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Sous-variétés spéciales des
variétés de Shimura mixtes

Résumé. Cette thése est dédiée a I’é¢tude de la conjecture d’André-Oort pour
les variétés de Shimura mixtes. On montre que dans une variété de Shimura
mixte M définie par une donnée de Shimura mixte (P,Y), soient Cun Q-tore dans
P et Z une sous-variété fermée quelconque dans M, alors I’ensemble des sous-
variétés C-spéciales maximales contenues dans Z est fini. La démonstration
suit la stratégie de LClozel, E.UlImo, et A.Yafaev dans le cas pure, qui dépend
de la théorie de Ratner sur des propriétés ergodiques des flots unipotents sur
des espaces homogénes. D ailleurs, une minoration sur le degré de I’orbite sous
Galois d’une sous-variété pure est montrée dans le cas mixte, adaptée du cas
pure établi par E.Ullmo et A.Yafaev. Enfin, une version relative de la conjecture
de Manin-Mumford est démontrée en caractéristique nul: soit Aun S-schéma
abélien en caractéristique nul, alors I’'adhérence de Zariski d’une suite de sous-
schémas de torsion dans A égale une réunion finie de sous-schémas de torsion.

Mots clefs : approximation diophantienne, variétés de Shimura mixtes, sous-
variétés spéciales, conjecture d’André-Oort, conjecture de Manin-Mumford, équidis-
tribution, theorie de Ratner.

Special Subvarieties of
Mixed Shimura Varieties

Abstract. This thesis studies the Andre-Oort conjecture for mixed Shimurava-
rieties. The main resultis: let M be a mixed Shimura variety defined by a mixed
Shimura datum (P,Y), C a fixed Q-torus of P, and Z an arbitrary closed subvari-
ety in M, then the set of maximal C-special subvarieties of M contained in Z is
finite. The proof follows the strategy applied by LClozel, E.Ullmo, and A.Yafaev
in the pure case, which relies on Ratner’ theory on ergodic properties of unipo-
tent flows on homogeneous spaces. Besides, a minoration on the degree of the
Galois orbit of a special subvariety is proved in the mixed case, adapted from the
pure case established by E.Ullmo and A.Yafaev. Finally, a relative version of the
Manin-Mumford conjecture is proved in characteristic zero: let Abe an abelian
S-scheme ofcharacteristic zero, then the Zariski closure of a sequence oftorsion
subschemes in Aremains a finite union of torsion subschemes.

Keywords: Diophantine approximation, mixed Shimura varieties, special sub-
varieties, Andr6-Oort conjecture, Manin-Mumford conjecture, equidistribution,

Ratners theory.
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Introduction

This thesis is dedicated to the study of the Andr6-Oort conjecture for mixed
Shimura varieties. The following introduction is aimed to illustrate the basic
ideas and the main results ofthis writing through a special class of mixed Shimura
varieties, which requires less preliminaries than what one might find in standard
references like [Pink-0].

Recall that the pure Shimura varieties defined by RDeligne and G.Shimura
are quasi-projective varieties parameterizing rational pure Hodge structures with
additional structures (e.g. abelian varieties with PEL-data). Still the group-theoretic
definition is preferred: a pure Shimura datum is a pair (G,X) subject to the ax-
ioms of P.Deligne with G a reductive Q-group and Xahomogeneous space under
G(R) whose connected components are (non-compact) Hermitian symmetric
domains associated to G(IR)+; for Kc G(Af) a compact open subgroup, Mk(G,X)
is a quasi-projective variety defined over the reflex field E(G,X) whose complex
locus is G(Q)\[XxG(AH/K].

The notions of mixed Shimura data of Kuga type and the associated mixed
Shimura varieties can be presented in the following simplified form, which is
equivalent to the definitions that appear later in Chapter 1: the data are of the
form (P,Y) = (VxpG,V(R) x X) where (G,X) is some pure Shimuradatum, p:G —
GLqg(V) an algebraic representation of G on some finite dimensional Q-vector
space Vsuch thateach x :S -* Grin Xinduces on Vacomplex structure (namely
a rational pure Hodge structure of type {(-1,0), (0,-1)}) via p, and Y = V(R) % X
is the complex manifold whose complex structure on the fibre V(R) x jcis given
by x : § —Gr —GLr(Vr), which justifies the notation x here; and the mixed
Shimura varieties of Kuga type are the quasi-projective <ac-varieties MKk(P,Y)
whose complex loci are of the form P<Q@)\[Y x P(Af)/K], K being compact open
subgroups of P(Af). These varieties are equipped with canonical models over
the same reflex field E(G,X) as the corresponding pure Shimura varieties. When
K is of the form Ky x Kq for some compact open subgroups Ky ¢ V(Af) and
Kg G(Af), the canonical projection n : M = Mr(P,Y) —S = Mj*iG.X) defines
an abelian S-scheme over the pure Shimura variety S, which serves as the pro-
totype of Kuga varieties.

The connected components ofmixed Shimura varieties of Kuga type defined
by (P,Y) can be written in the form M+ = T\Y+ where Y+ is a connected com-
ponent of Yand T ¢ P(Q) is some congruence subgroup. Similarly, a special
subvariety of M+ can be written as Mj-= (rn Pi (Q))\Y” (embedded in M+) de-
fined by some subdatum (Pi.Yi) ¢ (P,Y). The T-conjugacy class of Pi only de-
pends on «—M+,and is called the Mumford-Tate group of M i+; in this thesis
the subdatum (Pi, Yi) is usually fixed, and for simplicity Pi is referred to as the
Mumford-Tate group of Mj". Note that in this mixed setting a special pointis no
other than a special subvariety of dimension zero, namely defined by (T, x) with
T a Q-torus.

In general, mixed Shimuravarieties can be viewed as torus torsors over mixed



Shimura varieties of Kuga type. They arise naturally in the theory of toroidal
compactifications of (pure) Shimura varieties, whose foundation is laid down in
the Ph.D thesis of R.Pink [Pink-0]. Even though non-trivial torus torsors are of-
ten encountered in toroidal compactifications, this introduction is restricted to
the case of mixed Shimuravarieties of Kuga type, and through them is illustrated
the main subject of this thesis: the André-Oort conjecture.

The André-Oort conjecture was initially raised for pure Shimura varieties (cf.
[André-4] and [Oort-2]): let M be a Shimura variety, and | a sequence of spe-
cial subvarieties of M, then the Zariski closure of U2 is a finite union of special
subvarieties, where by special subvariety is meant a geometrically irreducible
component of the image under a Hecke correspondence of a Shimura subvari-
ety M' ¢ M. Replace Shimura varieties by mixed Shimura varieties of Kuga type
one gets the formulation of the André-Oort-Pink conjecture in the mixed con-
text, which has been formulated in [Pink-2].

As is pointed out in [Pink-2], [U-3] and [U-4], this formulation is analogous
to the Manin-Mumford conjecture, which was first proved by M.Raynaud: let Z
be a sequence of torsion subvarieties in a complex abelian variety A, then the
Zariski closure of (J£ is a finite union of torsion subvarieties, where by torsion
subvariety is meant a closed subvariety of the form a + A" with A'cAan abelian
subvariety, a+ denoting the translation by a torsion point a. Both of the two
conjectures study the distribution of a family of special sub-objects with "a lot
of symmetries”: in the case of Manin-Mumford, a torsion subvariety is stabi-
lized under "alot of* homotheties; and in the case of Andeé-Oort, a special sub-
variety is "stabilized" by "many" Hecke correspondences. Of course these two
conjectures can be stated in different equivalent forms, and for the André-Oort
conjecture the following two are preferred:

Conjecture 0.0.1 (the conjecture of André-Oort-Pink:). (1) Let M be a mixed
Shimura variety ofKuga type, thenfor any closed subvariety Zc M, theset  2)
ofmaximal special subvarieties contained in Z isfinite.

(2) LetM be a mixed Shimura variety ofKuga type, and (Mn),, an arbitrary se-
quence ofspecial subvarieties, then the Zariski closure of\Jn is weakly special,
namely afinite union ofspecial subvarieties.

This formulation includes certain cases of the classical Manin-Mumford con-
jecture: for example, certain abelian varieties over number fields can be real-
ized as a (connected) mixed Shimura variety associated to some datum (P,Y) =
(VX G,V(R) x X) with G a Q-torus and X a single point, and in this case the two
notions of special points coincide. Note that in this case Ahas complex multi-
plication and satisfies the "Shimura condition" as in Theorem 7.44 in [Sh].

In [U-I] and [U-3], E.UUmo sketched a program to treat these two conjec-
tures using ideas from ergodic theory: in the two conjectures, the special sub-
objects are equipped with canonical probability measures, and the conjectures



would hold ifone could prove that any sequence of measures associated to spe-
cial sub-objects admits a convergent subsequence whose limit is again associ-
ated to some special sub-object, or equivalently, the compactness of the set of
canonical probability measures associated to special subobjects. More precisely
the Andr6-Oort conjecture admits the following refinement

Conjecture 0.0.2 (the equidistribution conjecture for mixed Shimura varieties
of Kuga type:). LetM be a mixed Shimura variety ofKuga type, and (Mn),, be a
sequence o fspecialsubvarieties ofM. which isstrictin the sense thatfor any special
subvariety M' C M, M,, » M'for n large enough. Denote by

1
M= io(m,,)iyd - i/ Y

the average ofthe [ly swithY varying over 0(M,,), where Q[Mn) denotes the Gain-
orbitofM,, in M, E being the reflexfield ofM, and ny the canonical probability
measure on M(C)an associated to the complex analytic space Y(C)an- Then (|in)n
converges to the canonical probability measure on M(C)anfor the weak topology,
and therefore UwMn(C) is dense in M(C)anfor the archimedean topology.

When specialized to the case ofan abelian variety which can be realized as a
mixed Shimura variety, the equidistribution conjecture predicts that the Galois
orbits of torsion points are equidistributed with respect to the Haar measure on
the compact complex Lie group A(C)an>and this is a special case ofthe (resolved)
Bogomolov conjecture.

The conjecture makes sense also in the pure case and it implies the Andre-
Oortconjecture: ifthe set P Z) is infinite for some closed subvariety Z C Swhich
is Hodge generic, namely Z~ S' for every special subvariety S' C S, then 5?(2)
forms a strict sequence (S,,), and the equidistribution conjecture predicts that
the Galois orbits ofthe Snsare dense in S, which contradicts the strict inclusion
ZCS. This is partially realized in [CU-3] for a strict sequence of "strongly spe-
cial subvarieties" of positive dimensions inside a pure Shimura variety defined
by an adjoint Q-group, where being strongly special means that the Mumford-
Tate group of the special subvariety is semi-simple. This is soon generalized in
[UY-1] to the case ofsstrict sequences of C-special subvarieties in Mr (G, X), where
Cisafixed Q-torus and a C-special subvariety is nothing but a special subvariety
whose Mumford-Tate group is of connected center C. This approach is essen-
tially ergodic-theoretic, and it does not yet permit any generalization to a se-
quence of special subvarieties such that infinitely many Q-tori, non-isomorphic
to each other, appear as connected centers ofthe Mumford-Tate groups.

The result above is reffered to as the equidistribution of homogeneous se-
quences of special subvarieties. Here a sequence of special subvarieties (S,,) in
a (connected) pure Shimura variety S (defined by (G,X)) is said to be homoge-
neous if for some fixed Q-torus C in G one can find subdata (Gn,Xn) of (G,X)
such that S,, is defined by (G,,,X,,) and that the G,,’s are of common connected



center C. Inthe general theory of pure Shimura data, the action ofthe weightho-
momorphism factors through the connected center ofthe Mumford-Tate group,
and the notion of homogeity here indicates that the special subvarieties “carry
the same Hodge weight". Similarly, a sequence of special subvarieties (S,,)n is
said to be weakly homogeneous if it is a finite union of homoeneous subse-
quences, namely there exist finitely many Q-tori Ci,...,Cr in G such that each
S,, is C/-special for some i e {l,...,r}. We apologize for this terminology that
might confuse the readers with homogeneous spaces under some group action.

In [UY-1] E.Ullmo and A.Yafaev also studied the lower bound of the degree
of the Galois orbit of a special subvariety S'in a pure Shimura variety S with re-
spect to the canonical line bundle SE defining the Baily-Borel compactification
of S. Their bound is referred as the test invariant of S' with respect to S and
5£. And they established a useful criterion: let (Sn)n be a sequence of special
subvarieties (ofarbitrary dimensions) of S = Mk(G,X) such that the sequence of
associated test invariants (T(S,,))n is bounded, then (Sw),, is a weakly homoge-
neous sequence in the sense that there is finitely many Q-tori C- of G such that
each Snis C,-special for some i. In particular, the equidistribution result can be
applied to (Sn)nto deduce that the Zariski closure of U«Stt is a finite union of
special subvarieties.

The precedent results of L.Clozel, E.UlImo and A.Yafaev fit into the following
strategy towards the André-Oort conjecture, namely the finiteness of 5?{Z) the
set of maximal special subvarieties contained in an arbitrary closed subvariety
Z of the given Shimura variety S. This set is a priori countable, and we write
it as a sequence (S,,)n. Ifthis sequence is of bounded test invariants, then it is
weakly special, and thus the finiteness of SP{Z) follows from the maximality of
the S,,5 and the equidistribution results. On the other hand, if the sequence
of test invariants is unbounded, then according to the recent work of B.Klingler
and A.Yafaev [KY], for special subvarieties S,,cZ whose test invariant is large
enough, we can construct a chain of inclusions Sn C. S,, ¢ Zwith S,, a special
subvariety, which contradicts the maximality of (Sn)n and ends the proof.

It should be remarked that the equidistribution of C-special subvarieties is
established unconditionally. By contrast, the other ingredients in the current
proof of the André-Oort conjecture make a crucial use of the effective Cheb-
otarev theorem, which is a consequence of the Generalized Riemann Hypothe-
sis: itappears in the estimation ofthe lowerbound in term ofthe testinvariantin
[UY-1],and also in the proof of [KY] for the construction ofthe chainSnC S,,¢c Z
that depends on the choice of a "good" prime i over which one can find ap-
proapriate Hecke correspondences to confirm the existence of such a chain.

The current approach towards the André-Oorthas notyetresulted in a proof
of the more general equidistribution conjecture: for a sequence of special sub-
varieties of non-bounded test invariant, the approach in [CU-3] doesnt work,
and not much is known how to treat the sequence ofcanonical probability mea-
sures averaged over the Galois orbits associated to them. There are positive pro-



gresses in this direction which involve more explicit calculations using automor-
phic forms, cf. [JLZ], but this is not touched in the current writing.

The present thesis attempts to generalize part of the strategy above to the
case of mixed Shimura varieties, as follows:

* In Chapter 1some preliminariesare are recalled on the notions of mixed
Shimura data, mixed Shimura varieties, Hecke correspondences, and canonical
models over the reflex fields. The notion of C-special subdata and C-special sub-
varieties are defined in a trivial way: for a mixed Shimura datum (P,Y), fixa Levi
decomposition P =V x G, and write n :P —G for the canonical projection, then
a subdatum (P',Y") of (P,Y) is C-special for some Q-torus Cc G ifand only ifC
equals the connected center of G' = w(P"); and a C-special subvariety is a special
subvariety defined by some C-special subdatum of (P,Y).

There are also some technical lemmas concerning the construction of mixed
Shimura varieties, including the following one: if (P,Y) is a mixed Shimura da-
tum of Kuga type, y a pointin Y, Q a Q-subgroup of P such that y(8) ¢ QR, then
there exists a maximal Q-subgroup P' invariant in Q such that (P',P'(R)y) is a
subdatum of Kugatype in (P,Y), with P'(R)y = Q(K)y.

¢ Chapter 2 serves as an expanded introduction to the Andre-Oort-Pink
conjecture. The following two equivalent formulations ofthe conjecture are pre-
ferred in the sequel:

(1) Let M be a mixed Shimura variety, and (M,,)n a sequence of special subva-
rieties, then the Zariski closure of Un M,, is a finite union of special subvarieties.

(2) Let M be a mixed Shimura variety, and Z a closed subvarieties in M, then
the set 5?{Z) of maximal special subvarieties contained in Z s finite.

In this chapter is also included a detailed introduction to the main results of
the thesis.

e Chapter 3 is focused on the equidistribution of homogeneous sequences
of special subvarieties, where by homogeneity of a sequence is meant that the
special subvarieties in the sequence are C-special for a fixed Q-torus C. The
main results can be stated in a parallel way to the conjecture of Andr6-Oort:

(C-1): Let M be a mixed Shimura variety, and (M,,),, be a sequence of C-
special subvarieties in M, then the Zariski closure of UnMn is a finite union of
C-special subvarieties;

(C-2): Let M be a mixed Shimura variety and Zc¢ M a closed subvariety, then
the set .92 (2) of maximal C-special subvarieties in M contained in Z is finite.

Note that C is required to be "not of CM type", namely y(8c) £ Cc for any
pointy e Y. Ifon the contrary y(Sc) ¢ Gc for some ye Y, then (C,y) is a special
subdatum. The (resolved) Manin-Mumford conjecture implies that the Zariski
closure of a family of C-special subvarieties remains weakly special.

The strategy is as follows:



(1) The starting point is the observation that the theorem of S.Mozes and
N.Shah (cf.[MS] Theorem 1.1) on a class of ergodic measures on lattice spaces
already fits into the framework of mixed Shimura varieties, from which is de-
duced aweakened Andr6-Oort type theorem for lattice spaces.

Tobeexact, fora mixed Shimura datum of Kugatype (P,Y) = (V*G,V(R) xiX)
and an arithmetic subgroup Tc¢ P(R)+,the quotient Q = r\P der(R)+is referred to
as the lattice space associated to (P, Y, T). We first take C to be the connected cen-
ter of G, then we get a (countable) set of measures IKc(n), whose elements are
the measures on fl that are associated to C-special lattice subspaces of the form
O' = r\rP 'der(R)+, where P' comes from a C-special subdatum (P.Y") of Kuga
type, namely for some (or any) Levi decomposition P' = V' x G', the connected
center of G' is of the form vCv-1 for certain v e V(Q). The theorem of S.Mozes
and N.Shah affirms that any sequence in jKc(Q) admits a subsequence which
converges weakly to some probability measure |i', and by checking the involved
Hodge structures one deduces that |i' lies in 'Kc(i)), hence the compactness of
iKc(™)- This can be regarded as an Andre-Oort type theorem for sequences of
C-special lattice subspaces: if (D,,)nis a sequence of C-special lattice subspaces
in fl, then the archimedean closure of U n i s afinite union of C-special lattice
subspaces.

(2) From C-special lattice subspaces one can construct any C-special subva-
riety in a connected mixed Shimura variety of the form M = T\Y+ as follows:
letjce Y+ ¢ Y\ with (P,Y") & (P,Y) a C-special subdatum, then the projec-
tion k* :n — M =r\Y+ Tg ~ rgje sends Q' = HIT*(R)+ onto M' = r\IT/+,
and the push-forward under k* of the canonical measure v' on fi supported
on n' is exacdy the canonical probability measure |i' on M supported on M',
Note that |i' only depends on P, Y'+and T, and is independent of the choice of
base point xeY '+. Write Jic(M) for the set of canonical measures on M defined
by C-special subvarieties. Then the above construction yields a surjective map
Die(i™)3£c (M),butwe do notknow a prioriwhether itis continuous: this map
is not merely kxt for a single fixed jc.

The compactness of Oic (M) follows from an argument of S.Dani and G.Margulis.
Similar to the pure case treated in [CU-3], in Chapter 3 is shown that there exists
acompactsubset Cc ¢ YsuchthatifM'c Mis a C-special subvariety, then there
is a C-special subdatum (P',Y") ¢ (P,Y)such thatY'+nCc " 0 and NTY'+= M.
Thus the elements in 'Hc(Q) are ofthe form Kxtv' with v' coming from the com-
pact set JCc(i2) and x a point in the compact set Cc. hence the compactness of
9Cc(M). Consequently, the closure of a sequence of C-special subvarieties is a
finite union of C-special subvarieties. Note that the closure here is taken in the
archimedean topology: this is even finer than the Zariski topology, and the two
topologies yield the same closure in our case. Thus the Andr6-Oort conjecture
holds for a sequence of C-special subvarieties..

(3) One may also replace the connected center C of G by a more general
Q-torus C': if for some pure subdatum (G',X") ¢ (G,X) one has C' equal to the
connected center of G', then there exists only finitely many maximal C'-special



subdata (P, Y,) in (P,Y), i varying over some fixed finite index set. Thus the set
of maximal C'-special lattice subspaces in D.is finite, and so it is with the set of
maximal C'-special subvarieties in M. In order to study the closure ofa sequence
of C'-special subvarieties, one may assume that the sequence is contained in a
fixed maximal C'-special subvariety, and then the conclusion follows immedi-
ately from the arguments in (1) and (2).

The general case ofnon-Kugatype is slightly different from the above discus-
sions: an intermediate class of objets called "'S-spaces" is introduced in Chapter
as: they serve as "real parts" ofthe complex mixed Shimura varieties. They carry
canonical probability measures and are closed related to the lattice spaces over
which the ergodic arguments are applicable. The equidistribution of C'-special
S-subspaces is proved and then taking Zariski closure yields a partial reply to the
Andr6-Oort conjecture.

e Chapter 4 is mainly an reinterpretation of an estimation of E.Ullmo and
A.Yafaevin the mixed case. Recall that one ofthe main results in [UY-1] is a lower
bound for the degree of the Galois orbit of a pure special subvariety S'in a given
pure Shimura variety S with respect to the line bundle defining the Baily-Borel
compactification:

deg”GalES' > £(S) = a(C")P(C',K)

where E is the reflex field of S, C' the connected center of the Mumford-Tate
group of S', a(C") a fixed power ofthe absolute discriminant of the splitting field
of C' (up to some constant coefficient), Kthe compact open subgroup defining
the Shimura variety S, and

P(C'K) =max(l, f BIKc ~ /KC,pD
peS(g?,K)

with B a constant determined by a fixed representation of G, and 8(C', K) the fi-
nite set of rational primes p such thatKc,p £ K**“ where Kc',p is the p-th com-

ponent of Kc = KnC'(Af), and K™* is the maximal compact open subgroup of

C'(Af). Following the ideas of L.Clozel, E.Ullmo and A.Yafaev, in [UY-1] is estab-
lished a criterion on the equidistribution of special subvarieties: let (Sn)nbe a
sequence of special subvarieties in S such that the associated sequence of test
invariants (t(S,,),, is bounded when n varies, then there exists finitely many Q>
tori Ci such that each S,, is C,-special for some i, and thus the closure of UnS,,
is a finite union of special subvarieties due to [CU-3] and [UY-1].

As for the mixed case, in Chapter 4 is first considered the degree of Galois
orbit ofa pure special subvariety M' with respect to the line bundle n*££, where
jiisthe projection from M = Mrv*kg(VxG,V(R)><iX) onto S = Mr,; (G,X), defined
over the common reflex field E = E(G,X), and if = if (Kg) isthe line bundle on S
defining the Baily-Borel compactification. One can show that the Mumford-Tate
group of M"in M is of the form vG'v~I for some v e V(Q) and some pure subda-
tum (G',X") ¢ (G,X). Then the degree to be estimated is equal to degpj..” Gain S,,



is the isotropy subgroup of {v mod Ky) in V(Af)/Ky under the action of
Kg, and prvdenotes the projection Mk”u) (G,X) -» Mjq; (G,X) defined by the in-
clusion of compact open subgroups Kg(v) ¢ Kg. The functorial properties of
Baily-Borel compactifications imply that pr* (if) is isomorphic to the compact-
ifying bundle ¢£{SLg(v)) on S,,, and that

% S,, is a pure special subvariety in Sv = Mk”*)(G,X) defined by (G'X",

degdCGd;)) GalES,, > t(S,) = aiC'W C', Kg (i»)

namely degpr.”. Galg M' > a(C")P(C', Kg(i»)), with C' the connected center of G'.

Bythe same arguments as in [EY] and in [UY-1], itis shown that P(C', Kq(v)) >
riped(C,KG(v)) CP f°r some constant c independent ofthe choice of Kg, S'vand v.
Thereby for a sequence of pure special subvarieties (Mn)n in M whose test in-
variants t(M,,) = a(Cn)P(C,,Kc(i'n)) remain bounded when n varies, there ex-
ists finitely many Q-tori Cf in Gsuch thateach M,, is C/-special for some i, hence
the closure of UnMn is again a finite union of speecial subvarieties.

The study of pure special subvarieties allows us to carry over part ofthe ideas
employed in [RU] towards the Manin-Mumford conjecture for an abelian variety
defined over a number field: let T,, = an+ A,, be a sequence of torsion subvari-
eties of the given abelian variety A, such that the torsion orders of the ans are
bounded when n varies, then the Zariski closure of U«Trtis a finite union oftor-
sion subvarieties, and in fact its C-locus is given by the archimedean closure of
UnTn(C) in A(C)an- In the case of mixed Shimura varieties of Kuga type, for a
special subvariety M' ¢ M, define the test invariant of M' to be the infinum of
the test invariants of the maximal pure special subvarieties of M'. Note that M;
is C-special for some Q-torus C if and only if one (or any) of its maximal pure
special subvarieties is C-special, thus the homogeneity ofa sequence of special
subvarieties (M,,),, is reduced to that of a sequence of pure special subvarieties.
And thus the criterion above also works in the mixed case.

« FineFinally in Chapter 5, some variants ofthe Manin-Mumford conjecture
studied, inspired by the known results on the André-Oort-Pink conjecture.

Recall that an abelian S-scheme is a group S-scheme / : A -+ S which is
proper, smooth, and ofconnected geometric fibers. Assume for simplicity that S
is geometrically integral of characteristic zero. Then the kernels A[N] of raising
to the N-th power [N] : A—*A are étale torsion sheaves on S, and by taking in-
verse limit one obtains a continuous representation of jti(S, jo on T(A)*, called
the monodromy representation associated to A—S at jc, where Xis a geometric
point of S, «i (S, jo) is the fundamental group of S, and T(A) = UmNA[N] is the
total Tate module (as an étale sheaf on S). In the remaining part write r| for the
generic point of S and take jcto be the algebraic closure ofrj.

Start with a relative version of the Manin-Mumford conjecture for an abelian
S-scheme as below:

are

(1) FirsFirst consider the case where the monodromy representation is trivial. In

this case each A[N] splits into copies of sections of A—S: all the torsion sections
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are defined over S. One can naturally define torsion S-subscheme of A to be
an abelian S-subscheme translated by a torsion section. Then the schematic
closure of a sequence of torsion S-subschemes in A is again a finite union of
torsion subschemes. The proofofthis claim is reduced to the generic fiber An—
rl, which is the known case of the classical Manin-Mumford conjecture.

(2) In general, when the monodromy representation is no longer trivial, even
the notion oftorsion S-subscheme is in question: a torsion S-subscheme is only
well-defined after some étale base change. It is then natural to define special
S-subscheme of A—S to be the image in Aofatorsion S'-subscheme B'in A' =
Axs S' for some étale covering S' —S, i.e. through some cartesian diagram

A'- —»-A

with B' = Aj + a' for some abelian S'-subscheme Aj e Aand torsion section a' of
/': A'-*S'. Then the schematic closure of a sequence of special S-subschemes
in Ais again a finite union of special S-subschemes. The key point is that every
special S-subscheme is the image of some torsion S-subscheme under A -* A
given by the base change to the universal covering S —S, which reduces us to
the situation treated in (2).

One mightstep further from these "uniform" variants ofthe Manin-Mumford
conjecture. Define a quasi-special subscheme ofthe abelian S-scheme Ato be a
torsion S'-subscheme of the base change  :A'—S' given by an inclusion ofa
closed subscheme S'*4 S, i.e. via the cartesian diagram

One is then led to a "non-uniform" version of the Manin-Mumford conjecture
via the following question:

Being given (T,,),, a sequence of quasi-special subschemes of an abelian S-
scheme / :A-* S, what is the minimal condition to be put on (T,,)n such that
the Zariski closure ofU«T,, is a finite union of quasi-special subschemes of A?

This question generalizes not only the Manin-Mumford conjecture but also
the Andr6-Oort-Pink conjecture for mixed Shimura varieties of Kuga type: a
mixed Shimuravariety of Kugatype M can be extended into an abelian S-scheme
for S some pure Shimura variety, special subvarieties of M can always be de-
scribed as quasi-special subschemes. However this non-uniform version might
have been over-generalized from its expected form: there are already counter
examples ifno condition is imposed on (T,,),,. Nevertheless there is still a naive
criterion for the closure of Un Tnto be quasi-special. The idea already appears in
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the studies of the classical Manin-Mumford conjecture: ifa subscheme Bofan
abelian S-scheme Ais stabilized by some non-trivial homothety, then it would
be quasi-special. This criterion is expected to be of help even in the studies of
the Andr6-Oort-Pink conjecture itself.



Notations

For a subset A of some set A, clia always denotes the characteristic function of
Aas a complex valued function on A.

For Sand T two schemes, the set S(T) = HomSh(S,T) is called the T-locus of
S. Ifmoreover T = SpecR is affine, it is equally written as S(R) = S(T) and referred
as the R-locus of S.

Write Qac for the algebraic closure of Q in C. Unless explicitly mentioned, a
variety is understood to be a reduced separated finite type Qac-scheme. For Z
a variety and L a subring of Qac, ZI means an L-model of Z, namely a reduced
separated finite type L-scheme such that Zl ® Qac = Z

i denotes a fixed square root of -1 in C. The archimedean topology on a real
or complex analytic variety is the one deduced from the archimedean metric on
a real or complex vector space.

For a field F, write Galp for the absolute Galois group of F.

For Fafield, algebraic F-groups are denoted in boldface letters, like G, T, etc.
and affine algebraic F-groups are abbreviated as linear F-groups (not necessar-
ily connected for the Zariski topology). Reductive F-groups are understood to
be connected. For G a linear F-group, write Cg for the neutral component of its
center, and Tg = G/Gder its maximal abelian quotient. Ifmoreover Gis reductive,
then the canonical map G* Tginduces an isogeny of F-tori Cg ~  Tq. Normal
subgroups are referred to as invariant subgroups so as to avoid possible ambi-
guities with the normal morphisms of schemes. For an invariant F-subgroup
W < G the reduction modulo W is denoted by ttw, which often appears in the
situation when W is the (unipotent) radical of G. In case that W = Zg is the cen-
ter of a reductive F-group G, write jrad for the canonical reduction modulo Zq:
G—) Gad=G/Zq.

For F a field and T an F-torus, Xt resp. X” is the sheaf of characters resp.
of cocharacters of T, namely the functor which associates to any F-scheme R
the abelian group HomR _Group(TR,GmR) resp. HomR _Group(GmR»TR). They are
locally constant sheaf for the étale topology, because T always split over some
finite étale extension ofthe base field F. We also write Xt = Xt (F) and Xy = Xj (F)
where F is a fixed separable closure of F; they are naturally equipped with an
action ofthe Galois group of F. When F is a subfield of C we often identify them
with the C-locus of the respective sheaves.

For Ga linear Q-group, the upper scripts and lower scripts +, +,and ° follow
the usage of P.Deligne: G° denotes the neutral connected component of G for
the Zariski topology; G(R)+is the neutral connected component of G(R)+ for the
archimedean topology; and G(R)+ denotes the inverse image of Gad(R)+ under
the projection nad : G —Gad, and G(Q)+ := G(Q) nG(R)+. The linear Q-group
G is said to be compact if G(R) is compact as a Lie group (for the archimedean
topology).

Vector spaces V over a field F are understood to be finite-dimensional, and
are often identified with the associated vectorial F-group V = Spec[SymVv]where
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Vv is the dual of V.

For F/E a finite extension of fields and G a linear E-group, write GHE for the
restriction of scalars of Gp over E, namely the E-group Rcsf/eGf, with a canon-
ical E-homomorphism Nmp/E : GFE —) G. This is of course a special case of
the Weil restriction functor Res : Sch/p -* Sch/g. In case E = Q, write simply
GF= GFQ.

Af = Q = Q®z Z is the ring of finite adeles over Q, and A = Rx Af is the
ring of adeles over Q. For G a reductive Q-group, write p : G — Gder for the
simply connected covering of Gder. Then the strong approximation theorem
over global fields implies that G(Q) *pG(A) is a closed subgroup of G(A) with
abelian quotient 7t(G) := G(A)/G(Q) *pG(A). Put So7r(G) to be the abelian quo-
tientno(n(G))/no (G(R)+) with respect to the evidentaction of G(R) on G(A) (through
the real component).

In particular, for any number field F, we have the Q-torus G*, and the reci-
procity map for Fisan isomorphism oftopological abelian groups recp: Galpb - =
70(n(Gm)) which associates geometric Frobenii to local uniformizers. We some-
times also denotes by recF the canonical homomorphism Galpb —noniC”). Of
course totCG") = 7ioTt(GY) when E is a CM field.

For a number field F and G a reductive Q-group, we have the homomor-
phism Nmp:7(Gf) -* n(G) which induces 7To/T{(f ) —ito7i(G), and for M a G(Qac)—
conjugacy class of homomorphisms Tgee — Go= defined over Q, with Tc G a
Q-torus, we have a homomorphism qu : Ji(T) -* jt(G) and the induced map for
the TtoTr-quotients.

By Shimura datum is always meant a mixed Shimura datum, usually written
in the form (P,Y), (G,X) etc. (as will be clarified later in the preliminaries). Fora
such P, we write W = Wp for its unipotent radical, U = Up the weight -2 unipo-
tent Q-subgroup, and V=Vp =W/U the weight -1 sub-quotient. U and Vare vec-
torial Q-groups. A Shimura variety is understood to be attached to some mixed
Shimura datum at finite level, hence a quasi-projective variety. Analytic groups
and adelic groups are written in roman letters, like G, K = FIKp, etc. Given a
datum (P,Y) and Kc P(Af)a compact open subgroup, we have the Shimura va-
riety at level K defined over Qac: Mr = Mk(P,Y). For a fixed connected compo-
nent Y+ ofY (for the archimedean topology), define $>= £5kto be the projection
Y+ x P(Af) -» Mk(P,Y)(C), and = £>r : Y+ -» T\Y+ for any discrete subgroup
T <=P(Q)+ acting on Y+ discontinuously.

For a Shimura datum (P,Y) and any number field F containing the reflex
fieldE = E(P,Y), write Mk,f = MK(P,Y)pforthe quasi-canonical F-model ofMr =
MK(P,Y), i.e. the base change of the canonical model of Mr to F, such that for
any special subdatum (T,jc) «» (P,Y) of reflex field Ex, putting Fx = Ex ¢F, the
point [jc, iIK] e Mr(C) for any t e T(Af) is a Fab-point, whose Galois conjugates
are described by

cr[x, fK] = [x,recF(a)iK], Va e GalFx.

Here F* is the composite of Fwith E*, and the homomorphism recFis the com-
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position of either row of the following commutative diagram:
A . NmFgs
GalFx--——" *071((;E1 > JtoTtCr%) ﬂ'i(f_ nonCT)
NRE( Nmpip/Ejc
recE, NN
Galg, jton(Gni) no7t(TEX) Exe tia(T)
where by abuse of notations, write reCF for the composition

GalL -» Gal*5 = noJr(G") -» #0JT(GY)

Lbeing either Ex or F*.
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Chapter 1

Preliminaries

1.1 Shimuradataand Shimuravarieties

We denote by S the Deligne torus, namely the R-group G,,/R, and we write w for
the weight homomorphism w :Gmm-* S, t <*t~I, and |i for the Hodge homo-
morphism n:Gmc —Sc, ((z) = (z, 1) with respect to the canonical isomorphism
of C-tori Sc =GmC x GmC.

Definition 1.1.1. Variation of polarizable Hodge structures (cf. [Deligne3] 2.1
and 2.3;[PinkQ] Chap.l, 1.1):
® Ahomogeneous rational Hodge structure is a pair (V,p) where V is a fi-

nite dimensional Q-vector space and p is a homomorphism of R-groups S
GLr(Vr) such that po w isthe central character t > fnidv forsome ne Z; nis re-
ferred to as the weight of (V,p). Equivalently this is characterized by a bi-grading

Vc =©Pez " p,q °f C-vector spaces such thatVp,gi 0implies p +q =n and that
c{Vp'q) = V<p where c denotes the complex conjugation on Vc: v®z>-* v®1z,
VveV, zgC. Vpgqis the subspace of \Vc where (zj,z2) e S(C) acts through the
scalar multiplication z”~ z~ . The set {(p, q)\Vp,q# O} is called the type of (V, p).

For me Z, we have the m-th Tate twist Q(m): this is the Hodge structure
(Q(2jti)m, Tm) of type (-m ,-m) and weight 2m, where xm:S —Gmm= G1«(R),
z <#(zz)m. For a rational Hodge structure (V,p), its m-th Tate twist is V(/n) =
(V®y Q(m), p®t m)with Tmacting through the center of GL<r(\Vr ® R(m)).

The set of homogeneous rational Hodge structures is endowed with natural
operations like the tensor product and the internal Horn. When we allow fur-
ther non-homogeneous objects as finite direct sum of homogeneous ones, we
get a Q-linear neutral Tannakian category with neutral element <@(0, called the
category of pure rational Hodge structures, denoted as HSq.

For a given rational Hodge structure (V,p) of weight n, the dual representa-
tion (Wv,pv) is canonically a rational Hodge structure ofweight -n.

16



Arational Hodge structure (V,p) ofweight n is polarizable ifitadmits a polar-
ization, namely a homomorphism of Hodge structures <, > V® V —Q(n) such
that

X®y — (2jiirn<x,p(i)y)

defines a definite symmetric bi-linear form on Vr.

The (rational) Mumford-Tate group of (V,p), denoted by MT(p), is the small-
est Q-subgroup of GLq (V) whose real locus contains the image of p, or equiv-
alently, whose complex locus contains the image of po|j. The Tannakian sub-
category of HSq generated by (V,p) is canonically isomorphic to Rep(MT(p)/Q).
Note that the Mumford-Tate group of a polarizable rational Hodge structure is
always a reductive Q-group.

Actually we could have started with other subring of Rinstead of Q¢ R. For
example, by replacing Q>-vector spaces by free Z-modules of finite type, we get
the notion ofpolarizable integral Hodge structure. In this case Z(l) is exactly the
kernel ofexp:C —Cx.

(2 A Avrational mixed Hodge structure consists of a pair (V,p) where V is a
finite dimensional Q-vector space and p : Sc -» GLc¢(Vc) a homomorphism of
C-groups such that pow is defined over ©and that the weight filtration W. =
(Wm)m, namely the ascending filtration associated to pow, gives rise to a ratio-
nal Hodge structure of weight m on grmwW. = Wm/Wm_i for all me Z. Equiv-
alently this is characterized by a bi-grading Vc = ©p<fezVp,q such that Wm =
®p+g<mVp'q is defined over Q with ¢(Vp,q) ¢ Vi,p +Wp+g-i forall p,qeZ.

The Hodge filtration of (V,p) is the descending filtration associated to po p,
namely F* = (F"),, with F" = e p>nVPA Actually (V,p) can be recovered from the
triple (V,W.,F*), just as p is determined by po w and po p. Note that the Hodge
filtration is in general not defined over Q: in fact it is rarely stable under the
complex conjugation.

The (rational) Mumford-Tate group ofa rational mixed Hodge structure (V,p)
is the smallest Q-subgroup of GLq (V) whose complex locus contains the image
of p. Similar to the pure case, the category of rational Hodge structures, denoted
as MHSq, is neutral Tannakian, and the Tannakian subcategory generated by
(V,p) is canonically isomorphic to Rep(MT(p)/<Q>).

A rational mixed Hodge structure is polarizable if so it is with each graded
quotient grmwW.. The type of (V, p) is the finite set {{p, 9)\Wp'q # 0}. Note that the
notion of polarization is only defined via the successive quotients, hence even if
the mixed Hodge structure is polarizable, the Mumford-Tate group might fail to
be reductive.

In the same way we could replace Q by other subrings of R, e.g. we get the
notion of polarizable integral mixed Hodge structures when replacing Q-vector
spaces by free Z-modules of finite type.
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(3) For For S a complex analytic variety, a variation of mixed rational Hodge

structures on S is a local system (i.e. locally constant sheaf) of Q-vector spaces
T together with a descending filtration F* and an ascending one W. of coherent
Os-submodules of 7 ®q Os, such that for any s e S, the fiber (7s,F(s),W(s)) is
a rational mixed Hodge structure, and d(Fp) ¢ Fp_1 ®i2g for any pe Z, where
d:y ®gsOs -*y ®qgs  is induced from the classical differential Os —Hg. The
variation is homogeneous ifthe weight filtration is trivial, which will also be re-
ferred to as a variation of pure rational Hodge structure (ofsome weight).

Let (V, F*,W.) be a variation of mixed rational hodge structures over S. It is
said to be polarizable if each graded quotient gr,, = W,,/W,, i admits a polar-
ization as a variation of rational Hodge structures, namely ahomomorphism of
local systems gr,, ®qgs grn —» Q(rc)s which induces a polarization on each fiber
ofgrn,VneZ.

The notion of variation of (polarizable) integral mixed Hodge structures is
clear from the context.

Remark 1.1.2. Note thatwe have defined the Mumford-Tate group of (V,p) to be
some Q-subgroup of GLqg(V), which is the automorphism group of the neutral
Tannakian category generated by (V,p). Sometimes it is necessary to study fur-
ther the automorphism group of the Tannakian category generated by (V,p) and
Q(I), which is also referred to as the Mumford-Tate group of (V,p), realized as a
Q-subgroup of GLg(V) » Gm. This latter one wont be considered in the present
treatment.

Definition 1.1.3. Shimura data and Shimura varieties, pure and mixed (cf. [D-2]
2.1.1, [PinkO] Chap.2 2.1 and Chap.3 3.1):

(1) Apure Shimura datum consists ofa pair (G,X) with Ga reductive Q-group
with Gad having no compact Q-factors, Xa G(R)-orbitin £(G) = HomGr/R (S. Gr),
such that for some (or equivalendy, every) xeX:

(PI) Adox :8 —Gr —) GLwiLieGre) induces on LieG a pure rational Hodge
structure oftype {(-1,1), (0,0), (1,-1)};

(P2) Int(x(i)) induces on G"d a Cartan involution.

Note that from the definition X is a Hermitian symmetric domain of non-
compact type, and each of its connected components is homogeneous under
G(K)+, of stabilizer G(R)+.

(2) A mixed Shimura datum consists of a tuple (P,U,Y) where P is a con-
nected linear Q-group of unipotent radical W, U an invariant Q-subgroup of P
contained in W, Y a U(C)P(R)-orbit in 2)(P) = Homc-croup(Sc, Pc) such that for
some (orevery) yeY:

(MI) Adoy :Sc —Pc —GLc(LiePc) induces on lieP arational mixed Hodge
structure whose Hodge types is contained in the set

{(-1,-1),(-1,0),(0,-1),(-1,2),(0,0), (1, - 1}

18



with rational weight filtration W_2=LieU, W_i = LieW, W0= UeP;

(M2) nu oy :Sc —Pc - (P/U)c is defined over R, Jtu being the reduction
modulo U;

(M3) Write G = P/W, then 7tw0Op : S -* Gr satisfies the conditions defining
pure Shimura data, namely the conjugation by jrado % o y(i) is a Cartan involu-
tion on G)d, and that Gad has no compact Q-factors;

(M4) Write P =W x Gto be any Levi decomposition of P, then the center of G
acts on Wthrough a Q-torus isogeneous to a Q-torus CxGj, for some compact
Q-torus C.

It is clear that mixed Shimura data generalize the notion of pure Shimura
data, and in what follows we simply refer to the mixed ones as Shimura data. We
often write (P,Y) for a Shimura datum, and put U = Up resp. V = Vp to be the
unipotent part of weight -2 resp. the weight -1 subquotient of P. (P,Y) is pure if
and only ifUp=0=Vp.

3 For (P,Y) a Shimura datum, K a compact open subgroup of P(Af), the
complex Shimura variety associated to (P,Y) at level Kis the complex analytic
variety

MK(P,Y)c = (P(Q)\IYxP(Af)/K])aiL

and the complex Shimura scheme associated to (P,Y) is the projective limit

M(P,Y)c = limMK(P,Y)c
K

with Krunning through the compact open subgroups of P(Af).

It has been proved, essentially after a reduction to the pure case which relies
on the Baily-Borel compactification of locally symmetric Hermitian domains (cf.
[BB], [Bo-1], [Bo-2], [D2], [Mo]), that each finite level object Mr(P,Y)c isaquasi-
projective algebraic C-variety, and is defined over Qac, denoted as Mk (P, Y). Over
Qac also descend the transition maps in the projective limit, hence we geta pro-
scheme over Qac, written as M(P, Y).

Note that the existence of canonical model claimed in [Milne-0] was not es-
tablished correctly, as is kindly pointed out by the referee. The reader is referred
to [Mo] Section 2 for details.

Example 1.1.4 (mixed Shimura varieties of Kugatype). Let (G,X) be apure Shimura
datum, and p : G -* GLq(V) an algebraic representation of G on a finite dimen-
sional Q>-vector space V such that every xe X induces on Vthrough pox a pure
Hodge structure of type {(-1,0), (0,-1)} (namely a complex structure). Then
(PY) = (VxpG,V(R) x X) is a mixed Shimura datum, without unipotent part
ofweight 2. Here we write V(R) x X to indicate that the complex structure on the
product V(R) x X is such that on the fiber over x e X of the canonical projection

jt : Y —Xis induced the complex structure defined by pox. Note that n comes
from the canonical projection of Shimura data (P,Y) -» (G,X), and it admits a
section defined by the inclusion of Ginto P: (G,X)«—(P,Y).
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We refer to data of this form as mixed Shimura data ofKuga type, and the
associated mixed Shimura varieties at finite levels are called mixed Shimura va-
rieties ofKuga type. Very often for mixed Shimura varieties of Kuga type we re-
quire the finite level Kto be of the for Ky x Kg, with compact open subgroups
Ky ¢ V(Af) and kq < G(Af) such that Kq stabilizes Ky. In this way the mor-
phism of Shimura varieties n : M = MK(P,Y) -*S = Mkq(G,X) admits a section
Mkg(G,X) 1MKk(P,Y), induced by the section (G,X) <(P,Y). We can check eas-
ilythat 71: M -* Sis an abelian S-scheme, i.e. a proper group scheme over S with
connected smooth geometric fibers.

In [Ku], Kuga studied certain fiber varieties over symmetric domains whose
fibers are abelian varieties. Our notion of mixed Shimura varieties ofKuga type
naturally fits into this setting. Note that general mixed Shimura varieties, such
as those encountered in the theory oftoroidal compactification of pure Shimura
varieties, are not necessarily of Kuga type: the unipotent radical of the defining
Q-group P may contain some central part ofweight 2, and itresults that a general
mixed Shimura variety can be realized as a T-torsor over some mixed Shimura
variety of Kuga type, T being a torus defined over a number field.

Proposition 1.1.5 (Universal property of the domain Y, cf.[PinkO] Chap.l). Let
(P,Y) be a mixed Shimura datum. Then for any algebraic representation P -*
GLq(V), the constantsheafY on Y offiberV admits a structure ofa variation of
polarized rational mixed Hodge structureson Y.

LetT ¢ P(R) be a neatdiscrete subgroup, then the quotient T\(V xY) gives rise
to a variation ofrational polarizable Hodge structures on T\Y offiberV. Ifmore-
over T stabilizes a latticeVz ¢ V, then T\(Vz *Y) defines a variation ofpolarized
integral mixed Hodge structure Vz on r\Y offiberVvz-

More details will be mentioned later on canonical models of Shimura vari-
eties (or schemes).

Definition 1.1.6. (cf.[Pink-0] Chap.2, 2.1 and Chap.3 3.1) We define the mor-
phism between Shimura data and between Shimuravarieties in the evident way:

(1) A morphism of Shimura data (Pi,Yi) — (P2,Y2) is a pair (/,/») where
/: Pi —P2isahomomorphism of Q-groups and /* is the induced map 2) (Pi) —
2HP2) y -* y°f, such that /»(Yi) ¢ Y2. Note that this require / to respect the
mixed Hodge structures: at the level of Lie algebras Lie/ is a morphism of ra-
tional mixed Hodge structures. In particular it sends W,-(LiePi) into W/(LieP2),
ie{-2,-1,0}.

(2) Let (Pi,Y1i) (P2,Y2) be a morphism of Shimura data, then we have
the morphism of Shimura schemes / : M(Pi,Yi) -» M(P2,Y2). Let K/ ¢ P/(Af)
(i = 1,2) be compact open subgroups such that /(Ki) ¢ K2. Then we have the
morphism of Shimura varieties at finite levels / : M, (Pi, Yi) —Mk2(P2.Y2).

(1)
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Moreover, if g e P2(Af) is given, then we can translate / by g, namely g *
[ :M(Pi,Y]j)— M(P2,Y2), [x,a] —[f(x),f(a)g]. At finite level we have g */:
Mjc™Pi.Yi) —Mk2(P2,Y2), [x,aKi] — [f(x),f{a)gKZ2], provided that/(Ki) ¢ gK2g_1.

3 In particular a subdatum of (P,Y) is a morphism (Pi,VlJ)*) (P, (P,Y) with
[ Pi «*P an inclusion of subgroup and /» the corresponding inclusion Yi <—
Y. In this case, one can easily verify that W,-(LiePi) = UePi n W,(LieP), i e
{-2,-1,0}. We’ll come back to subdata and special subvarieties in Section 1.3
(cf.Definition 1.3.3).

N.B. We have been rather vague about the fields of definition for the mor-
phisms described above. This will be clarified when the notion of canonical
model is introduced in Section 1.2.

Remark 1.1.7. Ourdefinitions differ slightly from that of R.Pink (cf. [Pink-0] Chap.2),
and is modeled on the pure case studied by P.Deligne (cf.[D-2] 2.1.1): the data
(P, U,Y) in this thesis consists ofa <@>groupP and U < P togetherwith a U(C)P(R) -
orbit in 2)(P); on the other hand the definition of R.Pink can be equivalently
formulated as triples (P,U, ft : V—Y) where (P,U,Y) is a Shimura datum in the
sense of Definition.1.1.3, V a homogeneous space under U(C)P(R) and h is a
U(C)P(R)-equivariant finite covering. In this thesis, Shimura data and Shimura
varieties is understood to be in the sense of P.Delinge as in Definition.1.1.3, and
the counterparts defined in [Pink-0] Chap.2 are called Shimura data resp. Shimura
varieties in the sense of R.Pink. The category of Shimura data in the sense of
P.Deligne is a full subcategory of that of R.Pink.

Definition 1.1.8. Among morphisms of Shimura data/varieties we single outthe
following notions:

(1) (Fibration over a pure section:) For (P,Y) a Shimura datum, a Levidecom-
|
position P = W >4G gives rise to a pure section (G,X) % . (P, Y) where X= G(R)x for

some jc£ Ywith x(S) ¢ Gr, i induced by the inclusicr;n i :G«—P,and n induced
by 7tw the reduction modulo W the unipotent radical of P. Note that pure sec-
tions do exist: start with an arbitrary y e Y, then x = (i ojr)(y) is in Y and maps
Sr into Gr; itremains to take X = G(R)x.

Let (GX)c (P,Y) be apure section, kg ¢ G(Af) and Kwc W(AT) be compact
open subgroups, and put K= Kw * Kg <<P(Af). Then we have morphisms of
mixed Shimura varieties

M2IG . XAMKIP.Y)
Tt

with jt surjective and i injective. The fibers of 7t are geometrically integral vari-
eties that are torsors over some abelian varieties under some tori, referred to as
torus bundles over abelian varieties in what follows.

(2) (Geometrically connected components:) For the finite level Shimura va-
riety Mr(P,Y), write £5= £5k for the projection Y x P(Af) -» Mr(P,Y)c, (X, a) ~—
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[ic oK]. Fixa connected component Y+ ofY, P(Q)+ the subgroup of P(Q) stabi-
lizing Y+, and a finite set n  fepresenting the double quotient P(Q)+\P(Af)/K,
we have the isomorphism

Y= Yk:MKP,Y)C) — U rKg\Y+ [xgK]- rKg)*
gex*

with TK(g) = P(Q)+ ngK g-1 which induces y°$>(Y+ x gK) = TK(g)\Y+. The im-
ages $(Y+x gK)% are referred to as (complex) connected Shimura varieties, and
are often identified with ric(g)\Y+. The set of geometrically connected compo-
nents of Mr(P,Y) is thus identified with $r£.

Passing to the projective limit indexed by the compact open subgroups of
P(Af), we get the connected Shimura scheme, whose complex locus is Umr T\Y+
with Trunning through congruence subgroups ofP(<Q)+. Any geometrically con-
nected component of M(P,Y) is of this form.

We’ll need the following result on pure sections.

Lemma 1.1.9. L etf:(Pi,Yi)-» (P2,Y2) be a morphism ofShimura data, defined
by a homomorphism ofQ-groupf :Pi —P2 together with the map /,,: Yi —Y2
inducedfrom /»: 2) (Pi) -* 2) (P2). Then

(1) If(Gi,Xi) is a pure section of{Pi,Yi), then (P2.Y2) admits a pure section
(G2,X2) such that(f(Gi),f*(Xi)) isasubdatum o/(G2,X2)

Conversely, if (Gz2,X2) is a pure section of{P2,Y2), then (Pi,Yi) has a pure
section (Gi.Xi) such thatfor some w e W2(Q) (/(Gi),/»(Xi)) is a subdatum of
(WG2W~1,WXX2).

(2) In particular, consider the case where f is an inclusion ofsubdatum. If
(G2.X2) is a pure section of{P2,X2), then any pure section of{Pi, Yi) can be writ-
ten in theform (u/Giw~I,w x Xi) for some w e W2(Q) and (Gi,Xi) some pure
subdatum of{G2,X2); or equivalently, i/(Gi,Xi) is a pure section of(Pi,Yi), and
(G2.X2) a pure section of{P2,Y2), then there exists w e W2(Q) such that (Gi,Xi) c
(WG2W~1,W X X 2).

Proof. Recall (cf.Definition 1.1.6) that as a morphism of Shimura data, / re-
spects the mixed Hodge structure on the Lie algebras, i.e. Lie(/):LiePi ->LieP2
is a morphism of mixed Hodge structures. In particular it preserves the weight
filtration, thus /(Wi) ¢ W2and /(Ui) ¢ U2.

(D /(Wi) c W2implies a commutative diagram
/

(Pi,Yi) (P2,Y?2)

Gixi) | ©x2)

A Levi Q-subgroup of P2 is a maximal reductive Q-group of P2; they are conju-
gate under W2(Q). It is clear that /( Gi) is a reductive Q-subgroup of P2, and it
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is contained in some maximal one, i.e. contained in some Levi Q-subgroup G2.
PutX2 = G2(R)x2where X2 e /» (Xi). Then (G2.X2) is a pure section of (P2,Y2).
The converse is proved in the same way: let (G*.Xi,) be a pure section of
(P2.Y2), which contains the pure subdatum (/(Gi),/(Xi)). Then any given pure
section (G2,X2) of (P2,Y2) is conjugated to (G".X") by some w e W2
(2) For a linear Q-group P with a Levi-decomposition P =W » G, all its Levi
Q-subgroups are of the form wGw~I for w e W(Q). Hence the conclusion. 1

We would also like to remark that, if we are given an inclusion of subdatum
(P;, YY) ¢ (P,Y)where (P,Y) admits a pure section (G,X), then Trw(P',Y") = (G',X")
isa subdatum of (G,X), and a pure section of (P',Y") isofthe form (WG1lw~x, w X
X) with w e W(Q) depending on W'=Wn P' and G' = TtwiPO.

1.1.10 Fibersoverapuresection

Consider a Shimura datum (P,Y) with a pure section (G,X), and assume that
0# U QW corresponding to the weight filtration of degree not exceeding -1. By
calculating the Hodge types we see that

O-U-W-V-0

is a central extension of vectorial Q-groups, determined by a unique alternating
bi-linear map ¥: V xV-*U in the sense that:
(1) Identify W with the Q-variety U xV, then the group law of W becomes

(M, VW)(U2, \2) = (1 + «2 +\[/(24, v2), Vi +\2),

with neutral element (0,0) and inverse map (u, v) —{-u,-v). Inparticular {u, v)n =
(nu,nv),VneZ.
(2) lieW is the central extension of UeV by LieU as Lie algebra, whose Lie
bracket is
[(uivi){u2,v2)] =i2y(vi,v2),0).

We also get the formula (ui, W(u,2, i"Kmi, 11)-1 = (2\|/(i/i, v2) + u2, v2).

Then the projection 7iw :Y -» X is of fiber F = U(C)W(R) and Y = F x X as
real analytical varieties. The isomorphism no longer holds when the complex
structure is taken into consideration: even in the simpler case where U = 1, the
complex structure on the fiber of V(R) x X —» X atxe Xis defined by x : § —=*
Gk —GLk(Vk), and in general we write Y = F » X to indicate the twisted complex
structure on Y.

Consider a congruence lattice Tw ¢ W(Q) ¢ W(R) which is the central exten-
sion of lattices 0 —Tu  Iw IV —0 determined by \|/: Ty x Ty — Ty which
is, by abuse of notations, the restriction of i|/:V xV —U to the lattices. Then
the pro-finite completion of Iw is a compact open subgroup Kw <®W(Af). Take
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a compact open subgroup Kg c G(Af) stabilizing Kw with respect to the Levi de-
composition, then we have the fibration Mr(P,Y)c -* Mk,j(G,X)c by spaces of
the form T\F. More precisely, for T = Kgn G(Q)+, the fibers over the compo-
nent r\X+are of the form Iw\F, whose complex structures vary with the base
points. In particular, the fibers of the fibration Mk(P,Y)c -* Mkg(G,X)c are geo-

metrically connected. Thus the fibration induces a bijection between their sets
of connected components:

NOM(P,Y)c) =lim ~ = F0(M(G,X)c) = limSR®, S G(Q)+\G(AT)/ZE
K Kg

where Kg runs through the compact open subgroups of G(Af), 9?” represents
the finite set G(R)+\G(Af)/Kg, and Z£ is the projective limitlim ~ Zc(Af)/[Zq(Q)*

Kgn Zc(Af)]. We refer the readers to [Del-1], [Del-2], [Mil-0] for the last identity
characterizing no(M(G,X)c) in terms of Z~.

1.1.11 Special sections

Given a Shimura datum (P = Wxi G,Y = F x X) with pure section (G,X), we have
the fibration of Shimura varieties MK(P, Y) -* Mkg(G,X) with section, where Kg <
G(Af), K= Kwx K gc P(Af) are compact open subgroups. Forany w = (u, V) e
W(Q), we have the Levi decomposition P =W x {wGw~I), hence a second pure
section (wGw~I,w x X) of (P,Y), and an immersion

iwWIMkIJwGw-1,w » X) «—Mk(P,Y)

where Kw =Kn wKqgw-1. Note that the inclusion Kwc wKgw~xis in general
not aequality, and the composition Jtw® iwis a finite covering M *"fw Gw" 1 w »
X) —Mk<;(G,X). It is étale of degree [Kg : Kg(u/)] whenever Kg is torsion free,
where

Kg(w) =w~IKww ={ge Kg :wgw~Ilg_1e KW.

We call MkJ wGw-\ wxX) the special section by we W(Q), denoted as M(u;)
where M = Mr(P,Y). ltis a section of 7iw as long as Kg stabilizes the compact
open subgroup generated by Kwand w, namely Ku, = u/Kgw~1.

We have seen that wn= {u, v)n={nu,nv). Nowthat Kwis determined by the
lattices Tu ¢ U(Q) andlyc V(Q), we define the torsion order of Mu>) cM -» S,
where M = Mr(P,Y) and S = kG, X), to be smallest integer n >0 such that
wn ={nu,nv) liesin Tw = KnW(Q). Ifnuis the order ofthe reduction ofu e U(Q)
modulo Tu, and nvthat for v e V(Q) modulo Tv, then the torsion order n of (u, v)
is the least common multiple of nuand nv.

In particular, if we are in the case of mixed Shimura varieties of Kuga type,
namely U =0, W=V, then nv is an abelian S-scheme A —S = Mkc(G,X), whose
geometric fibers are abelian varieties of complex loci TYW (R). For each n e N>o,
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A[n] is afinite étale S-group, locally isomorphic to the constant group (ZIn)2g,g
being the relative dimension ofttw- Ifwe take p = {v] ¢ V(Q) liftinga Drinfeld ba-
sis of level n, namely whose reduction modulo ly forms a basis of (ry\V(Q))[n]
over ZInZ, and put Kq(P) = fWp Kc(y), then we have a finite Galois covering
of pure Shimura varieties S'= M *piG~) —S, and the base change A'—S' of
A-* Sisan abelian S'-scheme with a level-n structure. For vefi, the special sec-
tion Ar[v) is a torsion section of A'-) S' of order n, and this justifies the name of
torsion order in the general case of mixed Shimura varieties, where group struc-
ture hardly occurs for the fibration, but multiples of special sections make sense.

Lemma 1.1.12. Let (P,Y) be a Shimura datum with a pure section (G,X), K =
Kwx Kgc P(Af) compactopen subgroup, andn: Mr(P,Y) — Mk,j(G,X) the asso-
ciated Shimura variety with the pure section. The the union ofspecial sections of
n isdense in MK(P, Y)for the Zariski topology. 1fmoreover Up = 1, then the union
is densefor the archimedean topology.

Proof. Firstnote that P(Q) ¢ P(C) is dense for the complex Zariski topology, and
so itis with UneWQ) w Xi X is Y = U(C)W(R) -X, hence the first conclusion.

Ifmoreover Up = 1, then P(Q) is dense in P(R) for the archimedean topology,
and so it iswith UgeMQ <I» XinY. 1

Example 1.1.13. (1) Fix n e N nonzero. LetV,, = Ga¢* be a rational Hodge
structure of type {(-1,0), (0,-1)} and of dimension 2n over Q, equipped with
the standard non-degenerate alternating form \|/,, : V,,®yV,, — U= Q(l), and
G,, = CSp2, the Q-group of automorphisms of V,, preserving \f/,, up to a non-
zero scalar. The pure Shimura datum (G,,,X,,) = (CSp2n,«i5f*) gives rise to the
Siegel moculi varieties of genus n parameterizing principally polarized abelian
schemes of dimension g (with certain level structures), where X,, = 7tf is the
double Siegel space of genus n (with two connected components).

LetW,, be the extension ofV,, by U= Q(l) via\//,,, equipped with the obvious
action of Gn = CSp2n, and

(@Q>An) = (Vn 34G/j,Vn(®@) AXij)

(PWY,,) = (w,, x GN,U(€)W,,(R) x X,,)

the induced mixed Shimura data. Consider the two step fibration
nw : (Pb,Yb) ™ (Q..A) " (G..X.).

where the data are all of reflex field Q. Take Kc P(Af) a compact open subgroup,
we have morphisms of Shimura varieties of reflex field

MK(Pn,Yn) ™ MAufigiQn, An) - 1 Mty fiQiGnjXn)

where Tty is a Gm-torsor and jty is an abelian scheme of relative dimension n.
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LetL, c V,, be an integral Hodge structure which is principally polarized, i.e.
the polarization map \|/: Lw®L,, -} Z(l) is onto, then G,, also admits a smooth
Z-model. Write Ky ¢ V,,(Af) for the profinite completion of L, in V,,(Af) which
is a free Z-module of full rank, KG[N] = Ker(G,,(2) - G,,(Z/N)) with N e N and
N >3, and Kg = Kv 4KG[N] ¢ Q,,(Af). Then

ny :MKQ(Qn,An) —) MkclniQGj.X,,)

is the universal abelian scheme over the modular scheme of principally polar-
ized abelian schemes with level-N structures. Itadmits N2" distinct torsion sec-
tions annihilated by N, each ofwhich isa morphism of Shimura varieties.

(2) We also include the case when n = 0. Consider

(Go,X0) = (GMQ{x} =no(™i))
(Po.Yo) = (Ux Go,C x Xo)

where Go acts on Uby multiplication, which identifies Uwith Q(l) viaNm:S —
GmR. Each finite level Shimura variety Mk(Po»Y o) is a split torus over the zero-
dimensional variety Mn(ig(Go,Xo0) with respect to the projection it: (Po.Y0) -
(Go,Xo).

We usually identify Powith the upper triangular mirabolic subgroup of GL2,qg.
But (Po,Yo) is not a Shimura subdatum of (GL2 instead it is a rational
boundary component of the latter, which is the simplest case in the theory of
toroidal compactification of mixed Shimura varieties developped by R.Pink in
his thesis [Pink-0].

We present a lemma concerning the group action on the unipotent parts,
which prepares us for the later Reduction Lemma

Lemma 1.1.14. Let (P,Y) be a mixed Shimura datum with pure section (G,X)
defined by a Levi decomposition P =W G. Write U for the weight -2 part ofw,
V =W/U the weight -1 subquotient. Denote by p resp. pu resp. pv the action ofG
on W resp. U resp. V defined by conjugation in P.

(1) W is the central extension ofV by U, characterized by an alternating bi-
linear map \|/:V®QV - U, such thatifVi is identified with UxVas Q-variety;
then the group lawonW isgiven by\u\, Vi)(Uz, B2) = («1 + u2 +\|/(t"i, vz), Vi +vz).
Moreover isG-invariantwith respectto pv and p\j.

(2) Forany x e Xc Y, the induced map x : S -» GL®(Vr) is a polarizable ra-
tional Hodge structure oftype {(-1,0), (0,-1)}. Write A:V®qV —Q(I) for such a
polarization, then pv preserves A up to scalars, i.e. pvfactors through CSp(A) *-
GLg(V).

(3) Foranyxe X cY, the induced map x :S -* GLr(U) is central. Further-
more, ifG is the generic Mumford-Tate group ofX, then G acts on U through some
splitQ-torus.
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Proof. (1) This is already established in 1.1.7.

(2) From the universal properties of (pure or mixed) Shimura datum, we
know that G —GLq(V) induces a variation of polarizable rational Hodge struc-
ture r on X. Xis simply connected, hence Y is a constant sheaf. In particular
the polarization \ gives a polarization on the fiber of Y at x e X, namely a po-
larization of the Hodge structure x : S —GLr(Vr). It has been encoded in the
definition of mixed Hodge data that this is of type {(-1,0), (0,-1)}, and that G
respects A which gives rise to the factorization G —CSp(A) —GLq(V).

(3) Because U is of one single Hodge type (-1,-1), by definition we see that S
acts on U r by scalar multiplications, which are central.

Consider the action of g := LieG on u := LieU, with the Hodge structures
defined by x e X ¢ Y. Itis easy to see that this induces a homomorphism of
Hodge structuresjje qu —u, i.e. Liepu :0 —EndQ(u), where the Hodge structure
on EndQ(u) is induced from u®quv. Therefore Endg(u) is of Hodge type (0,0).
Now that Liepu is homomorphism of Hodge structures, g-1,1 ©g1, 1 must lie in
the kernel of Liepu-

Let H be a non-commutative simple Q-factor of G. Since H is invariant
in G and in particular stabilized by S-conjugation, we see that ij := LieH is a
direct summand of the Hodge structure on g (defined by x). By definition of
pure Shimura data we know that the action of S on H is nontrivial, therefore
+1,150# B1-1, and thus

O7™ijngI-1 cfjnKer(Liepu).

KerLiepu is an ideal of g, hence it contains minimal ideal I).

From the above calculation we conclude that gder lies in the kernel of Liepu,
and G acts on U through the Q-torus T = G/Gder. Because the action of § on
GLr(Ur) is given by the composition pu0x :S -* Gr —GLr(Ur), we see that this
action is equal to p” ox', where x' :S —Tr is induced by x modulo Gder, and p{j
ishomomorphism of Q-groups T * GLq(U) through which pu factors.

It remains to prove that this action factors through some split Q-torus in
case G = MT(X). We may assume that Gder = 1and G is itself a Q-torus T, and
(G,X) = (T,x). As has been encoded in the definition, T is the almost direct
product of C with T' where C is a compact Q-torus and T' is a split torus. Be-
cause T is the Mumford-Tate group of x : S — Tr, we see that Tc is gener-
ated by the Aut(C/Q)-conjugates of the image of XE. The weight cocharacter
w :GmR—S -) T is defined over Q, and its image is invariant under Aut(C/Q).
Note that S is the almost direct product of GmKwith S 1, we conclude that C is
generated by the Aut(C/Q)-conjugates of xe(S”). Calculating the Hodge weights
we see that S1acts on Ur trivially, and so it is with the C-action on it. Hence
T 1 GLq(V) factors through T/C which is a split Q-torus. 1

Lemma 1.1.15 (Reduction lemma). (cf.[PinkO] Chap.2 Reduction Lemma 2.26)
Let (P,Y) be a Shimura datum, and writeV =W/U for the weight -1 subquotient
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ofP. Suppose thatP is the generic Mumford-Tate group ofY. Then there exists a
morphism ofShimura data

N N
P,Y)—*P,Y)=HXH) x n (Q/i.,An)*"' x n (Pn,Yn)bn
n-\ n=0

such that Ker(P —P) isfinite, where H is a reductive Q-group, and (Q,,,An)a"
resp. (Pn,y n)bn is the a,,-resp. bn-fold direct product of (QWA,,) resp. (P/j,Y,,),
with N,an,bne N.

Moreover, the component (H,Xh) can be chosen in such a way that iffy is
a morphism from (H,Xh) towards some mixed datum of the form (Qn.A,,) or
(P/i.Yn), then Ker>3 Hder.

Proof. We fix a Levi decomposition P =W xG, with induced actions p : G -*
Aut<j(W), py:G —GLq(V), and pu:G—GLqg(U). The bi-linear map \|/:V V—
U is G-equivariant.

Step L we may assume that U is one-dimensional as long as it is non-zero.
The idea is that the actions of § and of G on U both factor through split tori,
and U is decomposed into a direct sum U = ©U,-, and \|/ is decomposed into
W = ©/xjlj. Write W, the extension of V by Ga through 1¢*and P- = W* * G, then
we have an embedding P fli Pi in an obvious way. Write Y/ for the image of Y
under 2) (P) —2)(P,), then it is easy to prove that (P,-,Y,) is a mixed Shimura da-
tum, and we have an embedding (P,Y) —fli (I*/»Y/). Note that each P, remains
the generic Mumford-Tate group of Y, and it suffices to prove the lemma for
each (Pf,Y/).

Step 2: we may assume that Vis irreducible as a representation of G. Since
G is reductive we decompose Vinto a direct sum of irreducible representations
V = ©jV,-. Then we can embed W into FliW/ where W; is the extension of V* by
U(= Ga) by through WM. Here we allow U to be zero so that W = Vs included
as the degenerated case corresponding to \j/:V®V —0. In the same way as in
Step 1we embed (P,Y) into ri/(Pf.Y,) with P; = W- x G, and it suffices to treat
each (Pf.Yj) separately.

Step 3: we may assume that the action of G on W is faithful. In fact write Ho
for the kernel of G -)» Aut<j(W), then G = HoxHj for some reductive Q-subgroup,
and by putting GO = G/Hi, Gi = G/HO we get Shimura data (G/,X,) with G, =
MTiXj), and (Pi =W xG,Yi) with Pi = MT(Yi). Then the canonical map(P,Y) —
(Go,Xo) x (Pi, Yi) is of finite kernel. We need to show that the two factors both
satisfy the Reduction Lemma.

For (Go,Xo) the construction goes as follows. Arepresentation M of Go is of
abelian Kugatype ifS —GOr —GLr (Mr) induces on M a rational Hodge struc-
ture of type {(-1,0), (0,-1)} for some (or any) xeXo. Note that this is equiv-
alent to the existence of a morphism of Shimura data (Go,Xq) -* (G,,,Xn) for
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some n > 0. Ifsuch representations do not exist, then (Go,Xo) serves as the part
(H,Xh) as is stated in the Lemma. Otherwise there exists some representation M
of abelian type and we have a nontrivial morphism (Go,Xo) — (G,,,X,,) for some
n >0. Take Gg to be the kernel of Go -* Gn, we may apply again the argument
in the last paragraph and get a morphism (Go,Xo) — (H'.X") x (G,,,X,,) of finite
kernel with dimH' < dimG, and by induction the lemma holds for (Go,Xo).

Step 4: the faithful action ofGon W.
If\[/ = 0 then W = Ga®V and we have naturally

(P,Y)— (Gaxi G, CX) x (VX G, V(R) X X)

and it suffices to treat each factor separately. For (Ga X G, C % X) the reduction in
Step 3 reduces us to the case where G acts on Ga faithfully, whence G is isomor-
phic to Gmand the datum becomes (Po, Vo)- For (VX G, V(R) xi X) we are reduced
to the case where G acts on V faithfully, whence an embedding

(Vx G,V(R)>4X)-(Q.,,A,.)

for some n >0.

If\|/ ~ 0, then we first put Vo to be the kernel of\|/. \|/ is G-invariantthus Voisa
subrepresentation ofV, which has to be trivial because we are already reduced to
the case that Vis irreducible and \|/ non-zero. In this case G preserves \|/ implies
a non-trivial morphism

(P.Y) —(P/i,Y,,)

some n > 0where P,, is actually given by W x CSp(\|/). The kernel of P —P,, is
a reductive <Q>-subgroup of G, and it suffices to apply the precedent reductions
recurrently. 1

Remark 1.1.16. The Reduction Lemma of R.Pink treats the two case W - U and
W =V separately, and what we have done is essentially combining them into the
general case.

To end this section we introduce the notion of real part for mixed Shimura
data. They will come back later in the chapter on the equidistribution of special
subvarieties.

Definition 1.1.17. Let (P,Y) be a mixed Shimura datum, and U the weight -2

Q-subgroup of P.
(1) Thereal partof (P,Y) isthe pair (P,Yr)where Yr:= {ye Y|y:Sc —Pc is defined over R}.
(2) The imaginary part of (P,Y) is O(U) = U(R)(—2) := 2rriU(R) ¢ U(C), viewed

as a reed vector space of dimension dimujU inside U(C) "orthogonal” to U(R).

Note that it is stable under the action of P on U by conjugation P(R) x U(C) —

u(C).
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Proposition 1.1.18. Let (P,Y) and U c P be as in the definition above.

(1) Let (G,X) ¢ (P,Y) be a pure section, then Yr = P(R)jcfor any x e X; Yr is
indpendentofthe choice ofpure section (G,X).

(2) There exists a surjection im:Y —1(U) such thatfor anyy e Y, im(y) is the
unique elementmll(U) with the property thatlnt(im(y)~1)oy:8§c —Pc isdefined
overU.

Note that'int(\m[y)~1) is the conjugation byim(y)“1. Ifno confusion is caused,
we write the conjugation o/U(C)P(R) on Y as left translation, then Int(im(y)_1)o
y =im(y)- ly.

(3) We have a bijection

Y—»0(U)xYr,y (im(y),im(y)-1y)

Moreover this map is P(R) -equivariant, where P(R) acts on Y and Yr both via con-
jugation (written as left translation though), and on O(U) via the conjugation in
P(C).

Proof. (1) Take jce Xc Y. Then x :S —Gr =Pr is defined over R, hence x e Yr
and Xc Yr. For g ¢ P(R), gx (the conjugate ofx by q) remains ahomomorphism
defined over R: S —Pr, thus Yr 3 P(R)x.

Take y e Yr, then y(S) ¢ PRis an R-torus, and is contained in a maximal
reductive R-subgroup of Pr, namely a Levi R-subgroup LofPr. Then Lis con-
jugate to Gr by some u e W(R) such that uLu-1 = Gr, hence x := uy e X, and
y € W(R)xc P(R)x. Therefore Yr c P(R)x, hence the equality.

(2) ThisThis is taken from [PinkO] Chap.4, 4.14. We briefly reproduce the con-
struction as follows.

Fix (G,X) ¢ (P,Y)apure section, x a pointin X, and identify W as the product
of Q-varieties W = U x Vwith group law described in 1.1.10 of this chapter. An
elementy e Y = U(C)P(R)jc can be written as y = ugx for u e U(C) and q e P(R).
We regard the complex vector space U(C) as an orthogonal direct sum of U(R)
with O(U) = 2jtiU(R) ¢ U(C), and we have u = u(y) sulfor some u(y) e !(U) and
u'e U(R), and y = u{x)g{x)x for u(x) e 0(U) and some q(x) e P(R)

Lets check that y =—u(y) is a well-defined map. Ify = u\g\x = u2g2x for
some ui, «2 e qU) and qi,q2e P(R), it turns out that mJ1U\g\x = q2x, or simply
ux\ = gxi where u e 0U), xi = 910, g = q2q{1le P(R). Hence uqg~I fixes jci.
But for xi = q\x, its isotropy subgroup in U(C)P(R) is < Gx where Gc is the
isotropy subgroup of x e Xin U(C)P(R). Calculating the Hodge structure on the
Lie algebra we find that Gx is a Lie subgroup of G(R). And thus qiGxqgil ¢ P(R)
and u e P(R). By definition 0(U) n P(R) = 1, therefore u=1land u\-u 2.

We also check thaty  u(y) is independent of the choice of base pointx e
Yr:letx' =qg'~Ix e Yr be another point, then y = u{y)gx =u{y)aq'x’, qq' e P(R)
and we get the same element u(y) e 0(U).

The map y — u(y) is the morphism imin the proposition. Itis also clear that
M(y)- IyeYR.
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(3) NottNote that the conjugation by P(R) on U(C) respects the orthogonal de-

composition U(C) = U(R) ©QU).

We then check thatY Yry eim(y)-1y iswell-defined. We may fixx e Xa
pointin a pure section (G,X) of (P,Y). Then y =im(y)i7jcfor some q e P(R), thus
im(y)_1ly - gxe P(R)x =vr. Note that the expression im(y) 1y does not depend
on X, and the map Y—Yr iswell defined.

The P(R)-equivariance is automatic: take g € P(R) and u = im(y) for some
yeY. Theny =uqgx for some qe P(R), * e Yr, and gy = (gug~1lg{qgx)) which is
the required equivariance.

Remark 1.1.19. Itis easy to verify that the notions of real part and imaginary
part are functorial: ifwe are given a morphism of Shimura data (P,Y) — (P',Y"),
then the map Y —Y' induces Yr — Y~ In particular, for a subdatum (P,Y) c
(P',Y") we have Yrc YA

For any pure section (G,X) of (P,Y), the map X «—Y sends X into Yr, and
since the latter is homogeneous under P(R), we have Yr = P(R) -X.

Fixing any pointx e yr, we getvr = P(R) IPXwhere P* is a maximal compact
Lie subgroup of P(R), contained in G(R) for some LevidecompositionPr = w rx
G over R. The projection vr X = G(R)/PXis a fibration in W(R), where X =
G(R)/PXis a Hermitian symmetric domain. We will come back to this projection
later in Chap.3.

1.2 Canonical models and reciprocity maps

Definition 1.2.1. Fora Shimuradatum (P,Y), a special subdatum is a subdatum
ofthe form (H,y) with H a Q-torus in P and y a single pointin Y.

Definition-Proposition 1.2.2. (cf. [Pink-0] Chap.11,11.1 Definition, 11.2 Prop-
erties) The reflex field of a Shimura datum (P,Y) is the field of definition of the
P(C)-conjugacy class of some (or any) |iy = yo ji (y e Y) in X*(C) the group of
complex cocharacters of P, namely the subfield E of C characterized by

Aut(C/E) = {oe Aut(C/Q)| a[|iy] = [liyl}

where [|jy] stands for the class of (ly in P(C)\Xp(C). Write E(P,Y) for the reflex
field of (P,Y), then:
(1) Once there is a morphism (Pi,Yi) — (P2,Y2), we then have E(Pi,Yi) =
E(P2,Y2); consequently, if (G,X) ¢ (P,Y) isanypure section, then E(G,X) = E(P,Y);
(2) For (G,X) a pure Shimura datum, H ¢ G a maximal Q-torus, we have a
Aut(C/Q)-equivariant isomorphism G(C)\X*(C) = W\X]j(C), W being the Weyl
group W(Gc,He). As a corollary, forany special subdatum (H,y) ¢ (G,X), denote
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by Fh the splitting number field of H, then we have Aut(C/E(G,X)) 3 Aut(C/Fn)
while the latter acts on WAX”(C) trivially. In particular reflex fields are number
fields embedded in C.

(3)(cf.(D-1] Thm.5.1) Being given F be a number field (in C) containing the
reflex field E(G,X) of some pure Shimura data (G,X), there exists a special sub-
datum (H, je) ¢ (G,X) such that E(H,x) nF = E(G,X).

When the reflex fields of subdata vary, their degrees over Q remain uniformly
bounded, shown as follows:

Lemma 1.2.3. Foragiven Shimura datum (P,Y) ofreflexfield E = E(P,X), there
exists a constante, such thatfor any subdatum (P',Y") ofreflexfteldE’ = E(P',Y"),
we have [E":Q]<C.

Proof. Let (G\X") be a pure section of (P',Y"), which extends to a pure section
(G,X) of (P,Y). Then E' = E(G',X") and E = E(G,X), and it suffices to treat the case
of pure Shimura data.

Let T' be a maximal Q-torus of G', which extends to some maximal Q-torus
of G. LetF' be the splitting field of T', which is the number field characterized by
the property that Galp = Ker(GalQ —Autz(Xr)). Then [F : Q] equals the cardi-
nality of the image of Gal<j is Autz(Xr).

Let N be the rank of G', then Xr = GLn(Z), and the cardinalities of finite sub-
groups of GLz(N) is uniformly bounded by some constant Cn only dependent
on N, cf. [RT] Theorem 1 (actually it suffices to note a weaker form Cn s (2N)!).
Because N is bounded by the rank of G, the Cn’sremain bounded by some con-
stant Cgwhen T' runs through maximal Q-tori of reductive Q-subgroups of G.

Now that F' splits T', we have EcE 'c F', and [E': Q] < [F : Q] < Cg, with Cg
aconstant only dependent on G. 1

Définition-Proposition 1.2.4. (reciprocity map and canonical model in the zero-
dimensional case, cf. [Pink-0], Chap.ll, 11.3and 11.4)

Let (H, je) be apure Shimura datum with Ha Q-torus. Since the H(C)-conjugation
on Xh(C) is trivial, E = E(H,x) is no other than the smallest number field (in
C) over which \ix : Gmc —He descends. Put r = r(h*) to be the composition
Gﬁj ﬂy Hp Nl£>QH and define the reciprocity map rec* to be the composition of
the following chain:

GalE-» 7Tok(G") -1* T0Ji(H)

where the first arrow is the reciprocity map reck : Gain -» Gallb -» noJt(G”) de-
scribed in the Notations.

The O-dimensional scheme M(H,jc)c can be identified with its set of con-
nected components, namely #0n(H). Let Gain acts on it by translation via recx,
then the action is locally constant, i.e. every point in M(H,x)c is fixed by an
open subgroup of Galg, and M(H, x)c is endowed a structure ofa pro-E-scheme,
called the canonical model of M(H, x), denoted as M(H, jc)e .
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More concretely, for every compact open subgroup Kh ¢ H(Af), Mkh(H, jc) is
characterized as the finite Qac-scheme with underlying set H(Q)\H(Af)/KH on
which GalE acts as o[x, aKH] = [J},reCjc(CT)aKH], a e Gale, a e H(Af). M(H,x) is
equipped with a continuous right action ofthe locally profinite group H(Af): for
each h e H(Af) the action

ft':M (H,x) = M(H,i) [x,9]«[i,gfi]

is defined over E because it obviously commutes with the action of GalE: only
abelian groups intervene. The continuity follows the definition of the action of
a locally profinite group on a scheme, see [SGA3] Expos6.VII.

For F a number field (embedded in C) containing E = E(H,jo, the quasi-
canonical model of M(H, x)c over F is nothing but the base change M(H, jc) e B>
or equivalently, characterized by the action of Galp on the set TtoJt(H) by transla-
tion through the composition of GalF  Gals ~ Kon(H), namely the composi-
tion of

Galp” itoJt(G™N A 7On(HF) N~ QnOn(H)

justified by the commutative diagram

. _ Nmpl/o
GdJr n07r(G") itoJt(HF) —--- } noJt(H)
FdE Nmp/E NHE
Q
GalE i+ mO7t(GE) TTo7T(HE) NTd n07r(H)

we denote this homomorphism as recF, or simply recx if F is clear from the con-
text.

Definition-Proposition 1.2.5. (canonical model in the general case, cf.[Pink-0],
Chap.Il, 11.5 Definition)

Let (P,Y) be a Shimura datum, and E = E(P,Y) its reflex field. A canoni-
cal model of the Shimura variety at some finite level MK(P,Y)c is an E-variety
such that for any special subdatum (H,jc) ¢ (P,Y), the (O-dimensional) subvari-
ety Mkh(H, jc)c <Mr(P,Y)c is defined over Ex = E(H, x) on which GalEx acts as
in (1). So we have imposed the rationality conditions on a Zariski dense sub-
set of Mr(P,Y)c. What is less transparent is that these conditions implies the
existence of a canonical model of Mr(P,Y)c over E, unique up to isomorphism,
denoted as Mk(P,Y)e. We refer the readers to standard references like [Pink-0]
and [Milne-0] for further discussions. We also write MKk(P, Y) for its base change
to Qac.

Moreover, the notion of canonical model is functorial:

(2-1) Let Mki(Pi,Yi)c —Mk2(P2,Y2)c be a morphism of Shimura varieties.
Then it is defined over E(P2,Y2), namely it is Aut(C/E(P2,Y2))-equivariant.
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(2-2) In particular, the transition maps prk: Mr<(P,Y)c -» Mr(P,Y)c for
compactopen subgroups K' ¢ K, and the translations g* : MgKg-i (P, Y)c = Mr(P,Y)c
with g e P(Af), are defined over E = E(P,Y). Hence we have the pro-E-scheme
M(P,Y)e = limKMK(P,Y)E equipped with a continuous right action of P(Af).

We have equally the notion ofquasi-canonical model of M(P, Y)c overanum-
ber field F ¢ Ccontaining E = E(P,Y). Itis the base change M(P,Y) ®e B and is
equivalently characterized as the unique F-pro-scheme equipped with a contin-
uous right action of P(Af) such that for any special subdatum (H,x) ¢ (P,Y), the
subscheme M(H,x)c is defined over F* = F-E(H ,x), while the Aut(C/Fx)-action
on itis given by the translation via the composition

reck1GalFjt -» fton(G&) — 70Jr(HFi)N*  /Qjtodt(H).

1.3 Hecke correspondences and special subvarieties

Définition 1.3.1 (Hecke correspondence). Let Mr = Mr(P,Y) be the Shimura
variety associated to the datum (P,Y) at level Kc P(Af). For any g e P(Af), put
Kg=Kn gKg-1, and define the Hecke correspondence 7gto be diagram

Wir 22 MKkg ER Wk

where the first pr is the projection Mr —) Mkey [y, aKg] —1[y, aK], and the sec-

ond map is the composition Mrs o MgKg-i & Mr, [x,aKg]l [x agK]. Note
that the two maps are finite, defined over E(P, Y), and are étale if Kis torsion free.

The associated Hecke operator 7g takes an algebraic cycle Z on Mr to the
cycle Tg(Z) = (g»pr)*pr*(2Z), called the Hecke translation of Z by 7g. In partic-
ular, it takes a point z e Mr(C) to a finite subset of Mr(C). Hence for any point
z e Mr(C), we define the Hecke orbit of z to be Ugep(A)~V ~ anc*its rational
Hecke orbit to be Ugep(Q) 7g9(2).

Let (P,Y) be a Shimura datum, with U ¢ P the weight -2 unipotent part. Let
M = Mr(P,Y) be a Shimura variety at some neat level K¢ P(Af) (compact open
subgroup). Take z e M(C) contained in a connected component M+ and write

0O(z) to be M+n (UgeP(Q) 79(2))

Definition 1.3.2 (Shimura subvariety and special subvariety). Asubdatum (Pi,Yi)
of (P,Y) is characterized by a Q-subgroup Pi ¢ P and an inclusion Yi ¢ Y in-
duced by 2)(Pi) ¢ 2)(P) such that (Pi,Yi) is a Shimura datum itself. In this case
Yi = Ui (C)Pi (R)yi for some yi e Ywith Ui =Pin U.

The Shimura subvariety (offinite level) associated to the subdatum (Pi,Yi)c
(P,Y) is the image ofthe morphism of Shimura varieties Mrj (Pi,Yi) —Mr(P,Y)
with Ki = Pi (Af)n K, namely $ k(Yi *Pi (Af)). And we define special subvarieties
of Mr(P,Y) to be the geometrically connected components of the Hecke trans-
lations of Shimura subvarieties.
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Finally, we define weakly special subvarieties in a given (connected) Shimura
variety to be a finite union of special subvarieties. For example, if Mi ¢ Mk(P,Y)
is a special subvariety of a Shimura variety whose reflex field is E, then for any
number field Fcontaining E, the Galp-orbitofMi in Mr (P, Y), written as Galp -Mi,
is weakly special, because the geometrically irreducible subvariety Mi ¢ Mis de-
fined overanumber field, and a Galois conjugate of a special subvariety remains
special (in fact this is also true for conjugation by Aut(C/Q), cf.[]).

We apologize that this last notion of weakly special subvarieties does not
agree with the way it is used in [Pink-1]. Within this thesis no ambiguity is
caused because the related results in locxitare not used.

For example, being given a Shimura subdatum (Pi, Yi) ¢ (P,Y)and g e P(Af),
write K= Uf=1g/K\ then 7gtranslate a closed point [y,aK] e Mk(P, Y)(C) to the
finite set {[y,agiK]|i = 1,..., d}. In particular the set of geometrically connected
components of 7g(M~ (Pi,Yi)c is the finite set

teKOf? xayg/K):jESR™, i=1,..., d}.

So it is equivalent to define special subvarieties to be subvarieties of the form
£5k(Y" x aK) where Y+ comes from some Shimura subdatum (Pi,Yi) and a e
P(AT). Since for any q e P(Q), qY” is still deduced from a Shimura subdatum
(gP\g~",qYi) as long as (Pj,Yi) is a subdatum, for a given special subvariety
we can choose the expression Mi = A(Yj" x aK) in such a way that a is taken
from the given finite setifi E representing P(Q)+\P(Af)/K. Then viay = yk we see
that y(Mi) = r K(F\rK(fl)Y+ ¢ r K(a)\'Y'\ so special subvarieties are nothing but
arithmetically defined locally symmetric subvarieties in r\Y+in the prescribed
form as above.

Definition 1.3.3 (Mumford-Tate group). (1) For (P,Y) a Shimura datum, and a
subset Z ¢ Y, the generic Mumford-Tate group of Z is defined to be the smallest
Q-subgroup of P whose complex locus contains y(8c) for all y e Z, denoted as
MT(Z). When Z =, it is easy to verify that (MT(Y),Y) itselfis a Shimura datum.
Such pairs are called "irreducible” Shimura data by R.Pink in [PinkO] Chap.2.

Note that although the connected components remain of the form r\Y + for
certain a subgroup T ¢ P(Q), the total Shimura varieties/schemes associated to
(MT(Y),Y) and (P,Y) could be different, because the groups of connected com-
ponents might differ from each other. For example consider a special datum
(H, X) and T a Q-torus containing H. Then (T, jc) is itself naturally a special da-
tum, and tto(M(T,jc)) = noK(T), which is in general different from ttO(M(H,x)) =
non(H).

For a subdatum (Pi,Yi) ¢ (P,Y), the Mumford-Tate group MT(Yi) is inde-
pendent ofthe datum (P,Y) containing it.
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For a special subvariety Mi = ..,:0"" x aK) ¢ Mr(P,Y)c with a taken from
the fixed finite set 5RE different choices of defining data (Pi,Yi) lead to differ-
ent MT(Yi). Since we have fixed a, these choices are permuted transitively by
IK(a)-conjugations, and we define the Mumford-Tate group relative to level K
and class a e SP to be the TK(a)-conjugacy class of the Q-subgroups Pi, de-
noted as MTic,a(Mi) = [PilK.ii, namely we take into consideration various liftings
of Mi in Y+. Often we simply write MT(Mi) = [Pi] if the pair (K,a) is clear in
the context, and in most cases we only need a representative Pi in [Pi], which is
referred to as the Mumford-Tate group by abuse of terminology.

(2) On On the other hand, for a variation of polarizable rational mixed Hodge
structures (Y ,F*,W.) over a connected complex analytic variety S we can define
the Mumford-Tate group pointwisely, namely fors e Sput MT(s) = MT(7*, Fs,Ws).
Identify Yswith a fixed fiber V of the pull-back of Y to the universal covering of
S, then these MT(s) are realized as Q-subgroups ofc Lq (V).

Y Andre showed that away from a countable union of closed subvarieties the
MT(s)5 coincide, and is called the generic Mumford-Tate group of Y over S, de-
noted as MT(S) = MT(S,7). Forarbitrary se S, MT(s) is a Q-subgroup of MT(S):
actually we can lift Y to the universal covering S of S and get a constant sheaf of
fiber V, and all the MT(s) % are realized as subgroups of GLq (V).

Forexample, consider a Shimuradatum (P,Y) and the adjointrepresentation
P —GLqg(LieP). Then we get, due to the universal property of Y, a variation
of polarizable mixed Hodge structures  on Mr(P,Y)c, Kc P(Af) any compact
open subgroup. If the adjoint representation is faithful, e.g. P an adjoint Q-
group, then P is the generic Mumford-Tate group offp. In general we have the
following

Proposition 1.3.4. (1) (cf.JAndre4]) LetY be a variation ofpolarizable rational
mixed Hodge structures on a complex analytic variety S. Then there exists count-
ably many closed analytic subvarieties (S,,)n of S such that MT(s) is constant
when s varies in S- UnSn.
(2) Let Let (P,Y) be a Shimura datum with P = MT(Y). Take P —GLq (V) to be an

algebraic representation, and Y the induced variation ofmixed Hodge structures

on M = MK(P, Y) for some compact open subgroup K¢ P(Af). Then the generic
Mumford- Tate group ofY equals the image ofP in GLq (V).

Remark 1.3.5. In [PinkQ], R.Pink proceeded with a slightly different definition
of (mixed) Shimura data: a Shimura datum "h la Pink" is a pair (P,U,Y —h-2)(P))
where P is a connected linear Q-group, U ¢ P a unipotentinvariant Q-subgroup
of P, Y a homogeneous space under U(C)P(R), and h a U(C)P(R)-equivariant
map from Y to 2}(P) = Homc(Sc.Pc) such that h is of finite fibers and that
(P,U,/i(Y)) isa Shimuradatum in our sense (following P.Deligne). Then in [PinkO]
R.Pink developed the theory of mixed Shimura varieties within this framework,
including the canonical models of various compactifications.
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We present the following lemma describing the difference between these
two definitions that would be of interest in the study of special subvarieties:

Lemma 1.3.6. (I)Let(P,Y) beaShimuradatum in thesense ofR.Pink, and (G,X)
a pure section, namely a pure Shimura datum defined by some Levi -subgroup

7w
G ofP =W x G, and morphisms (P,Y) <**(G,X). Thenfor anyxe X, the isotropic

subgroupGx ¢ G(R) ofx isaLie subgroulp 0/G(R), whose reduction moduloZg(R)
isa compactsubgroup o/Gad(R) ofmaximal dimension, andY =U(C)W(R) x X as
a real analytic manifold.

(2) Lei Let (P,Y) be a Shimura datum in the sense ofP.Deligne, (Pi, Yi) a subda-
tum in the sense ofR.Pink. Then it is a subdatum in the sense ofP.Deligne. As a
corollary, letM be a Shimura variety in the sense ofPDeligne, and Mjc M o spe-
cial subvariety in the sense ofRPink, then Mi is a special subvariety in the sense
ofPDeligne.

Proof. (1) From the datum (P, h :Y—2)(P)), we see that the pair (P, Y= h[Y))isa
Shimura datum in our sense, and the map h :Y-» Yis a U(C)P(R)-equivariant fi-
nite covering. Gis a Levi Q-subgroup of P. Foranyx e Y, there exists a U(C)P(R)-
conjugate x' of x such that the C-torus h{x") is contained in Go and equals the
image under the push-forward by io jiw- Now that tiu,*(Mx")) is defined over
R, so it is with 7tw,*(Mx’)), hence h(x") = (i ottwM Mx")) is itself defined over
R. To prove the assertion it suffices to treat the case where x = x' as they are
all conjugated. In this case x = h{x) e Y = h(Y) is defined over R and satis-
fies the conditions defining a pure Shimura datum in the sense of P.Deligne.
Now Y = U(C)P(R)x and the pair (G,X = G(R)x) is a pure Shimura subdatum
of (P,Y). Write Gx to be the isotropic subgroup of x e X for the action of G(R),
then G* = GXR) where G* is the R-subgroup of Gk fixing jce 3£(G). By calculat-
ing the Hodge types we see that the isotropic subgroup of x in U(C)P(R) equals
G*, hence X = G(R)/GXand Y S U(C)P(R)/G* SU(C)\W(R) xX. h:Y- Yisa
U(C)P(R)-equivariant finite covering, thus the isotropic group of x, denoted as
Gx, is a closed subgroup of finite index in G*, hence an open subgroup of G*; in
particular they are of the same dimension.

By the general theory of non-compact symmetric domains, we know that
the reduction of G* modulo Zg(R)+ is a maximal compact subgroup of Gad(R).
Hence Gxmod Zg(R) is also of maximal dimension among compact subgroups
in Gad(R).

Note that the set of connected components of G* is finite, and there is only
finitely many choices of Gx.

Itis also easy to verify that (G,X = h(X)) is a pure section of (P,Y).

(2) Sincgince (Pi, hi :Yi —2)(Pi)) is a subdatum of (P,h :Y <2)(P)), hi is the
restriction of ft to Yi ¢ Y. Thus h\ is injective and Yi £ hi(¥i) and (Pi,Yi) is a
Shimura datum in our sense. The restis trivial.

Lemma1.3.7. Lef(Pi,Yi) c (P,Y) beaShimurasubdatum (in the sense ofP.Deligne),
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K¢ P(Af) a neat compact open subgroup, and Ki = Kn Pi(Af). Then the mor-
phism ofShimura varieties

f: MKIi(Pi,Yi) — Mk(P,Y)
isgenerically injective.

Proof. Thisisjustaword-to-word translation ofthe Lemma 2.2 in [UY-1]

We mention the notion of C-special subdata and C-special subvarieties, which
will be widely used in later chapters

Definition 1.3.8. (cf.[UY-I] Definition 3.1, 3.2) We fix (P,Y) a mixed Shimura
datum with a pure section (G,X), and let C be a Q-torus in G. Write Jt: (P,Y) —
(G, X) for the canonical projection modulo W the unipotent radical of P.

(1) (the pure case:) a pure subdatum (G',X") ¢ (G,X) is C-special if C equals
the connected center of G'.

(2) (the mixed case:) a subdatum (P',Y") of (P,Y) is C-special if (G',X") =
(ji(PY,n(Y") is a C-special subdatum of (G,X).

We have seen that the unipotent radical W' of P' equals WnP', and if (Gi, Xi)
is a pure section of (P, Y"), then the composition

(Gi,Xi) —(P,,Y) —(P,Y) -» (G,X)

induces an isomorphism between (Gi.Xj) and (n(P"),n(Y").

(3) AShimura subvariety M' of Mr (P, Y) is C-special if it is defined by an in-
clusion of C-special subdatum.

More generally, for a given compact open subgroup Kc P(Af) and a fixed fi-
nite setofrepresentatives  of P(Q)+\P(Af)IK, a special subvariety M' = £5k(Y'+x
aK) with a e 5REis C-special if Y'+ comes from a C-special subdatum (P',Y").

Remark 1.3.9. In our later applications, we are mainly concerned with the case
where K is of the form Kw * Kg and = EFKQ;: is fixed once for all. Very often
it suffices to study special subvarieties inside a fixed connected Shimura variety
M+ =r\Y +where T = TK(a), namely M+ = £5k(Y+ x aK), and the special subvari-
eties are M'+ = r\rY ,+ = $(VY,+ x aK) for (P',Y") subdatum of (P,Y). Ifwe change

a be a P(Q)+-conjugation, then all the (P',Y') are modified coherently.

Finallywe presentsome results concerning the construction of Shimura sub-
data.

Definition-Proposition 1.3.10. (cf. [CU-3] 4.1 strongly special subvarieties; [E-
M-S] Lemma 5.1) Being given G be a reductive Q-group, a reductive Q-subgroup
H c Gis said to be strong, ifthe following equivalent conditions hold:

(1) Forany Q-subgroup Qc G, Q=H implies that Q is reductive itself;

(2) For any parabolic Q-subgroup P ¢ G, P o H implies thatP = G;

(3) The centralizer of H in G, denoted as ZgH, is isogeneous to a product
of the form ZGx C where C is a Q-anisotropic Q-torus in Gder, where being Q-
anisotropic means that there is no split Q-torus contained in G.
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Note that the original version in loc.cit only considers the case where G and
H semi-simple; our variant here is obtained by joining a common central Q-
torus.

Proof. It suffices to treat the case where G is semi-simple, whereby (3) is refor-
mulated as:

(3)’ The centralizer ZgH of H in G is F-anisotropic, namely contains no split
F-torus.

The proof of the equivalence is essentially the same as in Lemma 5.1 of|E-
M-S], where a series of equivalences is established for Q-groups. We can either

(@) replace Q by Fin the proofof2 =>3, 3=>2, 3=>5, 4=>5,and 5=>3,5 =>4;
or

(b) in case F is a number field, study the Q-groups GF, HF, etc. by Weil re-

strictions, where the equivalences follow from loc.cit directly. 1
|

Example 1.3.11. Let (G,X) be a pure Shimura datum, and (H,Xi) a pure subda-
tum. Then H is a strong Q-subgroup of G.

It suffices to verify that ZqH the centralizer of H in G is Q-anisotropic mod-
ulo Zq. Take jce Xi ¢ X, then (ZgH)r centralizes jc(S) ¢ G, hence its reduction
modulo Zg is compact, namely R-anisotropic, hence Q-anisotropic.

In particular, the center of H fixes jc, and we deduce that the center of H is
compact modulo Zg. As a consequence, when we talk about C-special subdata
of (G,X) with G = MT(X), C should be, a priori, a Q-torus containing Zg which is
also compact modulo Zg.

Lemma 1.3.12. (1) Let(P,Y) bea mixed Shimura datum with pure section (G,X),
and Q¢ P a Q-subgroup such thatQc =y(8c) for someye Y. Then there exists a
Shimura subdatum oftheformal,Y\) withY\ = Ui(C)Q(R)y, whereUi =WnQ.
Ifmoreovery is defined overR andQr d y(8), thenYm = Q(R)y

(2) Let Let (P,Y) be a Shimura datum with a subdatum (Pi,Yi). Then the set of
Shimura subdata oftheform (Pi,Yj) isfinite.

Proof. (1) Letjc = jtw»y e Xand H = Jtw(Q)c G. We firstshow that H is reductive.
It suffices to show that Hr is reductive. But Tx = *(§)c Gr is strong, i.e. Zg,, Tx is
compact modulo Zgr which follows from the definition of pure Shimura datum.
Hence by the equivalent conditions in the definition above and the chain T* ¢
Hr e Gr implies that H is reductive, and ¢ admits a Levi-decomposition of the
form Wi x Lwhere L= wHw~I for some w e W(Q) and Wi =Wn Q. We put also
Ui =Un Q, which is central in Wi.

Conjugate jcby wwe getz =Int(w)ox:S -» Lr which satisfies the conditions
defining a pure Shimura datum. But L is not exacdy the Q-group that intervenes
in pure Shimura data. L admits a decomposition into almost direct product L=
Gi xLc,where Lcis the product of compact Q-factors, and Gi is generated by the
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center of Land the non-compact Q-factors of Lder. By definition of pure Shimura
data, Gir 3 z(S) and 1 fixes z. Hence the Ui(R)Q(R)-orbit of z is equal to Vi :=
Ui(C)Pi(R)z where Pi = Wi x Gi. The pair (Pi,Yi) is a Shimura subdatum of
(P,Y) with a pure section (Gi,Gj (R)z).

If moreover Qr 3 y(8) for some y € Yr. Then from the construction above
we see that y(S) is contained in some Levi R-subgroup of Q, which is ofthe form
WyUiWylwith y = Int(u/y) oz. The compact R-group u/ylI"Wylfixesy, and y
has image in WyGwWy1 Therefore Q(R)y =Pi(R)y = Pi (R)z=Yir.

(2) Let Let (G,X) be a pure section of (P,Y). Then nw(Pi.Yi) = (Gi.Xi) is a pure
subdatum of (G,X). Lemma 3.7 in [UY] shows the finiteness of pure subdata of
the form (Gi.Xj). Back to the total Q-group Pi, we see that the kernel of Pi —Gi
isWi =Pi nW, and Ui(C)Wi(R) remains the same for any (Gi,Xi). Hence there
is only finitely many Shimura subdata defined by Pi. 1

Lemma 1.3.13. LetM = MK(P,Y) be a Shimura variety, (Pf,Y,) Shimura subda-
tumof(P,Y), andMi aspecial subvariety defined by {Pi,Yi) (i = 1,2). //Min M2 #
0, then Mi n M2 is afinite union ofspecial subvarieties.

Proof. Fixafiniteset®=  representing P(Q)+\P(Af)/K. Suppose Min M2 * 0,
then they lieinacommon connected component  (Y+xaK) = T\Y+, and are of
the form M- = $k(Y* xaK) = r17 v« for some subdatum (Pi, Y/), where t = IK(a)
(i=12).

Take z e Mi n M2, which is lifted to some y- e Yt.So yi and y2 lies in the
same T-orbit in Y+. Because conjugating (P,-Y,) by y e T does not change the
intersection Mi n M2, we may suppose, up to conjugating (P2, Y2) suitably, that
yi =y2=y. Inparticular YinY2” 0 as subsets of Y, and PinP2=Q " 0. Now
that Q is a Q-subgroup of P such that Qc 3 y(8c). Bythe arguments in Lemma
1.3.13 above, Q admits a Levi-decomposition Q = W3 x L3with unipotentradical
W3 =Wn Q, and a Q-subgroup P3 = W3 x G3 such that G3 ¢ L3 is an invariant
Q-subgroup and that (P3,Y3) is a common Shimura subdatum of (Pi,Yi) and
(P2,Y2), where Y3 is taken to be the orbit U3(C)Q(R)y, with U3 = W3fiU.

We proceed to show that only finitely many subdata are produced in the
above way. The subdata constructed in the precedent paragraph are of the form
(P3,Y3 with Y3 = U3(C)P3(R)y = U3Q(R)y) for some y e Yi n Y2 The Q-group
P3 is determined by Q = Pi n P2 independentofye YinY2 ITQ=W3xL3is
a Levi decomposition which extends to a Levi decomposition P = W xi G with
L3¢ G,then G3< Qisindependentofy e Yin Y2 because it is the maximal nor-
mal Q-subgroup of L3 such that L3/G3 is either compact semi-simple or trivial.
For P3 fixed, there is at most finitely many subdata of the form (P3,Y"), hence
only finitely special subvarieties Si,...,Sn are defined by P3 and contained in
MiOM2.

The construction above implies the equality Mi nM2(C) = U 7i S, (C), which
forces Mi n M2 = Ui Si weakly special. 1
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Chapter 2

Introduction to the Andre-Oort
conjecture

2.1 Statementofthe conjecture

Conjecture 2.1.1. (the Andre-Oort conjecture, cf. [Andre-4], [Oort-2]) Thefol-
lowing conjecture was raised by YAndre and F.Oortindependently around 19905

(0) Let Let M be a pure Shimura variety, and | a set ofspecial points. Then the
Zariski closure ofL in M is weakly special, namely afinite union of (pure) special
subvarieties.

Note that we have abused the terminology weakly special, which was re-
served in R.Pink% article [Pink-1] for a more general class of subvarieties and for
his generalized Andr6-Oort conjecture. They are not to be treated in this writing
and no confusion is caused.

It is easy to show that a special subvariety contains a Zariski dense subset
of special points: obviously the rational Hecke orbit of a special point with re-
spect to the Mumford-Tate group of the special subvariety is already dense for
the archimedean topology (in the pure case). Butin this case the Mumford-Tate
groups of these special points are isomorphic to each other as Q-groups: in fact
they are conjugate under G(Q), G being the Mumford-Tate group of the special
subvariety. It is less obvious that there exists sequences of special points dense
for the Zariski topology whose Mumford-Tate groups form an infinite set of Q-
isomorphism classes. For example consider a sequence of special points (xn)n
in the modular curve Y(N) with distinct discriminants D,,, then it is not covered
by the rational Hecke orbit of a single point. But the set {xn : ne N} is Zariski
dense: itis an infinite set in a curve. In fact we even know that their Galp-orbits
are equidistributed with respect to the canonical measure on the modular curve,
proved by W.Duke by explicit estimation via automorphic forms, cf.[Duke-I].
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The André-Oortconjecture and its various generalizations are mainly concerned
with the higher-dimensional analogue of this phenomenon.

Proposition 2.1.2 (Equivalent formulations ofAndré-Oort). Thefollowingequiv-
alentforms ofthe conjecture are better adaptedfor differentapproaches:

(1) Let (Sn)n be a sequence ofspecial subvarieties ofa pure Shimura variety
M, then the Zariski closure of\JnSn is weakly special

(2) LetZ be a closed subvariety ofa pure Shimura variety M. Set

£(2) = {Si C Z :Si special}

Then the setS(Z) ofmaximal elements ofl(Z) isfinite.

(3) Fix a connected Shimura variety M+, identified with a locally symmetric
space oftheform T\X+for some Shimura datum (G,X) and congruence subgroup
Tc GOQ+. Then every strictsequence ofspecial subvarieties is a generic sequence
in thefollowing sense:

« A sequence ofclosed subvarieties (Zn)n of M+ is said to be generic if{Zn)n
converges to the generic point of M+, namelyfor any closed subvariety Z C M+,
Zn<€Zfor n large enough;

¢ A sequence ofspecial subvarieties (Sn)n issaid to be strict iffor any special
subvariety S C M+ we have S,, £ Sfor n large enough.

The equivalence between the original version (0) and the version (3) is clear.
The proof of the remaining equivalences will be given later in the more general
context of mixed Shimura varieties, cf.Prop.2.2.5 of this chapter.

Later on we will introduce the notion of (in-)homogeneous sequence of spe-
cial subvarieties. Then the theorem of L.Clozel and E.Ullmo can be viewed as a a
proofofthe conjecture (1) in the homogeneous case, and the work of B.Klingler,
E.Ullmo, and A.Yafaev covers the inhomogeneous case under the formulation of
(2) by assuming the Generalized Riemann Hypothesis for CM fields.

Although the question was raised for pure Shimura varieties, in YAndrés
lectures [André-1] is already indicated how this problem could be formulated
for mixed Shimura varieties, and this motivates the following:

Conjecture 2.1.3 (André-Oort-Pink ). LetM be a mixed Shimura variety, and |
a setofspecial points. Then theZariski closure ofl. is weakly special, i.e. afinite
union ofspecial subvarieties, (cf. [PinkI])

Ofcourse the André-Oort conjecture bears a strong analogy with the follow-
ing
Conjecture 2.1.4 (Manin-Mumford). ForA an abelian variety overC, define spe-
cial points to be torsion points, and special subvarieties to be torsion subvarieties,
namely abelian subvarieties translated by torsion points. Letl. be a setofspecial

points ofA. Then the Zariski closure ofl. is weakly special, namely afinite union
ofspecial subvarieties.
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Both of the two conjectures are concerned with the distribution of special
sub-objects inside a geometric structure with “a lot of symmetries”: in the case
ofabelian varieties we have translations by torsion points and correspondences
by endomorphisms (up to isogenies); in the case of Shimura varieties we have
Hecke correspondences.

The Manin-Mumford conjecture was proved firstby M.Raynaud (cf. [R-1], [R-
2]), then resolved from various approaches by different mathematicians. It is
closely related to the following results:

Theorem 2.1.5. (L.Szpiro, RUllmo, S.Zhang; cf.fSUZ], [Zh]) LetA be an abelian
variety overa numberfield K, {xn)n a sequence ofclosed points ofA such that

(1) Hm h(jc,,) = 0, where h is the Niron-Tate heightfunction, and that

(2)for any special subvariety Z C A,Zn{Jt,.} isfinite.

Write 0(xn)for the Galjc-orbitofxn inside A. Then with respect to any com-

plex embeddinga :K «C, the sequence ofmeasures - £ 8y weakly

_ IQU7j)lyea(0(xn)
converges to the normalized Haar measure on the compactLie group Aa{Q.

We see that the Galois orbit of a sequence of "small points" (i.e. with height
tending to zero) is equidistributed (i.e. the associated Dirac measures tends to
the canonical Haar measure of the ambient variety). So it is natural to consider
the following statement as a refinement of the Andre-Oort conjecture:

Conjecture 2.1.6 (the Equidistribution conjecture). LetSn be astrictsequenceof
special subvarieties ofa pure Shimura variety S. Then the sequence ofmeasures

- £ *Hy converges weakly to the canonical measure on S.
[0(Sn)I yeO(s,,)

Here 0(S,,) is the Galois orbit of the subvariety Sn inside S, and the canoni-
cal measure |iy on a locally symmetric variety Y as the complex analytic variety
associated to the complex locus ofthe special variety means the measure deduced
from the Haar measure ofits universal covering (which is a symmetric domain).
Allfields encountered here are assumed to be equipped with afixed embedding
into the complex field C and we write simply Y e 0(S,,) instead ofY e ct(0(S,,)
for somefixed embedding a : E—C. Note that it is known, due to the works of
P.Deligne, J.Milne, etc, that the Galois conjugate ofa special subvariety remains
special, hence [iy is always well defined.

Some cases ofthe conjecture are known, deduced from differentapproaches.
LClozel and E.Ullmo proved the homogeneous case, namely a sequence of spe-
cial varieties S,, defined by Shimura data (G,,,X,,) with Gn = MT(X,,) such that
all the connected center ofthe Gn coincide. On the other hand, various explicit
calculations concerning automorphic forms treated the case of certain inhomo-
geneous sequence of special subvarieties, see for example the paper of D.Jiang,
J.Li, and S.Zhang [JLZ]. With our treatment in the next chapter, it will also be
reasonable to consider the equidistribution conjecture in the mixed case.
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2.2 Reductions and Reformulations

Lemma2.2.1. (Reduction 1) Let(P,Y) be a Shimura datum, Lc Ka pairofcom-
pact open subgroups o/P(Af). Then the Andr4-Oort conjecture holdsfor Mk =
Mr(P,Y) ifand only ifit holdsfor M1 = MI(P,Y).

Proof. We have the finite map / : M1 — Mr; it sends closed subvarieties to
closed subvarieties. It suffices to prove:

(1) for a special subvariety Zc M1,/ (2) is special;

(2) aclosed geometrically irreducible subvariety Zc Mr is special ifand only
if each geometrically irreducible component of f~ I (2) is special in MI.

Aspecial subvariety Zin M1 is of complex locus $>I(Y" x ah) for some Shimura
subdatum (Pi, Yi) and some a e P(Af). Thus the complex locus of/(Z) is £5r(Y" x
aK), which is special. Hence (1) is true.

Now for Z a special subvariety in Mr of complex locus fcJRfY]" x aK) for some
subdatum (Pi,Yi) and a e P(Af). Consider the decomposition into right cosets
K= LIf=1 bfh where d = [K:L] < 00. Then each geometrically irreducible compo-
nent of/ -1 (2) is of complex locus P10 * « abjh) for some i, which special itself.
Hence (2) istrue. 1

We see that the Andre-Oort conjecture holds for Mr if and only if it holds
for m - In particular, it suffices to study special subvarieties in m r for Ktorsion
free, whose geometrically components are smooth quasi-projective varieties of
complex loci r\Y + for TcP(R) some arithmetic lattice that is torsion free. This
setting is adopted in the approach of E.Ullmo, A.Yafaev, etc. For the explicit ap-
proach viaautomorphic forms, e.g. as was shown in [JLZ], it is sometimes more
convenient to work with certain maximal compact open subgroups for which
more specific results become available.

Lemma2.2.2 (Reduction 2). LetM = Mr(P,Y) be a Shimura variety, (M,,),, a se-
quence ofspecial subvarieties, andZ theZariski closureof[JnMn. In order to treat
theAndr”*-Oortconjecturefor M, we mayassume thatZ is irreducible and thatZ is
Hodge generic, i.e. the Mumford-Tategroup o/ZcM equals'?, orequivalently, the
smallest special subvariety ofM containing Z is a geometrically connected com-
ponentofM.

Proof. Consider the intersection of all the special subvarieties of M containing
Z. Because M is a noetherian scheme over a field, the intersection is reduced
to a finite intersection of special subvarieties, which is weakly special accord-
ing to the last lemma of Chap.l. Zis irreducible, so the intersection is a single
special subvariety Mz. This is the smallest special subvariety that contains all
the M,,s. Suppose Mz is ofthe form rR(a)\IR(a)Y z for some subdatum (Pz,Yz),
then up to conjugating the datum by elements in P(Q), we may assume that
Z is contained in a geometrically connected component of Mr2(Pz,Yz) where
Kz = Kn Pz(Af). We may thus assume that M = Mrz(Pz,Yz) whence Z is Hodge
genericin M. 1
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Lemma2.2.3. (Reduction 3) LetM = MK(P,Y) be a mixed Shimura variety, with
K= Kw x Kg ¢ P(Af) a compact open subgroup. To study the Andre-Oort con-
jecture, it suffices to study special subvarieties inside a given connected compo-
nentofM oftheform T\Y +where Y+ is anyfixed connected component ofY and
T =P(QO+n K. Under the equivalentformulations, we may assume that the se-
quence ofspecial varieties in question is oftheform Mn = r\rY + with (P,,,Yn)
subdata o/(P,Y) and YjJ ¢ Y+a connected componentofYn.

Proof. We fix iR= 9?" a set of representatives for G(Q)+\G(Af)/Kc which ex-
tends to represent the finite set P(Q)+\P(Af)/K. Write $k for the projection
Y+ x [P(AH)/K] -» M(€) = P(Q)+\Y+ x [P(Af/K], and y(3R) for the identification
MK(P,Y) = UaeK Tk(«)\Y+. Then every special subvariety of M is given by some
£5k(Y'+ x aK) for some a e Rand (P', Y') some subdatum with Y'+a connected
component of Y' contained in Y+, cf. Chap.l Definition 1.3.3.

Let (Mn),, be a sequence of special subvarieties in M, then we may assume
that M,, is given by £5k(YE x anK) with ane 3iand (P,,,Yn) some subdatum with
Y+ a connected component of Y,, contained in Y+. Note that {an : n} comes
from the finite set 9, we may write (M,,),, as a finite union of subsequences
(M',,(a))n with M'n{a) exhausting the M,,s of the form £5k(Y,, x «K), i.e. those
contained in rK(f)\Y+ under the identification y(5R). To prove that the Zariski
closure of U/jM,, is weakly special, it suffices to show that the Zariski closure
M'(a) of UnM',,(a) is weakly special, ae R

Forafixed ae Rwe put K' = aKa~l - K”xi [¢g. with = akKw«-1 and Kg =
aKcfl-1. Then P(Q)+\P(Af)/K' (or equivalently G(Q)+\G(Af)/Kg) is represented
by 5Ra 1 = {ba~l : b e IR And we have an isomorphism \ a 1 MaKa-i (P,Y) —
MK(P,Y), \y,ga¥La~1]—[y,gaK]. And we complete it into a commutative dia-
gram

Make-i(P,Y) MK(P,Y)

yew])) Y(K)
UceR «-ilWw .(0\Y+~  OoxrKe\Y+

here iaidentifies r aKa-i\Y+with FK(a)\Y+, in other terms, \ asends f)aKa-i (Y+ X
K) isomorphically to £5k(Y+ x «K).

Within the same diagram we see that ka sends a special subvariety of the
form £)aKa-i (Y+ x K) to £5k(Y'+ x aK) bijectively. That means in order to study
the Zariski closure M'(a) of the union of the M',,(a) = $k(Yn x aK) it suffices
to study the Zariski closure of the union of the HaYia"0 x K), or rather, un-
der y(9ifl-1), study the closure of r'\r'Y£% inside r'\Y+, where r' = rakil-i (1) =
TK(a) = P(Q)+ n aKa-1. Therefore in what follows we are mainly concerned with
a sequence of special subvarieties of the form Mn=r\lY £ inside T\Y+,where T
is some arithmetic subgroup of P(R)+.

Remark 2.2.4. The advantage to workwith special subvarieties ofthe form NTY '+
is that these special subvarieties are actually connected components of Shimura
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subvarieties defined by (P, Y"), with P' = MT(Y"), and we can estimate the Galois
orbit of such special subvarieties by standard formula of the reciprocity map.

We propose some equivalent reformulations of the Andre-Oort conjecture
in the mixed case.

Proposition 2.2.5. Let(P,Y) be a Shimura datum, Ka torsionfree compact open
subgroup o/P(Af), and M = MK(P,Y). Then thefollowing statement are equiva-
lent:

(AO-O) For (zn)n any sequence ofspecial points of M, the Zariski closure of
{z.,,:n e N} is weakly special.

(AO-1) For (S,,),, any sequence ofpure special subvarieties ofM, the Zariski
closure of\JnSn is weakly special.

(AO-2) For (Mn),, any sequence ofspecial subvarieties ofM, the Zariski closure
of\Jn M/i is weakly special.

(AO-2)’Let (Mn)n a strictsequence ofspecial subvarieties ofM. Then (M,,),, is
generic.

(AO-3) ForZ ¢ M any closed subset, define X(Z) = {M' ¢ Z : M" special, then
the setofmaximal elements (withe respect to the inclusion order) 0/Z(Z), denoted
by S(2), isfinite.

Proof. The equivalence between (AO-2) and (AO-2)’is evident. Clearly we have
(AO-2)=>(A0-1)=>(A0-0). On the other hand every special subvariety M' is the
Zariski closure of the countable set \z e M'(Qac) : z special}, hence U«M,, is of
the same Zariski closure with the countable set Unte e Mn(Qac) : z special}, and
(AO-())=>(A0-2).

(AO-2)=)(AO-3): LetZc Mbea closed subvariety, and | = S(Z) as is defined
in (AO-3). It is finite when Z is weakly special. Suppose that Z is not weakly
special. Then Z is finite or countable, and it can be written as a sequence of
special subvarieties (Mrt)n. (AO-2) implies that the Zariski closure Z' of U« Mn is
weakly special, i.e. Z' = Uf=1 S* for finitely many special subvarieties Si,...,Sn.
In particular S<c Zand every M,, is contained in some S-, and thus there exists i
such thatthere M,, ¢ S-. But we have assumed that the M,,s are maximal, hence
Mn = S,-and Zis finite.

(AO-3)=(A0-2): Let (M,,),, be a sequence of special subvarieties, and Z the
Zariski closure of U« M,,. The set Z of maximal elements ofis finite according to
(AO-3), denoted as {Si,...,Sn}. Then UnMnc (J*=1LS-. Taking Zariski closure of
bothsides we getZ=U ;i1Sj, i.e. Zisweakly special. 1

2.3 Anapproach under GRH

Anotable progress is the proof of the André-Oort conjecture in the pure case by
B.Klingler, E.Ullmo, and A.Yafaev, under the Generalized Riemann Hypothesis
(abbreviated as GRH in what follows). The beginning point is an lower bound
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of the size of the Galois orbits of special points, estimated under the effective
Chebotarev theorem, which relies on the GRH. This estimation is then general-
ized to higher dimensional case and results in an algorithmic approach to the
Andre-Oort conjecture for pure Shimura varieties. We introduce some termi-
nologies before presenting their approach and our generalization in the mixed
case.

2.3.1 Someterminologies

We introduce some terminologies to illustrate a current approach to the André-
Oort conjecture assuming the GRH.

We consider a pure Shimura variety S = Mkg(G,X), with Kg = llpKc.p as-
sumed to be torsion free. Let SE = if(K) be the canonical line bundle on S
defining the Baily-Borel compactification, defined over the same reflex field E =
E(G,X) as S is. Also fix F a number field containing the reflex field E, and a faith-
ful representation p : G <—GLq(M) over some Q-vector space M with a lattice
Mz ¢ M such that p(Kc) stabilizes Mz ®z 2 inside M ®q Af.

e uniform constant: this is nothing but a constant determined by the tuple
(P,Y,Fp), independent of the choice of subdata of (P, Y) and free ofthe level K

e testinvariant ofa pure special subvariety:

We fix an integer N > 0.

For a subdatum (G',X") of (G,X), it is always assumed that G' = MT(X"), and
the associated Shimura subvariety is Mkg(G',X"), Kg' = KnG'(Af). Write C' for
the connected center of G, then for any geometrically connected component S'
ofthe image Mrg, (G',X"), define the test invariant of M' to be

T(S):=CN(logDc)Nmax{l, f] B|Kg“ /KCp}
pe8(C',K)

where cn and B are uniform constants, Kc = Up Kc'.p = Kn C'(Af), Kji}3* the
unigue maximal compact open subgroup of C'(Af), S(C',K) the set of rational
primes p such that Kc',p C KS®E, and Dc the absolute discriminant of Ec< over
Q, Ec being the splitting field of C".

t(S) appears in the estimation of the lower bound of the number of Galois
conjugates of S": the constants cn and B can be chosen in such a way that with
respect to some fixed number field F containing the reflex field of (G,X), the
inequality

deg"j.(GalpS') > £(S)

holds for any special subvariety S'.

« (in-)homogeneous subsequence:
Asequence ofpure special varieties (Sn)n of Mkc(G,X) is homogeneous with
respectto some Q-torus C ¢ G, or simply a C-special sequence, iffor each n there
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exists a subdatum (Gn,X,,) ¢ (G,X) such that C is the connected center of G,,
and S,, is a geometrically connected componentofthe image ofmr_ (G,,,Xn) —
Mkg(G,X); it is weakly homogeneous if there exists finitely many Q-tori C-¢ G
such that each S,, is C,-special for some i = in; it is inhomogeneous ifit is not
weakly homogeneous.

Note that we can always reduce the problem to a sequence of special sub-
varieties inside a fixed geometrically connected component S+ = rK,;(a)\X+ of
Mkg(G,X), due to Reduction 3.

2.3.2 Theapproach under GRH

The combination of [CU-0], [UY],and [KY] leads to the proof of the Andre-Oort
conjecture in the pure case under GRH:

We follow the formulation 2.1.2(2). Let Z be a closed subvariety of a given
pure Shimura variety S, and we study the finiteness of Z = S(2).

IfZ is weakly special itself, then Z isthe set ofgeometrically irreducible com-
ponent of Z, hence finite.

Therefore we may assume that Z is not weakly special, and we assume for
simplicity that Z is geometrically irreducible. We may also assume that the Z is
contained in a special subvariety S such that Z is Hodge generic S. Z is clearly
countable, and we may write it as a sequence (S,,),,. We want to show that (S,,)n
is finite, i.e. Z={S,,)nis a finite set.

(i) Ifthe sequence {Sn)nisweaklyhomogeneous, then the theorem of L.Clozel
and E.Ullmo implies that the Zariski closure ofUn Snin Zis weakly special. Com-
bining with maximality of Z we deduce that the sequence (S,,),, is finite.

(i) Ifthe sequence (Sn)n isinhomogeneous, then a theorem of E.Ullmo and
A.Yafaev affirms that the sequence of test invariants is unbounded. Combin-
ing with (i) we see that any subsequence of bounded test invariants can be re-
placed by finitely many special subvarieties, thus we may, up to rearranging the
sequence, assume that (t,, = t(S,,))n tends to +00 as n — +00. B.Klingler and
A.Yafaev then proved that for t,, sufficiently large, there exists a special subva-
riety S,, ¢ Z such that S,, ¢ S,, contradicting the maximality of Z. Hence Z is
finite in this case. This final step makes essential use ofthe Effective Chebotarev
Theorem, which is established under the Generalized Riemann Hypothesis.

2.4 Mainresults

In this thesis we follow the strategy of E.UlImo, A.Yafaevand their collaborators
and derive some special cases of the Andre-Oort-Pink conjecture in the mixed
case. However we are not yet ready to treat the most general case even under
GRH.
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2.4.1 Generalsetting

We work with a mixed Shimuravariety M = M(P,Y) equipped with a pure section
S = Mke(G,X), where P =Wx G is a Levi decomposition, and K= Kw x Kg a com-

pact open subgroup ofP(Af). Denote by M ’f_—l*s the morphisms corresponding
i

to the projection n :P —G and the inclusion i : G—P. Fix also a finite subset R
of G(Af) representing G(Q)+\G(Af)/Kc, which extends to a set of representatives
of P(Q)+\P(Af)/K.

As is indicated in the Reductions 1-3, we may assume that Kis torsion free,
and we study S?{Z) for Z a closed subvariety of a connected component M+ of
M. We assume for simplicity that M+ is the connected component given by r\Y +
for T=P(Q)+ n K, and that Z is irreducible, not weakly special. Write SP{Z) as a
sequence (M,,),,, then each M,, is of complex locus HIY* for some subdatum
(P,,,Y,,) with Y+ a connected component ofY,, contained in Y+.

2.4.2 The (weakly) homogeneous case

Fora Q-torus Cin G, we have seen the notion of C-special subvarieties in Chap. 1,
Definition 1.3.9, with respect to the fixed set of representatives R Asequence of
special subvarieties (Mn),, of M is homogeneous if there exists a Q-torus Cc G
such thatall the M,,5 are C-special. (M,,),, is said to be weakly homogeneous ifit
is a finite union ofhomogeneous subsequences. Itis inhomogeneous ifitis not
weakly homogeneous.

We see that the notion of C-special subvarieties and (in-)homogeneous se-
quences is determined by their projections under n into S. The point is that the
ergodic approach can be carried over to the mixed case directly such that the
map 7tgives us only a "trivial extension™:

@) The starting point is that the theorem of Mozes-Shah already character-
izes the so-called H-measures on spaces of the form D = NQ(R)+, where Q is
a Q-group of type K, namely of the form RUWQ X H where R«Q is the unipo-
tent Q-radical and H is a semi-simple Q-group without compact Q-factors, and
T c Q(R)+ is an arithmetic lattice. For a Q-subgroup of type m @ 'c @ with
RWQ' ¢ RWQ, T'=Tn Q'(K)+ is an arithmetic lattice, and the canonical measure
on Q' =r\Q'(R)+, induced by the Haar measure on Q'(R)+, is pushed-forward
to a probability measure v' on fitunder the inclusion Q' « i2, whose support is
exactly Q'. Such v's are referred to as the H-measures on Q, denoted as IK(Q).

The main results of Mozes-Shah shows that the countable set 5£(Q) is com-
pact for the weak topology; moreover, ifa sequence (v,,),, in 'H(Q) converges to
some V', then for some N > 0, the union Un>NSuppv,, is dense in Supp'v for the
archimedean topology. This establishes "the weakened André-Oort conjecture
at the level of lattice spaces": for a sequence of lattice subspaces (Q,,),, in U with
n, = Suppv,, for some v,, e 5f(i2), the archimedean closure of yn is a finite
union of supports of measures in jK(i2).
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For a mixed Shimura datum (P,Y), we put P* to be its maximal Q-subgroup
oftype 5£: if P =W x G is a Levi decomposition over then P1=Wxi Gder. This
is an invariant Q-subgroup of P. For a congruent subgroup T ¢ P(R), r normal-
izes P+ and Tn Pt(R)+ is a congruence lattice of Pt (R)+. Thus for arithmetic
subgroup Tc P(R)+, we write £2= r\Pt(R)+ for (r nPt (R)+)\Pt (R)+ and refer to
it as the lattice space associated to (P,Y,r). In the same way we have the no-
tion of lattice subspace defined by a subdatum (P',Y"), namely £1'=r\rP 't (R)+.
We then define the notion of C-special H-measures on Q and C-special lattice
subspaces of Q for a fixed Q-torus C in G: a lattice subspace is C-special ifit is
associated to a C-special subdatum of (P,Y), and an H-measure is C-special if it
is the canonical measure associated to a C-special lattice subspace.

Write 3ic(i2) for the set of C-special H-measures on i2, and for a closed sub-
space Z in ii put 8c(2) for the set of maximal C-special lattice subspaces of Cl
contained in Z. Then from the theorem of Mozes and Shah we deduce the com-
pactness of Ht (q) and the finiteness of Sc(Z): namely we prove the weakened
Andre-Oort conjecture for lattice spaces defined by Shimura data under the as-
sumption of homogeneity.

(2) We We then want to project from lattice spaces to Shimura varieties. But
the better way proves to be first passing through the "real part" of the Shimura
variety. We thus introduce the notion of S-space associated to a Shimura datum
(P,Y) at some level K

With respect to a pure section (G,X) ¢ (P,Y), the real part of Y is defined to
be the orbit Yr = P(R)jc of some (or any) x e X, which is actually independent
of the choice of pure sections. To each compact open subgroup K of P(Af) we
associate the Shimura S-space 5ic(P,Y) := P(Q)\[YTr x P(Af)/K] = 1Jge?} TKC& YA,
where YjJ is a fixed connected component of Yr, Ris a set of representatives
of P(Q)+\P(Af/K, and rjc(g) = P(Q)+ ngKg-1. Parallel to the case of Shimura
varieties, we define the notion of Shimura S-subspaces, etc. Letsremark thatwe
regard S-spaces as real analytic spaces, and they coincide with the underlying
real spaces of the corresponding Shimura varieties ifand only if the defining Q-
group P has no unipotent part of weight -2.

Many constructions for mixed Shimura varieties carry over to S-spaces, such
as the notion of C-special S-subspaces, Hecke correspondences, etc. But we do
not study the notion of canonical models for S-spaces.

We mainly work with connected S-spaces of the form S = T\Y” where F is
some torsion-free arithmetic subgroup of P(R)+. Let Q,= T\Pt (R)+be the lattice
space associated to (P,Y,r), and for any y e YjJ, we have the projection from
lattice space Ky :D -» S, Tg >-Tgy, and the canonical probability H-measure v
on Q is pushed-forward to the canonical probability measure non S.

On S we have the notion of C-special H-measures, which are defined to be
the push-forwards of H-measures on Q whose supports are C-special lattice
subspaces, i.e. ofthe form Q.!=r"\P't(R)+, where P' comes from some Shimura
subdatum (P',Y") such that jt(P") = G' ¢ G is of connected center C, and P'+is
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the maximal Q-subgroup in P' of type Oi. Then we have v' e 5i(i2) of support fi'.
Take y' e Y™+ we get the projection Ky : Q' —S' = r'\Y”+, which sends v' to the
canonical probability measure on S of support S'. The collection of all these |i'
makes the (countable) set of C-special H-measures on S, denoted as Hc(S).

(3) An important fact, deduced from a proposition of S.Dani and Margulis, is
that there exists a compact subset Cc in YjJ such that any C-special H-measure
on Sis ofthe form |i' = Ky”~v' for some y' e Ggand v' e Ji(D) defined by some
Shimura subdatum (P',Y") and simultaneously y' e Y'+ ¢ Y+. Therefore 1Kc(S)
is compact. We thus conclude that for any sequence of C-special S-subspaces
(Sn)n, the archimedean closure ofU« Snis a finite union of C-special S-subspaces.

(4) We remark that we would first deal with the case where C equals the con-
nected center of G. And for a general Q-torus C'inside G, the point is that the set
of maximal C'-special lattice subspaces in i2, and the set of maximal C'-special
S-subspaces in S, are finite (possibly empty for some C'). The the study of a se-
quence of C'-special sub-objects is reduced to the arguments in the case where
Cis the connected center of G.

(5) Finally, to treat the original conjecture, it suffices to notice that for any
special subvariety M' ¢ M, the associated S-space S' is dense in M' for the Zariski
topology. Hence for any sequence of C'-special subvarieties (M,,)n iI’Tl M, with as-

sociated special S-subspaces (S,,)n and Zariski closure M' = (JnM,, ,itis easy
to show that the UwS,, is Zariski dense in M', and therefore M' is a finite union
of C'-special subvarieties of M, which terminates the proof of Andr6-Oort con-
jecture fora homogeneous sequence of special subvarieties.

2.4.3 Theestimation ofthe degree of Galois orbits

(0) The estimation of E.Ullmo and A.Yafaev

One of the main results in [UY-1] is the following: if a sequence of special
subvarieties (S,,)n in a pure Shimura variety S is of bounded test invariants,
then the sequence is weakly homogeneous, i.e. there exists finitely many Q-tori
(C,),gj such that every Sn is Cf-special for some i, and consequently the Zariski
closure of UnS,, is weakly special.

Here we assume that the ambient Shimura variety S is defined at some finite
level Kg = ilp Kg,p which is torsion-free, and the (N-th) testinvariant ofa special
subvariety S' ¢ Sis defined as

T(S) = CN(logDe )N-maxU, [l BIK~/KC]
12e6(C',KG)

where C' is the connected center of some Q-subgroup G'cG for some Shimura
subdatum (G',X") such that S' is a connected component of the Shimura sub-
variety defined by (G',X"), Ke = KgnC'(Af), K3* denotes the unique maximal
compact open subgroup of C'(Af), and 8(C") is the finite set of rational primes
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p such that Kc,p C K“*“ . cn and B are constants, independent of the choice of
special subvarieties.

We remark that N is a positive integer that is prescribed from the very be-
ginning; it is employed in the works of B.Edixhoven, B.Klingler, and A.Yafaev
about the comparison between the intersection degrees of Hecke correspon-
dences and the Galois orbits. It is not involved in our applications: what really
counts for us in the present writing is whether the sequence of test invariants is
bounded or not.

The t(S') serves as a lowerbound ofthe intersection degree ofthe GalF-orbit
of S' with respectto if, where Fis a fixed number field containing the reflex field
of S, and if =if (Kg)is the canonical ample invertible sheaf defining the Baily-
Borel compactification of S, namely the sheaf of top degree differential forms
allowing at most logarithmic poles along boundary components ofcodimension
one.

(1) By examining the proofs of (UY-1], we find that the constants cn and B
are independent of the torsion free group Kg. We thus obtain the following esti-
mation:

Letjt:M =MK(P,Y) —S = Mkc (G,X) be a fibration of a mixed Shimura vari-
ety M over a pure section S, with Levi decomposition P = Wxi G and torsion free
compact open subgroup K=Kw xKgc P(Af). Let M' be a pure special subva-
riety contained in some M(u;) = Mr,,, (wGw~I, h/xX) given by a pure subdatum
of the form (wG'w~I, w x X'), where KN = Kn «/G(Af)u/_1 = wKqg(w)w~1with
Kgu>) .= {ge Kg : wgw~Ig~l e Kwh and (G',X") some subdatum of (G,X) of
connected center C'. Then

degn. GalFM'> t"M") = cN(logDcON-maxfl, f] B|Kg“ /Kc(w)pl}
peA..(C)

and tw(M") is referred to as the test invariant of M'.

Inthe expression ofe¢  (M’) the only new thing is the productripeas~c) IK™* ; Kc' (w)p],
where Kc'(if) = TlpKc'(w)p = Kc(iiOnC'(Af), and A7C') isnothing but 8(C', Kg (w)),
i.e. the set of rational primes p such that Ke>{w)p C K™ | The idea behind
the formula is that the pure special subvariety M(w) is isomorphic to Sw :=
Mkg(u;) (G,X) which is equipped with a finite covering map nw:Sw—S. And the
degree degn.%(Galp M") isequalto deg”"~G alp S'), where S'isisomorphic to M’
under the isomorphism Sw=M(u;). By functoriality of S£, we know that ;& is
isomorphic to the canonical ample invertible sheafon Sw, namely pr*(Jz? (Kg(w)) =
i f (Kg(«/)), and the formula oft(S") applies in this case, with the same constants
Cnand Bindependent of the levels.

(2) We then proceed to show that the criterion of E.Ullmo and A.Yafaev re-
mains valid in the mixed setting: if (M,,),, isa sequence of pure special subvari-
eties in M whose test invariants are uniformly bounded as n ranges over N, then
the sequence isweakly homogeneous, and the Zariski closure ofUnM,, is a finite
union of special subvarieties.
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The idea is the same as the pure case. We may assume that M,, is a C,,-
special pure subvariety of M(wn) for some wne W) with respectto some C,, ¢
G, and write Tn(u/n) =t “"(M,,). Because Th{W,’«) > CN(logDc,,)N where Dc,, is
the absolute discriminant of Fc,, the splitting field of C,,, the upper bound of
(tn(Wn))n shows that the logDc,,'s takes only finitely many values. Hence the
factors

()= FlI B|K™/K
(9= Fl  BIKMKa,up

are bounded when n runs over N. Similarto the pure case treated by B.Edixhoven

andA.Yafaev, we show thatJ,,(w,,) > n PEANCn)~Bp, and thus sup{p e AWh(Cn) :
n e N}is finite. From this we deduce the finiteness of Un AW(C,,), and we denote
by m(e N) the cardinality of this union.
On the other hand, we consider the test invariants of S,, = i(Mn) ¢ S. Note
thatS,, is Cn-special, and the formulain [UY-1] shows thatt(s,) = CN(logDcn)Nmax{l,J,,(0)}
with J,,(0) = n 8cn) BIKIP* /Kcn,p|. From the reasoning in [UY-1] we see that the
positive constant B is strictly less than 1, and it is easy to calculate the following

7 A= n  IKOWPIKCH(M)I- n
pe6(C,,) p A wn(C,)-6(C.,)

> ] (Cn)“6(Cn)| > Bm

BIK“* /Kc,,(u;)p|

and thus J,,(0) < B-mJn(wn). Here 8(Cn) := SCCN.Kg). It turns out that the se-
qguence (Sn)n is of bounded test invariants, and is weakly homogeneous. Be-
cause S,, = 7W(M,,), we thus deduce that (Mn)n is weakly homogeneous, and
consequently, the Zariski closure of U/jMn is weakly special, consequent to the
equidistribution results in the Chapter 3.

(3) Up to now we have seen the case of a sequence of pure special subvari-
eties, and we extend our approach to the mixed case in a trivial way: for a mixed
special subvariety M' in M, we define the test invariant of M' to be the infinum
of t(S") with S' running through the set of maximal pure special subvarieties of
M'. The pointis that ifS'is a maximal pure special subvariety of M’, then M' is
C-special in M ifand only if S' is C-special, C being a given Q-torus in G. And
the criterion still works in the mixed setting: let (M,,),, be a sequence of special
subvarieties in M, with test invariants t (M,,) =t (S,,) bounded as n varies, where
S,, is some maximal pure special subvariety in M,,, then (S,,) is weakly homo-
geneous, and so it is with (M,,),,, hence the Zariski closure of U«Mn is weakly
special.

(4) One might prefer to conjecture that, in the above setting of a seuquence
of pure special subvarieties, (wn mod Kw) should be also be finite as long as
tn(wn) is bounded. But this seems to require more restrictions on the data
(G,,,X,,) and the wnk. Consider the following trivial example. Take a mixed
Shimuradatum (P,Y) = (H, XH)x (Vx G0,V(R) x X0) with pure section (Hx GO) XH*
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Xo0), such that Xh is ofdimension >0, that G° is semi-simple, and that the unipo-
tentpartVisnon-zero. Consider a sequence ofpure subdata (H,,, ki x(VJ 'bvhl v,,>i
Xo) with H,, a Q-torus of H and vne V(Q). Fix a torsion-free compact open sub-
group K= Kv >4 (Kh x KGo), we get the corresponding pure special subvarieties
Mn. The projection Tt: M —S induces isomorphisms M,, —S,, = it(M,,), and it
is easy to check that t""(M,,) = t(S,,): in fact Hn serves as the connected cen-
ter of the Q-group defining S,,, and H,, fixes vn because it acts on V trivially.
When (t/j(u//j))h is bounded, we see immediately that (Sn)n and hence (M,,),,
are both weakly homogeneous. This has nothing to do with the torsion order of
(vn modKy).

In general even in the case where P = W x G is given by a faithful action
G —Aut<j(W), it is possible to choose subdata (G,,,X,,) of (G,X) such that the
connected center C,, of Gn fixes some wn e W(Q), and that the torsion order of
wn mod Kw tends to infinity. We won' trace further results in this direction.

2.4.4 Ageneralization ofthe Manin-Mumford conjecture

Classically the Manin-Mumford was raised for abelian varieties over a field of
characteristic zero. We propose two generalized forms of this conjecture, and
discuss how they are related to the Andr6-Oort conjecture.

(0) We first recall some standard definitions and properties of abelian S-
schemes and the monodromy representation ofthe fundamental group Son the
torsion sections of an abelian S-scheme /: A-* S. For simplicity we only work
with the case where S is a scheme of characteristic zero, and we assume that Sis
geometrically integral of generic pointr|.

For an abelian S-scheme /: A-* Swith S geometrically integral of charac-
teristic zero, we fix jc a generic geometric point of S, 7t (S, jc) the fundamental
group of S, and S — S the Galois covering corresponding to the kernel of the
monodromy representation mon”(/, Jc): ttj (S, k) —GL"s(T(A)).

(1) We start with the case where S= S, i.e. jti (S, i) acts trivially on the torsion
sections. Let (an)nbe a sequence of torsion sections of A—S. Putbn=anxsH
we get a sequence of torsion points (bn)n in the abelian variety Anover r|. The
Zariski closure of {bn}nis atorsion subvariety B of An. We take A' to be the Zariski
closure of Bin A, which is equal to the Zariski closure of fan)n.

We then show that A' is a finite union oftorsion subscheme, and for simplic-
ity we assume that B is irreducible, namely a single torsion subvariety, and so
it is with A", which reduces us to show that A" is a torsion subscheme. We may
translate Bby a torsion point b such that b + Bis an abelian subvariety, b can be
lifted uniquely to a torsion section a of A—S. Hence a +A' equals the Zariski
closure of b+B, and it suffices to show that a+A1lis an abelian S-subscheme. We
may thus assume that b=0and a =0.

Bis then an abelian subvariety. Now that A' is the closure B, it is itself stable
under the group law of A—S, hence a group S-subscheme. It remains to show
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thatA'is asmooth S-subscheme. Tothis end it suffices to show that A'—S s flat
and its fibers are all smooth. The flatness is evident because A' contains suffi-
ciently many torsion sections. The smoothness ofthe fibers is clear: the fiber of
A'—S at ageometric pointx  Sisagroup variety over x, and is automatically
smooth because S, and henceforth x, is of characteristic zero.

The general case where S # S is similarly treated: it suffices to take orbits
under ni (S). See Chapter 5 for details.

(1)’ If S is known to be normal, then from the main theorem in [G] one can
show that the following étale sheaves are actually constant sheaves on Sét:

- the torsion sheaves A[N] = Ker([N] : A—A), the integral Tate module T(A) =
HmMNA[N], and the total Tate module Afs ®¢s (T(A));

- the endomorphism sheaves End” (T(A)), EndAl(T(A)), and their subsheaves
Ends (A) and Endg (A) := Qs ®zs Ends (A).

Consequently, the specialization at r] T = Tq induces bijections between
T(A) and T(An), resp. Ends (A) and Endn(An), etc. We thus conclude that when
S = S, the Manin-Mumford conjecture over the generic fiber r| extends to the
whole abelian S-scheme /: A-* S,

We thank Prof.M.Raynaud for communicating to us the theorem of A.Gorthdieck
in loc.citwhich completes our original approach.

(2) We then consider a more general form of the Manin-Mumford conjec-
ture, which contains the André-Oort conjecture for mixed Shimura varieties as
a special case:

Let/ :A—Shbe an abelian S-scheme, with Sgeometrically integral of generic
point rj. Suppose we are given a sequence of closed subschemes (S,,)nin S, and
for each n aspecial Sn-subscheme T,, of S,, xs A viewed as a closed subscheme
of A. Assume that UwS,, is Zariski dense in S, then under what conditions is the
Zariski closure of UnTn a weakly special S-subscheme of S?

The André-Oort conjecture somehow overlaps with the above question: if
the abelian S-scheme is given by a morphism ofmixed Shimuravarieties n : M -*
Swhich is a fibration over a pure section, and that the Sn’ are special pure sub-
varieties of S, then the André-Oort conjecture predicts that the Zariski closure
ofU, T, is a weakly special subvarieties in M. On the other hand there are triv-
ial counter-examples to the question, and much remains to be refined for the
formulation.

(4) Ho However, we still provide a simple case where the question becomes mean-
ingful: let T be a closed irreducible S-subscheme of Awhich is faithfully flat over
S such that T = [N]T for some integer N > 1, then T is weakly special. This is
essentially reduced to the Manin-Mumford conjecture over a general base. The
statement also shed some light on the André-Oort conjecture: in order to show
the Zariski closure T of a sequence of special subvarieties T,,, it suffices to show
that T is stable under some non-trivial homothety.
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Chapter 3

Equidistribution of special
subvarieties: the homogeneous
case

3.1 Introduction

3.1.1 Thestrategy of L.Clozeland E.Ullmo

In [CU-1], LClozel and E.Ullmo studied the equidistribution of strongly spe-
cial subvarieties in a pure Shimura variety S = Mke (G,X) defined by some pure
Shimura datum (G,X) with G adjoint, where by "strongly special” subvariety is
meant a connected component S' of a Shimura subvariety defined by a subda-
tum (G',X') such that G is semi-simple. Note that this notion is referred to as
being 1-special in our terminology, with 1 standing for the trivial Q-torus. The
strategy is as follows:

(1) Study the equidistribution of lattice subspaces in N = \G(R)+ forr some
fixed arithmetic lattice of G. Here the lattice subspaces are defined to be sub-
spaces of the form fin = T\rH(R)+ for Hc Ga Q-subgroup of type IK The ad-
vantage of these notions comes from a theorem of Mozes and Shah: consider
vh the canonical measure on D whose support is Qh. then the set !K(Q) of such
measures, with Hvarying over the Jf-type Q-subgroups of G, is compact for the
weak topology; moreover ifa sequence (vM,, in IK(fi) converges to some v, then
Suppv equals the archimedean closure of Un>NSuppv,, for some N > 0.

As a consequence, we see that the archimedean closure of a sequence of
lattice subspaces is a finite union of lattice subspaces: this can be regarded as
an Andre-Oort type theorem at the level of lattice subspaces.

(2) The passage from lattice subspaces to strongly special subvarieties is clear:
let (G',X") be a subdatum of (G,X) with G' semi-simple, then G' is oftype %, and
for any x e X' ¢ X we have the projection k* : Q' = r\rG'(R)+ -» S' = r\rx '+,
T g— Fgx; moreover k* pushes forward the canonical measure v' supported
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on D! to the canonical measure |i' on S supported on S'. Denote by IK(S) the
set of measures n' obtained this way. Then LClozel and E.Ullmo established
the analogue of the theorem of Mozes and Shah for IK(S): it is compact for the
weak topology, and ifa sequence (]in)n converges to some n, then Supp n is the
archimedean closure of Un>N Supp un for some N > 0.

The proof of the compactness requires a variant of a proposition of S.Dani
and G.Margulis: there exists a compact subset C of X such thatif S'c Sis a
strongly special subvariety, then we may choose the defining datum (G',X") such
that X'n C 0. Take jc e X'n C, then the canonical measure n' e jK(S) associ-
ated to S' is kx*(v') with v' e K(Q) associated to r\rG'(0?)+. We then deduce the
compactness of IH(S) from that of C and of IH(f2). The remaining part is proved
similarly.

(3) Here we encounter the delicate fact that 'K(S) is closed for the weak topol-
ogy: 5i(S) is the set of canonical measures supported on strongly special subva-
rieties, and ifa sequence (Jiwn in Ji(S) converges to some measure [i', then |i'
is automatically associated to some strongly special subvarieties. This is not as
difficult as it appears: if we denote by G,, resp. G' the Q-groups corresponding
to |inresp. [i', then the convergence at the level of lattice spaces implies that
G,, ¢ G' for sufficiently many n, and for such n3, take xn e X+, then using the
conditions on Hodge structures one can show that the pair (G', X' = G'(R)xn) is
already a Shimura subdatum with G' semi-simple, independent of the choice
of base points xn, and |i' is the canonical measure associated to S' a connected
component of the Shimura subvariety defined by (G', X").

(4) In [UY], the authors generalized the above results to sequences of T-
special subvarieties for some fixed <Q@>torus T contained in G. The idea is that
in S = Mkg(G,X) the set of maximal T-special subvarieties is finite, denoted by
(Sj)iei. and when we study a sequence of T-special subvarieties (Sn),, contained
in a single S-, we can "take quotient modulo T" and reduce to the situation ofa
sequence of strongly special subvarieties inside a Shimura variety defined by a
semi-simple Q-group. Then it suffices to apply the results of [CU].

3.1.2 Ourstrategyin the mixed case

The basic observation is that the theorem of Mozes-Shah holds for arbitrary in-
groups of type IK: namely those Q-groups Q admitting a Levi decomposition
of the form Q = W x H with W unipotent and H semi-simple without compact
Q-factors. However:

(i) Suc Such Q might not readily define some mixed Shimura datum (Q, YQ); in
general a central Q-torus has to be joined to the reductive part H. Therefore for
a mixed Shimura datum (P,Y) with Levi decomposition P =WxG,we associate
the Q-group Pt = W x Gder which is of type !H, and consider lattice spaces ofthe
form r\P+HR)+. The theorem of Mozes-Shah works in this situation.
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(ii) But the projection kx : r\PHR)+ — r\Y+ is not onto: the image is only
dense for the Zariski topology instead of the archimedean one, and the canoni-
cal measure on r\Y+is not of finite volume.

In order to work coherently with the ergodic arguments, we introduce the
notion of S-spaces associated to mixed Shimuravarieties. The basic idea is more
transparent when we consider the example ofa sequence oftorsion points (tn)n
in the complex multiplicative group C*: if (tn)n is stable under Galois conjuga-
tion with torsion order tending to infinity, then the sequence is equidistributed
in the real circle of modulus one, and is dense in C* for the complex Zariski
topology. Similarly, the S-spaces serve as real parts of the corresponding mixed
Shimura varieties. They are dense for the complex Zariski topology, and they
carry canonical probability measures. Moreover, for any x in the real part Yr
of the mixed Shimura datum (P,Y), we have a projection k* : r\P+R)+-» T\Y",
rg —Tgjc, where Y” is the connected component of Yr containing x. This pro-
jection is surjective and quasi-compact, and it sends the canonical measure on
the lattice space to the canonical measure on the S-space.

The notion of S-spaces is well adapted for our strategy in the mixed case:

Fix a mixed Shimura datum (P,Y) with pure section (G,X), we denote by C
the connected center of G. We fix also a torsion free compact open subgroup
K= Kw x Kg, and associate to it the mixed Shimura variety fibred over the pure
section n :M = Mr(P,Y) -} S = Mkc (G,X). We denote by Yr for the real part of
Yand M for the S-space associated to M. Note that M = M(C)an as topological
spaces ifand only ifthere is no unipotent part ofweight -2 in P. Forexample, for
a pure Shimura variety S = MfCgiG.X), the associated S-space § is no other than
the real analytic space underlying S(C)an-

To study the closure of a sequence of special subvarieties, it suffices to re-
strict to a connected component of M, say M+. We assume that M+ is given by
the connected component Y+ of Y, and the corresponding connected S-spaces
is M+ given by YA Then M+ = T\Y” and M+ = T\Y+, for some fixed arithmetic
lattice TcP(Q)+.

(1) We define the set of H-measures on the lattice space fl = T\Pt(R)+ to be
the set IK(Q) of probability measures of the form i»vo, where for Pj ¢ P* a Q-
subgroup of type % we associate Vothe canonical measure onilo = r\rpJ(R)+,
i : Qo ** nibeing the closed immersion of the lattice subspace. The theorem of
Mozes and Shah implies the compactness of IK(D), and that the archimedean
closure of a sequence of lattice subspaces remains a finite union of lattice sub-
spaces: this is the "coarse" Andre-Oort conjecture for lattice spaces.

(2) Then we consider the subset IKc(f2) of jK(fi) consisting of the measures
given by CK-type Q-subgroup Pj such that there exists a C-special subdatum
(Po,Yo) with pj equal to the maximal Q-subgroup of Po of type H, where by
C-special subdata we mean subdata of the form (P',Y") ¢ (P,Y) such that the
reduction modulo the unipotent radical ji : P —G maps P' onto a reductive Q-
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subgroup G' of Gwhose connected center is C. It turns out that Jfc(O) is closed
in 3i(f2) and hence is compact itself. The idea is that we can "remove" C si-
multaneously and then add it back: thus we get the Andr6-Oort conjecture for
C-special lattice subspaces in Q.

(3) We then pass from the lattice space Q to the S-space M = HYjJ. For any
X e YE, the projection k* : O — M, Tg -* Tgjc pushes the canonical measure
on Q forward to the canonical probability measure on M. Similarly, for a C-
special subdatum (P',Y"), we have P't ¢ P' the maximal Q-subgroup of type 'K,
the C-special lattice subspace Q' = r\rP 't (R)+, and the C-special S-subspace
Jvf = r\rr™+. Take x e Y™+, the projection kx sends Q' onto M', and it pushes
the H-measure v' associated to O' to the canonical measure on M supported
on M'. Such measures makes up the set iKc(M), referred to as the C-special
H-measures onM.

(4) To show that 5ic(M) is compact, it suffices to show the existence of a
compact subset CcYj such that any C-special S-subspace M' ¢ M is obtained
from some C-special subdatum (P',Y") with Y'jJn C # 0. This is essentially the
Dani-Margulis argument in the pure case. In fact we have the fibration of M
over the pure Shimura variety S = Tg\X+ by compact real tori, and the compact
subset chosen for S can be lifted to a compact subset CcM that meets the re-
quirements.

(5) Pay attention to the compactness of iKc(M). For a sequence (nn)n in
5tc(3Vt), the results in (3) and (4) confirm that (nwn has a subsequence con-
verges to some probability measure on Jvt. Say (]in)n converges to some proba-
bility measure |i' on M. To see thatit lies in KcCM), we need to show that Supp |i'
is of the form r\P'HR)+jt' drawn from some Shimura subdatum (P',Y") and that
x" e Y'r. The proofissimilar to the case treated by LClozel and E.Ullmo.

(6) Finally, by taking Zariski closure of the special S-subspaces, we get the
Andre-Oort conjecture for homogeneous sequences of special subvarieties in a
mixed Shimura variety.

Remark 3.1.3. Let (G,X) be apure section ofa mixed Shimura datum (P,Y), and
C a <@torus in G. Write Jt: (P,Y) — (G,X) for the canonical projection, and W
the unipotent radical of P.. We have seen the notion of C-special subdata and
C-special subvarieties. The following two cases should mentioned explicitly:

(1) TheThe case where C is of CM type, in the sense that for some xe Xwe have
je(S) ¢ G2 In this case (C,jg is the unique C-special pure subdatum of (G,X),
and (Wx C,jt 1(jg) is the unique maximal C-special subdatum of (P,Y). A C-
special subvariety defined by (Wx C,n-1(*)) is a (Cx)r-torsor B—A over some
CM abelian variety A, and the C-special subvarieties are torsion subvarieties in
B. Note that ifW = UGV is a trivial extension (including the case where U =0 and
the case where V=0), then Bisthe productofatorus and an abelian variety, and

59



the notion of torsion subvarieties is the evident one; on the other hand, ifWis a
non-trivial extension of V by U, then the notion oftorsion subvarieties involved
here is defined in an ad.hoc way so as to coincide with our definition of special
subvarieties in general.

(2) The case where C is not of CM type, i.e. for any x e X, we have joS) £
Cm. We only consider the case where there exists non-trivial C-special subdata,
namely we assume the existence ofasubdatum (G',X") of G,X) such that C is the
connected center of G'. In this case (W» G'.ji*CX") is the maximal C-special
subdatum, and one can verify easily that each C-special subvariety is of dimen-
sion > 0.

The ergodic approach towards the equidistribution of C-special subvarieties
(of dimensions > 0) works well in the case (2), which is to be developed in the
following sections. On the other hand it is less effective in the case (1): here one
might encounter infinitely many special points. Instead the Manin-Mumford
conjecture already implies positive answers in this case.

We postpone the detailed study ofthe case (1) to a forthcoming preprint [Ch-
21. And in this chapter, we mainly consider the non-CM case (2).

It is also necessary to simplify the intermediate object P* introduced in the
illustration above, as is in the following:

Lemma3.1.4. Let(P,Y) be a mixed Shimura datum. Then P* = Pder.

Proof. Let (G,X) be a pure section of (P,Y) and denote by p the conjugation ac-
tion of Gon W. As has been assumed since Chapter 1, we have G = MT(X) and
P = MT(Y). We also have P =W xiGandP+=W x G der.

By definition, Pder is the Q-subgroup generated by [a,b) = aba~Ib~I for
a,b e P, and Pab = p/pder is the maximal commutative quotient of P. In par-
ticular, Pder contains {wGw~I)det = u/Gderw '1for all w e W(Q), and it also con-
tains W' by which we mean the Q-subgroup generated by all the elements of
the form (w,g) = wgw~Ig~l = w- (g(w))-1 for w e W(Q) and g e G(Q), where
g(w) :=gwg~Il.W'c W s clearly stable under the conjugation action by G, and
W' is the smallest G-stable invariant Q-subgroup such that G acts trivially on
W/W'. From the conditions on Hodge types in the definition of mixed Shimura
data, we deduce that W =W".

Consequently, Pder d W x Gder. Since P/(W mGder) = G/Gder is commutative,
we deduce that Pder coincides with P+=W x Gder.

|

3.2 Preliminaries on groups and ergodic theory

Definition 3.2.1. (1) (cf. [Spr] Chap.16) Let F be a field, G a linear F-group, and
E 3 F an extension of fields. A linear F-group G is said to be E-isotropic if Ge is
of E-rank at least one, namely contains a split E-torus, and E-anisotropic other-
wise. In particular G being E-anisotropic implies that it is F-anisotropic. Note
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that here the E-rank is meant to be rank ofa maximal split E-torus, and the group
Gisnotassumed to be reductive.

This notion is trovial for unipotent linear groups, which contains no tori.
Interesting examples come from real reductive groups: a reductive R-group G is
R-anisotropic ifand only if G(R) is compact as a Lie group. Consequently, ifF is
asubfield of R, then G is said to be compact ifitis R-anisotropic, or equivalently,
if G(R) is a compact Lie group. The definition of non-compact linear F-group is
similar.

(2) (cf.[Milne-2] Chap.28) For G a linear Q-group, a congruence subgroup
of G(R) is a subgroup of the form T = Kn G(Q) where K¢ G(Af) is a compact
open subgroup; an arithmetic subgroup of G(R) is a subgroup Acommensurable
with some congruence subgroup, i.e. there exists some congruence subgroup
Tc G(Q) such that the two indices [r:Tn A] and [A: An T] are both finite.

An arithmetic subgroup T¢c (R) is a lattice ifthe quotient space T\G(R) is of
finite volume with respect to the measure n induced from the left-invariant Haar
measure on G(R). When this is the case, we normalize |i to be oftotal mass 1, and
refer to it as the canonical measure, or simply the Haar measure, on T\G(R). If
moreover the arithmetic lattice T is contained in G(R)+, we call the normalized
restriction of |i to the quotient Q = N\G(R)+ as the canonical, or, again by abuse
ofterminologies, the Haar measure on O.

Definition 3.2.2. For G a linear Q-group, G is said to be of type IK, written as
G e QG ifthe maximal reductive quotient of G is semi-simple without compact
Q-factors. This isequivalentto the condition that G= Wx H forWunipotentand
H semi-simple without compact Q-factors. In particular, its radical is unipotent.

This implies that some (hence each) arithmetic subgroup T ¢ G(R) is a lat-
tice, i.e. is of finite co-volume. In general, being given a reductive Q-group G,
an arithmetic subgroup Tc G(R) is a lattice, i.e. T\G(R)+ is of finite volume with
respect to the measure induced from the left-invariant Haar measure on G(R), if
and only if G admits only trivial Q-characters, namely Xc(Q) = 1; cf.[B-HC] The-
orem.3 On the other hand, an arithmetic subgroup of a unipotent Q-group is
always a lattice, cf.fRagh] Chap.2 Theorem.2.1. Hence by Levi-decomposition, a
linear Q-group G admits arithmetic lattices ifand only ifXc(Q) = 1. In particular
this is the case for Q-groups of type !K.

Moreover a reductive Q-group G is said to be of Hermitian type ifits derived
group is non-compact of type 'K and the associated symmetric space is hermi-
tian, namely carries an Hermitian metric invariant under G(R)+. For such a G
the adjoint quotient Gad is of type IK. For example in a pure Shimura datum
(G,X) the Q-group G is of Hermitian type.

Recall some basic definitions from ergodic theory, cf. [Zim], Chap.2, 2.1.1
Definition:
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Definition 3.2.3. Forameasure space (il, [i),amap T :H —Q is measure-preserving
ifforany measurable subsetScQ,T-1Sremains measurable and [i(S) = n(T_1S).T
is said to be ergodic if for any T-invariant measurable subset Sc£l,we have ei-
ther |i(S)=0or|i(D- S)=0.

Let (Q, (i) be a probability space defined over some Hausdorff space il, and
H a countable Hausdorff topological group that acts on Q from the right. The
action is (weakly) continuous if the map il xH —Q, {x,g) =—xg is continuous
with respect to the product topology on i2 X H. The action is said to be ergodic if
any element g e H is a measure-preserving map g : Q —H and any H-invariant
measurable subset of il is of measure either 0 or 1

We are particularly interested in the case where f2isahomogeneous space of
the form NG (R)+and H is some unipotent subgroup of G(R)+, where G is some
linear Q-group of type !Hand T ¢ G(R)+ is an arithmetic lattice. The existence
ofaunipotent subgroup Hc G(R)+that acts on Q ergodically plays an essential
role in the study of certain classes of measures on Q, as is presented later in the
theorem of M.Ratner, S.Mozes and N.Shah.

Definition 3.2.4. (cf. [CU-3] Section 2) Let Gbe a Q-group oftype Ji, T ¢ G(R)+
an arithmetic lattice, hg the normalized Haar measure on Q = T\G(R)+. Acon-
nected closed Lie subgroup F of G(R)+ is said to be oftype X, written as Fe X, if
the following hold:

(1) Tp=Tn Fis alattice of F, and the inclusion i1 :Op = rp\F «<#H is a closed
immersion of real analytic spaces;

(2) write up the canonical probability measure on ikpdeduced from the Haar
measure of G(R)+and L(F) the subgroup of Fgenerated by one-parameterunipo-
tent subgroups of F, then L(F) acts on the probability space (i2F, nF) ergodically.

Lemma 3.2.5. (cf. [CU-3] Lemme 2.1 and Lemme 2.2; [U-3], Lemme 2.3 and
Lemme 2.4; [S] Lemma 2.9, Prop.3.2, Remark 3.7) LetG be a linear Q-group of
typeJ6, and Tc G(R)+ an arithmetic lattice, then

(1) for an arbitrary Q-subgroup He G, He H implies that H+ e X where
H+ = H(R)+;

(2) ifF e X is a connected closed Lie subgroup of G(R)+, then there exists a
Q-subgroup Hc G oftypeJt such thatF = H(R)+. In this case H is the Mumford-
Tategroup o/F in G, i.e. the minimal Q-subgroup ofG whose real locus contains
F.

Recall that for a locally compact Hausdorfftopological space Q, the set £2{Q)
of continuous linear functionals on the set of compactly supported continu-
ous functions on ~°(Q) is endowed with the weak topology, in the sense that
a sequence (n,,),, in 52(Q) converges to some \i e 52(Q) if and only if for any
[/ e ~(D.) we have lim,,_00]in(/) = |i(/). We realize the set ?(i2) of Borelian
probability measures on Q as a closed subset of 52(H), endowed with the in-
duced weak topology.
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Définition-Proposition 3.2.6. (cf. [CU-3] Thm.2.4, Prop.2.5; [MS] Thm. 1.1, Cor.1.4)
For G, T, Q as above, consider Ji(Q) the set of probability measure on Cl of the
form i'h*vh where H ¢ Gis some Q-subgroup oftype 'K, vHthe canonical prob-
ability measure on i2h = r\rH(R)+ = (r n H(R)+)\H(R)+, and *h: Oh <= the
closed immersion of real analytic spaces. The elements in 5i(u) are referred to
as the H-measures on 12, and we regard I1K(Q) as a subset of CP(il) the set of Bore-
lian probability measures on i2, equipped with the weak topology.

S.Mozes and N.Shah showed that IK(O) is compact. Moreover ifa sequence
(v,,)nin J{(Q) converges to some v e 31(Cl), then forsome N e Nthe set Un>NSuppv,,
is dense in Supp v for the archimedean topology.

Remark 3.2.7. The results in [Rat-1], [Rat-2], and in [MS] provide us with a del-
icate description of certain measures on the lattice space i2. We briefly list their
works as follows:

For each |i e 'P(Q), define A(n) := {g e G(R)+: (i*g = nJ, which is a closed
Lie subgroup of G(R)+, and we set L(]i) = L(A(i)) to be the subgroup of A(|i)
generated by one-parameter ad-unipotent subgroups, and L(A(|i)) the closure
of L(A(Ji)) in A(Ji) for the archimedean topology. Consider the following sets of
probability measures

algebraic measures .A(il) = (ne 9(0) :Supp |i = jceA(Ji) for some x e i2]

ergodic measures £(12) = {i e iP(U) : L((i) acts ergodically on (Cl, jo)}

and its subset £+(il) = {Je £(12) : Teec+e Suppli}

and OI(f2) the set of H-measures on Cl. Then

(1) (M.Ratner, [Rat-1] ) £(Q) c”I(f2) i.e. every ergodic measure is algebraic.

(2) (Mozes-Shah, [MS]) £+(i2) and £ (£2) are closed in ~(Q) and £+(Cl) is com-
pact.

(3) (Mozes-Shah, [MS]) !K(i2) = £+(Q) i.e. an H-measure is the same as an
algebraic measure whose support contains the point Te, where e is the neutral
element of G(R)+. For a convergent sequence (v,,),, in Ji(Q) of limit v, we have
the description of Suppv through Suppv,, as is stated in the above Définition-
Proposition.

Recall the notions of C-special sub-objects:

Definition 3.2.8. Fix a Q-torus C ¢ G, with (G,X) a pure section of a mixed
Shimuradatum (P,Y).

(IAS AShimura subdatum (Pi,Yi) ¢ (P,Y)issaid to be C-special if Cequals the
connected center of Jiw(Pi) = Gi. Note that by calculating the Hodge types we
see that Wi = Wn Pi equals the unipotent radical of Pi, and the image of Pi in
G, namely jtw(Pi), is isomorphic to a Levi Q-subgroup of Pi.

In particular 1-special subdata are given by Q-groups ofthe form Wi xi u/Gi w~1
with Wi ¢ W, w e W(Q) and Gi ¢ Gsemi-simple. These are the mixed versions of
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the "strongly special” subdata considered in [CU]. However in order to include
mixed Shimura data we could not assume k priori that G is adjoint: were it ad-
joint, then from the associated representations G —GLq(Vp) and G —GLq(U)
we get Hodge structures of weight zero with respect to any x :S -» Gr in X, and
P =W x Gwould not produce mixed Shimura data in the prescribed way.

(2) For a fixed set 5R€ of representatives of P(Q)+\P(Af)/K, a special subva-
riety Sc Mr(P,Y) is C-special if it is of the form p (Y f x gK) for some C-special
subdatum (Pi,Yi) and some ge 5RE.

Remark 3.2.9. Note that, unless in the case C = 1, different C-special data might
produce the same special subvariety: for example, for any g e Tg with Iq =
G<Q+n K, being C-special in (rw » rc)\Y +is the same as being qCq"1-special.
In fact it is known from the construction that conjugating C by Tg does not
change the underlying space ofa C-special variety. Besides the definition of C-
special variety is only concerned with the image under the projection n, hence
the invariance under conjugation by W(Q).

In this chapter we are only concerned with sequences of special subvarieties
with prescribed defining data.

3.3 Equidistribution of lattice subspaces

Definition 3.3.1. LetQ be aQ-group oftype Oi,and Tc Q(R)+an arithmetic lat-
tice. The quotient Q = N\Q(R)+is referred to as the lattice space (associated to Q
and T), endowed with the probability measure v induced from the left invariant
Haar measure on Q(R)+.

A lattice subspace of A is a subset of the form CI' = r\rQ'(R)+where Q' ¢ Q
is a Q-subgroup oftype JC. Note that Cl' is a real analytic subspace.

The Haar measure on Q(R)+induces a probability measure on CI'. Under the
inclusionmap i':ClI' ditis pushed-forward to a probability measure v' on d
with support CI. V is referred to as the H-measure on Q of support CI'.

The set of H-measures on O is denoted as Ji(Q). This is a countable subset
ofthe set of probability measures on Cl. We endow it with the weak topology.

Proposition 3.3.2. LetQ, T, and C be as above. Then:

(1)Jt(Cl) iscompact.

(2) For any closed subsetZ ¢ Cl, the set  2) of maximal lattice subspaces
contained in Z isfinite. Equivalently, for (Cln)n a sequence of lattice subspaces of
Cl, the archimedean closure of\JnCln is always afinite union oflattice subspaces.

Proof. (1)is partofthe theorem of S.Mozes and N.Shah.
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(2) First we note that the set of lattice subspaces in O is countable, just as
it is with 3i(i2). In particular Sf{Z) is countable for Z closed in Cl. Ifit is infi-
nite, we write it as a sequence (fi,,) and write (v,,) for the corresponding infi-
nite sequence of H-measures on Cl. Then (v,,),, contains a convergent subse-
quence (v',), oflimitv'e (o) and we may suppose that U«Supp,, V,, is dense
in Supp v' for the archimedean topology. Therefore we have SuppV,, C SuppVv'c
Z for n large, which contradicts the maximality ofthe Supp vns.

Thus we conclude the finiteness of SP{Z), and the equivalent formulation is
derived similarly. 1

We then proceed to the notion of C-special H-measures.

We fix (P,Y) amixed Shimura datum with pure section (G,X), given by a Levi
decomposition P = W 4G, C = Cg denotes the connected center of G, and by
Lemma 3.1.4 we have Pder = Wxi Gder, which is the unique maximal Q-subgroup
of type 'K in P. Take torsion-free arithmetic subgroup I\v ¢ W(K), Tg <G(R)+,
and r = Tw x Tg ¢ P(R)+ stabilizing Pder(R)+. Take r += T n Pder(Q)+, then the
quotient Cl = rt\Pder(R)+ is referred to as the lattice space associated to (P,Y)
and T. But for most of this section we only need the arithmetic subgroup r+
of Pder(R), therefore in this section the discrete subgroups Tc¢ P(R)+are under-
stood to be arithmetic subgroups of Pder(R)+.

We note that the quotient rc\G der(R)+ is of finite volume with respect to the
quotient measure vg induced from the Haar measure of Gder(R)+. Similarly, the
Haar measure on Pder(R)+ induces a probability measure v on i2 = r\Pcr(R)+,
which equals the H-measure of f2.

The C-special subvarieties play the role of strongly special subvarieties in the
work of L.Clozel and E.UlImo. We introduce analog notions for lattice subspaces
as follows:

Definition 3.3.3. (1) Asubspace CI' ¢ ii is a C-special lattice subspace ifit is

given by a closed immersion of lattice subspaces Q' = r'\P 'der(R)+ " Q, where
P.der is the derived Q-group (of type IK) of the Q-group P’ which comes from
a C-special subdatum (P',Y") ¢ (P,Y). Here T’ = TnP'der(R)+ is an arithmetic
subgroup ofP'der(R)+.

ForZc il aclosed subset, write *j(Z) for the set of maximal C-special lattice
subspaces contained in Z.

(2) An H-measure v' e J{(i2) is said to be C-special, ifit is the canonical H-
measure associated to a C-special lattice subspace O' = r'\P 'der(R)+ for some
C-specail subdatum (P',Y").

We also write 'Hc(i2) for the set of C-special H-measures on Cl, which is of
course a countable subset ofJi(Q).

(3) A sequence of C-special lattice subspaces [CIn)n is said to be C-strict if
for any non-maximal C-special lattice subspace CI' C Cl, we have Cin £CI' for n
large enough. Similarly, a sequence (v,,)n is said to be C-strict if so it is with the
sequence (Suppv,,),,.
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Proposition 3.3.4. Let{CIn)n beaC -strictsequence ofC -special lattice subspaces
ofC contained in a maximal C-special lattice subspace CI', and denote by vn resp.
V the corresponding C-special measures. Then (v,,),, converges to v' for the weak
topology, and Supp v' equals the closure of\JnSuppv,,.

Proof We first note that for C c G fixed, there exists only finitely many maximal
C-special subdata of (P,Y), produced from the Q-subgroup W x ZqC following
Lemma 1.3.13 of Chapter 1.

Since it suffices to work within CI', we may assume for simplicity that C equals
the connected center of G hence C= Q' is the unique maximal C-special lattice
subspace. It remains to show that (v,,),, converges to the canonical measure v
of Q.

We first show that (ClIn)n is generic, in the sense that if CI' C A is an arbitrary
lattice subspace associated to a Q-subgroup Q', not necessarily C-special, then
CIn £CI' for n-large enough. Assume that the contrary holds, namely there exists
a lattice subspace CI' associated to some Q-subgroup Q' C Pder, such that CInc
CI' for infinitely many n’%, and we may assume by restricting to a subsequence
that CIn ¢ CI. Consider the projection n :d = r\P der(R)+ — QG = r GGer(R)+.
Then =« (fl n) is a C-strict sequence of C-special lattice subspaces of Clg, whose
supports are of the form r G\r GGder(R)+. n, ¢ n'=r\rQ'(R)+implies that

H(nn) = rGr GGdkr(R)+ ¢ THQ) = rGr &' (R)+

where G' := tt(Q"). Computing the tangent space of 7t(Q,,) and rc(il') at the ori-
gin we find that Gder ¢ G' for all n. Gder are strong Q-subgroups of Gder, it turns
out that G' is reductive, according to Définition-Proposition 1.3.11 of Chapter 1
(cf.JCU-3] 4.1). The theorem of Mozes-Shah implies that G' is of type K, hence
semi-simple without compact Q-factors. CG' r>CGder = G,,, and thus CG' is the
Mumford-Tate group of some C-special subdatum (CG',X"). Because the se-
guence (CIn)n is C-strict in O, we deduce that the images 7t(Q,,) is C-strict in
n(Cl), and this implies the equalities CG' = G and G' = Gder.

We thus have show that Jt(Q") = Gder. Then W' :=WnQ' equals the unipotent
radical of Q', and U'=Un Q'=Un W' is a central Q-subgroup of W'. Because
Q' 3 Pder for all n, we have W' 3 W,, and U' 3 U,,, where Wn resp. U,, is the
unipotent radical resp. the weight 2 unipotent part of P,,. W' is a Q-subgroup
of W stable under the action of Gder. Because the action of Gder on W and that
of C commute, we deduce that W' is also stable under C, hence stable under
G. Itis also easy to check that U' := Un W is central in W', and forany y g Y,
Lie(W'x G) satisfies the conditions of Hodge structures in the definition of mixed
Shimura datum. By putting P' = W' x G, we see that (P, U'(C)P'(IR)y,,) is a C-
special subdatum containing (PmY,,), Vy,, e Y,,. We have assumed that Cln is
C-strict, thus we must have P' = P.

In particular, the limit of v,, exists and it is the C-special measure ofthe total
C-special lattice space Cl. The density ofUn Clnin O is clear.
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Corollary 3.3.5. ForZc fla closed subset, and !Kc(Z) the subset ofOicid) con-
sisting ofC-special measures with supports contained in Z. Then Oic(2) isa com-
pact closed subseto/JiciH), and there exists onlyfinitely maximal C-special lat-
tice subspaces contained in Z; #5?¢(2) < oo.

Proof Let (vn),, be a sequence in CKc(2). We need to show that (v,,),, admits
convergent subsequence, and every convergent sequence in IKc(2Z) has its limit
inlKc(2).

(1) We first consider the case where Z = f2. Suppose 9£¢(i2) is not closed in
IK(fl). Then there exists some measure v e IK(i2) - IKc(fl) which is the limit of
a sequence (v,,),, in CKc(il). We assume for simplicity that the v,,5 are mutually
distinct. Write CIn = Suppv,, = r\rPder(R)+ for some subdatum (P,,,Y,,).

We claim that there exists a smallest C-special lattice subspace in D contain-
ing all the Qn’. In fact it suffices to take P' to be the Q-subgroup generated by
UnPn- Bythe same arguments in the last proposition, P is a <Q>-subgroup coming
from some C-special subdatum, and Q! = r\rP 'der(R)+ is the smallest C-special
lattice subspace containing allthe &,

We may regard (v,,)was a sequence in IKc(ii") ¢ Ji(Q'). This sequence is
C-strict in Kc(il'): if for some C-special subspace CI" C Q' we have infinitely
many CIns contained in CI". By induction on the dimension of CI', we have
a closed subset IKc(iV) inside IK(Q), and (v,,),, has a convergent subsequence
whose limitv' lies in 5ic(i2"). The convergence of (v,,),, in Ji(Q) shows that nu'
is also the limit of (vn)rtin 5ic(0") ¢ iKc(Q).

We thus conclude that Die (O) is closed in IK(O), and is in particular compact
for the weak topology.

(2) We then pass to a general closed subsetZ c i2. Let (v,,),, be a sequence in
IKc(O) that converges to some v in Jic(O), such that Suppv,,cZfor all n. Then
Suppv is the closure of Un>NSuppv,, for some N > 0, and is thus contained in Z,
which confirms that IKc(Z) is closed and compact.

(3) Finally we show the finiteness of 5*c(Z) for an arbitrary closed subset
Z c ii. If57c(2) is not finite, then it contains an infinite sequence (Cln)n. The
elements of «&¢(2) are maximal among those C-special lattice subspaces in Z. If
we put O'to be the minimal lattice subspace containing Z, which certainly exists
by dimensional induction, then (i2n)n makes up a C-strict sequence in i2', and
so it is with the corresponding sequence of C-special measures (v,,),, in IKc(fl").
Hence (v,,),, converges to some C-special measure v' on Q. Because v' = limv,,
we have Suppv c Zand meantime Suppv,, C Suppv' for n large enough, which
contradicts the maximality of Sq(2), hence the finiteness of 57¢c(2).

3.4 S-spaces and special S-subspaces

With the Andr6-Oort property established at the level of C-special lattice sub-
spaces, we then want to transfer it to C-special subvarieties. As we have men-
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tioned in the introduction of this chapter, we’ll first study the projections from
lattice space to an intermediate class of objects called "S-subspaces”. In this
section we develop the formalism of S-subspaces: they can be viewed as the real
part of Shimura varieties equipped with canonical probability measures, which
enables the usage of ergodic arguments.

Recall that for a mixed Shimura datum (P,Y), we have defined the real part
of Y to be the orbit P(R)jc of some (or equivalently, any) xe X, (G,X) being any
pure section of (P,Y). This notion is independent of the choice of pure sections.

Definition 3.4.1 (The formalism of S-spaces). Fixa mixed Shimuradatum (P,Y)
and a compact open subgroup Kc P(Af).
(1) The S-space associated to (P, Y) atlevel Kisthe real analytic space defined
as
MKk(P,Y) := P(Q)\[Yr x P(Af)/K]

where Yr is the real part of Y.

Fix 5t a set of representatives of P(Q)+VP(Af)/K. Note that Y = 0(U) x Yr as
real analytic spaces, and we have a bijection between Jwo(Y) and no (Yr). We thus
getan isomorphism

MK(P,Y) S P(Q)+\pfl XP(Af/K] = U rK(g)\Y¢
geft

where Y£ is any fixed connected component of Yr, ric(g) = P(Q)+ n gKg_1.
Mr(P,Y) is identified with a real analytic subspace of Mr(P,Y)c- With re-
spect to the projection $k : Y x P(Af)/[K —Mr (P, Y), rK(g)HY" is identified with
*K(Y ¢ xgK).
For a general arithmetic subgroup T c P(R)+, the quotient T\Y; is referred
to as the connected S-space associated to (P,Y) at level T, YR being a fixed con-
nected component of Yr.

(2) The morphisms between S-spaces and Hecke correspondences are de-
fined in the obvious way. In particular we have the notions of Shimura S-subspaces
and special S-subspaces of Mk(P,Y): a Shimura S-subspace is the image of a
morphism MKk PiiYi) —Mk(P,Y) for some Shimura subdatum (Pi,Yi);and a
special S-subspace is aconnected component ofa Hecke translate ofsome Shimura
S-subspace, or equivalently, a subvariety ofthe form rxaK) inMr (P,Y) for
some Shimura subdatum (Pi, Yi).

Note that if (Pi,Yi) is a Shimura subdatum of (P,Y), and (Gi,Xi) a pure sec-
tion of (Pi,Yi), then it extends to apure section (G,X) 3 (Gi,Xi): Gi isa maximal
reductive Q-subgroup of Pi, and extends to a maximal reductive Q-subgroup of
P 3 Pi. Two pure sections of (P,Y) differ by a W(Q)-conjugation.

We define weakly special S-subspaces to be finite unions of special S-subspaces.

(3) In the same way as we have seen for Shimura varieties, for a Q-torus
C'cG,a special S-subspace is C'-special if it of the form fp(Yj'"R x gK) for some

68



C'-special subdatum (Pi, Yi) and g e 5ftt. Being C'-special is the same as being
gCqg~I-special, forany g e W(Q) » TK(g), g the representative corresponding to
the special S-subspace.

(Here we write C' and reserve C for the connected center of G.)

(4) The volume form on YM= P(R)y leads to a Borel measure on Yr invariant
under the leftaction of P(R), which is equivalently induced by the Haar measure
on P(R), and it gives rise to a probability measure on the S-space P(Q)\((Yr) x
P(A)/K). The construction is obvious, as can be seen from the canonical proba-
bility measure |is on the connected component of the form Mjc(g) =" (g) VY™
The finiteness of the canonical measure isjustified in Lemma 3.4.2 below, where
we introduce a useful map

Ky :a = rk@)t\pder(Ry+-*m = rg\Y", rKg)+7~ rKgw

(5) C' being a Q-torus in G, we define the set of C'-special H-measures on
M = Mk(P,Y), denoted by IKc'(M), to be the set of measures of the form n' =
»um. where i :M'<*M is the inclusion ofa C'-special S-subspace, and My "is
the canonical probability measure on M' deduced from the volume form. This
is aprioriacountable subset ofthe set of Borelian probability measures on M.

(6) We can similarly define the notion of generic Mumford-Tate group for a
special S-subspace M' = kCY™ xgK) ¢ M = Mk(P,Y) for some Shimura sub-
datum (Pi,Yi), to be the rj<(g)-conjugacy class of Pi in P. It is equal to the
generic Mumford-Tate group of the Zariski closure of M" in Mk(P,Y), namely
[PiI]=MT("K(Yi-xgK)).

(7) Let (M,,),, be asequence ofspecial S-subspaces 0ofM =M k(P,Y). The se-
quence is generic resp. strictifso itiswith the corresponding sequence (M,, ),
of special subvarieties of M = Mk(P, Y)c, namely:

generic: for every real analytic subspace ZC S, Mn”~ Z for n large enough;

strict: for every subdatum (P',Y") C (P,Y)we have M,, » M" for n large enough,
where M 'is the Shimura S-subspace in M defined by (P',Y;);

C-strict: for every C-special S-subspace M' ¢ M, we have Mn”~ M"' for n
large enough.

One can define in a parallel way the notions of generic resp. strict resp. C-
strict sequence of canonical measures on M, just as we have seen in the setting
of lattice spaces.

In the following of this section we fix (G,X) a pure section of (P,Y), and C
denotes the connected center of G.

Lemma3.4.2. (1) LetD. be the lattice space associated to (P, Y) and an arithmetic
subgroup Tc P(R)+, namely D. =r t\Pder(R)+, where I' := TnP der(R)+. Thenfor
anyy eY”, the map

Ky:i2-»M =n\Y", r+& Vrqy
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is surjective and quasi-compact. Ifv denotes the canonical measure on Cl, then
H= Ky, v equals the canonical measure on M induced by the leftP(U)+-invariant
volumeform on Y#, and p. is independent ofthe choice ofy.

(2) Fix FixM aconnected componentofthe S-space M r (P, Y) oftheform T\Y~for
some arithmetic subgroup T ¢ P(R)+, and M' = r\rY + a C-special S-subspace
defined by some C-special subdatum (P',Yf). Letd = rI\Pder(R)+ be the lattice
space corresponding to M, and Ci' = r"\rP,der(R)+ theC-special lattice subspace
correspondingto M'. Thenforanyy e YA+c¢ YA, the projection Ky: 0 M, Tg >»
Tgy maps CI' onto M', and it pushes v resp. V forward to |i resp. n', wherev
resp. (i denotes the canonical probability measure on d resp. M', and v' resp. |i'
denotes theC-special H-measure ofsupportCl' resp. M".

Proof. We take (G,X) a pure section of (P,Y), and assume that T= Tw x Tg for
arithmetic subgroups Tw <W(R)+ resp. Tq ¢ G(R)+. Clg := Fg\Gder(R)+, and S
denotes the S-space associated to (G,X) at level Tg: it is no other than the real
analytic space underlying rG\X+. Denote by Jtw: (P,Y) — (G,X) the projection
modulo W, and the corresponding maps for lattice spaces and

Itis clear that (1) implies (2) by functoriality.

For (1), we first consider the following commutative diagram

7w TIW
nGKng

where je= jrw(y) e X+, kx:leg «—Tcgx. Both ofthe vertical maps are fibration
by spaces isomorphic to IwW\W(R), and Ky induces isomorphisms of the fibers.

k*:n G- T\X+ is surjective: rj, = Tn Gder(R)+ ¢ T and X+ = Gder(R)+x
because the center of G(R) acts on X+ trivially. The projection Gder(R)+ -» X+
g>~+qxis quasi-compact and Gder(R)+-equivariant, whose fiber over jc is a max-
imal compact subgroup of Gder(R)+ (because X+ is an Hermitian symmetric do-
main). By commutativity of the diagram above, we deduce that Ky is surjective
and quasi-compact.

Pderis oftype IKand rfisan arithmetic subgroup, thus the left Haar measure
on Pder(R)+ induces a probability measure v on Q. Hence |i = Ky*v is a proba-
bility measure on M. To see that |i is deduced from the volume form, consider
the commutative diagram below:

Pder(R)+ Wy

& «©&r

Kv
n M

where the vertical map i resp. £ is taking quotient modulo rf resp. T, and
the upper horizontal map Ky sends g to qy. Letv' be the normalized left Haar
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measure on Pder(R)+such that | v' = v is of total mass 1. Then v' is given by
the left invariant volume form on Pder(R), toy, v' is given by left invariant volume
form on YR. We then see that

H= (Kyo$+),v'= (Br°  »v'
is the required probability measure. 1

Remark 3.4.3. We would also like to point out that the canonical map \|/p :
r+HY+ —n\Y+ isan isomorphism. The verification of this fact is reduced to the
pure case via the following commutative diagram

FtWik Ir\Ygq

Tt n
FGW o FOXT

The lower horizontal map \[/g is actually the identity: rGc G(R)+ acts on X+
by conjugation, and rGnZ G(R) acts trivially, hence the quotient is the same as
r]j\X|jJ. Check the fibers of the two vertical maps we see that\|/p is also the iden-
tity.

Note that this is not true for lattice spaces: the lattice space r t\Pder(R)+ is
the quotient of Pder(R)+ by the left translation of r 1, replacing Pder by P and r*
by T produces a different quotient space, to which we cannot apply directly the
theorem of Mozes and Shah.

Remark 3.4.4. From the lemma above, we see that IKc(M) is countable, and ev-
ery element |i in itis a push-forward of some v e 3ic(i2). However the operation
ofpush-forward requires a base point from the real part YRofthe corresponding
Shimura subdatum (P', Y"): differentv"s mightfail to be pushed forward through
acommon base point.

But the compactness of 3<c(M) is crucial to us: once the compactness is
established, we can immediately deduce the Andr6-Oort conjecture for a se-
quence of C-special S-subspaces, namely: for any closed subspace ZcM, the
set of maximal C-special S-subspaces in Z is finite. Taking Zariski closure gives
us the Andr6-Oort conjecture for a sequences of C-special subvarieties.

In the next section we’ll show the compactness of IHc(M) via an argument
of S.Dani-Margulis, as has been applied in [CU-3].

3.5 The Dani-Margulis argument

To prove the compactness ofIKc(M), we’ll show that there exists a compact sub-
set of Y+ such that every [i' e IKc(M) is given by some subdatum (P',Y") with
YRn C ” 0, hence the elements in Jfc(M) are of the form kx*\' for x e C and
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v' e 3<c(i2). This will result in the existence of convergent subsequences for ar-
bitrary sequences in IKc(M).

The starting point is the following argumentby S.Dani and G.Margulis which
we quote without proof:

Proposition 3.5.1. (S.Daniand G.Margulis, cf, [DM] Theorem 2) LetH be a semi-
simpleQ-group withoutcompactQ-factors, andTn ¢ H(R)+an arithmetic lattice
andQ.fi = Fh\H(R)+ the lattice space associated toH andTn- Then there exists a
compactsubsetC ofCln such thatfor any one-parameter subgroup °U = (WhreiR
o/H(R) and g e H(R)+, ifCn [TuXTngfy) # 0, then there exists a parabolic Q-
subgroupQC H such thatg°Ug~1cQ(R).

Corollary 3.5.2. (cf. [CU-3] Section 4, Lemma 4.4, Lemma 4.5) Let (P,Y),r, Q =
re\p der(R)+, M =r\Y+, etc. be as before.

(1) There exists a compact subset A of @ such that ifL ¢ Pder is a strong Q-
subgroupoftype'K, then we have An,r+ MAgLIR)+” 0 for some ge Pder(Q)+

(2) There exists a compact subsetD ofM such that ifM' ¢ M is a subspace
oftheform T\TdL{K)+y for somey eY£, a e Pder(Q)+, and L c Pder a strong Q-
subgroup of type Ji, then M'n D~ 0. In particular, D meets every C-special S-
subspace ofM non-trivially.

(3) There exists a compact subset  in Y” such thatifM' ¢cM is a C-special
S-subspace, then we can find some C-special subdatum (P',Y") such thatM' =
r\n*+withY'+nVjiQ.

Proof. We have fixed a pure section (G,X) of (P,Y), and T = Tw x Tq is torsion-
free. In order to simplify the superscripts and subscripts, we put H = Gder and
rHto be rj; =r n H(R)+. Then we havefiG= rJ\H(R)+=r HH(R)+. SimUarly,
by putting Q =W >H = Pderand Tg = TnQ(R)+we have rQ\Q(R)+ = Cl. We only
consider rQ\Q(R)+, and for simplicity of notations we write T =14. Note that
r =rw XrHis a torsion free lattice in Q(R)+.

(1) Th( The projection irw : d = NQ(R)+—Th\H(R)+ is quasi-compact, whose
fibers are compact sets ofthe form I\y\W(R). The proposition above provides us
with the compact subset Cc rn\H(R)+, and we set Ato be JTW ©.

Let Lc Q = Pder be a strong Q-subgroup of type IK. We want to show that
An(r\rgL(R)+) /0.

Suppose that for any g e Q(Q)+, An r\rgL(E)+= 0. Write A to be the sub-
group of L(R)+ generated by one-parameter unipotent subgroups of L(R)+. We
have L= MT(A). Take a one-parameter unipotent subgroup % = {ut :te R}c A
The decomposition of L« into almost direct products of R-factors gives a similar
description of A, and we may suppose that °If is not contained in any invariant
subgroup A' C A, up to replacing % by a product of factors intersecting each
minimal invariant subgroup of A non-trivially.

Then for each h £ L(R)+, AnT\Tgh” ¢ AnT\rgL(R)+= 0. Apply the pro-
jection n\f, we get CnTuWnghfy ¢ Cnrn\rHgL (R)+= 0, with * standing for
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the image under jiw- The proposition of S.Dani-Margulis confirms the existence
of a parabolic Q-subgroup Qp £ H such that ghW h-'g-1c Qp(R). Since there
is only countably many such parabolic Q-subgroups in H, there is a single Q-
parabolic Qp C H such that gh~h~Ig~I ¢ Qp(R) for h runs over some subset
Ac L(R)+ of positive mass with respect to the Haar measure on L(R)+.

Put Qp C P to be the parabolic Q-subgroup of Q whose reduction modulo

W is g- 1Qpg, well-defined over Q since g £ Q(Q)+. Then hfflhrlc Qp(R)+ for
h runs over A. Note that Ac L(R)+ is of positive mass, and that  is not con-
tained in any invariant subgroup of A, we see that Ac Qp(R), and Lc Qp C Q,
contradicting the fact that L is strong, hence the conclusion.

(2) Let V¢ Q(R)+be a connected compact neighborhood of the neutral ele-
ment. PutDi = AV ={ag:ae A ge V} which isacompact subset of Q.

For x e Yr we have the projection kx :Cl-» S=T\Y”, Tg «* Tgx. Fixapoint
y e YI£, set D = Ky(Di). Then for g e V, Kgy(A) ¢ (D).

Wehave S'=T\raL(R)+yc S, Ye YjJ, Lc Qstrong oftype !H. Since Q(Q)-V =
Q(R)+,wehavey = *gJcforsomei7e Q(Q)+andge V. Hence S' = Kg*(r\rai7Li(R)+),
where Hi = (ag”Lag.

WeshowthatDnS'# 0.1fDnS' = 0, thenKgX(C)nS'= 0,andCnr\raqrLi(R)+=
0. The proposition of S.Dani and G.Margulis confirms that Li ¢ Qp for some Qp-
parabolic Qp C Q, contradicting the factthat H = aqH\ g~la-1 is strong.

To see that D meets every C-special S-subspace non-trivially, it suffices to
notice that, by the Lemma 1.4.2, every C-special S-subspace is ofthe form M' =
nry"- =r\rQ'(R)+y, where (P',Y") is some C-special subdatum, Q' = p'der, and
y' e Y+ ¢ Y~ namely this isthe case wherea=1,L=Q',andy = V"

(3) Let Dc M be the compact subset in (2). We want to lift D back to some
subsetin YA

Keep the notations as above, the map nw : T\Y” -» Th\X+is a quasi-compact
fibration by compact sets ofthe form INAW(R) (here we have followed the iden-
tification pointed out in Remark 3.4.3). The quotient TWA\W(R) admits an open
fundamental set X>wwhose closure in W(R) is a compact.

On the other hand, the locally symmetric Hermitian space | h\X+ has a fun-
damental domain in X+ ofthe form

m ) ={Xe X+:dtf, x) <d(£, qx), W?erH}

where i, e X+ is an arbitrary base point. D(£) is connected, open, and its closure
is compactin X+.
Now we take

T=®w X 2)© ={wxeW(R) x X+:weDw, *e D(i)}
which is an open fundamental domain in YjJ whose closure T>is compactin Y~

The subset D in M is compact, thus the intersection of T>with the pre-image
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of D under the covering map YR -» M contains a compact subset C such that
nre 3D, ie. theimage of Gin M is a compact subset containing D.

We proceed to show that the Gobtained this way satisfies the requirements
of (3). LetM" be a C-special S-subspace in M. In (2) we have seen thatM'nD *
0. Say M' = r\rP /der(R)+y where (P',Y") is some C-special subdatum of (P,Y),
y' e YRsuch that YR = P'der(R)+y"' is a connected component of YR. Now that
M 'nD "0, there is some / e Y*such that Ty' e D, and hence for someyer
we have yy' e T>c G. The subdatum (yP'y-1,yY") is C-special, and it defines the
same C-special S-subspace M' =r\ryY R-=r\rY”+in M, which ends the proof.
[ ]

Theorem 3.5.3. Let(P,Y), C, I\ M = r\YRbe as above. Then 3£c¢(M) is compact
for the weak topology. Moreover, ifa sequence (un)n in 'Kc(M) converges to some
[i' e Jic(M), then there exists N > 0 such that Supp [i,, ¢ Supp|i' forany n >N,
and thatSupp |i' equals the archimedean closure o/Un>NSupp (i,,.

Proof. (1) The compactness:

Let (Jin)n be an arbitrary sequence in IKc(M). We need to show that (Ji,,)n
admits a convergent subsequence, whose limitagain lies in IKc(M).

Assume that \inis the C-special H-measure on M associated to the C-special
S-subspace M n defined by a C-special subdatum (Pn,Y,): Mn=r\rY” R Ac-
cording to Lemma 3.5.2 (3), we may assume that YAwnC ~ 0, and (in = Ky,,*v,,
where vn is the H-measure on Q = r H\Pder(IR+ of support Qn = rt\r +Pder(R)+,
and yne Y”Kn 6. We have shown the compactness of K¢ (i2) and of 6, thus up to
replacing (vn),, resp. (yn)n by a convergent subsequence, we may assume that
both (v,,),, and {yn)n converge. Sayy = lim,,yne Gand v =1lim,,v,, e 3ic(il). We
want to show that |i = Ky, v is the limit of (n,,),, and it lies in Jic(M).

Firstly the convergence:

Write {, >for the pairing between the setS o f compactly supported
smooth functions and ®(0) the set of distributions on Cl. Take an arbitrary / e

°ccmyand put F=/ oKy, F, =/ °Kyn, which lie in €£°(£2). Then

f fd\in={F,,v,,> and f /d|i = <Fw>
IM M
Consider the following estimation
KEV) - <R, Vo)l < I<F- R )+ <R, v- vit] < [[F- F I+ AR [lv- v

where | || stands for either the sup norm of functions or the induced norm on
continuous functionals. It suffices to show that ||F- F,, || tends to zero, whence
|IF..]| remains bounded, and that ||[v-v + n|| tends to zero, as n tends to oo.
Since limy,, = y for the archimedean topology, we have (Fn),, converges to
F uniformly on fi (as compacdy supported functions). lim,, ||F-F,,|| = 0implies
that (||F..|]),, is bounded, therefore the term ||F,,|||lv., - V|| and hence the total
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difference above tends to zero as h —oo0. / being arbitrary, we conclude that
lim,, un =i for the weak topology.

Now that the limit |i exists as a probability measure on M, we proceed to
show that lies in GKg(M).

(v,,),, converges to v in Jic(il). Up to restricting to a subsequence with-
out changing the limit, we may assume that Suppv,, ¢ Suppv for all n. Write
Suppv,, = rt\rtPder(R)+, then U«Suppv,, is dense in Suppv. Because v lies in
IKc(il), we have Suppv = rt\rtP'der(R)+with P' given by some Shimura subda-
tum (P,Y") c (P,Y). By the proof of Prop.3.3.4, it is known that UnPn generates
P

Note that P' arises as the defining Q-group for only finitely many subdata
of (P,Y). Since MT(y,,) cP,,cP, we may, again by the convergent subsequence
argument, assume thatthe ynsall lie in acommon Y™ for some subdatum ofthe
form (P, Y"). Then the limity = limy,, also lies in the closed subspace Y*c Yr.
And (i = Ky*v does lie in IK)C(M).

(2) rheThe inclusion Supp i, ¢ Supp |i for n large enough and the density of
U Supp [inin Supp n:

We already have Din =Suppv,, ¢ Suppv = Q' forall n. Thus kyn(il,,) ¢ Kn(Q)
for all n. Now thaty,, e Y, we have Kn(0O") = M' = Ky(il), namely Suppn,, ¢
Supp n for all |i.

The density of UnSupp |iwin Supp [i is clear from the convergence lim |i,, =
H 1

Corollary 3.5.4. Keep the notions as in the theorem.

(1) Forany closedsubsetZc M, thesetS?c(2) ofmaximal C-special S-subspaces
inZisfinite. Equivalently,for any sequence (M,,) ,, ofC-special S-subspaces inM,
the archimedean closure of\JnM,, is afinite union ofC-special S-subspaces.

(2) LetM be a connected Shimura variety associated to (P, Y).

Thenforany closed subvarietyZ ¢ M, the set£ c(Z) ofmaximalC-special sub-
varieties contained in Z isfinite. Equivalently, if{Mn)n is a sequence ofC-special
subvarieties, then the Zariski closure o/U«Mn is afinite union ofC-special sub-
varieties.

Proof. (1) Itis clearthat forany closed subspace ZcM , <St:(2) is always a count-
able set. Ifitis notfinite, then we write it as an infinite sequence CMn),,. The cor-
responding sequence of C-special H-measures (]i,,)n is also infinite, and thus
contains a convergent subsequence gyren  Write [i' for the limit of (n'n),, in
IKc(M), and M',, for Suppn',,. Because Supp — 3anc Z for all n, we have
Supp [i* ¢ Zwhich is also a C-special S-subspace. But the convergence of Np)n
implies, according to the theorem above, that Supp|i,, ¢ Supp|i' for n large
enough, and in particular the M js not maximal, which contradicts the assump-
tion.
The equivalence of the two formulations has been shown in Chapter 2.
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(2) It sultsuffices to derive (2) from (1) under the second formulation: the closure

ofahomogeneous sequence is weakly special.
Let M resp. M,, be the S-space corresponding to M resp. M,,. Now that
is C-special for all n, the archimedean closure of U«Mn is a finite union of
C-special S-subspaces. Taking Zariski closure we see that the Zariski closure of
Un M,, is a finite union of C-special subvarieties.

3.6 The general case of a homogeneous sequence of spe-
cial subvarieties

Let (P,Y) be a mixed Shimura datum, Ka compact open subgroup of P(Af), and
M a connected component of Mk(P,Y). Assume that (P,Y) has a pure section
(G,X) and denote by C the connected center of G. Write d = rt\Pder(R)+ and
M = T\Y+ the connected lattice space resp. S-space corresponding to M, where
Tis an arithmetic subgroup of P(R)+ of the form R<®*+n gKg-1, g coming from
a fixed set Rof representatives of P(Q)+\P(Af/K.

From the equidistribution of C-special S-subspaces we have deduced that
the Andre-Oort conjecture for a sequence of C-special subvarieties.

We then consider families of C'-special subvarieties, with C' a Q-torus in G
containing C.

Lemma3.6.1. LetC' bea Q-torus in G containingC. Then
(1) Thesetofmaximal C'-special subdata of{P, Y) isfinite.
(2) The setofmaximal C'-special lattice subspaces o fd isfinite.
(3) Thesetofmaximal C'-special S-subspaces ofM isfinite.
(4) Thesetofmaximal C'-special subvarieties ofM isfinite.
Note that in the statement we allow the empty setas afinite set.

Proof. (1) We first consider the pure case, then the mixed case.

() The pure case:

We assume the existence ofanon-trivial C'-special subdatum (Gi,Xi) ¢ (G,X).
Then C' equals the connected center of Gi.

PutL=2qC', and write L' = QJL1L.2where Cl is the connected center of L, Li
the product ofnon-compact Q-factors of Lder, and L2 is the product of compact
Q-factors. Note that C' ¢ ClI.

We set G' = C'Lj. If (G2.X2) is a second C'-special subdatum of (G,X), then
Gger ¢ LiL2. L2n Gj6lis a compact Q-factor of Gljer, and it has to be trivial. It
turns out that Gher ¢ Lj and G2 ¢ G'. We conclude that for any maximal C'-
special subdatum, its generic Mumford-Tate group has to be G'. With G' fixed,
there could be only finitely many subdata of the form (G',X") ¢ (G,X), which are
exactly the maximal C'-special subdata.

(i) The mixed case:
(P,Y) has a pure section (G,X) given by a Levi decomposition (P=WxG. Say

(G',X") is a maximal C'-special subdatum of (G,X), then obviously (WxiG'.U(C)W(R) >4
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X" is a maximal C'-special subdatum of (P,Y). The finiteness is clear from the
result in the pure case.

(2) Note that the lattice subspace corresponding to a subdatum (P',Y") only
depends on the <Q-group P'. Thus from (1) we see that there exists a unique
maximal C'-special lattice subspace CI' = \rP"dar®)+in fi = r\PderR)+,where
P' comes from some (or any) maximal C'-special subdatum (Wx G', U(C)W(R) x
X".

(3) and (4):

The set of maximal C'-special subdata if finite, whose elements are of the
form (P',Y') for i varying in I some finite index set. Foreach i, Y'. has only finitely
many connected components, and they give rise to only finitely many C'-special
S-subspaces resp. C'-special subvarieties in an arbitrarily fixed connected com-
ponent r\Y + resp. r\Y +. 1

We can directly apply the results in the above section to the case of C'-special
subvarieties. Nevertheless we prefer to start with the more precise results on H-
measures.

Proposition 3.6.2. Keep the notations (P,Y), (G,X), K, T, Q, M, etc. Fix a Q-torus
C' in G containing C as above. Then

(1) The set 5ie(i2) ofC'-special H-measures on d is compactfor the weak
topology; i.e. itis closed in J{(f2).

(2) There existsa compactsubsetD' = D(C') ofM which meets every C'-special
S-subspace non-trivially.

(3) There exists a compact subset G = C(C") of YR such thatifM" ¢ M isa
C'-special S-subspace, then there exists a C'-special subdatum (P",Y") such that
m"=nrY"+withy"+nev 0.

(4) The set 'Hc' (M) ofC'-special H-measures on M is compactfor the weak
topology. Ifa sequence (]in),, in Ji*(M) converges to some |i' e !Kc'(M), thenfor
some N > 0, we have Suppi,, ¢ Supp|j' Vn >N, and U«>nSupp s dense in
Supp n'for the archimedean topology.

Proof. Asisjustified by the (3) and (4)ofthe lemma above, we write {(P',Y"):i e
I Horthe finite set of maximal C'-special subdata of (P, Y), with | some fixed finite
index set, and {My :j e J }or the finite set of maximal C'-special S-subspaces in
M, J some finite index set. We may suppose that Mj is defined by (P'.Y~.j) for
some 1(7) el.

(1) D.: D' = rAr+P'der(R)+ is the unique maximal C'-special lattice subspace of
Q, and it is clear that the inclusion A:Q'wi2 induces a bijection A ,: IKc'(i2) —
iKc'(ii") : every C'-special lattice subspace is contained in CI', and the corre-
sponding C'-special H-measure on Clis the image under Aofthe corresponding
H-measure on CI'. A ,:1K(Q") -» JC(Q) is clearly continuous. And Jic (O") iscom-
pact for the weak topology, because (P',Y.) is C'-special itselffor any i. Therefore
the image of K e (O") under A* is also compact.
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(2) For each j e J, My contains a compact subset Dy that meets every C'-
special S-subspace non-trivially: this isjust an application of Corollary 3.5.2 (2).
Now we take D' = Uyej Dy. J is finite, hence D' is compact itself. The maximality
ofthe My's shows that D' meets every C'-special S-subspace.

(3) Similar to (2), this is an application of Corollary 3.5.2 (3). In fact there are
only finitely many connected components of the form Y‘/*R that give rise to the
maximal C'-special S-subspaces My%, each contains a compact subset Cy <Y
as is described in 3.5.2 (3), and it suffices to take e' = Uy Cy-

(4) Write Ay : My «-* M forthe inclusion ofthe maximal C'-special S-subspaces,
j e J. Then we have continuous inclusions Ay* : JCc'(My) «* CKc'CM), and it
is evident that IKc'(M) = Uy Ay*(IKc'(My)). Note that each Jic'(My) is com-
pact for the weak topology according to Theorem 3.5.3. Hence the finite union
Uy (Ay* (5Cc)) = Jic'(M) is compact.

Now IHC'CM) is a finite union of compact subsets Jfy := Ay*Jic'(My). Let
(J]a,.),, be a sequence in 'Kc(M) that converges to some n e jKc'(M). We may
suppose that |i e jHy for some fixed j e J.

If for some N > 0 we have |[ine 3G for all n > N, then it suffices to apply
Theorem 3.5.3 to (A*p,,),, which is a convergent sequence in Jic (My) of limit
a;(h)

In general, we may decompose  into a union of sequences (" n)),, with j
running over J. (Ji(n))n could finite for only finitely many j. Let N be the largest

index m that appears in these |ime {(i* :nel\l). Then (jin)n>n is decomposed
into a finite union of convergent subsequences in Hj. Apply the argument in

the last paragraph to each of them, we get the required results on the supports.
1

Corollary 3.6.3. LetM be a connected S-space defined by some Shimura datum
(P,Y) with pure section (G,X), C the connected center ofG, and C' a ty-torus ofG
containing C. Write M for the corresponding connected mixed Shimura variety.
Then

(1) If(M n)n is a sequence of C'-special S-subspaces, then the archimedean
closure o/(JnM,, in M is afinite union ofC'-special S-subspaces. Equivalently,
for any closed subsetZc M, the set (2 of maximal C'-special S-subspaces
contained in Z isfinite.

(2) If{Mn)n is a sequence ofC'-special subvarieties ofM, then theZariski clo-
sure of\Jn Mn in M is afinite union ofC'-special subvarieties. Equivalently, for
any closed subvariety ZcM, the set «5fc(Z) of maximal C'-special subvarieties
contained in Z isfinite.

Proof. (1) Let {My :j e J}be the finite set of maximal C'-special S-subspaces in
M, J being some finite index set. Then itis clear that foreach j e J, (Zn My)
is finite, by the same arguments in Corollary 3.5.4 applied to Zn My in My. It
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remains to checkthat  (2) equalsthe finite union offinite subsets &c'(ZnMj),
which is clear because of the maximality ofthe M /s.

(2) It sult suffices to take Zariski closure in the conclusions of (1), following the
arguments we have used in Corollary 3.5.4 (2). 1
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Chapter 4

The degree ofthe Galois orbit ofa
special subvariety

In [UY-1], E.Ullmo and A.Yafaev studied the lower bound ofthe intersection de-
gree of the Galois orbit of a special subvariety in a given pure Shimura variety
with respect to the canonical sheaf defining the Baily-Borel compactification.
They also deduce the following criterion: if a sequence of special subvarieties
whose Galois orbits are of uniformly bounded degree with respect to the canon-
ical sheaf, then the sequence is a finite union of homogeneous subsequences.
These results play a main role in the work of B.Klingler and A.Yafaev, cf.[KY].

We would like to study the analogue of these results in the framework of
mixed Shimura varieties. We work with special subvarieties in a mixed Shimura
variety M = MK(P,Y) with a pure section S = MK,j(G,X), where K= Kw x Kg <
P(Af) is a compact open subgroup. According to the general theory developed
by R.Pink, there exists a canonical ample invertible sheaf £ on M of the form
£ = ji*E£ ®OMT where jt : M —S is the canonical fibration over the pure sec-
tion S, ££ = if(K) is the canonical ample sheafon S, and T is a n-ample invert-
ible sheaf on M (ample along each fiber of n). Note that SE depends only on
S, while 7 depends on the choice of "compactification data" namely a complete
admissible cone decomposition involving all the rational boundary components
of (P,Y).

In this chapter we first concentrate on the degrees of Galois orbits of pure
subvarieties in M with respectto n*££. We will see that these degrees are subject
to similar lower bounds as in the pure case treated in [UY-1]. Then we adapt the
estimation to the notion of a test invariant of a general special subvariety of M,
not necessarily pure.

The results in [UY-1] deal with special subvarieties in a Shimura variety Mr (G, X)
with G adjoint. Butitwas already indicated in their treatment that this assump-
tion on G can be dropped. Moreover the estimation they arrived is level-free: the
constants involved only depend on the given representation G —GLqg(M). It al-
lows immediately an interpretation in the case of mixed Shimura varieties, and

80



in this chapter we draw some consequences to the estimation in some special
cases.

4.1 Outline ofthe estimation of E.Ullmo and AYafaev

In this section, we fix a pure Shimura datum (G,X) with G = MT(X), K= Kg =
lip Kg,p ¢ G(Af) a torsion-free compact open subgroup, and E = E(G,X) the re-
flex field.

We first study the intersection degree of the Galois orbit of a geometrically
connected component S of Mk(G,X), where the degree is computed against SE
the canonical ample line bundle of the Baily-Borel compactification of M. Itis
also known that 5£ equals the sheaf of top degree differential forms allowing
at most logarithmic singularities along boundary components of codimension
one. Write C for the connected center of G, T the quotient G/Gder,and pr:G —
T inducing an isogeny pr:C —T. Put Kc = Kgn C(Af) = f[pKc,p and K**“ =
lIpKj?*“ the maximal compact open subgroup of C(Af), and denote by 8(C) the
finite set of rational primes p such that Kc,p C Kgt* .

In the case where Sis a geometrically connected component, the estimation
in [UY-1] can be formulated as follows:

Proposition 4.1.1. (cf.JUY-I] 2.3-2.10) Assume (G,X) to be a subdatum ofsome
pure Shimura datum (H,Y), and thatH carries afaithful representation p:H —
GLg(M) on some finite dimensional Q-vector space M. We also assume that M
contains a lattice Tm whose profinite completion isafinitefree Z-module Kmsuch
thatp takes Kg cG (Af) mtoGLM"KM). Thenforany prescribed integer N > 1, there
are positive constants cn and B, independent of{G,X), such that

deg*GalES*£to(logDc)N-max{l, ft B|K” p/KC(P}
pe6(C)

where Dc is the absolute discriminant ofthe splittingfield Fc ofC, C being the
connected center ofG.

The constants Cnand B are level-free: cn is determined by the representation p
and N, B isdetermined by p; both are independentofthe level K. MoreoverB<1.

For convenience, we also write f(S) = li(S) -feiS) where 1i(S) = CN(logDc)N
and 12(S) = npe8(C)B|KE" /Kc,p|.

Proof (Outline). The proof is essentially the same as in [UY-1], but simpler be-
cause we estimate the Galois orbit of a component, i.e. a maximal special sub-
variety, and we only outline the main idea.

For any x e X, we have the composition jc: § Xy er ) T, which defines a
Shimura datum (T, jc) independent of the choice of jc. The reflex field E(T,x) is
contained in the common splitting field FofCand T.
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We have a morphism of Shimura varieties p r: Mk(G,X) -» MK™«(T, x), KJ1

being the maximal compact open subgroup of T(Af). The corresponding homo-
morphism of fundamental groups is

pr:jro(MK(G,X)c) = n0n(G)/K — jtO(MKt(T,*)c) = iioJrCD/K?1* .

This map is GalEcr.i)-equivariant, where GalEcr,*) acts on the left hand side via

Galecr,jc) 1Galg — frjro(G). Say a connected components e jton(G)/K is mapped
to se MK (T, x). By putting V = (Gals S) n pr~1(s), we get

deghj. GalES > |Gale s|deg” V.

Itremains to find constants cnand Bonly dependenton H -} GLg (M) such that:
. |GalE5|>1i(S) = CN(logDc)N,;
o degnfV) >12(S) = max{l,npe8(C)BIKcl* /Kc,pl}-

(1) Estimation of |Gain s|: it suffices to quote the same estimation in [Y-3],
Theorem 2.15. In particular the constant cn only involves the calculation with
respectto the maximal compact open subgroup KJ13*of T, and itis independent
from the level Kg's.

(2) Estimation of deg” (V): here we go over again the estimation in [UY-1]
and keep trace of the constant B. We start with some estimations concerning
homomorphisms between reductive groups.

(2-1) (cf. [UY-1] Lemma 2.3) The kernel of the isogeny C —T is uniformly
bounded by a constant that only depends on dim H.

In fact the kernel is Cn Gder. It is a finite centred Q-subgroup of Gder, and it
lifts to a finite central Q-subgroup of G the simply connected covering of Gder.
Consider the base change Gc, and Zg the set of simple factors of Gc. Then

{ZG:Gis areductive Q- subgroup of H}

is finite by a simple dimension argument. Thus the order of the center Zg is
bounded when G varying in the collection of reductive Q-subgroup of H: the
supreme ofthese orders controls the order of Cn Gder.

We thus fix a positive integer h which kills all the kernel of Cq —Tg for any
reductive Q-subgroup G of H (Cq being the connected center and Tg = G/Gder).

As a consequence:

(cf. [KY] Lemma 7.2.3) The cokernel o/7tder: Sno(G) —irjro(T) is killed by an
integer k> 0, independent ofthe choice ofsubdata (G,X) ¢ (H,Xh).

The key point for this consequence is that jtJto(G) is an abelian group that
"differs little" from nno(C). Recall that from the strong approximation theorem
we know that irno(G) = {1} is a single point, and the degree of the isogeny G —
Gder is bounded by some integer m independent of the choice of reductive Q-
subgroup Gc¢ H, following the same type of arguments as above.

We have seen that the kernel of nito (C) -* tttto(T) is killedd by h. To prove the
consequence it suffices to show that the cokernel of ftrro (C) —ttttq (G) is a torsion
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abelian group killed by some integer q independent of G¢ H. Take g e G(Af),
then gh = cgi for some c e C(Af) and gi e Gder(Af), because h kills the kernel
of the isogeny C x Gder -» G. Now that G — Gder is killed by m, the cokernel
of G(Af) — Gder(Af) is killed by m, and thus the class of g{” in jrno(G) is trivial,
namely the class of ghm in irjto(G) actually lies in the image of nno(C). This leads
to a uniform bound of the cokernel of nno(C) —njto(G), and thus the required
consequence.

(2-2) estimation ofcharacters

From (G,X) we have the special datum (T,Jk)where T=Tqgand x :S —Tr is
x modulo Gfjer for any x e X. Now that F is the common splitting field of C and
of T, the cocharacter n*:Gm—Tc is defined over F, and we get the composition
ri*"G* —» TF~ T which is surjective. By (2-1) the fc-th power of r* lifts to
an epimorphism r : Gj; —C, and this allows us to embed Xc as a subgroup of
5 2Xa.

We now consider the characters x °f C that appears in the representation
C—G—H-GLg(M).

e (Cf. (cf. [UY-1] Lemma 2.4) The coordinates ofthese x 'swith respect to the basis
Xx ofXc are bounded by some integer C\. In particular, the size ofTorQi” /Xc) is
bounded by an integer C2, say C2 = CdimH. Both Ci andCz are independentofthe
choice ofsubdata in (H,Xh).

The proofin [UY-1] is already independent of the starting level Kg.

Consequently the cokemel o fthe composition recjc: Galp -» nno(G”) — nno(T)
is killed by h, independent o fthe choice ofsubdata (G,X) ¢ (H,Xh).

(2-3) Take x e X lifting X, the cocharacter \ix :Gm—Gc induces
rec”: Gain —jrno(G”) —frn0(G),

which describes the Galois action on the set of connected components of the
Shimura scheme M(G,X)c. Write Jider: Sjt0O(G) —nn0(T) for the homomorphism
induced from G-» T.

Consider the commutative diagram

GalEF----—----- GalF

reCj, reCjE
Tnno(C)---—-- "mto(G)-"mro(T)

(cf.JUY-I] Pro.2.5) There is an integer A, independent of the choice of subdata
(G,X) ¢ (H,Xh), such thatfor any t e C(Af) c G(Af), the image o ftAin TtTto(G)
lies in recjt(GalEF)-

Note that [EF:E] < [F: Q] and [F: Q] is already uniformly bounded, the size
of rec(GalE) and rec* (GalEF) in K7to(G) only differ by a uniform constant.

For t e C(Af), the image naei{th) in ftito(T) already equals recjc(a) for some
ct e Galp. We may even enlarge h by a uniform multiple so that a comes from
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GalE i.e. the class of n¢gei(th) falls inrec¢ (GalHF- Obviously rec*(a) = jider~ecxia))
by construction. But according to (2-1), the kernel of n<er : fino(G) — fino(T) is

N

t
killed by some constant k, thus------- — in nJto(G) is Killed by k: therefore the
rec"Ca)
class of thk equals rec™a*). We thus take A= hk.

The above estimation is free from the level Kqg. The level Kg only enters in
the following claim:

(2-4) (cf. [UY-1] Lemma 2.7) Let Ke = Kg”"Kc be a compact open subgroup
of G(Af). Then pr : Mkc(G,X) — MKmM(G,X) is afinite étale covering of degree
|[Kg /Kgl. (Kqis assumed to be torsion free.)

The proofis the same as in [UY-1].

We then enter the estimation of deg"fV).

(2-5) Recall that V is a geometrically connected component of Mk"G.X).
Write 6(C,Kg) for the finite set of rational primes p such that Kcp ¢ K** , and
i (C, Kg) the cardinality of O(C, Kg)

(cf. JUY-1] Prop.2.11) There exists a constant B, independent of the choice of
subdatum (G,X) ¢ (H,Xh) and the compactopen subgroup Kg, such that the size
ofito(V) =jto(GalEFSnpr-1pr(S)) is at leastBI<) times the size ofno(pr_1pr(V)).

Kg13 preserves the fiber pr-1pr(S), and Kc acts on it trivially, whence an ac-
tion ofK ~/K ¢ on the set ofirreducible components of pr-1pr(S).

Write 9 forthe image ofa : K{?* /Kc —=*K /K ¢ underthe map jc*—xa. Then
for x e 3, the action of x on Jto(pr-1pr(S)) is the same as a Galois conjugation
récria) for some a e GalEF. We thus have inequalities

#MO(pr-1pr(S)) = #jrO([KE" /Kc]S) < #Coker(a)-#(3 S)

#TO(V)>#0-S).

Thus to prove the claim above it suffices to show that #Coker(a) > B*{CK)
for some constant B. Clearly Coker(a) = n pCoker(ap), ap being the p-th com-
ponent of a. Because KGP = K“* for all but finitely many p, the cokemel is
trivial for p outside O(C, Kg).

We proceed to show that, for p e 6(C,Kg), Coker(ap) is uniformly bounded.
Recall that Fis the splitting field of C, which is a Galois extension over Qofgroup
A. Xc is a.Z[A]-module of finite type, which allows a set of generators with
cardinality not exceeding d =dimH. We thus have an epimorphism of Z[A]-
module Z[A]d -» Xc, and thus an embedding C t—(G”)d, and Kj?3*is embed-
ded in Wp = [(rit/|pOy)]d- Because [F: Q] is uniformly bounded, Wp is a free
Zp-module whose rank is bounded by a constant integer r > 0. Thus the finite
quotient K{?* /Kc,p is a product ofat most r cyclic factors, and thus #kerap is at
most Ar, and #Cokerap is at least BK™" /Kc,p| with B=A~r and p e 6(C,Kg).

We remark that B = A-r isin general a positive real number less than 1.

(2-6) Itremains to point out that SE is ample, and deg” S is always a positive
integer. SE is defined over E and deg” S takes constant value when S varies in
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Ho(V). Combining the above results we get

deg*(V) > #7t0(V)deg” S > #7t0(V) > BIKclp ™ .pi-

pe6(C,Kc

Note that deg”V is always a positive integer, thus it is greater than 1and the
lower bound in the above inequality, hence the required estimation. 1

The canonical sheaf5£ = if(K) is functorial in the following sense:

Lemma4.1.2. (cf. [KY],Prop.4.2.2) Let(Gi,Xi)c (GX) beapairofShimuradata,
Kc G(Af) a neatcompactopen subgroup.

(1) IfL ¢ G(Af) isa neatcompactopen subgroup such thatg~1Lg c Kforsome
g e G(Af), thenfor the morphism f : MI(G,X) —MK(G,X), [jc, ah] —[x, agK], we
havef *SE£(K) = SE(L) canonically.

(2) LetKi ¢ Gi (Af) be a compactopen subgroup which isalso contained in K|
andty: Mr, (Gi.Xi) -» Mr(G,X) the morphism induced by the inclusion (Gi.Xi) «—
(G,X). Write SE for the canonical line bundle on Mr(G,X), and 5£\ the one on
Mr, (Gi,Xi). Thenfor any closed subvariety Z ¢ Mr, (Gi.Xi), we have degAZ > 0,
where A = ty*SB ®S£”. In particular deg™.%Z = degAZ+deg”™ Z>deg” Z

From the part (2) of this lemma is deduced the estimation in [UY-1]:

Theorem 4.1.3. (cf. [UY-1] Theorem 2.13) Let (Gi.Xi) be a subdatum of(G,X)
withGi =MT(Xi),E the reflexfield o/(G,X), Kc G(Af) a torsionfree compactopen
subgroup, andYL\ = KnGi(Af). LetS be a special subvariety o/Mk(G,X) which is
ageometrically connected componentofthe image o ff: Mr, (Gi,Xi) —Mk(G,X).
Then with respect to the canonical linebundled =_-sfk on Mr(G,X) we have the
estimation

degi?(GalES) > 1i(S)12(S) = CN(logDCl)Nmax{l, B|KMNKGp}

pe8(Cj.K)

as isfound in Prop.4.1.1, where Ci denotes the connected center ofGj, N is a pre-
scribed positive integer, and cm, B are constants determined by the given faithful
representation ofG on M.

Proof. The cardinality of GalE-S is at least that of G a” -S, where Ei =E is the

reflex field of (Gi,Xi). Since K is assumed to be torsion free, /: Mr,(Gi,Xi) —

Mr (G, X) is generically injective, and therefore deg” Gale, -Sisthe same asd e g % GalE1-Z,
where Z is a geometrically connected component of Mr, (Gi,Xi). According to

part (2) of the above lemma, we have

deg” GarS>deg” GalE,-S=d e g %Gale,Z>deg” GalE Z> li (2)I12(2)

with li(Z) and 12(2) as was in the proposition. Here S£\ is the canonical line
bundle on Mr, (Gi,Xi). The constants cn and Bin li and |2 are determined by
G —GLg(M) as was shown in the lemma, which finishes the proof. 1
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Apply the above results to the case ofpure special subvarieties inside a mixed
one, we have:

Theorem 4.1.4. LetM —S be afibration ofa mixed Shimura variety over a pure
section, given explicitly as

n:M=MkPY)- S=M(@O)=MAG.X)

where P = W x G is a Levi decomposition, K = Kl\v x Kg a compact open sub-
group o/P(Af) with Kg = FIpKp ¢ G(Af) torsion free. Write Efor the reflexfield
of{P,Y), and 5£ the canonical line bundle on S. Suppose M' is a pure special
subvariety contained in a special section M(u/) for some w e W(Q), correspond-
ing to a connected component of the Shimura variety given by the subdatum
(wGjw~I,w x X), where (Gi,Xi) ¢ (G,X) is a subdatum with MT(Xi) = Gi. Put
Ci to be the connected center o/Gii.
Fix 5£ the canonical line bundle on S, then we have

deg,,.% GalEM' > i (M)IN(M")

with 1i (M');13 (M’) defined via constants cn and B asfollows

« 1i(M% = CN(logDc,)Nfor the prescribed integer N > 0, Dcj the absolute
discriminant ofthe splittingfield ofCy;

. (M;) = maxll.npeA*cjBIK~Kc”rCu/)!}, where KO = KnCi(Af) =
Up KcltP, KM = FIpK* “ the maximal compactopen subgroup ofC\ (Af), Kq (w) =
{ge KCIl: wgw~Ig~Il e KWL= npK Cl(u/)p, and&w(Ci) := 5(Ci,Kg(u/)) is the set
ofrational primes p such thatKcl(w)p C K™* |

Moreover cn and B only depends on the representation G — GLq(M), as was
in the case of Theorem 4.1.3

Proof. We put Kc(itO = {ge Kg : wgw~xg~Il e Kwl = FlIpKci®p. Itis clear that
U/G(Af)w~I n Kw * Kg = wkg{w) w~I. And conjugation by w~I gives the com-
mutative diagram

Mw) - M

1
w~l = X. *

Sw "PL >s

where Sw =M"u,)(G,X) and pr~ :Sw— Sis the projection induced by the
inclusion Kg(u>) ¢ Kg.

Similarly, for a pure special subvariety M' of M contained in M(w), we may
assume that it is is a connected component of some pure Shimura subvariety
given by a datum of the form (wG'w-1,w x Xi) at level wKc{w)w~1for some
pure Shimura subdatum (Gi,Xi) ¢ (G,X) with finite level Kg'. Conjugation by
w~I sends M’ bijectively onto a special subvariety S'inS«,, which is a connected
component of the subvariety in Swassociated to (Gi.Xi) at level Kaiw).
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We calculate degH % (Gain M"). By definition of deg it is equal to
deg*;,,,*"(Galg M") = deg,,.*(GalEM"). Conjugation by w~I shows that it is equal
to degp,.~\(Galg S'). We have seen that pr= Jisisomorphicto g, therefore by
applying the estimation of E.Ullmo and A.Yafaevto S' ¢ S Wwe obtain

degHi?(GalEM") =deg”s (GalES') > cN(logDC)N-max{l, f] B|K"*/Kc'(w)p[}

where C' is the connected center of G', Dc» is the absolute discriminant of C',
Ke(w) = C'(AHNKG(w) = w-1 (wC' w~I (Af)nKwx Kg) w, and A*(C") is the finite
set of rational prime p over which Kciw)p S Ke“ - Onand B remain the same
constants, independent of w and Kg.

It suffices to take li (M") = CN(logDc') and

INM) =max{l, Pl B|KAMNKCu;)p|} 1
pe8(C\)

4.2 Onthe factor 1* (M)

We fix the diagram in the last section:

M(u/) y M
w~i = I\SVN. -A-
ow S

where S' ¢ Swis a connected component of the Shimura subvariety given by a
subdatum (G',X") and M' ¢ M(u>) is isomorphic to S' under the conjugation by
w. Then

degn.A(GalEM") =deg” GalES'> ljiS'jI*CS")

with li = CN(logDc)Nand

12(S") = max{l, BIKg* /Ke(iw)p[}
PeACC)

where AMC') = 8(C',KG(a0) is the set of rational primes that Kc(w)p C Kg“ .

Note that both of these two factors are invariant when S' runs over the set
of C'-special subvarieties in Sw. Moreover li (S') is level free, while I*(S") varies
when w moves in W<Q).

Write J94(S") = llpeAMC) h withh =B |K /K C(m/)p|. Recall that KC{w)p =
{g£Kc:wgw_1g~I £ Kn} Let KwMp be the subgroup ofW(Qp) generated by
Kw.p and w. Note that in the general case, this group is not necessarily commu-
tative.
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Lemma4.2.1. (I)Kw[w]p isa compact open subgroup in W<Q);

(2) WitlWith respect to the action ofYLc'.p on W(Qp)/Kw,p, K e(w)p is the isotropy
subgroup inKclPof(w~l mod Kw,p), contained in the stabilizer o/Kw tw] p/Kw,P>
where Kw[w]p is the subgroup ofW (Qp) generated by Kw,p and w ;

Proof. (1) IfWis abelian, i.e. Wequals U orV, then clearly the reduction modulo
Kw,p of w generated a finite torsion subgroup of W(QP)/Kw,p.

In general W is non-commutative, and it is determined by the alternating
bi-linear map \|/:V xV -* U which comes from the Lie bracket of LieW, and
the group laws is written as (ui, Vi)(uz, vz) = (ui + «2+W v v2), \\ +vz), where
the the notion ofbracket (m, v) identifies W with the product of Q-varieties U xV
(notas Q-groups). We equip U(QP) xV(Qp) with the metric defined by the p-adic
norms on U(Qp) and V(QP) respectively.

Assume w = (m, V) e W(QP). To show that Kw(w]p is compact, it suffices to
give show that there exists compact open subgroups Kwresp. Ky in U(QP) resp.
V(QP) such thatany {u', V') eKw[w]p is given by some u' e Kjj and V' e Ky.

First consider the reduction modulo U(Qp) of Kwiu'lp. Then its image in
V(Qp) is KvMp, which is compact because its reduction modulo Ky,p is a finite
torsion group. We thus get a upper bound A for the upper bound of the p-adic
norm of v' e V(Qp) for (ul v') e Kwli*lp- It remains to take Ky to be the elements
in V(Qp) of p-adic norm at most A.

Then we consider K'=Un Kwl”*lp, and we show that K'/Ku.p is finite. Con-
sider (u+ U, v+ v]) e Kwlwlp for i = 1,2, with w = (u,Vv) and (u-, W) e Kw =
Ky x Ky. Then by the definition of the group law,

(u+ ML, V+ Vi)y{u+ Uz,V+ V2) = 2m + Ml + M2+ \|/(I’+ V\,V+ Vz),2V+Vi + V2).

Since \[/(i/ +vi,v +vz) =V|/(y, v2- Vi) +/(i>i + v2) by the anti-commutativity of
\|/, and that vf/(i>i, v2) e Ko for any Vi, v2e Ky, we deduce that K'/Ku is generated
by elements of the form mu +\j/{nv, v') mod Ku with v' £ Ky and m,ne Z. v
mod Ky is a torsion element in V(QP)/Ky, thus  (nv,v') modKu:neZ, v'e
Ky} is finite, hence the finiteness of K'/Ku and thus the compactness of K', and
we simply take Ky = K'.
Combine the two we get the compactness of Kwjw>]p.
(2) By Bydefinition, forany ge Key(u;)p we have wgw~1g~i eKw.p» thus g(w~X) =
gw~xg~1 e w~IKw.p, namely g fixes the class (U>1 modK\fiP. In particular g sta-
bilizes the compactopen subgroup generated by Kw.p and w (or equivalently, by

Kw,p and w-1).
Similarly, it is easy to show that K* x{w)p is the isotropy subgroup in the
stabilizer of Kw[w] p with respect to the action of Kg!“ on W(Qp). 1

Lemma4.2.2. ForJ2 (S) = PlpeA**p as mentioned above, there exists a uniform
constantc, independentofw andQ!, such thatifp e A,,,(C", then

\p =B\K%™/Ka {w)p\>cp
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and thusJg'(S) > F1*a”o cp and

1?7'(S") >max{l, F[ cp.
pe&,, &)

Proof, (i) We first consider the commutative case, where W equals either U or
V or a direct sum U ©V given by the trivial extension. In this case the quotient
W(Qp)/Kw,p is a commutative torsion group.

Write V = W(QP), then Vis a finite dimensional Q-vector space ofdimension
d, containing L= Kwpas a lattice (i.e. compact open subgroup). Li = L[w] is the
lattice generated by L and w, and Li/L is a finite p-group, because it is a finite
subgroup of V/L = (Qp/Zp)d . H = Cqg is a Qp-torus acting on V, Hmax = Kg*“
the maximal compact open subgroup of H(Qp), H = Ke.p an open subgroup of
Hmax stabilizing L, and H(u/) = {he H :w - g{w) £ L} is the isotropy subgroup of
(w mod L) with respect to the action of H on V/L.

Write Stabn(Li) for the stabilizer in H of Li with respect to the action ofH on
V. Then H(w) ¢ StabH(L") ¢ H. We want to show that for p e A,,, [Hmax/H(u/)| >

- 1.
P Ifp £6,, i.e. HC Hmax, then the Proposition 4.3.9 of [EY] shows that |[Hmax/H (u/)| >
[H*nax/H| > p - I .

Ifpisin Aw-5,, such that H(u/) C Stabn(Li), then the orbitof (w mod Kw.p)
in Li/L under Stabn(Li) is a nontrivial subgroup, at least of order p because in
this case Li/Lis a non-trivial finite p-group.

Finally, itremains the case where p isin A ,,-8,, such that H(u/) = Stabn(Li) C
H = Hmax. Because Li ¢ Vs a lattice, again we apply 4.3.9 of [EY] and we see that
|[Hmax/H (u/)| > |H/StabH(Li)| > p - 1.

g
Combining the three cases we see that\ p =B|Hmax/H(u/)| > B(p - 1) > —p,
and ¢ = |B(< 1) suffices for the lemma.

(i) We then consider the non-commutative case, where W is an extension
of Vby U via some non-trivial anti-symmetric bi-linear map \j/:VxV —U. We
write w = (u,v) for the fixed identification W = U x V (as Q-varieties instead of
Q-groups). Note that for g e Gwe have g((u, v)) = (g(u), g(v)).

Write W = W(Qp), V =V(QP), and U = U(Qp). We have lattices Ly = Ky,pc V,
Lu = KolP <U, and compact open subgroup Lw = Kw,p = LuLy. Adding w we
getcompact open subgroup Lw[w] =Kw[w] p, lattices Ly [w] which is generated
by Land w modU, Lut"] := UnKw[w]p, and we have Lw [w] = L\j[w]Lv[w].
We also write H"1I* = Kg”, H=KC,p, H(u;) = Kc (w)p.

We put

Hy(il) :={gEH:wgw"g'1£Ly]

where w =v =(w mod U) £V. Similar to (i), we see that Hy(u>) is the isotropy
subgroup of (w mod Ly) with respect to the action of H on V/Ly, and we have
the chain H(u>) cHy(w) cH ¢ H max.
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Forp e 8,, itisknown that |[Hmax/H(u/)| > |[Hmax/H| > p - 1. Therefore in the
remaining part we may assume thatp e A,, - 6,,, i.e. H(«/)CH = Hmax

e If Hv(u/) C H, then by the same arguments as in (i) we conclude that
IHhnm/Hiu)! > IHAHVM | >p~ 1.

e If H(u/) Q Hv(w) = H, then H fixes {w modLy) in V/Ly, and g(w) =
g{u, v) = (g(u),g(v)) = (g(u), v) modLw- It suffices to estimate the orbit of u
mod Lu in U/Ly under H. Thisisatleast p-1, asisagain reduced to (i). We thus
conclude that [Hmax/H(u/)| > p - 1

Hence in the general case we still have \ p > cp by puttingc= |B(< 1). 1

This lemma leads us to the following

Proposition4.2.3. Fixn:M -* Sasabove. Let{Mn)n be a sequence o fpure special
subvarieties inM withMn <=M(wn)forsome wn e W(Q), such thatdegn."Ga\E M,, <
Cforsome constantC > 0 independentofn. Then

(1) the sequence (M,,),, is weakly homogeneous, and consequently, theZariski
closure ofthe union UnMn is weakly special;

(2) the sequence oftest invariants r n(wn) isfinite.

Proof. (1) We may assume that M,, ¢ M(w,,) is the connected component ofa
pure Shimura subvariety given by a pure subdatum ofthe form (WnGnW"1, wnx
X,,). Then 7i(Mn) = S,, ¢ Sisaconnected componentofthe pure Shimuravariety
given by the subdatum (G,,,Xn). Write Cn for the connected center of G,,. Then
by putting bn = deg,,.*(Galg M,,) and an = deg,,.*>(GalES,,) = deg®iGalE S,,) we
have

&,,>Tn(u/n) = CN(logD,,)N-max{l, f] BIK{?** IKQt{wn)p\}

fln >Tn(0) = CN(logD,,)Nmax{l( f] B|Kj?* /Kc,.,p[}
Pe6n

where D,, is the absolute discriminant of the splitting field of Cn, 8n the set of
rational primes p such that Kc,,,p C Kcmﬁxp and An(wn) the set of rational primes
p such that KCn(w,,)p C K™ |

Clearly we have 8nc An. Note that

[KE® [KCn(u/,,)p| = IKAKc plIK e Mp/KeJuripl.

Consider the intermediate quantities J,,(u;n) = |[K~**/K cn(wn)pl andj,,(0) = |K|?* /Kc,,(P),
then

77 7 =N IKe,PKen(~)Px 1 BIKA/K on(us,)pl.

Jntul pesn peAn-Sn

Since forpe A,, - 8,, we have Kc,,,p = KC np’ the quotient is also written as

¥\T:n iKenP/Ken(w,,)p\x n B|KcniP/Kcn(«;,,)pl.
peA,,-5,,

JnW peSn
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Because the constant Bis taken from ]0,1[, Jn(wn) might fail to exceed J,,(0).

We follow the strategy of E.Ullmo and A.Yafaev. Suppose that the sequence
(bn) is bounded. Since bn > CN(logD,,)N, we deduce that (logD,,) is bounded.
Therefore {D,.} is finite, and only finitely many number fields occur as the split-
ting field ofthe C,,5. We thus assume for simplicity that the C,,5 are ofcommon
splitting field F, and logD,, is constant.

Hence the sequence c,, = \;N"l Mn) = npeAnBIK*“rf /Kc,,(wwp]| is bounded,
and therefore the sequence

dn FI cp<cn

pebn
is bounded. We thus deduce that U» A,, is finite. In particular Un(An- 6,) is
finite. Assume Un(An- 8,,) is of cardinal m (independent of n). Then ——"2 >

Jn(0
Bm, and J,,(0) < B m]n{wn) for all n. Consequently the sequence of test i%\)ari-

ants (t,,(0)), for (S,, ¢ S),, isbounded, and the theorem of E.Ullmo and A.Yafaev
show that (Sw),, is weakly homogeneous. Because the notion of weak homo-
geneity only depends on the image under jt : M —S, we conclude that the origi-
nal sequence (M,,),, is weakly homogeneous. Thus the Zariski closure of UnMn
is weakly special, essentially reduced to the ergodic arguments.

(2) Since Tn{wn) isbounded, the sequence

Tn(u;,,) = cN(logD,,)N 11 B|Kg~/Kc.(wB)p|
B,

where A,, = AWNCn), is bounded from above. As we have seen, only finitely
many number fields occur as the splitting fields ofthe Q-tori C,,%, and the union
Un Anisbounded. We may thus assume that the C,,5 have the common splitting
field F, and we write A= UnA,, for the finite set of primes, of cardinality d.

We show that the sequence (t',.{wn))n is finite. As F is the common split-
ting field, the first factor CN(logD,,)Nis fixed all through, while the second factor
I1PeABIK®" /Kc,,(u/n)p| is apositive rational numbervarying in Z-(Brf), because

Eis known to be a positive integer. The upper bound for t,,(wn) implies that the

r'n(wn)s, and the second factors, are bounded from above. Hence the second
factors are finite, because they are a priori bounded from below by positivity,
and are discrete in the set Z(B)d.

This leads to the finiteness of (th{wn))n, hence that of {rn(wn))n, because
the later also lies in Z(B)d. I

Remark 4.2.4. Note that from the uniform bound of deg”.*iGale M,,) we have
not deduced the finiteness of {wn mod Kw:neN }c W(Af)/Kw- For example, it
might happens that the Q-torus C,, happens to fix wn via the action C,, —G —
Aut<j(W). It seems hopeful to establish such results under additional conditions
on the action of Gon W and the distribution of wnin W(Af). However we are not
yet ready for a detailed investigation in this direction, besides, it is not yet clear
how to characterize the contribution of the relatively ample line bundle 7 to the

91



degrees. Much remains to be done to reach an exact formulation so as to adapt
the approach of B.Klingler and A.Yafaev into the mixed case.

4.3 The case of mixed special subvarieties

We have been talking about the test invariant of a pure special subvariety in a
given mixed Shimura variety M. We proceed to adapt this notion to general spe-
cial subvarieties, motivated by the approach to Manin-Mumford conjecture pre-
sented in [RU].

Recall that the Manin-Mumford conjecture studies the Zariski closure of a
sequence oftorsion subvarieties Tn = an+An inside a given abelian variety A (of
characteristic zero), where A,, are abelian subvarieties of Aand an are torsion
points. If the torsion orders of the an’ are bounded when n varies, namely in
the case where \an)n is finite, then we are reduced to the case where T,, = An,
and a little harmonic analysis on A(C)an shows that the archimedean closure
of UnAn(C)an is a closed complex subgroup of A(C)an which underlies some
abelian subvariety, and thus the archimedean/Zariski closure of U«T,, is a finite
union of torsion subvarieties.

We see that the equidistribution of a sequence of torsion subvarieties is im-
mediate as long as the "minimal torsion orders" ofthese varieties are uniformly
bounded. Rather, we could define the test invariant of a torsion subvariety T in
a given abelian variety A to be the minimal torsion order of a, a running over
the torsion points of Asuch that T can be written in the form T = a + A’ for some
abelian subvariety A' ¢ A. Then the above paragraph reads: if (T,,),, isa sequence
oftorsion subvarieties whose test invariant is uniformly bounded, then the clo-
sure of U«Tnis a finite union of torsion subvarieties.

Inspired by this phenomenon, we put the following:

Definition 4.3.1. Let M —S be a mixed Shimura variety fibred over a pure sec-
tion, defined by data (P, Y) — (G,X) with compact open subgroups K= Kyx Kg =
n pKp,and if the Baily-Borel line bundle on S. For a special subvariety M" in M,
we define the test invariant of M' to be

t (M) = inf{x(S"):S' being any maximal pure special subvariety of M}

where the phrase maximal pure special subvariety can be replaced by special
sections of M".

Proposition 4.3.2. Let(M,,)n be a sequence ofspecial subvarieties o/M such that
the sequence oftest invariants (t(M,,)),, is boudnded when n varies. Then (M,,)n
is weakly homogeneous, namely there existsfinitely many Q-toriC-'s(i = 1,...,m)
such that each Mn is C,--specialfor some i. Consequently, the Zariski closure of
Un M,, isafinite union o/C,- -special subvarieties.
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Proof. Asisassumed, there exists a constant C such that for any n, infs,, t(S,,) <
C, S,, running through the maximal pure special subvarieties inside M,,. In par-
ticular we get a sequence of special subvarieties (S,,) (with S,, ¢ Mn) such that
t(S,,) < Cforall n. By Proposition 4.2.3, we see that the sequence (S,,),, is weakly
homogeneous, i.e. there exists finitely many Q-tori C/5 (/= 1,...,m) in G such
that each S,, is Cf-special for some i.

But S,, is a maximal pure special subvariety of M,, and tt(M,,) = jt(S,,), n be-
ing the canonical projection M —S defined by P —G. In particular, M,, is also
C,-special justas Snis. We deduce that (M,,),, isweakly homogeneous itself, and
the closure of Un mr. is weakly special. 1
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Chapter 5

Further perspectives

In this last part we discuss generalizations of the Manin-Mumford conjecture
and their relations with the Andr6-Oort conjecture.

5.1 Motivation

From the results in Chapter 3we immediately get the following

Theorem 5.1.1 (cf. Theorem 3.5.3, Corollary 3.5.4). Let(P,Y) beamixedShimura
datum, with a pure section (G,X). Denote by C the connected center ofG. Write
Yr forafixed connected componentofthe real partofY, and considerM =T\YRa
connected S-space associated to some torsionfree arithmetic subgroup Tc P(R)+,
and M = T\Y+ the corresponding connected mixed Shimura variety.

Let (Pn»Y,,),, be a sequence of C-special subdata, Mn = N\IT+ resp. M,, =
r\rY+ the correspondingC-special S-subspaces resp. C-special subvarieties.

(1) The archimedean closure of\Jn 3Wis afinite union ofC-special subspaces.
Moreover, if we denote by |i,, the canonical probability measure on M associated
to M,,, then (Ji,,) always admits a convergentsubsequence. |fwe assumefurther
that (Mn),, is strict, i.e. Mnp £|v| forn large enough, M'C M beingan arbitrary
special S-subspace, then (Ji,,),, converges to the canonical probability measure p
onM.

(2) TheZariski closure of\JnM,, is afinite union ofC-special subvarieties.

We remark that the C-special subvarieties are understood to be of positive
dimensions.

Proof. From 3.5.3 and 3.5.4, it suffices to treat the case where (Mn)n is strict.
If (Jin)n does not converge to p, then by the compactness of IKCCM) (as is in
3.5.3), there is some convergent subsequence (linmm whose limitis p'~ p, with
support M' C M. In particular we have Supp p,,mc M' for m large enough, con-
tradicting the assumption that (Ji,,) is strict. Thus (Ji,,) converges to p. 1
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We then apply the theorem to special sections of a mixed Shimura variety
of Kuga type. Recall that a mixed Shimura datum of Kuga type is of the form
P,Y) = (Vx GV(R) x X) with (G,X) a pure section of connected component C,
such that the weight -2 unipotent part of P is trivial. Note that in this case the
S-space MK(P,Y) is exactly the real analytic space underlying the complex locus
of the mixed Shimura variety Mk(P,Y). In particular, if (M,,),, is a sequence of
C-special subvarieties in Mk(P,Y), then the archimedean closure of|J«M,,(C)an
is a finite union of the complex loci of C-special subvarieties. It is understood
here that S, hence each M(vn), is of positive dimension.

We work with a connected mixed Shimura variety of Kuga type whose com-
plex locus is of the form M = r\Y +, where r = Iy x Tc for some (torsion free)
arithmetic subgroups 1V ¢ V(Q) and Tq <<G(Q)+. Then the canonical morphism
induced by the reduction modulo Vn :M-)» S=1g\X +is naturally an abelian S-
scheme. Take (vn)nasequence in V(Q), we have C-special subdata (vnGv~I, vnx
X), and the corresponding special sections M(i/,,) = r\r(t>,, xX+). All ofthem are
C-special, and by the theorem the Zariski closure of Un M(yn) is a finite union of
C-special subvarieties. Let M' be one of the component, then the Mumford-
Tate group P' of M' contains some VnGv”1, and the reduction modulo V gives
Tt(P) = G. That means P' =V x (v'Gv'~l) for some (G-stable) Q-vector sub-
space V cV and v'e V(Q), and M' can be viewed as the abelian S-subscheme
NIV (R) x X "translated by" a special section M(i/), which is analogue to the
classical Manin-Mumford conjecture. Here we have abused the term "translated
by": actually special sections are not sections, and we can neither add them nor
translate by them.

We summarize the above discussion as the following:

Corollary 5.1.2. Let M = T\Y+ be a connected mixed Shimura variety of Kuga
type defined by some datum (P,Y) = (VX G,V(R) x X), with T =1y x Tg. Then
7 :M—S = rGX+ is an abelian S-scheme. Moreover if(M (vn))n is a sequence o f
special sections ofn indexed by vn e V(Q), then the Zariski closure o/UnM(i'n) is
afinite union ofabelian S-subschemes "translated by*’special sections, namely a
finite union ofspecial subvarieties oftheform r\rY/+ whereY' comesfrom some
subdatum oftheform (P',Y") = (V' x (i/Gi/_1), (V'(R) + V') x X+).

And of course we can refine the Zariski closure by archimedean closure (of
the complex loci).

In shortwe have shown a relative version ofthe Manin-Mumford conjecture:
the Zariski closure of a sequence of (special) torsion sections is a finite union
of abelian subschemes "translated by" special sections. In the following we es-
tablish an algebraic version of the above corollary, without restriction to the
framework of mixed Shimura varieties. The main idea is to extend the Manin-
Mumford conjecture over the generic fiber to the case of abelian schemes.
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5.2 Prerequisites on abelian schemes

We collect here some standard materials on abelian schemes.

Definition 5.2.1. (cf. [GIT] Chap.6, Definition 6.1) (1) Over a base scheme S,
an abelian S-scheme is a group S-scheme / :A—Swhich is proper, smooth, of
connected geometric fibers. Wewrite es : S—Afor the neutral section, is : A—A
for the inverse map, and ms :AxsA-* Afor the multiplication.

Consequentto the rigidity lemma (cf. [GIT] Chap.6, Prop.6.1, Cor.6.5, Cor.6.6),
an abelian S-scheme is a commutative S-group, and the S-group law is unique
with respect to the neutral section. We thus always write the group law addi-
tively.

We assume for simplicity that an abelian S-scheme is of some fixed relative
dimension g >0.

(2) Ahomomorphism between abelian S-schemes \|/ : Ai -} A2 is an isogeny
ifitis an epimorphism of S-group with finite kernel.

(3) The endomorphism algebra of an abelian S-scheme / :A-* S is the set
of homomorphism of S-groups A -» A, denoted as Ends(A). The isogeneous-
endomorphism algebra is the Q-algebra Q ®z Ends (A), denoted as Endg (A).

The endomorphism sheaf of an abelian S-scheme A —S is the étale sheaf
(U —S) —Endu(Au), denoted as Ends (A). The isogeneous-endomorphism
sheafof A-* Sis the étale sheaf (U —S) —End”iAu), denoted as Endg (A).

Définition-Proposition 5.2.2 (Torsion sections). Fix/ : A —S an abelian S-
scheme of relative dimension g >0.

(1) Let N be a positive integer, and [N] : A-* Alis raising to the N-th power
a <Na (written additively). Then A[N] := Ker[N] is a finite flat S-group.

Asectiona :S-* Aisatorsion section of/ :A-* Sifitiskilled by some N > 0.
Locally for the fp p f topology, A[N] splits as copies ofdisjoint torsion sections of
A—=S,

If moreover N is invertible over S, then A[N] is étale over S, locally free of
rank N2,

(2) Let p be a rational prime. The p°°-torsion subgroup of / :A—S is the
union (JnM pn]eThe integral Tate module of/ at p isthe Zps-module lim A[pn],
denoted as Tp(A). The Tate module of/ atp is T° (A) := QPis ®zps Tp (A).

Note that when p is invertible over S, Tp(A) is étale locally isomorphic to
Z

(3) The total torsion subgroup of/ isthe union u »>oA[N]. The integral Tate
module of / is the Zs-module T(A) := limfJA[N], and the adelic Tate module of
[ isT°(A) = Afs ®2s T (A).

IfSis of characteristic zero, then every rational prime p is invertible over S,
hence T(A) is étale locally isomorphic to Zgg.

Remark5.2.3. When Nisnotinvertible, A[N] is in general not étale, and itmight
fail to be of order N2g: further information is required such as the characteristic
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of the base S, the Newton polygon of the corresponding p-divisible group, etc.
to study the /~-divisible group lim”A[pn] in detail, p being any rational prime
thatis not invertible on S.

Définition-Proposition 5.2.4 (The monodromy representation). We fix/ :A—
S an abelian S-scheme of relative dimension g, and X: Spec(fc) —Sa geometric
point of S. 7i (S, X) denotes the (étale) fundamental group of S at jc.

LetN e Nbe invertible over S. Then/ :A[N] —S is a finite étale S-group. The
action of i (S, J) on A[N]* i.e. the fiber of the covering, is continuous and it pre-
serves the group law. As a resultwe geta continuous representation monN if, x) :
jti (S,x) —GLz/n(A[N]x) of the profinite group ni (S, ) on A[N]

Ifp is arational prime invertible over S, then the inverse limitof (monpn(/, jc)),,
gives acontinuous (integral) p-adic representation monzp(/, X :tti (S, ) =-GLzp(Tp (A)*).
If moreover S is of characteristic zero, then the inverse limit of (monNT/, Jo))n
gives the total monodromy representation mon”(/, X) : Ki(S,Jc) —GL OTiA)*)

From now on we assume that S is of characteristic zero, so as to deduce some
properties for our studies of (mixed) Shimura varieties. (Inthis writing we won't
be concerned with the reduction behavior ofa mixed Shimuravarieties at a finite
prime, and no integral model is needed.) Moreover when speaking ofan abelian
S-scheme we assume that S is geometrically connected and that its fibers are
of common dimension g, and Xis assumed to be the algebraic closure of the
generic pointr) ofS.

One ofthe advantages ofthese assumptions isthat the torsion S-groups A[N]
can be viewed as finite torsion (abelian) sheaves on Sét, and they are equiva-
lently characterized by the corresponding finite discrete ni (S, Jc)-module, namely
the corresponding monodromy representations. The sheaf is constant if and
only ifthe corresponding i (S, Jc)-module is trivial: in our situation A[N] being
constant is equivalent to the fact that A[N] splits into N2?-sections of A -* S,
which is also equivalent to the triviality of the monodromy action monN (/, X).

The main tools in our studies of characteristic zero consists of

(@) (cf. [EGA IV3], Sect.8) the reduction techniques for a finitely presented
morphism over a general base, as is presented in loc.cit, so that the studies ofan
abelian S-scheme A—Siis often reduced to a model Ao —So, namelyA = Sxs0Ao
with So a finite type scheme over <Q

(b)(cf. [SGA 4] Tome 3, Expoée Xl) the GAGA principle: for X a proper C-
scheme, the canonical functor 0 : X~ — X"t is an equivalence of topoi, where
Xgn is the small site of the complex analytic space associated to X(C), Xét the
small étale site of X, and the superscript ~ stands for topos. This generalizes
the classical GAGA a la Serre, which an equivalence between the categories of
coherent sheaves on Xan and Xzar respectively.

We start with
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Lemmab.2.5. Letf :A-) S bean abelian S-scheme ofrelative dimension g. Let
(N,,),, be a sequence ofintegers that tends to infinity as n -* 0o. Then the union
Un A[Nn] is Zariski dense in A.

Proof. The question is purely topological, and we may assume that S is geomet-
rically integral.

Step O: the case where S = SpecC.

This is an easy consequence of the complex uniformization of an abelian
variety f: A~* SpecC, i.e. Aanis isomrphic to the quotient of the tangent space
at the origin TanoA by the fundamental group Jti(Aan) which is identified with
a lattice in TanoA. Moreover we can show that the averaged Dirac measure on
A[N,,] converges to the Haar measure on the compact complex Lie group Ane
which is among the first examples of equidistribution of special points.

Step 1: the case where S = SpecF for some field F of characteristic zero.

Byour reduction (a), we may assume that Fis of finite transcendental degree
over <G hence we are reduced to the case that F is embedded in C. The torsion
points of A are all defined over Fac ¢ C, and the archimedean density in Ac,an
implies the Zariski density in Ap«, hence the Zariski density in A,

Step 2:the case where S is geometrically integral.

Write r) = SpecF for the generic point of S. Then A[N,,]n is Zariski dense in
A[N,,], and the Zariski UWA[N,,]nis Zariski dense inU«[An]. By Step 1we see that

ar
UnA[N,,]Jn is Zariski dense in An, therefore Anis contained in X = UNA[N;] .
Now that Anis dense open in Abecause of the density of g in S, we have X= A

5.3 Generalized Manin-Mumford conjecture: the uniform
case

The Manin-Mumford conjecture was originally raised for abelian varieties over
C. The generalization to an arbitrary base of characteristic zero is immediate
after the preliminaries in the last section.

We work with abelian S-schemes / : A—S over a base S of characteristic
zero. Since we are mainly concerned with the Zariski closures (in the underlying
topological space), we may assume that S is geometrically integral. Let Xbe a
geometric point lying above the generic point n of S (e.g. the algebraic closure
ofr)).

In characteristic zero we have the total monodromy representation

mon2(/,i): i(S,i) —GL2(T(A)i).

The kernel ofmon” (/, X)isan invariant subgroup ofii (S, Jc), which corresponds
to a connected étale covering S —S. Write / :A-* S for the base change § *sf>
pr:S—Sthe covering map, and Xa lifting of Xinto S.
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It is clear that Jti (S, jc) acts on each A[N]* trivially, and that A[N] splits into
N2g copies of torsion sections, g being the relative dimension of A—S. In fact
it suffices to consider the commutative diagram, each square ofwhom is carte-
sian:

AN - AN PN AN
n n n
AoV g PN A
f fu f
I o9 \J PrN i
S e — Sn s )'S

where prN: Sn — S is the Galois covering corresponding to the kernel of
monN (/, jc): Hi(S, jo) =+ GL(z/n)(A[N]*), and /n :An “* Sn is the base change of
/ by prN. Because Sn — S is an Galois covering, S being geometrically con-
nected, we deduce that Sn is also geometrically connected. Let jQNbe a geomet-
ric point of Sn lifting jc, then  (Sn, jJON) is identified with KermonN (/, jc) canon-
ically. From the commutative diagram

7ti(S,i)---- — i-niiS.i)
mon”t/.Jc) j moriN(/,x)
GL2 (T(A)jc) -J22ilfcLz/N(A[N]i )

we geta canonical epimorphism Ker(mon” (/, jc)) -» Ker(monN (/, jc)), which means
S —S factors through pr':S—Sn- Consequently for any lifting jcof jcin S, the
action of ji(S, jo) on A[N]i is trivial, and A[N]* is a disjoint union of N2g copies of
8, just as the case for An -* Sn.

It is also clear from the construction that S = limfJSn, where S” is the same
as above, namely the Galois covering corresponding to KermonN(/, jc). We have
seen that each Sn is geometrically integral, and so it is with S.

Definition 5.3.1. Let/: A—Sbe as above.

(1) A special section of Ais the image of the composition S A b A for
some torsion section t of /. Note that we regard it as a closed S-subscheme of
A. Write S(i) for the image in A, then pr-1(S(i)) ¢ Ais stable under the covering
group Auts(S)(S tti (S, *)).

(2) A special S-subscheme of/ is the image ofthe composition B A pr»A
where B¢ Ais an S-subscheme of the form ii + Ai, where Ai is some abelian
S-subscheme of A, and ?i+ means translation in A by a torsion section t\ of/.
Write B for the image in Aof Bunder pr, then, similar to (1), we have pr-1(B) is
stable under the covering group Auts (S).

(3) Aweakly special S-subscheme of Ais defined to be a finite union of spe-
cial S-subschemes.
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Remark 5.3.2. Although we define special sections via the image from the base
change A — S by the universal covering, it is easy to see that we could have
worked with some finite covering. In fact, consider T ¢ A a special section de-
fined by a section t of/ :A—S: let N be the torsion order of t, then t is fixed by
the open subgroup KermonNT/, jo) ¢ 7ti (S, jc), and thus by faithfully flat descent
t is defined over S' = Sy the Galois covering corresponding to KermonN (/,*)>
namely for some section t' of /' :A' = S' xs A—S' contained in A[N] we have
t = pr*t', where pr' is the canonical projection S—S'. Write Gal(S'/S) for the
covering group of S' over S, then the Gal(S'/S)-orbit of t' is Jti(S,Jc)-invariant,
hence by descent theory it equals S' xs Tn for some S-subscheme Tn c S. Itis
easy to show that Tn isjust the special section T defined by t, or equivelently, by
f'. In particular, T —Sis a finite étale covering.

We start with the case where the monodromy representation is trivial, i.e. all
the torsion sections already exist over S.

Lemmab5.3.3. Letf :A->S be an abelian S-scheme such thatS =S, i.e. the
fundamental group acts trivially on every torsion S-subgroup ofA. Write t]for
the generic point ofS. Foran S-subscheme T ¢ A, we have its specialization atr\:
spn(T):=nxsTcAn.

(1) The map spn: f— hestablishes a bijectionfrom Tor(A) to Tor(An), where
Tor(A) is the setoftorsion sections o ff : A—S, and Tor(An) the set oftorsion sec-
tions (torsion n-points) o/An. Moreover it preserves the group structure, hence an
isomorphism ofabelian groups, where Tor(A) ¢ A(S) is endowed with the canon-
icalgroup structure.

(2) Put&{A) to be the setofabelian S-subschemes ofA, and ~(An) the setof
abelian subvarieties o/An. Then spn:B>-=Bn establishes a bijectionfrom &(A) to
AN(AN).

(3) The étale sheavesEnd” (T(A)) and End”~f (T°(A)), are constantsheaves on
Sét- Consequently the specialization induces thefollowing isomorphisms, which
preserve the corresponding algebraic structures (modules, rings, etc.):

(3-1) Tate modules: T(A) T(An) andI°(A) T°(AN);
(3-2) endomorphism ofTate modules: End (T (&) ~=*EndA(T (An)) and
End™Ms(T°(A)) * End® (T°(An)):

Proof. Itis clear that the spnin (1) and in (2) are both injective, and that they
both preserve the group structures. We then verify the surjectivity.

(1) Note that we have assume S =S. Thus for every 0 < N e N, A[N] splits
into a disjoint union of N2? sections of / : A—S. Specialized at g they become
N2? sections of/n:An—rg Note that the rank An[N] over r| equals N2*, thus the
injectivity of spnimplies sujectivity.

Because N is arbitrary, we get the bijectivity of spn: Tor(A) —Tor(An).

(2) Let B' e & (An) be an abelian subvariety. We want to find some A'e *(A)
such that An= B".
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Consider Tor(B") ¢ Tor(An). Set T = sp“1(Tor(B")) ¢ Tor(A), and put A' to be
the Zariski (schematic) closure of T in A. This is a closed S-subscheme of A,

Tor(B') is stable under the group operations: neutral section, inverse, multi-
plication. Now that spn preserves the group structure, we see that T ¢ Tor(A) is
stable under the group operations. Taking Zariski closure we conclude that A" is
a closed S-subgroup of/: A—S.

We then show that the composition /": A’ *—-ALS is smooth. It suffices to
show that/': A'-) Sisflatand smooth along each fibers.

The smoothness along fibers is immediate. In fact, let s be a geometric point
of S, and the specialization at s gives Tor(A) — 1 Tor(A5 and &{A) ~(As). The
triviality of the action of jti(S, s) shows that sps: Tor(A) — Tor(A5) is an isomor-
phism ofabelian groups. Thus
spjispACToriB")) ¢ Tor(As) is a subgroup, whose Zariske closure equals As =

acteristic zero is automatically smooth. Apply this fact to A's over s, we wee that
/': A'-* Sis smooth at s, sbeing an arbitrary geometric point of S.

It remains to show the flatness. We may apply the reduction (a) and reduce
to the case where S is a finite type fc-scheme for some field k of characteristic
zero. Consider the commutative diagram

A / *s

SpecA

where A' and S are finite type over Speck. Recall the flatness criterion along
the fibers: firstly A' and S are both flat over Spec k; secondly, for any pointse S,
the fiber A's—s is flat because this is again a scheme over a field. We conclude
that A’ -* Sis flat, hence smooth because of the fiberwise smoothness.

(3) Firskirst consider the étale sheaf U «* Au[N] = A[N]Ju on S& Note that S
and A[N] splits into N2g disjoint copies of sections of / : A-* S. Thus for any
étale morphism U -* S, Au[N) is a disjoint union of N2g copies of sections of
/u, and A[N] is therefore a constant sheaf, which is also a constant (Z/N)s-
modules, where (Z/N)s is the constant sheaf of value Z/N. Taking limit we get
constant sheaf of Zs-modules T(A) resp. Afs-modules T°(A), and the corre-
sponding sheaves of endomorphisms, namely End¢s(T(A)) resp. End” (T°(A)),
are automatically constant.

Fora constant sheaf F on the geometrically connected base S, the restriction
maps are isomorphisms F(S) — F(U), where U — S is an arbitrary connected
étale map. In particular, let U vary over the connected open subsets of S, the
the inductive limit leads us to the specialization at the generic pointspn:F(S) =
F(r). Replace F by the constant sheaves T(A), T°(A), etc. we get the required
isomorphisms in (3-1), and (3-2). I
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Corollary5.3.4. Forf :A—S =8 asabove, the specialization spn: B—B" estab-
lishes a bijection S(A) -* S(An), where 8(A) resp. S(Ar]) denotes the set o fspecial
S-subschemes ofA, resp. special subvarieties ofAn. It is compatible with transla-
tion by torsion sections: spn(f+ B) = fn+ Bn.

Proof. The proofisacombination of (1) and (2) ofthe lemma. 1

In characteristic zero, the Manin-Mumford can "extend" over a general base,
namely

Proposition5.3.5. Letf :A —S bean abelian S-scheme, and (Bwn a sequence
ofspecial S-subschemes ofA. Then the Zariski closure o/U«Bn in A is weakly
special.

Proof. Bythe reduction from the beginning, we may assume that S is geometri-
cally integral. Bythe density ofthe set ofspecial sections in a special S-subschemes,
we may assume that all the B,,5 are special sections of/.

(1) The case where S=S:

In this case special sections are the same as torsion sections. Let {tn)nbe the
given set of torsion sections, and Xthe Zariski closure of Un tne

Letr] = SpecF be the generic point of S (geometrically integral). In Corollary
1.3.4 we have seen the bijection spn:S(A) —S(An). Let A' be the Zariski closure
of Untnin A. Then A, = spn(A) equals the Zariski closure of Un *nr* Apply the
Manin-Mumford conjecture for abelian varieties over field of characteristic zero
(actually atheorem), we conclude that Aj, is a weakly special subvariety of An, i.e.
a finite union of torsion subvarieties of An. Let A' = Uj A, be the decomposition
into finitely many irreducible S-subschemes, with finiteness followed from the
finite presentation of A' over S, then Uj A, is a decomposition into irreducible
subvarieties of An. A'being weakly special implies thateach A, is special, hence
A'. =sp-1{Air]) is special, and thus A" is weakly special.

(2) The general case:

In general we put x = fj = SpecFac for g the generic point of S, and consider
the étale Galois covering pr:§ —Sand its pull-back pr:A-» A. Then/ =pr*/ :
A—S s an abelian S-scheme with all the torsion sections defined over S.

Let (t,,)nbe a sequence of special sections o f/: A—S. We may assume that
tn = pr(f,,) for some special section tnof/ :A—S. The Zariski closure of Un tn
in A denoted by A' is weakly special, as we have seen in (1). Write A' = U/A". a
finite union of special S-subschemes. pr is a covering, and in particular a closed
map, thus pr(A’) = A'is closed and equals the Zariski closure of Un tn. It is clear
that A' = Uz pr(A'f) is weakly special. 1

Remark5.3.6. (1) Note that in (2) ofthe proposition above, pr-1(pr(fn) is stable
under tti(S,x) (with x =rj). Say tnis of order N, i.e. N is the minimal positive
integer such that tn is killed by N. Then the subgroup K(N) := Ker(7Ti(S,Jc) —
GL(z/n)s(A[ND fixes tn, and pr_1(pr(i,,) is the finite set of the orbit of tn under
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ni(S,Jc)/K(N). The orbit descends to an S-subscheme of A[N], which equals
pr(i,,).

This phenomenon is well understood in the case where S = Spec F for some
number field: say the Zariski closure of Untn is defined over F, then it contains
the Galp-orbit of the torsion points. And then the diophantine techniques fol-
lows, as is presented in [Hind] and in [RU].

) By exactly the same arguments, we can deduce the Manin-Mumford con-

jecture for S-torus and semi-abelian S-schemes by reduction to the generic fiber,
under the assumption that S is of characteristic zero.

We have shown the constancy of the étale sheaves T(A) and End” (T(A)) in
the case where S =S. One might thus expect the following approach to work:
the sheaf of endormorphisms Ends(A) (U  Endu(Au)) is a constant subsheaf
of End”Cir(A)), and the specialization at 4 gives a bijection between Ends (A)
and Endn(Ar,). An abelian subvariety B' of A,, can be realized as the kernel of
some endomorphism \|/ of An. We lift\|/ to some endomorphism ¥ of Adefined
over S, then the kernel of WP should be the unique abelian S-subscheme which
specializes to B' = Ker\)/.

However, as is kindly pointed out by Prof.M.Raynaud, the subsheaf Ends (A)
of End”s(T(A)) is not necessarily constant, even when S =S. He also communi-
cated to us the following remedy due to A.Grothendieck:

Proposition 5.3.7. (1) (cf. [G] Theoreme) Let S be a locally noetherian integral
scheme over afield of characteristic zero, A, B two abelian S-schemes, £ afixed
rational prime, and ui : Tf(A) — Tf(B) a homomorphism of Tate modules. If
for some points eS the homomorphism U(s comesfrom some homomorphism
ofabelian k{s) -schemes u(s) : A(s) -* B(s), then ue comesfrom some homomor-
phism ofabelian S-schemes u : A— B. Here a homomorphism of Tate module
Tf(A) -» TT(B) issaid to comefrom a homomorphism ofabelian S-schemes A—B
ifitliesin the image ofthe canonicalhomomorphismHoms{A,B) —Homzf(T?(A),

(2)(cf. [G] Corollaire4.2) LetS beaconnected locally noetherian normal scheme
ofcharacteristic zero, U an open subscheme ofS, A an abelian U-scheme, and £
a prime number. Then A extends to an abelian S-scheme A ifand only if TA(A)
is unramified over S, in the sense thatfor every ne N, A[€"] extends to an étale
covering ofS.

The approach weVve just mentioned would work ifthe base is assumed to be
normal. Here we would like to work with the étale covering S instead of S. In this
case S being normal is equivalent to S being normal, as can be verified through
the following observation:

Lemmab5.3.8. LetA bea normalintegral domain, on which afinite group G acts
by automorphisms. Then the subring ofinvariants AGis normal.

(The lemma can be extended to more general schemes, but this version suf-
fices for us.)
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Proof. Write F for the fraction field of A, and E the fraction field of the integral
domain AG(c A). We need to show that AG is integrally closed in E. Take a e
E integral over AG, then it satisfies a equation of the form aN= cqg+ Cia +1ee+
cn-iaN_1, with G all coming from AG. Then a is integral over A, hence lies in A
and invariantunder G, thus it falls into AG. 1

Apply the lemma an arbitrary finite Galois étale covering S' —S, we see that
Sisnormalifand only if S'is normal.

Lemmab.3.9. Letf:A-> Shbean abelian S-scheme, with Sgeometrically integral
ofgenericpointr), such thatS =S. Assumefurther thatS isnormal. Then Ends (A)
isa constantsubsheafofEnd” (T (A)).

Proof. It is clear that Ends (A) is a subsheaf of End”s(T(A)): for any (étale) S-
scheme U, Endu(Au) is naturally embedded in End”u(T(Ay)) because an endo-
morphism is determined by its restriction on the set oftorsion sections.

We proceed to show the constancy. We first prove that for any geometric
point s lying over the generic point r|, the restriction map « : Ends (A) —Ends(As)
is an isomorphism.

« surjectivity: Consider the commutative diagram

Ends (A)------------- } Ends(As)

EndEs(T (A))-----—-- A EndE(T(As))

The vertical arrows are inclusions: an endomorphism of abelian scheme is de-
termined by its restriction on the torsion sections. The horizontal arrow on the
bottom is an isomorphism, due to the constancy we have seen in 5.3.3 (3). Then
by diagram chasing, the theorem of A.Grothendieck, as is quoted in 5.3.7 (1), af-
firms the surjectivity of the horizontal arrow on the top, which is exactly the «
weVe mentioned.
* injeénjectivity: Suppose a e Ker(-r). Then B := Im(fl) is a closed S-subgroup

of Awhose generic fiber is trivial. Its neutral component B° is a connected S-
subgroup of A. By the same arguments we've applied in 5.3.3 (2), we find that B°
is an abelian S-subscheme of A, whose generic fiber is trivial. Apply 5.3.7 (2) to
He—S with S normal, we see that B° is trivial itself. Thus the fibers of B are of
finite type over the residue field with trivial neutral component, hence is finite
and of torsion along each fibers. Consequently B is a torsion S-subgroup of A
which is generically trivial. From the bijectivity of AIN] —AS[N] for all N e N>0
we see that Bis trivial itself. Now that B = Im(a), we conclude that a =0, hence
the injectivity of ¢ : Ends (A) -» Ends(As)

For any connected étale S-scheme U —S, we take s to be some geometric
point lying over the generic point of U (and also over r|). Since S =S (with re-
spect to the abelian S-scheme A-* S), it is easy to see that U = U with respect
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to the abelian U-scheme Au — U, and thus the arguments above implies the
bijectivity of the canonical map Endu(Au) —EndjiAJ, and by functoriality the
transition map Ends (A) -* Endu (Au) is an isomorphism for any U. This leads to
the constancy of Ends (A). 1

The lemma will allow us to realize an abelian S-subscheme of A-» S as the
kernel of some endomorphism 'P e Ends (A). Recall the following

Theorem 5.3.10. (Poincard splitting theorem, cfi[RU] Prop.2.1) Let k be afield,
andX an abelian variety over k. Forany abelian subvariety Y ¢ X, there exists an
abelian subvariety Z ¢ Xsuch that the productmap Y xZ -* X is an isogeny.

LetN be the degree ofthe isogenyY x Z —X, then [N]: X—Xfactors through
Y X Z, which is seen in the composition below

X (Pv”*z) Y x z (Jimz) X

ThenY = Kenl//or\|[/ = iz°Pz e Ends (X).

Wethus give an alternative proofof5.3.3 (2), i.e. the bijectivity ofspn: & (A) —
S' (Aq), under the assumption that S =S is geometrically integral and normal:

5.3.7 (2) has implied that spn:«*A) —”~(An) is injective: an S-subgroup of
Adis trivial as long as it is generically trivial. It remains to show the surjectivity:
for any Be ~(An), find some Ale &[A) such that An= B. According to 5.2.10,
B; = Ker\|/ for some \|/ e Endn(An). Inverting the isomorphic transition map we
have EndqCA®) = Ends (A) which sends \|/ to 'P. Then ¥ , =\//, and by putting
A' = Ker'P we get an abelian S-subscheme Alof A such that An = B. Therefore
spnis surjective.

Remark 5.3.11. From the abelian S-scheme A-*Swe can also consider the
functor ‘Sch°g —Ens, which associates to each S-scheme T the set ofabelian
T-subschemes of At. This functor is actually representable. For the proofwe re-
fer the interested readers to the criterion of representability presented in [Mu].

5.4 Generalized Manin-Mumford conjecture: the non-uniform
case

Up to now we have considered the "uniform” Manin-Mumford conjecture over
a general base (of characteristic zero). It is also reasonable to raise the following
"non-uniform" Manin-Mumford conjecture:

Question 5.4.1. Letf :A-* S bean abelian S-scheme, (Sn)n a sequence ofclosed
subschemes ofS, and T,, a special S,,-subscheme ofthe abelian S,,-scheme An =
S,,XsA. Assume thatUns,, is Zariski dense in S. Then under what condition on
[Sn),, andT,, can one conclude thatthe Zariski closure of\Jn7n in A isa (weakly)
special S-subscheme?
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The André-Oort conjecture for abelian schemes given by mixed Shimura
varieties can be seen as a particular case of the above question: for k : M =
Mk(P,Y) — S = Mkg(G,X) with (G,X) a pure Shimura datum, (P =V X G,Y =
V(K) x X) a mixed one where G acts on the vector space V such that any Jte X
induces on V a rational Hodge structure of type {(-1,0), 0, - 1)}, Kg resp. Ky
is a compact open subgroup of G(Af) resp. of V(Af), and K= Ky x Kg. In this
case n : M —S is an abelian S-scheme. A special subvariety of M is in general a
connected component M' ofa mixed Shimura subvariety given by some datum
of the form (V' x vG 'v', (V'(R) + B x X'), whose image under n is a connected
component S' of the pure subvariety of the datum (G',X") ¢ (G,X). Then M'is a
special S'-subscheme in S' xs M. Assume that we have a sequence (S,,)n of pure
special subvarieties of S with U«Srt Zariski dense in S, and T,, ¢ Snxs M a se-
quence of special Sn-subschemes. Ifthe André-Oort conjecture is true, then the
Zariski closure of UnTn is weakly special, say a finite union Ui M-. Ifji(M,) =S
forall i, then Ui M- is a weakly special S-subscheme.

Definition 5.4.2. Let/ :A-* Sbe an abelian S-scheme. A quasi-special sub-
scheme ofAis defined to be a finite union Ui T swhere T-isa special Ss-subscheme
ofthe abelian S,-scheme S; x8 Afor some subscheme Slc S.

And the question becomes: for (T,,)nasequence ofquasi-special subschemes
of A, does the Zariski closure of U«Tn remains quasi-special?

Proposition 5.4.3. Letf : A—S be an abelian S-scheme of relative dimension
g, where S is geometrically integral ofgeneric pointr|. IfT ¢ A is a closed S-
subscheme, flat over S, with image /(T) a normal subscheme ofS, such thatfor
some2<Ne N wehave {N]Tc T, then T is quasi-special.

Proof. / :A—Sis closed, thus /(T) = S' ¢ Sis closed, and it suffices to show
that T is quasi-special in S'xs A Thus we may assume that/(T) = S. In this case
Sis geometrically integral and normal, and every abelian variety over n extends
to an abelian S-scheme.

It suffices to treat each irreducible component of T, and we assume for sim-
plicity that T is irreducible itself.

As usual, we put tti (S, J to be the fundamental group with respect to jc = fj,
and 8 is the Galois étale covering of S corresponding to the kernel of the mon-
odromy representation Tj (S, jc) -» GL"s(T (A)).

Note that [N] : A—Ais finite hence closed, and [N]T remains a closed sub-
scheme of A. As we have assumed T to be irreducible, [N]JTc T implies [N]T=T
because of the finiteness of [N].

(1) The case where S=S:

T is irreducible and faithfully flat over S. Take generic fiber we get Tn =
spn(T) ¢ An. Clearly Tnremains irreducible, andTn= [N]Tn. Apply [RU] Lemme
3.2 to Tnwe see that Tnis weakly special.

Because Tn is already irreducible, we conclude that it is special, because of
the assumption S=S.
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LetBc Abe the special S-subscheme corresponding to Tnunder spn. Clearly
T ¢ B. Taking Zariski closure of the equality Tn= Br, we get T = B because T is
assumed to be closed in A

(2) The general case:
We have the cartesian diagram

Toshow that T is special, it suffices to showthat T := pr*"1(T) is weakly special
in A. Now that T is faithfully flat over S and that T = [N]T as it is with T, we
conclude from (1) that T is weakly special, which ends the proof. 1

Pure Shimura varieties are always normal. Therefore, by the proposition
above, the Andr6-Oort conjecture for abelian schemes M Sdefined by mixed
Shimura varieties, viewed as a special case of the general question 5.2.9, can be
established if we can prove that the closure in question is stable under the ho-
mothety by some integer N > 1

(To check that a pure Shimura variety is always normal, it suffices to verify
thata pure Shimura variety with torsion free level is normal, and then take quo-
tient by a finite group we get the general case.)

5.4.4 Products and fibrations: further remarks

We mention, quite informally, a few problems that arise in the study ofthe Andre-
Oort-Pink conjecture.

(1) The productstructure remains one ofthe main difficulties in understand-
ing the Andr6-Oort conjecture: suppose thatthe Andre-Oortconjecture is proved
for two pure Shimura varieties Si and S2, what can one say about S = Si x S2? It
is possible that S contains special subvarieties that are not of the form Sj x S" for
special subvarieties S, ¢ S-, i = 1,2. Moreover, the Galois orbit of a special point
s = (51,"2) in S given by special points s-e S-, i = 1,2, does not behave like the
product of the two Galois orbits of si and 52 respectively: rather it looks like a
diagonal part of the product of Gale s\ x Gain «- The consequent estimation of
the intersection degree produces weaker results than waht we had expected.

(2) Another difficulty arises in the fibration of a mixed Shimura variety M
over a pure section S. Say we are in the case of an abelian scheme defined by
jt:M —S. Even if the Andre-Oort conjecture is known for S, modulo the GRH,
with the Manin-Mumford conjecture proved for all the fibers of jt, the argu-
ments of Klingler-Ullmo-Yafaev does not immediately generalize to the mixed
case. The proofin [KYJ via estimation of the degrees of Hecke correspondences
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can be carried over to each special sections M(u>) of M —S, but they are differ-
ent from the restriction of a globally defined Hecke correspondence. This is the
main reason why we proposed our question for quasi-special subschemes ofan
abelian S-subscheme: we want to emphasize that, for the mixed Shimura vari-
eties M — S as above, to show speciality of a subvariety T ¢ M can be reduced
to show that T is stable under some central homothety [N], which reduces the
problem to the uniform Manin-Mumford conjecture.

3 However there also remains a great deal to be refined in our formulation
of the general question 5.2.9. We can easily raise counter-examples as follows.
Consider the product of two abelian varieties B= AxA over C, then the second
projection pr : B—A makes B an abelian A-scheme. Meantime B — SpecC is
also an abelian variety. Consider the diagonal embedding A "B = AXA and
write D for the image. Then D is an abelian subvariety of B (as an abelian C-
scheme), and equals the Zariski closure of the torsion points {tn)n in it. Note
thateach t,, is quasi-special in Bthe abelian A-scheme, but D isin no way quasi-
special in B, when Bis viewed as an abelian A-scheme

To exclude the above phenomenon, it seems necessary to impose more con-
ditions on the subschemes S,, ¢ S in the formulation of our question. Say/ :
A-+Sis principally polarized of relative dimension g >0with level-m structure
for some integer m> 6. Then / corresponds to a morphism S—A g>m and we
have a cartesian diagram

A 00 A
pr
h Agm

where pr is the universal abelian scheme over A ssmcorresponding to the iden-
tity map oTA g<m LetT,, ¢ S,, xsAbe special S,,-subschemes as in Question 5.2.9.
Assume further that (Jn h{Sn) is Zariski dense in h{S), it remains open what con-
ditions we should impose on T,, so as to produce a pulled-back version of the
André-Oort conjecture of Aggm—A gtm.
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