1, since for t > 3, (t 4- 1) logt > (t — 1)3log2, it follows 

that

of groups. Let (X ,G 9) be any finite connected graph of finite groups. (Basic references for graphs 

of groups are [Se] and [Ba].) Let T be a (Bass-Serre) universal covering tree of (X, G*) and let 

p : T —► X  be the canonical projection. The degree of a vertex x of (X, G#) is defined by

Note that this is usually different from the valency of x in the graph X . It is easy to see that it is

distance dt on (X , G .) as a length distance du on the underlying graph X. The volume of (X , G*,de) 

for a given length distance de on (X , G9), is defined by

Note that in the case where £(e) is equal to 1 for every edge e and T is /c-regular, the volume 

Vol£(X, Gm) is k/2 times the usual definition of the volume Σ χβγχ 1/|GX| of a graph of groups since 

k = Σ βζΕ Χ  i(e)=x \Gx\/\Ge\- The volume entropy /ivoi(X, Gm,de) of (X ,G 9,de) is defined to be the 

exponential growth of the balls in T for the lifted metric as in the case of graphs.

h y o \ { X , d )  >  h y o i ^ X ,  d o )  — ^ ^   ̂ ( k z  ~f~ 1 ) 1  o & k z  +  ( k x  +  l ) l o g / c a ;

z£VX-{x}

z£VX-{x}

Repeat the operation until we get a regular trivalent graph. Now by Corollary 2.2.3, the volume

entropy is minimized when all the edges have the same length. □

2.3 Entropy for graphs of groups

As another corollary of Theorem 2.2.1, let us show the analogous result of Theorem 2.2.1 for graphs

equal to the valency of any lift of x in FT, and we will denote it again by kx + 1. We define a length

> l)log/c2 4- (k x  -  l)31og2 =  h y Oi ( X ' , d ' 0 ) .

e£ E X , i (e )= x

*x

?e

Vo\t(X,G,) M
|Ge|'
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Proposition 2.3.1. Let (X, G#) be a finite graph of finite groups such that the degree at each vertex 

x of(X, G.) is at least three. Among the normalized (i.e. volume one) length distances on (X ,G 0), 

there exists a unique normalized length distance minimizing the volume entropy. At this minimum, 

the length of each edge is proportional to log(k^e)h(e)) and the minimal volume entropy is

U ( V  n  \  _  1  ( k x  - \ - l ) l o g k x

η — 9 2̂  I η  I
2xtvx  |G*I

Proof. Let Γ be a fundamental group of the graph of groups (X ,G 0). There exists a free normal 

subgroup Γ' of Γ of finite index (see [Se]), say m. The group Γ' acts freely on T, hence the quotient 

graph X ' = Γ'\Τ is a finite connected graph. It is easy to see that each x in VX (resp. e in EX ) 

has |^|(resp. -^y) lifts in V X f (resp. EX ') by the canonical map π : X ' —> X , since

m = [Γ : Γ'] = Σχ'ενχ' I

Σχζνχ ι!\°χ\

(see [Ba] for example). It is clear that for every y in E X ' , the valency ky + 1 is equal to the degree 

kn(y) + 1* Any length distance de of volume one on (X, G.) can be lifted to X ' to define a length 

distance de> normalized so that £'(e) = ^(7r(e)) for every e in E X ', and

VolH*') 4  Σ  = ? Σ  TFl£(e) = m·
2 ei^X ' e€J5X I el

The volume entropy of (X\d'e) is equal to the volume entropy of (X ,G #,c?̂ ) as they have the 

same universal covering metric tree. By the homogeneity property 2.1, we can apply Theorem 2.2.1 

to conclude that among the length distances of volume m on X there exists a unique entropy- 

minimizing length distance d'0 = di> on X '. By uniqueness in Theorem 2.2.1, the length distance d'0 

is invariant under the group Γ/Γ'. In particular, there is a normalized length distance do = de on 

(X, G#) whose lift to X ' defines d'0. The minimal volume entropy of (X ,G .) is clearly the volume 

entropy of (X',d'0) since for any length distance d on (X, G#),

hvol(X ,G .,d) = h(X ',d') > h(X',d'0) = hvo\(X, G#, d0),

where d' is defined as the lift of d on X '. Since the length £'(e) of an edge e is proportional to 

log(/ci(e)/ct(e)) = log(fc7r(i(e))fc7r(i(e))) for every edge e in E X ', so is true for every edge e in EX . Since 

each vertex x in VX appears times in X ' and the degree kx -f  1 is equal to the valency kxt -f 1
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of any lift xf G 7T 1(x) of x in X \  the minimal volume entropy of (X, G m) is

hd0(X,G.) = h(X\dti = ±h(X',±<Q  = ±  ]T  (*4 + l)log*4
z'GVX'

= à  E ¡fï<*.+d***. = 5 E

Now we want to consider a more general situation than in Proposition 2.3.1. The main theorem in 

[BCG] says that if /  : (Y, g) —> (X, go) is a continuous map of non-zero degree between compact 

connected n-dimensional Riemannian manifolds and go is a locally symmetric metric with negative 

curvature, then

hn(Y,g)vo\(Y,g) > |deg f \h n(X, pd)vol(X, <*>),

and the equality holds if and only if /  is homotopic to a Riemannian covering.

Let (X, G#, do =  de) be a finite (connected) graph of finite groups endowed with the normalized 

length distance minimizing the volume entropy. Let (Y, H9, d) be another finite graph of finite groups 

with a length distance. Let 4> = (</>,</>•, 7*) : (Y, Hm) —* (X, Gm) be a (Bass-Serre) covering of graphs 

of groups (see [Ba]). The value

does not depend on the vertex a; nor on the edge e oi X  since the graph X  is connected, and it is 

an integer. A covering graph of groups with the above n is said to be n-sheeted (see [LI]).

When (Y, H.) and (X, G#) are graphs (of trivial groups), the next corollary can be considered as 

an analog of the main theorem in [BCG].

Corollary 2.3.2. Let 0 : (Y, H9) —> (X, G#) be a n-sheeted covering of graphs of groups and let do 

be the entropy-minimizing length distance on (X ,G 9) of volume one. Suppose that the degree at each 

vertex of (X ,G m) and (Y,H9) is at least three. Then there holds

hvoX{Y,H.,d)vol(Y,H.,d) > n hvol(X ,G .,d0)vol{XyG .,d0).

The equality holds if and only if the length distance d on (Y, Hm) is a length distance minimizing 

entropy among the length distances of the same volume, and in that case the map <t> is a metric 

covering from (Y, Hm,d) to (X, G>, Ado), for some A > 0.

(,kx + 1) log kx

\GX\

n := E
уеф~1(х)

|GX|
\ H y  | E

/€*

\Ge\
\ H f \

- i (e)
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Proof. By the homogeneity property (2.1), we may assume that vol(Y, H m, d) = 1. Applying Propo­

sition 2.3.1 to (Y,Ht)  and (X, G#), it follows that there exists a unique length distance df0 = d f  on 

Y  minimizing the volume entropy and that

«.„-Miiogfc,, i ^  £  f t  + i)ioe *.

2V ^ Y  \R v\ 2xtJxvetl(x) 1̂1
1 y ,  (,fc, +  l)log fc, =  nhmin{X Gt) =  n/ivol(X ,G ,,d 0).

1 xevx |t7æl

By Proposition 2.3.1, the equality holds if and only if d = d'0. In that case, the length of each edge e 

in E Y  is proportional to log(/ci(e)&t(e)) =  l°g(&t(4>(e))fct(<Ke)))> ^us proportional to the length of the 

edge <f)(e). More precisely, let £'(e) = d  log(ki(e)ht(e)) f°r every e € E Y  and let £(e) =  c\og(k^e)kt^ )  

for every e € E X .  From the assumption vo\e(X, G#) =  vol^(F, Hm) =  1, it follows that

- _  1 ^  l°&{ki(g)kt(g)) _  1 d  l°E(ki(g)kt(g)) _  1 y - s nd  log(&i(e)/ct(e))

“  * . k -  ®  “  ~2, k x , eh . )  ^  '

and therefore

c' = ________ I________ =  £
Ü  V '  ^ °g (f e j ( e )f e t ( e ) )  ft  ’
2 2  ̂ Gel 

e£ EX  1 1

in other words, £\e) = £(e)/n.

We conclude that for any length distance d on (Y, # #), there holds

hvo{(Y ,H .,d)vol(Y ,H .,d) > n hvo\(X, G.)vol(X, G . ,d 0).

By Proposition 2.3.1 the equality holds if and only if d is proportional to df0i say d =  Xnd'0 for some 

A > 0. Then the length of each edge e in (Y ,H %,d) is Ai(0(e)), and the map 0 is a metric covering 

from (y,d(j) to (X.Xdo).  □

2.4 Volume entropy and topological entropy of geodesic flows

Throughout this section, let d =  de be a length metric on X , and M  = M(d) be the diameter

of X .  Set £m = min \x — y\. For every S >  0, let us choose L  =  L(8) big enough so that 
x^yevx

f£° e~ldt < ¿ 5 .  We will denote by X  a fixed universal cover of X  and by d the pull-back distance 

induced by d on X .

Let QdX denote the set of isometries /  : R —> X  such that /(0 )  is a vertex of X .  Let QdX denote 

the set of local isometries /  : M —> X  such that /(0 )  is a vertex of X .  There is a surjective map

hvol (Y, hmin ( г , я . )  =
i
2 E

\ H g \
2

e€E X

H d)•  J >
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p : GdX —» GdX, defined by p(f) = tto f  where 7r : X  —► X  is the natural projection. In other words, 

GdX = GdX/T where T is the fundamental group of the finite graph X , acting by composition in 

the target on GdX.

Proposition 2.4.1. The space of geodesics GdX is a compact space for the compact open topology 

(which coincides with the quotient topology of the compact open topology on GdX). Its topology is 

induced by the metric

/
oo

d(f(t),g(t))e~wdt.

-OO

Proof This is well-known (see for instance [Bo]). Here we give a proof for the sake of completeness. 

Recall that the compact open topology on Cq(R,X)  is equal to the topology of uniform convergence 

on compact sets since X  is a metric space. Suppose that we are given an arbitrary sequence (fn)neN 

of local geodesics in X. We want to show that there exists a subsequence converging to a local 

geodesic on X.

For any natural number m, consider the sequence (/n|/m)nGN of fn restricted to the interval 

Im = [—m, m\. Since f n are geodesics, the sequence is equicontinuous and bounded. By Arzela-Ascoli 

theorem, there exists a uniformly converging subsequence. By passing to subsequences if necessary 

as m  increases, we conclude that the sequence f n converges to a fixed geodesic g uniformly on any 

interval Im. Therefore GdX is a compact space.

Let us show that the topology is induced by the metric given in the proposition. To show that 

any open ball of radius e for the metric D is an open set with respect to the compact open topology 

T, let us show that the complement C = {g € GdX : D(f,g) > e} is closed for T. Suppose that 

the sequence (gn)neN in C converges to g for T. Take an arbitrary small positive number 5. By the 

definition of the compact open topology, there exists n big enough such that d(gn(t), g(t)) < for 

every t in [—L,L]. Then

/
.L  ro o  c

d(9n(t), g{t))e~Mdt +  2M J ' e ^ d t  < <5/2 +  2M —  = <5.

It follows that

D(f,g) > D (f,gn) -  D(gn,g) > e -  S.

Since 5 is arbitrary, we conclude that g is in the set C, thus C is a closed set.

It remains to show that any open set containing /  with respect to the compact open topology 

contains an open ball containing /  with respect to the given metric. Let us recall that the collection

D(f,g) =

D{gn,g) <
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of subsets { /  : f ( K )  C U}  for a compact set K and an open set U forms a subbasis of the compact 

open topology. Let • • • , K n be fixed compact sets in R and Ui, • • • ,Un be fixed open sets in X.  

Let B =  { /  G QdX : f (K { )  C Ui, Vi =  1, • • • ,n } be an element of the basis. We want to show that 

there exists an e > 0 such that if D{f ,g )  <  e and /  € B,  then g € B.

Prom D (f ,g )  <  e, it follows that f K d(f( t) ,g(t))e~M  <  e. Since /  and g are local geodesic lines 

(parametrized by arc length), the slope of the real function t  h-* d ( f  ( t) , g(t)) (outside the countably 

many t for which f ( t )  or g(t) is a vertex) is one of 2, 0 and —2. By the triangular inequality, 

for every to, if d(f(to),g{to)) > 8, then d(f (t) ,g( t))  >  § for any t € [to -  <5/4,to +  S/4], thus 

Jk  >  2 m in if ’diamifi}. Therefore by letting ro =  ^min {diam K i, • • • , diam

we conclude that if f K d(f ( t ) ,g( t) )d t  <  Sro, then d(f(t ) ,g( t))  <  8 for any t in K{.  For each i, set 

mi =  minfe-W : t € Ki} ,  so that f K d ( f( t ) ,g (t ) )e~^dt <  e implies d(f( t) ,g (t ))  <  for any t in 

K i.

Now choose e* >  0 such that the e^-neighborhood B(f(K i) ,€ i )  of f (K { )  is still contained in 

Ui. Then, by choosing e such that e < eim^o,  it follows that f  d ( f ( t ) ,g ( t ) )e~^dt  <  e implies 

Jk  ^(/W> g ( t ) ) e ~ №d t  < 6 for each z, thus it implies that d(f( t) ,g(t ))  <  <  €{ for any t in K {, 

therefore g(t) € Ui for any t € K{. □

There is a natural flow 0 =  (</>5)5£r on GdX defined by the R-action on the domain, i.e., by the 

rule <j)s f ( t )  =  f ( t  -f s). This flow is called the geodesic flow on GdX.

P rop osition  2.4.2. The map <ps : f  »-» { t  > f ( t  4- s)} is a homeomorphism of GdX onto itself. In 

particular, the time-one map (j)1 is a homeomorphism.

Proof. Let us first show that (j)1 is a homeomorphism. The map (j)1 is obviously bijective. Let e be a

given positive number. Choose 5 so that <5(e-1 +  e) <  e. Suppose that D (f ,g )  <  Ô. Then

/
1 /*00

d(f ( t) ,g ( t) )e t~1d t +  d ( / ( i ) ,5 (i))e1_tdi

-OO J1

/
0 /*00

d{f(t ) ,g (t )) eldt +  e d(f ( t ) ,g ( t) )e~tdt

-00  J O

+  [  d ( f ( t) ,g (t) )e t~1dt -  f  d( f ( t) ,g ( t) )e1~tdt.
Jo Jo

Since el 1 < 1 on [0,1], the value of the last two terms

j f 1 d(f( t) ,g ( t ) )e t~1dt -  j '  d ( /( t ) , =  j '  d ( / ( i ) ,5 (i))(e‘- 1 -  - j ^ ) d t

K u

d
i ( / (t), 9 (t) )dt Kn, 2J >

€

m ir  о

D (Ф \ Л ,Ф1(д)) =

9
i- t dt(t) )e

e
m¿r о
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is at most 0. Thus £)(<£'(/), (/)'(g)) < (e-1 + e)S < e. We just showed that φι is continuous (and even 

(e + e-1)-Lipschitz). The map (φι)~ι maps t to f(t — 1), and the proof of its continuity (and being 

(e + e_ 1)-Lipschitz), is analogous to the proof for phi1. Therefore φ1 is a homeomorphism of QdX 

to QdX· In exactly the same way, we can show that φ5 is a homeomorphism for any s between 0 

and 1 since el~s < 1 on [0,1]. On the other hand, since φ1 is a homeomorphism, the map φη is a 

homeomorphism for any integer n. Thus φδ is a homeomorphism for any real number s. □

Let Η(φ) = htopfy) be the topological entropy of the flow φ. Let us recall that the number Η(φ) 

is independent of the choice of metric on QdX but depends on d and that it is defined in the two 

following equivalent ways.

Remark. The topological entropy Η(φι) where φ1 is a map coincides with the entropy defined below 

(see [Man] for instance).

A subset Y of QdX is called a (T, 5)-separated set for φ if for any two different /  and g in Y, 

there exists some ty 0 < t < T such that D fflf , φtg) > δ. Let N(T, δ) be the maximum cardinality 

of a (T, (S)-separated set. Then

loS Ν(Τ,δ)
η{φ) = sup limsup --- —--- .

δ>0 T —+OC Ϊ

A subset Z of QdX is called a (Τ,δ)-spanning set for φ if for any /  in QdX, there exists g in Z 

such that ϋ (φ ι f ^ tg) < δ for every t with 0 < t < T. Let M(T, δ) be the minimum cardinality of a 

(T, <S)-spanning set. Then, Η(φ) = sup /ι(</>, δ) where
<5>0

l  / j. r\ v log Μ(Τ,δ)
Η(φ,δ) = limsup --- ---- .

T—oo I

In [Man], Manning showed that for a compact Riemannian manifold of non-positive curvature, 

Η(φ) = hvo\(d). Here is the analogous result, claimed without proof in [Gui].

Theorem 2.4.3. The volume entropy h = hvo\(d) is equal to the topological entropy Η(φ) of the 

geodesic flow on QdX ·

Proof. If X  (which has no terminal vertex) is reduced to a cycle, then h = 0. Hence we assume that 

πι(Χ) is not cyclic. We will call a subset Y of X  δ-separated if for any x, y in Y, the distance d{x, y) 

between them is at least δ. For simplicity, let us denote B(r) = B^^(xo,r).
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Let us consider an “annulus” B(r + 6/2) — B(r). By the definition of hvo\(d) and the remark 

following it, for any e > 0 , there exists re such that

exp((h — e)r) < £(B(r)) < exp((h -f e)r),

for any r > r€. Moreover, there exists a sequence (r * c o v e r in g  to oo such that for every i G N,

exp((h - e)ri) < £(Β(τχ + δ/2) - B(r<)) < exp((h + e)r<),

for otherwise, by a summation argument, the growth rate of £(B(r)) would be bounded above by 

h — 6.

Let us choose such an r in (γ*)*€ν and take a maximal 2<5-separated subset Qr of B(r+S/2) — B(r). 

Then

1Λ e(B(r + 6 /2 )- B (r ))_______ „ t

IQr|- supe(B(x,s)) e)r)·

For any q in Qr, let f q be a geodesic line from xo to q such that f q(0) = xq. We want to show that 

the set of geodesics {πο/ς : q e Qr} in GdX is a (r, £)-separated set. For let f q and fq> be two geodesics 

with q Φ q'. Since d(fq(r),q) < δ/2 and d(fq'(r),qf) < δ/2, we have d(fq(r),fq>{r)) > 2δ - δ = δ. 

Thus there exists 5 such that 0 < s < r and that f q = f q> on [0 , s] and f q Φ fqt on ]s, s + Zmin]· Note 

also that π (/9) ^  π(f q>) on ]s, s + lm\ since they coincide from time 0 to s. Therefore,

^min / 4

/o

if δ is small enough. Thus

/ • i m i n /4  1 m IA | I

D W M f J W W f r ) ) )  > / 2*Γ*Λ  = 2(1 - ..) >

M0 ) > lim sup ^ Tn ̂ > h — e.
n—+oo rn

Since e is arbitrary, the topological entropy Η{φ) is greater or equal to the volume entropy h.

Now for the inequality Η(φ) < h, let us choose a bounded fundamental domain F  of X  in X  

which contains the vertex xo and let a be the diameter of F. Let Qr be a maximal ^-separated set 

in an “annulus”, this time, B(F,r) - B(F,r - a) = {x £ X  : r - a < d(x,F) = inf d(x,y) < r}.
y£F

Let E be a maximal 5-separated set in F. With L = L(6) as in the beginning of Section 2.4, let 

S = S(E , L) = {x € X  : 3y € E, d(x, y) =  L). Since the set E is finite, so is S.

Claim. The set {π o fPi0,q : P € 5, ο € E, q € Qr] where /p,0,g is a fixed geodesic line through p, <7 

such that /p,o,q(0) is of distance at most <5 from o is an (r — L, 4<5)-spanning set in
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Proof of claim. For any element of QdX, we can find a geodesic line g G QdX which represent the 

given element of QdX such that #(0) is in the fundamental domain F. Since E  is a maximal 6- 

separated set, there exists o G E  such that d(g(0),o) < S. Since Qr is a maximal 5-separated set, 

there exists q G Qr such that d(g(r),q) < S. Choose a point p in S  such that d(g(—L),p) < S. Then 

the geodesic from p to q passes through a ¿-neighborhood of a point o G E, and if L and r are large 

enough, we can normalize so that d(/P)O>q(0),o) = S (there are only two possible choices). Then for 

every s in [0, r — L],

/
oo

d{ 7r o g(t), 7r o / Pi0i9(i))e_|t_s|dt
-OO

p — L-\-s pL-\-s /»oo

< Me|t- s|d i+  36e~lt- s\dt+ M e - ^ d t  
J  oo J —L + s  J  L + s

rL
^  J/2 -h 38 J e ^d t  -j- 8/2

< 6 + 6 S ( l - e ~ L) <7S.

The second inequality above holds since L 4- s < r and d(g(t)y f p,0,q(t)) < 3J, for every t in [—L,r], 

a s d ( / PfOtg(0 ) ,p (0 ) )<25 .  □

By the above claim, we have a (r—L, 7<5)-spanning set in QdX of cardinality at most 2|S| • \E\ • \Qr |. 

Thus h((j),5) < limsup < Hmsup loĝ s ^ = hvo\(d). The second
r —► oo r —»■oo

inequality holds simply because the Qr is a subset of the ball B ^  j(xo,r + a) and the last equality 

holds by definition (and since \S\\E\ are constants once 8 is fixed). Since S is arbitrary, we conclude 

that h(<f>) < hvo\(d). □

2.4.1 Entropy associated to the first return map of geodesic flows

Consider the space Q d X = { / G QdX : /(0) G V X }  of geodesics whose value at time 0 is 

a vertex of X  with the induced topology. The first return map of geodesic flow is the map Rd : 

QdX(°) —* QdX(°) defined as follows. If r  : Q d X —> E is the first return time of the geodesic flow in 

Qd{X)(°\ i.e. t ( / )  = inf {t > 0 : </>*/(0) G V X }, then #<*(/) coincides with (¡>r^ \ f ). (Note that the 

map 0 on the right side depends on the metric d.) In other words, QdX^  = U U ^c»
xGVX e£ E X , i (e )= x

where Be = { f  e QdX : /([0, r(/)]) = e} is an open and closed subset of Q dX ^  (but not open in 

QdX). (Recall that i(e) is the initial vertex of the edge e.) On each JBe, the map Rd coincides with

Proposition 2.4.4. The space QdXW is compact and Rd is a continuous map on QdX(0K

D(4>S1r o g, ф3тт o f  ) <

lo g ( |S ||S ||Q r |)
r

ф1<-е\
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Proof. Recall that QdX is a compact space with the quotient topology of the topology of uniform 

convergence on compact sets. Then if a sequence of geodesics (/n € Gd.X^)n€n converges to a 

geodesic /  € QdX, the sequence (/n(0))n€N converges to /(0) G X . Since f n{0) € VX for every n 

and VX C X  is discrete (thus closed), it follows that /(0) € Hence QdX^  is a closed subset 

of a compact space, thus it is compact.

As Q d X is the union of the open sets Be for e in E X , and Rd coincides with the continuous 

map φl(ê on Be, the map Rd is continuous. □

Let htop(Rd) be the topological entropy of the continuous map Rd. We will see in the next section 

that it is a combinatorial object and it depends only on the graph structure of X.

2.4.2 Symbolic coding for the first return map of the geodesic flow

Let F  be a finite set, equipped with the discrete topology. Consider the space Σρ = F z with the 

product topology. For n\ < < · · · < rik and a\, · · · , G F we call

=  {ω € EF : ωη] = aj, for j  =  1, · · · , k}

a cylinder and k the rank of that cylinder. Cylinders form a base for the product topology of Σρ. 

The topology is given by any metric

άχ{ω,ω/) =  Λmaxin€N: "*="ί, \k\<n}

with Λ € (0,1). Then any symmetric cylinder Οά_η,··^αη of rank 2n -f 1 is a An-ball. Let σ be the 

shift on Σ : σ(ω)η = ωη+ι. Then (Σ^,σ) is called a symbolic dynamical system.

Now let X  be a finite oriented graph. Consider the space of two-sided sequences of edges E X Z where 

E X  is the set of oriented edges of X. We can define the product topology, and a shift σ on it as 

in the previous paragraph. Let (Σ^χ,σ) be the symbolic dynamical system defined in this way. Let 

A = (Aef)ej £EX be a matrix with entries aef = 1 if the terminal vertex of e coincides with the 

initial vertex of /  and /  φ e, and Aef = 0 otherwise. Let

Σλ = {ω € Σ^χ : Αω ηω η+ 1  = l,Vn € Ζ}.

The set Σ^ is obviously σ-invariant. The restriction a|sA = σ a is call the subshift of finite type 

associated to A.
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Remark. For any geodesic flow on the unit tangent bundle of a compact C,°°-Riemannian manifold of 

negative curvature, or more generally for Anosov flow, Bowen and Ratner constructed a suspension 

flow of a subshift of finite type “more or less” representing the given flow. In [CP], Coornaert and 

Papadopoulos studied symbolic coding for the geodesic flow associated to word hyperbolic groups. 

Since (QdX^°\ Rd) is purely combinatorial, i.e., it does not depend, up to isomorphism of continuous 

dynamical systems , on the length distance d on X , its coding is obtained in a similar way (see [CP] 

p. 488-489 where the case when X  is the Cayley graph of a free group is described).

Proposition 2.4.5. The dynamical system (GdX °̂\ Rd) is topologically conjugate to the two-sided 

subshift of finite type (Σ^,σ^).

Proof. We want to show that there exists a homeomorphism q : QdX^  —* Σα satisfying q o Rd = 

σΑ o q.

Since every geodesic line /  is entirely determined by the sequence

x = xf = (··· , X—ii XQ) X\»■ * *) € Σν

of its consecutive edges such that i(xo) = / (0), the map q is naturally defined by sending /  to the 

sequence Xf where i(xn) = {Rd)nf{0) is the n-th edge of the geodesic /  along the positive direction. 

The sequence xj is clearly an element of Σ^. It is also clear that T o q(f)n = q o Rd{f)n-

Let us show that q is continuous. Recall that QdX^  is equipped with the restriction of the 

topology of uniform convergence on compact sets where as Σα is equipped with the product topology 

of E X Z with discrete topology on E X , in other words, the topology of pointwise convergence. 

Suppose that the sequence (/n)nen of local geodesics converges to a local geodesic /. Then /n(0) 

converges to /(0). Since /n(0) e V X  and VX is discrete, f n(0) = /(0) for large enough n. Similarly 

for any k in Z, (Rd)kfn{0) converges to (Rd)kf{0), thus the k-th edge of f n coincides with that of 

/  for large enough n. Therefore for large enough n , q(fn)k — Q(f)k» thus q(fn) converges pointwise 

to q{f).

The inverse map q~l sends x to a local geodesic line /  whose n-th edge is xn, for every n G Z. If 

xm converges to x pointwise, then again by the discreteness of E X , xm = (xn) for any large enough 

n, thus q~l {(xn)m) = 9-1((^η))· Therefore q~l is also continuous. □

By the above proposition, the topological entropy of (QdX °̂\ Rd) is equal to that of (Σ^,σ^). 

Let us recall that the topological entropy of a subshift of finite type is the spectral radius of A (See



CHAPITRE 2. VOLUME ENTROPY FOR GRAPHS 30

[HK], pp. 120-121 for instance). In fact, we can also find the entropy maximizing measure as follows. 

For the given irreducible matrix A (see section 3.1), let q = (<7i,-*‘ ,^n) and v = (t>i,··· ,vn) 

be positive eigenvectors of A and AT with positive eigenvalue A equal to the spectral radius of A, 

respectively, normalized so that ]C£Li. Qtv% — 1* These vectors exist and are unique up to scalars by 

Perron-Frobenius theorem. Let Π = (π^·) be the matrix given by π ·̂ = It is easy to see that 

Π is a stochastic matrix. The Markov measure μπ of Π on Σα (which is invariant) is called the 

Parry measure and it is the unique measure of maximal entropy. (See [HK] pp. 174-177.)

2.4.3 Suspension flow on finite subshift and the geodesic flow

Now let us fix a length metric de on the graph X . Let r : Σ^ —> be the height function defined 

by r(x) = £(xo). We define the suspension flow (Σ^,σ^) on Σ^ as follows :

Σ^ = {(x,t) € Σι a x l : 0 < i  < r(x)}/(x,r(x)) ~ (σ(χ),0),

arA{x,t) = {aA(x),t).

Proposition 2.4.6. The geodesic flow {QdX^t) is topologically conjugate to the suspension flow 

(Σ^,σ[) of the subshift of finite type (Σ^,σ).

Proof A geodesic line /  in QdX determines a unique sequence x = (· · · ,x-\,xq,x\, * * ·) of its 

consecutive edges, such that / (0) belongs to xo, and does not belong to x\ (but / (0) can belong to 

both x-\ and xq if it is the origin of xo). Let us define a map q : QdX —> Σ^ by sending /  to (x, s) 

where s is the distance between the initial vertex i(xo) of the edge at time 0 and the point / (0). 

The inverse map q~l sends (x, s) to a local geodesic line /  whose n-th edge is xn and such that /(0) 

is of distance s from z(#o)· The maps q and g-1 are clearly extensions of the functions q and <?_1, 

respectively, defined in the proof of Proposition 2.4.5. The proof continuity of q and q~x is similar 

to the proof of Proposition 2.4.5. □

By the above proposition, h„ol(d) = fttop( ^ ) .  Now htov{arA) = maXfxh^{arA) where Ηβ(σΑ) is 

the measure theoretic entropy of (Σ^,σ^) and the maximum is over all σ^-invariant probability 

measures μ on Σ^.

There is a one-to-one correspondence between the σ-invariant probability measures on Σ^ and 

σ^-invariant probability measures on Σ^. Let μ be a σ-invariant probability measure, and /ιμ(σ) 

be the measure-theoretic (metric) entropy of σ with respect to μ. If we denote by μ = μ x dt the
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probability measure on Σ^ corresponding to μ, then

k̂ - hj0 i  <2-6>

(see [Ab]).

Remark. The characterization of the volume entropy described in this section gives an alternative 

approach to find the minimal volume entropy, namely, by finding the minimal value of /iM(a^)/ f  rdμ 

where μ varies over all σ-invariant probability measures on Σ^.

2.5 Another characterization of the volume entropy

In this section, we give another characterization of the volume entropy, using Equation 2.6 in the

last section. As in the last section, μ denotes a σ-invariant probability measure, μ the (σΓ̂ -invariant

probability measure, and Ημ the measure-theoretic entropy of arA with respect to μ.

Now let us calculate the metric entropy of the suspension flow. Let Vm be the set of admissible

sequences of length m in Σ^. For simplicity, let us denote any admissible sequence α̂ α\ · · · am-i in

Vm by a. For any a E Vm, let C*'”’ ’m+fc_1 be the set of bi-infinite sequences x whose entries Xk+i

are a<, for z = 0, · · · ,ra — 1. Let be the collection of cylinders C*'"’ ’m+fc_1 where a run over

all the elements in Vm- Denote Bm = and C%''" ,m~1 = Ca for simplicity. For every a G Vm, let

4. =  4 o + 4 i-- !-4m_ 1, and let μ± = μ(#α). Let Smr(x) = r(x)+r(ax)+r(a2x)-\--- h r ^ m-1x) =

£(x0) + -- l· £(xm-i). If we let Hm = --- Σ  μα log^a, it is well known that ΗΛσΑ) = lim Hm-
a £ V m  ~  ~  m ^ ° °

For any σ^-invariant probability measure μ, it is easy to see that f  τάμ = 1/m J  Sm'rdμ. Therefore

by the last equality in Section 2.4.3,

Σ MalogMo

Μ σϋ) =  lim m / \ fmo— r~ =  lim — — ]—  m~*00(l/m ) J ΟγηΓΟ,μ m-»oo -L·
o€Pm

- Σ  MalogMa

= lim
ra—>oo Σ  V a l a

aeVm

Lemma 2.5.1. Let n > 1, and let 0 < μ* < 1 and a = μ% £ (0,1). Let £{ > 0, for i = 1, · · · ,n, 

be given positive number which are not all equal. Then the function

Σ μ ι < ί/(μι,··· >Mn) =
ϋ μι log μ» 
ΣμίΑ
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is maximized when μι — exp(—c£{), where c is the unique positive constant which satisfies

n

^ exp(—c£i) = a. 
i=l

Proof. Let us use calculus of variation. The maximum is attained when V / = XVg for some constant 

A, where g : (μι, · · · , μη) ΣΓ=ι M*· Since = l, we should find μ^’β so that does not depend 

on j.

d f (1 + 1(^ μ ^ ) (Σ Μ ) - ( Σ ^  x /27x

( Σ Μ ) 2 ^  ;

It follows that (logμ-,· - ^μ*)(Σ μ<*») == ((? “  ^Χ Σ /^  1οβ/Ό> f°r everY M · Let = ci + c2tj-

Then

9/ _  (1 + ci + ^ ) ( Σ μ Α )  - ( Σ / ^ ι  + c*4 ))*j ( Σ Μ )  + ΰι ( Σ Μ - ^ · )  pox 

0μά "  ( Σ ( Μ ))2 ( Σ ( Μ ))2 1 ’ ;

Thus ci = 0, unless all the ^  are of the same length. Therefore the extremal value is attained when 

μj = exp(—c£j) where c satisfies ΣΓ=ι exP(— ~ α · ^he value °f /  this point is c and since 

= _ _ i _  < o for all j  at this point, it is a maximal value. On the boundary, say when μι = 0 

for example, by the same calculation, the value of /  is c' where ΣΓ=2 ^xP{~c'^i) = 1· Since c' < c, 

the value of /  on the boundary is strictly smaller than c. Thus the global maximum of /  is attained 

at μι = exp(c^) with maximum value c. □

By Lemma 2.5.1, we have the inequality

- Σ  Μ β^μα
a£Vm .

< Cm,
Σ  Μα/α.

a£Vm

where cm is the only positive number such that 2  e-Cm̂  = 1.
aeVm

Lemma 2.5.2. Iim cm exists.
m—► oo

Proo/. Let n < nn. Since any path of length m is a concatenation of a path of length n and a path of 

length m -n , we have C £>° Πβ” _n := Π ■·α0 ···α η ^ 1 and α „ ·· ·am_x

are admissible paths}. It follows that

^  g~cm£b ^   ̂ g —Cm̂c. ^   ̂ g —cm̂CL _  ^

6GPn C£Vm-n OĜ m

Thus for every n < m, either cm < cn or cm < c™- ,̂ and clearly c™ < cm/d for any d which 

divides m. Therefore cm < inf{supcn i, · · · , Cnr :m  e Nn\ H--- h N nr}.
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Now let c = lim inf cn and let e > 0. By the above observation, it suffices to find two integers p
n—kx)

and q relatively prime such that cp < c + e and cq < c + e. (Then any big enough integer m can be 

written as a linear combination of p and q, thus cm < c + e, thus limcn < c.)

Suppose that such p and q do not exist. Let d = min{gcd(p, q) : cp < c -f e, cq < c + e} > 1. Fix 

D £ dN such that c& < c 4- e. By the definition of d, C£>t+i > c -f e for any integer t.

1 <  X ]  exp(-C£>t+i y  <  ( ^  ex p (-C D t+ i4 ))‘ ( ^  e x p ( - c o t+ iZ£)) 
o^'Put+i b€Pi> c€"Pi

< ( exp(—(c + ε)ί&))*( exp(-(c + e)i£)) 
bevD cev i

Therefore

We just showed that for any σ-invariant probability measure μ, we have Ημ < c. Since the volume en­

tropy hvo\(d) is the supremum of the metric entropy Ημ{σ7'Α)  over all σ-invariant probability measure 

μ on the space Σ^, we conclude that hwo\{d) < c.

Proposition 2.5.3. hvo\ = c.

Proof. First notice that c = lim cm < cm for any m since cmi is decreasing for any geometric
m—+ oo

sequence ra*. It follows that for any integer m,

Σ  A(c)™f' > Σ Α ίο η )? /1 =  Σ  e_Cm^  =  L (2·9)
i J  € E X  i j  a€Vm

exp(-(c + e)£c) :Σ66Pd
:ρ(-(ο + ε)/6))*.

Σ
c G V  ι

Since c# < c + 6, it follows that ( ]T) e~(c+ĉ )  < 1, which leads to a contradiction since the
b € V D

right hand side in the above equation tends to 0 as t tends to infinity, where as the left hand side 

of the equation is a positive constant. Therefore we conclude that d = 1 and the infimum limit

c = lim inf Cm is in fact the limit of Cm as m —► oo. □
771—► OO

Therefore

hn{(TrA) =  lim
771—>00

2  μ a log μα

ς : M y
g&.'Pm
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To show the inequality c < hvoi, let us use the criterion from Theorem 2.1.2 : the volume entropy 

is the unique positive number h such that the matrix A(h) defined by a(h) i j  := a i je xp (—h£j)  has 

the largest eigenvalue 1. If c>  hvo\, then the entries of A(c) are strictly smaller than A(hv0i), thus 

all the absolute values of eigenvalues of A(c) are strictly less than 1. Thus A(c)n tends to the zero 

matrix as n —> oo, which is a contradiction to the equation 2.9.

Proposition 2.5.4. If the graph X  is regular, then lirncm(̂ o) < \imcm(£) for any £ Φ £$.

Proof We want to show that cm(£o) < Cm{£) for any m, for any £φ  £q.

By strict convexity of the function e-x, we have that

_L  V' e-c*i(ft) >
^ m â€Vm

Note that

{a e  Vm : % =  e} =  /cm_1

since once we fix an alphabet at position j, we have k choices for each position i φ j, where the 

graph is k + 1-regular. Since we have \EX\ choices for the alphabet at position j, we have

\ V m \  = \EX\k
m—1

Therefore

Σ  t ( a )  =  ^  € V m  : g,j =  e}£(e)

Q&'P m J — l  e

m

= Σ 5Zfem_1̂e) = mk̂ Ŷ iie)
j = l  e e

= 1 ^  =  Wm\io (fl)

αΣ *(α)
(the last equality comes from the definition of ^o)· We just showed that ~-€ ĵ 1·· |— = £q(a), thus we 

conclude that

I —  ^  e -Cm(t)ta >  |Pm |e- Cm W ( a )  _  ^  g-Cm(^Oa _  ^

i.e, cm(lo) < cm(l) for any m, therefore c(/o) < c(Z). □

The following theorem is a corollary of the above proposition.

Theorem 2.5.5. If the graph X  is regular, then h^ol > ĥ °ol, i.e., the volume entropy is minimized 

when the length of the edges are all equal.



Chapitre 3

Overlattices in automorphism 
groups of trees

3.1 Over lattices and coverings of graphs of groups

In this section, we briefly recall some background on group actions on trees and the theory of 

graphs of groups, and we explain the correspondence between over lattices and coverings of graphs 

of groups. We refer the reader to [Se], [Ba] and [BL] for details on the standard material, gathered 

in section 3.1.1.

Throughout the paper, we denote by T a locally finite tree, i.e., a tree having finite valence at 

each vertex. We denote by Aut(T) the group of automorphisms without inversions of the tree T. A 

subgroup Γ of Aut(T) is discrete if the stabilizer is finite for some, thus for every, vertex x of T. 

The covolume of Γ is defined by

A discrete subgroup is a lattice if its covolume is finite. In this case, Aut(T) is unimodular, and

the quotient graph T\T is finite. An overlattice of Γ is a lattice of Aut(T) containing Γ with finite 

index.

3.1.1 Co com pact lattices and finite graphs of finite groups

By a graph of groups (X , G#), we mean a connected graph X , groups Gx and Ge = Ge assigned 

to each vertex x in VX and each edge e in E X , together with injections Ge —> Gx for each edge e

the covolume is equal (up to a constant depending only on T) to the volume of T\Aut(T) induced 

by the Haar measure on the locally compact group Aut(T) [BL]. A lattice Γ is called cocompact if

35
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In [P], Pyber showed that the number of isomorphism classes of groups of order n with a given 

Sylow set, namely the set of Sylow ^-subgroups defined up to conjugacy, is at most n 75/i+16. Together 

with the result of Sims ([Si]), namely f ( p k) <  , we get the following upper bound for f (n )  :

f{n) < n Pf fc?+̂ ' /3n7̂ +16
i= 1

Let g(n) =  ^jfi2(n) 4 - ^/i5/ 3 (n) 4- 75/i(n) 4-16 so that f(ri) <  n9 n̂\

On the other hand, Lucchini and Guralnick showed that if every Sylow subgroup of G can be 

generated by d  elements, then d(G) <  d  4 -1  ([Luc], [Gur]). Combining with the basic fact that 

d{H) <  n  for any group H  of order pn ([Si]), we deduce that

d{G) <  fi 4" 1.

Using these results, we obtain the following upper-bound for u(n).

T h e o r e m  3 .2 .1 . Let V be a cocompact lattice of A u t(T ).  Then there are some positive constants 

Co and Ci depending only on T, such that

Vn >  1, u r(n) <  ConCllog2(n\

L e m m a  3 .2 .2 . Any covering <j)9 =  (</>, </>x, 7 x) : (X , G#) —► (Y, H 0) is strongly isomorphic to a 

covering 4>fm =  (</>', ^ ,  7 ^) : (X ,  G .) —> ( Y f,H'm) where each for  x  G V X  U E X  is a word, in 

hy €  G y ’s (y € V Y l)  and the edges e €  E Y f, of length at most 12K ,  where K  is the diameter of X .

Proof. Fix xo €  X .  Associated to <\>m is a lattice Tf C A u t ( ( X yG m, x o)) containing n i ( X , G m,xo). 

From (X ,G .,x o )  we construct ( R ,S ,g e) such that the quotient of (X ,G #,xo) by 7Ti(X,G#,xo) is 

exactly (X ,  G*). Namely, first fix a maximal tree r  in X .  We may choose R  to be the set of paths 

ei • • • en from xo in r, S  to be the set of paths e\ • • • enen+i such that e\ • • • en is a path in r  and 

ge =  e\ • • • ejen+ i - 1  • • • e \ ~ x where e\ • • • e\ is a path in r  from xq to £(e), and where e is the edge 

connecting e\ • • • en to e\ • • • en+\.  In particular, ge is a product of at most twice the diameter of 

X  number of generators of II(X, G*). Now we choose R ' ,S f subsets of R, S  in such a way that 

the restriction of the projection (X , G*,xo) —► T '\(X , G#, xo) on R' is bijective for vertices (resp. 

the restriction of S' is bijective on edges). We also choose g'e in a similar fashion as above, hence 

g'e is also a product of at most twice the diameter of X  number of generators of II(X , G 0). From

p áVfc3+|fcf

< n Sfß +hfji ' 4-75/U+16



CHAPITRE 3. OVERLATTICES IN AUTOMORPHISM GROUPS OF TREES 37

7Γι(Χ, G*,xo) = π[χο,χο\ acts on (X, Gm,xo) by the natural left action. The graph (X,G*>xo) is 

a tree and moreover, for any other universal cover (T, Γ) of (X, G .), there is an isomorphism φ 

between Γ and πι(Χ, G#,xo) and a ^-equivariant graph isomorphism between T and (X ,G #,xo), 

see for example [Se].

A graph of groups is called faithful (or effective) if there is no edge subgroup family (Ne)eeEX 

satisfying the following conditions :

i) for each e and e' in E X  such that o(e) = o(e'), the images of Ne and Ne> coincide : ae(Ne) = 

OLe'{Ne'). Let us denote it by N0(ey

ii) For each x in VX, Nx is a nontrivial normal subgroup in Gx.

It is shown in [Ba] that the graph of groups (X, G .) is faithful if and only if its fundamental 

group Γ is a subgroup of Aut(T) for its universal cover T, i.e., if and only if the map Γ — > Aut(T) 

is injective. The fundamental group of a faithful finite graph of finite groups is a cocompact lattice 

in the automorphism group of its universal covering tree and conversely, a quotient graph of groups 

of a cocompact lattice in the automorphism group of a locally finite tree is a faithful finite graph of 

finite groups.

In [Ba], Bass defines a covering of graphs of groups in such a way that the induced map between 

the corresponding fundamental groups is a group monomorphism.

Definition 3.1.1. Let (X, G#) and (Y, Ηφ) be two graphs of groups. We call a morphism of graphs 

of groups, which we denote by φ# = (φ,φχ, ηχ) : (X, G#) —> (Y,H9), the following data

(i) a graph morphism φ : X  —> Y,

(ii) group homomorphisms φχ : Gx —> Ηφ^  and φβ : Ge —> Ηφ(e), for every vertex x and every 

edge e of X ,

(in) families of elements {^x)x^vx € πι(Υ,Η9,φ(χ)) and (7e) e e E X  € U(Y,Hm) 

such that for every edge e of X  with origin x, we have Ίχ1Ίβ € Ηφ(x) and the following diagram

commutes.

Ge Gx

Φχ

Η ψ ( χ )Ηφ{ε)
Α ί χ 1Ίβ)οαφ(6)
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The induced homomorphism of path groups Φ = Φψ9 : Π(Χ, G#) —► Π(Υ, Ηφ), is defined as 

follows on generators (see [Ba]) : Φ(g) = Ίχφ χ ^Ίχ 1 for g G Gx and x G Φ(e) = Ί εΦ (έ)Ίϊ1 f°r 

e G The induced homomorphism on path groups restricts to a homomorphism πχ(Χ, G#, xq) —> 

πι(Υ, 0(a?o))» which we will denote again by Φ.

The induced homomorphism Φ = Φ^β : πι(Χ, G#,xo) πι(Υ, #·> Φ(χο)) gives a Φ ^ -equivariant 

graph isomorphism φ : (X, G#, x0) —► (Y, </>(xo)) defined by

[g] G π[χ0,ζ]Λ?χ η-> [Φ(̂ )7*] € π[^(®0), ̂ (®)]/^(*)·

A morphism =  (φ, of graphs of groups is an isomorphism of graphs of groups

if φ is a graph isomorphism and φχ are all group isomorphisms. In this case, φ~ι = (</>_ 1,<^,7y) 

where φ'υ = φφ-i(y) and 7 ' = Φ- 1 ^ - 1̂ ) ) -1 for ί/ € VY U EY.

Definition 3.1.2. ;4 morphism of graphs of groups φ% is furthermore called a covering if

(a) the maps φε and φχ are injective for all x and e,

(b) for every edge f  of Y with origin φ(χ),where x is in VX, the well-defined map

^x/f * LI Cx/oie(Ge) ► Ηψ(χ)/af(H f)
e€<t>-1(f),o(e)=x

M e  1-----► [Φχ{9)Ίχ  S e ] /

is bijective.

By the condition (b) in Definition 3.1.2, we have Σ  for every edge /  of
e € 0 - 1 ( / ) ,o (e )=x

Y with origin φ{χ). Summing over all vertices x such that φ(χ) = y, it follows that the value of

_  γ- \Hy\ _  V- \Hf\

xefc(v)lGxl e^U) |Gel 
does not depend on vertices and edges, since the graph Y is connected. Note that n is an integer

since φχ(βχ) is a subgroup of Hy for each x such that φ{χ) = y. A covering graph of groups with

the above n is said to be n-sheeted.

Note also that by the condition (6), a covering of graphs of groups induces a covering of the

corresponding edge-indexed graphs. Recall that a covering φ : (X, i) —> (Y, i) of edge-indexed graphs

is a graph morphism φ such that J2e£<f>-i(e'),o(e)=x ^(e) = e0 » ôr everY x and for every e' of origine

φ(χ).

Theorem 3.1.3 ([Ba], Prop. 2.7). The morphism φ· is a covering if and only if Φ : π\(Χ, G .,x  0) —► 

πι(Υ,Ηφ,φ(χο)) is injective and φ : (X, G#,xq) {Υ,Η9,φ(χo)) is an isomorphism.
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3.1.2 Counting overlattices

Let Γ be a cocompact lattice in Aut(T). Set

U(n) = Ur (n) = {Γ' : Γ C Γ' C Aut(T), [Γ' : Γ] = n}

and let u(n) =  ur{n) = \U(n)\ be the number of overlattices of Γ of index n. It is shown in [BK] 

that u(n) is finite. We are interested in the asymptotic behavior of u(n). For that purpose, we will 

show in this section that there is a bijection between overlattices of Γ and isomorphisms classes of 

coverings of graphs of groups by the quotient graph of groups of Γ, in the following sense.

Definition 3.1.4. Let φ. = (φ,φχ,ηχ) : (X ,G 9) -» (Υ,Η.) and φ. =  (φ,φχ,Ίχ) :

(Yf,H'9) be two coverings of graphs of groups. An isomorphism between them is an isomorphism of 

graphs of groups θ· = {θ,θυ,ρυ) : (Υ,Η.) —> (Υ ',ϋί') such that θ ο φ = φ as a map of graphs and 

the corresponding induced diagram of isomorphisms between universal covers

(xT g^xo) — ^  (Y, Η^φ{χo)) 

e

(Υ\Η',φ(χ o))

commutes.

It will also be useful to consider a more restricted notion of isomorphism of coverings. (As for 

now, we do not know whether the notions of isomorphism and strong isomorphism are equivalent. 

We use the following definition of strong isomorphism to prove the bijection between the set of 

overlattices and the isomorphism classes of coverings of complexes of groups.)

Definition 3.1.5. Let φ. =  (φ,φχ, ηχ) : (X ,G .) -» (Υ,Η.) and φ. = {φ,φχ,Ίχ) : (X ,G 9) -> 

(Yf,H'9) be two coverings of graphs of groups. A strong isomorphism between them consists of a 

pair {θ% = (θ,θυ,ρυ) : (Y,Hm) —> (Y ',H'9), {ζχ)χ̂ νχ^Εχ} where θ% is an isomorphism of graphs of 

groups (Y,//*) —> (Y ',# ')  and (Cc) G are such that

a) θ ο φ = φ as a map of graphs,

b) For any x £ VX U E X , we have φχ = αά(ζχ 1)θφ(χ) ο φχ as maps Gx —> H ^ xy

c) Ίχ = ®{Ίχ)Ρφ(χ)ζχ for any x € VX U EX .

Lemma 3.1.6. Any two strongly isomorphic coverings φ. = (φ,φχ> ηχ) : (X, G*) —> (Υ,ΗΦ) and 

φ. = (ψ,ψχ,Ίχ) : (X, G .) -* (Υ',Η'ι) are isomorphic.
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Proof. We have a triangle of morphisms of path groups

n(x,G.)— n(y,tf.)

(̂Ίβ)Ρφ(β)θ{Φ(β))ρφΙε)θ('Τι) 1

(3.1)

Θ

Π (Υ',Ηί)

We claim that this triangle commutes. It is enough to check it on generators : let x € VX and

5 € Gx. We have <£(s) = 7x^x(s)7x_1, \P(s) = 7iV>x(5)7 i_1 and on the other hand

θ  Ο  Φ (s) = θ ( Ύ χ ) Θ ( φ χ ( β ) ) θ ( η ' χ ) ~ 1

=&(Ίχ)Ρφ(χ)θφ(χ)(Φχ(3))ΡφΙχ)θ(η/χ)-1 

= ® (7 χ )Ρ φ (χ )ζχ Φ χ (3 )ζ~ 1ΡφΙχ)θ { 'ϊχ )~ 1

(using property (b) of strong isomorphism of coverings), and this is equal to

= =  Φ(«)

by property (c) and the definition of Ψ. Similarly, for e € E X , 

θ ο Φ(ε) =θ(7β)Θ(ψ(β))Θ(7ε)_1

(3.2)

=0(7e)P0(e)V’(e)p0(1g)0(7e) 1=7'V>(e)7i \

The last equality comes from the fact that since ζε € by definition of the fundamental group,

φ(β) =  C e^(e )C
-1

Thus we have a commuting triangle of morphisms of fundamental groups

■ni(X,G.,x0) ■*ι(Υ,Η,φ(χ0))

π^Υ ',Η ',ψ ίχ  ο))

(where θ is an isomorphism), and a triangle of isomorphisms of trees, which is equivariant with 

respect to the above triangle of groups :

(X , G ,,x  ο) (Υ,Η„φ(χ ο))

(:Υ’,Η ',φ(χο)).



CHAPITRE 3. OVERLATTICES IN AUTOMORPHISM GROUPS OF TREES 41

We claim that this triangle is also commutative. Indeed, by definition, if g £ π[χο, x]/Gx C (X, G#, £o) 

then

ΗΦ(9)) =  H®{ghx) =  θ(φ(<?))θ(7χ)ρφ(χ)

=  ^(&)7χζχ1 = Φ(5)7χ = i>(g) 

where we used relation (c) together with the fact that ζχ £ Ηψ(χγ Observe that

Φ(5)7χ € π[φ(χο),φ{χ)\/Η'ψ(χ).

The Lemma is proved. □

For a given overlattice Γ' of Γ, we can construct a covering mr' of graphs of groups as follows. 

Let Y = Γf\T and p' : T —> Y be the canonical projection.

Define subtrees R' and S' of R and «S', respectively, in the following way. For each vertex y of 

y , choose one vertex from each set {p/-1(y)} Π VR and call it y. Let R ' be the subgraph of R with 

vertices {y : y £ y}. Since R is a tree, we can choose vertices y so that R' is connected. Let S' be 

the maximal subtree of S containing R' such that p'\s* is injective on the edges. For e £ EY, choose 

elements g'e £ Γ' such that g'eo(e) = o(e). The graph of groups (Y,H9) is defined with respect to R\ 

Sf and gns, as (X ,G m) is defined in section 1.1.

Now the covering of graphs of groups, which will be denoted by m = mT : (X ,G 0) —> (Y,H0), 

is defined as follows. For the graph morphism m : X  —> Y, take the natural projection π. For the 

group morphisms mx : Gx —> Hm(x), take an element σχ in Γ' which sends x to m(x). We can choose 

σχ = 1 if x £ VR'UES'. Note that m(x) is a vertex of Y 9 thus m(x) £ R' whereas x is a vertex of X , 

thus x £ R. Let mx = ad(ax) o t be the injection followed by the conjugation (g »-*- uxga~l ). Since 

Gx stabilizes x £ VT U ET, the group axGxa~l stabilizes p(x) £ VT U ET, thus it is a subgroup 

of Ηό(χ\ = Γ '~  , for x £ VX U EX . For the elements 7x,7e in (iii) of Definition 1.1, take ηχ = σ~λ
' p(x)

and 7e = 9e°7l9m(e)· follows that

ad(lx17e) ° am(e) o me =  ad(y^ η β) o ad(g'm(e)) o ad{ae)

=  ad(axgea~1g,-{le)) o ad{g'm(e)) o ad(ae)

= ad(axge) = αά(σχ) o ad(ge) = τηχ o a e.

Since 7^’s are the elements of Γ', the map mr' is a morphism of graphs of groups. The maps 

mx are clearly injective, thus it remains to show that the map Φx/f (in Definition 3.1.2 (b)) is
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bijective. Suppose that for e,e' G E X  and g,gf G Gx, we have [φχ{ρ)ηχ l le]f = [Φχ{9')Ίχ We']/ in 

Ηφ{χ)Ια ίΗ f. In other words,

Ί ΐ 1ΊχΦχ{9~19 ')lx 17e' € « /(# /) 

9m(e)^eg7X<rx l<Tx9~l9'^~l^9e"y~llg'm(e)~1 € ad(g'f )(Hf)

^e97l9~lg'ge'0~} e Hf = Stabr>(f)

Since σβ sends e to f  and ae> sends e' to /, the element g~lg~lg*ge> of Γ should send e' to e. We 

conclude that e = e' since no element of Γ sends e to e' where e' Φ e in X  ~ T\T. We conclude that 

e = e' and g~1g/ G Ge, i.e. [g]e = [g']e'· Therefore mv' is indeed a covering of graphs of groups.

Proposition 3.1.7. Let Γ be a cocompact lattice of Aut(T) and (X, G#) be its quotient graph of 

groups. The map Γ' »—► rar induces a bijection m between the set of overlattices of Γ of index n and 

the set of isomorphism classes of the n-sheeted coverings of faithful graphs of groups by (X, G#).

The following lemma shows that the map m : Γ' i—► mr is well-defined.

Lemma 3.1.8. Let T be a lattice in T, and let Γ' D Γ be an overlattice. Fix (R , 5, ge) giving rise to a 

graph of groups structure (X , G#) on T\T (as in section 1.1.). Let (R\ S", g'e) (resp. (R", 5", g")) be a 

data giving rise to a graph of groups structure (Y, H0) (resp. (Y f, ϋΓ') ̂  on Γ'\Τ, and let (&x)xevxuEX 

(resp. (σχ)χενχυΕχ) be a data giving rise to a covering φ· = {φ,φχ, η'χ) : (X, G#) —► (Y, i/#) (resp. 

ψ· = {'ψ,'ψχ,η'ή) : (X ,G #) —> (Υ'>Η'Φ) ). Then the two coverings φ% and ψφ are strongly isomorphic.

Proof Recall that by definition, we have σ'χ : x i—► φ(χ) and cr" : x i—► φ{χ)Ί where σ'χ and σ" are in 

Γ'· Recall also that 7 ' =  < _ 1,7Ϊ  =  σ" -1 for x <=VX and 7 ' = 0etf'_1^ (e)~\ 7e =  9εσ"~19ψ(ε )~1 

for e G EX . Now we want to construct a strong isomorphism {Θ♦ : (Y,H0) —» (Y', ϋΓ'), ζχ} of 

coverings of graphs of groups. First notice that there is a canonical bijection θ : Y ~ Γ'\Τ ~ Y f. 

It lifts to a bijection Θ : i?' —> i?" and it extends to a unique bijection Θ : S' —> 5". Let us choose 

arbitrary elements ξν G Γ' for t/ G KY U ϋ?Υ such that (,y(y) = 6(y) and define maps

9y : Hy = —» Γ ~  = Hê yyh 1.

We have a morphism of graphs of groups 0. = (Θ, py) : (Y, # .) —> (Y', H 'm) by setting p  ̂= for 

2/ G VY and pe = for e G £Ύ . It is clear by construction that this is an isomorphism of
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where we have denoted by iy, i'Y the isomorphisms πι(Υ, if*, yo) ex. Γ', and πι(Υ ', H'9,6(yo)) ~ Γ', 

respectively.

Finally, put ζχ = ζφ(χ)^,χσχ~1. For any vertex x, there holds

Αά(ζ~ι)θφ(χ)φχ =  α ^ Κ Ο Κ Γ 1̂ ! ) )  ο αά(ξφ(χ)) o ad(a'x)

=  a d { { °x ) )  =  ψχ

as desired. A similar computation holds for φε : Ge —> H when e € EX . This proves condition (b) 

in the definition of strong isomorphism of coverings. Condition (c) follows from the very definition 

of ζχ,σν^ χ and 7 ". □

Now let us define the inverse map φ% ·—> Γφ of m as follows. Set Γγ := π\(Υ, Η%,φ(χo)) C 

Aut((Y, Ηφ,φ(χο)))· We define an embedding ίφ : Ty —► Aut((X, G*, xo)) as follows :

ίφ{ν) · v = 0_1(ii · Φ{ν)) for u € Ty and υ € V'pf, G.,xo) U E (X , G*,xo).

Let us denote by C Aut((X,G*,x0)) the image of ίφ. The following lemma shows that this map 

is well-defined.

Lemma 3.1.9. If φ. : (X, G.) —► (Y,H9) and ψ9 : (X, G*) —► (y ',# ')  are isomorphic co­

verings of graphs of groups, then the corresponding subgroups Τφ C Aut((X ,Gm,xo)) and Γ^ C 

Aut((X, G*, xo)) coincide.

Proof. By definition of isomorphic coverings, we have a triangle of isomorphisms of trees

( X , G . , x o ) - ^ ( y , t f . , 0 ( x o ) )

(Υ ',Η 'Μχ  o))

which is equivariant with respect to the action of the corresponding fundamental groups. Define 

Γγ C Aa£((y,iJ*,0(xo))), an embedding ίφ : Ty —► Aut((X,G.,xo)) and put Γ̂ , = Ιπι(ΐφ) C

graphs of groups (all maps are isomorphisms of groups). Note that there is a commutative diagram 

of isomorphisms

7ri(y,iJ#,yo) Γ'

Id

πι ( r ΚΛνο))
l y /
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Aut((X, G#, £o)) as above, and define in the same fashion. We claim that = Γ ,̂. Indeed, if 

u € Γγ then Q(u) € Ty/ and for v € (X, G#, xo) we have

ιφ(μ) · v = 0-1(u · φ(ν)) = · θ(φ(ν)))

= /4)~1(S(u) · ψ(ν)) = ίψ(θ(ν,)) · ν.

We deduce that Γ̂ , C  Γ ,̂. Replacing Θ· by its inverse and exchanging the roles of ψ* and φ· we 

obtain the reverse inclusion Γψ C  Γ^. Thus Γ^, =  as desired. □

Proof of Proposition 3.1.7. It remains to show that the map φ· Γφ is the inverse map of m. To 

see this, let Γ' D Γ be an overlattice of Γ. The quotient graph of groups Γ\\Τ = (X, G#) is formed 

relative to some datum (#, 5, gx) ; let us similarly choose datum (Rf, Sf,gfx) inducing a quotient graph 

of groups (Y, # ·) = Γ'\\Γ. Recall that by [Se], §5.4, there are, for any xo G VX and yo € VY, 

canonical isomorphisms Γ ~ πι(Χ, G .,x ο), T ~ (X ,G .,xo) and Γ' ~ πι(Υ, yo), T ~ (Y, # #,y0)· 

Choosing furthermore some elements ax’s as in the proof of Lemma 3.1.8 we get a covering (see [Ba], 

Section 4.2)

mr' : (X ,G .) ^ (Y ,H .) .

From [Ba], Proposition 4.2, the following diagrams commute :

(Χ,Ο„χ0) ^ ( Υ , Η . , ν0)

Γ ----------- *-r;

πίχ,β.,χοϊ-^ηΡ,Η.,νο) 
where we denote M r' the morphism of path groups induced by the covering mr' .

In particular, the pullback of πχ (Y, Hm,y0) via the composition of isomorphisms T ~ (X, G .,xo) ^  

(Y, 7J#,yo) is equal to Γ'. This shows that φm i—> is a left inverse of Γ' mr' .

To prove the other direction, let φ. : (X, G#) —> (^ ,# ·) be a covering of (X, G.) and set 

Γ' = Γψ c  Aut({X, G#, xo))· Now let (Y', ) be the quotient graph of groups associated as in Section

3.1.1 to the action of Γ7 on (X, G .,xo), relative to some choices, and let ψφ : (X, G.) —> (Y7, H ') be a 

covering constructed as in Section 3.1.2. By construction there is an isomorphism ψ : (X, G*,a;o) ^  

(Υ',Η'φ,ψ(χo)), equivariant with respect to an embedding Ψ : πι(Χ, G*,xo) <—i► 7Ti(V;, ψ(χο)),

id
τ
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and by the first part of the proof of Proposition 3.1.7., we have Γ' = i^(n i(Y /, Η'9,φ(χo))). Thus, 

composing φ~ι with φ and Φ -1 with Φ yields an isomorphism of trees Θ : (Yf, Η'9,ψ(χo))

(Y, Ηφ,φ(χo)) which is equivariant with respect to an isomorphism Θ : πχ(Y', Η'φ>φ(χο)) πχ(Y, H0, φ(χo)). 

At this point, we use the following Lemma :

Lemma 3.1.10 ([Ba], Prop. 4.4, Cor. 4.5.). Let (Z ,Km) and (W ,J%) be two graphs of groups.

For any isomorphism of trees σ : (Z, K 9i zo) ^  (W ,J9,wq) which is equivariant with respect to 

an isomorphism of fundamental groups Σ : πχ(Ζ, K9, zo) 7Ti(VF, J#,u>o) there exists a (unique) 

isomorphism of graphs of groups ω9(Ζ, Km) —» (W, J .) such that Σ = ώ and Σ = Ω.

Using the above Lemma, we conclude that there exists an isomorphism 0. : (Υ ',Η ') —> (Υ,ΗΦ) 

making the diagram

(xTG^x o) — (Y, Η^φ(χ o))

((Y ',H ',iI>(xq))

commute. Hence the coverings φ% and ψ. are indeed isomorphic as desired.

Finally, we check that the above bijection sends an overlattice of index n to an n-sheeted covering. 

Let Γ' be an overlattice of Γ of index n. We claim that mr is an n'-sheeted covering with n — n'. 

Indeed, we have

_ _  ΓΤV r>i _  vol(A\T) __ _  v ^ Y x ^ H y ) ^  _
n [ · J voi(r\\T) Σ  ^  "

yevy'  vl yevy'  wl yeVY v

Note that the first equality comes from the fact that T is a left Γ'-set (and Γ-set) with finite

stabilizers (see [BL], page 16). □

It follows from Proposition 1.7 that to find u(n), it suffices to count the number of isomorphism 

classes of coverings of faithful graphs of groups by (X, G*).

3.2 Main results

3.2.1 Upper bound

Let G be a group of order n and let η = Γΐ!=ι Pi* the PTim̂  decomposition of n. Let μ = μ(η) 

be the maximum of ki. We denote by d(G) the minimal cardinality of a generating set of G and by 

f(n) the number of isomorphism classes of groups of order n.
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In [P], Pyber showed that the number of isomorphism classes of groups of order n with a given 

Sylow set, namely the set of Sylow ̂ -subgroups defined up to conjugacy, is at most η75μ+16. Together 

with the result of Sims ([Si]), namely f(pk) < , we get the following upper bound for f(n) :

f(p) < 75μ+16

+75μ+16

Let g(n) = ^ μ2(η) + ^μ5/3(η) + 75μ(η) + 16 so that f(ri) < n9̂ n\

On the other hand, Lucchini and Guralnick showed that if every Sylow subgroup of G can be 

generated by d elements, then d(G) < d+ 1 ([Luc], [Gur]). Combining with the basic fact that 

d{H) < n for any group H  of order pn ([Si]), we deduce that

d(G) < μ + 1.

Using these results, we obtain the following upper-bound for u(n).

Theorem 3.2.1. Let V be a cocompact lattice of Aut(T). Then there are some positive constants 

Co and C\ depending only on Γ, such that

Vn > 1, ur(n) < ConCllog2in\

Lemma 3.2.2. Any covering φ· = (φ,φχ, 7χ) : (X, G#) —► (Y, Ηφ) is strongly isomorphic to a 

covering φ'% = {Φ',Φ'χ,Ύχ) : (X, C .) —> (Υ',Η'Φ) where each η'χ for x £ VX U E X  is a word, in 

hy € Gy’s (y € VYf) and the edges e € EY f, of length at most 12K, where K  is the diameter of X .

Proof. Fix xo € X . Associated to φφ is a lattice Γ' C Aut((XyGm,xo)) containing n\(X,Gm,xo). 

From (X ,G m,xo) we construct (R,S,ge) such that the quotient of (X ,G .,xo) by πχ(Χ,G#,xo) is 

exactly (X, G*). Namely, first fix a maximal tree r in X. We may choose R to be the set of paths 

ei · · · en from xo in r, S to be the set of paths e\ · · · enen+i such that e\ · · · en is a path in r and 

ge = e'i- "  ejen+i-1 · · · e\~x where e\ · · · e\ is a path in r from xo to £(e), and where e is the edge 

connecting e\ · · · en to e\ · · · en+\. In particular, ge is a product of at most twice the diameter of 

X  number of generators of Π(Χ, G*). Now we choose R ',S f subsets of R, S in such a way that 

the restriction of the projection (X, G.,#o) Γ'\(Χ, G#,a;o) on R' is bijective for vertices (resp. 

the restriction of S' is bijective on edges). We also choose g'e in a similar fashion as above, hence 

g'e is also a product of at most twice the diameter of X  number of generators of Π(Χ, G#). From

2 . .2 , 1 ! 
<  η 5?Μ + 3 Μ

2 fc3 ,  1 fc8 /  
,27 i ' 2
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this data, we construct a graph of groups (F ',# ')  as usual, and we have a canonical injection 

Γ' C Π (Υ ',# '). For x e X  there exists a unique lift x € R and a unique x' G R' in the Γ '-orbit 

of x. Choose Θχ E Γ' C Π (X ,G m) such that 9x(x) = x' and such that θχ is a product of at most 

l(x, xo) + l(xo> x') generators of Π(Χ, G.) : here /(a, b) is the distance in the tree R between a and b. 

This is possible since we may first choose a path in the path group Π(Χ, G .) from x to xq of length

< l(xyxo) and then a path from xq to xf of length < l(xo,x')· Observe that since we chose R' C R , 

we have l{y>w) < K  for any vertices w,y £ VX. We do the same thing for edges in S, to define 

6e € Πι(Χ, G .) such that 0e(e) =  e' and θ€ is a product of at most 2K  generators of n(X , G#). 

Then we can construct from θχ and 0e’s a covering φ'9 : (X, G.) —> (Y\H,)y with = θ~1 and 

ύ' =  ge9~lg~,1, which are both products of at most 6K  generators of Π (X, G#). Observe that a 

word of length I in generators of Π(Χ, G0) belonging to Γ' is also expressible as a word of length I in 

generators of Π (F', if ') . Finally, by the proposition on bijection of isomorphism classes of coverings 

and overlattices, φ% : (X, G0) —» (Y,Hm) is isomorphic to φ'φ. □

Proof of Theorem 3.2.1 Let us fix a quotient graph of groups (X , G.) of Γ as in section 1.1. There 

exist only finitely many coverings of edge-indexed graphs by the edge-indexed graphs underlying 

(X, G#), thus it is enough to show the assertion for the number of overlattices with a fixed edge- 

indexed graph. Thus we want to count isomorphism classes of n-sheeted coverings of graphs of 

groups φ% : (X, G .) —► (Y,H9) such that Y is a fixed quotient graph (with fixed indices) of X  and 

φ : X  —>Y the natural projection.

If two coverings are isomorphic, then the corresponding groups Hy are isomorphic. Thus we count 

the number of isomorphism classes of Hy, and we consider fixed Hy s. They are of order ncy.

If two such coverings are isomorphic, then the corresponding graphs of groups (y, H.) are iso­

morphic. Up to isomorphism of graphs of groups, to prescribe the edge groups H j and the mono- 

morphisms otf : H j —» ϋ 0(/)> it suffices to consider, for each y, a subgroup H j of # 0(/)> whose index 

is c0(^)/c/, and an isomorphism φ : H j —> H j.

We thus count the number of subgroups of index c0(f)/cf of a group of order ftc0(/)> for each /, 

and the number of isomorphisms between two groups of order ncf for each /.

Let cx = \GX\ for any x in VX UE X  and let cy = ( Σ  . By the definition of n-sheeted
xe<f>~1(y)

covering, the cardinality \Hy\ satisfies \Hy \ = ncy, for any y in VY U EY.

Now we claim that for any group H of order n, there are at most (ra! )^ n)+1 subgroups of index
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ra. For to any transitive H-action on the set {1, * · · , ra}, we can associate a subgroup of H  with 

index ra, namely the stabilizer of 1. This map {p : H  —> Sm} — > {Hf C H\[H : H '] = m} is 

surjective since for any subgroup H ' of H with index ra, the action of H  on the cosets H /H f gives 

(among many) an action on {1, · · · , ra}, where we let 1 stand for the trivial coset H f. Again by the 

theorem of Lucchini and Guralnick ([Luc] [Gur]), there are at most (πι\)μ^ +1 transitive //-action 

on the set {1, · · · , ra}, as claimed.

There are at most Y[yeVY(cyn)9̂ cyn  ̂ isomorphism classes of Hy s. By the above claim, the num­

ber of subgroups af(H f) of Hy is at most ((cy/cf)\)^CyTl̂ +1. There are at most Π /€ £κ(°/η)μ^ /7̂ +1 

isomorphisms φ : otfHf —» a jH f and at most Π xev χ{βΦ{χ)η)μ °̂χ̂ 1 injections φχ : Gx —> Ηψ^χγ 

By Lemma 3.2.2, there are at most {Σν£νγ \Hy\)12K choices for each ηχ or 7e, where K  = 

diameter of X . Hence

# { ( 7 * 1  7 e ) }  < Ί
vj

ί

v x v
ax (cvn)
\SY y '

12 K max (cyn)12K
y £ V Y  V '

which is bounded by (Mn)(12KMvx l+lEX^, where M  = maxEXcy ·

Note that by the condition of injectivity and the commutativity of the diagram,

Gx

the group morphism φε : Ge —> Ηφ(β) is completely determined by the morphism φχ : Gx —> Hx. 

Let M  = max cyy μ = μ(Μη). Let c0 = \VYL c\ = \EY\, c2 = max
y e V Y u E Y  y v y 1 1 1 ”  { f e E Y }  v c /  y j»

c3 = Σ  M c®) + 1- Combining all the estimates above, we get the following upper bound for u(
xevx

Ur  (n )  <
y€V 1

cyn)9*'Cy™> (c/ n ),‘<c' n>+1

((Co(e)/ Ce)!)Mc»w"+1 ■ ( ( Μ η ) 12Κ « ν χ Μ Ε Χ » )

<  JJ (M n )9<Mn) J ]  (Μ η ) μ ( ο * )+1 (Μ η ) μ ( Μ η >+1
n ^ V Y  ' r d V Y  fcRV

J J  (c2) ^ " +1 · ( ( Μ η ) 12Κ (Ιν χ Ι+ Ι£ χ Ι))

Ηφ(β) Ηφ(χ)
ad( 7Χ 1Ί ε )οαφ{β)
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u r (n )  < ( M n ) Cog(Mn)+C3+Cl(fi(Mn)+1)(c2)Cl^ Mn^+1̂ (Μ η 12Κ^ ν χ +̂ ε̂ χ ^)

<(Μ η)&€ομ2+^ μ5/3+(75εο+2θι)μ+(16θο+2°1+θ3^ ι(μ+1)((Μη)12Κ(|νχ|+|βλΊ)) 

<(0οη)°ιμ2 < (C0n)c' ^ n^

where Co =  max{M,C2}, Ci = c0( ^  + | + 75 + 16 + 2) + 6ci + C3 + 12K(\VX\ + \EX\) and

3.2.2 Study in the case of a loop

Let p be a prime number. From now on, we assume that T is a 2p-regular tree and that Γ is a 

cocompact lattice in Aut(T) with a quotient graph of groups given by

The aim of this section is to give, in this situation, a smaller upper bound on ur(n) than the 

previous one, as well as a lower bound.

£>Pi> · · · &i> · · · »kt’s and let ko tend to infinity. Then there exist positive constants co,ci such 

that limsup-^ f  < Co. For n = Po°(ko > 3), we also have nso ~4 < ur(n) < n~^+1.
ko~* OO

In the following lemma, we denote by [g,h] the commutator ghg~1h~l in G.

Lemma 3.2.4. Let A = (a5,t)i<s,t<fc-i be a lower triangular matrix with coefficients in 0, · · · ,p — 1 

and G = G(A) be a group defined by the generators go,g\, · · · , and the following relators

□

Theorem 3.2.3. Let η = Pq^Pi 1 ···£** be the prime decomposition of n with po = p. We fix

i = 0,1, · · · ,k

i = 0,1, · · · , k — 1

[ft. flt+2] =  9i+1, i =  0,1, · · · , fc — 2

[fli) ffi+3] =  9i+ 1 §i+2 > t =  0, 1, · · ■ , fc — 3

Then any element of G can be written as gl$ · · · gl£  where 0 < ij < p, and G is a group of order at 

most pk+1.

C" — C l ._
° 1  _  (log 2)2 '

Z/pZ {1}

[pi 5 Pi-fl] 15

[pi? Pi+fc]
-α*-ι,ι - d k - 1,2  - a k - i , k -  

~  9 i + 1 #i+2 ••’i/i+fc-i 0 .
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Proof. We proceed by induction on k > 1. It is clear for the case k = 1 since the generators go 

and g\ commute. Now suppose that the assertion is true for all k < m — 1. For k = ra, consider 

the subgroup G\ generated by go,9i, · · · ,0m-i· It is a quotient of G(-A') with A! = (aSit)i<s,t<k-2, 

by induction hypothesis, any element of G\ can be written as gq° ■ · -g^ll where 0 < ij < p. Now 

we only need to consider the elements of G — G\. By an easy induction, it suffices to consider the 

elements = [gugm]~l9i9m for i = 0,1, · ■ · ,ra - 1. Since [&,<jm] € [G,G] C Gi, the element 

[Sii 9m\~l9i is an element in G i, thus can be expressed as g^gii · · · g^Zl for some ij in {0, · · · ,p — 1}. 

Therefore we get gmgi = <7o° ’ '' 9^-19m· It follows that G has order at most pfc+1. □

Lemma 3.2.5. Let G be a group of order pk+1 (k > 1), G\ and G2 be two isomorphic subgroups of 

index p in G and φ be an isomorphism from G1 to G2. Suppose that G1 contains no subgroup N 

which is normal in G and φ-invariant. Then

(a) there exist elements gi in G for i = 0, · · · ,k, such that <p(gi) — gi+i for i = 0, · · · , k — 1,

G = (00> *' · >9k) and Gi = (^0, · · · ,gk-1)>

(b) There exists a lower tnangular matrix A with coefficients in 0, · · · ,p — 1 such that the map 

ψ : G(A) —> G defined by §i 1—> gi is well-defined and is an isomorphism.

Proof. We proceed by induction on k > 1, using the fact that any maximal proper subgroup of a 

p-group is normal, see for instance [Su].

We first consider the case k = 1, that is when G has order p2. Since G\ and G2 are maximal, 

they are normal. Thus they are not equal by the normality assumption and G = (G i,G 2). Let <70 

be an element in G\ — G2 and set g\ = φ^ο). Then clearly G1 = (go)^ 2  =  (gi) and G = (go,gi)· 

Moreover, since |G| = p2, G is abelian [Su]. Thus [go,gi] = 1 and G = {gtfgl1 : 0 < io,i\ < p — 1}, 

which shows that ψ in (b) is well-defined and surjective. Since G(A) has cardinality at most p2 by 

Lemma 3.2.4, and G has cardinality p2, the map φ is an isomorphism.

Now suppose that the assertion is true for all k < m. For k = m, consider G ,G i,G 2 and φ as 

in the statement of the lemma. As above, G\ and G2 are normal, distinct and G = (G i,G 2)· Since 

[G2 : G2 Γ) Gi] < [(Gi, G2) : G\] = p, we have [G2 : G\ Π G2] = P and similarly [G\ : G\ Π G2] = p. 

Therefore G\ Π G2 is maximal, thus normal in G\ and G2. Since G is generated by G\ and G2, the 

subgroup Gi Π G2 is normal in G. By the assumption, <p(G 1 Π G2) Φ G\ Π G2.

Claim . If a subgroup N  of G\ Π G2 is normal in G2 and (^-invariant, then N is normal in G.
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G

Gi
Ψ

G2

G\ Π G2
ψ ^(GinG2)

N

Proof; Consider gNg~l , for any g G Gi. As ^(piVp-1) = φ ^)φ (Ν )φ ^)-1 = ip{g)N<p{g)-1 = N 

(since <£>(<7) € G2) and is an isomorphism, we deduce that gNg~1 = φ~1(Ν) = N. Therefore 

G 1 C Ng(N) and similarly G 2 C Ng(N). Thus G, as a group generated by G\ and G 2, is also

By the above claim, we can use the induction hypothesis on G' =  G2, G'j = G iflG 2, G2 = ^(G ifiG 2) 

and φ' = <p\G1nG2- It follows that there is an element g\ in G2 such that G2 = (01,··· ,0m), 

Gi Π G2 =  (01,··· ,9m-1) and </?(&) = pi+i for z = 1, · · · , m - 1.

Let go = φ_ 1(0i)· If 0o £ G iOG 2, then <71 G ^(G iO G 2), which contradicts G iflG 2 φ ^(G iOG 2). 

Thus go is an element of G\ — G2. Since G2 is maximal in G, the group G is generated by G2 and 

<?o, i-e., G = (00,01, * · · ,0m)· It is clear that G\ = {go, · · · ,0m-i) as G\ Π G2 is maximal in G\ and 

0o £ Gi — (Gi Π G2).

To prove the assertion (b), note that [g0, gi) = <£>-1([pi, 0i+i]) =  · *' 0?Μ) = 01^  * * ’ 0*-i

for 1 < i < m — 1 and g f  = 1, for alH > 1 by induction hypothesis. Thus we only need to consider 

[go, 9m] and gop. The element go clearly has order p since φ is an isomorphism and g\ = ip(go) has 

order p. It is easy to see that if two subgroups H  and K  are normal subgroups of a group G, then so is 

the commutator subgroup [ Η ,  K] and we have [ Η ,  K] C Η Π Κ .  Since go G G\ and gm G G2, it follows 

that [00,0m] G G i Π G 2 = (01,02, · * · ,0m-1), which proves that φ  is a well-defined homomorphism. 

By the previous paragraph, it is surjective. Since G and G(A) are of cardinality pk+1 and at most 

respectively, the map φ  is an isomorphism. □

Lemma 3.2.6. Let A be the set of (k — 1) x (k — 1) lower triangular matrices with coefficients in 

{0,1, · · · ,p — 1}. There are at least p(ϊϋ-2)(ί ~2) elements A in A such that the group G{A) is of 

order pfc+1.

Proof. The idea is to consider only the nilpotent groups of degree 2 (with large center) among the 

groups G(j4)’s of A. Let us consider the subset of A which consists of matrices A = (a^·) such that

contained in Ng {N). Hence N is normal in G. □

aj-i,t = 0 for all t if j  < [£*] and t = 1, ■ · · , [| — i ]  — 1, [f + &] +1, · · · , j  — 1 if j  > [f§]. Then
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the group G is a group described in Lemma 3.2.4 with the following additional relations :

_ _ [ 9 '
[9i,9j} =  1» if L?-*l<

3 Q 2 k 9A/
[§i,9i+j\ =  9il li_k .] --'9i+[j.+fi.], if j >  [ ïô

where [a] denotes the largest integer smaller than or equal to a.

Now we claim that the group G is isomorphic to a semidirect product

G = (Z/pZ)M w] x (Z/pZ)[^]+1,

h f 1
defined as follows. Let gor “  > anc* 9k-[^]+i> ’ ” »̂  be generators of the group (Z/pZ) to J

and (Z/pZ)^^+1, respectively.

For every integer i such that 0 < z < f c - [ f | ] - l ,  we define a linear automorphism a i of 

(Z/pZ)[w]+1, by

r 9 I T9
<ri(9u) =  9u if u < i +  — k , i < k -  — k

/ “f a  . .  - ^ r 9fc‘<*%(9i+j)  9i + [ i _ £ _ y 9 i + ^ + £.}9i+j,  J 1Q •

Then cri(gu) and ai(gi+j) are all of order p since gu are of order p and are m center.

The automorphisms Oi mutually commute i.e. cricrj(gu) =  0'j0'i(gu) since (Ti(gj) are all in the center. 

Note also that Oi are of order p, because every pu’s appears in ai(gi+j) are are all in the center. 

Therefore there is an action by automorphisms of (Z/pZ)k~^^  on (Z/pZ)!™!4'1.

Now for every matrix described in the beginning of the proof, it is easy to see that the group G(A) 

is isomorphic to the semidirect product described just above : the relations we get from the definition 

of a semidirect product gig^g^1 = cn(gj) (where 0 > i < k — [ | |]  — 1 and k — [ | |]  — 1 > j  > k) are 

precisely the relations on commutators in the definition of G(A). Hence the group G(A) is clearly a 

group of order pk+1. Note also that the subgroup Gf generated by go, • • • , gk-i may also be described 

as a semidirect product, hence is a group of order pk. There are

components of A which are not zero, thus there are at least p(™ 2)(s 2) elements of A which 

are of order pk+l. □

k- 1

E
H t t ]

([
J
2 +

k
10

j
2

k
10M k

10
- 2 )(

k
5

- 2 )

aij

(,9i+j )

к- [ t]
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Proof of Theorem 3.2.3 By Proposition 3.1.7, the number un is the number of isomorphism classes 

of n-sheeted coverings of faithful graphs of groups φ% : Γ\\T —>· (X, Gm). As already seen, we may 

assume that X  = Γ\T. The following commutative diagram summarizes the data defining φ% :

1 ------ ►  Z/pZ

Ote }'
Ge > Gx

Π/-7Γ

Let’s first consider the case when n = pk. Let G = Gx, G\ = ae(Ge) and G2 = c*e(Ge). The

cardinality of G is pk+l since it is the index n times the cardinality of Z/pZ.

By the condition of faithfulness, G\ and G2 are distinct as they are normal subgroups of G.

Hence if we let φ = α δ o a ”1 : G1 —> G2, then φ is an isomorphism and there is no subgroup of G\

which is normal in G and (^-invariant. Thus we can use Lemma 3.2.5 to find an element <70 in Gx such

that Gx = (<7o> 9k) where <p(gj) = 9j+\ - Moreover, the group G is isomorphic to G(A) for some

matrix A, which is determined by A. (note that A also determines Ge and the maps ae and α^.) Thus 

^  k — 1
we have at most p ^ j=choices  for GX)Geia e and a^, which is exactly the number of choices of 

(cist)i<t<s<k-i · Once we have fixed Gx, Ge, ae and an injection i from Z/pZ into Gx is determined 

by the image of a generator in the domain, which implies that we have at most \GX\ = pk+l choices 

for i. Therefore we have an upper bound ur{n) < = p { ~i) = p k \k+2.

Now let us construct mutually non-isomorphic faithful coverings of graphs of groups to deduce 

a lower bound of u(n). Let Af be a subset of A consisting of lower triangular matrices A = (ast) 

l < t < s < k  — 1 such that furthermore ak-ι j  =  0 for j  =  0, · · · , k — 1. Note that there are at least 

p to the

ξΧΗΙ-ΗΜΜΐΗ
HttJ

elements of A'. Let us fix a matrix A in A ' and let Gx = G(A) be the group described in Lemma 

3.2.6.

Let us define the covering graph of groups φΦ{Α) = (Idr\T, 0., 7.) : Γ\\T —» G. and we show 

that there are many elements A's of A’ which give rise to mutually non-isomorphic coverings of 

graphs of groups. Let Ge be the subgroup of Gx generated by go, · · · , Let the injection ae be 

the inclusion map and the other inclusion a€ be defined by ote{gi) = §i+1 G Gx, which is indeed a 

monomorphism by the definition of G(A) (for every A in A. Therefore, the group morphism φ = ψΑ 

defined by = <7i+i is an isomorphism from ae(Ge) onto de(Ge). For any nontrivial element
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h = · · · g%£  in Ge (with nonzero ijt), ipk~jt (h) = glj0\k_jt · · · gk £ Ge. Therefore the data G. 

defines a faithful graph of groups, as there is no </?-invariant subgroup of Ge.

Let g be a generator of ZjpZ and set 4>x(g) = go§k- This defines a group monomorphism φχ : 

Z/pZ —» Gx since the order of gogk is p by assumption. Let 7x = 7e = 7e = 1· Then map

Φχ/e : Z/pZ/ae(l) —► Gx/a e(Ge) — (gk) 

[d\e [9o9k]e 

Φχ/Ε : Z/pZ/ag(l) -> Gx/a s(Gs) ^  (go) 

[g)e 19o9k]e

clearly satisfies the condition (b) of Definition 3.1.2 for a covering of graphs of groups since gogk is 

nontrivial and has order p in Gx/a e(Ge) — (go) and has order p in Gx/ae(Ge) — (gk)· Thus we 

have constructed a covering of graphs of groups. Now suppose that the coverings of graphs of groups 

Φφ(Α) and Φφ(Α') : Γ\\T —► (X, G^) are isomorphic. Now we want to show that there are sufficiently 

many 4̂’s which give rise to mutually non-isomorphic coverings.

Lemma 3.2.7. For a given A, there are at most p2fc+4 number of A’ such that φ%(Α) and φ%(Α’) 

are isomorphic.

Proof. Let A and A! be in A'. Let φ9(Α) and φ·(Α*) be the corresponding coverings, respectively. 

Let (Gx,G e = Ge,ote,ote) and (Hx,H e = i?e,ae,a!e) be the vertex group, the edge group, and the 

injections of the target graphs of groups of φ.(Α) and φ.(Α'), respectively.

Let us denote by go," - ,gn and ho, · · · ,/in the generating set of Gx and Hx defined by the 

m a trice s  A a n d  A!, respective ly .

Now suppose that 0. = (Idr\r,^·, P·) · (X ,G x) —> (X ,H x) is an isomorphism of coverings. 

Since the map on the universal covers commute, and the elements ^x^ e,le are all trivial for φΦ(Α) 

and φ.(Α'), the map Θ on the universal covers of (X, Gm) and (X ,H m) maps [gogk] to [hohk]- In 

other words, pxOx(gogk)px1(hohk)~1 G Hx. Since 0x(gogk) and (h0hk)_1 are elements in Ηθ(χ̂  we 

conclude that px G Hqx and pe G Hêxy By substituting px by 1 and pe by p~1pe (with the same 

maps θχ and 0e), we may assume that px = 1.

Therefore, by the definition of morphisms, there are elements pe,pe € Hx such that the following 

diagrams commute.
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■Gx Ge

H.

0e ex Qe
A d ( p e ) o a e(e) "

. . T J
A d ( p s ) o a e(e) '

He)' ■ ^0(x) He{e)

Gx

Let us define the isomorphisms σ and β so that the diagrams

id
He

id
H-e

Ote

ae(^e) ■ Q ! e ( G e )  OLe{G e) -Ote(He)

commute.

Combining these diagrams, we obtain the following commutative diagram

&e(Ge)

CXe(He)

• Oi€{Ge)

■Cte(He).

By definition of isomorphism of graphs of groups, we have 9e(Ge) = He. Since the groups ae(He) is 

stable under the adjoint action by any element of Hx (recall that the commutators are in the center 

and the center is a subgroup of ae(Ge) and ae(Ge)), we have Ad(pe)(ae(He)) = a e(He). Thus, by 

definition of morphisms, we have

ex{ae{Ge)) = Ad(pe) (ae (θε (Ge))) = ae{He),

and similarly

ex(ae(Gg)) =  Ote{He).

Now let us define a group isomorphism φ so that the following diagram commutes.

— ----*Cte(Ge)aJ1OteiGe)

θχ

ae{He)

We claim that φ is completely determined by pe and pe. Indeed, Φ maps 6x(ae(g)) =  p~1(ae(9e(g)))pe 

to θχ(σ(αε(ρ))) - θχ(αε(g)) = p1l (as(es{g)))ps for any g € Ge. In other words, φ maps p~'upe to 

p i 1P(u)ps for every u € ae(He), i.e. φ =  Αά(ρερ~1)β.

(xe6ecxe
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Next, we will show that, under θχ, the subgroups G[ij] = (<7i,· ·· ,gj) C Gx are necessarily 

mapped to certain subgroups uniquely characterized by ae(He), ae(He) and the map φ. Let

us define the subgroups by descending induction on \i - j\. We have

H[0}n—1] =  #[0,n-l] =  Oie{He) =  φ(β[  0 ,n-l] )  =  0*(G[O,n-l])

and

#[l,n] =  H[l,n] =  Οίβ(Ηέ) =  φ(β[ i >n]) =  0a:(G[l,n])·

Assume that #[ij] is defined for all pairs (z, j) such that |i — j\> I and that Ox(G[ij]) = H [ i j ]  for 

all such (i, j).

If n — I > i > 0, then we set

# [m +J] =  #[t-l,t+Z] 1]·

Note that Η^^ΐ] 6x(G[i—i i+i]>) Π 0x{G\i^+q) 0x(G\i i+î ) so that p .

If i =  0, then we put

H[o,i] = ψ-\Η[1ί1+1]).

Note that 0*(G(o,f]) =  0*(σ-1(σ [<ιί+ί])) = ■φ~1θχ{0[ιίι+1]) = = H[0tl].

If 2 = n — then we set

H[n—Ζ,η] =  Φ (^H[n—l—l,n—1]̂  ·

Again, note that ^(G[n_i>n]) = H[n_Un].

At the end, we have thus defined groups ■£/[*,»]» purely in terms of pe,pe and β such that we 

necessarily have 9x(G[i,i\) — H^ L e t  /io be a generator of H[Q)o], and set hi = φιίιo, so that

% i]  = (Λ7 = 7 € Z/pZ}.

Hence, 0® necessarily sends to ^  for some 7* € (Z/pZ)*. In fact, since a(gi) = and 

φ(Η{) = h{+1 we even have 7* = 70, Vi.

Thus if (0., pe, pe) : (X, G) —► (X, iJ) is an isomorphism of coverings, there exists 7 € Z/pZ such 

that

Οχ \ Gx ► Hx 

g% *-> hJ Mi.
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But then

[ 9 i , 9 j ] = 0 ~ 1{[hi ,hj ])

is completely determined by pe,pe>7 and β.

In other words, for a given A*, there are at most p2(fc+1)p(p — 1) < p2fc+4 possible A such that 

φ{Α) and φ{Α') are isomorphic coverings. □

Combining Lemma 3.2.6 and Lemma 3.2.7 there are at least p(ib_3)(5 ~1)_2fc~4 thus at least 

pk(k/50-37/10) n0n-isomorphic coverings </>(̂ 4)’s.

Now let’s consider the general case. Recall that |Ge| = Π*=ο Pi* and |GX| = ΓΊ*=οPi'P = 

Po°+1 n := i p*4, thus the order of the Sylow pf-subgroup of Ge and that of Gx are the same for 

all i ^  0. Let be a Sylow p^-subgroup of Ge. For i φ 1, let G®p^ = ae(GiPî ). Choose one 

p-Sylow subgroup G ^  of Gx containing a e(G ^ ).

We are now going to show that the faithfulness condition is inherited to the Sylow p-subgroups 

Ĝe \ G ^  of Ge and Gx, from which we can use the upper bound given in the first part of the proof. 

Conjugating a? by an element of Gx, if necessary, we may assume that c t e ( G C Ĝx \ thus we 

have the following diagram :

<*e

Ge= £ G x
* a e  .

x a e ^  v(p) > M p)

Suppose that N < G^  and M  = ae(N) = ote(N) < G^ . Let N  = (gNg~1 : g G Ge) (respectively 

JJ  = (gAfg~l : g € Gx)) be the smallest normal subgroup of Ge (respectively Gx) containing N 

(respectively Λ/’).

Note that a* (i = e,e) induces a bijection between left cosets

G e/G M  — + Gx/G£p)

gG (p) ^  OitoJGW.

For since a* is injective, if g G ^  is mapped to Ĝx \ then g is in ai(Ge) Π G*p\ which is a p-group 

in ai(Ge) containing a i(G ^ ). Since a i(G ^ ) is a Sylow p-subgroup, a i(G ^ ) Π G ^  is equal to 

a*(Ge). Thus is contained in G ^  if and only if g~lh G G ^  and the map is injective. It is

surjective since the source and the target have the same cardinality. Thus any element g in Gx can



CHAPITRE 3. OVERLATTICES IN AUTOMORPHISM GROUPS OF TREES 58

be written as ai(g')hi for some gr 6 Ge, hi e G ^  and we have gMg~l = Oii(gf)hiAih^1ai(g'~1) = 

θί-ί{^)Μθίΐ(^~ι) (i = 1, 2). Therefore a\(N) = = J7 and it is normal in Gx. As a consequence,

G ^  and G ^  satisfy the condition of faithfulness, i.e., there is no subgroup N  of G ^  such that 

ae(N) = ae(N) is normal in G*^. By the first part of the proof, this implies that the number of 

choices for Gx Ge , &e\G(p) and as\G(P) is at most p 2

Since all the other G and G ^  have fixed cardinality, we have a constant total number of 

choices for them and the injections ae\GPi, say cq. Recall that once all the G ^ ’s and GeP̂ ’s are 

chosen, the number of Gx with a given fixed Sylow system is at most (ρη)75μ̂ ρη +̂16([Ρ]). Recall also 

that the injections ae are determined by its restriction to Sylow subgroups of Ge since they generate 

the group. Finally we have the following upper bound.

(feQ + 1)2 + (fcQ + 1)+2 , \75u(xm')+16 / fcp+sfcp+s \75u+16
Un <  Cop 2 (ρη) μ ρ̂ )+  <  c o ( c i )  2 ( ρ η ) ^ μ+1{)

where c\ = p and μ = μ(ρη). □

Remark. It follows from the proof above that each prime factor of \GX\ is less than or equal to p, 

thus in the case p = 2, u(n) = 0 if n is not a power of 2.



Chapitre 4

Overlattices in automorphism 
groups of buildings

4.1 Introduction

The theory of graphs of groups describes group actions on trees; see [Se], [Ba] and [BL]. The 

theory of complexes of groups, due to Gersten-Stallings [GS], Corson [Co] and Haefliger [H2], [BH], 

generalizes Bass-Serre theory to higher dimensions. Our first aim is to develop some basic tools for 

complexes of groups, analogous to those in [Ba], and which do not appear in [BH].

We recall Haefliger’s theory of complex of groups in Section 4.2.4. Briefly, the action of a group 

G on a simply connected polyhedral complex K  induces a complex of groups G (^) over the quotient 

y  = K\G. The fundamental group 7Ti(G(^)) of G(y) then acts on the simply connected universal 

cover G(y) of G(y), with 7Ti(G(;y)) isomorphic to G, and G(y) equivariantly isometric to K. An 

arbitrary complex of groups G (y) is developable if it is induced by a group action in this way. A 

key difference between Bass-Serre theory and complexes of groups is that complexes of groups need 

not be developable. However, if a complex of groups has nonpositive curvature (see Section 4.2.4), 

it is developable.

In [Ba], Bass developed a “covering theory for graphs of groups”. To translate in the framework 

of complexes of groups the general theory of coverings of etale groupoids, Haefliger developed a 

covering theory for complexes of groups ([H2]), similar to the covering theory of Bass. It seems 

interesting to compare two theories and to complete the analogy between them. We hope that the 

following additional results will be useful.

Our first main result describes the functoriality of coverings, and corresponds to Proposition 2.7, [Ba].

59
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Remark. Haefliger, by a personal correspondence, explained to us that Theorem 4.1.1 and Pro­

position 4.1.2 are also consequences of a functorial 1-1 correspondence between the coverings of an 

etale groupoid and the coverings of its classifying space. He furthermore indicated that if there is 

a covering from G(y) to G (yf) then G(y) is developable if and only if G (yf) is developable, an 

assertion stronger than Proposition 4.1.2. Here we present our results as they are proved without 

refering to the theory of etale groupoid.

Theorem 4.1.1. Let X : G(y) —» G 'ty ) be a covering of developable complexes of groups. Then X 

induces a monomorphism of fundamental groups

A :^(G (y))->7r1(G,(y ))

and a A-equivariant isometry of universal covers

L : GO?) -  G W

We prove Theorem 4.1.1 in Section 4.3.2, using material from Section 4.3.1. The proof that L is an 

isometry is more difficult for complexes of groups than for graphs of groups, because, unlike trees, a 

local isometry of polyhedral complexes is not in general an isometry.

In Section 4.3.3, we characterize the group

N =  ker (iri(GOO) -» Aut(G(y)))

where G(y) is developable. This corresponds to Proposition 1.23, [Ba]. If N  is trivial, then the 

complex of groups G(y) is said to be faithful, and we may identify the fundamental group n\(G(y)) 

with a subgroup of Aut(G(}>)).

We also develop other, more technical, results. For example, the material in Section 4.3.4 corres­

ponds to Section 4, [Ba]. As described in Proposition 2.1 of [Th], Haefliger’s definition of morphism, 

when restricted to complexes of groups over 1-dimensional spaces, is not the same as a morphism 

of graphs of groups. Also, the universal covers of graphs of groups and of complexes of groups are 

defined with respect to different choices. Hence, our proofs differ in many details from those of [Ba].

An additional consideration for complexes of groups, which has no analogue in Bass-Serre theory, 

is the relationship between coverings and developability. In Section 4.3.5, we show :

Proposition 4.1.2. Let X : G(y) —» G '(yf) be a covering of complexes of groups.

1. If G '(y') is developable, then G(y) is developable.
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2. If G(y) has nonpositive curvature (hence is developable), then G'{yf) has nonpositive curva­

ture, hence Gf(y') is developable.

We then apply this covering theory to the study of lattices in locally compact groups (see Sec­

tion 4.2.1 for the basic definitions concerning lattices). Let A" be a locally finite polyhedral complex, 

so that Aut (if) is a locally compact topological group (see Section 4.2.2). Let Γ be a cocompact lat­

tice in Aut(if). An overlattice of Γ of index n is a lattice Γ' < Aut(if) containing Γ with [Γ' : Γ] = n. 

Let ur(n) be the number of overlattices of Γ of index n. By arguments similar to those for tree lattices 

(Theorem 6.5, [BK]), ur(n) is finite.

The asymptotics of ur(n) in the case i f  is a tree are treated in Chapter 3. In higher dimensions, 

suppose i f  is the building associated to a higher-rank algebraic group G, such as PSLs(Qp). Then 

G has finite index in Aut (if). It follows that for any Γ, ur(n) = 0 for large enough n, since the 

covolumes of lattices in G are bounded away from 0 (Borel-Prasad [BP]). In contrast, if i f  is a right- 

angled hyperbolic building, such as Bourdon’s building ΙνΆ (see [Bo2]), then Thomas [Th] showed 

that Aut (if) admits infinite ascending towers of cocompact lattices. Hence there is a Γ such that 

ur (n) > 0 for arbitrarily large n.

In order to further study the growth rate of ηγ(η), in Section 4.4 we specify the relationship 

between coverings, and subgroups of Aut (if) containing Γ. We define isomorphism of coverings (see 

Definition 4.4.1) so that the following bijection holds :

Theorem 4.1.3. Let i f  be a simply connected polyhedral complex, and let T be a subgroup of Aut ( if ) 

(acting without inversions) which induces a complex of groups G(y). Then there is a bijection bet­

ween the set of subgroups of Aut ( if ) (acting without inversions) which contain Γ, and the set of 

isomorphism classes of coverings of faithful, developable complexes of groups by G(y).

The main ingredients in the proof of Theorem 4.1.3 are Theorem 4.1.1 above, and the results of 

Section 4.3.4.

We then apply Theorem 4.1.3 above to obtain upper and lower bounds for ur{n). As a corollary 

to Theorem 4.1.3, we show that there is a bijection between n-sheeted coverings, and overlattices of 

index n. Then in Section 4.5.1, we prove the following upper bound, for very general i f  :

Theorem 4.1.4. Let i f  be a simply connected, locally finite polyhedral complex and Γ < Aut(if) 

a cocompact lattice. Then there are some positive constants Co and C\, depending only on T, such
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that

Vn > 1, ur(n) < (C0n)Cllog2(n)

This result is asymptotically the same as the upper bound for tree lattices in [LI], and the proof 

uses the same deep results of finite group theory. However, the definition of covering of complexes of 

groups makes this bound easier to obtain (thus giving an alternative proof of the result for trees). 

The lower bound below, proved in Section 4.5.2, is for certain right-angled hyperbolic buildings.

Theorem 4.1.5. Let q be pnme and let X  be a Bourdon building Ip,2q- Then there is a cocompact 

lattice Γ in Aut(X), and constants Co and C\, such that for any N > 0, there exists n >  N with

ur(n) > (C0n)c> logn

In fact, we construct Γ, and prove this lower bound for more general right-angled buildings. The 

proof relies on Proposition 4.1.2 above, and applies the Functor Theorem of [Th] to a construction 

for tree lattices in [LI].

Theorems 4.1.4 and 4.1.5, together with the examples given above for buildings, are presently 

the only known behaviors for overlattice counting functions in higher dimensions.

4.2 Background

We begin with the basic theory of lattices, in Section 4.2.1. Since the quotient of a simplicial 

complex by a simplicial group action is not in general a simplicial complex, it is natural to define 

complexes of groups over polyhedral complexes instead. In Section 4.2.2, we discuss polyhedral com­

plexes and the topology of their automorphism groups. Small categories without loops, or scwols, are 

algebraic objects that substitute for polyhedral complexes. These are described in Section 4.2.3. We 

conclude this background material by, in Section 4.2.4, summarizing Haefliger’s theory of complexes 

of groups, as presented in Chapter III.C of [BH].

4.2.1 Lattices

Let G be a locally compact topological group with left-invariant Haar measure μ. A discrete 

subgroup Γ of G is a lattice if its covolume /i(r\G) is finite. A lattice is called cocompact or uniform 

if T\G is compact.
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Let S be a left G-set such that, for each s E tS, the stabilizer Gs is compact and open. For any 

discrete subgroup Γ of G, the stabilizers Ts are finite groups, and we define the S-covolume of Γ as

Voi(r\y>) = Σ  i f t  ^ 00
ser\s' s|

It is shown in [BL], Chapter 1, that if G\S is finite and G admits a lattice, then there is a norma­

lization of the Haar measure μ, depending only on <S, such that for every discrete subgroup Γ of

G,

μ(Γ\0) = νο1(Γ\\5)

It is clear that for two lattices Γ C Γ' of G, the index [Γ' : Γ] is equal to the ratio of the covolumes 

μ(Γ\0) : μ(Γ\σ).

4.2.2 Polyhedral complexes

Let M% be the complete, simply connected, Riemannian n-manifold of constant sectional cur­

vature κ £ M, where n > 2, and M* = R for κ < 0 and M* = S\jK, a sphere of radius l/«  for 

k > 0.

Definition 4.2.1 (polyhedral complex). An MK-polyhedral complex K  is a CW-complex such that:

1. each open cell of dimension n is endowed with an isometry to the interior of a compact convex 

polyhedron in ; and

2. for each cell σ of K , the restriction of the attaching map to each open codimension one face 

of σ is an isometry onto an open cell of K.

Theorem 4.2.2 (Bridson, [BH]). An MK-polyhedral complex with finitely many isometry classes of 

cells endowed with the canonical length metric is a complete geodesic metric space.

Let K  be a locally finite, connected polyhedral complex with finitely many isometry classes of 

cells, and let Aut(K) be the group of cellular isometries, or automorphisms, of K. Then Aut(Zf) 

is naturally a locally compact group, with a neighborhood basis of the identity consisting of auto­

morphisms fixing larger and larger balls. With respect to this topology, a subgroup Γ of Aut (if) is 

discrete if and only if for each cell σ of K , the stabilizer Γσ is finite. A subgroup Γ of Aut (if) is said 

to act without inversions if whenever g E Γ preserves a cell of if , then g fixes that cell pointwise.
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4.2.3 Small categories without loops

In Chapter III.C of [BH], complexes of groups are presented using the language of scwols, or 

small categories without loops. As we explain in this section, to any polyhedral complex K  one may 

associate a scwol X , which has a geometric realization \X\ isometric to the barycentric subdivision 

of K. Morphisms of scwols correspond to polyhedral maps, and group actions on scwols correspond 

to actions without inversions on polyhedral complexes.

Definition 4.2.3 (scwol). A small category without loops (scwol) X  is a disjoint union of a set 

V(X), the vertex set, and a set E(X), the edge set, endowed with maps

i : E{X) -> V{X) and t : E(X) -> V(X) 

and, if E^2\X) denotes the set of pairs (a, b) of edges where i(a) = t(b), with a map

e M(X) —► E{X)

(a,b) · ► ab

such that :

1. if (a, b) € E^2\X), then i(ab) = i(b) and t(ab) — t(a);

2. if a, b ,c£ E(X) such that i(a) = t(b) and i(b) = t(c), then (ab)c = a(bc); and

3. if a £ E(X), then i(a) Φ t(a).

For a € E (X ), the vertices i(a) and t(a) are called the initial vertex and terminal vertex of a 

respectively. If (a, b) € E^2\X) we say a and b are composable, and that ab is the composition of a 

and b. We will sometimes write a € X for a G V(X) U E(X). If a E V(X) then i(a) = t(a) = a.

The motivating example of a scwol is the scwol X  associated to a polyhedral complex K . The 

set of vertices V(X) is the set of cells of K  (or the set of barycenters of the cells of K). The set 

of edges E{X) is the set of 1-simplices of the barycentric subdivision of K, that is, each element 

of E(X) corresponds to a pair of cells T C 5, with initial vertex S and terminal vertex T. The 

composition of the edge a corresponding t o T C S  and the edge b corresponding to S C U is the 

edge ab corresponding to T C U.

Conversely, given a scwol X , we may construct a polyhedral complex, called the geometric rea­

lization. For an integer k > 0, let E^k\X) be the set of sequences (αχ, . . . , α&) of composable 

edges, that is, (α^,α^+χ) G E^2\X) if k > 1, E ^ (X )  = E(X), and E^\X) = V(X). The geometric
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realization \X\ of X  is defined as a polyhedral complex whose cells of dimension k are standard 

fc-simplices indexed by the elements of E^k\X), with the obvious attaching maps. For the details of 

this construction, see [BH], pp. 522-523. If X  is the scwol associated to an M«-polyhedral complex 

K , then \X\ may be realized as an M^-polyhedral complex isometric to the barycentric subdivision 

of K.

For a scwol X , let E ±(X) be the set of oriented edges, that is, the set of symbols a+ and a~, 

where a G E(X). For e — a+, we define i(e) = £(a), t(e) — i(a) and e~1 — a~. For e = a~, we define 

i(e) = i(a), t(e) =  t(a) and e-1 = a+.

An edge path in X  joining the vertex σ to the vertex r is a sequence (ei, β2, . . . ,  en) of elements 

of E ±(X) such that i(ei) = σ, i(ej+1) =  t(ej) for 1 < j  < n — 1 and t(en) = r.

A scwol X  is connected if for any two vertices σ,τ G V(X), there is an edge path joining σ to 

r. Equivalently, X  is connected if and only if the geometric realization \X\ is connected. A scwol is 

simply connected if and only if its geometric realization is simply connected as a topological space.

Definition 4.2.4 (morphism of scwols). Let X  and X ' be two scwols. A morphism I : X —» X* is a 

map that sends V(X) to V (Xf) and E(X) to E(X '), such that

1. for each a € E(X), we have i(l(a)) =  l(i(o,)) and t(l(a)) =  l(t(a)); and

2. for each (a, b) G Ε&\Χ), we have l(ab) = l(a)l(b).

A nondegenerate morphism of scwols is a morphism of scwols such that in addition to (1) 

and (2),

3. for each vertex σ G V(X), the restriction of I to the set of edges with initial vertex σ is a 

bijection onto the set of edges of X 1 with initial vertex 1{σ).

An automorphism of a scwol Λ' is a morphism I : X  —> X which has an inverse. Note that 

Condition (3) in Definition 4.2.4 is automatic for automorphisms.



CHAPITRE 4. OVERLATTICES IN AUTOMORPHISM GROUPS OF BUILDINGS 66

Definition 4.2.5 (covering of scwols). Let X  be a (nonempty) scwol and let X ' be a connected 

scwol. A nondegenerate morphism of scwols I : X  —* X ' is called a covering if, for every vertex σ of 

X, the restriction of I to the set of edges with terminal vertex σ is a bijection onto the set of edges 

of X ' with terminal vertex /(σ).

Let X  and X ' be scwols associated to polyhedral complexes K  and K f respectively. A non­

degenerate polyhedral map (i.e. a map which does not decrese dimension of every maximal cell) 

K  —» K f induces a morphism of scwols X —► X', and conversely, a morphism I : X  —> X f induces a 

continuous polyhedral map |2| : \X\ —> \X'\ (see [BH], p. 526). The morphism I is nondegenerate if 

and only if the restriction of |Z| to the interior of each cell of K  induces a homeomorphism onto the 

interior of a cell of K\ and I is a covering if and only if |/| is a (topological) covering. A morphism 

I : X  —> X is an automorphism of X  if and only if |2| : K  —> K  is an automorphism of K.

Definition 4.2.6 (group actions on scwols). An action of a group G on a scwol X  is a homomor­

phism from G to the group of automorphisms of X  such that :

1. for all a G E(X) and g G G, we have g · i(a) φ t(a); and

2. for all g G G and a G E(X), if g · %{a) — i(a) then g · a = a (no “inversions”).

The action of a group G on a scwol X induces a quotient scwol y  = G\X, defined as follows. 

The vertex set is V(y) = G\V(X) and the edge set E(y) = G\E(X). For every a G E(X) we have 

i(Ga) = Gi(a) and t(Ga) = Gt(a), and if (a, 6) G E^2\X) then the composition of Ga and Gb is 

Gab. The natural projection p : X  —> y  is a nondegenerate morphism of scwols.

Let X  be the scwol associated to a polyhedral complex K , and let Γ be a subgroup of G = Aut(if). 

Then Γ acts on X , in the sense of Definition 4.2.6, if and only if Γ acts without inversions on K.

In the case K  is locally finite, we define the covolume of a discrete subgroup Γ < G acting on 

X  by taking the set of vertices V(X) (which corresponds to the set of cells of K) as the Γ-set S in 

Section 4.2.1. From now on, we normalize the Haar measure μ on G so that

μ(Γ\σ)=νο1(Γ\\ν(*))= Σ  j j q
σ€Γ\ν(*)' σ '

4.2.4 Complexes of groups

In this section, we recall Haefliger’s theory of complexes of groups. We mainly follow the notation 

and definitions of Chapter III.C of [BH], although at times, such as in Proposition 4.2.23 below, we
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indicate choices and define maps more explicitly. Section 4.2.4 defines complexes of groups and their 

morphisms. Section 4.2.4 then discusses groups associated to complexes of groups, in particular the 

fundamental group, and Section 4.2.4 discusses scwols associated to complexes of groups, in particular 

the universal cover. In Section 4.2.4 we describe the role of local developments and nonpositive 

curvature. All references to [BH] in this section are to Chapter III.C, which the reader should consult 

for further details.

Objects and morphisms of the category of complexes of groups

Definition 4.2.7 (complex of groups). Let y  be a scwol. A complex of groups G(y) = (Go·,^, ga,b) 

over y  is given by the following data :

1. for each σ G V{y), a group Ga, called the local group at σ ;

2. for each a G E(y), an injective group homomorphism φα : G^a) —> Gt(a) i and

3. for each pair of composable edges (a, b) G E^2\y), a twisting element ga,b € Gt(a) / 

with the following properties :

(i) A d(ga,b)^ab = ΦaΦb, where A d(ga,b) denotes conjugation by ga,b / and

(ii) il>a(gb,c)ga,bc =  9a,b9ab,c for each triple (a,b,c) ζ  E ^ ( y ) .

For example, any group G is a complex of groups over a singleton y  = {*} = V(y), with G* = G ; 

since E(y) = φ, no other data is necessary.

Definition 4.2.8 (morphism of complexes of groups). Let G(y) be as in Definition 4-2.7 and let 

G '(y') = (G^/, φα·, ga',b') be another complex of groups over a scwol y ' . Let I : y  —> y' be a 

morphism of scwols. A morphism φ = (φσ,φ(α)) : G(y) —► Gf(y') of complexes of groups over I 

consists of

1. a group homomorphism φσ : Ga —> G J^ , called the local map at σ , for  each σ £ V^(^); and

2. an element φ(α) G G't^ a^ for each a € E (y ) ; 

such that :

(i) Αά{φ{α))'φΐ(α)φί(α) =  Φί(α)Φα ; and

(ϋ) Φί(ά)(9αί)Φ(αή = <ΚαΜ(α)(<Κ&))Λ(<0.ΐ(«>). for everV (M ) e E ^ (y ) .

We define a morphism φ = (φσ,φ(α)) : G(y) —* G from a complexes of group G(y) to a group 

G as a data consisting of a group homomorphism φσ : Ga G' for each σ G V (y) and an element
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φ(α) £ Gf for each a £ E(y) such that

Φί(α)Ψα =  Α ά (φ ( α ) )φ ΐ ( α)

and

Φ ί(α ) (9 α ί )  =  Φ(α)Φ(1>).

A morphism φ is an isomorphism if I is an isomorphism of scwols and φσ is a group isomorphism 

for every σ € V (y ). A morphism φ is injective on the local groups if φσ is injective for every σ in

v(y).
The composition φ' ο φ of a morphism φ = (φσ,φ(α)) : G(y) —> G '(y') over I and a morphism 

φ' =  (φ'σ, φ'(α)) : Gf(yf) —► G"{y") over V is the morphism over Vo I defined by the homomorphisms 

(φ* ο φ)σ = φ[{σ) ο φσ and the elements (φ' ο φ)(α) = φ ι^α)){φ{α))φ/(/(α)).

Definition 4.2.9 (homotopy). Let φ and φ1 be two morphisms from G(y) to a group G ', given 

respectively by (φσ,φ(α)) and (φ'σ,φ'(α)). A homotopy from φ to φ' is given by a family of elements 

k(j € G ', indexed by σ £ V(y), such that

1. φ'σ = Ad$ σ)φσ for all σ € V{y); and

2. φ'{α) = for all a € E(y).

Let G be a group acting on a scwol X  with quotient y  = G\X, and let p : X  —> y  be the 

natural projection. The complex of groups G(y) = (Ga^ a,gajb) associated to the action of G on X 

is defined as follows.

For each vertex σ € V(y ), choose a vertex σ £ V(X) such that ρ(σ) = σ. For each edge a E E(y) 

with i(a) = σ , there exists a unique edge a € -E’(A') such that p(a) = a and i(a) = σ, by the ’no 

inversion’ assumption. Choose ha £ G such that ha · t(a) = t(a). For each σ £ ^ (^ ) , let Ga be the 

stabilizer in G of σ £ V(X). For each a £ E (y ), let φα : Gi(a) Gt(a) be conjugation by ha, that 

is,

•φα-g'-* hagh~1

For every pair of composable edges (a, 6) € E ^ (y ) , define ga>b =  hahbh~^. Then G(y) =  (Ga, rjja,9a,b) 

is a complex of groups.

When precision is needed, we denote the set of choices of σ and ha in this construction by C., 

and the complex of groups G(y) constructed with respect to these choices by G(y)c%· If C' is
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another choice of σ', h'a, then an isomorphism φ = (φσ,φ(α)) from G(y)c. to G(y)c'0 is obtained 

by choosing elements ka G G, such that for each σ e V (y), ka · σ = σ'. Then put φσ = Ad(fc(T)|G<r 

and <A(o) =  fct(o)/iofct̂ )/i0-1·

When G(y) is a complex of groups associated to an action of a group G, there is a canonical 

morphism of a complex of groups G(y) to a group G, φι : G(y) —► G, given by </>i = (φσ, φ{α)), 

with φσ = G<y —> G the inclusion, and φ(α) =  /ια.

Definition 4.2.10 (developable). A complex of groups G(y) is developable if it is isomorphic to 

a complex of groups associated to the action of a group G on a scwol X  in the above sense, with

Proposition 4.2.11 (Corollary 2.15, [BH]). A complex of groups G(y) is developable if and only

y  = G\x.

if there exists a morphism φ from G(y) to some group G which is injective on the local groups.

We now define coverings.

Definition 4.2.12 (covering of complexes of groups). Let φ : G(y) —> G '(^') be a morphism of 

complexes of groups over a nondegenerate morphism of scwols I : y  —» y f, where y ' is connected. 

The morphism φ is a covering (of G '(y f) by G(y)) if for each vertex σ € V (y),

1. the group homomorphism φσ : Ga —> G [^ is injective, and

2. for every α' E E(yf) and σ € V(y) with ί(α') =  σ' =  1(σ), the map

JJ ασιψα{0ί(α))^ασ,ιψα,{αί(α1))
a£l 1(a/) 

ί(α)=σ

induced by

9  ^  Φ σ{9 )Φ (α )

is bijective.

Prom Condition (2) of this definition, it follows that

Since y ' is connected, the value of

Σ
α£ί 1(α/ 

ί{α)—σ

\οσ\ ΐσ;,|

η :=  Σ

I-1

|Gyl
|G.|

ι£ ί - 1(α ' )

Ι^ ,ο  I
^ | ΐ̂(α)|
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is independent of the vertex σ' and the edge a'. A covering of complexes of groups with the above 

n is said to be n-sheeted.

We will often use Definition 4.2.13 below, which defines a morphism of complexes of groups 

induced by an equivariant morphism of scwols.

Definition 4.2.13 (induced morphism). Let X  and X ' be simply connected scwols, endowed with 

actions of groups G and Gf, and let y  = G\X and y ' = G'\X' be the quotient scwols. Let L : X  —► X ' 

be a morphism of scwols which is equivariant with respect to a group morphism A : G —» G'. Let 

I · y  —> y f be the induced morphism of the quotients.

For any choices Cm = (σ, ha) and C' = (σ',/ια/) of data for the actions of G and G' on X  and 

X f, and for any choice N0 of elements ka £ G' indexed by σ £ V(y) such that ka · L(a) = 1{σ), 

there is an associated morphism of complexes of groups

A = Xc.tC',N. : G(y)c. -  G'(y)C'

over I, given by

λσ : Ga —>

g kaK(g)k~l

and

λ(α) = &ί(α)Λ(/ια)^ (α)^*(α)

(see Section 2.9(4), [BH]·)

The fundamental group of a complex of groups

There are two definitions of the fundamental group of a complex of groups, which result in 

canonically isomorphic groups. Both definitions involve the universal group.

Definition 4.2.14 (universal group). The universal group FG(y) of a complex of groups G(y) over 

a scwol y  is the group presented by the generating set

[  I I  G ^ I I ^ c y )
\<r€V(y) /

with the following relations :

1. the relations in the groups Ga ;
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2. (a+ )-1 = a~ and (a~ )_1 = a+ ;

3. a+6+ = pa>b(a6)+; /or ever?/ (a, 6) £ ; and 

4· /or every £ € Gi(o).

There is a natural morphism t = (ίσ,ί(α)) : G (^) —► FG(y), where the injections ισ : G^ —► 

FG (^) takes Ga to its image in FGO^), and t(a) = a+.

Proposition 4.2.15 (Proposition 3.9, [BH]). A complex of groups G(y) over a connected scwol y  

is developable if and only if t : G(y) —> FG(y) is injective on the local groups.

The first definition of the fundamental group of a complex of groups G (^) involves the choice of 

a basepoint σο € V(y). A G(y)-path starting from σο is then a sequence (<7o»ei, <71, β2, ... ,en,pn) 

where (βι,β2, ... ,en) is an edge path in y  starting from σο, we have go € Gaoi and gj G Gt(ej) for 

1 5? j  < n- A G(y)-path joining σο to σο is called a G(y)-loop at σο·

To each path c = (go, e\,g\, e2, . . . ,  en,pn), we associate the element 7r(c) of FG(y) represented 

by the word ρο^ιρι · · · engn. Suppose now that c and d = (#0> ei , Pi, · · · , en, #n) are two G(>?)-loops 

at σο· We say c and d are homotopic if 7r(c) = n(d), and denote the homotopy class of c by [c]. The 

concatenation of c and d is the G(y)-loop

c*c (go, ei , . . . ,  e^, gndoi > · · · > ’ 5Vi')

The operation [c][c'] = [c*c'] defines a group structure on the set of homotopy classes of G(y)-loops 

at σο ·

Definition 4.2.16 (fundamental group of G(y) at σο). The fundamental group of G(y) at σο is 

the set of homotopy classes of G(y)-loops at σο, with the group structure induced by concatenation. 

It is denoted by 7Ti(G(^),σο).

Different choices of basepoint σο € V’(y) result in isomorphic fundamental groups (in fact, as 

subgroups of FG(y), the induced fundamental groups are conjugate). In fact, as subgroups of FG(y), 

they are conjugate.

The second definition of the fundamental group of a complex of groups involves the choice of a 

maximal tree T in the 1-skeleton of the geometric realization \y\. By abuse of notation, we will say 

that T is a maximal tree in y.
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Proposition 4.2.17 (Theorem 3.7, [BH]). For any maximal tree T in y, the fundamental group 

n i(G (y),a0) is isomorphic to the abstract group K\(G(y),T), presented by the generating set

(  Π
\cr£V(y) )

with the following relations :

1. the relations in the groups Ga ;

2. (a+)-1 — a~ and (a-)-1 = a+ ;

S. a+b+ - ga,b(ab)+, for every (a, 6) € E^2\y);

4· Ψα(9) = a+ga~, for every g € Gi(a); and 

5. a+ = 1 for every edge a G T.

If y  is simply connected, then πχ(G(y),T) is isomorphic to the direct limit of the diagram of groups 

Ga and monomorphisms ψα- The isomorphism TTi(G(y),ao) —► πχ(G(y),T) is the restriction of the 

natural projection FG(y) —> ni(G(y), T). Its inverse kt is defined in the proof of Proposition 4.2.23 

in Section 4.2.4 below.

Let φ : G(y) —» G'(y') be a morphism over a morphism of scwols I : y  —> y'. Then φ induces 

a homomorphism : FG(y) —> FG '(y '), defined by Εφ^) = φσ(ς) for g G Ga, and F<£(a+) = 

φ(α)1(α)+. The restriction of Εφ to Ki(G(y), σο) is a natural homomorphism

πι(0,σο) : 7n(G(y),a0) -  ni(G\ y),l(a0))

In the particular case of a morphism φ : G(y) —► G, where G is a group, the induced homomorphism

π\{φ,σ0) : n i(G (y),a0) G

is defined by g η-> </>σ(<?) for g £ Gay and a+ φ(α).

Developments and the universal cover

To any morphism from a complex of groups to a group is associated a scwol, called its develop­

ment.

Definition 4.2.18 (development). Let φ : G(3^) G be a morphism from a complex of groups 

G(y) to a group G. The scwol Ό (^,φ ), called the development of G(y) with respect to φ, is defined 

as follows.
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The set of vertices is

V(D(y, φ)) =  {([<?], σ) : σ 6 V(y), [g] 6 0/φσ{0σ)}

and the set of edges is

E(D(y, φ)) =  {([<?],«) : a € E(y), [g] e G M (o)(Gi(o))}

The maps to initial and terminal vertices are given by

*([ff],a) =  ([fl]> *(<*))

and

*([5].a) =  ([gφ{a)~λ},t{a))

and the composition of edges ([g],CL)([h]fb) = ([h],ab) is defined where (a, 6) G E ^ ( y ) ,  gy h G G and 

g-lh<j>{b)-l eci>i{a){Gi{a)).

The group G acts naturally on D(y,<f)) : given g,h G G and a G y, the action is h · ([<?], a ) = 

([ftp], a).

Proposition 4.2.19 (Theorems 2.13, 3.14 and 3.15, [BH]). Let G(y) be a complex of groups over 

a connected scwol y  and let G be a group.

1. Let φ : G(y) —> G be a morphism which is injective on the local groups. Then G(y) is the 

complex of groups (with respect to canonical choices) associated to the action of G on the 

development Ό $ ,φ ), and φ : G(y) —> G equals the canonical morphism φ\ : G(y) —> G (φ\ 

is defined just above Proposition 4-2.10).

2. Suppose G(y) is a complex of groups associated to the action ofG on a simply connected scwol 

X , and φ\ : G(y) —► G is the canonical morphism. Then φ\ induces a group isomorphism

πι(</>ι,σ0) : 7Ti(G(y),<7o) ^  G

(see the paragraph after Proposition 4-2.17), and there is a G-equivariant isomorphism of 

scwols

Φ1 : ϋ & , φ 1) ^ Χ

given by, for g G G and a e y ,

([g],a)>->g-a.



CHAPITRE 4. OVERLATTICES IN AUTOMORPHISM GROUPS OF BUILDINGS 74

The following result, on the functoriality of developments, is used to prove Theorem 4.1.1, stated 

in the Introduction.

Proposition 4.2.20 (Theorem 2.18, [BH]). Let G(y) and G '(yf) be complexes of groups over 

scwols y  and y r. Let φ : G(y) —> G and φ' : G '(y') —> G' be morphisms to groups G and Gf and let 

A :G ^> G 'b e a  group homomorphism. Let X : G(y) —> G '(yf) be a morphism over I : y  —> y '.

Suppose there is a homotopy from Λ φ to φ'Χ, given by elements ka € G' (see Definition 4-2.9). 

Then there is a K-equivariant morphism of the developments

L : D ( y ^ ) ^ D ( y '^ ' )

given by, for g € G and a € y,

(M .“ ) ^  (l^(sf)K(i)bl(a ))

Moreover, if φ and φ' are injective on the local groups, and X and A are isomorphisms, then L is an 

isomorphism of scwols.

We now define the universal cover.

Definition 4.2.21 (universal cover of a developable complex of groups). Let G(y) be a developable 

complex of groups over a connected scwol y. Choose a maximal tree T in y. Let

tT :G (y ) ^ n 1(G(y),T)

be the morphism of complexes of groups mapping the local group ΰ σ to its image in π\(G(y),T), 

and the edge a to the image of a+ in ni(G(y),T). The development D(y,tT) is called a universal 

cover of G{y).

Theorem 4.2.22 (Theorem 3.13, [BH]). The universal cover D(y, lt) is connected and simply 

connected.

As described in Definition 4.2.18, the fundamental group πχ(G(y),T) acts canonically on D(y , lt)- 

A group action on a scwol induces the following explicit isomorphisms of groups and scwols.

Proposition 4.2.23. Let G be a group acting on a simply connected scwol X, and let G(y) be the 

induced complex of groups (with respect to some choices C. = {a,ha}). Choose a maximal tree T in 

y and a vertex σο G V(y)· For e E E±(y), let

i _j  ha if e = a+

e ~ \ K 1 if e =  a~
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For σ £ V(y), let ca — (ei, β2, . . . ,  en) be the unique edge-path contained in T, with no backtracking, 

which joins &q to c , and let — ^61 /̂ C2 * ·

Then there is a group isomorphism

Λ T :*i(G(y),T)-+G

defined on generators by

g ·-»hagh~l for g € Ga 

a+ '->ht(a')hah~l-l.) 

and a Ατ-equivariant isomorphism of scwols

LT : D(y,LT) —> X

(M»a) ·-» A-T{g)hi(a) - a

Proof. For σ £ V^y), let πσ = e\e2 · · · en be the element of FG(y) corresponding to the edge-path 

ca. Then by Theorem 3.7, [BH], there is a canonical isomorphism

^T:7r1(G (y ) ,T )^ n 1(G (y),a0)

defined on generators by

g *->Kagn~ for g £ Ga

a+ ^ t(a )a +n;(l y

By Proposition 4.2.19, the canonical morphism of complexes of groups φ\ : G(y) —> G induces a 

group isomorphism πι(</>ι,σ0) : πχ(G(y),a0) —► G. Composing κχ with πι(^ι,σ0), we obtain the 

group isomorphism A t : ττχ(G(y),T) G defined above.

We now have the square

G ( y ) - ^ n 1(G(y),T)

λ=Id Λ τ

G{y) — - —  ̂g .

This commutes up to a homotopy from Λτ<·τ to φχλ, given by the elements h~l for σ in V{y). Thus, 

by Proposition 4.2.20, there is a Λχ-equivariant morphism of scwols

LT : D (y ,iT) ^  D(y,<t>i)

([5],a) ·-» ([AT(g)hna)],a)
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which is an isomorphism since lt and φ\ are injective on the local groups, and both A and Λτ 

are isomorphisms. Composing Lt with the G-equivariant isomorphism Φχ : D(y, φ\) —> X  (see 

Proposition 4.2.19), we obtain a A^-equivariant isomorphism of scwols

LT :D (y,LT) ^ X

( M .“ ) ^  Λ τ (g )h i(a) a

as required.

Local developments and nonpositive curvature

Let K  be a connected polyhedral complex and let y  be the scwol associated to K , so that \y\ 

is the first barycentric subdivision of K . The star St(a) of a vertex σ G V’(y) is the union of the 

interiors of the simplices in \y\ which meet σ. If G (^) is a complex of groups over y , then each 

σ G V(y) has a local development, even if G(y) is not developable. That is, we may naturally 

associate to each vertex σ G V(y) an action of Ga on some simplicial complex St(<r) containing a 

vertex σ, such that St(a) is the quotient of St(<r) by the action of Ga. If G(y) is developable, then 

for each σ G V(y), the local development at σ is isomorphic to the star of each lift σ of σ in the 

universal cover D(y, lt)·

We denote by st(a) the star of σ in St(a) (here we follow the notations of Haefliger in [BH], but 

stσ, St(a) would be more natural notations).

Lemma 4.2.24 (Lemma 5.2, [BH]). Let A : G(y) —> G'(yf) be a covering of complexes of groups, 

over a morphism of scwols I : y  —> y f. Then for each σ G V{yf), Condition (2) in the definition 

of a covering (Definition 4-2.12) is equivalent to the existence of a \σ-equivariant bijection st(<r) —> 

st (1(a)).

In the case that y  is the scwol associated to a polyhedral complex K , each local development 

St (σ) has a metric structure induced by that of K  (see p. 562, [BH]). A complex of groups G(y) 

has nonpositive curvature if for all σ G V(y ), the local development at σ has nonpositive curvature 

(that is, St(<r) is locally CAT(k) for some κ < 0) in this induced metric. The importance of this 

condition is given by :

Theorem 4.2.25 (Theorem 4.17, [BH]). If a complex of groups has nonpositive curvature, then it 

is developable.
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We will use the following condition to establish nonpositive curvature :

Lemma 4.2.26 (Remark 4.18, [BH]). Let y  be the scwol associated to an MK-polyhedral complex 

K, with κ < 0. Then G(y) has nonpositive curvature if and only if  for each vertex r of K, the 

geometric link o ff in st (f), with the induced spherical structure, is CAT(l).

4.3 Covering theory for complexes of groups

In this section we present results for complexes of groups analogous to those for graphs of groups 

in [Ba]. We consider the functoriality of morphisms of complexes of groups in Section 4.3.1 and 

that of coverings in Section 4.3.2. Section 4.3.3 discusses faithfulness of complexes of groups. A key 

technical result, the Main Lemma, is proved in Section 4.3.4. We describe the relationship between 

coverings and developability in Section 4.3.5.

4.3.1 Functoriality of morphisms

Proposition 4.3.1 below gives explicit constructions of the maps on fundamental groups and 

universal covers induced by a morphism of developable complexes of groups.

Proposition 4.3.1. Let A : G(y) —> G'(y') be a morphism of complexes of groups over a morphism 

of scwols I : y  —► y f> where y  and y* are connected. Assume G(y) and G'(y') are developable. 

For any choice of σ ο £ V (y) and maximal trees T and T' in y  and y f respectively, A induces a 

homomorphism of fundamental groups

Ar.T' = Λ£ ,Γ , : MG(y),T) -» π χ ( 0 '{ Υ) , Τ ')

and a Ατ,τ'-equivariant morphism of universal covers

: D(y,iT) ^  D(y',iT')·

We also have =  (Λγ,γ')-1·

Proof. Let σ'0 = 1(σo). Recall from the proof of Proposition 4.2.23 that there is a canonical isomor­

phism

KT : 7Γ,(G(y),T) ^  Ki(G(y),a0)

and from the paragraph below Proposition 4.2.17 that the morphism λ induces a group homo­

morphism πι(λ, σ0) : 7ri(G(;y),(7o) -» ^x(G'(yr), σ'0) which is the restriction of the morphism
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Fλ : FG(y) — > FG'(y'). The group homomorphism

Λτ,τ' : *i{G(y),T)  -> 7r1(G '(y),T ') 

is defined by the composition ο  πι(λ, σο) ° « τ  :

π ,(σ (^ ) ,Τ )  7n(G(y),<To) —  ^ ( G ' i y ' ^ a ’o) ^ ( G W . T ' )

We now have a square

G{y)· ■n(G(y),T)

G;(y) —  *i(G '(y'),r)

We claim that that there is a homotopy from Λτ,τ' ° to lt> ο Λ. For σ  € V'(y) let πσ =  e\e2 · · · en 

be the element of FG(y) corresponding to the unique path (ei, β2 , . . . ,  en) in T  without backtracking 

from σο to σ, and similarly for € F G '(y ') . Then for g € Ga, we have

( Λ τ , τ '  °  ^τ)(ρ) = Λ τ ,τ ' ( ρ )

= k£ 1 ο πχ (λ, σ 0) ο κτ (5)

=κ^ ;1 ο πι(λ, σ0)(πσρ7Γ~1)

= «£*  (^λ(πσ)λσ(ρ)(^λ(πσ))_1)

=ΚΤ'1 (ίΓλ(πσ)(π;(σ))_1  ̂ ( ^ ( ^ ( π * ) ) -1)

Setting

«τ'1 (ΓλΜ(^ί(ο·)) *) G πιίσ'ί^Ο,Γ')

we conclude

(Λτ,τ' ° ^τ)(ρ) =  ° λσ)(ρ) ι^ 1 =  A d ^ ) ^  ° λ)(ρ) 

Similarly, if a € ^CV), we compute 

(Λτ,τ' ° ^τ)(α) = k't*1 ο ^i(A, σ0) ο «τ(α+)

=  κ;^1 ο7Γι(λ,σ0)(πί(β)ο+π ^ ))

=  «ί(ο)λ(α)Ι(α)+ίΐ,^)

= «ί(β)(4Γ' ° λ )(α )«^}

The last equality comes from the definition of composition of morphisms,

( l t > o A)(a) =  (i-T')i(t(o))(A(a))iT'(i(a)) =  A(a)Z(o)+
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Hence the desired homotopy from Αχ,τ' ° lt to ΐτ· ο Λ is given by the elements ua 1.

By Proposition 4.2.20, there is thus a Λτ,τ'-equivariant morphism of universal covers

LitT : D { y , L T ) ^ D ( y ' , i T ' )

given by

(M>“ ) ^  ([Ar,T'(ff)«»(a)],i(«))

The last assertion holds by definition.

Corollary 4.3.2 below says that if a diagram of morphisms of developable complexes of groups 

commutes, then the corresponding diagrams of the induced maps on fundamental groups and uni­

versal covers, defined in Proposition 4.3.1 above, also commute.

Corollary 4.3.2. With the notation of Proposition let G"(y") be a developable complex of

groups over a connected scwol y " , and assume there is a morphism Λ' : G 'ty') —» Gn(yn). Choose 

a maximal tree T" in y " . Then the composition

Λ" = Λ' ο Λ

induces a group homomorphism Ατ,τ" : Ki(G(y),T) —> π\(G"(y"),Tn) and a AT,T"-equivariant 

morphism of universal covers L ^T„ : D(y,tT) —> D(y\iTf), such that

/■λ" _  r Tx
T1 Tn — Tn ■Lj'j' T'

and

At τ" = Ατ',τ" ° Aτ,τ'

Proof The proof follows from the constructions given in Proposition 4.3.1 above, and the definition 

of composition of morphisms.

4.3.2 Functoriality of coverings

In this section we prove Theorem 4.1.1, stated in the Introduction. The maps Ατ,τ' and L^ T, 

are those defined in Proposition 4.3.1 above.

Proposition 4.3.3. Let X : G(y) —> G '(y ) be a covering of complexes of groups over a morphism 

of scwols I ’· y  y*, where y  and y ' are connected. Assume G(y) and Gf(yf) are developable.
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For any choice of σο E V(y) and maximal trees T and Tf in y  and y f respectively, the induced 

homomorphism of fundamental groups

Λτ,τ' : 7n(G(y),T ) -  ^ (G '(y ),T ')

is a monomorphism and

L ^T, :D {y ,iT)^D (y ',L T ’) 

is a Ατ,τ'-equivariant isomorphism of scwols.

Proof We begin with Lemma 4.3.4 below, which shows that L ^ T, is a covering of scwols (see 

Definition 4.2.5). Corollary 4.3.5 of this lemma shows that L\T, is an isomorphism of scwols. We 

then use this result to show that Λτ,τ' is injective.

Lemma 4.3.4. The morphism L ^ T, is a covering of scwols.

Proof. Let g E πι(G(y),T) and σ E V(y). We first show that L\T, is injective on the set of edges 

with terminal vertex ([<?], σ). Suppose a\ and a2 are edges of y  (with t(a\) = t(a2) = σ), that for 

some h\,h2 E K\(G(y),T)

t([hi\,ai) =  (\ρ],σ) = t([h2\,a2)

and that

L'tt · ([hi\,ai) = L rT, ([h2\,a2)

By definition of L\T,, we then have l(a\) = l(a2) = a' say, with t(af) =  l(t(a\)) = 1(σ) = σ'. Also, 

by definition of the map t : E (D (y , lt)) —> V (D (y, lt)), we have, for some h E Ga,

h\CL··̂ — h2o>2 h

Now by definition of it follows that the group contains

(Λτ,Τ'(^ΐ)ωί(αι)) 1 (Λτ,Τ'(^2)«ί(ο2))

= ui{ai)KT,T> (af ha%)ui{a2)

~ Ui(ai)Uiiai)l(ai) M «l) Ut(ai)U<T̂<T(h)ua ut(a2)^(a2)l(a2) + ui(a2)ui(a2)

= o!~ Λ(αι)-1 Xa(h)X(a2)af+

Thus by the relation a/+ka'~ = Vv(k)> for all k E G-(a/)>

Λ(αι) 1 Xa(h) X(a2) E Vv(Gi(a'))
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That is, λ(αι) and \a{h)\(a,2) belong to the same coset of ^a'(G^0,)) in G'a,. By Condition (2) in 

the definition of a covering (Definition 4.2.12, this implies a\ = a<i = a, say, and h G ^a{G^a)). It 

follows that h\ and /12 belong to the same coset of Gj(0) in n\(G(y),T). Thus L ^T, is injective on 

the set of edges with terminal vertex ([#],σ).

We now show that L\T, surjects onto the set of edges of D(y\tT/) with terminal vertex 

L j.T,([p],a). Suppose

t ([hf], a') — L\ T, ([p], σ) 

where hi G 7Ti(G'(}>'), T'), a' G E(y'). Then t(a') = σ' = 1(σ) and by definition of L ^T,,

h'a'~ = Ατ,τ'{9)ησ^σ' (4.1)

for some ka> G G’σ,. By Condition 2 in the definition of a covering, there exists an edge a G E(y) 

with 1(a) = a' and t(a) =  σ, and an element ka G Ga, such that Λσ(Α;σ)λ(α) and Α:σ/ belong to the 

same coset of ipa'(Gi(a')) *n @'σ,. Let h = gkaa+ G 7ri(G(y),T) and note that by Definition 4.2.18,

t{[h],a) =  ([<7&σα+ί.τ(α)~1],ί(α)) = ([</£σα+α“], σ) = ( [ ^ ,σ )  =  ([ff],a)

We claim

•^τ,τ7 (Μ>α) = ([̂ ,/]»a/)

By Equation (4.1) above, the choice of a and ka and the relation φα'(k') = a'+k'a!” for all k' G G '^ y  

we have

AT,T'(h)ui{a) = AT,T-(̂ )M<TACT(/cCT)u“1wt(a)A(a)/(a)+M“̂ )ui(a)

= k~} λσ (fcCT) λ (a)a/+

€  h 'G 'i(,a’ )

Hence,

^Τ,Τ' (W?a) = ia') — ([^;]»a/)

We conclude that L\ T, is a covering of scwols.

Corollary 4.3.5. Under the assumptions of Proposition 4-S.3, the morphism L^ T, : D(y, lt) —> 

D (y f,LT') is an isomorphism of scwols.

Proof. By Lemma 4.3.4, L\T, is a covering morphism. Since D(y\iTf) is connected, L ^ T, is sur- 

jective, and since D(y,Lr) is connected and D (y ',lt·) is simply connected, L\T, is injective. See 

Remark 1.9(2), [BH].
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We complete the proof of Proposition 4.3.3 by showing that Ατ,τ' is a monomorphism of groups. 

Suppose g € πχ(G(y),T) and Λt,t'(<?) = 1· Since L ^T, is injective and At,t·-equivariant, g must 

act trivially on D(y, lt)- In particular,

9 ’ ([1]) σ ο) = ([fl1], cr0) = ([1],σ0)

so g € G<t0 . We then calculate

Λτ,Τ' {g) = κ'τ'1 ° ΤΓΐ(λ,σο) ° Κτ(0-τ)σο(ί/))

= κ ^ \ λ σ ο ((ΐτ)σ ο (9)))

= 1

Since 1, λσο and {ΐ-τ)σ0 are each injective, this implies g =  1. Thus Λτ,τ' is injective.

Corollary 4.3.6. Let A : G(̂ V) —> Gf(y') be a covering of complexes of groups. Suppose for some 

κ e E that the scwols y  and y ' are associated to MK -polyhedral complexes with finitely many isometry 

classes of cells. IfG (y ) andGf(y') are developable, then the geometric realizations of their respective 

universal covers are isometric (as polyhedral complexes).

4.3.3 Faithfulness

Definition 4.3.7 (faithful). Let G(y) be a developable complex of groups. We say G(y) is faithful 

if the natural homomorphism π\(G(y),T) —► Aut(D(3^, it)) is a monomorphism, for any choice of 

maximal tree T in y.

If G(y) is a complex of groups associated to the action of a group G on a scwol A', then G(y) 
is faithful.

Proposition 4.3.8 below may be used to give sufficient conditions for faithfulness.

Proposition 4.3.8. Let G(y) be a developable complex of groups over a connected scwol y. Choose 

a maximal tree T in y, and identify by lt each local group Ga with its image in πχ(G(y),T) under 

the morphism lt. Let

NT = ker(*i(G(y),T) -> A ut(£(3W )))

Then

1. Nt is a vertex subgroup, that is Nt < Ga for each σ € ^(3^)·

2. N t is y-invariant, that is φα(Ντ) = Ντ for each a G E(y).
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3. Nt is normal, that is Nt < Ga for each σ G V(y ) .

4. Nt is maximal : if Nip is another y-invariant normal vertex subgroup then Νγ < Νχ·

Proof If h £ N t, then for every σ £ V(y),

h- ([1],σ) =  ([%σ) =  ([1],σ)

thus h £ Ga. This proves (1). Since Nt is normal in π\(G(y),T) it is normal in each Ga, proving (3).

To prove (2), let a G E(y). In the group n\(G(y),T) the following relation holds for each 

9 € Gi(a) ·

Ψα(9) = a+ga~

Since Nt is a subgroup of G^a) and Nt is normal in n\(G(y),T), it follows that

Ψα{Ντ) — cl̂  Ntcl~ — Nt

as required.

To prove (4), we have, for all g e Ki(G(y),T) and a e y,

N t ■ (M-0) = 9NtQ~1 · ([g},ot) =  9 ■ ([l],a) = ([fl], a)

since Νγ is normal in πχ(G(y),T) and N ’Ύ is a subgroup of G^a). Hence is contained in Nt , as 

claimed.

4.3.4 Other functoriality results

This section contains results similar to those in Section 4, [Ba].

We first prove the following useful characterization of isomorphisms of complexes of groups. This 

result corresponds to Corollary 4.6, [Ba].

Proposition 4.3.9. Let A : G(3^) -* G'(y') be a morphism of developable complexes of groups over 

a morphism of scwols I : y  —► y f, where y  and y ' are connected scwols. For any choice of σ ο E V(y) 

and of maximal trees T and T’ in y  and y f respectively, A is an isomorphism if and only if both of 

the maps L^ T, and Λτ,τ* are isomorphisms.

Proof. If A is an isomorphism, it is clearly a covering. Proposition 4.3.3 thus implies that L\ T, is 

an isomorphism of scwols and Λτ,τ' is a monomorphism of groups. Since A-1 is also a covering, 

Κγιτ, =  (Λτ,τ')-1 is also a monomorphism, hence Λτ,τ7 is an isomorphism.
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Conversely, suppose Λ is not an isomorphism, thus one of Λ and Λ 1 is not a covering. Without 

loss of generality, we assume Λ is not a covering. Then either

1. there exists σ € V(y) such that the homomorphism λσ : G<j —> G [^  is not injective, or

2. there exists a' € E(y') and σ € V(y) with t(a') = σ' — /(σ), such that the map

I I  Ga/^a{Gi(a)) —>> GvM i'iG^e/))

α€ί- 1 (α')
ί(α)=σ

induced by

9 ·-*· λσ(5)λ(α)

is not bijective.

Condition (1) implies that the map Λτ,τ* is not a monomorphism at G<j, thus Λτ,τ' is not an 

isomorphism. Condition (2) implies that L\T, is not a local bijection at St(cr) (see Remark 5.3, [BH]), 

thus the map L^ T, is not an isomorphism.

The Main Lemma below, which corresponds to Proposition 4.4, [Ba], will be used many times in 

Section 4.4. The data for the Main Lemma is as follows.

Let X  and X ' be simply connected scwols, acted upon by groups G and Gf respectively, with 

quotient scwols y  — G\X and y* = G'\Xf. Let G(y)c. and G '(y')c; be the quotient complexes of 

groups associated to the actions of G and G', with respect to choices C· = (σ, ha) and G' = (σ', ha>).

Suppose L : X  —> X f is a morphism of scwols which is equivariant with respect to some group 

homomorphism A : G —̂ G'. Let I : y  —> y ' be the induced morphism of quotient scwols. Fix σο € y  

and let σ'0 = 1(σo). Let Νφ = {ka} be a set of elements of G' such that ka · L(a) = 1(σ) for all

σ € V(y).

With respect to these choices, there is an induced morphism Λ = Λc.,c;,iv. · G (^) —> G '(y') 

(see Definition 4.2.13). For any choice of maximal trees T and T1 in y  and y\ respectively, let

A ^T> : ni(G(y),T) -> ^{G '(y '),T ') 

be the homomorphism of groups induced by Λ and let

L\r  : D (y ,tT) ^  D(y',LT,)

be the associated A^ T,-equivariant morphism of scwols (see Proposition 4.3.1). By Proposition 4.2.23 

we have isomorphisms of scwols

LT - D{y, lt ) X  and ~LT> : D(y', lT') X '
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which are equivariant with respect to group isomorphisms

Λ τ : π ι (G (y ) ,T )- ^G  and At' : n i(G '(y f),Tf) Gf

respectively.

M ain Lemma 4.3.10. Suppose Cm and Cl9 are chosen so that L(ao) = 1(σο) = σ'0, and Nm is 

chosen so that kao = 1. Then the following diagrams commute :

1.

7Γ!(G (y),T )-- Λτ,τ/...> ni(G'(y'),T‘)

Λ τ

2.

D(y,cT)

Lt

Τ λ  τ  τ*

---► G'

■D(y,LT,)

X X '

Proof. We first show the commutativity of (1), and then use this diagram and equivariance to prove 

that (2) commutes.

By construction,

Λ τ — 7Ti (0 i , σο) ο kt and A^/ = πχ (φ[, σό) ο κ!τ ,

where φ\ : G(y) —> G and φ[ : G '(y ) —► G' are the canonical morphisms. Also, A^ (JV - ®

πχίλ,σο) ο /ςτ . Therefore it is enough to show that the following diagram commutes :

πχίΟΟΟ,σο) πΐ(Λ,<Τ0) > MG'(y%a'0)

πι(φι ,σο) (0i >σο)

G'

Let x e TTi(G(y),ao). Then x has the form

x — 9σο&ΐ9σι * ‘ ’ £η9ση

where {gao, e\, gai, . . . ,  en, 0ση) is a G(y)-loop based at σο = ση. It follows that

7Γ1 (01) ^oX^O =  9σο^β\9σ\ * * ‘ h βη9ση
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where the elements hej are as defined in Proposition 4.2.23. We now compute

πι(Φι><7'ο) °7Γι(λ,σ0)(χ)

= (kaoA(g(To)k(To )(kaoA(hei)kcri h^ê )hi^ei^{k(TlA{g(Tl)kax ) · · · [k(TnA{g(Tin)k(Tn )

= kaoA{gaoheig(Tl · ■ · heng(Tn)kcrn 

= Αοπι(φι,σ0)(χ) 

since kao = k(Jrx = 1. Thus (1) commutes.

To prove that (2) commutes, let

L = Lt> ® Lrp rpt O Lrp .

We will show that L = L. By the equivariance of the morphisms of scwols used to define L, and 

the commutativity of (1), we have that L is Λ-equivariant. Thus it is enough to check (for example) 

that L(hi(a)Ct) = L (h i^ a ) for all a G y  = V(y) U E(y). By Proposition 4.2.23,

L (h i^ a ) = Lt> ° L\̂ /([l], a)

= ^Τ'([^(α)Μ(α ))

= A T'(Ui(a))hi(l(a))l(®)

Let π^α) = βιβ2 · · · en be the element of FG (y) which corresponds to the non-backtracking path in 

T from σο to i(a), and similarly for = eie2 ' ’ ' enf FG f(y'). Then

Ar-(ui(«)) = ΛΤ' °Κ·Τ'1 ( ί ’λ(,Γ»(α))(πί(Ι(α)))_1)

= πΛΦ'ι,ν'ο) (FK̂ i(oc))(^ma)))~l)

= πι(φ[,σ'0) (FX(e1)FX(e2) ■ ■ ■ F\{en)e'-,1 ■ ■ ■ e ^ V f 1)

=  kcroA(hei)k(Tl kai A(he2)ka  ̂ ■ ■ ■ k<Trl_1A(hen)k(Tn he, · · · h , h ,
n' 2  1

= kaQA{hê he2 · · · /len)&<rn foe'yhe·̂ · · · )

= Μ^ι(α))^ση^ΐ(/(α))

since kao = 1. Substituting, we obtain finally

L(hi(a)a) — A(hi(a))k(Tn l{ot)

— A(ft-t(Q))fc^ajZ(a)

= A(/ij(a))L(a)

= Z/(/lj(a)Q:)
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as desired. Note that k~^l(a) =  L(a) for a E V( y )  by definition of ka and it holds for α E E(y) 

as well by the ’no inversion’ assumption on the group action.

This completes the proof of the Main Lemma.

The following result makes precise the relationship between a developable complex of groups G(y) 

and the complex of groups induced by the action of ni(G(y),T) on D (y , lt ), for some maximal tree 

T in y .  It will be used to prove the Corollary to the Main Lemma below.

Lemma 4.3.11. Let G(y) be a developable complex of groups over a connected scwol y. Choose a 

vertex σο E V(y) and a maximal tree T in y. Let Z be the quotient scwol

Z  =  m(G(y),T)\ D(y,ir)

and let f  be the canonical isomorphism of scwols

f - . y ^ z

a ^ W l ( G ( y ) , T ) . ( [ l ] , a )

Let C· be the following data for the action of ni(G(y),T) on D(y,Lr) :

f(a) = ([1], a) and /i/(o) = a+

and let G(Z)c. be the complex of groups associated to this data. Then there is an isomorphism of 

complexes of groups

Θ : G(y)  -> G(Z)

over f  such that

At j (t) = ^f(T) and Lt j (t) = 

where f(T) is the image ofT in Z.

Proof. We define Θ by 9a(g) = g for each g € Ga, and θ(α) = 1 for each a E E(y) (here we are 

identifying Ga with its image in ni(G(y),T)).

We then have

Λτ,/(τ) ο Λ/(τ) =  «7(V) Οπι(^><7ο) ° « τ  °τη(0ι,/(σο)) °«/(τ)

We claim that

πι(θ,σ0)ο κτ οπι{φι,/{σ0)) = 1 (4.2)
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Let g € ττι(G(Z), /(σ0)). Then p = p0/(ei)pi · · · f(en)gn for some G(Z)-loop (p0, f(ei ),g1, . . . ,  /(en), pn) 

based at /(σο) = /(ση), and so

« τ  °  7Γΐ(0ι, f (& o))(g)  =  K r (g o h f ( e i )gi · · * ^/ (e „)Pn )

= 0̂-000*“ V ^ e o W iifiT r -1 · · · κτ(/ΐ/(ε„))Ί·σ·„5„π-η1

where πσ is associated to the unique non-backtracking path in T from σο to σ. Now, applying 

/ι/(α) - a +  and κ τ ( α + ) =  π ί(α)α+ π ^ ) ,  as well as π „ 0 =  π σ„ =  1, we have

π ι ( 0 , σ ο ) °  KT 0 π ι ( φ ι ,  f ( a 0))(g) -  π ι ( 0 , σ ο ) ( ί 7 ο ε ι Α Ί  · ■ - e n9n)

=  9of(ei)g\ ■ · - / (en)5n 

=  9

and so E q u a tio n  (4.2) holds. T h u s  ^  f(T) °  ^ / ( T ) =  ^  co n ju g a tin g  E q u a tio n  (4.2), w e o b ta in

Λ/(τ) 0 Λγ ,/(τ) =  1

an d  conclude th a t =  ^J ( t ) ■

T o  show  th a t  - ^ / ( T )  =  /(T)> ^

= κ~ Ιτ) |̂ (πσ) (π}(σ)) J

be the elements of 7Ti(G(Z),/(T)) with respect to which LeT is defined. Here πσ denotes the 

non-backtracking path in T from σο to σ, and similarly for 7Γ^σ) and /(T). By definition of Θ,

Γ0(τΓσ) = π^(σ)

hence ησ = 1 for all σ € ^(3^). Also, for each q G ^ ,  the element ^ (/(α)) £ TTi(G(y), T) with respect 

to which £/(t) is defined is a product of oriented edges a± with a € T. Hence ^i(/(a)) = 1·

Applying these facts, we have, for g € 7ri(G(y),T) and a € y,

£/(Τ) ° ̂ τ,/(τ)([ρ]»α) = ^/(T)([A^j(T)(p)],/(a))

=  Λ/(Τ) Ο Λ τ)/(Τ)(3)/ι»(/(α))/(«)

= 5([l],a)

= (M .a)

f
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and

Lt j (t) ° Lf(T)([9}> f ( a )) = LTj(T](Af(T)(g)f(a))

=  (<?)], a)

=  ( [^ t , / (t ) °Λ /(τ ) (<?)]> /(<*))

= u m )

Thus Lrp ==

The following result corresponds to Corollary 4.5, [Ba].

Corollary 4.3.12. Let G(y) and G'(y') be developable complexes of groups over connected scwols 

y  and y ', and choose maximal trees T and T' in y  and y f respectively. Suppose L : D(y,tT) —> 

D{y',LT') is a morphism of scwols which is equivariant with respect to some homomorphism of 

groups Λ : n\(G(y),T) —> ni(Gf(y'), T’). If there is a σo € V{y) such that

L([l],a0) = ([l],a')

for some € V(y'), then there exists a morphism λ : G(y) —» G '(y') of complexes of groups such 

that L = Lrp rp, and Λ = A ·̂ p i.

Proof Let the quotient scwol Z, the isomorphism /  : y  —> Z, the data C., the complex of groups 

G(y)c. and the isomorphism Θ : G(y) —► G(Z) be as in the statement of Lemma 4.3.11 above, and 

similarly for Z', / ', G ', G '(y')c; and Θ'. Let I : Z —► Z' be the map of quotient scwols induced by L 

and A. By definition of Z, G. and G', and by the assumption on L, we have

L(Wo) = 1(σ0)

so we may choose Nm with kao = 1. Let

μ  = μ ο . , α , Ν .  :G (Z)C. - G '(z ')c :

be the induced morphism of complexes of groups.

Let

\ = θ'~1 ομοθ :G(y) ->G'(y')

We claim that A = Ap T, and L = Lp T,. By Corollary 4.3.2, it is enough to show that

A = (ATfj'(T')) 1 0 AHT)j'(T') ° Λτ,/(τ)
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and

L = (Lt',/'(T')) 1 ° ^/(T,),//(T/) ° L t j (T)

The result follows from the Main Lemma applied to μ, and Lemma 4.3.11 above. □

4.3.5 Coverings and developability

This section considers the relationship between the existence of a covering and developability.

Lemma 4.3.13. Let G(y) and Gf(yf) be complexes of groups over nonempty, connected scwols 

y  and y '. Assume there is a covering φ : G(y) —> G '(y'). If G '(y') is developable, then G(y) is 

developable.

Proof. Let tf : G '(y') —> FG '(y') be the natural morphism defined after Definition 4.2.14 in Sec­

tion 4.2.4. By Proposition 4.2.15, since G'(y') is developable, t' is injective on the local groups. 

Thus, as φ is a covering, the composite morphism ι! ο φ : G(y) —> FG f(yf) is injective on the local 

groups. Hence, by Proposition 4.2.11, the complex of groups G(y) is developable. □

We do not know if the converse to Lemma 4.3.13 holds in general. (According to Haefliger, the 

converse is true by a functorial 1-1 correspondence between the coverings of an etale groupoid and 

the coverings of its classifying space.) However, in the presence of nonpositive curvature, we have the 

following partial converse to Lemma 4.3.13. Recall that an M^-polyhedral complex is a polyhedral 

complex with n-dimensional cells isometric to polyhedra in the simply connected Riemannian n- 

manifold of constant sectional curvature κ.

Lemma 4.3.14. Let φ : G(y) —► G'(y') be a covering of complexes of groups, over a morphism of 

scwols I : y  —> y f· Suppose that for some n < 0, y  and y f are the scwols associated to connected 

MK-polyhedral complexes with finitely many isometry classes of cells K  and K ' respectively, and 

that |/| : \y\ —> \y'\ is a local isometry on each simplex. If G(y) has nonpositive curvature (thus is 

developable), then G'(y') also has nonpositive curvature, thus G'(y') is developable.

Proof. By Lemma 4.2.26, to show that G '(yf) is nonpositively curved, it suffices to show that for 

each vertex r' of K\ the geometric link of f ' in the local development st(f'), with the induced 

spherical structure, is CAT(l). We first show, using the following lemma, that if r f is a vertex of K ', 

then r' = /(r) for some vertex r of K.

Lemma 4.3.15. The nondegenerate morphism of scwols I : y  —> y f associated to the covering φ : 

G(y) —> G'(yf) surjects onto the set of vertices o fy f.
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Proof. Let σ G V(y) and 1(σ) = σ' G V(y'). From the definitions of nondegenerate morphism of 

scwols and covering of complexes of groups, it follows that every vertex of y f which is incident to 

an edge meeting σ' lies in the image of I. Since y ' is connected, we conclude that I surjects onto

v(y '). □

Let t ' be a vertex of K '. By Lemma 4.3.15, r' = l(r) for some r G V(y). Suppose r is not a 

vertex of K. Then there is an a G E(y) such that i(a) = r. It follows that i(l(a)) = I (i(a)) = r\ so 

1(a) G E (y f) has initial vertex r'. This contradicts r' a vertex of K '. Hence r is a vertex of if.

Since G(y) is nonpositively curved, the geometric link of f  in the local development st(f), with 

the induced spherical structure, is CAT(l). By Lemma 4.2.24, there is a 0r-equivariant bijection 

st(f) —► st(f'). We claim this bijection is an isometry in the induced metric, which completes the 

proof.

By definition of the induced metric, the action of GT on st(f) induces a simplicial map st(f) —> 

st(r) which is a local isometry on each simplex. Similarly, the action of Gr> on st(f') induces 

st(f) —> st(r) which is a local isometry on each simplex. By assumption, the restriction of |Z| to st(r) 

is a local isometry on each simplex. Hence, the bijection st(f) —> st(f') is a local isometry on each 

simplex, and thus an isometry. □

4.4 Coverings and overgroups

In this section we prove Theorem 4.1.3, stated in the Introduction. We first define the notion 

of isomorphism of coverings. In Section 4.4.1 we define a map from overgroups to coverings, and in 

Section 4.4.2 a map from coverings to overgroups. Then in Section 4.4.3 we conclude the proof of 

Theorem 4.1.3 by showing that these maps are mutual inverses.

Definition 4.4.1 (isomorphism of coverings). Let λ : G(y) —* Gf(y ') and Λ' : G(y) —► G"(y") be 

coverings of developable complexes of groups over connected scwols. Fix σο G V (y). We say that X 

and Λ' are isomorphic coverings if for any choice of maximal trees T, Tf and T" in y, y ' and y " 

respectively, there exists an isomorphism Λ" : G '(yf) —> Gff(y") of complexes of groups such that 

the following diagram of morphisms of universal covers (defined in Proposition 4-3.1) commutes

D{y,LT)-^D{y,iT>)
X //

\  T A
N . *-J r p /  r p / f

T ^  \ f ’
T T11 X

D(y”,iT")
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Note that by Corollary 4.3.2, this diagram commutes for one triple (Γ, Γ ',Τ ") if and only if it 

commutes for all triples (Τ, Τ ',Τ"). By Proposition 4.3.3, since A and A' are coverings, L\T, and 

Lj>T„ are isomorphisms. By Proposition 4.3.9, since A" is an isomorphism, the map Lj>,T„ is an 

isomorphism. Hence, two coverings are isomorphic if and only if they induce a commutative diagram 

of isomorphisms of universal covers.

For the remainder of Section 4.4, we fix the following data :

- X , the scwol associated to a simply connected polyhedral complex K ,

- Γ, a subgroup of Aut(K) which acts on X , with quotient y  = r\^,

- a vertex σο € V(y)> and

- a set of choices C· = (σ, ha) giving rise to a complex of groups G(y)cm = (Ga, ̂ α> 0a,6) induced 

by the action of Γ on Af.

Let Over(r) be the set of overgroups of Γ which act without inversions, that is, the set of 

subgroups of Aut(if) containing Γ which act without inversions. Let Cov(G(^)) be the set of iso­

morphism classes of coverings of faithful, developable complexes of groups by G(y).

4.4.1 The map from overgroups to coverings

In this section we construct a map

a : Over(r) Cov(G(y))

We first show in Lemma 4.4.2 that an overgroup induces a covering of complexes of groups. Then 

in Lemma 4.4.3 we show that, without loss of generality, we may apply the Main Lemma to this 

covering. In Lemma 4.4.4, we define a and show that a is well-defined on isomorphism classes of 

coverings.

Lemma 4.4.2. Let Γ' be an overgroup ofT acting without inversions. Let Gf(y ')cfm be a complex of 

groups over y ' =  Γ'\Χ induced by the action o/Γ ' on X , for some choices C'm. Let L = Id  : X  —► X 

and let Λ : Γ c--» Γ' be the inclusion, inducing I : y  —» y '. For some choices Nm, let

A = Ac.,c;,n. : G (y)c. -> G '(y )c ;

be the morphism of complexes of groups over I induced by L and A (see Definition 4.2.13). Then A 

is a covering.
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Proof. By definition, λσ = Ad(ka), up to inclusion, where kaa = 1(σ). The local maps Χσ are thus 

injective.

We write [g\a for the coset of g G Gt(a) in Grt(a)/V;a(Gri(o)), and similarly for [g']a> when g' G GJ(a/). 

It now suffices to show that for every a' G E(y') with t(a') = σ' =  /(σ) G ^(3^), the map on cosets

II
a£l  1(o' 

ί(α)=σ

bla 1--> [λσ(ίί)λ(α)]0-

is bijective. Suppose [Xa(g)X(a)]at = [Xa(h)X(b)]a' · Then by definition of Λ,

K ' k u b r t ^ k . h - ' g k ^ w h a k ^ K , ) - 1 6 K . T L r f h ' ' , . ) - 1

hence

*<(») K 1h~1ghak ^ ) e

Since Â (0) and /c^) send i(a) and i(b) respectively to i(a'), the element h^1h~1gha in Γ sends i(a) 

to i(b). Since 1(a) = 1(b), this implies that a = b. Hence h~1g maps i(a) to itself, thus [h]a = [p]0* 

Therefore the map on cosets is injective.

Let us show that the map on cosets is surjective. Let [h!]a> be an element of the target set. Let 

6' =  k~l h!h!a,a'. Since h! G Γ^-, we have t(bf) = σ. Let c = p(6'), where p is the natural projection 

X  —► y  = Γ\Λ\ Let g G IV  be such that ghcc = bf. We claim that [g]c maps to [h!]a', that is,

Since k .^  sends z(a') to i(c), and the element kaghc sends i(c) to ϊ(&σ6') = i(h!h!a,(a')), it follows 

that h!~,1 h’~l kaghck~^ fixes i(o'), which proves the claim. □

We now show that every covering Λ induced by an overgroup, as in Lemma 4.4.2, is isomorphic 

to a covering Λ' to which the Main Lemma may be applied. More precisely :

Lemma 4.4.3. With the notation of Lemma fix a vertex σο G V^y). Then there is a choice

C'l of data for Γ' acting on X  such that σζ = /(σο), and a choice TV' = {k'a} such that k’ao = 1, so 

that X is isomorphic to the covering

A' =  A'c .,c;',7V' : G(y)Cm -  G"(y")C'>

where G "(y")c" the complex of groups induced by C".

V/Μ Γ- Κ ^ ( r b y ) ^ T 1

h c k - { lc )h'a~ l  € h ^___h'~l
’ i(a') a
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Proof. By definition of /, there is a choice C'' so that σό, determined by C#, equals Ζ(σo) determined 

by C''. We now define a collection JV' = {k#} such that k^a = 1(σ) for all σ € V(y).

Choose a section 5 : V{y') —*· V(y) for I. That is, for each σ' € V (yf), choose s(a/) € V{y) such 

that l(s(a')) = σ'. In particular, if σ'0 = 1(σo), let δ(σό) = σο·

For each β(σ') £ V(y), choose an element € Γ' such that ^ (σ ')5(σ/) =  σ^ w^ere 8(σ') *s 

determined by C. and σ' by C". Since «(σό) = σο, and by choice of C'', we have k'̂ cr^ = l(σο) = σό, 

so we may choose A£0 = 1. For all other σ € V (y), let

=  Κ(,1(σ))Κ(1(σ))k°  (4 ·3 )

where N0 = {ka}. Note that

=  Κ(Κσ))Κ{1{σ))^σ =  *,(!(„)) *(*) =  *ί(«σ)) «(*(*)) =  *(«)

This defines a collection iV' = {Λ£} with A£o = 1. Let Λ' : G (y)c% —► G "(y /;)c' be the covering 

induced by TV'.

We now construct an isomorphism of complexes of groups μ : G'(y') —> G"(y") such that the 

following diagram commutes

G(y) — G '(y ) (4 .4)

A'

G "(y ')

By Corollary 4.3.2, it follows that Λ is isomorphic to A'.

Let /  : y' —> y"  be the identity map (both y f and y"  are the quotient Γ^Λ*). We choose a

collection iV'' = {k^,} of elements of Γ' such that λ '̂/σ' = /(σ ') as follows. By Equation (4.3), if 

Κσι) = 1(σ2) then = k'a2k~2. Given σ' € V(yf), it is thus well-defined to put

K> = K K l

for any σ G Ζ-1(σ'). We check

Κ ’σ* = K K  σ' = Κ σ = <*' = /(σ ')

as required. Define μ = : G'tVOc; Gn(yn) c Since G '(y ) and G "(y ') are both

associated to the action of Γ' on Λ', μ is an isomorphism.



CHAPITRE 4. OVERLATTICES IN AUTOMORPHISM GROUPS OF BUILDINGS 95

By definition of composition of morphisms, for g £ Ga we have

(μ ο λ)σ(<7) =  μι(σ)

=  A d ( f c i"(<T)) o A d ( f c <T)(i? )

= Ad(fc,"(CT)fcCT)(5)

= Ad (k'a)(g)

= K(9)

and for a G E (y )

(μ ° A)(α) =  μ((ί(ο))(λ(α))μ(ί(α))

= ^d (k"^a^)(kt â)haki(l^hl(l^)k't^ a^h^a)(k"^a^)

=  fci ( t(o))fct (a )^ofc^a)(fc i( i(a )) )_ 1, l / ( 1((a))

=  K ( a ) h a ( k ' i ( a ) )  1 l̂ f ( l ( a ) )

= λ'(α)

hence the diagram at (4.4) commutes. □

Lemma 4.4.4. Lei Γ' 6e an overgroup ofT. Let C ', N9 and C”, AT' be any two choices as in Lemma 

4.4.2, and let

Ac.,c;,iv. : G(y)c. —> G '(yf)cf9 and A'Ce c ,, : ^(JOc. —> G "(y ')c"

6e the associated coverings. Then X and X' are isomorphic coverings. Thus the map

a : Over(r) —► Cov(G(y)) 

taking an overgroup Γ' of Γ to the isomorphism class of the covering X is well-defined.

Proof. Fix a vertex σο G V(y) and let σ'0 = 1(σ0). By Lemma 4.4.3, we may without loss of generality 

assume that the Main Lemma may be applied to Λ and A'. As in the proof of Lemma 4.4.3, choose 

a collection N ” = {k”,} with = k!aQk~{01 = 1. Then we may apply the Main Lemma to the 

isomorphism of complexes of groups

λ" = A : G W c ;  -  G "(y ')c "
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Choose maximal trees T, T' and T" in y , y f and y " respectively. We need to check that the 

triangle

D ( y , L T ) - ^ D ( y , L T ' ) (4.5)

r λ rp ft

D{yn,LT>>)
commutes. Using the Main Lemma three times, we obtain the diagram

and see that the commutativity of (4.5) is equivalent to the commutativity of the tautological triangle

x - ^ x

Id
Id

which is obvious. □

4.4.2 The map from coverings to overgroups

We now show that there is a map

b : Cov(G(y)) - >  Over(r).

Let A : G(y) —> Gf(yf) be a covering of complexes of groups, where Gf(y') is faithful and developable. 

For any maximal subtrees T and T' of y  and y ' respectively, let Λτ,τ' · ττι {G(y), T) —> πχ (G '(y'), Tf) 

be the associated group monomorphism, and L\T, : D(y , lt) D (yf, lt>) be the associated Ατ,τ'- 

equivariant isomorphism of scwols. Composition with the isomorphism L ^1 (see Proposition 4.2.23) 

yields an isomorphism of scwols

LX<T, =  L \ T, o  L- 1 : X - >  D{y',tT>)

D(y,LT): τ  τ η

Γ λ
τ / τ ,/

D { y \ u r n )

Id
Lrp//

Id

Lt
rxLlrp ,ρ Π



CHAPITRE 4. OVERLATTICES IN AUTOMORPHISM GROUPS OF BUILDINGS 97

which is equivariant with respect to Λτ,τ· ° AT* : Γ —> 'K\(G'(y,),T l). We set 6(A) to be the group

6(A) = L ^ U i ( G /(y ),T '))L A,T'

which acts on X. Since G '(yf) is faithful, πχ(G,(y,),T/) acts faithfully on D(y\ lt*)· Hence we may 

identify 6(A) with a subgroup of A ut(if) which acts on A'. As Ατ,τ' is injective, 6(A) is an overgroup 

of Γ.

Lemma 4.4.5 below shows that b is well-defined, that is, only depends on the isomorphism class 

of the covering A.

Lemma 4.4.5. Let A : G(y) —> G '(y') and A' : G(y) —> Gn(yn) be isomorphic coverings of 

complexes of finite groups, with G'(y') and G"(y") faithful and developable. Then 6(A) = 6(A').

Proof. By definition, there exists an isomorphism A" : Gf{yf) —> G"(y") such that, for any choice 

of maximal trees, we have a commuting triangle

D(y,LT) - ^ D ( y , t T,)

τ λ//T* T n

D(y",Lr»)

and thus, composing with L·̂·1, a commuting triangle

X - b z 'D (y ',LT,)

L T ' , T "

D(y",LT")

Since is an isomorphism, by Proposition 4.3.9 the group homomorphism At\t" '■ ^i{G'(y'), T') —» 

π-ι (G "(y").T ") is an isomorphism. Thus, as L^"r ,, is Λτ',τ"-equivariant,

b(X') = L^,)T„ (G "(y"),T ”))Ly]T„

=  ^Ά,Τ' iLT\T") 1 (tti {G"(y"), L\tT'

=  L-x}r i(nl (G,(y ,) ,r ) )L XiTI 

=  4( λ)

Therefore b is well-defined. □
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4.4.3 Proof of Theorem 4.1.3

We now complete the proof of Theorem 4.1.3. Let a : Over(r) —► Cov(G(y))  be as defined in 

Section 4.4.1 and b : Cov(G(y)) —> Over(r) be as defined in Section 4.4.2.

Proposition 4.4.6. The maps a and b are mutually inverse bijections.

Proof. We first prove that bo a = 1. For this, let Γ' be an overgroup of Γ acting without inversions, 

and let α(Γ') =  A : G(y) —> Gf(y') be an associated covering over a morphism of scwols I :y  —> y'. 

By Lemma 4.4.3, we may assume that we can apply the Main Lemma to A. For any maximal subtrees 

T and T' of y  and y ' respectively, we have then a commuting diagram of (equivariant) isomorphisms 

of scwols

D{y, lt) — ^  D(y\ f'T')

Lt LTt

* .....Ί Ξ Π - ~  x

Thus

that σ0 = /'(σο) so that we can apply the Main Lemma to μ. We now show that A and μ = ab(X) 

are isomorphic coverings.

since Lt' is equivariant with respect to the isomorphism Αχ* : T') —» Γ'. We conclude

that 6 α(Γ') = Γ'.

We now prove that aob  = 1. Let A : G(y) —> G'(y') be a covering of a faithful developable 

complex of groups G'(y') over a morphism of scwols I : y  —> y f. Choose a vertex σο £ V iy) and 

maximal trees T and T" in y  and y r respectively. Without loss of generality, we identify G'(y') with 

the complex of groups induced by the action of ni(Gf(y'), Tf) on D(y\ lt*), using the isomorphism 

Θ' defined in Lemma 4.3.11 above. By abuse of notation, we write A for θ' o A. Let Γ' = b(A).

Let μ = α(Γ') be a covering μ : G(y) —> Gn(yn)c^ over a morphism of scwols /' : y  —► y", where 

Gn(yn) is a complex of groups induced by the action of Γ' on X. By Lemma 4.4.3, we may assume

6(A) =  L ^ M G ' ( y ) , T ' ) ) L A , T '

=  (L^T, o L Z l ) - l {Kl {G\y ' ) ,T ' ) )L^T, ° L z }

=  L f /

= Γ'

n(G'(; ,T'))L
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k„, L ^ T, ( [ i W )  =  H °') ·

We claim that LA ^,([1],/(σο)) =  /(/(σο)). Now

L\,T'(f(l{ao))) — ^τ,τ' ° /̂τ 1(/(Κ σο))) ~  σο) — ([ΐΜ (σο))

since ^ί(/(/(σ0))) =  1 an(  ̂ =  1) which proves the claim. Hence we may, and do, choose katQ =  1.

The elements ka> then induce a morphism φ : G'(y ')  —> G;/( y ;/) over / ,  given by φσ>{g') =  

ka'Ab(g')k~} for g' € G^,, and 0(a') =  fct(a-)A6(a'+)/c^ ,)/iJ(1Q,) for o' € £ ( y ) .  Since At and /  

are isomorphisms, φ is an isomorphism of complexes of groups. Moreover, the following diagram 

commutes up to a homotopy from A^JT, to φ"φ, given by the elements {ka>} :

G'(Y) -

Φ

G"(y") ■

■^ (G '(y% r)

aj>

φ"

y".

Let a e y .  Then a =  Γα with a € X. We identify 1(a) € y'  with the orbit •n\(G'(y'), Ka))

MG'(y),T')([uiia)], 1(a)). Then

f(l(a)) =  r 'L j i . , ([«<(*)],/(<*)) =  T'hi(a)a = Γ'α = I'(a)

proving the claim.

We next choose elements ka> £ Γ' such that, for each σ' £ V’(y'),

The map b induces a group isomorphism

Ab ■.ni(G'(y'),T')^ b(\)

with, for each g' £ 7ri(G'(y'),T/) and each a £ A*,

A ^ - a ^ L - ^ g '  -LKT,(a)).

By construction, lT, : D(y'. lt1) —> X  is Λb-equivariant. Let /  : y ’ —> y" be the induced map of 

the quotient scwols

y  =  n1(G'(y,) ,T ' ) \D (y \L T,) and y "  = T ' \X

Since Λ& and L are both isomorphisms, /  is an isomorphism of scwols. We claim that the following 

diagram of morphisms of scwols commutes :

y ■y
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Hence, by Proposition 4.2.20, there is a A^-equivariant isomorphism of scwols

Lt : D(y\lt *) ->  D(y'\ φ")

given explicitly by

(b V O ( IU q /(« '))

We now choose a maximal subtree T" of y"  and compose Lb with the isomorphism LTh ■ 

D(y", ΦΊ) —> D(y",T") to obtain an isomorphism of scwols

L : D(y\ lt >) —> D(y", t T " )

which is equivariant with respect to the composition of group isomorphisms

O A b ■■ 7Γ1 {G\y'),T')  -  Γ ' -  7n(G"(y"),T")

Since ka<o - 1 and hf ^  = 1,

L b([i],<r'o) =  ([*V '],/K )) = ([/ΐ/(σ')],/(σό)) = LT" ([1 ] . /K ))

hence Ζ/([1],σό) = ([1], /(^ο)). We may thus apply the Corollary to the Main Lemma to L. We 

now have L = L^, T„ for some morphism A' : G'(y') —► G,f(y,f). By Proposition 4.3.9, since L is 

an isomorphism of scwols which is equivariant with respect to an isomorphism of groups, A' is an 

isomorphism of complexes of groups.

To complete the proof, it now suffices to show that the following diagram commutes :

Ζ/λ
D(y,LT)- ^ D { y \ L T')

.= Γλ'L—Lt,,

D {y",iT")

By definition of L, it suffices to show that

L b  O L r p  rpf ---  L T n  O L %  rpt/

Let g G Ki(G(y),T) and a G y. We write for the element of πχ(G '(y ),T ') with respect to 

which L\T, is defined, and similarly for G 7Ti(G"(yf,),T"). Then

L b ° L ^ T ' { [ g ] , a )  =  ( [Afe { ΛΤ,τΚρ)^(α)}^ϊ(/(α))] >/(*(α)))
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and

LT" o L ^ T„([g],a) -  Q a T" {AT,T"(ff)wf(ct)| ^¿(¡'(a))] ,J '(a ))

Since /  o I =  it suffices to show that

By definition of the elements ka>, the left-hand side of (4.6) equals

On the right-hand side of (4.6), we have, by definition of Lt ",

AT" {A t ,t " ( s )u •'(„)} LT"{[l],l '{a))

=  L t "  ( a t , t " ( < ? ) u i ( a ) ' ( [1 ] , I ' (&))') since L t "  is AT"-equivariant

=  L T " (g) ■ ( K ( a )]. * ' ( « ) ) )

=  L t " ( a t ,t " (g) ■ Lj- T>>

=  Lt " o Lj. t „ ([<7], a) since Lt£ T„ is AT,T"-equivariant

But by the Main Lemma applied to /z, we have a commuting square

hence equation (4.6) holds.

4.5 Counting overlattices

We now apply Theorem 4.1.3 to obtain estimates for the number of overlattices of a given lattice 

T. We first establish a bijection between n-sheeted coverings and overlattices of index n.

(4.6)

Aft {Ar,T'(ff)wi(a)} •C'A.T' ([1], 1(a))

— , t '  ( a t ,t ' (g)u i(a) ■ since L^j,, is A^-equivariant

=  l a 1t , ( h T ,T>(g) ■ ( [« i(Q) ] i i ( « ) ) )

“  ^ A ,T ' ( A t .T'G ?) • ¿ 'T Y T 'd l] ’ a ) )

=  Lx lT, o Lj^T,{[g\,o) since L ^ T, is A^.T'-equivariant

=  ¿t([p ], ol) by definition of La.T'

D ( y , L T ) - ^ D ( y " , L T » )

Lrp LTu 

x -----------* — * *

Ab { A t,T' (9)uA
i[a) } k -1

i M<*)) A t " { Л т,т" i(a) } hi

I',

(((о)) (9) и V { a )

([1], 1(a)) )Lл

Ат т"
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Corollary 4.5.1. Let K  be a simply connected, locally finite polyhedral complex, and let Γ be a 

cocompact lattice in Aut(/f) (acting without inversions) which induces a complex of groups G(y). 

Then there is a bijection between the set of overlattices ofT of index n (acting without inversions) 

and the set of isomorphism classes of n-sheeted coverings of faithful developable complexes of groups

by G(y).

Proof By the definition of n-sheeted covering, the bijection of Theorem 4.1.3 sends an isomorphism 

class of finite-sheeted coverings to an overgroup containing Γ with finite index.

Since Γ is cocompact, the quotient scwol y  is finite and the local groups Ga of G(y) are finite 

groups. Let A : G(y) —> G'(y') be a finite-sheeted covering, where G '(y') is a faithful, developable 

complex of groups. Then y f is finite by Lemma 4.3.15, and the local groups G'a, are finite since A is 

finite-sheeted. It follows that the overgroup 6(A) is a cocompact lattice acting without inversions on 

K.

It remains to show that the bijection a sends an overlattice Γ' of index n to an n'-sheeted covering, 

with n = n'. Let A = α(Γ') : G (y) —► G '(y') be a covering associated to Γ', over the morphism of 

quotient scwols I : Γ\Χ —> Γ'\Λ\ Then

y  l

, V o l ( r \ \ y ( * ) )

1 · J V o l ( r ' \ \ V ( * ) )  Σ
a'£V(y')'

Σ Υ"' 1 V' n'P7f L· Tgrjt
a'€V(y') σ€ΐ~ι(σ')' af£V{yfY σ' ,

_ V  1 — 1 — n
a'€V(yf)' σΙ σ'ενο?*)' σ

as required. □

4.5.1 Upper bound

Let K  be a simply connected, locally finite polyhedral complex. In this section, we establish an 

upper bound on the number of overlattices of a cocompact lattice in Aut(if), using deep results of 

finite group theory.

Suppose G is a group of order n. Let η = be the prime decomposition of n and let

μ(η) = max{ki}. We denote by d(G) the minimum cardinality of a generating set for G, and by /(n) 

the number of isomorphism classes of groups of order n. By results of Lucchini [Luc], Guralnick [Gur] 

and Sims [Si],

d(G) < μ(η) + 1
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and by work of Pyber [P] and Sims [Si], we obtain

f(n) < ηΑμ(η)2 + έμ5/3(η)+75μ(π)+16

Let g(n) = ^μ (η )2 4- |μ5/3(η) 4- 75μ(η) 4- 16, so that f(n ) < n9̂ n\

Theorem 4.5.2. Let T be a cocompact lattice acting on X , where X  is the scwol associated to a 

simply-connected, locally finite polyhedral complex. Then there are some positive constants Co and 

Ci, depending only on Γ, such that

V n >  1, u r ( n )  <  ( C o n ) Cllog2(n)

Proof. Fix a quotient complex of groups G(y)c, for the action of Γ on X. By Lemma 4.3.15, since y  

is finite there exist only finitely many scwols y* such that a covering may be defined over a morphism 

y  —> y'. Thus it is enough to show the upper bound for the number of overlattices with a fixed 

quotient scwol. We count the n-sheeted coverings of complexes of groups A : G(y) —> Gf(y') = 

(G'a,,φα' , ga·,b') over morphisms I : y  —> y\ where y f is fixed. Note that we do not insist on the 

complex of groups G'(y') being faithful or developable.

For σ G V(y),  let ca =  \Ga\, and for σ' G V(y')  let

c-' = (  Σ
\ σ ζ Ι- Η σ ’ ) J

By definition of an n-sheeted covering, the cardinality \G'a,\ is equal to nca/.

There are at most Yl<Jf€v ( y ' ) ( c^fn) g(<c<7,n̂  isomorphism classes of groups G'a,. There are at most

n o'6E0>')(Ct(o')n)M(C<(a,)n)+1 monomorphisms φα> : G’i{al) -» G'tW) and at most Πσ6ν'(;ν)(0ΐ(σ)τι)μ(ο'τ)+1

injections λσ : Ga -* G '^y  There are |GJ(£(0»| = nct^a)) choices for each λ(α).

Let M  = max maχ{βσ,<̂ (σ)} and μ = μ(Μη). Let Co =  |V̂ (y)| > ^ (y ') ! and c\ = |2£CV)| > 
a£V(y)

\E(y')\. The number ur{n) is at most the product of the number of isomorphism classes of groups 

G .̂/, the number of monomorphisms ψα', the number of twisting elements gaf,6', the number of local 

maps λσ, and the number of elements λ(α). Combining all the estimates above, we get the following 

upper bound for ur(n) :
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ur(n)<  Π  Μ * ° · ' η) Π  (ct(a 'P r (Ci<“'>n)+1 Π  lGi(a')l
a'€V(y) a'€ E(V>) a'&EO>')

Π  (εΚσ)η)μ(°σ)+1 Π  nct(l(a))
oZV(y) a£E(y)

< (M n)9<Mn) U  (Μη)μ Λ̂ίη̂ +1+1 J ]  (Μη)μ(Μ)+1 nM

afev(yf) a'€fi(y') σεν&) a££(;y)

<(M n)Cô Mn^ Cl̂ ^Mn^ 2̂ Cô ^ ^ 1̂ Cl < (Mn)Cl/i2 < (C'on)c^ logn^

where C*i = co(2/27 -h 1/2 4· 75 + co ~l· ci Η- 16 -h 3co ·4· ci) and C£ = O i/ log 2. CU

4.5.2 Lower bound for right-angled buildings

In this section we establish a lower bound on the number of overlattices, for certain right-angled 

hyperbolic buildings. See Theorem 4.5.4 below for a precise statement.

We first define right-angled hyperbolic buildings. Let P be a compact convex polyhedron in Hn, 

with all dihedral angles j , and let (W, I) be the right-angled Coxeter group generated by reflections 

in the (n— l)-dimensional faces of P. Each face of P then has the type of a unique subset J  C I  such 

that W j, the subgroup of W generated by j  € J, is finite. In particular, each (n — l)-dimensional 

face of P has the type of a unique i € /, and so we will refer to the corresponding (n— l)-dimensional 

face of P as an i-face.

A hyperbolic building of type (W, I) is a polyhedral complex X  equipped with a maximal family of 

subcomplexes, called apartments. Each apartment is polyhedrally isometric to the tesselation of Hn 

by the images of P under W , and these images are called chambers. The apartments and chambers 

of X  satisfy the usual axioms for Bruhat-Tits buildings :

- each chamber is contained in an apartment; and

- for each pair of apartments A and A\ there exists a polyhedral isometry from A onto A! which 

fixes A Π A!.

For i 6 /, an {i}-residue of X  is the connected subcomplex consisting of all chambers which 

meet in a given z-face of X .

An example of a right-angled hyperbolic building is Bourdon’s 2-dimensional building /P)9 (see [Bo2]). 

Here, P is a regular right-angled hyperbolic p-gon and each {i}-residue consists of q copies of P, 

glued together along a common edge. Right-angled buildings exist only in dimensions 2, 3 and 4
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(see [PV]).

The following result classifies right-angled hyperbolic buildings.

Proposition 4.5.3 (Proposition 1.2, [HP]). Let {W,I) be a right-angled Coxeter system and {qi} a 

family of positive integers (qi > 2). Then, up to isometry, there exists a unique building X  of type 

(W ,I), such that for each i e I, the {i}-residue of X  has cardinality qi.

In the 2-dimensional case, this result is due to Bourdon [Bo2]. According to [HP], Proposition 4.5.3 

was proved by M. Globus, and known also to M. Davis, T. Januszkiewicz and J. Swi§,tkowski.

Let T = T2p be the 2p-regular tree, where p is prime. In [LI], Lim constructed many non­

isomorphic coverings of faithful graphs of groups with universal cover T, of the form shown in 

Figure 4.1.

Oil

Σ / ρ ζ ζ ^ { 1 }  ---- ► g Q h

«2

F ig . 4.1 - Coverings of graphs of groups

If Γ is the cocompact lattice in Aut(T) associated to the left-hand graph of groups, this yields the 

lower bound ur{n) > n ^ fc_3\ for n = pk and k > 3.

We now explain how to use these constructions to prove the following :

Theorem 4.5.4. Let X  be a right-angled hyperbolic building of type (W ,I), with chambers P and 

parameters {qi}. Assume that for some i\,i2 £ I, i\ φ i2,

1- Qii — Qi2 = where p is prime; and

2. the i\- and i2-faces of P are non-adjacent (equivalently, miltt2 = oo in the Coxeter system 

associated to X ).

Then there is a cocompact lattice Γ, acting without inversions on X , such that for n = pk, and k > 3,

ur(n) >

Proof. First, we take the “double cover” of the graphs of groups in Figure 1 above to obtain coverings 

of faithful graphs of groups with universal cover Γ, of the form
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{i} “h Jk'i*2o - β Ώ ?{1} Η  a i

F ig . 4.2 - “Double covers” of Figure 4.1

We now carry out a special case of the Functor Theorem, [T3]. Let A be the graph with two 

edges underlying the graphs of groups in Figure 2. Let P and P f be two copies of P. Glue the ii-face 

of P to the ii-face of P* in a type-preserving manner, and similarly with the Z2-faces, and let the 

resulting polyhedral complex be Y. If y  is the scwol associated to Y, then each edge and each vertex 

of A may be identified to a vertex of y. Also, each face of P and P' may be identified to a vertex 

of y i so that the vertices of y  now have types J  with W j finite.

Let Ao and A be as in Figure 2. Then A induces a complex of groups G(y) over y, as follows 

(the construction for Ao is similar). First fix the local groups induced by the identification of A with 

some of the vertices of y. Each map from edge to vertex groups in A then induces a monomorphism 

ψα along an edge a of y. For each i £ /, let Gi be a group of order qi.

Let J  be a subset of I  such that W j is finite. If J  does not contain i\ or %2, then the local group 

at the vertices of y  of type J  is

Η χ
jeJ

The monomorphisms between such local groups are natural inclusions. Now consider J  containing 

one of ii and %2 (since mi1̂ 2 = oo, J  cannot contain both i\ and 22). Without loss of generality 

suppose J  contains i\. Then the face of type J  in Y is contained in the glued zi-face, and the local 

group at the vertex of y  of type J  is

g  χ n >

The monomorphism from G to this local group is inclusion onto the first factor. For each J ' C J 

with i\ G J, the monomorphism

Gx  Π  Gj  -  G χ Π  Gj
j &J'  i £ J
ί φ ί ι  ί φ ί ι

Ao =  Z/pZ
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is the natural inclusion. For each J ' C J  with i\$. J ’, the monomorphism

H * Π Gi -+ G x Π G3
jeJ' jeJ

l

is a monomorphism H  —► G from the graph of groups A on the first factor, and natural inclusions 

on the other factors. Put all ga,b = 1 and we have a complex of groups G(3O-

Let G(y)o be the complex of groups induced in this way by Ao- It is not hard to verify that 

G (y)o has nonpositive curvature and is thus developable, and that its universal cover is the scwol 

associated to the hyperbolic building X . Also, every covering as in Figure 2 induces a covering of 

the associated complexes of groups G (y)o —> G(y). By Lemma 4.3.14, since G (y)o has nonpositive 

curvature, each G(y) is developable. The arguments used to show faithfulness of the graphs of groups, 

together with Proposition 4.3.8, imply that each G(y) is faithful. Moreover, by Lim’s construction, 

non-isomorphic coverings of the form in Figure 2 induce non-isomorphic coverings G (y)o —> G(^). 

By Theorem 4.1.3, this completes the proof. □
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