THÈSES DE L'UNIVERSITÉ PARIS-SUD (1971-2012)

XIANGYU LIANG

Ensembles et cônes minimaux de dimension 2 dans les espaces euclidiens, 2010

Thèse numérisée dans le cadre du programme de numérisation de la bibliothèque mathématique Jacques Hadamard - 2016

Mention de copyright :

Les fichiers des textes intégraux sont téléchargeables à titre individuel par l'utilisateur à des fins de recherche, d'étude ou de formation. Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale.

Toute copie ou impression de ce fichier doit contenir la présente page de garde.

No d'ordre: 10060

UNIVERSITÉ PARIS-SUD 11 FACULTÉ DES SCIENCES D'ORSAY

THÈSE

Présentée pour obtenir

LE GRADE DE DOCTEUR EN SCIENCES DE L'UNIVERSITÉ PARIS-SUD XI

Spécialité: Mathématiques

par

Xiangyu LIANG

Ensembles et cônes minimaux de dimension 2 dans les espaces euclidiens

Soutenue le 7 Décembre 2010 devant la Commission d'examen:

M.	Guy DAVID	(Directeur de thèse)
M.	Thierry DE PAUW	(Rapporteur)
Mme.	Françoise DIBOS	(Examinatrice)
M.	Nicola FUSCO	(Rapporteur)
M.	Jean-Pierre KAHANE	(Président du jury)
M.	Filippo SANTAMBROGIO	(Examinateur)

献给我无路无悔的青夏岁月

Remerciements

C'est vraiment impossible d'exprimer tout ce que je dois à mon directeur de thèse, Guy David, en n'importe quelle langue. Avec ses riches expériences, il est toujours volontaire et prêt à m'aider pour trouver un moyen à moi pour avancer dans le monde mystérieux et joli des maths. Je ne sais pas si je suis digne de tous ses efforts. Pour sa patience, son soutien constant, pour tout ce qu'il m'appris sur les mathématiques, sur la langue et la culture française, ainsi que sur la vie, pour tous mes erreurs qu'il a corrigées, et pour tout ce que j'ai oublié, je voulais lui dire mille fois merci!

Mes plus vifs remerciements s'adressent à Zhiying Wen. C'est la première personne qui m'a montré la beauté des mathématiques, qui m'a convancu que je suis aussi capable de faire des mathématiques, et qui m'a soutenue et encouragée tout au long de ces années. Je n'ai jamais trouvé un bon moyen pendant ces 7 ans pour lui dire merci.

Je tiens à remercier Jean-Pierre Kahane de m'avoir fait l'honneur de présider le jury. Merci à Thierry De Pauw et Nicola Fusco, qui ont accepté la lourde tâche de rapporter sur cette thèse, à Françoise Dibos et Filippo Santambrogio pour avoir accepté de faire partie du jury.

Merci à Laurent Siebenmann et Pierre Vogel, pour leurs aides enthousiasts et discussions utiles sur la topologie algébrique. C'est vraiment gentil de leur part de discuter des problèmes avec une jeune étudiante avec tant de patience.

Des remerciements spéciaux à Jacques Peyrière, pour m'avoir donné la chance de venir poursuivre mes études ici, et m'avoir accueilli à l'aéroport à ma première arrivé en France; à Antoine et Vincent, anciens étudiants de Guy, pour les discussions utiles avec eux et leur aide enthousiaste.

Des remerciements émus à tous mes amis chinois en France. Vos amitiés et soutien constant sont vraiment inestimables, sans lesquels je ne serais jamais ce que je suis aujourd'hui.

Enfin, je ne pourrais jamais dire exactement tout ce que je dois à mes parents......

Je suis tellement heureuse d'avoir connu toutes ces personnes, pour les mathématiques, et encore plus important, pour la vie.

Résumé.

On s'intéresse dans cette thèse aux ensembles minimaux.

Dans la première partie on étudie les cônes minimaux au sens d'Almgren de dimension 2 dans \mathbb{R}^4 , ce qui est une première étape obligée et utile dans l'étude des ensembles minimaux. La minimalité au sens d'Almgren de l'union de deux plans presque orthogonaux est établie. La méthode est généralisée pour montrer que l'union presque orthogonale de plusieurs plans ou hyperplans, et l'union presque orthogonale d'un plan et un Y sont minimales.

Dans la seconde partie on introduit une définition de minimiseur topologique, qui généralise celle de minimiseur de Mumford-Shah. On montrera des propriétés des minimiseurs topologiques, et fera un premier pas dans la direction d'une caractérisation des minimiseurs topologiques. On restreindra aussi la classe potentielle des Almgren-minimiseurs de \mathbb{R}^3 qui ne seraient pas des cônes.

Abstract.

In the thesis we discuss the theory of minimal sets.

In the first part we study 2-dimensional Almgren minimal cones in \mathbb{R}^4 , which is the first useful and necessary step to study Almgren minimal sets. We establish the Almgren minimality of the union of a pair of almost orthogonal planes in \mathbb{R}^4 . The method is also generalized to prove the minimality of the almost orthogonal union of several planes or hyperplanes, as well as the almost orthogonal union of a plane and a Y in \mathbb{R}^5 .

In the second part we introduce a definition of topological minimal sets, which is a generalization of that of Mumford-Shah-minimal sets. We prove some properties of topological minimal sets, and make a first step towards a characterisation of topological minimal sets. We restrict also the potential class of those Almgren minimal sets in \mathbb{R}^3 which are not cones.

Table des matières

0	Intr	roduction générale	5
Ι	M	finimalité d'une union de deux plans	12
1	Intr	roduction de la première partie	14
2	Dis	cussions sur le cas orthogonal et des cas presque orthogonaux	23
	2.1	Estimation des projections sur l'union de 2 plans transverses pour tout 2-vecteur simple	24
	2.2	Comparaison de la mesure d'un ensemble rectifiable avec la somme de celles de ses projections sur deux plans	29
3	Uni	icité de P_0	31
4	L'ez	xistence d'ensembles minimaux	43
5	Ray	yons critiques	57
6	Pro	opriétés de projection et régularité de E_k	61
7	Arg	gument d'extension harmonique	7 5
8	Cor	nclusion	82
9	Gér	néralisation aux dimensions plus hautes	89
	9.1	Estimations algébriques pour la somme des projecteurs de deux hyperplans (parallèle au paragraphe 2)	89
	9.2	Unicité de P_0	
	9.3	L'argument de l'extension harmonique par les harmoniques sphériques	98
10) Gér	néralisation au cas de plusieurs plans et hyperplans	104
11	. L'u	nion presque orthogonale d'un plan et un $\mathbb {Y}$ dans $\mathbb {R}^5$	111
	11.1	Discussions générales	113

4	TABLE DES MATIÈRES
11.2 L'unicité de Z_0	
11.3 Remarques sur d'autres préparatifs	124
11.4 Conclusion	
12 Produit et calibration	133
II Minimiseurs topologiques	140
13 Introduction de la deuxième partie	141
14 Minimiseurs Al dans \mathbb{R}^3	143
15 Contrôler la topologie par mesure	152
16 Préliminaires sur la topologie	160
16.1 Topologie algébrique	160
16.2 Transversalité	164
17 L'image réciproque d'une chaîne lisse par une application tr	ransverse 166

170

177

18 Minimiseur topologique

19 Une discussion sur T

0 Introduction générale

L'un des objets d'étude de prédilection de la théorie géométrique de la mesure est la théorie des ensembles ou des surfaces minimales, qui donna lieu notamment à des progrès importants dans la compréhension de la régularité des surfaces minimales, et des résultats d'existence pour le problème de Plateau. Rappelons que dans sa version la plus simple, le problème de Plateau consiste à se donner une courbe dans l'espace, ou plus généralement un bord, et à chercher une surface s'appuyant sur ce bord et dont l'aire soit minimale. Voir les travaux de Besicovitch, Federer, Fleming, De Giorgi, etc.

Le sujet principal de cette thèse est l'étude des ensembles minimaux de dimension 2 dans un espace euclidien. On utilisera plusieurs notions de minimalité, mais la principale est la suivante, qui a été introduite par F. Almgren [2], et qui donne la meilleure modélisation des films de savon. Nous donnons directement la définition d'un ensemble minimal de dimension d dans un ouvert U de \mathbb{R}^n , qui n'est pas plus compliquée.

Définition 0.1 (ensembles minimaux (d'Almgren)). Soit 0 < d < n des entiers, U un ouvert de \mathbb{R}^n . L'ensemble E fermé dans U est dit minimal de dimension d dans U si $H^d(E \cap B) < \infty$ pour toute boule compacte $B \subset U$ et

$$(0.2) H^d(E \backslash F) \le H^d(F \backslash E)$$

pour tout ensemble F tel que $F=\varphi_1(E)$, où $\varphi_t, 0 \leq t \leq 1$ est une famille à un paramètre de fonctions continues $\varphi_t: U \to U$ vérifiant

- 1) $\varphi_0(x) = x \text{ pour } x \in U$:
- 2) l'application $(t,x) \to \varphi_t(x)$ de $[0,1] \times U$ dans U est continue;
- 3) φ_1 est Lipschitzienne,

et si on pose $W_t = \{x \in U : \varphi_t(x) \neq x\}$ et $\widehat{W} = \bigcup_{t \in [0,1]} [W_t \cup \varphi_t(W_t)]$, alors \widehat{W} est relativement compact dans U.

Une telle φ_1 sera appelée une déformation de E dans U.

Pour une description d'ensembles un peu plus généraux, comme des bulles de savon (donc, où la pression est différente dans les différentes composantes connexes du complémentaire), ou en présence de gravité, on peut utiliser une notion semblable d'ensembles presques minimaux, avec des résultats souvent identiques de régularité. Voir la remarque 1.29.

La première partie de la thése s'inscrit dans un plan assez large d'étude de la régularité intérieure des ensembles minimaux au sens d'Almgren.

Rappelons que dans ce cadre, assez peu de résultats de régularité sont connus. Les premiers résultats ont été donnés par Frederick Almgren [2] (rectifiabilité, Ahlfors régularité en dimension quelconque),

puis généralisés par Guy David et Stephen Semmes [11] (rectifiabilité uniforme, morceaux de graphes Lipschitziens), Guy David [7] (minimalité d'une limite d'une suite de minimiseurs). Dans [32], Jean Taylor a donné un théorème essentiel de régularité pour les ensembles minimaux de dimension 2 dans \mathbb{R}^3 , qui consiste à dire que tous ces ensembles minimaux sont localement C^1 équivalents à un cône minimal (c'est à dire, un ensemble minimal dans \mathbb{R}^n , qui est en même temps un cône).

La situation ici est moins bonne que pour la régularité des courants minimiseurs de masse, ou des surfaces minimales classiques, et d'ailleurs les ensembles minimaux au sens d'Almgren admettent des singularités dès la dimension 1. Rappelons que pour étudier les surfaces minimales, le point de vue le plus souvent utilisé consiste à voir les surfaces minimales comme des courants minimisant la masse ou la taille (voir [29] pour les définitions), sous certains constraintes de bord. Rappelons qu'il existe de très bons résultats d'existence et de régularité pour les courants minimiseur de masse, mais en fait un minimiseur de masse est souvent un objet assez loin de décrire une solution du problème de Plateau pour les films de savon. En gros la masse est un objet plutôt algébrique (ce qui rend aussi le problème plus facile, on peut bien se servir des méthodes de dualité, calibration et compacité). Par exemple quand on pince deux morceaux de surface ensemble, on compte toujours deux fois la surface obtenue par le pincement, ce qui preserve la cohérence algébrique, mais en même temps ne parvient pas à décrire raisonablement le comportement des films de savons. Parce que déjà aucune des singularités dans les films de savon observées par Plateau n'est un minimiseur de masse.

Donc le problème de Plateau pour les films de savon est plutôt un problème de minimiseurs de taille, pour lesquels beaucoup moins de résultats sont connus (voir [28] pour certains résultats d'existence). Mais le support d'un minimiseur de taille est automatiquement un minimiseur d'Almgren, de sorte que les résultats de régularité ci-dessous s'appliquent également au support d'un minimiseur de taille.

Revenons à la régularité des ensembles minimaux d'Almgren. D'abord on va faire une petite simplification. On va se restreindre aux ensembles réduits définis comme suit.

Définition 0.3. Soit $U \subset \mathbb{R}^n$ un ouvert, E un sous ensemble fermé de U. Notons

$$E^* = \{x \in E ; H^d(E \cap B(x,r)) > 0 \text{ pour tout } r > 0\}$$

le support fermé (dans U) de la restriction de H^d à E. On dit que E est réduit si $E=E^*$.

Il est facile à voir que

$$H^d(E \backslash E^*) = 0.$$

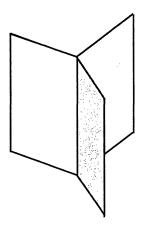
En effet on peut couvrir $E \setminus E^*$ par un nombre dénombrable de boules B_j tel que $H^d(E \cap B_j) = 0$.

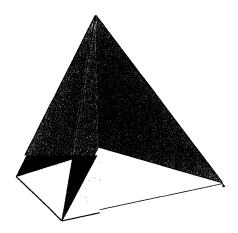
Remarque 0.4. Si E est minimal (resp. localement minimal), alors E^* aussi, car si φ est comme dans la définition 0.1, alors elle est Lipschitzienne, et donc $H^d(\varphi(E \setminus E^*)) = H^d(E \setminus E^*) = 0$. Donc la condition (0.2) est la même pour E^* que pour E. Et à cause de cela, il suffit d'étudier les ensembles minimaux réduits.

Il se trouve qu'à cause de la monotonie du rapport $r^{-d}H^d(E \cap B(x,r))$, les ensembles minimaux admettent un ou plusieurs ensembles tangents en chaque point, et ces ensembles tangents sont des cônes minimaux. Voir la discussion concernant les limites par explosion au paragraphe 1 (autour de (1.28)).

De ce fait, la première étape utile et obligée du programme doit être l'étude des cônes minimaux.

Dans \mathbb{R}^3 , la liste des cônes minimaux est connue. Elle a été donnée par plusieurs mathématiciens il y a plus d'un siècle. (Voir par exemple [21] ou [19]). Ce sont les plans, les ensembles \mathbb{Y} et \mathbb{T} . (voir le dessin ci dessous pour avoir une idée).





Dans la première partie de a thèse, nous nous intéresserons essent :llement aux cônes de dimension 2 dans \mathbb{R}^4 . L'idéal serait d'en ϵ btenir une liste complète, mais nous n :n sommes pas encore là.

Bien sûr tous les cônes mit imaux de dimension 2 dans \mathbb{R}^3 devien ent automatiquement des cônes minimaux dans \mathbb{R}^4 . Après, un argument de projection donne la min nalité de l'union de 2 plans orthogonaux. C'est le premier ex imple qui n'était pas déjà connu dans \mathbb{R}^3 . On peut se demander si c'est le seul cône minimal sous form : de l'union de deux plans, ou sinon so is quelle condition d'angle est-il vrai que l'union de deux plans est minimale.

La même question a aussi été posée pour les courants minimisant la masse et minimisant la taille. Mais comme avant, ce problème a déjà été resolu pour les minimiseurs de masse. L'union de deux m-plans dans \mathbb{R}^{2m} est un minimiseurs de masse si et seulement si les m angles caractéristiques (voir l'introduction de la première partie pour la définition précise) $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_m$ vérifient

1)
$$\alpha_m \leq \alpha_1 + \cdots + \alpha_{m-1}$$
; 2) $\alpha_1 + \cdots + \alpha_m \geq \pi$.

La nécessité est donnée par Gary Lawlor [22], et la suffisance par Dana Nance [27]. En particulier en dimension 2, l'union d'une paire de plans est minimale si et seulement si les deux plans sont orthogonaux.

Par contre du côté de minimiseurs d'Almgren et minimiseurs de taille, en générale, la question est toujours ouverte (mais en dimension 2, seule l'union de deux plans orthogonaux donne un courant

minimiseur de taille).

Dans [26], Frank Morgan a donné la conjecture suivante, énoncée en termes d'angles entre les plans.

L'union de deux m-plans $P_1 \cup P_2$, dont angles caractéristiques $\alpha_1, \dots, \alpha_m$, est Almgren-minimale si et seulement si les 2 conditions ci-dessous sont vérifiées :

1)
$$\alpha_m \leq \alpha_1 + \dots + \alpha_{m-1} + \frac{\pi}{3}$$
; 2) $\alpha_1 + \dots + \alpha_m \geq \frac{2\pi}{3}$.

Elle définit un minimiseur de taille si et seulement si

3)
$$\alpha_m \leq \alpha_1 + \cdots + \alpha_{m-1}$$
; 4) $\alpha_1 + \cdots + \alpha_m \geq \pi$.

Revenons aux minimiseurs d'Almgren. En fait 2) est une condition nécessaire comme l'a démontré Gary Lawler [23]. Mais l'autre partie est encore ouverte. Notons que pour notre cas où m=2, 2 implique 1), parce que $\alpha_2 \leq \frac{\pi}{2}$, et donc 2) implique que $\alpha_1 \geq \frac{\pi}{6}$, auquel cas 1) est automatiquement vrai. Donc ces conditions se traduisent en

$$\alpha_1 + \alpha_2 \ge \frac{2\pi}{3}.$$

Le résultat principal de la première partie est que si on change un peu l'angle autour de $(\frac{\pi}{2}, \frac{\pi}{2})$, l'union des deux plans est encore un ensemble minimal :

Théorème 0.5 (minimalité de l'union de deux plans presque orthogonaux). Il existe $0 < \theta < \frac{\pi}{2}$, tel que si P^1 et P^2 sont deux plans dans \mathbb{R}^4 avec des angles caractéristiques (α_1, α_2) tels que $\alpha_2 \geq \alpha_1 \geq \theta$, alors leur union $P^1 \cup P^2$ est un cône minimal.

Autrement dit, on montre qu'il existe a > 0, tel que si pour tout $v_1 \in P^1, v_2 \in P^2$,

$$|\langle v_1, v_2 \rangle| \le a||v_1||||v_2||$$

alors $P^1 \cup P^2$ est minimal. Notons que (0.6) est presque équivalent à dire que $\alpha_1, \alpha_2 > \frac{\pi}{2} - Ca$ quand a est petit. On obtient donc une famille de cônes minimaux avec un paramètre continu, et dont les intersections avec la boule unité sont de mesures égales.

La démonstration du théorème 0.5 utilise des arguments de passage à la limite, un théorème d'existence de Vincent Feuvrier, des estimations sur les fonctions harmoniques et les techniques générales de la théorie géométrique de la mesure.

Dans la seconde partie de la thèse, on s'intéressera également à deux autres types d'ensembles minimaux, les ensembles minimaux de Mumford-Shah et les ensembles minimaux topologiques. Dans les deux cas, il s'agit encore de minimiser la mesure de Hausdorff, mais c'est la liste des compétiteurs qui sera différente.

Commençons par définir les ensembles minimaux de Mumford-Shah, mais seulement dans le contexte plus simple où l'on se place dans l'ouvert $U = \mathbb{R}^n$. Dans ce contexte, on se place en codimension 1 (donc, d = n - 1).

Définition 0.7 (ensembles minimaux de Mumford-Shah). L'ensemble E fermé dans \mathbb{R}^n est dit minimal au sens Mumford-Shah (MS) dans \mathbb{R}^n si $H^{n-1}(E \cap B) < \infty$ pour toute boule compacte $B \subset \mathbb{R}^n$, et

$$H^{n-1}(E\backslash F) \le H^{n-1}(F\backslash E)$$

pour tout ensemble F qui vérifie

- 1) Il existe une boule B telle que $F \setminus B = E \setminus B$;
- 2) Pour tous $y, z \in \mathbb{R}^n \setminus (B \cup E)$ qui sont séparés par E, y, z sont aussi séparés par F.

Ici "y, z sont séparés par E" veut dire que y et z appartiennent à deux composantes connexes différentes de $\mathbb{R}^n \setminus E$.

Le nom de Mumford-Shah vient de ce que la condition de séparation 2) intervient naturellement dans l'étude des segmentations minimisantes dans la fonctionelle de Mumford-Shah. Rappelons, sans écrire cette fonctionnelle (voir [8] pour des définitions précises, et tout renseignement utile), qu'elle est a été introduite par D. Mumford et J. Shah [12] pour proposer une méthode automatique de segmentation d'image. Dans ce cadre, la fonctionnelle a deux arguments u et K, où K est un fermé du domaine U considéré, et u est une fonction de classe C^1 sur $U \setminus K$. Et l'un des termes principaux de la fonctionnelle à minimiser est $H^{n-1}(K)$.

Dans l'étude de cette fonctionnelle aussi, comme l'a montré A. Bonnet [3], la notion de limite par explosion est utile et importante, et les limites par explosion de segmentations minimisantes sont ce qu'on appelle des minimiseurs globaux, qui sont encore des paires (v, K) où K est un fermé de \mathbb{R}^n et v une fonction classe C^1 sur $\mathbb{R}^n \setminus K$. En gros, les minimiseurs globaux jouent dans l'étude de la fonctionnelle de Mumford-Shah le même rôle que les cônes minimaux dans l'étude des ensembles minimaux.

La définition de minimiseur global fait intervenir la même condition de séparation que ci-dessus (également dans la définition des compétiteurs), et par exemple, si v est constante, (v, K) est un minimiseur global si et seulement si K est un ensemble minimal de Mumford-Shah (d'où le nom). Ainsi, le théorème ci-dessous donne la liste des minimiseurs globaux de \mathbb{R}^3 pour lesquels v est constante.

Théorème 0.8 ([9], Thm 1.9). Soit E un ensemble minimal au sens de Mumford-Shah dans \mathbb{R}^3 , alors il existe un ensemble $E^* \subset E$, $H^2(E \backslash E^*) = 0$, tel que E^* est soit l'ensemble vide, soit un plan, soit un cône de type \mathbb{Y} ou \mathbb{T} .

Le théorème 0.8 laisse un certain nombre de questions en suspens, que l'on abordera dans la seconde partie de la thèse.

D'abord, on ne sait pas si son analogue pour les ensembles minimaux au sens d'Almgren est vrai : est-ce que tout ensemble minimal d'Almgren dans \mathbb{R}^3 tout entier est un cône? G. David vérifie dans la remarque 1.8 de [9] que tout ensemble minimal de Mumford-Shah est ensemble minimal d'Almgren, mais

la réciproque semble difficile à établir autrement qu'en montrant d'abord que tout ensemble minimal d'Almgren dans \mathbb{R}^3 est un cône.

La démonstration du théorème 0.8 est basé sur un argument topologique, qui ne marche pas dans le cas des minimiseurs d'Almgren. G. David propose même un exemple (possiblement déjà utilisé auparavant par Taylor, Hardt, ou Morgan) d'ensemble $E \subset \mathbb{R}^3$ qui est topologiquement compatible avec les propriétés des minimiseurs d'Almgren, et qui est asymptotiquement proche à l'infini d'un cône \mathbb{T} , sans en avoir la topologie.

Au chapitre 14 on vérifiera (par un argument métrique de déformation et comparaison) qu'aucun ensemble ayant cette topologie ne peut être minimal au sens d'Almgren. On proposera également un exemple, à la topologie plus compliquée qui pourrait éventuellement l'être, au sens où la même objection ne s'applique pas.

Il serait sans doute intéressant de disposer d'un analogue de la fonctionnelle de Mumford-Shah, avec des ensembles singuliers de codimension supérieure à 1, mais il semble que le bon équilibre avec les singularités de la fonction u est encore à trouver.

Il est cependant plus simple de généraliser la définition 0.7 à des codimensions plus grandes. C'est ce que nous faisons au paragraphe 18 en remplacant la condition de séparation 2) (de la définition 0.7) par une condition portant sur l'homologie des sphères euclidiennes de dimension n-d-1 contenues dans $\mathbb{R}^n \setminus (B \cup E)$. On appelle minimiseurs topologiques les ensembles minimaux ainsi définis.

On montre au corollaire 18.17 que tout minimiseur topologique est également Almgren-minimal, ce qui permet de lui appliquer toute la théorie de régularité connue à ce jour.

Ensuite on essaie de généraliser le théorème 0.8 à des minimiseurs topologiques de dimension 2 dans \mathbb{R}^4 , mais on n'y arrive qu'en ajoutant une condition topologique supplémentaire sur E. Voir le corollaire 19.20.

On construit également, à l'aide de bouteilles de Klein, un exemple d'ensemble de dimension 2 dans \mathbb{R}^4 qui est asymptotiquement proche à l'infini d'un cône \mathbb{T} , n'en a pas la topologie, mais a les propriétés que devrait avoir un minimiseur topologique. Voir l'introduction de la deuxième partie pour plus d'informations.

Quelques notations utiles

```
[a,b] désigne le segment d'extrémités a et b; [a,b) est la demi-droite émise du point a est passant par b; B(x,r) désigne la boule ouverte de rayon r et centrée en x; \overline{B}(x,r) la boule fermée de rayon r et centrée en x; \overline{ab} le vecteur b-a;
```

Pour une chaîne singulière γ , notons $[\gamma]$ l'élément dans le groupe d'homologie représenté par γ ;

 H^d : la mesure de Hausdorff de dimension d;

 $d_H:d_H(E,F)=\max\{\sup\{d(y,F):y\in E,\sup\{d(y,E):y\in F\}\}$ la distance de Hausdorff entre deux ensembles E et F.

 $d_{x,r}$: la distance relative par rapport à la boule B(x,r), définie par

$$d_{x,r}(E,F) = \frac{1}{r} \max \{ \sup \{ d(y,F) : y \in E \cap B(x,r) \}, \sup \{ d(y,E) : y \in F \cap B(x,r) \} \}.$$

Première partie

Minimalité d'une union de deux plans

Sommaire

1	Int	roduction de la première partie	14
2	Dis	cussions sur le cas orthogonal et des cas presque orthogonaux	23
	2.1	Estimation des projections sur l'union de 2 plans transverses pour tout	
		2-vecteur simple	24
	2.2	Comparaison de la mesure d'un ensemble rectifiable avec la somme de	
		celles de ses projections sur deux plans	29
3	$\mathbf{U}\mathbf{n}$	icité de P_0	31
4	L'e	xistence d'ensembles minimaux	43
5	5 Rayons critiques		57
6	Pro	opriétés de projection et régularité de E_k	61
7	Arg	gument d'extension harmonique	75
8	Co	nclusion	82
9	Gé	néralisation aux dimensions plus hautes	89
	9.1	Estimations algébriques pour la somme des projecteurs de deux hy-	
		perplans (parallèle au paragraphe 2)	89
	9.2	Unicité de P_0	92
	9.3	L'argument de l'extension harmonique par les harmoniques sphériques	98
10	Gé	néralisation au cas de plusieurs plans et hyperplans	104
11	L'u	nion presque orthogonale d'un plan et un $\mathbb Y$ dans $\mathbb R^5$	111
	11.1	Discussions générales	111

12 Produit et calibration	133
11.4 Conclusion	129
11.3 Remarques sur d'autres préparatifs	124
11.2 L'unicité de Z_0	113

1 Introduction de la première partie

Dans cette première partie, un ensemble minimal est un fermé dont la mesure de Hausdorff ne peut être rendue plus petite par aucune déformation Lipschitzienne locale. Plus précisément on a la définition ci-dessous, où l'on note H^d la mesure de Hausdorff de dimension d.

Définition 1.1 (ensembles minimaux). Soit 0 < d < n des entiers, U un ouvert de \mathbb{R}^n . L'ensemble E fermé dans U est dit minimal de dimension d dans U si

(1.2)
$$H^d(E \cap B) < \infty$$
 pour toute boule compacte $B \subset U$

et

$$(1.3) H^d(E \backslash F) \le H^d(F \backslash E)$$

pour tout compétiteur d'Almgren F de E dans U.

On pourrait en générale donner plusieurs classes différentes de compétiteurs, qui donnent des définitions différentes d'ensembles minimaux. Mais dans cette partie, on n'utilisera que les compétiteurs d'Almgren dont la définition suit.

Définition 1.4 (compétiteurs d'Almgren). Un compétiteur d'Almgren de E dans U est un ensemble $F = \varphi_1(E)$, où $\varphi_t, 0 \le t \le 1$ est une famille à un paramètre de fonctions continues $\varphi_t : U \to U$ vérifiant

$$(1.5) \varphi_0(x) = x pour x \in U,$$

(1.6)
$$l'application (t, x) \rightarrow \varphi_t(x) de [0, 1] \times U dans U est continue,$$

(1.7)
$$\varphi_1$$
 est Lipschitzienne,

et si on pose

$$(1.8) W_t = \{x \in U \; ; \; \varphi_t(x) \neq x\} \; et \; \widehat{W} = \bigcup_{t \in [0.1]} [W_t \cup \varphi_t(W_t)],$$

alors

$$\widehat{W} \ \ est \ relativement \ compact \ dans \ U.$$

Une telle φ_1 sera appelée une déformation de E dans U.

Remarque 1.10. Dans cette partie on appellera un ensemble minimal d'Almgren un ensemble minimal.

Définition 1.11 (déformation locale). Une déformation locale de E dans U est un ensemble F = f(E), où :

$$(1.12) f = id \text{ hors d'une boule } B \text{ telle que } \overline{B} \subset U,$$

$$(1.13) f(B) \subset B,$$

et où on demande aussi que f soit Lipschitzienne.

Remarque 1.14. 1) On dit aussi qu'un ensemble F défini comme ci-dessus est une déformation locale de E dans B. Et dans ce cas (1.3) est équivalent à

$$(1.15) H^d(E \cap B) \le H^d(F \cap B).$$

Définition 1.16 (ensembles localement minimaux). Un ensemble E défini dans 1.1 en prenant pour classe de compétiteurs la classe des déformations locales est appelé un ensemble localement minimal dans U.

Remarque 1.17. La classe des déformations locales de E dans U est contenue dans la classe des compétiteurs d'Almgren, puisqu'une déformation dans une boule est toujours homotope à l'identité. Par conséquent un ensemble minimal est toujours un ensemble localement minimal. Par contre en général un compétiteur d'Almgren n'est pas toujours une déformation locale. En fait cela dépend des propriétés géométriques de l'ouvert U. Par exemple si U est \mathbb{R}^n ou une boule, alors les deux classes sont égales, et en particulier un ensemble localement minimal dans \mathbb{R}^n est un ensemble minimal dans \mathbb{R}^n .

En un certain sens, la minimalité d'un ensemble ne dépend pas de la dimension ambiante. Par exemple, si $E \subset U \subset \mathbb{R}^m$ est un ensemble minimal dans $U' := U \times \mathbb{R}^n$, alors on déduit toute de suite de la définition que E est minimal dans U aussi. La réciproque est aussi vraie, par le lemme suivant.

Lemme 1.18. Si E est un ensemble minimal dans $U \subset \mathbb{R}^m$, alors il est aussi minimal dans $U \times \mathbb{R}^n$ pour tout $n \in \mathbb{N}$.

Démonstration. Soit E un ensemble minimal dans U, F un compétiteur d'Almgren de E dans $U \supset \mathbb{R}^n$, alors par la définition 1.4, il existe une famille de fonctions $\varphi_t : U \to U$ qui vérifie (1.5)-(1.9) dans $U \times \mathbb{R}^n$ et telle que $F = \varphi_1(E)$. Notons π la projection orthogonale de $U \times \mathbb{R}^n$ sur U, alors $g_t = \pi \circ \varphi_t$ est une famille de fonctions qui vérifie (1.5)-(1.9) dans U. Notons $B' = B \cap \mathbb{R}^n$ et $F' = g_1(E)$; alors F' est un compétiteur d'Almgren E dans U. Par la minimalité de E dans U on sait que

(1.19)
$$H^{d}(E \backslash F') \leq H^{d}(F' \backslash E).$$

D'un autre côté puisque π est 1-Lipschitzienne, on a

$$(1.20) H^d(F' \backslash F) \le H^d(F \backslash F'),$$

d'où

$$(1.21) H^d(E \backslash F) \le H^d(F \backslash E).$$

Par conséquent E est minimal dans $U \times \mathbb{R}^n$, puisque (1.21) est vrai pour tout compétiteur d'Almgren F de E dans $U \times \mathbb{R}^n$.

Fin de la démonstration du lemme.

On utilise ces définitions pour aborder d'un point de vue ensembliste la solution du problème de Plateau, qui consisterait à montrer, un bord étant donné, l'existence d'une surface minimale s'appuyant sur le bord. Le concept d'ensemble minimal a été introduit par Frederick J. Almgren, par exemple pour décrire le comportement des films de savon, qui sont des "surfaces" de dimension 2 dans \mathbb{R}^3 , mais qui peuvent avoir certains types de singularités. En effet c'est l'existence potentielle des points de singularité, et donc les types des singularités et de régularité autour de ces points-là, qui nous intéressent le plus, parce que dans les parties loin des singularités, l'ensemble n'est qu'une vraie surface minimale du point de vue de la géométrie différentielle.

Soyons plus précis.

D'abord on va faire une petite simplification. On va se restreindre aux ensembles réduits définis comme suit.

Définition 1.22. Soit $U \subset \mathbb{R}^n$ un ouvert, E un sous ensemble fermé de U. Notons

(1.23)
$$E^* = \{ x \in E ; H^d(E \cap B(x, r)) > 0 \text{ pour tout } r > 0 \}$$

le support fermé (dans U) de la restriction de H^d à E. On dit que E est réduit si $E=E^*$.

Il est facile à voir que

$$(1.24) H^d(E \backslash E^*) = 0.$$

En effet on peut couvrir $E \setminus E^*$ par un nombre dénombrable de boules B_i tel que $H^d(E \cap B_i) = 0$.

Remarque 1.25. Si E est minimal (resp. localement minimal), alors E^* aussi, car si φ est comme dans la définition 1.4 (resp. 1.11), alors elle est Lipschitzienne, et donc $H^d(\varphi(E \setminus E^*)) = H^d(E \setminus E^*) = 0$. Donc la condition (1.3) est la même pour E^* que pour E. Et à cause de cela, il suffit d'étudier les ensembles minimaux réduits.

Maintenant fixons n'importe quel point x d'un ensemble minimal réduit E, et faisons exploser localement notre ensemble minimal en ce point, ce qui veut dire que l'on considère, pour $r \to 0$, les ensembles

(1.26)
$$E(r,x) = \left[\frac{1}{r}(E-x)\right].$$

Alors pour toute sous-suite $\{r_k\}_{k\geq 1}$ telle que $r_k\to 0$ et $E(r_k,x)$ converge pour la distance de Hausdorff dans tout compact quand k tend vers l'infini (des sous-suites convergentes existent toujours, voir par exemple [8] paragraphe 34, Proposition 6), sa limite F (appelée une limite d'explosion de E en x) est aussi minimale, parce que la limite d'une suite d'ensembles minimaux est automatiquement un ensemble minimal (voir, par exemple, [9] lemme 4.7). D'un autre côté, la fonction de densité de F à l'origine

(1.27)
$$\theta(0,r) = r^{-d}H^{d}(F \cap B(0,r))$$

est une constante qui est égale à la densité de E en x

(1.28)
$$\theta(x) = \lim_{r \to 0} r^{-d} H^d(E \cap B(x, r)),$$

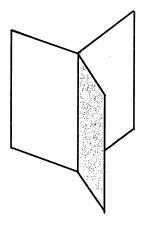
ce qui implique que F est un cône (c.f.[9], Thm 6.2); bref, F est un cône minimal. Par conséquent on sait que quand on s'approche de chaque point x et regarde E à une échelle de plus en plus petite, E ressemble de plus en plus à un cône minimal. Donc chercher tous les cônes minimaux est presque équivalent à chercher tous les types possibles de singularités.

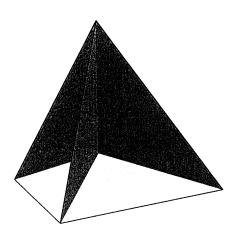
Remarque 1.29. Tous les arguments ci-dessus marchent pareil pour des ensembles presque minimaux, qui forment une classe un peu plus grande que la classe des ensembles minimaux. Il y a plusieur définitions des ensembles presque minimaux, qui sont un peu différentes, sans toutefois changer grand chose à leurs propriétés. Voir [9] paragraphe 4 pour les définitions et des détails. Ici pour avoir une idée, disons qu'une des définition demande que

(1.30)
$$H^{d}(E \cap W_{1}) \leq H^{d}(\varphi_{1}(E \cap W_{1})) + h(\delta)\delta^{d}$$

pour toute déformation telle que $diam(\widehat{W}) < \delta$, où φ_t , W_t , \widehat{W} sont définis dans la définition 1.4, et on demande aussi que la fonction de jauge h tende vers 0 quand δ tend vers 0.

La liste des cônes minimaux de dimension 2 dans \mathbb{R}^3 a été donnée par plusieurs mathématiciens il y a plus d'un siècle. (Voir par exemple [21] ou [19]). L'enjeu consiste à trouver des réseaux d'arcs de grands cercles sur la sphère unité qui vérifient que les bouts de chaque arc sont des points de jonctions triple avec des angles de 120°. Un cône minimal est forcément un cône sur un réseau de cette forme. On obtient donc une liste finie (en fait, de 10 cônes). Et après, on élimine un par un les cônes qui ne sont pas minimaux, en trouvant des déformations qui diminuent la mesure. Alors il ne reste que trois cône qui sont minimaux : un plan, un $\mathbb Y$ (l'union de 3 demi-plans qui se rencontrent en une droite avec des angles de 120°), et un $\mathbb T$ (le cône sur l'union des arêtes d'un tétraèdre régulier centré à l'origine). Voir le dessin 1-1.





1-1

Du côté de la régularité, dans son article [32], Jean Taylor a donné un théorème essentiel de régularité pour les ensembles minimaux de dimension 2 dans \mathbb{R}^3 , qui consiste à dire que tous ces ensembles minimaux sont localement C^1 équivalents à un cône minimal, donc un plan, un \mathbb{Y} ou un \mathbb{T} .

La notion d'ensemble minimal est définie dans des dimensions et codimensions plus élevées. Par contre peu de choses aussi précises sont connues en grandes dimensions et codimensions.

Du côté de la régularité, Guy David a généralisé le résultat de Jean Taylor aux ensembles minimaux de dimension 2 dans \mathbb{R}^n , mais avec seulement une équivalence bi-hölderienne (voir, [9]). Il dit aussi dans son article [10] que la C^1 régularité pourrait dépendre du type des cônes minimaux obtenus par explosion. Si un tel cône vérifie aussi une condition de "full-length", on obtiendra la C^1 régularité, sinon on pourrait la perdre.

La liste des cônes minimaux est toujours loin d'être connue, même pour les cônes minimaux de dimension 2 dans \mathbb{R}^4 . Bien sûr tous les cônes minimaux de dimension 2 dans \mathbb{R}^3 deviennent automatiquement des cônes minimaux dans \mathbb{R}^4 . Après, un argument de projection donne la minimalité de l'union de 2 plans orthogonaux. C'est le premier exemple qui n'était pas déjà connu dans \mathbb{R}^3 . On peut se demander si c'est le seul cône minimal sous forme de l'union de deux plans, ou sinon sous quelle condition d'angle est-il vrai que l'union de deux plans est minimale. Dans son article [26], Frank Morgan a donné la conjecture suivante, énoncée en termes d'angles entre les plans.

Soit S l'union de deux plans P,Q de dimension m dans \mathbb{R}^{2m} . On peut décrire leur position géométrique relative par des angles caractéristiques $(\alpha_1,\alpha_2,\cdots,\alpha_m)$ avec $0\leq \alpha_1\leq\cdots\leq\alpha_m\leq\frac{\pi}{2}$:

Parmi toutes les paires de vecteurs unité $v \in P, w \in Q$, choisissons v_1, w_1 qui minimisent l'angle entre eux. Et ensuite on choisit $v_2 \in P, w_2 \in Q$ avec $v_2 \perp v_1, w_2 \perp w_1$, qui minimisent l'angle parmi les telles paires. On répète ceci m fois. Pour chaque i, notons α_i l'angle entre v_i et w_i . Ce sont les angles caractéstiques entre P et Q.

La conjecture de Morgan dit que S est minimal si et seulement si les $\mathbf 2$ conditions ci-dessous sont vérifiées :

1)
$$\alpha_m \leq \alpha_1 + \dots + \alpha_{m-1} + \frac{\pi}{3}$$
; 2) $\alpha_1 + \dots + \alpha_m \geq \frac{2\pi}{3}$.

En fait 2) est une condition nécessaire comme l'a démontré Gary Lawler [23]. Mais l'autre partie est encore ouverte. Notons que pour notre cas où m=2, 2) implique 1), parce que $\alpha_2 \leq \frac{\pi}{2}$, et donc 2) implique que $\alpha_1 \geq \frac{\pi}{6}$, auquel cas 1) est automatiquement vrai. Donc ces conditions se traduisent en

$$(1.31) \alpha_1 + \alpha_2 \ge \frac{2\pi}{3}.$$

Le résultat principal de cette thèse est que si on change un peu l'angle autour de $(\frac{\pi}{2}, \frac{\pi}{2})$, l'union des deux plans est encore un ensemble minimal :

Théorème 1.32 (minimalité de l'union de deux plans presque orthogonaux). Il existe $0 < \theta < \frac{\pi}{2}$, tel que si P^1 et P^2 sont deux plans dans \mathbb{R}^4 avec des angles caractéristiques (α_1, α_2) tels que $\alpha_2 \geq \alpha_1 \geq \theta$, alors leur union $P^1 \cup P^2$ est un cône minimal.

Autrement dit, on montre qu'il existe a > 0, tel que si pour tout $v_1 \in P^1, v_2 \in P^2$,

$$|\langle v_1, v_2 \rangle| \le a||v_1||||v_2||$$

alors $P^1 \cup P^2$ est minimal. Notons que (1.33) est presque équivalent à dire que $\alpha_1, \alpha_2 > \frac{\pi}{2} - Ca$ quand a est petit. On obtient donc une famille de cônes minimaux avec un paramètre continu, et dont les intersections avec la boule unité sont de mesures égales.

La stratégie de la démonstration du théorème 1.32 est la suivante :

Puisque nos objets sont des cônes centrés à l'origine, on peut se satisfaire de regarder seulement des déformations dans la boule unité, et donc on se place dans la boule unité fermée $\overline{B}(0,1)$. Notons d'abord P_{θ} avec $\theta = (\theta_1, \theta_2)$ l'union des 2 plans avec angles caractéristiques θ . On commencera par vérifier que $P_{(\frac{\pi}{2}, \frac{\pi}{2})}$ est minimal, et de plus est l'unique minimiseur local parmi tous les ensemble avec le même bord et les projections surjectives sur les deux plans. Ici le bord d'un ensemble fermé $E \subset \overline{B}(0,1)$ désigne seulement $E \cap \partial \overline{B}(0,1)$.

Donc raisonnons par l'absurde et supposons que l'énoncé du théorème n'est pas vrai. Alors il existe une suite θ_k qui converge vers $\theta_0 := (\frac{\pi}{2}, \frac{\pi}{2})$ telle que P_{θ_k} n'est pas minimal. Notons $P_k = P_{\theta_k}$. Notons aussi $P_0 = P_0^1 \cup_{\theta_0} P_0^2 = P_0^1 \cup_{\perp} P_0^2$. Et donc on sait que

(1.34)
$$\inf\{H^2(F): F \subset \overline{B}(0,1) \text{ est une déformation de } P_k \text{ dans } B(0,1)\} < H^2(P_k) = 2\pi.$$

L'étape suivante serait plus facile si on pouvait trouver, pour chaque k, une déformation E_k de P_k qui minimise $H^2(E \cap B(0,1))$ parmi les déformations de P_k dans B(0,1). Malheureusement, on ne connait pas de théorème d'existence qui donne un tel E_k .

En revanche, Vincent Feuvrier a obtenu un résultat partiel dans sa thèse de 2008 (voir [15]), qui dit qu'étant donné un ensemble initial E dans $\overline{B}(0,1)$, il existe un certain ensemble F qui est minimal dans B(0,1), et qui est la limite d'une suite minimisante de déformations de l'ensemble initial E dans B(0,1), et tel que

$$(1.35) H^2(F) \le \inf\{H^2(E') : E' \subset \overline{B(0,1)} \text{ est une déformation de } E \text{ dans } B(0,1)\}.$$

Ici on risque d'avoir un problème au bord, en considérant que personne ne peut empêcher la suite minimisante d'avoir d'autres points adhérents sur $\partial B(0,1)$ que ceux de $E \cap \partial B(0,1)$. Donc un nouveau bord peut se produire, et alors le bord de notre ensemble $F \cap \partial B(0,1)$ n'est plus le bord initial $E \cap \partial B(0,1)$, et par conséquent il n'est pas forcément un compétiteur d'Almgren de E. Par ailleurs, même sans le problème au bord, on ne peut pas non plus dire que l'ensemble minimal F obtenu ainsi est une déformation de l'ensemble initial E, parce que la limite d'une suite de déformations n'est pas forcément une déformation.

Mais heureusement dans notre cas, on peut se débrouiller pour éviter les deux obstacles. On peut montrer que le E_k obtenu comme ci-dessus à partir de P_k a le même bord que P_k . D'un autre côté, bien qu'on ne puisse pas dire que E_k est une déformation de P_k , on peut collecter assez d'informations sur E_k , surtout la propriété de projection, pour qu'on puisse enfin faire marcher notre démonstration sans savoir que E_k est une déformation de P_k .

Donc une fois qu'on a obtenu notre suite E_k , dont les bords $E_k \cap \partial B(0,1)$ tendent vers le bord $P_0 \cap \partial B(0,1)$ de P_0 (rappelons que $P_0 = P_0^1 \cup_{\perp} P_0^2$), on peut extraire une sous-suite qui converge par rapport à la distance de Hausdorff, sous-suite que nous notons encore $\{E_k\}$. Alors puisque les E_k sont localement minimaux, leur limite, notons-la E_{∞} , est automatiquement localement minimale. Mais puisque son bord $E_{\infty} \cap \partial B(0,1) = P_0 \cap \partial B(0,1)$, par l'unicité de P_0 , E_{∞} n'est autre que P_0 lui même. De plus la distance de Hausdorff entre chaque E_k et P_k tend vers 0 aussi, puisque P_k tend vers P_0 . Voir les détails dans le paragraphe 4.

Maintenant on va faire une ϵ -décomposition de chaque E_k . On va trouver un rayon $r_k = r_k(\epsilon)$ pour chaque k, tel que E_k est ϵ proche de P_k hors d'une boule $B(o_k, r_k)$ avec o_k assez proche de l'origine. Et de plus dans $B(o_k, r_k)$, E_k commence à s'éloigner un peu de P_k . Autrement dit, r_k est l'échelle où E_k commence à s'éloigner de P_k , bien qu'on ne sache pas exactement comment.

On montre qu'un tel r_k existe.

Pourtant on n'arrive pas encore à notre décomposition. Il faut travailler encore un peu plus. On sait que hors de la boule $B(o_k, r_k)$, E_k est assez proche d'un plan localement. Alors quand ϵ est suffisamment petit, par la régularité des ensembles minimaux, on arrive à montrer qu'autour de chaque tel point, E_k est localement un graphe de classe C^1 sur P_k^1 ou P_k^2 , où les P_k^i sont les plans qui font partie de P_k . On montre même que hors de la boule $B(o_k, r_k)$, E_k est l'union de deux graphes de classe C^1 respectivement sur P_k^1 et P_k^2 . De plus, puisque r_k est le premier rayon où E_k n'est pas ϵr_k proche de

 P_k , on sait encore qu'à l'échelle $2r_k$ l'ensemble E_k est $2\epsilon r_k$ proche de P_k . Alors la régularité se prolonge encore un peu dans la boule $B(o_k, r_k)$ quand ϵ est assez petit : on arrive à montrer que hors la boule $B(o_k, \frac{1}{4}r_k)$, E_k est l'union de 2 graphes de classe C^1 . En particulier pour chaque $\frac{1}{4}r_k < t < r_k$ et i = 1, 2, $\Gamma_t^i := {p_k^i}^{-1}(P_k^i \cap \partial B(p_k^i(o_k), t))$ est une courbe de classe C^1 , qui est de plus le graphe d'une fonction de classe C^1 du cercle $P_k^i \cap \partial B(p_k^i(o_k), t)$ vers $P_k^{i\perp}$.

D'un autre côté, on peut montrer par un argument de compacité que, pour chaque ϵ , il existe un δ (qui pourrait être beaucoup plus petit que ϵ) tel que pour k assez grand, si E_k est δr_k proche d'une translation de P_k dans $B(o_k, r_k) \setminus B(o_k, \frac{1}{4}r_k)$, alors il est ϵr_k proche d'une translation de P_k dans $B(o_k, r_k)$. Mais on sait que E_k n'est ϵr_k proche d'aucune translation de P_k dans $B(o_k, r_k) \setminus B(o_k, \frac{1}{4}r_k)$. Il existe alors $i \in \{1, 2\}$ tel qu'il existe

soit un rayon $\frac{1}{4}r_k < t_k < r_k$, tel que Γ_{t_k} lui même est assez différent d'un cercle horizontal;

soit deux rayons $\frac{1}{4}r_k < t_k < t_k' < r_k$ tels que les deux courbes Γ_{t_k} et $\Gamma_{t_k'}$ sont très plates elles-mêmes, mais à des hauteurs différentes.

Dans les deux cas, on décompose notre E_k en deux morceaux : $E_k \cap B(o_k, t_k)$ et $E_k \cap (B(0, 1) \setminus B(o_k, t_k))$. C'est notre ϵ -décomposition.

Alors pour la partie extérieure, par un argument d'extension harmonique, on peut montrer que

$$(1.36) H^2(E_k \cap B(0,1) \setminus B(o_k, t_k)) \ge H^2(P_k \cap (B(0,1) \setminus B(o_k, t_k))) + C(\delta)t_k^2$$

où $C(\delta)$ ne dépend que de δ et donc de ϵ . Et pour la partie intérieure, par un argument de projection on peut montrer que

(1.37)
$$H^{2}(E_{k} \cap B(o_{k}, t_{k})) \geq (1 - C \times (\frac{\pi}{2} - \theta_{k}))H^{2}(P_{k} \cap B(o_{k}, t_{k}))$$
$$= H^{2}(P_{k} \cap B(o_{k}, t_{k})) - C \times (\frac{\pi}{2} - \theta_{k})t_{k}^{2}$$

où $\frac{\pi}{2} - \theta_k \to 0$ quand $k \to \infty$.

En sommant les deux estimations on obtient

(1.38)
$$H^{2}(E_{k}) \geq H^{2}(P_{k} \cap B(0,1)) + [C(\delta) - C \times (\frac{\pi}{2} - \theta_{k})]t_{k}^{2}$$

pour tout ϵ assez petit tel que toutes les propriétés de régularités ci-dessus sont vraies. Alors fixons un tel ϵ , et donc le $C(\delta)$ qui ne dépend de ϵ et aussi fixé. On fait tendre k vers l'infini, alors $[C(\delta) - C(\frac{\pi}{2} - \theta_k)] \to C(\delta) > 0$, et donc on gagne une mesure positive $\frac{1}{2}C(\delta)t_k^2$ de E_k sur P_k , quand k est assez grand.

On obtient donc une contradiction, puisqu'on a supposé que E_k est de mesure strictement plus petite que P_k .

Cette sorte d'argument peut se généraliser un peu, soit à l'union presque orthogonaux de deux plans de dimension plus élevée, soit à l'union presque orthogonale dans \mathbb{R}^5 d'un plan et un \mathbb{Y} . Et aussi,

un autre corollaire facile est que l'union presque orthogonale de m plans de dimension n dans \mathbb{R}^{nm} est minimale. On discutera de ces généralisations aux paragraphes 9 à 11.

Par contre, cet argument utilise plusieurs fois des arguments de compacité. La première fois est au début de la preuve, où on suppose que l'énoncé du théorème n'est pas vrai, et en déduit qu'il existe la suite E_k qui tend vers P_0 . Mais on ne peut rien dire sur la vitesse de cette convergence. L'autre endroit est quand on démontre que si E_k est δr_k proche de P_k dans $B(o_k, r_k) \setminus B(o_k, \frac{1}{4}r_k)$, alors il doit être ϵr_k proche de P_k dans $B(o_k, r_k)$. Ici pour estimer δ à partir de ϵ , il faudrait peut-être mieux comprendre l'unicité de P_0 . Mais en fait bien que l'unicité de P_0 a l'air plus ou moins crédible, sa démonstration est loin d'être simple.

Le plan de la première partie de cette thèse est le suivant.

Dans le paragraphe 2 on va d'abord faire une première estimation entre la mesure d'un ensemble rectifiable quelconque et celles de ses projections sur deux plans, qui dépend bien sûr des angles caractéristiques des deux plans. Cette estimation est plutôt algébrique, si bien qu'on peut la faire sans savoir la structure précise de l'ensemble. On établit aussi la minimalité de P_0 .

Dans le paragraphe 3 on établit l'unicité de P_0 .

A partir du paragraphe 4 on va commencer à démontrer le théorème par l'absurde. On établit l'existence des ensembles localement minimaux E_k , ainsi que quelques propriétés dont on a besoin.

Le paragraphe 5 consiste à trouver le rayon critique r_k , et établir quelques propriétés des E_k hors de la boule $D(o_k, \frac{1}{4}r_k)$.

Dans le paragraphe 6 on montre que les projections orthogonales de E_k sur P_k^1 et P_k^2 sont surjectives, dans B(0,1) et dans $D(o_k,t)$ pour tout $t \in [\frac{1}{4}r_k, r_k]$. On donne aussi la C^1 -régularité de E_k hors de la boule $D(o_k, \frac{1}{4}r_k)$.

Le paragraphe 7 donne un argument d'extension harmonique, qui donne une borne inférieure pour la mesure du graphe d'une fonction (définie sur un anneau) en fonction de la taille de ses oscillations près du bord.

Et on arrive à notre conclusion au paragraphe 8, en sommant tous les informations qu'on a collecté pendant les paragraphes précédents.

Dans les trois paragraphes qui suivent, on utilise le même genre d'idées pour obtenir quelques résultats semblables. On montre la minimalité de l'union presque orthogonale de deux plans de dimension plus élevée au paragraphe 9, la minimalité de l'union presque orthogonale de m plans de dimension n $(n \ge 2)$ dans \mathbb{R}^{mn} dans le paragraphe 10, et finalement dans le paragraphe 11 la minimalité de l'union presque orthogonale d'un plan de dimension 2 et un \mathbb{Y} de dimension 2 dans \mathbb{R}^5 .

Dans le paragraphe 12 on montre deux petits résultats. 1) on montre par calibration que le produit de deux \mathbb{Y} de dimension 1 est minimal si la classe des compétiteurs est restreint à des déformations

injectives. 2) On montre que si le produit de deux ensembles est minimal dans \mathbb{R}^n , alors chacun est minimal aussi.

2 Discussions sur le cas orthogonal et des cas presque orthogonaux

Dans ce paragraphe, on va faire quelques premières estimations pour l'union de deux plans transverses. Ces estimations sont plutôt algébriques, et n'utilisent que l'estimation des projections des 2-vecteurs simples dans \mathbb{R}^4 . Donc dans ce paragraphe on va exprimer des plans de dimension 2 par des 2-vecteurs. Mais ici les 2-vecteurs sont seulement utilisés pour exprimer les positions relatives entre des plans, ou traités comme des élément de surface ou la dérivée d'une applications différentiable entre deux ensembles rectifiables quand on essaye de faire une intégration. Donc dans notre démonstrations l'orientation des 2-vecteurs ne compte jamais, autrement dit on n'aura pas besoin de distinguer $x \wedge y$ et $y \wedge x$.

Donc soit x,y deux vecteurs dans \mathbb{R}^4 , on note $x \wedge y$ leur produit extérieur, qui appartient à $\wedge_2(\mathbb{R}^4)$, l'espace des 2-vecteurs dans \mathbb{R}^4 . Et si $\{e_i\}_{1 \leq i \leq 4}$ est une base orthonormée de \mathbb{R}^4 , alors $\{e_i \wedge e_j\}_{1 \leq i < j \leq 4}$ forme une base de $\wedge_2(\mathbb{R}^4)$. On dit qu'un élément $v \in \wedge_2(\mathbb{R}^4)$ est simple si on peut l'écrire comme le produit extérieur de deux vecteurs : $v = x \wedge y, x, y \in \mathbb{R}^4$.

La norme sur l'espace $\wedge_2(\mathbb{R}^4)$, notée $|\cdot|$, est simplement définie par

Alors $\wedge_2(\mathbb{R}^4)$ est un espace hilbertien sous cette norme, et $\{e_i \wedge e_j\}_{1 \leq i < j \leq 4}$ en est une base orthonormée. Et pour tout 2-vecteur simple $x \wedge y$, sa norme est

$$(2.2) |x \wedge y| = ||x|| ||y|| \sin \langle x, y \rangle,$$

où $< x,y> \in [0,\pi]$ est l'angle entre les vecteurs x et y, et $||\cdot||$ désigne la norme Euclidienne sur \mathbb{R}^4 . Un 2-vecteur simple unitaire est un 2-vecteur simple dont la norme est 1. Notons que $|\cdot|$ est engendrée par le produit scalaire <,> défini sur $\wedge_2(\mathbb{R}^4)$ comme suit : pour $\xi=\sum_{1\leq i< j\leq 4}a_{ij}e_i\wedge e_j,$ $\zeta=\sum_{1\leq i< j\leq 4}b_{ij}e_i\wedge e_j,$

$$(2.3) \langle \xi, \zeta \rangle = \sum_{1 \le i < j \le 4} a_{ij} b_{ij}.$$

On peut vérifier que si les sous-espaces (de dimension 2) engendrés par les 2 paires de vecteurs x, y et x', y' respectivement sont égaux, alors il existe $r \in \mathbb{R} \setminus \{0\}$ tel que $x \wedge y = rx' \wedge y'$.

Maintenant étant donné un 2-vecteur unitaire simple ξ , on peut l'associer à un sous-espace $P(\xi) \in G(4,2)$ de dimension 2 de \mathbb{R}^4 , où G(4,2) est l'ensemble des sous-espaces de dimension 2 dans \mathbb{R}^4 (ou l'ensemble des 2-plans dans \mathbb{R}^4 passant par l'origine),

(2.4)
$$P(\xi) = \{ v \in \mathbb{R}^4, v \land \xi = 0 \}.$$

Autrement dit $P(x \wedge y)$ est le sous-espace engendré par x et y.

On écrit aussi, quand il n'y a pas d'ambiguïté, $P = x \wedge y$, où $P \in G(4,2)$ et $x, y \in \mathbb{R}^4$ lorsque $P = P(x \wedge y)$ et $x \wedge y$ est unitaire. Mais notons que quand on écrit $P = x \wedge y$ et $P = x' \wedge y'$ où $x \wedge y, x' \wedge y'$ sont deux 2-vecteur simple unitaire, cela ne veut pas dire du tout que $x \wedge y = x' \wedge y' \in \Lambda_2(\mathbb{R}^4)$. (Par contre il existe $\epsilon \in \{-1, 1\}$ tel que $x \wedge y = \epsilon x' \wedge y'$.)

Au niveau des applications linéaires, si f est une application linéaire de \mathbb{R}^4 dans \mathbb{R}^4 , alors on note $\wedge_2 f$ (et aussi f s'il n'y a pas d'ambiguïté) l'application linéaire de $\wedge_2(\mathbb{R}^4)$ dans $\wedge_2(\mathbb{R}^4)$ telle que

Et au niveau de G(4,2) (l'ensembles des plans non-orientés), pour $\xi \in \wedge_2 \mathbb{R}^4$ qui est simple unitaire, on a $P(\xi) = P(-\xi)$, de sorte qu'on peut définir $|f(\cdot)| : G(4,2) \to \mathbb{R}^+ \cup \{0\}$ par

$$(2.6) |f(P(\xi))| = | \wedge_2 f(\xi)|.$$

On peut vérifier facilement que la valeur de $|f(P(\xi))|$ ne dépend pas du choix de ξ qui engendre P. Donc $|f(\cdot)|$ est bien définie.

2.1 Estimation des projections sur l'union de 2 plans transverses pour tout 2-vecteur simple

Rappelons la définition des angles caractéristiques entre 2 plans. Soit P,Q deux plans de dimension 2 dans \mathbb{R}^4 . Parmi les paires de vecteurs unitaires $(v,w),v\in P,w\in Q$, on choisit v_1,w_1 qui minimise l'angle entre eux. Et on note α_1 cet angle minimal. Ensuite on regarde les paires de vecteurs unitaires $\{(v',w'):v'\in P,w'\in Q,v'\perp v_1,w'\perp w_1\}$, et on choisit (v_2,w_2) qui minimise l'angle parmi toutes les telles paires (et en fait ici puisque P et Q sont de dimension 2, quand w_1,v_1 sont fixé, en général il ne reste que 4 telle paires : $(\pm v_2,\pm w_2)$). Notons α_2 l'angle entre v_2 et w_2 . Alors (α_1,α_2) (où $\alpha_1\leq\alpha_2$) et le couple des angles caractéristiques entre P et Q.

Les angles caractéristiques caractérisent absolument la position relative entre les 2 plans de la façon suivante. On peut trouver une base orthonormée $\{e_i\}_{1\leq i\leq 4}$, telle que

$$(2.7) P = e_1 \wedge e_2 \text{ et } Q = (\cos \alpha_1 e_1 + \sin \alpha_1 e_3) \wedge (\cos \alpha_2 e_2 + \sin \alpha_2 e_4).$$

Notons que deux plans P et Q sont orthogonaux si leur couple d'angles caractéristiques est $(\frac{\pi}{2}, \frac{\pi}{2})$.

Maintenant étant donné une paire de plans P^1, P^2 avec le couple des angles caractéristiques (α_1, α_2) , on veut estimer la somme des projections sur eux d'un 2-vecteur simple unitaire. On prend $\{e_i\}_{1 \leq i \leq 4}$ une base orthonormée telle que

(2.8)
$$P^{1} = e_{1} \wedge e_{2} \text{ et } P^{2} = (\cos \alpha_{1} e_{1} + \sin \alpha_{1} e_{3}) \wedge (\cos \alpha_{2} e_{2} + \sin \alpha_{2} e_{4}).$$

Notons également p^i la projection orthogonale sur P^i , i=1,2. Alors les p^j sont des applications linéaires. Notons p^j l'application linéaire $\wedge_2 p^j$ de $\wedge_2(\mathbb{R}^4)$ dans lui-même définie par (2.5).

Maintenant soit ξ un 2-vecteur unitaire simple, alors il existe deux vecteurs unitaires x, y tels que $\xi = x \wedge y$ et $x \perp y$. Ecrivons x, y dans la base :

$$(2.9) x = ae_1 + be_2 + ce_3 + de_4, y = a'e_1 + b'e_2 + c'e_3 + d'e_4$$

avec

(2.10)
$$a^2 + b^2 + c^2 + d^2 = a'^2 + b'^2 + c'^2 + d'^2 = 1$$

et

(2.11)
$$aa' + bb' + cc' + dd' = 0.$$

On calcule ensuite les projections $|p^j(\xi)|$.

$$|p^{1}(\xi)| = |\langle e_{1} \wedge e_{2}, \xi \rangle| = |ab' - a'b|,$$

et

$$|p^{2}(\xi)| = |\langle (\cos \alpha_{1}e_{1} + \sin \alpha_{1}e_{3}) \wedge (\cos \alpha_{2}e_{2} + \sin \alpha_{2}e_{4}), \xi \rangle|$$

$$= |(ab' - a'b)\cos \alpha_{1}\cos \alpha_{2} + (ad' - a'd)\cos \alpha_{1}\sin \alpha_{2}$$

$$+ (cb' - c'b)\sin \alpha_{1}\cos \alpha_{2} + (cd' - c'd)\sin \alpha_{1}\sin \alpha_{2}|.$$

Alors quand $\alpha_1 = \alpha_2 = \frac{\pi}{2}$, on a

(2.14)
$$|p^{1}(\xi)| + |p^{2}(\xi)| = |ab' - a'b| + |cd' - c'd|$$

$$\leq \frac{1}{2}(a^{2} + b'^{2} + a'^{2} + b^{2}) + \frac{1}{2}(c^{2} + d'^{2} + c'^{2} + d^{2}) = 1$$

à cause de (2.10).

On a donc le lemme suivant.

Lemme 2.15. Soit P^1, P^2 deux plans orthogonaux, alors pour chaque 2-vecteur unitaire simple $\xi \in \wedge_2 \mathbb{R}^4$ on a

$$|p^1(\xi)| + |p^2(\xi)| \le 1.$$

Mais on aura encore besoin de savoir quel est l'ensemble des vecteurs tels que l'inégalité dans (2.16) est une égalité.

Notons Ξ l'ensemble des 2-vecteurs simples unitaire $\xi\in\bigwedge_2\mathbb{R}^4$ qui vérifient

(2.17)
$$|p^{1}(\xi)| + |p^{2}(\xi)| = 1.$$

Alors $P(\Xi) = \{P(\xi), \xi \in \Xi\}$ est un compact dans l'ensemble G(4,2) de tous les 2-vecteurs simples unitaires, où la topologie est la topologie engendrée par la distance classique sur notre Grassmannien G(4,2) (c.f. [14],1.6.2). Alors on a, par un calcul élémentaire, le lemme suivant :

Lemme 2.18.

(2.19)
$$\Xi = \{(\cos \alpha v_1 + \sin \alpha u_1) \land (\cos \alpha v_2 + \sin \alpha u_2) : \alpha \in [0, \frac{\pi}{2}], \\ v_i, u_i \text{ des vecteurs unitaires }, v_i \in P^1, u_i \in P^2, i = 1, 2, \text{ et } v_1 \perp v_2, u_1 \perp u_2\}.$$

Démonstration. Prenons un $\xi \in \Xi$, puis écrivons-le sous la forme $x \wedge y$ avec $x \perp y$ qui vérifient (2.9)-(2.11). Alors $\xi \in \Xi$ si et seulement si (2.14) est une égalité, ce qui veut dire

$$(2.20) |ab' - a'b| = \frac{1}{2}(a^2 + b'^2 + a'^2 + b^2), |cd' - c'd| = \frac{1}{2}(c^2 + d'^2 + c'^2 + d^2).$$

Par la première égalité on a

(2.21)
$$|ab'| = \frac{1}{2}(a^2 + b'^2), |a'b| = \frac{1}{2}(a'^2 + b^2)$$

et

$$(2.22) |ab' - a'b| = |ab'| + |a'b|.$$

Puis (2.21) donne

$$(2.23) |a| = |b'|, |a'| = |b|,$$

ce qui implique

$$(2.24) a = \pm b', a' = \pm b.$$

En combinant avec (2.22) on obtient

$$(2.25) a = b', a' = -b \text{ ou } a = -b', a' = b.$$

Un argument semblable donne

(2.26)
$$c = d', c' = -d \text{ ou } c = -d', c' = d.$$

Donc

$$(2.27) a^2 + b^2 = a'^2 + b'^2, c^2 + d^2 = c'^2 + d'^2 \text{ et } aa' + bb' = 0, cc' + dd' = 0.$$

Alors si $a^2+b^2=0$ (resp. $c^2+d^2=0$), l'énoncé est automatiquement vrai, en posant directement $\alpha=\frac{\pi}{2}$ (resp. $\alpha=0$) et $v_1=e_1,v_2=e_2$ ou $-e_2,u_1=e_3,u_2=e_4$ ou $-e_4$.

Si $a^2 + b^2 \neq 0, c^2 + d^2 \neq 0$, on pose

$$(2.28) v_1 = \frac{ae_1 + be_2}{a^2 + b^2}, \ v_2 = \frac{a'e_1 + b'e_2}{a'^2 + b'^2}, \ u_1 = \frac{ce_3 + de_4}{c^2 + d^2}, \ u_2 = \frac{c'e_3 + d'e_4}{c'^2 + d'^2},$$

et

(2.29)
$$\alpha = \arccos \frac{a^2 + b^2}{a^2 + b^2 + c^2 + d^2} = \arccos(a^2 + b^2),$$

alors $\cos \alpha = a^2 + b^2$, $\sin \alpha = c^2 + d^2$ et v_i, u_i sont des vecteurs unitaires, $v_i \in P^1$, $u_i \in P^2$, i = 1, 2, et $v_1 \perp v_2, u_1 \perp u_2$. Par conséquent

$$(2.30) x = \cos \alpha v_1 + \sin \alpha u_1 \text{ et } y = \cos \alpha v_2 + \sin \alpha u_2$$

et ξ peut être écrit sous la forme

(2.31)
$$\xi = (\cos \alpha v_1 + \sin \alpha u_1) \wedge (\cos \alpha v_2 + \sin \alpha u_2)$$

avec $\alpha \in [0, \frac{\pi}{2}]$, v_i, u_i des vecteurs unitaires, $v_i \in P^1$, $u_i \in P^2$, i = 1, 2, et $v_1 \perp v_2, u_1 \perp u_2$.

La réciproque est triviale. En effet, on a $P(v_1 \wedge v_2) = P^1$, $P(u_1 \wedge u_2) = P^2$, $p^1(u_i \wedge v_j) = p^2(u_i \wedge v_j) = p^1(u_1 \wedge u_2) = p^2(v_1 \wedge v_2) = 0$, et donc

$$(2.32) |p^{1}(\xi)| = \cos^{2} \alpha, |p^{2}(\xi)| = \sin^{2} \alpha.$$

Par conséquent

$$(2.33) |p^1(\xi)| + |p^2(\xi)| = 1,$$

d'où $\xi \in \Xi$.

Fin de la démonstration du lemme.

Maintenant on regarde des plans dont les angles caractéristiques sont presque orthogonaux. On va démontrer la proposition suivante.

Proposition 2.34. Soit $0 \le \alpha_1 \le \alpha_2 \le \frac{\pi}{2}$, et soit $P^1, P^2 \subset \mathbb{R}^4$ deux plans qui font des angles caractéristiques $\alpha_1 \le \alpha_2$. Si on note p^i la projection orthogonale sur P^i , alors pour tout vecteur simple unitaire $\zeta \in \bigwedge_2 \mathbb{R}^4$, la somme des projections vers ces 2 plans satisfait à :

$$(2.35) |p^1\zeta| + |p^2\zeta| \le 1 + 2\cos\alpha_1.$$

Remarque 2.36. Notons que quand $\alpha_1 \to \frac{\pi}{2}$, on a que $\cos \alpha_1 \to 0$. Donc le lemme implique que pour tout ϵ petit, il existe un $\theta = \theta(\epsilon) \in]0, \frac{\pi}{2}[$ tel que si $\alpha_2 \geq \alpha_1 \geq \theta$ alors pour tout vecteur simple unitaire $\zeta \in \bigwedge_2 \mathbb{R}^4$,

$$(2.37) |p^1\zeta| + |p^2\zeta| \le 1 + \epsilon.$$

Démonstration.

Soit $0 \le \alpha_1 \le \alpha_2 \le \frac{\pi}{2}$ fixés quelconques, et soit P^1 et P^2 une paire de plans avec les angles caractéristiques α_1, α_2 . Alors il existe une base orthonormée de \mathbb{R}^4 $\{e_i\}_{1 \le i \le 4}$ telle que $P^1 = e_1 \wedge e_2$, $P^2 = (\cos \alpha_1 e_1 + \sin \alpha_1 e_3) \wedge (\cos \alpha_2 e_2 + \sin \alpha_2 e_4)$.

Notons p la projection orthogonale vers le plan $P(e_3 \wedge e_4)$.

Pour tout $\zeta \in \bigwedge^2(\mathbb{R}^4)$ simple unitaire, on a

$$(2.38) |p^{1}\zeta| + |p^{2}\zeta| = |p^{1}\zeta| + |p\zeta| + (|p^{2}\zeta| - |p\zeta|) \le |p^{1}\zeta| + |p\zeta| + |p^{2}\zeta - p\zeta|.$$

Par le lemme 2.15, on sait déjà que

$$(2.39) |p^1\zeta| + |p\zeta| \le 1.$$

Il ne reste donc qu'à regarder $|(p^2 - p)\zeta|$.

Mais

$$(p^{2} - p)(\zeta) = \langle (\cos \alpha_{1}e_{1} + \sin \alpha_{1}e_{3}) \wedge (\cos \alpha_{2}e_{2} + \sin \alpha_{2}e_{4}) - e_{3} \wedge e_{4}, \zeta \rangle$$

$$= \langle \cos \alpha_{1} \cos \alpha_{2}e_{1} \wedge e_{2} + \cos \alpha_{1} \sin \alpha_{2}e_{1} \wedge e_{4} + \sin \alpha_{1} \cos \alpha_{2}e_{3} \wedge e_{2}$$

$$+ (\sin \alpha_{1} \sin \alpha_{2} - 1)e_{3} \wedge e_{4}), \zeta \rangle.$$

Notons que ζ est un 2-vecteur unitaire, donc

(2.41)
$$\zeta = \sum_{1 \le i < j \le 4} a_{ij} e_i \wedge e_j$$

 \mathbf{e} t

(2.42)
$$\sum_{1 \le i < j \le 4} a_{ij}^2 = 1.$$

Alors

(2.43)
$$(p^2 - p)(\zeta) = a_{12} \cos \alpha_1 \cos \alpha_2 + a_{14} \cos \alpha_1 \sin \alpha_2 - a_{23} \sin \alpha_1 \cos \alpha_2 + a_{34} (\sin \alpha_1 \sin \alpha_2 - 1).$$

Maintenant on sait que $a_{12}^2 + a_{14}^2 + a_{23}^2 + a_{34}^2 \le 1$, donc par Cauchy-Schwarz et $\alpha_1 \le \alpha_2$,

$$|(p^2-p)(\zeta)|$$

$$(2.44) \qquad \leq \left[\cos^{2}\alpha_{1}\cos^{2}\alpha_{2} + \cos^{2}\alpha_{1}\sin^{2}\alpha_{2} + \sin^{2}\alpha_{2}\cos^{2}\alpha_{2} + (\sin\alpha_{1}\sin\alpha_{2} - 1)^{2}\right]^{\frac{1}{2}}$$

$$\leq \left[\cos^{2}\alpha_{1} + \cos^{2}\alpha_{1} + \cos^{2}\alpha_{2} + (1 - \sin^{2}\alpha_{1})^{2}\right]^{\frac{1}{2}}$$

$$\leq \left[3\cos^{2}\alpha_{1} + \cos^{4}\alpha_{1}\right]^{\frac{1}{2}} \leq \left[4\cos^{2}\alpha_{1}\right]^{\frac{1}{2}} = 2\cos\alpha_{1}.$$

Alors en sommant avec (2.38) et (2.39) on obtient la conclusion.

2.2 Comparaison de la mesure d'un ensemble rectifiable avec la somme de celles de ses projections sur deux plans

On va appliquer les estimations sur les 2-vecteurs qu'on vient d'obtenir à des ensembles rectifiables. Soit F un ensemble 2-rectifiable, alors pour presque tout $x \in F$ le plan tangent approximatif de F en x existe (c.f.[24] Thm 15.11), notons le T_xF . Alors $T_xF \in G(4,2)$, et pour chaque application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^4$, $|f(T_xF)|$ est définit comme dans (2.6).

Lemme 2.45. Soit P^1 , P^2 deux plans dans \mathbb{R}^4 , $F \subset \mathbb{R}^4$ un ensemble 2-rectifiable. Notons p^i la projection orthogonale sur P^i . Soit λ tel que pour presque tout $x \in F$, le plan tangent $T_x F \in G(4,2)$ de F en x vérifie

$$(2.46) |p^1(T_x F)| + |p^2(T_x F)| \le \lambda,$$

alors on a

$$(2.47) H^2(p^1(F)) + H^2(p^2(F)) \le \lambda H^2(F).$$

Démonstration.

Notons f la restriction de p^1 à F, alors f est une fonction Lipschitzienne d'un ensemble 2-rectifiable vers un sous-ensemble d'un 2-plan P^1 . Puisque F est 2-rectifiable, pour H^2 — presque tout $x \in F$, f a une différentielle approximative

$$(2.48) apDf(x): T_x F \to P^1$$

(c.f.[14], Thm 3.2.19). De plus cette différentielle est telle que $||\bigwedge_2 apDf(x)|| \le 1$ presque partout, parce que f est 1-Lipschitzienne.

Maintenant on peut appliquer la formule de l'aire à f, (c.f. [14] Cor 3.2.20). Pour toute fonction $g: F \to \overline{\mathbb{R}}$ qui est intégrable pour $H^2|_F$ on a :

(2.49)
$$\int_{\mathbb{R}} (g \circ f) \cdot || \wedge_2 apDf(x)|| dH^2 = \int_{\mathbb{R}^1} g(z) N(f, z) dH^2 z,$$

οù

$$(2.50) N(f,z) = \sharp \{f^{-1}(z)\},$$

et pour $z \in p^1(F)$ on a $N(f,z) \ge 1$. On prend $g \equiv 1$ et on obtient

(2.51)
$$\int_{F} || \wedge_{2} apDf(x)|| dH^{2} = \int_{P^{1}} N(f, z) dH^{2} z \ge \int_{p^{1}(F)} dH^{2} = H^{2}(p^{1}(F)).$$

On rappelle que p^1 est linéaire, et donc sa différentielle est elle-même. Donc apDf(x) est la restriction de p^1 au 2-sous-espace T_xF , de sorte que si u, v est une base orthonormée de T_xF , alors

par (2.6). On a donc par (2.51)

(2.53)
$$\int_{F} |p^{1}(T_{x}F)| dH^{2}(x) \ge H^{2}(p^{1}(F)).$$

Par un argument semblable on a aussi :

(2.54)
$$\int_{F} |p^{2}(T_{x}F)| dH^{2}(x) \ge H^{2}(p^{2}(F)).$$

En sommant sur i=1,2 on obtient

(2.55)
$$H^{2}(p^{1}F) + H^{2}(p^{2}F) \leq \int_{F} |p^{1}T_{x}F| + |p^{2}T_{x}F|dH^{2}(x)$$
$$\leq \int_{F} \lambda \ dH^{2}(x) = \lambda H^{2}(F)$$

puisque $|p^1T_xF| + |p^2T_xF| \le \lambda$.

Fin de la démonstration du lemme.

Voici 2 corollaires du lemme.

Corollaire 2.56. L'ensemble $P_0 = P_0^1 \cup_{\perp} P_0^2 \subset \mathbb{R}^4$ est minimal.

Démonstration.

Soit F un compétiteur de P_0 dans B(0,1), alors par la remarque 1.17, ceci signifie qu'il existe une déformation Lipschitzienne φ dans \mathbb{R}^4 , avec

(2.57)
$$\varphi|_{B(0,1)^C} = Id; \ \varphi(B(0,1)) \subset B(0,1)$$

et

On va comparer la surface de F avec celle de $P_0 \cap B(0,1)$.

Notons $p_0^i, i=1,2$ les projections orthogonales de \mathbb{R}^4 sur P_0^i . Puisque F est un ensemble 2-rectifiable, le 2-plan tangent $T_xF\in G(4,2)$ existe pour presque tout $x\in F$. En représentant les plans sous la forme de 2-vecteurs simples, et par le lemme 2.15,

$$|p_0^1(T_xF)| + |p_0^2(T_xF)| \le 1.$$

D'après le lemme 2.45 on a

$$(2.60) H^2(p_0^1(F)) + H^2(p_0^2(F)) \le H^2(F).$$

On note $F^i = p_0^i \circ \varphi(P_0^i \cap B(0,1)), i = 1, 2$, alors F^i est une déformation de $P_0^i \cap B(0,1)$, et par la minimalité des plans (dans n'importe quelle dimension ambiante) on a

$$(2.61) H^2(F^i) \ge H^2(P_0^i \cap B(0,1)).$$

Maintenant puisque

(2.62)
$$p_0^i(F) = p_0^i \circ \varphi(P_0 \cap B(0,1)) \supset p_0^i \circ \varphi(P_0^i \cap B(0,1)) = F^i$$

on a

$$(2.63) H^2(p_0^i(F)) \ge H^2(F^i) \ge H^2(P_0^i \cap B(0,1)).$$

En sommant sur i on obtient :

(2.64)
$$H^{2}(F) \geq H^{2}(p_{0}^{1}F) + H^{2}(p_{0}^{2}F) \\ \geq H^{2}(P_{0}^{1} \cap B(0,1)) + H^{2}(P_{0}^{2} \cap B(0,1)) = H^{2}(P_{0} \cap B(0,1)).$$

C'est à dire que P_0 est minimal.

Corollaire 2.65. Soit $\epsilon > 0$ tel que $\arccos(\epsilon/2) \le \alpha_1 \le \alpha_2$, P^1 , P^2 deux plans d'angles caractéristiques (α_1, α_2) , p^i leurs projecteurs respectifs, et E un ensemble fermé, 2- rectifiable, tel que $p^i(E) \supset B(0,1) \cap P^i$. Alors on a

Démonstration. D'après la proposition 2.34, on a qu'en presque tout point $x \in E$, le plan tangent $T_x E$ de E en x vérifie

$$|p^{1}(T_{x}E)| + |p^{2}(T_{x}E)| \le 1 + \epsilon.$$

On applique le lemme 2.45, et on obtient notre conclusion.

3 Unicité de P_0

Dans ce paragraphe, on va préciser le corollaire 2.56.

Théorème 3.1. [unicité de P_0] Soit $P_0 = P_0^1 \cup_{\perp} P_0^2$, comme dans le paragraphe précédent, et p_0^i la projection orthogonale sur P_0^i , i = 1, 2. Soit $E \subset \overline{B}(0, 1)$ un ensemble de dimension 2 fermé réduit qui est minimal dans $B(0, 1) \subset \mathbb{R}^4$, et qui vérifie :

(3.2)
$$p_0^i(E \cap B(0,1)) \supset P_0^i \cap B(0,1) ;$$

$$(3.3) E \cap \partial B(0,1) = P_0 \cap \partial B(0,1) ;$$

$$(3.4) H^2(E \cap B(0,1)) = 2\pi.$$

Alors $E = P_0 \cap \overline{B}(0,1)$.

Unicité de P_0

Démonstration. D'abord observons que $p_0^i(E)=P_0^i\cap \overline{B}(0,1)$, puisque $E\subset \overline{B}(0,1)$ et $p_0^i(E)\supset P_0^i\cap \overline{B}(0,1)$. Et on a donc

(3.5)
$$H^{2}(E) = H^{2}(E \cap B(0,1)) = 2\pi$$
$$= H^{2}(P_{0}^{1} \cap B(0,1)) + H^{2}(P_{0}^{2} \cap B(0,1)) = H^{2}(p_{0}^{1}(E)) + H^{2}(p_{0}^{2}(E)).$$

Comparé avec (2.55), sachant qu'ici on peut prendre $\lambda=1$ à cause du lemme 2.15, on a que toutes les inégalités dans (2.55), et donc aussi dans (2.51), sont en fait des égalités. On verra bientôt que cela exige qu'en presque tout point $x \in E$,

$$|p_0^1(T_x E)| + |p_0^2(T_x E)| = 1$$

et pour i = 1, 2, pour presque tout $z \in p_0^i(E)$,

(3.7)
$$N(p_0^i, z) = \sharp \{p_0^{i-1}(z) \cap E\} = 1.$$

Plus précisément on a le lemme suivant :

Lemme 3.8. 1) Pour presque tout $x \in E$, $T_x E \in P(\Xi)$.

2) Pour chaque i = 1, 2, pour presque tout $z \in P_0^i \cap B(0, 1) = p_0^i(E)$, (3.7) est vrai.

Démonstration. 1) On a

$$(3.9) E \setminus \{x \in E : T_x E \in P(\Xi)\} = \{x \in E : |p_0^1 T_x E| + |p_0^2 T_x E| < 1\} = \bigcup_{n=1}^{\infty} T_n$$

où $T_n = \{x \in E : |p_0^1 T_x E| + |p_0^2 T_x E| < 1 - \frac{1}{n}\}$. Les T_n sont mesurables. Donc il suffit de montrer que $H^2(T_n) = 0$ pour tout n.

Supposons que ce n'est pas vrai. Il existe donc un $n \in \mathbb{N}$ tel que $H^2(T_n) = \beta > 0$. Alors en appliquant encore une fois le lemme 2.45 on a

(3.10)
$$H^{2}(p_{0}^{1}(T_{n})) + H^{2}(p_{0}^{2}(T_{n})) \leq (1 - \frac{1}{n})H^{2}(T_{n}).$$

D'un autre côté, pour presque tout $x \in E \setminus T_n$ on a $|p_0^1 T_x(E \setminus T_n)| + |p_0^2 T_x(E \setminus T_n)| \le 1$, donc (toujours à cause du lemme 2.45)

(3.11)
$$H^{2}(p_{0}^{1}(E\backslash T_{n})) + H^{2}(p_{0}^{2}(E\backslash T_{n})) \leq H^{2}(E\backslash T_{n})$$

et par conséquent

$$H^{2}(E) = H^{2}(T_{n}) + H^{2}(E \backslash T_{n}) = (1 - \frac{1}{n})H^{2}(T_{n}) + H^{2}(E \backslash T_{n}) + \frac{1}{n}H^{2}(T_{n})$$

$$\geq H^{2}(p_{0}^{1}(T_{n})) + H^{2}(p_{0}^{2}(T_{n})) + H^{2}(p_{0}^{1}(E \backslash T_{n})) + H^{2}(p_{0}^{2}(E \backslash T_{n})) + \frac{1}{n}\beta$$

$$= [H^{2}(p_{0}^{1}(T_{n})) + H^{2}(p_{0}^{1}(E \backslash T_{n}))] + [H^{2}(p_{0}^{2}(T_{n})) + H^{2}(p_{0}^{2}(E \backslash T_{n}))] + \frac{1}{n}\beta$$

$$\geq H^{2}(p_{0}^{1}(T_{n}) \cup p_{0}^{1}(E \backslash T_{n})) + H^{2}(p_{0}^{2}(T_{n}) \cup p_{0}^{2}(E \backslash T_{n})) + \frac{1}{n}\beta$$

$$= H^{2}(p_{0}^{1}(T_{n} \cup (E \backslash T_{n})) + H^{2}(p_{0}^{2}(T_{n} \cup (E \backslash T_{n})) + \frac{1}{n}\beta$$

$$= H^{2}(p_{0}^{1}(E)) + H^{2}(p_{0}^{2}(E)) + \frac{1}{n}\beta.$$

On sait déjà que $p_0^i(E) = P_0^i \cap B(0,1), i = 1, 2$, donc $H^2(p_0^i(E)) = H^2(P_0^i \cap B(0,1)) = \pi$, et par conséquent

(3.13)
$$H^{2}(E) \ge H^{2}(p_{0}^{1}(E)) + H^{2}(p_{0}^{2}(E)) + \frac{1}{n}\beta \ge 2\pi + \frac{1}{n}\beta > 2\pi$$

en contradiction avec (3.4).

2) Montrons-le par l'absurde. Prenons i=1 par exemple. Notons $B=\{z\in p_0^1(E): \sharp\{p_0^{i-1}(z)\cap E\}\geq 2\}$. Alors B est mesurable. Notons aussi $p_0^{i-1}(B)\cap E=A$.

Supposons que $H^2(B) > 0$. Alors A est aussi de mesure non nulle. Par (2.51)

(3.14)
$$\int_A || \wedge_2 ap Dp_0^1(x)|| dH^2(x) = \int_B \sharp (p_0^{1-1}\{y\} \cap E) dH^2(y) \ge 2H^2(B),$$

et donc par (2.52)

(3.15)
$$\int_{A} |p_0^1(T_x A)| dH^2(x) \ge 2H^2(B).$$

Par conséquent

(3.16)
$$H^{2}(A) \geq \int_{A} |p_{0}^{1}T_{x}A| + |p_{0}^{2}T_{x}A|dH^{2}(x)$$
$$\geq 2H^{2}(p_{0}^{1}(A)) + H^{2}(p_{0}^{2}(A)) = 2H^{2}(B) + H^{2}(p_{0}^{2}(A)).$$

D'un autre côté, on a par les lemmes 2.45 et 2.15

(3.17)
$$H^{2}(E \backslash A) \geq H^{2}(p_{0}^{1}(E \backslash A)) + H^{2}(p_{0}^{2}(E \backslash A))$$
$$\geq H^{2}(p_{0}^{1} \cap B(0,1) \backslash B) + H^{2}(p_{0}^{2}(E \backslash A)).$$

Par conséquent

$$H^{2}(E) = H^{2}(A) + H^{2}(E \setminus A)$$

$$\geq 2H^{2}(B) + H^{2}(p_{0}^{2}(A)) + H^{2}(P_{0}^{1} \cap B(0, 1) \setminus B) + H^{2}(p_{0}^{2}(E \setminus A))$$

$$\geq H^{2}(p_{0}^{1}(E)) + H^{2}(p_{0}^{2}(E)) + H^{2}(B)$$

$$= H^{2}(P_{0}^{1} \cap B(0, 1)) + H^{2}(P_{0}^{2} \cap B(0, 1)) + H^{2}(B)$$

$$\geq 2\pi + H^{2}(B) > 2\pi$$

en contradiction avec (3.4).

Fin de la démonstration du lemme.

Nous allons maintenant utiliser ce résultat et le lemme 2.18 pour obtenir des propriétés locales de l'ensemble E du théorèm 3.1. D'abord puisque $E \cap B(0,1)$ est un ensemble minimal réduit de dimension 2 dans B(0,1), on sait que pour tout $x \in E \cap B(0,1)$, il existe $r = r_x > 0$ tel que dans B(x,r), E est bi-Höldériennement équivalent à un cône minimal C_x (c.f.[9], Thm 16.1). On appelle une telle boule B(x,r) une boule bi-Höldérienne de x. Un tel C_x est obtenu comme limite d'une suite d'ensembles

34 Unicité de P_0

E(r,x) définis dans (1.26), ce qui est appelé une limite d'explosion de E en x. Il peut y avoir plusieurs limites d'explosions en un point, mais toute ces limites sont bi-Höldériennement équivalentes, d'après le théorème qu'on vient de citer. Et on appelle x un point de type C_x . De plus si C_x admet la propriété de "full length" (voir [10] Définition 2.10), alors il est effectivement l'unique limite d'explosion, et l'équivalence entre E et C_x est en fait de classe C^1 dans une boule B(x,r) (c.f.[10] Thm 1.15).

La propriété "full-length" est vérifiée par tous les cônes minimaux qu'on connait. Par exemple, les plans ([10], Lemme 14.4); et ce qu'on appelle un \mathbb{Y} , qui est l'union de trois demi-plan qui se rencontrent le long d'une droite en faisant des angles de 120 degrés ([10], Lemme 14.6). En fait ils vérifient aussi la propriété "full-length à cause des angles", qui est un peu plus forte que "full-length" (c.f. [10], (14.2)). De plus si C_1, C_2 sont des cônes minimaux "full-length à cause des angles" qui ne se croisent qu'à l'origine, et $C_1 \cup C_2$ est un cône minimal, alors $C_1 \cup C_2$ vérifie la propriété de "full-length à cause des angles" aussi (c.f. [10], Remarque 14.40).

D'un autre côté, ce qu'on sait en général pour un cône minimal, est que son intersection S avec la sphère unité est une union finie de cercles et d'arcs de cercles. Chaque cercle est disjoint du reste de S. Près de chaque extrémité x d'un arc de cercle, S est composé de 3 arcs qui font des angles de 120° en x (c.f.[9], Proposition 14.1). Alors si un cône minimal n'est pas une union des plans transverses, son intersection avec la sphère contient au moins un point qui est à la jonction de 3 arcs de cercle. En particulier il existe des points de type Y arbitrairement proches de l'origine.

On peut déduire

Lemme 3.19. Il n'y a pas de point de type \mathbb{Y} dans $E \cap B(0,1)$.

Démonstration. Soit $x \in E$ un point de type \mathbb{Y} . Cela signifie que le cône tangent C_x est composé de 3 demi-plans fermés $\{P_i\}_{1 \leq i \leq 3}$ qui se rencontrent le long d'une droite D passant par l'origine. Notons $Q_i, 1 \leq i \leq 3$ le plan qui contient P_i . On affirme que

(3.20) au moins un des
$$Q_i$$
 n'appartient pas à $P(\Xi)$.

En effet si on note v le vecteur unitaire qui engendre D, alors il existe trois vecteurs unitaire w_i , $1 \le i \le 3$ tels que $w_i \perp v$ et $Q_i = P(v \wedge w_i)$, et que les angles entre les w_i sont tous de 120 degré. Si $Q_1 \notin P(\Xi)$, notre affirmation (3.20) est automatiquement vraie. Sinon, $Q_1 \in P(\Xi)$, est donc $v \wedge w_1 \in \Xi$. D'après la démonstration du lemme 2.18 (qui démontre en fait que pour chaque paire de vecteurs unitaires perpendiculaires x, y tel que $x \wedge y \in \Xi$, (2.30) est vrai), il existe $v_j, u_j, j = 1, 2$ des vecteurs unitaires tels que, $v_j \in P_0^1, u_j \in P_0^2, v_1 \perp v_2, u_1 \perp u_2$, et $\alpha \in [0, \frac{\pi}{2}]$ tel que

$$(3.21) v = \cos \alpha v_1 + \sin \alpha u_1, w_1 = \cos \alpha v_2 + \sin \alpha u_2.$$

Maintenant puisque les u_j, v_j engendrent \mathbb{R}^4 , il existe $a, b, c, d \in \mathbb{R}$ avec $a^2 + b^2 + c^2 + d^2 = 1$ tel que

 $w_2 = av_1 + bv_2 + cu_1 + du_2$. Alors

$$|p_0^1(Q_2)| + |p_0^2(Q_2)| = | \wedge_2 p_0^1(v \wedge w_2)| + | \wedge_2 p_0^2(v \wedge w_2)|$$

$$= |b \cos \alpha| + |d \sin \alpha| \le (b^2 + d^2)^{\frac{1}{2}} (\cos^2 \alpha + \sin^2 \alpha)^{\frac{1}{2}}$$

$$= (b^2 + d^2)^{\frac{1}{2}} \le 1.$$

Donc pour que $Q_2 \in P(\Xi)$, il faut que toutes les inégalités dans (3.22) soient des égalités, et donc $b^2 + d^2 = 1$, et $b : d = \pm \cos \alpha : \sin \alpha$. Par conséquent on a $(b, d) = (\pm \cos \alpha, \pm \sin \alpha)$, $a^2 + c^2 = 0$, et donc $w_2 = \pm w_1$ ou $\pm (\cos \alpha v_2 - \sin \alpha u_2)$.

Pour que l'angle entre w_1 et w_2 soit de 120 degré, il ne reste que deux possibilités pour α , à savoir $\frac{\pi}{3}$ ou $\frac{\pi}{6}$.

Si $\alpha = \frac{\pi}{3}$, alors on a que $w_1 = \frac{1}{2}v_2 + \frac{\sqrt{3}}{2}u_2$ et $w_2 = \frac{1}{2}v_2 - \frac{\sqrt{3}}{2}u_2$. Mais l'argument ci-dessus est identique pour w_3 si on veut que l'angle entre w_1 et w_3 soit de 120 degré. On a donc $w_3 = w_2$, ce qui contredit le fait que l'angle entre w_2 et w_3 est de 120° aussi.

Le cas où $\alpha = \frac{\pi}{6}$ est semblable.

On a donc prouvé notre affirmation (3.20).

Maintenant supposons par exemple que $Q_1 \notin P(\Xi)$. Alors puisque $P(\Xi)$ est fermé dans G(4,2), il existe un ouvert $U \subset G(4,2)$ contenant Q_1 , tel que $U \cap P(\Xi) = \emptyset$.

On sait que $\mathbb Y$ est un cône de "full length" comme on l'a dit avant, donc, par le théorème de $C^{1+\alpha}$ régularité des ensembles minimaux de dimension 2(c.f. [10], Thm 1.15), il existe r>0 tel que dans B(x,r), E est C^1 équivalent à C_x+x (rappelons que $C_x=\cup_{i=1}^3 P_i$). Notons φ cette application d'équivalence, qui est définie sur B(x,r), et $R=\varphi(Q_1)$. Alors l'application $T:R\to G(4,2), T(x)=T_xR$ est continue. En effet, pour chaque $x\in R$, puisque R est une surface de classe C^1 dans un voisinage de x, donc le plan tangent $T(y)=T_yR$ pour y proche de x est une fonction continue de y.

Par conséquent $T^{-1}(U)$ est un ouvert. Notons $R_+ = \varphi(P_1)$. Alors $T^{-1}(U) \cap \varphi^{-1}(R_+) \neq \emptyset$ puisque x est dedans. Donc $T^{-1}(U)$ est relativement ouvert dans R_+ . Mais R_+ est une C^1 variété à bord (avec $\varphi(D)$ son bord). Par conséquent un ouvert de R_+ est de mesure non nulle. Donc $T^{-1}(U) \cap R_+$ est de mesure non nulle. Mais $\varphi(D)$ est de mesure nulle, donc $T^{-1}(U) \cap R_+ \setminus \varphi(D)$ est de mesure non nulle. Maintenant pour tout $y \in R_+ \setminus \varphi(D)$ on a que $T_y R = T_y E$, on obtient que dans E, l'ensemble de point y tel que $T_y E \in U$, et donc n'appartient pas à $P(\Xi)$, est de mesure non nulle, puisqu'il contient $T^{-1}(U) \cap R_+ \setminus \varphi(D)$. Cela contredit le lemme 3.8(1).

Fin de la démonstration du lemme.

Maintenant on peut arriver à décrire la structure locale en chaque point x de E, puisque E est réduit.

Lemme 3.23. Pour chaque $x \in E$, chaque limite d'explosion de E en x est soit un plan appartenant à $P(\Xi)$, soit P_0 .

Unicité de P_0

Démonstration. Soit X une limite d'explosion de E en x, on suppose aussi que x=0 pour abréger. On affirme d'abord que

(3.24)
$$X$$
 ne contient pas de point de type \mathbb{Y} .

Supposons que non, il existe alors $p \in X$ tel que p est de type \mathbb{Y} . Alors p n'est pas l'origine, parce que sinon X est de type \mathbb{Y} et donc 0 est de type \mathbb{Y} , ce qui contredit le lemme 3.19.

Mais X est un cône, donc pour tout r > 0, $rp \in X$ est un point de type \mathbb{Y} . On peut donc supposer que ||p|| = 1. Il existe alors $0 < r < \frac{1}{2}$ tel que dans B(p,r), X coïncide avec un cône Y de type \mathbb{Y} centré en p.

Maintenant X est une limite d'explosion de E en 0, il existe donc s>0 (grand) tel que $d_{0,2}(X,sE)<\frac{r\epsilon_2}{100}$, où ϵ_2 est comme dans [9] proposition 16.24. Par conséquent, $d_{p,\frac{r}{2}}(sE,X)<\frac{\epsilon_2}{50}$.

On veut montrer que

(3.25)
$$d_{p,\frac{r}{2}}(sE,X) = d_{p,\frac{r}{2}}(sE,Y).$$

Une fois qu'on a cela, on prend un point $z \in sE$ tel que $d(z,p) < \frac{r}{2} \times \frac{\epsilon_2}{50}$, alors on a $d_{z,\frac{r}{4}}(sE,Y+z-p) < \frac{\epsilon_2}{10}$. Ici Y+z-p et un cône de type $\mathbb Y$ centré en z. Mais sE est minimal puisque E l'est, donc par la proposition 16.24 de [9], on obtient que sE contient un point de type $\mathbb Y$, ce qui contredit le lemme 3.19. On a donc notre affirmation (3.24).

Il faut encore monter (3.25). Par définition

(3.26)
$$d_{p,\frac{r}{2}}(sE,X) = \frac{2}{r} \max\{ \sup_{x \in sE \cap B(p,\frac{r}{2})} d(x,X), \sup_{x \in X \cap B(p,\frac{r}{2})} d(x,sE) \}.$$

Pour le deuxième terme, on a que $X \cap B(p, \frac{r}{2}) = Y \cap B(p, \frac{r}{2})$, et donc

(3.27)
$$\sup_{x \in X \cap B(p, \frac{r}{2})} d(x, sE) = \sup_{x \in Y \cap B(p, \frac{r}{2})} d(x, sE).$$

Pour le premier, on a que

(3.28)
$$d(x,X) = d(x,X \cap B(p,r)) \text{ pour tout } x \in sE \cap B(p,\frac{r}{2}).$$

En effet, puisque $d_{p,\frac{r}{2}}(sE,X) < \frac{\epsilon_2}{50}$, pour chaque $x \in sE \cap B(p,\frac{r}{2})$, $d(x,X) < \frac{\epsilon_2}{50} \times \frac{2}{r}$, donc $d(x,X) = d(x,X \cap B(x,\frac{\epsilon_2}{50} \times \frac{2}{r})) \le d(x,X \cap B(p,r))$ puisque $B(x,\frac{\epsilon_2}{50} \times \frac{2}{r}) \subset B(p,r)$. D'un autre côté, $X \cap B(p,r) \subset X$, donc $d(x,X) \ge d(x,X \cap B(p,r))$. On a donc (3.28), et donc

(3.29)
$$\sup_{x \in sE \cap B(p, \frac{r}{2})} d(x, X) = \sup_{x \in sE \cap B(p, \frac{r}{2})} d(x, X \cap B(p, r)) \\ = \sup_{x \in sE \cap B(p, \frac{r}{2})} d(x, Y \cap B(p, r)) \ge \sup_{x \in sE \cap B(p, \frac{r}{2})} d(x, Y).$$

En combinant avec (3.27) on obtient

$$(3.30) d_{p,\frac{r}{2}}(sE,X) \le d_{p,\frac{r}{2}}(sE,Y).$$

Mais un argument semblable donne aussi

(3.31)
$$d_{p,\frac{r}{2}}(sE,Y) \le d_{p,\frac{r}{2}}(sE,X).$$

On a donc (3.25), d'où (3.24).

Mais X est un cône minimal, donc $X \cap \partial B(0,1)$ est l'union finie de cercles et d'arcs de cercles, qui ne se rencontrent qu'à leur extrémités, et toute extrémité est une extrémité commune de trois arcs qui recontrent avec angles 120 degré. Alors (3.24) implique qu'il n'y a pas de tels arcs, puisque X n'a pas de point de type Y. Par conséquent X est une union de plans qui ne se rencontrent qu'à l'origine.

Alors par la remarque 14.40 dans [10], X est un cône de "full length", et donc par la régularité C^1 , chaque plan de X doit être contenu dans $P(\Xi)$, juste comme on a dit pour $\mathbb Y$ dans la démonstration du lemme 3.19, puisque $P(\Xi)$ est un fermé.

Maintenant si X n'est pas un plan, alors $X = \bigcup_{i=1}^n Q_i$ avec $Q_i \in \Xi$ et $i \geq 2$.

Par (2.19), pour tout $Q \in \Xi$ tel que $Q \neq P_0^2$, il existe un $s = s_Q > 0$ tel que $p_0^1(Q \cap B(0,1)) \supset P_0^1 \cap B(0,s_Q)$. S'il existe 2 plans $Q_1,Q_2 \subset X$ tels que $Q_i \neq P_0^2$, alors il existe un s > 0 tel que $p_0^1(Q_1 \cap B(0,1)) \cap p_0^1(Q_2 \cap B(0,1)) \supset B(0,s) \cap P_0^1$, ce qui implique que

$$(3.32) (B(0,s)\setminus\{0\}) \cap P_0^1 \subset \{z \in P_0^1, \#\{p_0^{1-1}\{z\} \cap X\} \ge 2\}.$$

Maintenant par la régularité C^1 , il existe un voisinage U de $p_0^1(x)$ tel que

$$(3.33) (U \setminus \{p_0^1(x)\}) \cap P_0^1 \subset \{z \in P_0^1, \sharp \{p_0^{1-1}\{z\} \cap E\} \ge 2\}.$$

Mais U est ouvert, donc $U \cap P_0^1$ est de mesure non-nulle, ce qui contredit le lemme 3.8(2).

Donc dans X, on a au plus un plan qui n'est pas P_0^2 . Un argument semblable donne aussi qu'on a au plus un plan qui n'est pas P_0^1 . Mais X contient au moins deux plans, donc $X = P_0^1 \cup P_0^2 = P_0$.

Fin de la démonstration du lemme.

Par le lemme, on sait qu'il n'existe dans E que deux types de limites d'explosion, qui admettent tous les deux la propriété de "full-length". Par conséquent autour de chaque point $x \in E$, E est localement C^1 équivalent à un plan ou à P_0 .

On va regarder plus précisément dans les deux lemmes suivants ce qui se passe localement autour de chaque type de singularité.

Lemme 3.34. Soit $\{e_1, e_2 = ie_1, e_3, e_4 = ie_3\}$ une base orthonormée fixée de \mathbb{R}^4 , avec $P_0^1 = e_1 \wedge e_2$ et $P_0^2 = e_3 \wedge e_4$. Et soit $x \in E$ un point de type \mathbb{P} tel que $T_x E \neq P_0^2$. Alors il existe r = r(x) > 0 tel que dans B(x, r), E est (dans la base donnée) le graphe d'une fonction analytique ou anti-analytique complexe $\varphi = \varphi_x : P_0^1 \to P_0^2$. Plus précisément,

(3.35)
$$E \cap B(x,r) = graphe(\varphi) \cap B(x,r).$$

Unicité de P_0

On a aussi une conclusion semblable pour x tel que $T_xE \neq P_0^1$, c'est à dire qu'autour de x, E est le graphe d'une fonction analytique ou anti-analytique de $P_0^2 \to P_0^1$.

Démonstration. On va juste le montrer lorsque $T_x E \neq P_0^2$. L'autre cas est pareil.

Puisque x est un point de type \mathbb{P} , il existe $r_1 > 0$ tel que dans $B(x, r_1)$, E est le graphe d'une fonction $\varphi_1 : T_x E + x \to T_x E^{\perp}$ de classe C^1 . Si on note π la projection orthogonale de \mathbb{R}^4 sur $T_x E$, et on définit $F : \mathbb{R}^4 = P_0^1 \times P_0^2 \to \mathbb{R}^2$ par $F(y) = y - \varphi_1(\pi(y))$ pour $y = (y_1, y_2) \in P_0^1 \times P_0^2 \cap B(x, r_1)$, alors F est de classe C^1 et $E \cap B(x, r_1) = \{y \in B(x, r_1) : F(y) = (0, 0)\}$. Par conséquent, DF(x) est une application linéaire surjective qui envoie \mathbb{R}^4 dans \mathbb{R}^2 et telle que $T_x E = KerDF(x)$.

Par hypothèse, $T_xE \neq P_0^2$, et donc par les lemmes 3.23 et 2.18, on sait que T_xE est de forme $P((\cos\alpha v_1 + \sin\alpha u_1) \land (\cos\alpha v_2 + \sin\alpha u_2))$ avec $\alpha \in [0, \frac{\pi}{2})$, $v_i, u_i, i = 1, 2$ des vecteurs unitaires, $v_i \in P_0^1, u_i \in P_0^2$ et $v_1 \perp v_2, u_1 \perp u_2$. En particulier, $P_0^2 \cap KerDF(x) = P_0^2 \cap T_xE = \{0\}$. Cela implique que $DF(x)|_{P_0^2}$ est inversible. Alors par le théorème des fonctions implicites, il existe $r_2 > 0$ et $\varphi : P_0^1 \to P_0^2$ de classe C^1 telle que pour chaque $y = (y_1, y_2) \in B(x, r_2)$, $F(y) = 0 \Leftrightarrow y_2 = \varphi(y_1)$. Par conséquent, dans $B(x, r_2)$, E est le graphe de $\varphi : P_0^1 \to P_0^2$.

On va montrer que φ est analytique ou anti-analytique en utilisant le fait que $T_yE \in P(\Xi)$ pour tout $y \in E \cap B(x,r)$.

Plus précisément, revenons à notre base orthonormée fixée : $\{e_1, e_2 = ie_1, e_3, e_4 = ie_3\}$ avec $P_0^1 = e_1 \wedge e_2$ et $P_0^2 = e_3 \wedge e_4$. Alors (2.25) et (2.26) impliquent que

(3.36)
$$\Xi = \{ \pm [ae_1 + be_2 + ce_3 + de_4] \land [-be_1 + ae_2 \pm (-de_3 + ce_4)], \\ a, b, c, d \in \mathbb{R}, a^2 + b^2 + c^2 + d^2 = 1 \},$$

et donc

(3.37)
$$P(\Xi) = \{ P([ae_1 + be_2 + ce_3 + de_4] \land [-be_1 + ae_2 \pm (-de_3 + ce_4)]), \\ a, b, c, d \in \mathbb{R}, a^2 + b^2 + c^2 + d^2 = 1 \}.$$

Supposons que $T_yE=[ae_1+be_2+ce_3+de_4]\wedge[-be_1+ae_2+(-de_3+ce_4)]$, celà veut dire que $d\varphi(y)(a+bi)=c+di, d\varphi(y)(-b+ai)=-d+ci$. Mais $d\varphi(y)$ est linéaire (réel), et $a^2+b^2\neq 0$, donc a+bi, -b+ai est une base, et $d\varphi(y)$ est déterminé par ses valeurs en a+bi, -b+ai. Notons que $\frac{c+di}{a+bi}=\frac{-d+ci}{b+ai}$, et notons le $A\in\mathbb{C}$, alors on a $d\varphi(y)(z)=Az$, qui est analytique, autrement dit

$$\frac{d\varphi}{d\bar{z}}(y) = 0.$$

Et si $T_yE = [ae_1 + be_2 + ce_3 + de_4] \wedge [-be_1 + ae_2 - (-de_3 + ce_4)]$, un argument semblable donne $d\varphi(y)(z) = B\bar{z}$, et donc

$$\frac{d\varphi}{dz}(y) = 0.$$

Donc φ est une fonction telle que en chaque point elle est soit analytique, soit anti-analytique.

Notons $B = B(p^1(x), r) \cap P_0^1$, $B_1 = \{y \in B, \frac{d\varphi}{dz}(y) \neq 0\}$. Alors B_1 est ouvert puisque φ est de classe C^1 . Si $B_1 = \emptyset$, alors φ est anti analytique. Sinon, supposons que $B_1 \neq \emptyset$. Notons $g = \frac{\partial \varphi}{\partial z}$, alors g est continue sur B, et $B_1 = \{y \in B : g(y) \neq 0\}$. De plus, puisque $\frac{d\varphi}{dz}(y) \neq 0$ sur B_1 , alors $\frac{d\varphi}{d\bar{z}}(y) = 0$ sur B_1 , et donc φ est holomorphe sur l'ouvert B_1 , et donc sa dérivée g l'est aussi. Alors la conclusion suit du théorème suivant (c.f.[30] Thm 12.14):

Théorème 3.40 (Théorème de Radó). Soit $U \subset \mathbb{C}$ un domain ouvert, et f une fonction continue sur \overline{U} . Soit $\Omega = \{z \in U : f(z) \neq 0\}$, et supposons que f est holomorphe sur Ω . Alors f est holomorphe sur U.

En effet, en appliquant le théorème à g, on obtient que g est holomorphe sur B. Mais on a supposé que $B_1 \neq \emptyset$, donc $g \not\equiv 0$, et donc B_1^C ne contient pas de point d'accumulation. Mais $B_1^C \supset B_2 := \{y \in B, \frac{d\varphi}{d\bar{z}}(y) \neq 0\}$, et B_2 est ouvert, donc il est un ouvert qui ne contient pas de point d'accumulation. Par conséquent $B_2 = \emptyset$, ce qui implique que φ est holomorphique sur B.

On a donc que φ est analytique ou anti-analytique sur $B = B(p^1(x), r) \cap P_0^1$.

Fin de la démonstration du lemme.

Lemme 3.41. Si $x \in E$ est de type P_0 , alors il existe r = r(x) > 0 tel que

(3.42)
$$E \cap B(x,r) = (P_0 + x) \cap B(x,r).$$

Démonstration. Soit B(x,r') une boule C^1 pour le point x, dans laquelle E coïncide avec l'image de P_0+x par une fonction φ de classe $C^1: E\cap B(x,r')=\varphi((P_0+x)\cap B(x,r'))$, où φ est un difféomorphisme et $\varphi(x)=x$, $D\varphi(x)=Id$. Notons $A_i=\varphi(P_0^i+x)\cap B(x,r')$. Alors les A_i sont des variétés C^1 et $A_1\cap A_2=\{x\}$. Puisque $D\varphi(x)=Id$, il existe $0< r_1< r'$ tel que pour tout $y\in B(x,r_1)\cap (P_0^1+x)$, $|D\varphi(y)-Id|<\frac{1}{2}$. Cela implique que

(3.43)
$$|p_0^1(\varphi(y) - \varphi(z))| > \frac{1}{2}|y - z| \text{ pour tout } y.z \in B(x, r_1),$$

et par conséquent $p_0^1 \circ \varphi$ est un difféomorphisme entre $B(x,r_1) \cap (x+P_0^1)$ et son image Ω .

Notons $\Gamma = p_0^1 \circ \varphi(\partial B(x, r_1) \cap (P_0^1 + x))$, alors Γ est un courbe C^1 diffémorphe à un cercle. Et (3.43) donne que pour tout $z \in \Gamma$, $|z - x| > \frac{1}{2}r_1$. Donc si on note $\Omega' \subset P_0^1$ la région dans P_0^1 bornée telle que $\partial \Omega' = \Gamma$, alors $\Omega' \supset B(p_0^1(x), \frac{1}{2}r_1) \cap (P_0^1 + x)$.

D'autre part on sait que $\Gamma \subset \Omega$, et Ω est difféomorphe à un disque, on a donc $\Omega' \subset \Omega$, et en particulier

(3.44)
$$p_0^1[\varphi(B(x,r_1)\cap (P_0^1+x))]\supset B(p_0^1(x),\frac{1}{2}r_1)\cap P_0^1.$$

Par conséquent,

(3.45)
$$p_0^1[\varphi((P_0^2+x)\cap B(x,\frac{r_1}{2}))] \text{ est de mesure nulle,}$$

Unicité de P_0

à cause de 3.8(2).

Alors regardons A_2 . Par un argument semblable au lemme 3.34, il existe $r_2 < \frac{r_1}{2}$ tel que dans $B(x, r_2)$, A_2 est le graphe analytique ou anti-analytique de ψ : $P_0^2 + x \to P_0^1$, où $\psi = p_0^1 \circ \varphi$ sur $P_0^2 + x \cap B(x, r_2)$). Sans perdre de généralité, supposons qu'il est analytique.

On affirme que

(3.46) pour tout
$$y \in B(x, r_2) \cap (P_0^2 + x), \ \psi(y) = p_0^1(x)$$
.

D'abord $p_0^1(x) \in \psi((P_0^2 + x) \cap B(x, r_2))$ puisque $p_0^1(x) = \psi(x)$ et $x \in (P_0^2 + x) \cap B(x, r_2)$. Alors si ψ n'est pas constant, elle est une application ouverte, puisqu'elle est analytique. Et donc $p_0^1(A_2 \cap B(x, r_2)) = \psi((P_0^2) + x \cap B(x, r_2))$ est un ouvert dans P_0^1 qui contient $p_0^1(x)$, et donc $p_0^1(A_2 \cap B(x, \frac{r_1}{2})) \supset P_0^1(A_2 \cap B(x, r_2))$ est de mesure non-nulle, ce qui contredit (3.45).

Donc on a (3.46), qui implique que $\varphi((P_0^2+x)\cap B(x,r_2))$ est en fait $P_0^2\cap B(x,r_2)$.

On peut faire le même argument pour $\varphi(P_0^1 + x)$, et on obtient qu'il existe $r < r_2$ tel que dans B(x, r), $\varphi(P_0^1 + x)$ est $P_0^1 + x$ lui-même. Et on obtient ainsi la conclusion.

Fin de la démonstration du lemme.

Vérifions maintenant que

$$(3.47)$$
 il existe au moins un point de type P_0 .

Supposons que non, alors pour tout $x \in E \cap B(0,1)$, x est de type \mathbb{P} . Et donc $E \cap B(0,1)$ est composé de variétés C^1 disjointes S_1, \dots, S_l, \dots (possiblement une infinité dénombrable).

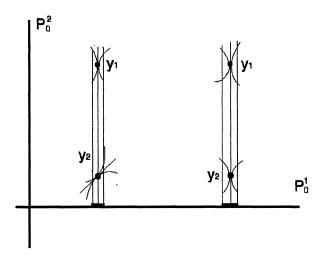
Par le lemme 3.8(2), on sait que pour presque tout $z \in p_0^1(E)$, on a (3.7). On va regarder maintenant les points dans E où la projection p_0^1 n'est pas injective.

Lemme 3.48. Soit $y_1, y_2 \in E$ tels que $p_0^1(y_1) = p_0^1(y_2)$. Alors au moins un des y_i est tel que E est un disque parallèle à P_0^2 dans un voisinage de y_i .

Démonstration. Par l'argument autour de (3.32), on sait qu'au moins un des plans tangents $T_{y_1}E$, $T_{y_2}E$ est P_0^2 . Supposons par exemple que $T_{y_1}E = P_0^2$. Alors il existe un $s_1 > 0$ tel que dans $B(y_1, s_1)$, E est le graphe d'une fonction analytique ou anti-analytique dans la base usuelle $\varphi_1 : P_0^2 \to P_0^1$, avec $\varphi_1(0) = p_0^1(y_1), D\varphi_1 = 0$.

Supposons d'abord que le plan tangent de E en y_2 n'est pas P_0^2 . Alors toujours à cause de l'argument autour de (3.32), il existe $s_2 > 0$ tel que $B(y_1, s_1) \cap B(y_2, s_2) = \emptyset$ et $B(p_0^1(y_2), s_1) \cap P_0^1 \subset p_0^1(B(y_2, s_2) \cap E)$, et donc $p_0^1(B(y_1, s_1) \cap E)$ est de mesure nulle, puisque $p_0^1(y_1) = p_0^1(y_2)$ et à cause de 3.8(2). Et donc φ_1 doit être constante, puisque sinon, elle serait une application ouverte, qui implique que $p_0^1(B(y_1, s_1) \cap E)$

contient un ouvert dans P_0^1 , ce qui entraine une contradiction. Donc dans $B(y_1, s_1)$, E est un disque parallèle à P_0^2 . (dessin 3-1, les deux points à gauche)



3-1

Si le plan tangent de E en y_2 est aussi P_0^2 , alors dans $B(y_2, s_2)$, E est le graphe d'un fonction analytique ou anti-analytique $\varphi_2: P_0^2 \to P_0^1$. Alors au moins l'une des deux fonctions φ_1, φ_2 est constante, parce que sinon, tous les deux sont des applications ouverte, et donc $p_0^1(B(y_1, s_1) \cap E)) \cap p_0^1(B(y_2, s_2) \cap E)$ contient un ouvert dans P_0^1 , ce qui contredit le lemme 3.8(2).

Fin de la démonstration du lemme.

Lemme 3.49. S'il existe un point dans $P_0^1 \cap B(0,1)$ dont l'image réciproque par p_0^1 contient plus qu'un point dans E, alors $P_0^2 \cap B(0,1) \subset E$.

Démonstration. Le lemme 3.48 dit que s'il existe un point dans $P_0^1 \cap B(0,1)$ dont l'image réciproque par p_0^1 contient plus qu'un point dans E, alors il existe un morceau de P_0^2 au dessus de lui, et notons le $(P_0^2+x)\cap B(x,r)$. Mais on sait que $E\cap B(0,1)$ est composé des variétés C^1 disjointes S_1,\dots,S_l,\dots , donc il existe un i tel que $(P_0^2+x)\cap B(x,r)\subset S_i$.

On affirme que S_i n'est rien d'autre que $(P_0^2+x)\cap B(0,1)$. Posons $A=\{y\in S_i: \text{ il existe } r=r_y>0 \text{ tel que } S_i\cap B(y,r)=(P_0^2+y)\cap B(y,r)\}$. Alors A est un ouvert dans S_i . D'un autre côté, soit $y\in \bar{A}\cap S_i$, alors il existe une suite $y_n\in A$ telle que $y_n\to y$. Par la C^1 régularité on sait que $T_yE=\lim_{n\to\infty}T_{y_n}E=P_0^2$, et il existe donc r>0 tel que dans B(y,r), S_i est le graphe d'une fonction analytique (le cas antianalytique se traiterait pareillement) $\psi:P_0^2\to P_0^1$. Mais $\psi'=0$ sur $\{p_0^2(y_n)\}\cup\{p_0^2(y)\}$ qui est un ensemble qui admet un point limite. Donc $\psi'\equiv 0$ dans $p_0^2(B(y,r))$, et donc ψ est constante, ce qui implique que $y\in A$. Donc A est fermé dans S_i . Alors $A=S_i$ puisqu'il n'est pas vide. Mais S_i est une variété de classe C^1 , donc la seule possibilité est que S_i est un morceau de $(P_0^2+x)\cap B(0,1)$. Or S_i est à la fois fermé et ouvert dans $(P_0^2+x)\cap B(0,1)$. En effet, A est ouvert

42 Unicité de P_0

dans $(P_0^2 + x) \cap B(0, 1)$ par la définition, et $S_i = A$, donc S_i est ouvert dans $(P_0^2 + x) \cap B(0, 1)$; et par la démonstration ci-dessus, pour tout $y \in \overline{S}_i \cap (P_0^2 + x) \cap B(0, 1) = \overline{A} \cap (P_0^2 + x) \cap B(0, 1)$, on a $y \in S_i$, et donc S_i est fermé dans $(P_0^2 + x) \cap B(0, 1)$. Par conséquent, $S_i = (P_0^2 + x) \cap B(0, 1)$.

Notons que par (3.3), $\overline{S}_i \cap \partial B(0,1) \subset E \cap \partial B(0,1) \subset P_0 \cap \partial B(0,1)$ puisque E est fermé, ce qui implique que $S_i = P_0^2 \cap B(0,1)$.

Fin de la démonstration du lemme.

Par un argument semblable, si p_0^2 n'est pas injective dans E, alors $P_0^1 \cap B(0,1) \subset E$. Par conséquent, si ni p_0^1 ni p_0^2 ne sont injectives, alors $P_0 \subset E$, de sorte qu'il existe un point de type P_0 , ce qui contredit notre hypothèse. Donc au moins une des p_0^i , i=1,2 est injective. Supposons par exemple que p_0^1 est injective sur E. Alors (3.7) est vrai pour tout $z \in P_0^1 \cap B(0,1) = p_0^1(E)$. Donc il existe $\psi: P_0^1 \cap B(0,1) \to P_0^2$ tel que $E \cap B(0,1)$ est son graphe. Alors sur les point $y \in E$ tel que $T_y E \neq P_0^2$, ψ est localement une fonction analytique ou anti analytique, et donc harmonique.

On affirme qu'il n'existe pas de point critique y tel que $T_yE=P_0^2$. En effet, si y est un tel point, dans un voisinage B(y,r), E est le graphe d'une function analytique ou anti-analytique g de $P_0^2 \to P_0^1$ sous la base usuelle. Supposons que $p_0^2(y)=0$ pour simplifier, et donc g'(0)=0. Alors 0 est un zéro de g d'ordre ≥ 2 , et dans un voisinage pointé O de $g(0) \in \mathbb{C}$, chaque point admet au moins 2 images réciproques. Donc $O \subset \{z \in P_0^1 : \sharp \{p_0^{1-1}\{z\} \cap E\} \geq 2\}$. Mais O est ouvert donc il est de mesure non nulle. Cela contredit le lemme 3.8(2).

Donc il n'existe pas de point critique pour ψ , de sorte que ψ est une fonction C^1 sur $P_0^1 \cap B(0,1)$, et E est son graphe. Et on sait ainsi que $E \cap B(0,1) = P_0^1 \cap B(0,1)$, car ψ est harmonique avec $\psi|_{\partial B(0,1)} = 0$, ce qui implique que ψ est constante. Cela contredit notre hypothèse(3.3).

Ainsi on obtient l'existence d'un point de type P_0 dans E.

Lemme 3.50. Soit $x \in E$ un point de type P_0 , alors E contient $(P_0 + x) \cap B(0, 1)$.

Démonstration. On affirme que $(P_0^1+x)\cap E$ est relativement ouvert dans $(P_0^1+x)\cap B(0,1)$. En effet, en appliquant le lemme 3.48 pour p_0^2 , on a que pour tout $y\in (P_0^1+x)\cap E\setminus\{x\}$, $p_0^2(y)=p_0^2(x)$, et donc au moins un des x et y est tel que E est un disque parallèle à P_0^1 dans un voisinage. Mais on sait déjà que x ne le vérifie pas, en tant que point de type P_0 . Il existe donc une boule B_y centrée en y telle que $E\cap B_y=(P_0^1+x)\cap B_y$. Mais pour x, il existe une boule B_x telle que $B_x\cap E=B_x\cap (P_0+x)\supset B_x\cap (P_0^1+x)$. Donc E est relativement ouvert dans P_0^1+x .

Par contre E est lui même un fermé dans B(0,1), donc est relativement fermé dans $P_0^1 + x$. Alors la seule possibilité est que

(3.51)
$$E \cap (P_0^1 + x) \cap B(0, 1) = (P_0^1 + x) \cap B(0, 1)$$

puisque $E \cap (P_0^1 + x)$ est non vide.

Un argument semblable donne aussi

$$(3.52) E \cap (P_0^2 + x) \cap B(0, 1) = (P_0^2 + x) \cap B(0, 1),$$

et on obtient ainsi notre conclusion.

Fin de la démonstration du lemme.

On peut arriver maintenant à la conclusion du théorèm 3.1.

On sait par (3.47) que E contient un point x de type P_0 . Et par le lemme 3.50, $(P_0+x)\cap\partial B(0,1)\subset E$. Mais par (3.3) on a $E\cap\partial B(0,1)=P_0\cap\partial B(0,1)$, ce qui implique que x est forcément l'origine, et $E\supset P_0\cap B(0,1)$. Mais $H^2(E)=H^2(P_0\cap B(0,1))$ et $E\cap B(0,1)$ est réduit. Donc $E\cap B(0,1)=P_0\cap B(0,1)$.

4 L'existence d'ensembles minimaux

On commence maintenant à démontrer le théorème 1.32. On va le faire par l'absurde.

Supposons que la conclusion du théorème 1.32 n'est pas vraie. Il existe alors une suite d'unions de 2 plans $P_k = P_k^1 \cup_{\theta_k} P_k^2 \subset \mathbb{R}^4$ qui ne sont pas minimaux, avec $\theta_k \geq \frac{\pi}{2} - \frac{1}{k}$. De plus, on peut supposer que tous les $P_k^1 = P_0^1$ sont les mêmes.

La stratégie serait de trouver une suite de minimiseurs E_k telle que pour chaque k, E_k minimise la mesure parmi toutes les déformations de P_k dans B(0,1). (On l'appelle aussi une solution du problème de Plateau). Quitte à extraire une sous-suite, on peut supposer que E_k tend vers un ensemble E_{∞} pour la distance de Hausdorff. Alors puisque $P_k \cap \partial B(0,1) \to P_0 \cap \partial B(0,1)$, on montre ensuite que le bord de E_{∞} est $P_0 \cap \partial B(0,1)$. De plus, puisque chaque E_k est minimal dans B(0,1), E_{∞} doit être minimal dans B(0,1) aussi. Alors en notant que (3.2) est vrai puisque E_{∞} est la limite d'une suite de déformations, on en déduit que $E_{\infty} = P_0$ par l'unicité qu'on a démontrée dans le théorèm 3.1. Et on en déduit une contradition par les arguments de projection et d'extension harmonique.

Mais malheureusement on n'a pas encore un théorème qui garantit l'existence d'une solution du problème de Plateau. En revanche, on a le théorème plus faible ci-dessous :

Théorème 4.1 (Existence d'ensembles minimaux; c.f. [15], Thm 6.1.7). Soit $U \subset \mathbb{R}^n$ un domaine ouvert, 0 < d < n, \mathfrak{F} une famille non vide d'ensembles relativement fermés dans U et vérifiant (1.2), stable par les déformations dans U. Supposons que

$$\inf_{F \in \mathfrak{F}} H^d(F) < \infty.$$

Il existe alors M > 0 (ne dépendant que de d et n), une suite (F_k) d'éléments de \mathfrak{F} et un ensemble E de dimension d relativement fermé dans U qui vérifie (1.2), tels que :

(1) pour une exhaustion $\{K_m\}_{m\in\mathbb{N}}$ de U par des compacts inclus dans U ordonnés de manière croissante pour l'inclusion, on a

(4.3)
$$\lim_{k\to\infty} d_H(F_k \cap K_m, E \cap K_m) = 0 \text{ pour tout } m \in \mathbb{N} ;$$

(2) pour tout ouvert V tel que \overline{V} est relativement compact dans U, à partir d'un certain rang :

(4.4)
$$F_k \operatorname{est}(M, +\infty)$$
-quasi minimal dans V ;

(voir la définition 4.5 ci-dessous)

- (3) $H^d(E) \le \inf_{F \in \mathfrak{F}} H^d(F)$;
- (4) E est minimal dans U.

Définition 4.5 (Ensembles quasi minimaux). Soit 0 < d < n des entiers, $M > 0, \delta > 0$, U un ouvert de \mathbb{R}^n . L'ensemble E dans U est dit (M, δ) -quasi minimal dans U $(E \subset QM(U, M, \delta)$ en abrégé) si E est fermé dans U, (1.2) est vrai, et pour tout boule $B \subset U$ dont le diamètre est plus petit que δ , on a

$$(4.6) H^d(E \cap B) \le MH^d(F \cap B)$$

pour toute déformation F de E dans B.

Remarque 4.7. Dans le théorème 4.1, on peut demander aussi que la suite F_k soit une suite minimisante. C'est à dire que $\lim_{k\to\infty} H^2(F_k) = \inf_{F\in\mathfrak{F}} H^d(F)$.

Le théorème 4.1 est un résultat plus faible, qui donne l'existence d'une certaine sorte de minimiseur, sans garantir la condition au bord, et la solution n'est pas forcément contenue dans la classe \mathfrak{F} non plus. Mais pour notre cas, on n'a pas besoin de toutes ces propriétés, on peut s'en sortir avec quelques propriétés plus faibles, qui nous suffiront déjà.

Rappelons que $P_k = P_k^1 \cup_{\theta_k} P_k^2$ est une suite d'unions de deux plans qui ne sont pas minimaux, avec $\theta_k > \frac{\pi}{2} - \frac{1}{k}$. Et de plus supposons aussi que tous les P_k^1 sont égaux. Notons $P_0^1 = P_k^1$, et P_0^2 le plan orthogonal à P_0^1 , $P_0 = P_0^1 \cup_{\perp} P_0^2$. Alors $P_k \cap \overline{B}(0,1)$ tend vers $P_0 \cap B(0,1)$ pour la distance de Hausdorff.

Proposition 4.8. Pour chaque k, il existe un ensemble $E_k \subset \overline{B}(0,1)$ fermé tel que

- (1) E_k est minimal dans $\mathbb{R}^4 \setminus [P_k \setminus B(0,1)]$;
- (2) $\partial B(0,1) \cap E_k = \partial B(0,1) \cap P_k$;
- (3) $p_k^i(E_k) \supset P_k^i \cap \overline{B}(0,1)$, où p_k^i désigne la projection orthogonale sur P_k^i , i=1,2;
- (4) $H^2(E_k) < H^2(P_k \cap B(0,1)) = 2\pi$.
- (5) E_k est contenu dans l'enveloppe convexe de $P_k \cap \overline{B}(0,1)$.

Démonstration. Fixons d'abord n'importe quel k.

Prenons $U = \mathbb{R}^4 \setminus [P_k \setminus B(0,1)]$, et \mathfrak{F} la classe de toutes les déformations de P_k dans U. Alors par le théorème 4.1 et la remarque 4.7, pour d=2 il existe une suite minimisante d'ensembles $F_l \in \mathfrak{F}$ qui sont en même temps uniformément quasi-minimaux dans U, avec une constante uniforme M. De plus la suite converge par rapport à la distance de Hausdorff. Notons E_k la limite. Alors par les conclusions du théorème 4.1, les conclusions (1) et (4) sont automatiquement vraies. Dans (4) on a une inégalité stricte parce qu'on a supposé que P_k n'est pas minimal.

Pour montrer (3), on va commencer par le lemme suivant.

Lemme 4.9. Soit P un plan dans \mathbb{R}^4 , et p son projecteur. Soit φ une déformation Lipschitzienne de \mathbb{R}^4 dans \mathbb{R}^4 , telle que $\varphi|_{P\cap B(0,1)}c=id$. Alors

$$(4.10) p[\varphi(P \cap \overline{B}(0,1))] \supset P \cap \overline{B}(0,1).$$

Démonstration. Raisonnons par l'absurde.

Supposons qu'il existe $x \in P \cap \overline{B}(0,1)$ tel que $x \notin p[\varphi(P \cap \overline{B}(0,1))]$. Alors $x \in P \cap B(0,1)$, puisque $P \cap \partial B(0,1) = \varphi(P \cap \partial B(0,1)) \subset p[\varphi(P \cap \overline{B}(0,1))]$ par hypothèse. Il existe alors r > 0 tel que $B(x,r) \subset B(0,1)$. D'un autre côté, $P \cap \overline{B}(0,1)$ est un compact, et donc son image $p[\varphi(P \cap \overline{B}(0,1))]$ par l'application continue $p \circ \varphi$ l'est aussi, de sorte que $\{p[\varphi(P \cap \overline{B}(0,1))]\}^C$ est un ouvert. Par conséquent, il existe r' < r tel que $B(x,r') \cap p[\varphi(P \cap \overline{B}(0,1))] = \emptyset$. Autrement dit, $\varphi(P \cap \overline{B}(0,1)) \subset \mathbb{R}^4 \setminus p^{-1}[B(x,r') \cap P]$.

Posons $g: \mathbb{R}^4 \backslash p^{-1}[B(x,r') \cap P] \to p^{-1}[\partial B(0,1) \cap P]$, $g|_{\mathbb{R}^4 \backslash p^{-1}[B(0,1)]}$ est la projection de \mathbb{R}^4 sur $p^{-1}[B(0,1) \cap P]$, et pour $y \in [p^{-1}[(B(0,1) \backslash B(x,r')) \cap P]$, G(y) et le point d'intersection de $p^{-1}[\partial B(0,1) \cap P]$ avec la demi-droite [x,y) issue de x et passant par y. Alors g est continue.

Notons que $\varphi(P \cap \overline{B}(0,1)) \subset \mathbb{R}^4 \setminus p^{-1}[B(x,r') \cap P]$, si bien que $p \circ g \circ \varphi$ est Lipschitzienne, qui envoie $P \cap \overline{B}(0,1)$ continuement dans $P \cap \partial B(0,1)$ en fixant les points de $P \cap \partial B(0,1)$. C'est impossible.

Fin de la démonstration du lemme.

On obtient (3) d'après ce lemme. En effet, E_k est la limite d'une suite de déformations $F_l = \varphi_l(P_k)$ de P_k . Alors pour chaque l, on a, par le lemme,

$$(4.11) p_k^i(F_l) \supset p_k^i[\varphi_l(P_k^i \cap \overline{B}(0,1))] \supset P_k^i \cap \overline{B}(0,1), i = 1, 2.$$

Par conséquent

$$(4.12) p_k^i(E_k) \supset P_k^i \cap \overline{B}(0,1), i = 1, 2.$$

Il nous reste à montrer (2) et (5).

Vérifions que $E_k \subset \overline{B}(0,1)$. D'abord on affirme que pour chaque $\epsilon > 0$, il existe $N = N(\epsilon) > 0$ tel que pour tout l > N,

$$(4.13) F_l \subset B(B(0,1) \cup P_k, \epsilon),$$

c'est à dire que F_l est contenu dans un ϵ -voisinage de l'union de la boule unité et du bord de U.

En fait, les F_l sont uniformément quasi-minimaux, et donc sont localement uniformément Ahlfors réguliers dans U (c.f. [11] Proposition 4.1). C'est à dire qu'il existe une constante C > 1 telle que pour tout l, pour tout $x \in F_l$ et tout r > 0 tel que $B(x, 2r) \subset U$, on a

$$(4.14) C^{-1}r^2 \le H^2(F_l \cap B(x,r)) \le Cr^2.$$

Alors s'il existe $x \in F_l$ tel que $d(x, \overline{B}(0, 1) \cup P_k) > \epsilon$, alors on a $B(x, \epsilon) \subset U$, et par la régularité d'Ahlfors,

(4.15)
$$H^{2}(F_{l} \cap B(x, \frac{1}{2}\epsilon)) \geq (4C)^{-1}\epsilon^{2}.$$

Maintenant déformons F_l dans $\overline{B}(0,1)$ par la projection radiale π sur $\overline{B}(0,1)$. Ici pour chaque l, F_l est une déformation de E_k dans U, c'est à dire qu'il existe $K \subset U$ compact, tel que $F_l \setminus K = E_k \setminus K$. La compacité de K implique que $0 < d = d(K, \partial U) = d(K, P_k \setminus B(0, 1))$, et qu'il existe R > 0 tel que $K \subset B(0, R)$. Notons $V = B(0, R) \setminus \overline{B}(P_k \setminus B(0, 1), d)$. Alors dans V, π est homotope à l'identité. Posons maintenant $\pi' : U \to \overline{B}(0, 1) \cap U$, $\pi'(x) = t(x)x + (1 - t(x))\pi(x)$, où $t(x) = \min\{2d(x, \overline{V})/d, 1\}$. Alors π' est une déformation sur U, et $\pi'|_{V} = \pi|_{V}$, ce qui donne $\pi'(F_l) = \pi(F_l)$. Donc $\pi(F_l)$ est une déformation de E_k dans U. Autrement dit, $\pi(F_l) \in \mathfrak{F}$.

Lemme 4.16. Soit E rectifiable tel que $E \cap B(0, 1 + \epsilon) = \emptyset$. Alors

(4.17)
$$H^{2}(\pi(E)) \leq \frac{1}{(1+\epsilon)^{2}}H^{2}(E).$$

Démonstration. On veut montrer que π est $\frac{1}{1+\epsilon}$ -Lipschitzienne sur E, d'où (4.17).

Posons π_{ϵ} la projection sur la boule $\overline{B}(0, 1+\epsilon)$. Alors π_{ϵ} est 1-Lipschitzienne, et $\pi_{\epsilon}(\mathbb{R}^4 \backslash B(0, 1+\epsilon)) \subset \partial B(0, 1+\epsilon)$. D'un autre côté. π est $\frac{1}{1+\epsilon}$ -Lipschitzienne sur $\partial B(0, 1+\epsilon)$. Donc si $E \subset \mathbb{R}^4 \backslash B(0, 1+\epsilon)$, alors $\pi = \pi \circ \pi_{\epsilon}$ est $\frac{1}{1+\epsilon}$ -Lipschitzienne sur E.

Fin de la démonstration du lemme.

Revenons à la démonstration de la proposition 4.8. On a $B(x, \frac{1}{2}\epsilon) \cap B(0, 1 + \frac{1}{2}\epsilon) = \emptyset$ puisque $x \notin B(0, 1 + \epsilon)$, et donc

$$(4.18) H^{2}(\pi(F_{l})) \leq H^{2}(\pi(F_{l} \setminus B(x, \frac{1}{2}\epsilon))) + H^{2}(\pi(F_{l} \cap B(x, \frac{1}{2}\epsilon)))$$

$$\leq H^{2}(F_{l} \setminus B(x, \frac{1}{2}\epsilon)) + \frac{1}{(1 + \frac{1}{2}\epsilon)^{2}} H^{2}(F_{l} \cap B(x, \frac{1}{2}\epsilon))$$

$$\leq H^{2}(F_{l}) - \frac{4\epsilon + \epsilon^{2}}{4 + 4\epsilon + \epsilon^{2}} H^{2}(F_{l} \cap B(x, \frac{1}{2}\epsilon))$$

$$\leq H^{2}(F_{l}) - \frac{4\epsilon + \epsilon^{2}}{4 + 4\epsilon + \epsilon^{2}} \frac{\epsilon^{2}}{4C}$$

$$= H^{2}(F_{l}) - C(\epsilon),$$

où $C(\epsilon) > 0$ pour tout $\epsilon > 0$ et $C(\epsilon)$ ne dépend pas de l pour l assez grand.

On sait que $\{F_l\}$ est une suite minimisante, donc pour tout $\epsilon > 0$, il existe un N > 0 tel que pour tout l > N, on a

(4.19)
$$H^{2}(F_{l}) \leq \inf_{E \in \mathfrak{F}} H^{2}(E) + \frac{1}{2}C(\epsilon) < H^{2}(\pi(F_{l})) + C(\epsilon).$$

Donc (4.18) n'est pas vérifie, de sorte que $F_l \subset B(B(0,1) \cup P_k, \epsilon) \cap U$, d'où notre affirmation concernant (4.13).

Par conséquent, puisque E_k est la limite de F_l ,

$$(4.20) E_{k} \subset \cap_{\epsilon} B(B(0,1) \cup P_{k}, \epsilon) \cap U \subset \overline{B}(0,1).$$

On peut vérifier (2) maintenant. On va même montrer (5), qui dit que E_k est contenu dans l'enveloppe convexe C de $P_k \cap \overline{B}(0,1)$, ce qui implique (2).

Première démonstration de (5).

Lemme 4.21. Soit $C \subset \mathbb{R}^n$ un fermé convexe symétrique (par rapport à l'origine) à l'interieur nonvide. Alors pour tout $\epsilon > 0$, il existe $\delta > 0$ et une rétraction 1-Lipschitzienne f de \mathbb{R}^n dans C tell que f est $1 - \delta$ -Lipschitzienne sur $\mathbb{R}^n \setminus B(C, \epsilon)$.

Démonstration. Notons $||\cdot||_C$ la norme sur \mathbb{R}^n dont la boule unité fermée est C. Il existe alors A>1 tel que

$$(4.22) A^{-1} || \cdot ||_C \le || \cdot ||_2 \le A || \cdot ||_C,$$

où || · ||₂ désigne la norme euclidienne.

Alors pour tout $a \geq 0$, posons $||\cdot||_a = ||\cdot||_C + a||\cdot||_2$ et $C_{a,b}$ la boule fermée de rayon b sous la norme $||\cdot||_a$. Alors $C_{0,1} = C$. Notons que $||x||_a$ est une fonction continue strictement croissante de a pour tout $x \in \mathbb{R}^n \setminus \{0\}$, $||\cdot||_0 = ||\cdot||_C$, et que $C_{a,b}$ est continu, décroissant par rapport à a et croissant par rapport à b, c'est à dire,

$$(4.23) C_{a,b} \supset C_{a',b}, C_{a,b} \subset C_{a,b'} \text{ pour tout } a < a', b < b',$$

et

(4.24)
$$\bigcap_{a_n \to a^-} C_{a_n,b} = \bigcap_{b_n \to b^+} C_{a,b_n} = C_{a,b}; \bigcup_{a_n \to a^+} C_{a_n,b} = \bigcup_{b_n \to b^-} C_{a,b_n} = C_{a,b}^{\circ}.$$

On va montrer maintenant que

$$(4.25) \text{ pour tous } a,b>0, \text{ pour tous } x,y\in\partial C_{a,b} \text{ tels que } \alpha_{x,y}<\frac{\pi}{2},$$

$$||\frac{x+y}{2}||_a\leq b-D(a,b,A)||x-y||_2^2,$$

avec D(a,b,A)>0, où $\alpha_{x,y}<\pi$ désigne l'angle entre \vec{Ox} et \vec{Oy} pour $x,y\neq 0$.

Prenons $x,y\in\partial C_{a,b}$ quel
conques tels que $\alpha_{x,y}<\frac{\pi}{2},$ par (4.22)

$$(4.26) \frac{b}{A+a} \le ||x||_2, ||y||_2 \le \frac{b}{A^{-1}+a}.$$

Alors par la définition de $||\cdot||_a$,

Pour le dernier terme, en notant $||\cdot||$ la norme euclidienne $||\cdot||_2$ pour abréger, on a

Mais

$$(4.29) 1 - \frac{\langle x, y \rangle}{||x|| ||y||} = 1 - \cos \alpha_{x,y} = 2\sin^2(\frac{1}{2}\alpha_{x,y}),$$

et donc par (4.28) et (4.26)

$$(4.30) \qquad ||\frac{x+y}{2}||_{2} \leq \left[\left(\frac{||x||}{2} + \frac{||y||}{2}\right)^{2} - \frac{||x||||y||}{2} \times 2\sin^{2}\left(\frac{1}{2}\alpha_{x,y}\right)\right]^{\frac{1}{2}}$$

$$\leq \left[\left(\frac{||x||}{2} + \frac{||y||}{2}\right)^{2} - \left(\frac{b}{A+a}\right)^{2}\sin^{2}\left(\frac{1}{2}\alpha_{x,y}\right)\right]^{\frac{1}{2}}$$

$$= \left(\frac{||x||}{2} + \frac{||y||}{2}\right)\left[1 - \left(\frac{||x||}{2} + \frac{||y||}{2}\right)^{-2}\left(\frac{b}{A+a}\right)^{2}\sin^{2}\left(\frac{1}{2}\alpha_{x,y}\right)\right]^{\frac{1}{2}}$$

$$\leq \left(\frac{||x||}{2} + \frac{||y||}{2}\right)\left[1 - \frac{1}{2}\left(\frac{||x||}{2} + \frac{||y||}{2}\right)^{-2}\left(\frac{b}{A+a}\right)^{2}\sin^{2}\left(\frac{1}{2}\alpha_{x,y}\right)\right]$$

$$= \frac{||x||}{2} + \frac{||y||}{2} - \frac{1}{2}\left(\frac{||x||}{2} + \frac{||y||}{2}\right)^{-1}\left(\frac{b}{A+a}\right)^{2}\sin^{2}\left(\frac{1}{2}\alpha_{x,y}\right)$$

$$\leq \frac{||x||}{2} + \frac{||y||}{2} - \frac{b(A^{-1} + a)}{2(A+a)^{2}}\sin^{2}\left(\frac{1}{2}\alpha_{x,y}\right).$$

En combinant avec (4.27) on obtient

Il faut donc estimer $\frac{1}{2}\alpha_{x,y}$ pour montrer (4.25).

Par (4.22), on a

$$(4.32) \overline{B}(0, \frac{b}{A+a}) \subset C_{a,b} \subset \overline{B}(0, \frac{b}{A^{-1}+a}).$$

Notons $r=\frac{b}{A+a}$, $R=\frac{b}{A^{-1}+a}$ pour l'instant. Alors $\overline{B}(0,r)\subset C_{a,b}\subset \overline{B}(0,R)$. Notons alors que $\partial C_{a,b}\cap B(0,r)=\emptyset$. Prenons $x,y\in\partial C_{a,b}$. Notons L la droite passant par x et y. On a alors 2 cas.

ler cas : $L \cap B(0,r) \neq \emptyset$. On affirme alors que dans L, le segment non-dégénéré $I = L \cap \overline{B}(0,r)$ sépare x et y, autrement dit, x et y se situent de deux côtés différents de I. En effet sinon, notons z l'extrémité de I le plus proche de x et y. Supposons par exemple que ||z-x|| > ||z-y|| (il est possible que z = y, mais ce n'est pas grave). Prenons L_y la droite tangente à B(0,r) passant par y telle que L, L_y et l'origine appartiennent à un même plan, et $w \in \partial B(0,r)$ le point tangent. Alors par (4.32), $w \in C_{a,b}$, et donc $C_{a,b}$ contient le segment fermé [xw], en tant que convexe. La demi droite [Oy) issue par O est passant par y rencontre le segment ouvert (xw) en un point u. Alors $u \in [x,w] \subset C_{a,b}$. De plus $u = \alpha y$, avec $\alpha > 1$, ce qui contredit le fait que $y \in \partial C_{a,b}$.

Donc x et y se situent de deux côtés différents de I. Notons $v \in L$ le point tel que $[Ou] \perp L$. Alors ||u|| < r, et

(4.33)
$$\alpha_{x,y} > \max\{\alpha_{x,v}, \alpha_{y,v}\} = \max\{\arctan\frac{||x-v||}{||u||}, \arctan\frac{||y-v||}{||u||}\}$$
$$\geq \arctan\frac{\frac{1}{2}||x-y||}{||u||} \geq \arctan\frac{||x-y||}{2r}.$$

Par l'hypothèse, $0 \le \alpha_{x,y} < \frac{\pi}{2}$, donc par (4.33), $\tan \alpha_{x,y} > \frac{||x-y||}{2r}$. Notons que

(4.34)
$$\tan^2 \alpha_{x,y} = \frac{\sin^2 \alpha_{x,y}}{\cos^2 \alpha_{x,y}} = \frac{\sin^2 \alpha_{x,y}}{1 - \sin^2 \alpha_{x,y}},$$

par conséquent

(4.35)
$$\sin^2 \alpha_{x,y} > \frac{||x-y||^2}{4r^2} / (1 + \frac{||x-y||^2}{4r^2}) = \frac{||x-y||^2}{4r^2 + ||x-y||^2}.$$

Mais $x, y \in \partial C_{a,b} \subset B(0,R)$, donc $||x-y|| \leq 2R$, on a donc

(4.36)
$$\sin^2 \alpha_{x,y} > \frac{||x-y||^2}{4(r^2+R^2)}.$$

Par conséquent

(4.37)
$$\alpha_{x,y} > \sin \alpha_{x,y} > \frac{||x-y||}{2\sqrt{r^2 + R^2}},$$

et donc

(4.38)
$$\sin^2 \frac{\alpha_{x,y}}{2} > \left(\frac{2}{\pi} \frac{\alpha_{x,y}}{2}\right)^2 > \frac{||x-y||^2}{4\pi^2 (r^2 + R^2)}.$$

2ème cas : $L \cap B(0,r) = \emptyset$. Alors la distance entre L et l'origine est supérieure à r. Notons $w \in L$ tel que $\vec{Ow} \perp L$, alors ||w|| > r. Supposons par exemple que $||x - w|| \ge ||y - w||$. Alors

 1° si w sépare x et y sur L, on a alors

(4.39)
$$\alpha_{x,y} \ge \angle xOw \text{ et}||x-w|| \ge \frac{1}{2}||x-y||,$$

de sorte que

(4.40)
$$\tan \alpha_{x,y} \ge \tan \angle x O w = \frac{||x-w||}{||w||} \ge \frac{1}{2} ||x-y||/R,$$

et donc

(4.41)
$$\alpha_{x,y} \ge \arctan \frac{1}{2R} ||x - y||.$$

Un argument semblable à celui après (4.33) donne

(4.42)
$$\sin^2 \frac{\alpha_{x,y}}{2} > \frac{||x-y||^2}{8\pi^2 R^2};$$

 2° si w ne sépare pas x et y sur L, on a

$$\alpha_{x,y} = \angle xOy \ge \angle xOw - \angle yOw,$$

et donc

$$\tan \alpha_{x,y} \ge \tan(\angle x O w - \angle y O w) = \tan(\arctan \frac{||x-w||}{||w||} - \arctan \frac{||y-w||}{||w||})$$

$$= (\frac{||x-w||}{||w||} - \frac{||y-w||}{||w||})/(1 + \frac{||x-w||}{||w||} \frac{||y-w||}{||w||})$$

$$\ge \frac{||x-y||}{R}/(1 + \frac{R^2 - r^2}{r^2}) = ||x-y|| \frac{r^2}{R^3},$$

où la dernière inégalité est parce que

$$(4.45) ||x - w|| = \sqrt{||x||^2 - ||w||^2} \le \sqrt{R^2 - r^2}$$

et pareil pour y. On a donc

(4.46)
$$\alpha_{x,y} \ge \arctan \frac{r^2}{R^3} ||x - y||.$$

On fait exactement comme après (4.33), et on obtient

(4.47)
$$\sin^2 \frac{\alpha_{x,y}}{2} > \frac{r^4}{\pi^2 (R^6 + 4R^2 r^4)} ||x - y||^2.$$

En combinant avec (4.31), on obtient

(4.48)
$$||\frac{x+y}{2}||_a \le b - D(a,b,A)||x-y||^2,$$

où

(4.49)
$$D(a,b,A) = \frac{ab(A^{-1}+a)}{2(A+a)^2} \min\{\frac{1}{4\pi^2(r^2+R^2)}, \frac{1}{8\pi^2R^2}, \frac{r^4}{\pi^2(R^6+4R^2r^4)}\} > 0,$$

avec
$$r = \frac{b}{A+a}$$
, $R = \frac{b}{A^{-1}+a}$.

On a donc l'affirmation (4.25).

Maintenant par (4.26), on a que

(4.50)
$$\frac{1}{A+a}||\cdot||_a \le ||\cdot||_2 \le \frac{1}{A^{-1}+a}||\cdot||_a,$$

donc pour chaque $z \in \partial C_{a,b}$,

$$(4.51) ||z - \frac{x+y}{2}||_2 \ge \frac{1}{A+a}||z - \frac{x+y}{2}||_a \ge \frac{1}{A+a}(||z||_a - ||\frac{x+y}{2}||_a) \ge \frac{1}{A+a}D(a,b,A)||x-y||_2^2 = M(a,b,A)||x-y||_2^2,$$

où
$$M(a, b, A) = \frac{1}{A+a}D(a, b, A) > 0.$$

Par conséquent, pour chaque $x, y \in \partial C_{a,b}$ tel que $\alpha_{x,y} < \frac{\pi}{2}$, $B(\frac{x+y}{2}, M(a,b,A)) \subset C_{a,b}$.

Maintenant pour tout $\epsilon > 0$, soit $w, v \in \mathbb{R}^n \backslash B(C_{a,b}, \epsilon)$ tels que $\pi_{a,b}(w) = x, \pi_{a,b}(v) = y$, où $\pi_{a,b}$ désigne la projection de plus courte distance sur $C_{a,b}$. On affirme que l'angle $\beta_1 \in [0, \frac{\pi}{2}]$ entre $x\overline{w}$ et $y\overline{x}$ est plus petit que $\arctan \frac{1}{2M(a,b,A)||x-y||}$. En effet, notons P le plan contenant x,y et $w,z \in P$ le point tel que $[z,\frac{x+y}{2}] \perp [x,y]$ et $||z-\frac{x+y}{2}|| = M(a,b,A)||x-y||^2$. Alors $z \in C_{a,b}$, $[x,z] \in C_{a,b}$, et

$$(4.52) \tan \angle zxy = 2M(a,b,A)||x-y||.$$

Alors si $\beta_1 > \arctan \frac{1}{2M(a,b,A)||x-y||}$, on a $\angle wxz < \frac{\pi}{2}$. Notons s la projection de w sur L', la droite passant par x et z. Alors s est entre x et z, ou z est entre x et s. Dans les deux cas $(x,z) \cap (x,s) \neq \emptyset$. Prenons $x' \in (x,z) \cap (x,s) \subset C_{a,b}$, alors $x' \in C_{a,b}$, et $\angle wxz < \angle wx'z$. Par conséquent

$$(4.53) ||w - x|| = ||w - s|| / \sin \angle wxz > ||w - s|| / \sin \angle wx'z = ||w - x'||,$$

ce qui contredit le fait que x est la projection de plus courte distance de w sur $C_{a,b}$.

On montre pareillement que si β_2 désigne l'angle entre \vec{yv} et \vec{xy} , alors $\beta_2 \leq \arctan \frac{1}{2M(a,b,A)||x-y||}$.

Notons L la droite passant par x et y, Q l'hyperplan perpendiculaire à L, p_l et p_Q leurs projecteurs respectivement. Alors

$$(4.54) ||w-v|| \ge ||p_L(w)-p_L(v)|| = ||w-x||\cos\beta_1 + ||x-y|| + ||v-y||\cos\beta_2.$$

Mais $w,v\in\mathbb{R}^n\backslash B(C_{a,b},\epsilon)$, on a donc $||w-x||>\epsilon, ||v-y||>\epsilon$, donc

$$||w - v|| \ge ||x - y|| + 2\epsilon \cos \arctan \frac{1}{2M(a, b, A)||x - y||}$$

$$= ||x - y|| + 2\epsilon \left(\frac{4M^2||x - y||^2}{1 + 4M(a, b, A)^2||x - y||^2}\right)^{\frac{1}{2}}$$

$$\ge ||x - y|| + 2\epsilon \frac{2M(a, b, A)||x - y||}{(1 + 4M(a, b, A)^2 4R^2)}$$

$$= (1 + \epsilon C(a, b, A))||x - y||,$$

où $R = \frac{b}{A^{-1} + a}$ est comme dans (4.32), et donc C(a, b, A) > 0.

Notons que (4.55) est vrai pour les x, y tel que $\alpha_{x,y} < \frac{\pi}{2}$. Donc $\pi_{a,b}$ est localement $\frac{1}{1+\epsilon C(a,b,A)}$ -Lipschitzienne sur $\mathbb{R}^n \setminus B(C_{a,b},\epsilon)$.

Revenons à la démonstration du lemme. Fixons $\epsilon > 0$ quelconque. Alors par (4.23) et (4.24), il existe a,b>0 tel que

(4.56)
$$C \subset C_{a,b} \subset B(C_{a,b}, \frac{\epsilon}{2}) \subset B(C, \epsilon).$$

Maintenant notons π_C la projection de plus courte distance sur C. Notons $f = \pi_C \circ \pi_{a,b}$ pour une paire de a, b qui satisfie (4.56). Alors pour montrer le lemme, il suffit de montrer que $\pi_{a,b}$ est localement $1 - \delta$ -Lipschitzienne sur $\mathbb{R}^n \setminus B(C_{a,b}, \frac{\epsilon}{2})$. Alors par (4.55), on prend δ tel que $1 - \delta = \frac{1}{1 + \frac{1}{2} \epsilon C(a,b,A)}$, et on obtient la conclusion.

Fin de la démonstration du lemme.

Corollaire 4.57. Soit $E \subset \mathbb{R}^n \backslash B(C, \epsilon)$ rectifiable, alors

(4.58)
$$H^{d}(f(E)) \le (1 - \delta)^{d} H^{d}(E).$$

Revenons maintenant à la démonstration de la proposition 4.8. Rappelons qu'ici C est l'enveloppe convexe de $P_k \cap \overline{B}(0,1)$.

On va montrer que

$$(4.59) pour tout $\epsilon > 0, E_k \subset B(C, 2\epsilon).$$$

Sinon, $E_k \setminus B(C, 2\epsilon) \neq \emptyset$, alors par la régularité d'Ahlfors, $H^2(E_k \setminus B(C, 2\epsilon)) > 0$. On applique le corollaire 4.57 à $E_k \setminus B(C, 2\epsilon)$ et le convexe $B(C, \epsilon)$, on obtient qu'il existe une appliction Lipschitzienne f_{ϵ} de \mathbb{R}^n dans $B(C, \epsilon)$ telle que

$$(4.60) H^2(f_{\epsilon}(E_k)) < H^2(E_k),$$

où f_{ϵ} est comme dans le lemme 4.21. Alors on aurait (4.59) si on savait que $\pi_{\epsilon}(E_k)$ est une déformation de E_k dans U.

Mais on sait déjà que $E_k \subset \overline{B}(0,1)$. Donc l'ensemble $W_{\epsilon} := \{x \in E_k, \pi_{\epsilon}(x) \neq x\} \subset \overline{B}(0,1) \setminus B(C,\epsilon)$, qui est compact et loin du bord de U. Notons $d(W_{\epsilon}, \partial U) = d$, et posons

(4.61)
$$g: \mathbb{R}^n \to B(C, \epsilon), f(x) = t(x)x + (1 - t(x))f_{\epsilon}(x), t(x) = \min\{2d(x, W_{\epsilon})/d, 1\},$$

alors g est une déformation dans U, et

$$(4.62) g(E_k) = f_{\epsilon}(E_k).$$

Donc si $E_k \setminus B(C, 2\epsilon) \neq \emptyset$, alors g diminue strictement la mesure de E_k , et ceci contredit le fait que E_k est minimal. On a donc (4.59). Mais (4.59) est vrai pour tout $\epsilon > 0$, on a donc

$$(4.63) E_{\mathbf{k}} \subset C,$$

d'où (5).

Seconde démonstration de (5).

On va raisonner par l'absurde. Soit $x \in E_k$ qui n'appartient pas à C, alors puisque C est convexe, il existe un plan Q de dimension 3 qui sépare x et C. Notons R le demi espace fermé bordé par Q et contenant x. Alors $x \in \text{int} R$, de sorte qu'il existe r > 0 tel que $B(x,r) \subset R$. Mais par la régularité d'Ahlfors, la mesure de E_k dans B(x,r) est non nulle, donc en particulier, la mesure de $E_k \cap R$ est non nulle.

Notons π_Q la projection orthogonale de $\overline{B}(0,1)$ sur $\overline{B}(0,1)$ \int R, qui envoie $R \cap \overline{B}(0,1)$ sur $Q \cap \overline{B}(0,1)$. Alors $\pi_Q(E_k)$ est une déformation de E_k dans U. En effet, notons C_R l'enveloppe convexe de $E_R \cup \pi_Q(E_R)$, alors $C_R \subset \overline{B}(0,1) \cap R$ et est compact. Il existe alors s > 0 tel que $B(C_R,2s) \cap (C \cup P_k) = \emptyset$. Posons $f(x) = t(x)x + (1 - t(x))\pi_Q(x)$, où $t(x) = \max\{d(x,B(C_R,s))/s,1\}$. Alors f envoie U dans U, est Lipschitzienne, et ne change que les point dans $B(C_R,2s) \cap R$. En particulier, $f_t(x) = (1-t)x + tf(x)$ est une homotopie entre id et f, de U dans U. De plus, $f(E_k) = \pi_Q(E_k)$.

On veut montrer que

$$(4.64)$$
 f diminue strictement la mesure de E_k .

Autrement dit, $H^2(\pi_Q(E_k)) < H^2(E_k)$. Notons que $\pi_Q(E_k) = (E_k \backslash E_R) \cup \pi_Q(E_R)$ et que $E_k = (E_k \backslash E_R) \cup E_R$. Donc il faut montrer que

$$(4.65) H^2(\pi_Q(E_R)) < H^2(E_R).$$

Notons L l'espace (de dimension 1) orthogonal à Q. Et π_L la projection orthogonale de \mathbb{R}^4 sur L. Posons $a = \pi_L(Q)$, et $b \in L$ le point plus loin de a dans l'ensemble $\pi_L(E_R)$. Alors le segment [a,b] contient $\pi_L(E_R)$.

Lemme 4.66. $[a, b] \subset \pi_L(E_R)$.

Démonstration. Par l'absurde. On sait déjà que $b \in \pi_L(E_R)$. Soit $x \subset [a,b)$ tel que $x \notin \pi_L(E_R)$. Notons Q_x le sous-espace parallèle à Q est passant par x. Alors $Q_x \cap E_k = \emptyset$. Mais le point b et C vivent dans les deux côtés différents de Q_x . C'est à dire, si on prend $y \in E_k$ tel que $\pi_L(y) = b$, alors Q_x sépare y et C. Il existe alors $r_y > 0$ tel que Q_x sépare $B(y, 2r_y)$ et C. Par la régularité d'Ahlfors de E_k , $B(y, r_y) \cap E_k$ est de mesure non nulle.

Notons R_x le demi espace bordé par Q_x qui contient y. Alors $E_k \cap R_x$ est un compact, qui ne touche pas Q_x . On peut donc contracter $R_x \cap E_k$ en un point dans R_x , en laissant fixé la partie $E_k \setminus R_x$. Mais $H^2(R_x \cap E_k) > H^2(B(y, r_y) \cap E_k) > 0$. C'est à dire, on peut diminue strictement la mesure de E_k par une déformation, ce qui contredit le fait que E_k est minimal.

Donc $[a, b] \subset \pi_L(E_R)$.

Fin de la démonstration du lemme.

Maintenant notons E_P l'ensembles des points de type \mathbb{P} dans E_R , E_Y l'ensemble des points de type \mathbb{Y} dans E_R , et E_T l'ensemble des points dans E_R qui ne sont pas de type \mathbb{Y} ou \mathbb{P} .

Lemme 4.67.
$$H^1([a,b] \setminus \pi_L(E_P)) = 0.$$

Pour chaque $x \in E_T$, notons T_x une limite d'explosion de E_k en x; il existe $r_x > 0$ tel que dans $B(x, r_x)$, E_k est bi-Höldériennement équivalent à T_x (c.f.[9].Thm 16.1). Mais T_x est un cône minimal, ce qui implique que tout point dans T_x est de type \mathbb{Y} ou \mathbb{P} , sauf l'origine (c.f.[9] Théorème 14.1). Par conséquent dans $B(x, r_x)$, E_T ne contient qu'un point. Autrement dit, E_T est un ensemble composé de points isolés. Mais E_R est compact, donc

$$(4.68)$$
 E_T est un ensemble fini.

En suite on va montrer que l'ensemble

(4.69)
$$H^{1}[\pi_{L}(E_{Y} \cup E_{P}) \backslash \pi_{L}(E_{P})] = 0.$$

Soit $x \in E_Y$. C'est à dire que toute limite d'explosion T_x de E_R en x est un \mathbb{Y} , qui est un cône minimal de "full length" (c.f.[10] Définition 2.10). Alors par la régularité C^1 (c.f.[10] 1.15), T_x est unique et E_R coïncide, dans une boule $B(x, r_x)$, avec l'image par un C^1 difféomorphisme φ_x de T_x .

Notons L_x l'épine de T_x . Alors dans $B(x, r_x)$, $\varphi(L_x)$ est une courbe C^1 . Alors si la direction de L_x n'est pas orthogonal à celle de L, il existe un $r'_x < r_x$ tel que dans $B(x, r'_x)$, aucune droite tangente de la courbe $\varphi_x(L_x)$ n'est orthogonale à L. Par conséquent, pour chaque $y \in L \cap B(\pi_l(x), r'_x)$, le tranche $\pi_L^{-1}(y)$ contient au plus un point de type $\mathbb Y$ localement, puisque la tranche est orthogonale à L. Mais $E_R \cap B(x, r'_x)$ est de mesure de dimension 2 non nulle, et même pour presque tout $y \in L \cap B(\pi(x), r'_x)$ la tranche est de mesure de dimension 1 non nulle. Et donc la tranche contient un point de type $\mathbb P$.

Par conséquent, pour tout $x \in E_Y$ tel que L_x n'est pas orthogonale à L, il existe $r'_x > 0$ tel que pour presque tout $y \in L \cap B(\pi(x), r'_x)$, $y \in \pi_L(E_P)$. Donc si on note $E_{YQ} = \{x \in E_Y : L_x \perp L\} = \{x \in E_Y : L_x \text{ est parallèle à } Q\}$, alors

$$(4.70) \pi_L(E_P) \supset \pi_L(E_Y \backslash E_{YQ}),$$

et par conséquent

(4.71)
$$H^{1}(\pi_{L}(E_{P})) = H^{1}(\pi_{L}(E_{P}) \cup \pi_{L}(E_{Y} \setminus E_{YQ})).$$

D'un autre côté, on affirme que

$$(4.72) H^1(\pi_L(E_{YQ})) = 0.$$

En effet, par la formule de l'aire (c.f.[14] Cor 3.3.20),

(4.73)
$$\int_{E_{YQ}} | \langle \vec{L}, T_x E_{YQ} \rangle | dH^1(x) \ge H^1(\pi_L(E_{YQ})),$$

où $T_x E_{YQ}$ désigne la droite tangente à E_{YQ} en x, et \vec{L} un vecteur unitaire parallèle à L.

Mais pour chaque $x \in E_{YQ}$, $T_x E_{YQ} = L_x$ est orthogonale à L, ce qui implique que $\langle \vec{L}, T_x E_{YQ} \rangle = 0$. Alors le terme de gauche de (4.73) est nul. Par conséquent $H^1(\pi_L(E_{YQ})) = 0$, d'où (4.72).

En sommant (4.71) et (4.72) on obtient (4.69). Et par (4.68),

$$(4.74) [a,b]\backslash \pi_L(E_P) = \pi_L(E_R)\backslash \pi_L(E_P) = \pi_L(E_P \cup E_Y \cup E_T)\backslash \pi_L(E_P) \subset \pi_L(E_T) \cup [\pi_L(E_Y \cup E_P)\backslash \pi_L(E_P)],$$

de sorte que

$$(4.75) H^1([a,b]\backslash \pi_L(E_P)) \le H^1(\pi_L(E_P)) + H^1[\pi_L(E_Y \cup E_P)\backslash \pi_L(E_P)] = 0.$$

Fin de la démonstration du lemme.

D'après le lemme on sait que $H^1(\pi_L(E_P)) = b - a$. On note $E_{PQ} = \{x \in E_P : T_x E_k \in \vec{Q}\}$. Alors par la formule de la coaire (c.f.[14] Cor 3.3.22),

(4.76)
$$\int_{E_{PQ}} || \wedge_1 \pi_L(x) || dH^2(x) = \int_{\pi_L(E_{PQ})} dH^1(z) H^1[\pi_L^{-1}\{z\} \cap E_{PQ}].$$

Mais pour tout $x \in E_{PQ}$,

(4.77)
$$|| \wedge_1 \pi_L(x) || = |\pi_{T_x E_k}(\vec{L})| \le |\pi_Q(\vec{L})| = 0,$$

où $T_x E_k$ désigne le plan tangent de E_k en x. Par conséquent le terme de gauche de (4.76) est nul, ce qui implique que pour presque tout $z \in \pi_L(E_{PQ}), H^1[\pi_L^{-1}\{z\} \cap E_{PQ}] = 0$.

Alors il y a deux cas.

ler cas. Si $H^1(\pi_L(E_{PQ})) > 0$, il existe alors $z \in \pi_L(E_{PQ})$ tel que $H^1[\pi_L^{-1}\{z\} \cap E_{PQ}] = 0$. Prenons $w \in E_{PQ}$ tel que $\pi_L(w) = z$. Alors w est de type \mathbb{P} , et par la régularité C^1 de E près des points de type \mathbb{P} , il existe r > 0 tel que E_k coïncide dans B(w,r) avec le graphe d'une fonction φ de classe C^1 de $T_w E_k$ vers $T_w E_k^{\perp}$. Alors tous les points dans $B(w,r) \cap E_k$ sont de type \mathbb{P} . La proposition 11.17 de [17] donne que φ est une fonction harmonique. Alors la fonction $\varphi' = \pi_L \circ \varphi$ est une fonction harmonique de $(w + T_w E_k) \cap B(w,r)$ dans $E_k \cap B(w,r) \cap E_k$ sont de type $E_k \cap B(w,r)$ sont de type $E_k \cap B(w,r)$ sont de type $E_k \cap B(w,r$

2ème cas. Si $H^1(\pi_L(E_{PQ})) = 0$. Alors $H^1(\pi_L(E_P \setminus E_{PQ}))$ est de mesure pleine dans [a,b], d'après le lemme 4.67. En particulier, il existe $x \in E_P \subset E_R$ tel que $T_x E_k$ est un plan qui n'est pas contenu dans Q, et que $\pi_L(x) \in (a,b)$.

Dans les deux cas, il existe un point x de type \mathbb{P} dont le plan tangent n'est pas contenu dans Q.

Par la C^1 régularité de E_K en x, il existe r>0 tel que $B(x,r)\subset Q$ et que $E_k\cap B(x,r)$ est l'image d'une application φ de classe C^1 de T_xE_k . Notons que $T_xE_k\not\in Q$ implique que $|\pi_Q(T_xE_k)|<1$ (voir (2.6) pour la définition). Posons $\beta=1-|\pi_Q(T_xE_k)|$. Alors puisque φ est de classe C^1 , il existe r'< r tel que pour tout $y\in B(x,r')\cap E_k$, $|\pi_Q(T_yE_k)|<1-\frac{\beta}{2}$.

Alors par la formule de l'aire,

(4.78)
$$H^{2}(\pi_{Q}(E_{k} \cap B(x, r'))) = \int_{E_{k} \cap B(x, r')} |\pi_{Q}(T_{y}E_{k})| dH^{2}(y)$$
$$\leq (1 - \frac{\beta}{2})H^{2}(E_{k} \cap B(x, r')).$$

Par conséquent

$$H^{2}(\pi_{Q}(E_{R})) = H^{2}[\pi_{Q}(E_{R}\backslash B(x,r')) \cup (E_{R}\cap B(x,r'))]$$

$$\leq H^{2}[\pi_{Q}(E_{R}\backslash B(x,r'))] + H^{2}[\pi_{Q}(E_{R}\cap B(x,r'))]$$

$$\leq H^{2}(E_{R}\backslash B(x,r')) + (1 - \frac{\beta}{2})H^{2}(E_{k}\cap B(x,r'))$$

$$\leq H^{2}(E_{R}\backslash B(x,r')) + H^{2}(E_{k}\cap B(x,r')) - \frac{\beta}{2}H^{2}(E_{k}\cap B(x,r'))$$

$$\leq H^{2}(E_{R}) - \frac{\beta}{2}H^{2}(E_{k}\cap B(x,r')).$$

Mais par la régularité d'Ahlfors on a que $H^2(E_k \cap B(x,r'))$ est strictement positive, on a donc

$$(4.80) H^2(\pi_Q(E_R)) < H^2(E_R),$$

d'où (4.65).

On obtient donc (4.65), ce qui contredit le fait que E_k est minimal.

Corollaire 4.81. Pour toute sous suite n_k telle que E_{n_k} converge dans $\overline{B}(0,1)$, la limite est $P_0 \cap \overline{B}(0,1)$.

Démonstration. Prenons une telle suite n_k . Notons E_{∞} la limite de E_{n_k} . On veut appliquer le théorèm 3.1, donc on va vérifier les conditions sur E_{∞} .

D'abord par [9] lemme 3.3, on sait que E_{∞} est aussi minimal dans B(0,1), car chaque E_{n_k} l'est.

Ensuite, (3.2) vient de la proposition 4.8(3) et du fait que E_{∞} est la limite de E_{n_k} .

Pour vérifier (3.3), si on note C_k l'enveloppe convexe de $P_k \cap \overline{B}(0,1)$ (et C_0 l'enveloppe convexe de $P_0 \cap \overline{B}(0,1)$), alors par la proposition 4.8, $E_{n_k} \subset C_{n_k}$. Puisque E_{∞} est la limite de E_{n_k} , pour

chaque m > 0, il existe K(m) > 0 tel que pour tout k > K(m), $E_{\infty} \subset B(E_{n_k}, \frac{1}{m}) \subset B(C_{n_k}, \frac{1}{m}) \subset \bigcup_{k=K(m)}^{\infty} B(C_{n_k}, \frac{1}{m})$. On peut demander aussi que K(m) > k(l) si m > l. Par conséquent on a

$$(4.82) E_{\infty} \subset \bigcap_{m=1}^{\infty} \cup_{k=K(m)}^{\infty} B(C_{n_k}, \frac{1}{m}) = C_0,$$

et donc

$$(4.83) E_{\infty} \cap \partial B(0,1) \subset C_0 \cap \partial B(0,1) = P_0 \cap \partial B(0,1).$$

D'autre part, puisque E_{∞} est la limite de E_{n_k} , il contient $\lim_{k\to\infty} E_{n_k} \cap \partial B(0,1) = P_0 \cap \partial B(0,1)$.

Donc

$$(4.84) E_{\infty} \cap \partial B(0,1) = P_0 \cap \partial B(0,1).$$

d'où (3.3).

Pour (3.4), on sait par la proposition 4.8 (4) que $H^2(E_{n_k}) < 2\pi$. Mais les E_{n_k} et E_{∞} sont des ensembles minimaux, donc le lemme 3.3 de [9] donne

(4.85)
$$H^{2}(E_{\infty} \cap B(0,1)) \leq \liminf_{k} H^{2}(E_{n_{k}} \cap B(0,1)) \leq 2\pi.$$

L'égalité vient de (3.2), et les lemmes 2.45 et 2.15.

Donc par le théorèm 3.1,
$$E_{\infty} = P_0 \cap \overline{B}(0,1)$$
.

Notons que $\overline{B}(0,1)$ est compact, quitte à extraire une sous suite, on peut supposer que la suite E_k converge. Alors par le corollaire, la limite est $P_0 \cap \overline{B}(0,1)$. Donc à partir de maintenant, on va travailler sur cette suite $\{E_k\}_{k>0}$ qui converge vers $P_0 \cap \overline{B}(0,1)$.

5 Rayons critiques

Pour notre E_k , encore une fois s'il est une déformation, alors il doit être obtenu en pinçant P_k au milieu, parce que sinon, notre fonction de déformation est injective, et E_k est l'union essentiellement disjointes des images de P_k^1 et P_k^2 respectivement. Mais puisque P_k^i est minimal, chaque image est de mesure plus grande, et par conséquent E_k n'est pas un meilleur compétiteur.

Puisqu'on pince, on sait que E_k doit commencer à s'éloigner de P_k^1 ou P_k^2 quelque part, et du coup on va payer un prix pour ça. Et en effet l'enjeu de la démonstration est de comprendre pourquoi pincer coûte encore plus cher que ce qu'il permet de gagner.

Pourtant E_k n'est pas forcément une déformation, donc ce qu'on vient de dire est juste pour justifier ce qu'on va faire. On va trouver l'endroit où E_k commence à s'éloigner de P_k .

RAYONS CRITIQUES

Donc pour un ϵ suffisamment petit, on veut trouver, un centre o qui n'est pas loin de l'origine, et une échelle r, tels que E_k est $2\epsilon r$ proche de P_k dans B(o,2r), mais n'est plus ϵr proche d'aucune translation de P_k dans B(o,r). C'est l'endroit qu'on cherche, et r est notre rayon "critique". Et alors hors de la petite boule $B(o,\frac{1}{4}r)$ notre E_k est près des plans, donc est très "plat". Par contre dans la petite boule où se produit vraisemblablement le pincement, on ne voit pas bien ce qui se passe, donc on va contrôler la mesure de E_k par un argument de projections en utilisant le corollaire 2.65. Par contre, on pourra traiter plus précisément la partie plate hors de $B(o,\frac{1}{4}r)$ puisqu'elle est régulière (si ϵ est petit). On montrera finalement qu'on perd plus de mesure sur la partie plate que ce qu'on peut espérer gagner dans la partie intérieure.

Dans ce paragraphe on va utiliser un processus de récurrence pour trouver le rayon critique.

On note, pour chaque k et i = 1, 2:

(5.1)
$$C_k^i(x,r) = (p_k^i)^{-1} (B(0,r) \cap P_k^i) + x,$$

 \mathbf{et}

$$(5.2) D_{k}(x,r) = C_{k}^{1}(x,r) \cap C_{k}^{2}(x,r).$$

Donc ici $C_k^i(x,r)$ est un "cylindre" et $D_k(x,r)$ est l'intersection de deux "cylindres". On peut noter aussi que $D_k(x,r) \supset B(x,r)$ et $D_k(0,1) \cap P_k = B(0,1) \cap P_k$.

On dit que deux ensembles E, F sont ϵr proches dans un ouvert U si

$$(5.3) d_{r,U}(E,F) < \epsilon$$

οù

(5.4)
$$d_{r,U}(E,F) = \frac{1}{r} \max \{ \sup \{ d(y,F) : y \in E \cap U \}, \sup \{ d(y,E) : y \in F \cap U \} \}.$$

On note aussi

(5.5)
$$d_{x,r}^{k}(E,F) = d_{r,D_{k}(x,r)}(E,F)$$
$$= \frac{1}{r} \max\{\sup\{d(y,F) : y \in E \cap D_{k}(x,r)\}, \sup\{d(y,E) : y \in F \cap D_{k}(x,r)\}\}.$$

Remarque 5.6. Observons que

$$(5.7) d_{r,U}(E,F) \neq \frac{1}{r} d_H(E \cap U, F \cap U).$$

Pour voir cela, on peut prendre $U = D_k(x,r)$, et poser $E_n = \partial D_k(x,r+\frac{1}{n})$ et $F_n = \partial D_k(x,r-\frac{1}{n})$, alors on a

$$(5.8) d_{x,r}^k(E_n, F_n) \to 0$$

et

(5.9)
$$\frac{1}{r}d_H(E_n \cap D_k(x,r), F_n \cap D_k(x,r)) = \frac{1}{r}d_H(E_n \cap D_k(x,r), \emptyset) = \infty.$$

Donc $d_{r,U}$ mesure plutôt comment la partie d'un ensemble dans l'ouvert U peut être approximée par un autre ensemble entier, et réciproquement. Mais on a toujours

$$(5.10) d_{r,U}(E,F) \le \frac{1}{r} d_H(E \cap U, F \cap U).$$

Rappelons maintenant que $\{E_k\}$ est une suite d'ensembles comme dans la proposition 4.8, avec $\theta_k > \frac{\pi}{2} - \frac{1}{k}$, et qui converge vers $P_0 \cap \overline{B}(0,1)$.

Proposition 5.11. Il existe $\epsilon_0 > 0$, tel que si $\epsilon < \epsilon_0$, alors pour tout k assez grand, il existe $r_k \in]0, \frac{1}{2}[$ et $o_k \in B(0, 12\epsilon)$ tels que E_k est $2\epsilon r_k$ proche de $P_k + o_k$ dans $D_k(o_k, 2r_k(1-12\epsilon))$, mais par contre il n'est ϵr_k proche de $P_k + q$ dans $D_k(o_k, r_k)$ pour aucun $q \in \mathbb{R}^4$.

Remarque 5.12. On utilisera d'ailleurs la construction aussi pour les échelles intermédiaires.

Démonstration.

On fixe un ϵ et un k, et on pose $s_i = 2^{-i}$ pour $i \geq 0$. On note $D(x,r) = D_k(x,r)$, $d_{x,r} = d_{x,r}^k$ pour abréger. Et on procède de la manière suivante.

Etape 1: Notons $q_0 = q_1 = O$ (et rappelons que $s_0 = 1$), on a donc dans $D(q_0, s_0)$ que E_k est ϵs_0 proche de $P_k + q_1$ si k est grand, car $E_k \to P_0$, $P_k \to P_0$ implique que $d_{0,1}(E_k, P_k) \to 0$.

Etape 2 : Si dans $D(q_1,s_1)$ E_k n'est ϵs_1 proche d'aucun P_k+q on s'arrête; sinon, il existe un q_2 tel que E_k est ϵs_1 proche de P_k+q_2 dans $D(q_1,s_1)$. Ici on demande que ϵ soit assez petit (disons $\epsilon < \frac{1}{100}$) pour que $q_2 \in D(q_1,\frac{1}{2}s_1)$ à cause de la conclusion de l'étape 1. Alors dans $D(q_1,s_1)$ on a simultanément :

$$(5.13) d_{q_1,s_1}(E_k, P_k + q_1) \le s_1^{-1} d_{q_0,s_0}(E_k, P_k + q_1) \le 2\epsilon \; ; \; d_{q_1,s_1}(E_k, P_k + q_2) \le \epsilon.$$

Vérifions que ceci implique que $d_{q_1,\frac{1}{2}s_1}(P_k+q_1,P_k+q_2)\leq 12\epsilon$ quand ϵ est petit, disons $\epsilon<\frac{1}{100}$. En effet pour chaque $z\in D(q_1,\frac{1}{2}s_1)\cap (P_k+q_1)$ on a $d(z,E_k)\leq d_{q_0,s_0}(E_k,P_k+q_1)\leq \epsilon$. Il existe donc un $y\in E_k$ tel que $d(z,y)\leq \epsilon$. Mais puisque $z\in D(q_1,\frac{1}{2}s_1)$, on a $y\in D(q_1,\frac{1}{2}s_1+\epsilon)\subset D(q_1,s_1)$, et donc $d(y,P_k+q_2)\leq s_1^{-1}d_{q_1,s_1}(E_k,P_k+q_2)\leq 2\epsilon$, donc $d(z,P_k+q_2)\leq d(z,y)+d(y,P_k+q_2)\leq 3\epsilon$.

D'un autre côté, soit $z \in D(q_1, \frac{1}{2}s_1) \cap (P_k + q_2)$, on a alors $d(z, E_k) \leq s_1^{-1} d_{q_1, s_1}(P_k + q_2, E_k) \leq 2\epsilon$, il existe donc un $y \in E_k$ tel que $d(z, y) \leq 2\epsilon$. Mais puisque $z \in D(q_1, \frac{1}{2}s_1)$, on a donc $y \in D(q_1, \frac{1}{2}s_1 + 2\epsilon) \subset D(q_0, s_0)$, de sorte que $d(y, P_k + q_1) \leq d_{q_0, s_0}(E_k, P_k + q_1) \leq \epsilon$, et donc $d(z, P_k + q_1) \leq d(z, y) + d(y, P_k + q_1) \leq 3\epsilon$.

On a donc

(5.14)
$$d_{q_1,\frac{1}{2}s_1}(P_k+q_1,P_k+q_2) \le (\frac{1}{2}s_1)^{-1} \times 3\epsilon = 12\epsilon,$$

et par conséquent $d_{q_1,\frac{1}{2}s_1}(q_1,q_2) \leq 24\epsilon$, et donc $d(q_1,q_2) \leq 6\epsilon = 12\epsilon s_1$.

RAYONS CRITIQUES

Maintenant on définit notre processus d'itération (notons qu'il dépend de ϵ , on l'appelle aussi un ϵ -processus).

Supposons que les $\{q_i\}_{i\leq n}$ sont déjà définis, avec

(5.15)
$$d(q_i, q_{i+1}) \le 12s_i \epsilon = 12 \times 2^{-i} \epsilon$$

pour $0 \le i \le n-1$, et donc

$$(5.16) d(q_i, q_j) \le 24\epsilon s_{\min(i,j)} = 2^{-\min(i,j)} \times 24\epsilon$$

pour $0 \le i, j \le n$, et que de plus pour tout $i \le n-1$, E_k est ϵs_i proche de $P_k + q_{i+1}$ dans $D(q_i, s_i)$. On dit que le processus ne s'arrête pas à l'étape n. Alors

Etape n+1: On regarde alors dans $D(q_n, s_n)$.

Si E_k n'est ϵ proche d'aucun $P_k + q$ dans cette boule de rayon s_n , on s'arrête et on trouve notre $o_k = q_n, r_k = s_n$ comme désiré. En effet, puique $d(q_{n-1}, q_n) \leq 12\epsilon s_{n-1}$, on a $D(q_n, 2s_n(1-12\epsilon)) = D(q_n, s_{n-1}(1-12\epsilon)) \subset D(q_{n-1}, s_{n-1})$, et donc

(5.17)
$$d_{q_{n},2s_{n}(1-12\epsilon)}(P_{k}+q_{n},E_{k}) \leq (1-12\epsilon)^{-1}d_{q_{n-1},s_{n-1}}(P_{k}+q_{n},E_{k})$$
$$\leq \frac{\epsilon}{1-12\epsilon}.$$

De plus

(5.18)
$$d(o_k, O) = d(q_n, q_1) \le 2^{-\min(1, n)} \times 24\epsilon = 12\epsilon.$$

Sinon, on peut trouver un $q_{n+1} \in \mathbb{R}^4$ tel que E_k est encore ϵs_n proche de $P_k + q_{n+1}$ dans $D(q_n, s_n)$, alors puisque ϵ est petit, $q_{n+1} \in D(q_n, \frac{1}{2}s_n)$. De plus on a comme avant $d(q_{n+1}, q_n) \leq 12\epsilon s_n$ et pour $i \leq n-1$,

$$(5.19) d(q_i, q_{n+1}) \le \sum_{j=i}^n d(q_j, q_{j+1}) \le \sum_{j=i}^n 12 \times 2^{-j} \epsilon \le 2^{-j} \times 24\epsilon = 2^{-\min(i, n+1)} \times 24\epsilon.$$

On obtient donc notre q_{n+1} .

Maintenant il ne reste plus qu'à montrer que ce processus doit s'arrêter à une étape finie pour chaque ϵ suffisamment petit. Et pour montrer cela, on va estimer la mesure de notre ensemble E_k . On a donc besoin du lemme suivant.

Lemme 5.20. Il existe $\epsilon_0 > 0$, tel que pour tout $\epsilon < \epsilon_0$, k assez grand, et pour tout n tel que le ϵ -processus ne s'arrête pas avant n (ce qui implique en particulier qu'il existe $q_n \in B(q_{n-1}, \frac{1}{2}s_{n-1})$ tel que E_k est ϵs_{n-1} proche de $P_k + q_n$ dans $D(q_{n-1}, s_{n-1})$),

(5.21)
$$E_k \cap (D(0,1) \setminus D(q_n, s_n)) = F_n^1 \cup F_n^2$$

où F_n^1, F_n^2 ne se rencontrent pas. De plus

$$(5.22) P_k^i \cap (D(0,1) \setminus D(q_n,s_n)) \subset p_k^i(F_n^i)$$

où p_k^i est la projection orthogonale sur P_k^i , i = 1, 2.

On va montrer ce lemme dans le paragraphe suivante. Donc admettons ce lemme pour l'instant.

Puisque $H^2(E_k) < 2\pi$, il existe $n_k > 0$ tel que

(5.23)
$$\inf_{q \in \mathbb{R}^4} H^2(P_k \backslash D(q, s_{n_k})) > H^2(E_k)$$

Alors notre processus doit s'arrêter avant ce n_k , parce que sinon on aurait, par le lemme précédent, la décomposition disjointe

(5.24)
$$E_k = [E_k \cap D(q_{n_k}, s_{n_k})] \uplus F_{n_k}^1 \uplus F_{n_k}^2,$$

et donc

(5.25)
$$H^{2}(E_{k}) \geq H^{2}(F_{n_{k}}^{1}) + H^{2}(F_{n_{k}}^{2}) \geq H^{2}[p_{k}^{1}(F_{n_{k}}^{1})] + H^{2}[p_{k}^{2}(F_{n_{k}}^{2})]$$
$$\geq H^{2}(P_{k} \setminus D(q_{n_{k}}, s_{n_{k}}) > H^{2}(E_{k}),$$

une contradiction.

6 Propriétés de projection et régularité de E_k

La prochaine étape, comme on a dit au début de la section précédente, est de donner des propriétés utiles pour notre estimation, dont la régularité pour la partie plate hors d'une petite boule, et la surjectivité des projections à l'intérieur de la boule, auxquelles va contribuer cette section. Elle donne aussi le lemme 5.20.

Proposition 6.1. Il existe $\epsilon_0 > 0$, tel que pour $\epsilon < \epsilon_0$ fixé et k grand, si notre ϵ -processus ne s'arrête pas avant l'étape n, alors

(1) $E_k \cap (D_k(0, \frac{39}{40}) \setminus D_k(q_n, \frac{1}{10}s_n))$ est composé de deux morceaux disjoints G^i , i = 1, 2, tels que :

(6.2)
$$G^i$$
 est le graphe d'une application C^1 g^i : $D_k(0, \frac{39}{40}) \setminus D_k(q_n, \frac{1}{10}s_n) \cap P_k^i \to P_k^{i^{\perp}}$

avec

$$(6.3) ||\nabla g^i||_{\infty} < 1 ;$$

(2)(lemme 5.20) pour chaque $\frac{1}{10}s_n \leq t \leq s_n$

(6.4)
$$E_k \cap (D_k(0,1) \setminus D_k(q_n,t)) = G_t^1 \cup G_t^2$$

où G_t^1, G_t^2 ne se rencontrent pas. De plus

$$(6.5) P_k^i \cap (D_k(0,1) \setminus C_k^i(q_n,t)) \subset p_k^i(G_t^i)$$

où p_k^i est la projection orthogonale sur P_k^i , i=1,2;

(3) Pour chaque $\frac{1}{10}s_n < t < s_n$, il existe une suite $\{F_l^n(t) = f_l^n(t)((P_k + q_n) \cap \overline{D}_k(q_n, s_n + \frac{1}{l}))\}_{l \ge 1}$ de déformations de $(P_k + q_n) \cap \overline{D}_k(q_n, t + \frac{1}{l})$ dans $\overline{D}_k(q_n, t + \frac{1}{l})$, avec

$$(6.6) f_l^n(t)((P_k + q_n) \cap \partial C_k^i(q_n, t + \frac{1}{l})) \subset \partial C_k^i(q_n, t + \frac{1}{l})$$

qui tend vers $E_k \cap D_k(q_n,t)$ dans $D_k(0,1)$;

(4) les projections orthogonales $p_k^i: E_k \cap D_k(q_n, t) \to P_k^i \cap C_k^i(q_n, t), i = 1, 2$ sont surjectives, pour tout $\frac{1}{10}s_n \leq t \leq s_n$.

Démonstration. Pour montrer (1) on va se servir d'un théorème de régularité sur les varifolds. On utilisera les notations suivantes.

G(n,d) est la variété Grassmann $G(\mathbb{R}^n,d)$;

Pour chaque $T \in G(n, d)$, on note aussi π_T la projection orthogonale vers le d-plan representé par T;

Pour chaque mesure ν sur \mathbb{R}^n , $\theta^d(\nu, x) = \lim_{r \to 0} \frac{\nu B(a, r)}{\alpha(d) r^d}$ (si la limite existe) est la densité de ν en x, où $\alpha(d)$ désigne le volume de la d-boule unité;

 $\mathbb{V}_d(\mathbb{R}^n)$ désigne l'ensemble de tout les d-varifold dans \mathbb{R}^n , i.e. toutes les mesure Radon sur $G_d(\mathbb{R}^n) = \mathbb{R}^n \times G(n,d)$;

Pour chaque $V \in \mathbb{V}_d(\mathbb{R}^n)$, ||V|| est la mesure Radon sur \mathbb{R}^n telle que pour chaque $A \subset \mathbb{R}^n$, $||V||(A) = V(G_d(\mathbb{R}^n) \cap \{(x, S) : x \in A\})$;

 $\delta(V)$ désigne la première variation de V, qui est l'application linéaire de $\mathfrak{X}(\mathbb{R}^n) \to \mathbb{R}$, définie par

(6.7)
$$\delta V(g) = \int Dg(x) \cdot \pi_S dV(x, S)$$

pour $g \in \mathfrak{X}(\mathbb{R}^n)$. Ici $\mathfrak{X}(\mathbb{R}^n)$ est l'espace vectoriel de toutes les application C^{∞} de $\mathbb{R}^n \to \mathbb{R}^n$ à support compact.

Dans notre cas, on ne s'intéresse qu'aux varifolds rectifiables. En effet, à chaque ensemble d-rectifiable E on associe un d-varifold, noté V_E , au sens suivant : pour chaque $B \subset \mathbb{R}^n \times G(n,d)$, on a

(6.8)
$$V_E(B) = H^d\{x : (x, T_x E) \in B\}.$$

Rappelons que T_xE est le d plan tangent de E à x, il existe en presque tout point $x \in E$, puisque E est d-rectifiable. Alors $||V_E|| = H^d|_E$. De plus, la densité $\theta^d(||V_E||, x)$ existe pour presque tout $x \in E$.

Théorème 6.9 (c.f.[1] Théorème de régularité au début du paragraphe 8). Soit $2 \le d , <math>q = \frac{p}{p-1}$. Alors à chaque ϵ avec $0 < \epsilon < 1$ correspond un $\eta > 0$ avec les propriétés suivantes :

Soit
$$0 < R < \infty$$
, $0 < \mu < \infty$, $V \in \mathbb{V}_d(\mathbb{R}^n)$, $a \in spt||V||$ tels que

- 1) $\theta^d(||V||, x) \ge \mu$ pour ||V|| presque tout $x \in B(a, R)$;
- 2) $||V||B(a,R) \le (1+\eta)\mu\alpha(d)R^d;$
- 3) $\delta V(g) \leq \eta \mu^{\frac{1}{p}} R^{\frac{d}{p-1}} \left(\int |g|^q \mu ||V|| \right)^{\frac{1}{q}} \text{ pour tout } g \in \mathfrak{X}(\mathbb{R}^n) \text{ and spt } g \subset B(a,R).$

Alors il existe $T \in G(n,d)$ et une fonction $C^1 F: T \to \mathbb{R}^n$, tels que $\pi_T \circ F = 1_T$,

(6.10)
$$||DF(y) - DF(z)|| \le \epsilon (|y - z|/R)^{1 - \frac{d}{p}} pour tous y, z \in T,$$

et

$$(6.11) B(a, (1-\epsilon)R) \cap spt||V|| = B(a, (1-\epsilon)R) \cap image F.$$

Remarque 6.12. 1) Dans le théorème, comme $\pi_T \circ F = 1_T$, on voit que F est en effet le graphe de la fonction C^1 f, définie par $f(t) = \pi_{T^{\perp}} F(t)$, avec $t \in T$, $\pi_{T^{\perp}}$ la projection orthogonale vers T^{\perp} , l'espace orthogonal de T. De plus $||Df(t)|| \le ||DF(t)||$ pour tout $t \in T$.

2) Si E est un ensemble localement minimal, V_E est stationnaire, i.e. $\delta V_E = 0$. Donc la condition 3) s'établit automatiquement. En effet si on pose $g_t(x) = (1-t)x + tg(x)$, alors

(6.13)
$$\delta V_E(g) = \frac{d}{dt} H^d(g_t(E \cap sptg)),$$

ce qui se voit par le formule de l'aire. Et donc si E est minimal, $\delta V_E = 0$.

Proposition 6.14. Pour chaque n > d > 0, il existe $\epsilon_1 = \epsilon_1(n,d) > 0$ tel que ce qui suit est vrai. Soit E un ensemble localement minimal de dimension d dans un ouvert $U \subset \mathbb{R}^n$, avec $U \supset B(0,2)$ et $0 \in E$. Alors si E est ϵ_1 proche d'un d-plan P dans B(0,1), alors E coïncide avec le graphe d'une application $C^1 f: P \to P^\perp$ dans $B(0,\frac{3}{4})$. De plus $||\nabla f||_{\infty} < 1$.

Démonstration. On le montrera seulement pour d = 2. La démonstration pour les autre dimensions est semblable.

D'abord vérifions les condition dans le théorème 6.9, avec $a=0, R=1, \mu=1, \eta<\frac{1}{10}$, et ϵ petit, à choisir plus tard.

- 1) Puisque E est minimal, pour tout $x \in E$, la densité de E en x est au moins 1, donc 1) est vrai.
- 2) On sait que E est ϵ_1 proche d'un 2-plan affine P dans B(0,1), et $H^2(P \cap B(0,1)) \leq \alpha(2) = \pi$, alors par le lemme 16.43 de [9], on peut choisir ϵ_1 (qui dépend de ϵ , puisque η dépend de ϵ) tel que 2) est vrai. En particulier

(6.15)
$$H^2(B(0,1) \cap E) \le \frac{11}{10}.$$

3) Vient de la minimalité de E, par remarque 6.12 2), avec n'importe quel p > 2.

Alors quand p est assez grand, par le théorème, il existe un plan T et une fonction F de classe C^1 $T \to \mathbb{R}^4$ tels que dans $B(0, 1 - \epsilon)$, E coïncide avec l'image de F, et que

(6.16)
$$||DF(y) - DF(z)|| \le \epsilon (|y - z|/R)^{1 - \frac{2}{p}} \le (\frac{7}{4})^{1 - \frac{2}{p}} \epsilon \le 2\epsilon$$

pour tous $y, z \in F^{-1}(E \cap B(0, 1 - \epsilon))$.

Notons que pour chaque $y \in F^{-1}(E \cap B(0, 1 - \epsilon)) \subset T$, DF(y)(T) est le plan tangent de E en F(y). Donc (6.16) veut dire que les plans tangents de E ne varient pas beaucoup dans $B(0, 1 - \epsilon)$.

Maintenant notons Q le plan parallèle à P (le plan dans l'énoncé) et passant par l'origine, π le projecteur de Q, et π' le projecteur de Q^{\perp} . On affirme que pour chaque $y \in T$ tel que $F(y) \in B(0, 1 - \epsilon)$ et chaque $u \in T_y E = DF(y)(T)$,

(6.17)
$$||\pi(u)|| \ge \frac{3}{4}||u||.$$

En effet, si (6.17) n'est pas vrai, alors il existe $y \in F^{-1}(E \cap B(0, 1 - \epsilon))$ et $u \in T_y E$ tel que $||\pi(u)|| < \frac{3}{4}||u||$. Notons $t = DF(y)^{-1}(u) \in T$, alors

(6.18)
$$||\pi(DF(y)(t))|| \le \frac{3}{4}||DF(y)(t)||.$$

Par (6.16), pour tout $z \in F^{-1}(E \cap B(0, 1 - \epsilon))$,

$$||\pi(DF(z)(t)|| \leq ||\pi \circ (DF(z) - DF(y))(t)|| + ||\pi \circ DF(y)(t)||$$

$$\leq 2\epsilon ||t|| + \frac{3}{4}||DF(y)(t)||$$

$$\leq 2\epsilon ||t|| + \frac{3}{4}||DF(y)(t) - DF(z)(t)|| + \frac{3}{4}||DF(z)(t)||$$

$$\leq 2\epsilon ||t|| + \frac{3}{2}\epsilon ||t|| + \frac{3}{4}||DF(z)(t)||$$

$$= \frac{7}{2}\epsilon ||t|| + \frac{3}{4}||DF(z)(t)||.$$

Mais $\pi_T \circ F = 1_T$ entraı̂ne que pour tout $t \in T$,

$$(6.20) ||DF(z)(t)|| \ge ||\pi_T \circ DF(z)(t)|| = ||t||,$$

de sorte que

(6.21)
$$||\pi(DF(z)(t)|| \le (\frac{7}{2}\epsilon + \frac{3}{4})||DF(z)(t)||.$$

Donc quand ϵ est suffisamment petit, on a

(6.22)
$$||\pi' \circ DF(z)(t)|| \ge \frac{1}{2} ||DF(z)(t)||$$

pour tout $z \in F^{-1}(E \cap B(0, 1 - \epsilon))$.

Notons $e_1 = \pi' \circ DF(0)(t)/||\pi' \circ DF(0)(t)||$ un vecteur unitaire dans Q. On a donc

(6.23)
$$\langle e_1, DF(0)(t) \rangle > \frac{1}{2} ||DF(0)(t)||.$$

Alors pour tout $z \in F^{-1}(E \cap B(0, 1 - \epsilon))$, encore une fois par (6.16) et (6.20),

$$\langle e_{1}, DF(z)(t) \rangle = \langle e_{1}, (DF(z) - DF(0))(t) \rangle + \langle e_{1}, DF(0)(t) \rangle$$

$$\geq \langle e_{1}, DF(0)(t) \rangle - || \langle e_{1}, (DF(z) - DF(0))(t) \rangle ||$$

$$\geq \frac{1}{2} ||DF(0)(t)|| - 2\epsilon ||t||$$

$$\geq \frac{1}{2} [||DF(z)(t)|| - ||(DF(0) - DF(z))(t)||] - 2\epsilon ||t||$$

$$\geq \frac{1}{2} [||DF(z)(t)|| - 2\epsilon ||t||] - 2\epsilon ||t|| \geq \frac{1}{2} ||DF(z)(t)|| - 3\epsilon ||DF(z)(t)||$$

$$\geq \frac{1}{3} ||DF(z)(t)||.$$

Par conséquent, si on prend $z \in F^{-1}(E \cap \partial B(0, 1 - \epsilon))$, tel que $\vec{z} = \lambda t$ avec $\lambda > 0$, on a

$$\langle e_{1}, F(z) - F(0) \rangle = \langle e_{1}, \int_{0}^{1} DF(sz)(t) ds \rangle = \int_{0}^{1} \langle e_{1}, DF(sz)(t) \rangle ds$$

$$\geq \int_{0}^{1} \frac{1}{3} ||DF(sz)(t)|| ds = \frac{1}{3} \int_{0}^{1} ||DF(sz)(t)|| ds$$

$$\geq \frac{1}{3} ||F(z) - F(0)|| = \frac{1}{3} ||F(z)|| = \frac{1}{3} (1 - \epsilon),$$

ce qui implique que quand ϵ_1 , ϵ sont suffisamment petits, il n'existe aucune translation Q + x de Q (y compris P) telle que $B_{0,1}(Q + x, E) < \epsilon_1$. Contradiction.

On a donc (6.17). Autrement dit, $D\pi$ est toujours injective en des points de $E \cap B(0, 1 - \epsilon)$. Alors par le théorème des fonctions implicites, pour tout $x \in E \cap B(0, 1 - \epsilon)$, il existe $r_x > 0$ et $g_x : Q \to Q^{\perp}$ tels que E coïncide dans $\pi^{-1}[B(\pi(x), r_x) \cap Q] \cap B(x, 2r_x)$ avec le graphe de g_x sur $B(\pi(x), r_x)$. De plus par (6.17)

$$(6.26) ||\nabla g_x(x)|| \le 1.$$

On va montrer que

(6.27)
$$\pi(E \cap B(0, 1 - \epsilon)) \supset Q \cap B(0, \frac{3}{4}).$$

Rappelons que E est ϵ_1 proche d'un plan P parallèle à Q dans B(0,1), donc $E \cap B(0,1) \subset B(P,\epsilon_1)$ et $d(0,P) \leq \epsilon_1$, de sorte que $d(Q,P) \leq \epsilon_1$. Donc $E \cap B(0,1-\epsilon) \subset B(Q,2\epsilon_1)$, de sorte que $E \cap \partial B(0,1-\epsilon) \subset B(Q,2\epsilon)$, et donc

(6.28) pour chaque
$$x \in E \cap \partial B(0, 1 - \epsilon), ||\pi(x)|| \ge \sqrt{(1 - \epsilon)^2 - (2\epsilon)^2} \ge \frac{3}{4}.$$

Mais par le théorème 6.9, $E \cap B(0, 1-\epsilon)$ est un disque topologique, donc par un argument semblable à celui autour de (3.44), (6.28) donne $\pi(E \cap B(0, 1-\epsilon)) \supset B(0, \frac{3}{4}) \cap Q$. On a donc (6.27).

Maintenant soit Γ une composante connexe de $F := E \cap B(0, 1-\epsilon) \cap \pi^{-1}(B(0, \frac{3}{4}) \cap Q)$. Il est à la fois ouvert et fermé dans F. Mais on sait que $D\pi(x)$ est injective pour tout $x \in F$, donc π est une application

ouverte, de sorte que $\pi(\Gamma)$ est ouvert dans $B(0,\frac{3}{4})\cap Q$. D'un autre côté, on affirme que $\pi(\Gamma)$ est aussi fermé dans $B(0,\frac{3}{4})\cap Q$. En effet, soit $\{x_n\}\subset \pi(\Gamma)$ une suite de points qui converge vers un point $x_{\infty}\in B(0,\frac{3}{4})\cap Q$. Pour chaque n, prenons $y_n\in\Gamma$ tel que $\pi(y_n)=x_n$. Alors $\{y_n\}\subset\overline{\Gamma}$, qui est compact, de sorte qu'elle admet un point d'accumulation $y_{\infty}\subset\overline{\Gamma}$. Alors on a $\pi(y_{\infty})=x_{\infty}$. On veut montrer que $y_{\infty}\in\Gamma$, on regarde donc $\overline{\Gamma}\backslash\Gamma$. Alors puisque Γ est fermé dans $F=E\cap B(0,1-\epsilon)\cap\pi^{-1}(B(0,\frac{3}{4})\cap Q)$, donc

(6.29)
$$\overline{\Gamma}\backslash\Gamma\subset E\cap\partial[B(0,1-\epsilon)\cap\pi^{-1}(B(0,\frac{3}{4})\cap Q)] \\ = [\partial B(0,1-\epsilon)\cap\pi^{-1}(\overline{B}(0,\frac{3}{4})\cap Q)]\cup[\partial(\pi^{-1}(B(0,\frac{3}{4})\cap Q))\cap\overline{B}(0,1-\epsilon)].$$

On sait que la distance $d(\partial B(0, 1 - \epsilon) \cap \pi^{-1}(\overline{B}(0, \frac{3}{4}) \cap Q), Q) > \sqrt{(1 - \epsilon)^2 - (\frac{3}{4})^2} > \sqrt{\frac{7}{16} - 2\epsilon}$, et $d(P, Q) \leq d(0, P) < \epsilon_1$, puisque $0 \in Q$ et $0 \in E$. Par conséquent,

(6.30)
$$d(\partial B(0, 1 - \epsilon) \cap \pi^{-1}(\overline{B}(0, \frac{3}{4}) \cap Q), P) > \sqrt{\frac{7}{16} - 2\epsilon} - \epsilon_1 > \epsilon_1$$

quand ϵ et ϵ_1 sont tous les deux petits. Alors l'hypothèse dit que pour chaque $y \in E \cap B(0,1)$, $d(y,P) < \epsilon_1$, de sorte que $[E \cap B(0,1)] \cap \partial B(0,1-\epsilon) \cap \pi^{-1}(\overline{B}(0,\frac{3}{4}) \cap Q) = \emptyset$. Par conséquent, $\overline{\Gamma} \subset E \cap B(0,1)$ ne s'intersecte pas avec $\partial B(0,1-\epsilon) \cap \pi^{-1}(\overline{B}(0,\frac{3}{4}) \cap Q)$. Donc en combinant avec (6.29),

(6.31)
$$\overline{\Gamma}\backslash\Gamma\subset\partial(\pi^{-1}(B(0,\frac{3}{4})\cap Q))\cap\overline{B}(0,1-\epsilon).$$

Mais par hypothèse, $\pi(y_{\infty}) = x_{\infty} \in B(0, \frac{3}{4}) \cap Q$, donc $y_{\infty} \notin \partial(\pi^{-1}(B(0, \frac{3}{4}) \cap Q))$. Donc, $y_{\infty} \notin \overline{\Gamma} \backslash \Gamma$. Donc $y_{\infty} \in \Gamma$, de sorte que $x_{\infty} \in \pi(\Gamma)$.

Donc $\pi(\Gamma)$ est aussi fermé dans $B(0,\frac{3}{4})\cap Q$. Et par conséquent, $\pi(\Gamma)=B(0,\frac{3}{4})\cap Q$.

On affirme que

$$(6.32) \hspace{1cm} \pi:\Gamma\to B(0,\frac{3}{4})\cap Q \text{ est un revêtement sur }Q\cap B(0,\frac{3}{4}).$$

En effet, puisque E est compact, l'application continue $\pi: E \to Q$ est propre, de sorte que pour chaque $x \in Q \cap B(0, \frac{3}{4}), \ \pi^{-1}(x) \cap \Gamma$ est un ensemble fini. Notons cet ensemble $\{y_1, \cdots, y_N\}$. Alors par la conclusion avant (6.26), pour chaque $1 \leq j \leq N$, il existe $r_j > 0$ tel que Γ coïncide dans $\pi^{-1}[B(x,r_j)\cap Q]\cap B(y_j,2r_j)$ avec le graphe d'une fonction $g_j:Q\to Q^\perp$ sur $B(x,r_j)\cap Q$. Notons $r=\min_j r_j$, alors $\pi^{-1}[B(x,r)\cap Q]$ contient l'union finie disjointes des $g_j(B(x,r)\cap Q)$. D'autre part, pour chaque $y\in\pi^{-1}(B(x,r)\cap Q)$, prenons γ une composante connexe de $\pi^{-1}(B(x,r)\cap Q)$ telle que $y\in\gamma$, alors par le même argument que celui pour Γ sur $B(0,\frac{3}{4})\cap Q$ ci-dessus, $\pi(\gamma)\supset B(x,r)\cap Q$, en particulier, il existe $1\leq j\leq N$ tel que $y_j\in\gamma$. Mais dans ce cas on a $\gamma=g_j(B(x,r)\cap Q)$, de sorte que $y\in g_j(B(x,r)\cap Q)$. Par conséquent, $\pi^{-1}[B(x,r)\cap Q]$ est juste l'union finie disjointes des $g_j(B(x,r)\cap Q)$, dont sur chacun π est un homéomorphisme de B(x,r), d'où (6.32).

Mais $Q \cap B(0, \frac{3}{4})$ est simplement connexe, Γ est son revêtement connexe par π , donc π est forcément un homémorphisme. Alors par la conclusion autour de (6.26), Γ est le graphe d'une fonction C^1 de $Q \to Q^{\perp}$ dont le gradient est de norme inférieure à 1.

Maintenant soit $\Gamma_1, \dots, \Gamma_n, \dots$ les composantes connexes de E. Alors s'il existe plus d'un Γ_i , on a

(6.33)
$$H^{2}(E \cap B(0,1) > H^{2}(E \cap B(0,1-\epsilon) \cap \pi^{-1}(B(0,\frac{3}{4}) \cap Q)) \ge 2 \times \frac{9}{16}\pi = \frac{9}{8}\pi,$$

ce qui contredit (6.15).

Donc $E \cap B(0, 1 - \epsilon) \cap \pi^{-1}(B(0, \frac{3}{4}) \cap Q)$ est un revêtement simple de $Q \cap B(0, \frac{3}{4})$. En combinant avec (6.27), $\pi^{-1} : B(0, \frac{3}{4}) \cap Q \to E \cap B(0, 1 - \epsilon) \cap \pi^{-1}(B(0, \frac{3}{4}))$ est une fonction de classe C^1 , qui coïncide avec g_x autour de $\pi(x)$ pour chaque $x \in E \cap B(0, 1 - \epsilon) \cap \pi^{-1}(B(0, \frac{3}{4}))$, et donc $||\nabla g||_{\infty} < 1$. Maintenant posons $f = g \circ \pi : P \cap \pi^{-1}(B(0, \frac{3}{4}) \to E \cap B(0, 1 - \epsilon) \cap \pi^{-1}(B(0, \frac{3}{4}))$, notons que P est parallèle à Q, nous arrivons ainsi à la conclusion désirée.

Remarque 6.34. Pour d=2, n=4, on peut obtenir le même resultat par le théorème 1.15 de [10], sans discuter de choses compliquées comme les varifolds, etc. Mais comme on va généraliser plus tard (dans le paragraphe 9, etc.) le résultat aux dimensions plus grandes, il est peut être mieux d'utiliser la démonstration ci-dessus, pour gagner de l'espace.

Corollaire 6.35. Il existe $\epsilon_1 > 0$ tel que si k est assez grand, E est un ensemble localement minimal dans un domaine $U \subset \mathbb{R}^4$, $D_k(0,1) \subset U$, et E est ϵ_1 proche d'un plan P dans $D_k(0,1)$, alors E coïncide avec le graphe d'une application C^1 $f: P \to P^\perp$ dans $D_k(0,\frac{1}{2})$. De plus $||\nabla f||_{\infty} < 1$.

Démonstration. Quand k est assez grand, on a $D_k(0, \frac{1}{2}) \subset B(0, \frac{3}{4}) \subset B(0, 1) \subset D_k(0, 1)$. Alors si E est ϵ_1 proche d'un plan P dans $D_k(0, 1)$, ce qui entraı̂ne qu'il est ϵ_1 proche de P dans B(0, 1), il est donc dans $B(0, \frac{3}{4})$ le graphe d'une fonction de classe C^1 $f: P \to P^{\perp}$, avec $||f||_{\infty} < 1$. Donc dans $D_k(0, \frac{1}{2})$ aussi.

Maintenant pour k assez grand fixé, notons encore $D(x,r) = D_k(x,r)$, $C^i(x,r) = C^i_k(x,r)$ pour i = 1, 2, et $d_{x,r} = d^k_{x,r}$.

On va obtenir (1) grace au corollaire 6.35.

Pour k grand, P_k est très proche de P_0 , il existe donc un $0 < \epsilon_3 < \frac{1}{100}$ (qui ne dépend pas de k pour k assez grand), tel que pour tout $\epsilon < \epsilon_3$, si $x \in \mathbb{R}^4$ et E est n'importe quel ensemble tel que $d_{x,r}(E,P_k+q) < \epsilon$ avec $q \in \mathbb{R}^4$ et $d(x,q) < 20\epsilon r$, alors dans $D(x,r)\backslash D(q,\frac{1}{100}r)$, E est l'union disjointes de deux morceaux E^1 , E^2 , tels que dans D(x,r) moins un petit trou, E^1 est proche de P_k^1+q , mais loin de P_k^2+q , et de même pour E^2 . Plus précisément,

(6.36)
$$E^{i} \subset B((P_{k}^{i} + q) \cap D(x, r) \setminus D(q, \frac{1}{100}r), \epsilon r)$$

et

(6.37)
$$d(B(P_k^1 \cap D(x,r) \setminus D(q, \frac{1}{100}r), \epsilon r), B(P_k^2 \cap D(x,r), \epsilon r)) > \frac{1}{80}r;$$

$$d(B(P_k^1 \cap D(x,r) \setminus D(q, \frac{1}{100}r), \epsilon r), B(P_k^1 \cap D(x,r), \epsilon r)) > \frac{1}{80}r.$$

En particulier,

(6.38)
$$d(E^1, E^2) \ge \frac{1}{80}r.$$

Maintenant, prenons $\epsilon_0 = \min\{\frac{1}{2}\epsilon_3, \frac{1}{40}\epsilon_1, 10^{-5}\}$, alors pour chaque $\epsilon < \epsilon_0$, si notre ϵ -processus ne s'arrête pas à l'étape n, E_k est ϵs_{n-1} proche de $P_k + q_n$ dans $D(q_{n-1}, s_{n-1})$. Notons pour l'instant $q = q_n, x = q_{n-1}, r = s_{n-1}$. Alors, puisque $\epsilon < \epsilon_3$,

(6.39)
$$E_k \cap D(x,r) \setminus D(q,\frac{1}{100}r)$$
 est l'union disjointe de E^1, E^2 tel que (6.36)-(6.38) sont vrais.

Pour chaque
$$y \in E^1 \cap D(x, r - \frac{1}{40}r) \setminus D(q, \frac{1}{20}r) = E^1 \cap D(q_{n-1}, \frac{39}{40}s_{n-1}) \setminus D(q_n, \frac{1}{10}s_n),$$

$$(6.40) d_{\nu,\frac{1}{2\epsilon}r}(E_k, P_k + q) < 40\epsilon < \epsilon_1,$$

où par définition,

(6.41)
$$d_{y,\frac{1}{40}r}(E_k, P_k + q) = \frac{1}{\frac{1}{40}r} \max\{ \sup\{ d(z, P_k + q) : z \in E_k \cap D(y, \frac{1}{40}r) \}, \sup\{ d(z, E_k) : z \in P_k + q \cap D(y, \frac{1}{40}r) \} \}.$$

Pour le second terme,

(6.42)
$$\sup\{d(z, E_k) : z \in (P_k + q) \cap D(y, \frac{1}{40}r)\} \ge \sup\{d(z, E_k) : z \in (P_k^1 + q) \cap D(y, \frac{1}{40}r)\}$$

puisque $P_k^1 \subset P_k$; pour le premier, notons d'abord que

(6.43)
$$\sup\{d(z, P_k + q) : z \in E_k \cap D(y, \frac{1}{40}r)\} \\ = \sup\{d(z, (P_k + q) \cap D(y, \frac{1}{40}r + \epsilon r)) : z \in E_k \cap D(y, \frac{1}{40}r)\}$$

puisqu'on sait déjà que $d_{y,\frac{1}{40}r}(E_k,P_k+q)<40\epsilon$, qui implique pour chaque $z\in E_k\cap D(y,\frac{1}{40}r)$, il existe un $w\in P_k+q$ tel que $d(z,w)<\epsilon r$. Notons $W=\{w\in P_k+q,d(z,w)<\epsilon r\}$. Alors

(6.44)
$$d(z, P_k + q) = d(z, W).$$

Maintenant pour tout $w \in W$,

$$(6.45) w \in (P_k + q) \cap D(y, \frac{1}{40}r + \epsilon r) \subset (P_k + q) \cap D(y, \frac{1}{40}r + \frac{1}{100}r)$$

$$\subset (P_k + q) \cap D(x, r) \setminus D(q, \frac{1}{100}r)$$

$$= [(P_k^1 + q) \cap D(x, r) \setminus D(q, \frac{1}{100}r)] \cup (P_k^2 + q) \cap D(x, r) \setminus D(q, \frac{1}{100}r).$$

Alors w doit appartenir à $(P_k^1 + q) \cap D(x,r) \setminus D(q, \frac{1}{100}r)$, parce que sinon

$$(6.46) z \in B(w, \epsilon r) \cap E_k \subset B((P_k^2 + q) \cap D(x, r) \setminus D(q, \frac{1}{100}r), \epsilon r) \cap E_k = E^2$$

à cause de (6.36) et (6.37), ce qui contredit le fait que $z \in E^1$. Donc

(6.47)
$$d(z, P_k + q) = d(z, W) \ge d(z, P_k^1 + q) \text{ pour } z \in E_k \cap D(y, \frac{1}{40}r),$$

de sorte que

(6.48)
$$\sup\{d(z, P_k + q) : z \in E_k \cap D(y, \frac{1}{40}r)\} \ge \sup\{d(z, P_k^1 + q) : z \in E_k \cap D(y, \frac{1}{40}r)\}.$$

En sommant (6.42) et (6.48) on obtient

(6.49)
$$d_{y,\frac{1}{40}r}(E^1, P_k^1 + q) \le d_{y,\frac{1}{40}r}(E^1, P_k + q) < 40\epsilon < \epsilon_1.$$

Maintenant $P_k^1 + q$ est un plan, et on peut se servir du corollaire 6.35; on obtient que

(6.50) pour chaque
$$y \in E^1 \cap D(x, \frac{39}{40}r) \setminus D(q, \frac{1}{20}r)$$
, dans $D(y, \frac{1}{80}r)$,
$$E_k \text{ est le graphe d'une application } C^1 f_y : P_k^1 \to P_k^{1^\perp} \text{ avec } ||\nabla f_y|| < 1.$$

Mais $E_k \cap D(y, \frac{1}{80}r) = E^1 \cap D(y, \frac{1}{80}r)$, ce qui veut dire qu'autour de chaque point $y \in E^1 \cap D(x, \frac{39}{40}r) \setminus D(q, \frac{1}{20}r)$, E^1 est localement un graphe C^1 sur P_k^1 .

Vérifions que dans $D(x,\frac{39}{40}r)\backslash D(q,\frac{1}{20}r)$, E^1 coı̈ncide avec le graphe d'une fonction de classe C^1 sur P^1_k tout entier, avec la norme du gradient inférieure à 1. Or on a déjà notre petit graphe local près de chaque point, avec petit gradient. Il nous reste donc à montrer que la projection $p^1_k: E^1 \to P^1_k \cap C^1(x,\frac{39}{40}r)\backslash C^1(q,\frac{1}{20}r)$ est bijective sur $E^1 \cap D(x,\frac{39}{40}r)\backslash D(q,\frac{1}{20}r)$.

Surjectivité : Posons $A = p_k^1(E^1) \cap C^1(x, \frac{39}{40}r) \setminus C^1(q, \frac{1}{20}r)$. Alors A est non vide. On va montrer que $A = P_k^1 \cap C^1(x, \frac{39}{40}r) \setminus C^1(q, \frac{1}{20}r)$.

D'abord A est fermé dans $P_k^1 \cap C^1(x, \frac{39}{40}r) \setminus C^1(q, \frac{1}{20}r)$, puisque E^1 est compact dans $D(x, \frac{39}{40}r) \setminus D(q, \frac{1}{20}r)$.

Mais A est aussi ouvert, parce que si $z \in A$ alors il existe $y \in E^1 \cap D(x, \frac{39}{40}r) \setminus D(q, \frac{1}{20}r)$ tel que $p_k^1(y) = z$. Alors par (6.50), on sait que $B(z, \frac{1}{80}r) \cap P_k^1 \subset A$. Donc A est ouvert.

Maintenant on sait que $P_k^1 \cap C^1(x, \frac{39}{40}r) \setminus C^1(q, \frac{1}{20}r)$ est connexe, donc $A = P_k^1 \cap C^1(x, \frac{39}{40}r) \setminus C^1(q, \frac{1}{20}r)$, ce qui donne la surjectivité.

Injectivité : Supposons que non. Alors il existe $y_1, y_2 \in E^1 \cap D(x, \frac{39}{40}r) \setminus D(q, \frac{1}{20}r)$ tel que $p_k^1(y_1) = p_k^1(y_2)$. Alors

$$(6.51) y_1 - y_2 \in {P_k^1}^{\perp}.$$

On sait que dans $D(y_1, \frac{1}{80}r)$, E^1 est un graphe, donc $y_2 \notin D(y_1, \frac{1}{80}r)$. Autrement dit, $|y_1 - y_2| > \frac{1}{80}r$. Donc il existe au moins un point parmi y_1, y_2 dont la distance à $P_k^1 + q$ est plus grande que $\frac{1}{160}r > \epsilon r$. C'est une contradiction avec (6.48) et le fait que $d(z, P_k + q) \le r d_{x,r}(E_k, P_k + q) < \epsilon r$.

Donc $p_k^i(q)$ est injective. On note f^1 la fonction définie sur $P_k^1 \cap C^1(x, \frac{39r}{40} + \frac{r}{80}) \setminus C^1(q, \frac{r}{20} - \frac{r}{80})$ et qui coïncide avec f_y sur chaque $B(p_k^1(y), \frac{1}{80}r) \cap P_k^1$; alors dans $E^1 \cap D(x, \frac{39}{40}r) \setminus D(q, \frac{1}{20}r)$, E^1 est le graphe de f^1 avec $||\nabla f^1||_{\infty} < 1$.

Par un argument semblable on obtient aussi que $E^2 \cap D(x, \frac{39}{40}r) \setminus D(q, \frac{1}{20}r)$ est le graphe d'une application f^2 de classe C^1 , qui va de $P_k^2 \cap C^2(x, \frac{39}{40}r) \setminus C^2(q, \frac{1}{20}r)$ dans $P_k^{2\perp}$. Rappelons que D(x, r) = 0

 $D(q_{n-1},s_{n-1})$, et en remplacant E^i par $E^i(n)$, f^i par $f^i(n)$, et on peut obtenir notre graphe $E^i(n) = f^i(n)(P^i_k i \cap C^i(q_{n-1},\frac{39}{40}s_{n-1}) \setminus C^i(q_n,\frac{1}{10}s_n)$ à condition que notre ϵ processus ne s'arrête pas à l'étape n. Mais s'il ne s'arrête pas à n, bien sûr il ne s'arrête pas à toutes les étapes précédentes. On a donc pour tout $j \leq n$, les décompositions

(6.52)
$$E_k \cap D(q_{j-1}, \frac{39}{40}s_{j-1}) \setminus D(q_j, \frac{1}{10}s_j) = E^1(j) \cup E^2(j),$$

union disjointe, et

(6.53)
$$E^{i}(j) \text{ est le graphe de } g^{i}(j) \text{ sur } P_{k}^{i} \cap C^{i}(q_{j-1}, \frac{39}{40}s_{j-1}) \setminus C^{i}(q_{j}, \frac{1}{10}s_{j}).$$

On peut vérifier facilement que si j,l sont tels que $x\in P_k^i\cap [C^i(q_{j-1},\frac{39}{40}s_{j-1})\backslash C^i(q_j,\frac{1}{10}s_j)]\cap [C^i(q_{l-1},\frac{39}{40}s_{l-1})\backslash C^i(q_l,\frac{1}{10}s_l)]$ alors $g^i(j)(x)=g^i(l)(x)\in E^i(j)\cap E^i(l)$. On pose donc

(6.54)
$$g^{i} : P_{k}^{i} \cap D(0, \frac{39}{40}) \backslash D(p_{k}^{i}(q_{n}), \frac{1}{10}s_{n}) \to P_{k}^{i^{\perp}};$$

$$g^{i}(x) = g^{i}(j)(x) \text{ sur } P_{k}^{i} \cap D(p_{k}^{i}(q_{j-1}), \frac{39}{40}s_{j-1}) \backslash D(p_{k}^{i}(q_{j}), \frac{1}{10}s_{j}), 1 \leq j \leq n;$$

alors $||\nabla g^i||_{\infty} < 1$, et son graphe est $G^i = [\bigcup_{j=0}^n E^i(j)] \cap D(0, \frac{39}{40}) \setminus D(q_n, \frac{1}{10}s_n)$.

Il nous reste à montrer que G^1, G^2 sont disjoints. C'est équivalent à dire que pour $0 \le j, l \le n$, $E^1(j) \cap E^2(l) = \emptyset$. On le sait pour j = l, donc supposons que j < l. Alors pour les points $x \in E^1(j)$ il y a 2 cas: soit $x \in D(q_{l-1}, \frac{39}{40}s_{l-1}) \setminus D(q_l, \frac{1}{10}s_l)$, soit non. Dans le 2ème cas, $x \notin E^2(l)$ automatiquement parce que $E^2(l) \subset D(q_{l-1}, \frac{39}{40}s_{l-1}) \setminus D(q_l, \frac{1}{10}s_l)$; dans le premier cas, $x \in E_k \cap D(q_{l-1}, \frac{39}{40}s_{l-1}) \setminus D(q_l, \frac{1}{10}s_l) = E^1(l) \cup E^2(l)$. Mais dans ce cas, $D(q_{l-1}, s_{l-1}) \setminus D(q_{j-1}, \frac{1}{10}s_{j-1}) \neq \emptyset$ implique que $l-j \le 4$.

Mais $x \in E^1(j)$ implique que $d(x, P_k^2 + q_j) > \frac{1}{80} s_{j-1}$ à cause de (6.37). On en déduit que

(6.55)
$$d(x, P_k^2 + q_l) > \frac{1}{80} s_{j-1} - d(q_j, q_l).$$

Mais d'après (5.16) on a $d(q_j, q_l) \le 24\epsilon \times 2^{-\min(l,j)} = 24\epsilon_0 \times 2^{-j} \le \frac{48}{10^5} s_{j-1}$, et donc

(6.56)
$$d(x, P_k^2 + q_l) > \frac{3}{400} s_{j-1} \ge 2^4 \frac{3}{400} s_{l-1} > \epsilon s_{l-1},$$

donc $x \notin E^2(l)$, à cause de (6.36).

On obtient donc que pour tout $0 \le j, l \le n, E^1(j) \cap E^2(l) = \emptyset$, d'où $G^1 \cap G^2 = \emptyset$. On a donc montré (1).

Pour montrer (2), puisque E_k est ϵ proche de P_k dans D(0,1), on note que $E_k \cap D(0,1) \setminus D(0,\frac{1}{100})$ est l'union disjointe de 2 morceaux E^1, E^2 avec (6.36)-(6.38). Par (1), on a que dans $D(0,\frac{39}{40}) \setminus D(q_n,\frac{1}{10}s_n)$ E_k est composé de deux graphes disjoints G^1, G^2 sur $P_k^1 \cap C^1(0,\frac{39}{40}) \setminus C^1(q_n,\frac{1}{10}s_n)$ et $P_k^2 \cap C^2(0,\frac{39}{40}) \setminus C^2(q_n,\frac{1}{10}s_n)$ respectivement. Alors pour $\frac{1}{10}s_n < t < s_n$, $G_t^i = E^i \cup G^i \setminus D(q_n,t)$, donc (6.4) est vrai. De plus, puisque les G^i sont des graphes, on a

$$(6.57) p_k^i(G^i \backslash D(q_n, t)) \supset P_k^i \cap D(0, \frac{39}{40}) \backslash C_k^i(q_n, t),$$

donc (6.5) est aussi vrai si on remplace D(0,1) par $D(0,\frac{39}{40})$, puisque $G^i \setminus D(q_n,t) \subset G_t^i$

Il ne nous reste donc qu'à montrer que

(6.58)
$$P_k^i \cap D(0,1) \setminus D(0,\frac{39}{40}) \subset p_k^i(G_t^i)$$

Montrons-le par exemple pour i = 1. On sait que E_k est ϵ proche de P_k dans D(0,1). Alors par (6.36),

(6.59)
$$E^{2} \subset B(P_{k}^{2} \cap D(0,1) \setminus D(0,\frac{1}{100}), \epsilon) \subset B(P_{k}^{2},\frac{1}{100})$$

Mais quand k est grand, on a $p_k^1(P_k^2 \cap D(0,1)) \subset P_k^1 \cap D(0,\frac{1}{5})$, et par conséquent

(6.60)
$$p_k^1(E^2) \subset P_k^1 \cap D(0, \frac{1}{4}).$$

D'un autre côté, on sait que

(6.61)
$$p_k^1(E_k \cap D(0, \frac{1}{100})) \subset P_k^1 \cap D(0, \frac{1}{100})$$

donc on a

(6.62)
$$p_k^1(E_k \setminus E^1) = p_k^1[E^2 \cup (E_k \cap D(0, \frac{1}{100}))] \subset D(0, \frac{1}{4}) \cap P_k^1.$$

Mais d'après la proposition 4.8, $p_k^1(E_k) \supset P_k^1 \cap D(0,1)$, on obtient donc

(6.63)
$$p_k^1(E^1) \supset P_k^1 \cap D(0,1) \setminus D(0,\frac{1}{4}).$$

Et par conséquent

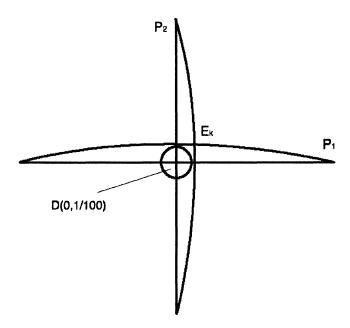
(6.64)
$$p_k^1(G_t^1) = p_k^1(G^1 \setminus D(q_n, t)) \cup p_k^1(E^1)$$

$$\supset [P_k^1 \cap D(0, \frac{3\theta}{40}) \setminus D(q_n, t)] \cup [P_k^1 \cap D(0, 1) \setminus D(0, \frac{1}{4})] = p_k^1 \cap D(0, 1) \setminus D(q_n, t),$$

d'où on déduit (6.5) pour i = 1. La démonstration pour i = 2 est semblable.

Traitons maintenant (3) et (4). Ici on donne une petite remarque. En fait ce dont on a besoin est le 4), i.e. la surjectivité des projections, pour estimer la mesure de E_k a l'endroit où on ne connait pas très bien la structure. Notons que par la démonstration du théorème 4.1, on sait que E_k est la limite d'une suite $\{H_l\}$ de déformation de P_k dans $U = \mathbb{R}^4 \setminus [P_k \setminus B(0,1)]$. Et donc dans D les projections p_k^i de E_k sont automatiquement surjectives sur $D(0,1) \cap P_k^i$. Mais quand on regarde dans $D(0,\frac{1}{2})$, puisque E_k est assez proche de P_k , la partie de $E_k \setminus D(0,\frac{1}{2})$ qui est proche de P_k^1 n'a pas de projection dans $D(0,\frac{1}{2}) \cap P_k^1$, et la partie de $E_k \setminus D(0,\frac{1}{2})$ qui est proche de P_k^2 a une tout petite projection sur P_k^1 qui est très proche de l'origine, donc on peut dire que hors d'une petite boule, disons $D(0,\frac{1}{100})$, la projection p_k^1 de $E_k \cap D(0,\frac{1}{2})$ à P_k^1 est surjective sur $P_k^1 \cap D(0,\frac{1}{2}) \setminus D(0,\frac{1}{100})$. Par contre dans $D(0,\frac{1}{100})$, on ne peut pas dire directement que la projection de E_k vient de $E_k \cap D(0,\frac{1}{2})$. (voir le dessin ci-dessous pour une idée.)

į



Alors l'idée est encore de montrer que $E_k \cap \overline{D}(0, \frac{1}{2})$ est la limite d'une suite de déformation de $P_k \cap \overline{D}(0, \frac{1}{2})$. Autrement dit, on peut contracter la partie hors de $\overline{D}(0, \frac{1}{2})$ dans $\overline{D}(0, \frac{1}{2})$. Cette partie est très plate et régulière, donc du coup elle ne change pas grand-chose sur la structure de E_k dans $D(0, \frac{1}{2})$. Donc encore une fois si E_k est lui-même une déformation de P_k qui est très près de P_k , on peut bien faire contracter la partie $E_k \setminus D(0, \frac{1}{2})$ vers $E_k \cap \partial D(0, \frac{1}{2})$, a peu près comme on contracte un anneaux sur le cercle interieur, parce que $E_k \setminus D(0, \frac{1}{2})$ est carrément composé de deux graphes de classe C^1 sur $P_k^i \setminus D(0, \frac{1}{2})$, par (6.2). Alors l'étape prochain peut se continuer pareillement si dans $D(0, \frac{1}{2})$ E_k est encore proche d'une translation de P_k . On peut donc arriver jusqu'à l'échelle où le ϵ -processus s'arrête. Donc on peut dire que $E_k \cap D(q_n, t)$ est une déformation de P_k aussi, parce qu'il est une déformation de E_k .

Mais maintenant E_k n'est pas forcément une déformation de P_k . On va donc utiliser le fait que E_k est la limite d'une suite de déformations $\{H_l\}$, et on voudrais appliquer l'argument ci-dessus pour montrer que $H_l \cap \overline{D}(0,\frac{1}{2})$ est une déformation de $P_k \cap \overline{D}(0,\frac{1}{2})$. Mais cette fois les H_l ne sont pas minimaux, et donc on ne peut pas appliquer (6.2) pour dire que $H_l \cap \partial D(0,\frac{1}{2})$ est une courbe très régulière, et donc ce n'est pas assez facile de contracter directement H_l sur $H_l \cap \partial D(0,\frac{1}{2})$. Alors ce qu'on va faire et juste de projeter H_l sur $\overline{D}(0,\frac{1}{2})$, dont le projecteur est noté π . Alors les points de $H_l \setminus D(0,\frac{1}{2})$ sont projetés sur $\partial D(0,\frac{1}{2})$, mais leur image ne sont plus $H_l \cap \partial D(0,\frac{1}{2})$. Alors pour continuer à contracter $\pi(H_l) \setminus D(q_2,\frac{1}{4})$ dans $\overline{D}(q_2,\frac{1}{4})$, on utilisera le fait que $\pi(H_l) \setminus D(q_2,\frac{1}{4})$ peut être déomposé en deux parties qui sont proches des $P_k^i + q_2$. Pour garantir cela, par l'argument avant (6.36), il faut que $\pi(H_l)$ soit $\frac{1}{2}\epsilon$ proche de $P_k + q_2$. Alors pour la partie dans $D(0,\frac{1}{2})$ il n'y a pas de soucis, parce que le ϵ -processus ne s'arrête pas là. Pour la partie sur le bord $\partial D(0,\frac{1}{2})$, ce n'est plus garanti parce que une partie de $\pi(H_l) \cap \partial D(0,\frac{1}{2})$ vient de $H_l \setminus D(0,\frac{1}{2})$. Mais heureusement on peut se débrouiller pour contracter d'abord la partie sur le bord de manière qu'elle soit plus proche de $P_k + q_2$, sans bouger

l'intérieur. Donc comme ça on se complique un peu la vie pour contracter H_l dans $\overline{D}(q_n, t)$, mais on y arrive comme même.

Après, on peut montrer la surjectivité des projections de $E_k \cap D(q_n, t)$, puisqu'il est la limite d'une suite de déformations.

Maintenant on va réaliser l'idée en détail. Donc fixons $\frac{1}{10}s_n \leq t \leq s_n$.

Soit l grand, tel que dans chaque $D(q_{j-1}, s_{j-1})$, H_l est $2\epsilon s_{j-1}$ proche de $P_k + q_j$, pour tout $j \leq n$. Par définition de ϵ_0 on a $2\epsilon < 2\epsilon_0 < \epsilon_3$, donc on déduit de (6.36) et (6.37) que dans $D(q_{j-1}, s_{j-1}) \setminus D(q_j, \frac{1}{100}s_{j-1})$, H_l est l'union disjointe de deux morceau H_l^1, H_l^2 avec

(6.65)
$$H_l^i \subset B(P_k^i + q_j \cap D(q_{j-1}, s_{j-1}) \setminus D(q_j, \frac{1}{100} s_{j-1}), 2\epsilon r).$$

On va construire notre déformation F_l^n par récurrence sur j < n.

D'abord pour j=1, on définit $\pi_1: H_l \to D(q_1, s_1)$, la projection de plus courte distance de \mathbb{R}^4 sur $D(q_1, s_1)$. Notons que bien que $H_l \cap D(q_1, s_1)$ est $2\epsilon s_1$ proche de $P_k^1 + q_2$ dans $D(q_1, s_1)$, $\pi_1(H_l \setminus D(q_1, s_1))$ n'est pas forcément $2\epsilon s_1$ proche de $P_k^1 + q_2$ dans $D(q_1, s_1)$, donc on va le modifier un peu pour pouvoir continuer à le couper en deux morceaux qui satisfont à des conditions semblables à (6.36)-(6.38).

Par (6.37), dans $D(0,1)\backslash D(q_1,s_1)$ H_l est l'union de 2 morceau disjoints H_l^1,H_l^2 où H_l^i est très proche de P_k^i , donc on a

(6.66)
$$\pi_1(H_l^i) \cap D(0,1) \setminus D(q_1,s_1) \subset \partial C^i(q_1,s_1) \cap B(P_k^i,2\epsilon).$$

donc l'image de chaque H_l^i hors $D(q_1, s_1)$ se trouve sur le bord du cylindre $C^i(q_1, s_1)$, et est contenue dans un très petit voisinage du plan P_k^i , donc est contenu dans une bande mince de dimension 3 autour de $P_k^i \cap \partial C^i(q_1, s_1)$, et en particulier est loin du bord $\partial C^j(q_1, s_1)$ pour $i \neq j$. Notons que l'on peut donc définir g_1 sur $\pi_1(H_l)$ par

(6.67)
$$g_1(x) = \begin{cases} x ; x \in D(q_1, s_1); \\ g_1^i(x) ; x \in \partial C^i(q_1, s_1). \end{cases}$$

où g_1^i est la projection orthogonale sur $B(P_k^i+q_2,2\epsilon s_1)$. Notons que pour tout point $x\in H_l\cap D(q_1,s_1)\subset \pi_1(H_l)$, ni π_1 ni g_1^i ne le bouge, puisque dans $D(q_1,s_1)$ H_l est $2\epsilon s_1$ proche de $P_k^1+q_2$. Donc l'action de g_1^i est juste d'applatir des points sur le bord $\partial C_k^i(q_1,s_1)$ dans un $2s_1\epsilon$ voisinage de P_k^i sans partir du bord. Observons que g_1 est 2-Lipschitzienne (localement 1-Lipschitzienne). En effet, pour deux points $x,y\in D(q_1,s_1)$, g_1 est identité, donc $|g_1(x)-g_1(y)|=|x-y|$; pour $x,y\in \partial D(q_1,s_1)$, si x,y appartiennent au même $\partial C^i(q_1,s_1)$, g_1 est juste une projection orthogonale, donc $|g_1(x)-g_1(y)|\leq |x-y|$; si $x\in \partial C^1(q_1,s_1)$, $y\in \partial C^2(q_1,s_1)$, alors $|x-y|>2\epsilon$, et par définition de g_1 , $|g_1(x)-x|$ et $|g_1(y)-y|$ sont inférieurs à $\epsilon s_1=\frac{1}{2}\epsilon$, de sorte que $|g_1(x)-g_1(y)|\leq |g_1(x)-x|+|x-y|+|g_1(y)-y|\leq \epsilon+|x-y|\leq \frac{1}{2}|x-y|+|x-y|\leq 2|x-y|$.

Donc si on pose $h_1 = g_1 \circ \pi_1$, alors h_1 est 2-Lipschitzienne, et de plus $h_1(H_l) \subset \overline{D}(q_1, s_1)$ est $2\epsilon s_1$ proche de P_k .

Maintenant on a notre h_1 dans $D(0,1) = D(q_0, s_0)$, qui déforme H_l dans $D(q_1, s_1)$ et garde l'image ϵ proche de $P_k + q_2$. Mais h_1 est 2-Lipschitizienne et définie sur un compact H_l , donc on peut la prolonger sur \mathbb{R}^4 entier, en une fonction notée h_1 , et qui est encore 2-Lipschitizienne.

Maintenant supposons que pour j, on a construit une déformation 2-Lipschitzienne h_j qui déforme H_l dans $D(q_j, s_j)$ et que son image est $2\epsilon s_j$ proche de $P_k + q_{j+1}$ dans $D(q_j, s_j)$. Si j < n-1, alors on peut définir π_{j+1} la projection sur $D(q_{j+1}, s_{j+1})$, et puis on projeter les point du bord de $C^i(q_{j+1}, s_{j+1})$ vers le $2\epsilon s_{j+1}$ voisinage de $P_k^i + q_{j+2}$. On peut le définir sans ambiguïté car $h_j(H_l)$ est $2\epsilon s_j$ proche de $P_k + q_{j+1}$, de sorte que $h_j(H_l) \setminus D(q_{j+1}, s_{j+1})$ se décompose en 2 parties "plates" ((6.36)-(6.38)).

On note cette projection g_{j+1} , et on pose $h_{j+1} = g_{j+1} \circ \pi_{j+1} \circ h_j$. Celle ci est une déformation 2-Lipschitzienne qui déforme H_l dans $D(q_{j+1}, s_{j+1})$ et son image est ϵs_{j+1} proche de $P_k + q_{j+2}$ dans $D(q_{j+1}, s_{j+1})$. Et on obtient ainsi notre h_{j+1} .

Donc par récurrence, on peut le faire jusqu'à h_{n-1} .

On construit pour chaque l, une déformation $h_n(l)$ maintenant. On note $p_n(l)$ la projection de plus courte distance sur $D(q_n, t+\frac{1}{l})$, et pour $x \in \overline{C}^i(q_n, t+\frac{1}{l}) \setminus C^i(q_n, t)$, on pose $g_n^i(l)(x) = (id, g^i) \circ p_k^i \circ p_n(l)$, où g^i est comme dans (6.2). Et on définit la déformation $h_n(l)$ de $P_k \cap D(0, 1)$ comme ceci. Pour $x \in P_k \cap D(0, 1)$:

(6.68)
$$h_n(l)(x) = \begin{cases} h_{n-1}(x), & h_{n-1}(x) \in D(q_n, t); \\ sg_n^i(l) \circ h_{n-1}(x) + (1-s)h_{n-1}(x), & h_{n-1}(x) \in \partial C^i(q_n, t + \frac{1}{l}s). \end{cases}$$

Alors on voit que $h_n(l)(P_k) \cap \overline{D}(q_n,t) = H_l \cap \overline{D}(q_n,t)$, et $h_n(l)(P_k) \cap \partial D(q_n,t+\frac{1}{l}) = E_k \cap \partial D(q_n,t+\frac{1}{l})$. Et entre $\overline{D}(q_n,t)$ et $\partial D(q_n,t+\frac{1}{l})$ l'image de $h_n(l)$ est l'image d'une homotopie entre H_l et E_k . Alors puisque H_l tend vers E_k , on a que $F_l^n(t) = h_n(l)(P_k)$ tend vers $E_k \cap (q_n,t)$ quand l tend vers l'infini.

On note $a_l(t)$ la déformation affine qui envoie $P_k \cap B(0,1)$ à $(P_k + q_n) \cap D(q_n, t + \frac{1}{l})$, et on pose

$$(6.69) f_l^n(t) = h_n(l) \circ a_l(t).$$

Alors $F_l^n(t) = f_l^n(t)((P_k + q_n) \cap \overline{D}(q_n, t + \frac{1}{l}))$ satisfait à toutes les condition dans (3).

(4) est une conséquence directe de (3). En effet on sait que $F_l^n(t)$ est une déformation de $(P_k + q_n) \cap D(q_n, t + \frac{1}{l})$ qui envoie $\partial C^i(q_n, t)$ dans $\partial C^i(q_n, t)$, donc

(6.70)
$$p_k^i(F_l^n(t)) \supset P_k^i \cap C_k^i(q_n, t + \frac{1}{l}).$$

Alors puisque $E_k \cap D(q_n, t)$ est la limite de $F_l^n(t)$, les projections p_k^i sont surjectives de $E_k \cap D(q_n, t)$ sur $P_k^i \cap C_k^i(q_n, t)$.

7 Argument d'extension harmonique

Dans cette section on va faire quelques estimations fontamentales pour la mesure du graphe d'une fonction C^1 sur un anneau presque concentrique. Mais on peut facilement sauter cette section, en admettant ses estimations, et continuer la démonstration du théorème 1.32 dans la section suivante.

Proposition 7.1. Soit $0 < r_0 < \frac{1}{2}$ et $u_0 \in C^1(\partial B(0, r_0) \cap \mathbb{R}^2, \mathbb{R})$. On note $m(u_0) = \frac{1}{2\pi r_0} \int_{\partial B(0, r_0)} u_0 dt$ sa moyenne.

Alors pour toute $u \in C^1((\overline{B(0,1)}\backslash B(0,r_0)) \cap \mathbb{R}^2,\mathbb{R})$ qui satisfait à

$$(7.2) u|_{\partial B(0,r_0)} = u_0$$

on a

(7.3)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 \ge \frac{1}{4} r_0^{-1} \int_{\partial B(0,r_0)} |u_0 - m(u_0)|^2.$$

Démonstration.

Supposons que u est une fonction C^1 comme dans l'énoncé de la proposition. Alors on définit $\tilde{u} \in C((\overline{B(0,\frac{1}{r_0})} \setminus B(0,r_0)) \cap \mathbb{R}^2, \mathbb{R})$ qui est aussi C^1 sauf sur $\partial B(0,1)$, par

(7.4)
$$\tilde{u}(x) = \begin{cases} u(x), & x \in \overline{B(0,1)} \backslash B(0,r_0); \\ u(\frac{x}{|x|^2}), & x \in \overline{B(0,\frac{1}{r_0})} \backslash B(0,1). \end{cases}$$

Alors dans $\overline{B(0,\frac{1}{r_0})}\setminus B(0,1)$,

(7.5)
$$|\nabla \tilde{u}(r,\theta)|^{2} = |\frac{\partial \tilde{u}}{\partial r}(r,\theta)|^{2} + |\frac{1}{r}\frac{\partial \tilde{u}}{\partial \theta}(r,\theta)|^{2} = |\frac{\partial}{\partial r}u(\frac{1}{r},\theta)|^{2} + |\frac{1}{r}\frac{\partial}{\partial \theta}u(\frac{1}{r},\theta)|^{2}$$
$$= |-\frac{1}{r^{2}}\frac{\partial u}{\partial r}(\frac{1}{r},\theta)|^{2} + |\frac{1}{r}\frac{\partial u}{\partial \theta}(\frac{1}{r},\theta)|^{2}.$$

On pose $s = \frac{1}{r}$, alors

(7.6)
$$|\nabla \tilde{u}(r,\theta)|^2 = s^4 \left| \frac{\partial u}{\partial r}(s,\theta) \right|^2 + s^4 \left| \frac{1}{s} \frac{\partial u}{\partial \theta}(s,\theta) \right|^2$$
$$= s^4 |\nabla u(s,\theta)|^2 = \frac{1}{r^4} |\nabla u(\frac{1}{r},\theta)|^2,$$

et donc

(7.7)
$$\int_{\overline{B(0,\frac{1}{r_0})}\backslash B(0,1)} |\nabla \tilde{u}|^2 = \int_1^{\frac{1}{r_0}} r dr \int_0^{2\pi} d\theta |\nabla \tilde{u}(r,\theta)|^2$$

$$= \int_1^{\frac{1}{r_0}} r dr \int_0^{2\pi} d\theta \frac{1}{r^4} |\nabla u(\frac{1}{r},\theta)|^2$$

$$= \int_1^{r_0} ds \int_0^{2\pi} d\theta (-s) |\nabla u(s,\theta)|^2$$

$$= \int_{r_0}^1 s ds \int_0^{2\pi} d\theta |\nabla u(s,\theta)|^2$$

$$= \int_{\overline{B(0,1)}\backslash B(0,r_0)} |\nabla u|^2.$$

On a donc

(7.8)
$$\int_{\overline{B(0,\frac{1}{r_0})}\setminus B(0,r_0)} |\nabla \tilde{u}|^2 = 2 \int_{\overline{B(0,1)}\setminus B(0,r_0)} |\nabla u|^2.$$

Puisque \tilde{u} satisfait à la condition au bord

(7.9)
$$\tilde{u}(x)|_{\partial B(0,r_0)} = u_0(x), \ \tilde{u}(x)|_{\partial B(0,\frac{1}{r_0})} = u_0(\frac{x}{|x|^2}),$$

son énergie de Dirichlet $\int_{\overline{B(0,\frac{1}{r_0})}\backslash B(0,r_0)} |\nabla \tilde{u}|^2$ est plus grande que celle de la fonction harmonique v avec la même condition au bord. On va donc calculer $\int_{\overline{B(0,\frac{1}{r_0})}\backslash B(0,r_0)} |\nabla v|^2$.

Ecrivons

(7.10)
$$u(r_0, \theta) = u_0(\theta) = m(u_0) + \sum_{n=1}^{\infty} (A_n \cos n\theta + B_n \sin n\theta),$$

et posons

(7.11)
$$v: \overline{B(0, \frac{1}{r_0})} \setminus B(0, r_0) \to \mathbb{R},$$

$$v(r, \theta) = m(u_0) + \sum_{n=1}^{\infty} a_n(r^n + r^{-n}) \cos n\theta + \sum_{n=1}^{\infty} b_n(r^n + r^{-n}) \sin n\theta.$$

Alors v est harmonique.

La condition au bord

(7.12)
$$v(x)|_{\partial B(0,r_0)} = u_0(x), \ v(x)|_{\partial B(0,\frac{1}{r_0})} = u_0(\frac{x}{|x|^2})$$

veut dire que

$$a_n(r_0^n + r_0^{-n}) = A_n, \ b_n(r_0^n + r_0^{-n}) = B_n.$$

Pour estimer ∇v on écrit

$$v(r,\theta) = m(u_0) + \sum_{1}^{\infty} a_n(r^n + r^{-n}) \cos n\theta + \sum_{1}^{\infty} b_n(r^n + r^{-n}) \sin n\theta$$

$$= m(u_0) + \sum_{1}^{\infty} \frac{r^n + r^{-n}}{r_0^n + r_0^{-n}} (A_n \cos n\theta + B_n \sin n\theta)$$

$$=: m(u_0) + \sum_{1}^{\infty} v_n(r,\theta).$$

Vérifions qu'on peut différencier v terme à terme.

Pour $r_0 < r < \frac{1}{r_0}$ fixé, on a

(7.15)
$$\frac{\partial v_n}{\partial \theta} = \frac{r^n + r^{-n}}{r_0^n - r_0^{-n}} (-nA_n \sin n\theta + nB_n \cos n\theta)$$

et

$$(7.16) \frac{r^n + r^{-n}}{r_0^n + r_0^{-n}} = \frac{r^n}{r_0^n + r_0^{-n}} + \frac{r^{-n}}{r_0^n + r_0^{-n}} \le \frac{r^n}{r_0^{-n}} + \frac{r^{-n}}{r_0^{-n}} = (rr_0)^n + (\frac{r_0}{r})^n.$$

Puisque des suites $\{A_n\}_{n\geq 1}, \{B_n\}_{n\geq 1}$ sont bornées,

(7.17)
$$\sum_{n} \left| \frac{\partial v_n}{\partial \theta} \right| \le \sum_{n} Cn[(rr_0)^n + (\frac{r_0}{r})^n] < \infty$$

puisque $rr_0 < 1$ et $\frac{r_0}{r} < 1$ pour tout $r_0 < r < \frac{1}{r_0}$. Par conséquent la série $\sum_n \frac{\partial v_n}{\partial \theta}$ converge normalement sur $[0, 2\pi]$.

D'autre part, pour θ fixé, et $r_0 < r < \frac{1}{r_0}$, on a sur $(r - \frac{r - r_0}{2}, r + \frac{\frac{1}{r_0} - r}{2}) = (r_1, r_2)$:

(7.18)
$$|\frac{\partial v_n}{\partial r}| = |\frac{A_n \cos n\theta + B_n \sin n\theta}{r_0^n + r_0^{-n}} (nr^{n-1} - nr^{-n-1})|$$

$$\leq Cnr_0^{-1} [(rr_0)^{n-1} + (\frac{r_0}{r})^{n+1}]$$

et donc la série converge absolument uniformément sur $[r_1, r_2]$.

Par conséquent on peut la différencier terme à terme et on trouve que

(7.19)
$$\frac{\partial v}{\partial \theta} = \sum_{n=1}^{\infty} n(r^n + r^{-n})(-a_n \sin n\theta + b_n \cos n\theta)$$

et

(7.20)
$$\frac{\partial v}{\partial r} = \sum_{n=1}^{\infty} n(r^{n-1} - r^{-n-1})(a_n \cos n\theta + b_n \sin n\theta).$$

On a donc

$$\begin{split} |\nabla v|^2 &= |\frac{\partial v}{\partial r}|^2 + |\frac{1}{r}\frac{\partial v}{\partial \theta}|^2 \\ &= [\sum_n n^2 (r^{n-1} - r^{-n-1})^2 (a_n \cos n\theta + b_n \sin n\theta)^2 \\ &+ 2\sum_{n < m} nm (r^{n-1} - r^{-n-1}) (r^{m-1} - r^{-m-1}) (a_n \cos n\theta + b_n \sin n\theta) (a_m \cos m\theta + b_m \sin m\theta)] \\ &+ \frac{1}{r^2} [\sum_n n^2 (r^n + r^{-n})^2 (-a_n \sin n\theta + b_n \cos n\theta)^2 \\ &+ 2\sum_{n < m} nm (r^n + r^{-n}) (r^m + r^{-m}) (-a_n \sin n\theta + b_n \cos n\theta) (-a_m \sin m\theta + b_m \cos m\theta)] \\ &= \sum_n n^2 \{ (r^{2n-2} + r^{-2n-2}) [(a_n \cos n\theta + b_n \sin n\theta)^2 + (-a_n \sin n\theta + b_n \cos n\theta)^2] \} \\ &- \frac{2}{r^2} [(a_n \cos n\theta + b_n \sin n\theta)^2 - (-a_n \sin n\theta + b_n \cos n\theta)^2] \} \\ &+ 2\sum_{n < m} nm \{ (r^{n-1}r^{m-1} + r^{-n-1}r^{-m-1}) [(a_n \cos n\theta + b_n \sin n\theta) (a_m \cos m\theta + b_m \sin m\theta) + (-a_n \sin n\theta + b_n \cos n\theta) (-a_m \sin m\theta + b_m \cos m\theta)] \} \\ &- (r^{n-1}r^{-m-1} + r^{-n-1}r^{m-1}) [(a_n \cos n\theta + b_n \sin n\theta) (a_m \cos m\theta + b_m \sin m\theta) - (-a_n \sin n\theta + b_n \cos n\theta) (-a_m \sin m\theta + b_m \cos m\theta)] \} \\ &= \sum_n n^2 (r^{2n-2} + r^{-2n-2}) (a_n^2 + b_n^2) - \frac{2}{r^2} \sum_n n^2 (a_n^2 \cos 2n\theta - b_n^2 \cos 2n\theta + 2a_n b_n \sin 2n\theta) + 2 \sum_{n < m} nm (r^{n-1}r^{m-1} + r^{-n-1}r^{-m-1}) \{a_n a_m \cos (n - m)\theta + a_n b_m \sin (m - n)\theta + a_m b_n \sin (n - m)\theta - b_n b_m \cos (n - m)\theta\} \\ &- 2 \sum_{n < m} nm (r^{n-1}r^{-m-1} + r^{-n-1}r^{m-1}) \{a_n a_m \cos (n + m)\theta - b_n b_m \cos (n + m)\theta + a_n b_m \sin (n + m)\theta + b_n a_m \sin (n + m)\theta\}. \end{split}$$

Mais pour $n \neq m$ et $m, n \geq 1$,

(7.22)
$$\int_0^{2\pi} \cos(n-m)\theta d\theta = \int_0^{2\pi} \sin(n-m)\theta d\theta = \int_0^{2\pi} \cos(n+m)\theta d\theta$$
$$= \int_0^{2\pi} \sin(n+m)\theta d\theta = \int_0^{2\pi} \cos 2n\theta d\theta = \int_0^{2\pi} \sin 2n\theta d\theta = 0,$$

donc

(7.23)
$$\int_0^{2\pi} |\nabla v|^2 d\theta = 2\pi \sum_n n^2 (r^{2n-2} + r^{-2n-2}) (a_n^2 + b_n^2),$$

de sorte que

$$\int_{B(0,\frac{1}{r_0})\backslash B(0,r_0)} |\nabla v|^2 = \int_{r_0}^{\frac{1}{r_0}} r dr \int_0^{2\pi} |\nabla v|^2 d\theta
= \int_{r_0}^{\frac{1}{r_0}} r dr \cdot 2\pi \sum_n n^2 (r^{2n-2} + r^{-2n-2}) (a_n^2 + b_n^2)
= 2\pi \sum_n n^2 (a_n^2 + b_n^2) \int_{r_0}^{\frac{1}{r_0}} (r^{2n-1} + r^{-2n-1}) dr
= 2\pi \sum_n n^2 (a_n^2 + b_n^2) (\frac{r^{2n}}{2n} + \frac{r^{-2n}}{-2n}) |_{r_0}^{\frac{1}{r_0}}
= 2\pi \sum_n n^2 (a_n^2 + b_n^2) \frac{1}{n} (r_0^{-2n} - r_0^{2n})
= 2\pi \sum_n n (a_n^2 + b_n^2) (r_0^{-2n} - r_0^{2n})
= 2\pi \sum_n n (a_n^2 + b_n^2) (r_0^{-n} - r_0^n) (r_0^n + r_0^{-n}).$$

Alors pour $r_0 < \frac{1}{2}$ et $n \ge 1$, on a

(7.25)
$$r_0^{-n} - r_0^n \ge \frac{1}{2} (r_0^n + r_0^{-n})$$

et donc

(7.26)
$$\int_{B(0,\frac{1}{r_0})\backslash B(0,r_0)} |\nabla v|^2 \ge 2\pi \sum_n n(a_n^2 + b_n^2) \frac{1}{2} (r_0^n + r_0^{-n})^2$$
$$= \pi \sum_n n(A_n^2 + B_n^2) \ge \pi \sum_n (A_n^2 + B_n^2).$$

Mais

(7.27)
$$\pi \sum_{n=1}^{\infty} (A_n^2 + B_n^2) = \frac{1}{2} \int_0^{2\pi} |u_0(\theta) - m(u_0)|^2 d\theta = \frac{1}{2} r_0^{-1} \int_{\partial B(0,r_0)} |u_0(s) - m(u_0)|^2 ds.$$

On a donc

(7.28)
$$\int_{B(0,\frac{1}{r_0})\setminus B(0,r_0)} |\nabla v|^2 \ge \frac{1}{2} r_0^{-1} \int_{\partial B(0,r_0)} |u_0(s) - m(u_0)|^2 ds.$$

Maintenant retournons à notre fonction u. On a

(7.29)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 = \frac{1}{2} \int_{B(0,\frac{1}{r_0})\backslash B(0,r_0)} |\nabla \tilde{u}|^2$$

$$\geq \frac{1}{2} \int_{B(0,\frac{1}{r_0})\backslash B(0,r_0)} |\nabla v|^2 \geq \frac{1}{4} r_0^{-1} \int_{\partial B(0,r_0)} |u_0(s) - m(u_0)|^2 ds,$$

d'où la conclusion.

Corollaire 7.30. Soit $r_0 > 0$, $q \in \mathbb{R}^2$ tel que $r_0 < \frac{1}{2}d(q, \partial B(0, 1))$, $u_0 \in C^1(\partial B(q, r_0) \cap \mathbb{R}^2, \mathbb{R})$, et $m(u_0) = \frac{1}{2\pi r_0} \int_{\partial B(q, r_0)} u_0$ sa moyenne.

Alors pour toute $u \in C^1((\overline{B(0,1)}\backslash B(q,r_0)) \cap \mathbb{R}^2, \mathbb{R})$ qui satisfait à

$$(7.31) u|_{\partial B(q,r_0)} = u_0$$

on a

(7.32)
$$\int_{B(0,1)\backslash B(q,r_0)} |\nabla u|^2 \ge \frac{1}{4} r_0^{-1} \int_{\partial B(q,r_0)} |u_0 - m(u_0)|^2.$$

Démonstration.

On note $R = d(q, \partial B(0, 1)) < 1$, alors on a $r_0 < \frac{1}{2}R$ et $B(q, R) \subset B(0, 1)$. On peut donc se servir de la proposition prédédente avec $B(q, R) \setminus B(q, r_0)$ et on obtient, par le changement de variable $y = \frac{x-q}{R}$

(7.33)
$$\int_{B(q,R)\backslash B(q,r_0)} |\nabla_x u|^2 dx = \int_{B(0,1)\backslash B(0,\frac{r_0}{R})} |\frac{1}{R} \nabla_y u|^2 R^2 dy$$

$$= \int_{B(0,1)\backslash B(0,\frac{r_0}{R})} |\nabla_y u|^2 dy$$

$$\geq \frac{1}{4} (\frac{R}{r_0}) \int_{\partial B(0,\frac{r_0}{R})} |u - m(u_0)|^2 dy$$

puisque $\frac{r_0}{R} < \frac{1}{2}$. Mais

(7.34)
$$\int_{\partial B(0,\frac{r_0}{R})} |u - m(u_o)|^2 dy = \int_{\partial B(q,r_0)} |u - m(u_0)|^2 (\frac{1}{R}) dx,$$

donc

(7.35)
$$\int_{B(q,R)\setminus B(q,r_0)} |\nabla_x u|^2 dx \ge \frac{1}{4} r_0^{-1} \int_{\partial B(q,r_0)} |u - m(u_0)|^2 dx.$$

Puisque $B(q,R) \subset B(0,1)$, on a aussi

(7.36)
$$\int_{B(0,1)\backslash B(q,r_0)} |\nabla u|^2 \ge \frac{1}{4} r_0^{-1} \int_{\partial B(q,r_0)} |u - m(u_0)|^2 dx.$$

Remarque 7.37. On peut obtenir (7.8) et (7.33) en utilisant le fait qu'une transformation conforme ne change pas l'énergie de Dirichlet.

Lemme 7.38. Soit $0 < r_0 < 1$, $u \in C^1(B(0,1) \setminus B(0,r_0), \mathbb{R})$, telle que $u|_{\partial B(0,r_0)} = \delta r_0$ et $u|_{\partial B(0,1)} = 0$; alors on a

(7.39)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 \ge \frac{2\pi\delta^2 r_0^2}{|\log r_0|}.$$

Démonstration.

Prenons $f(r,\theta) = A \log r$ avec $A = \frac{\delta r_0}{\log r_0}$. Alors f est l'extension harmonique avec les valeurs au bord données. Or

(7.40)
$$\frac{\partial f}{\partial r} = \frac{A}{r}, \ \frac{\partial f}{\partial \theta} = 0$$

d'où

(7.41)
$$|\nabla f|^2 = |\frac{\partial f}{\partial r}|^2 + |\frac{1}{r}\frac{\partial f}{\partial \theta}|^2 = \frac{A^2}{r^2}.$$

Par conséquent

(7.42)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla f|^2 = \int_0^{2\pi} d\theta \int_{r_0}^1 r dr |\nabla f|^2 = 2\pi \int_{r_0}^1 r dr \frac{A^2}{r^2}$$
$$= 2\pi A^2 |\log r_0| = \frac{2\pi \delta^2 r_0^2}{|\log r_0|}$$

et on a donc

(7.43)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 \ge \frac{2\pi\delta^2 r_0^2}{|\log r_0|}$$

puisque f est harmonique.

Corollaire 7.44. Pour tout $0 < \epsilon < 1$, il existe $C = C(\epsilon) > 100$ telle que si $0 < r_0 < 1$, $u \in C^1(B(0,1)\backslash B(0,r_0),\mathbb{R})$ et

(7.45)
$$u|_{\partial B(0,r_0)} > \delta r_0 - \frac{\delta r_0}{C} \ et \ u|_{\partial B(0,1)} < \frac{\delta r_0}{C}$$

alors

(7.46)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 \ge \epsilon \frac{2\pi \delta^2 r_0^2}{|\log r_0|}.$$

Démonstration. On va appliquer le lemme ci-dessous :

Lemme 7.47. Soit 0 < r < 1, f, g deax functions C^1 et harmoniques sur $B(0,1) \setminus \overline{B(0,r)}$, avec $g|_{\partial B(0,1)} = a < b = g|_{\partial B(0,r)}$, et $f \leq g$ sur $\partial B(0,1)$, $f \geq g$ sur $\partial B(0,r)$. Alors

(7.48)
$$\int_{B(0,1)\backslash B(0,r)} |\nabla f|^2 \ge \int_{B(0,1)\backslash B(0,r)} |\nabla g|^2.$$

Admettons ce lemme pour un moment, pour démontrer le corollaire. Pour chaque C, on prend $r=r_0,\ f=u,$ et g la fonction harmonique telle que $g|_{\partial B(0,1)}=\frac{\delta}{C}r_0, g|_{\partial B(0,r)}=(1-\frac{1}{C})\delta r_0$. Alors on obtient

(7.49)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 \ge \int_{B(0,1)\backslash B(0,r_0)} |\nabla g|^2 = (1 - \frac{2}{C})^2 \frac{2\pi \delta^2 r_0^2}{|\log r_0|},$$

et pour chaque $\epsilon < 1$ on peut toujours trouver C assez grand tel que $(1 - \frac{2}{C})^2 \ge \epsilon$.

Maintenant on démontre le lemme. On pose $h = (f - g)\nabla(f + g)$; alors

puisque $\Delta f = \Delta g = 0$. Notons $U = B(0,1) \backslash B(0,r)$, alors par la formule de Stokes :

Conclusion

(7.51)
$$\int_{U} |\nabla f|^{2} - |\nabla g|^{2} = \int_{U} \operatorname{div}h = \int_{\partial U} h \cdot \vec{n} = \int_{\partial U} (f - g) \frac{\partial}{\partial \vec{n}} (f + g)$$
$$= \int_{\partial U} (f - g) \frac{\partial}{\partial \vec{n}} (f - g) + 2 \int_{\partial U} (f - g) \frac{\partial}{\partial \vec{n}} g,$$

où \vec{n} est le vecteur normal exterieur.

Pour le premier terme, puisque k = f - g est harmonique, la formule de Green donne

(7.52)
$$\int_{\partial U} k \frac{\partial}{\partial \vec{n}} k = \int_{U} (\nabla k \cdot \nabla k) + \int_{U} (k \Delta k) = \int_{U} |\nabla k|^{2} \ge 0.$$

Pour le second terme, d'après les condition au bord, sur $\partial B(0,1)$, $f-g \leq 0$ et $\frac{\partial}{\partial \vec{n}}g < 0$, donc $(f-g)\frac{\partial}{\partial \vec{n}}g \geq 0$; pareil pour $\partial B(0,r)$, ce qui donne

(7.53)
$$\int_{\partial U} (f - g) \frac{\partial}{\partial \vec{n}} g \ge 0.$$

On obtient donc

(7.54)
$$\int_{U} |\nabla f|^{2} - |\nabla g|^{2} \ge 0.$$

8 Conclusion

Après les préparatifs des sections précédents, on va conclure dans cette section.

Donc fixons un $\epsilon < \epsilon_0$. On va estimer la mesure de Hausdorff de E_k pour k assez grand. Pour chaque k fixé, on a choisi o_k et r_k comme dans la proposition 5.11. Alors par la proposition 6.1 (1), $E_k \cap D_k(0, \frac{39}{40}) \setminus D_k(o_k, \frac{1}{10}r_k)$ est composé de deux morceaux disjoints $G_k, i = 1, 2$ tels que (6.2) et (6.3) sont vrais, en remplaçant q_n, s_n par o_k, r_k . De plus on peut supposer aussi que $r_k < 2^{-5}$ puisque k est grand.

Proposition 8.1. Pour tout $\epsilon > 0$, il existe $0 < \delta = \delta(\epsilon) < \epsilon$ et $\theta_0 = \theta_0(\epsilon) < \frac{\pi}{2}$, qui ne dépendent que de ϵ avec les propriétés suivantes. Si $\frac{\pi}{2} > \theta > \theta_0$ (ça veut dire que $\theta = (\theta_1, \theta_2)$ avec $\theta_0 < \theta_1 \le \theta_2 < \frac{\pi}{2}$, i = 1, 2) et E est un ensemble localement minimal dans B(0, 1) qui est δ proche de $P_{\theta} = P_{\theta}^1 \cup_{\theta} P_{\theta}^2$ dans $B(0, 1) \setminus B(0, \frac{1}{2})$, et si de plus

(8.2)
$$p_0^i(E) \supset P_0^i \cap B(0, \frac{3}{4})$$

où p_0^i désigne la projection orthogonale sur P_0^i , i=1,2, alors E est ϵ proche de P_{θ} dans B(0,1).

Démonstration.

On le démontrera par l'absurde. Donc on suppose qu'il existe $\epsilon > 0$, deux suites $\delta_l \to 0$ et $\theta_l \to (\frac{\pi}{2}, \frac{\pi}{2})$, et une suite d'ensembles localement minimaux E_l dans B(0,1) tels que E_l est δ_l proche de $P_l = P_{\theta_l}$ dans $B(0,1) \setminus B(0,\frac{1}{2})$, et

(8.3)
$$p_0^i(E_l) \supset P_0^i \cap B(0, \frac{3}{4})$$

mais E_l n'est pas ϵ proche de P_l dans B(0,1).

Puisque P_l tend vers $P_0 = P_0^1 \cup_{\perp} P_0^2$, $\delta_l \to 0$ et ϵ est fixé, on sait qu'il existe une suite $\{a_l\}$ qui tend vers 0, telle que E_l est a_l proche de P_0 dans $B(0,1)\backslash B(0,\frac{1}{2})$, mais n'est pas $\frac{\epsilon}{2}$ proche de P_0 dans B(0,1) (puisque E_l n'est pas ϵ proche de P_l , et P_l est $\frac{\epsilon}{2}$ proche de P_0 quand l est grand.)

Maintenent on extrait une sous suite de E_l , notées encore $\{E_l\}$, qui converge vers une limite E_{∞} . Alors $E_{\infty} \cap B(0,1) \setminus B(0,\frac{1}{2}) = P_0 \cap B(0,1) \setminus B(0,\frac{1}{2})$.

On veut démontrer que

(8.4)
$$H^2(E_l \cap D(0, \frac{3}{4})) < \frac{9}{8}\pi + b_l, \text{ avec } b_l \to 0 \text{ quand } l \to \infty,$$

où D(x,r) désigne $D_0(x,r)$ pour abréger.

En effet, puisque E_l est très proche de P_0 dans $B(0,1)\backslash B(0,\frac{1}{2})$ quand l est grand, par la C^1 régularité des ensembles minimaux (c.f.[10] Thm 1.15), on sait que $E_l \cap \partial D(0,\frac{3}{4}) = \Gamma_l^1 \cup \Gamma_l^2$, l'union disjointe de deux courbes, où Γ_l^i est le graphe d'une certaine fonction C^1 , $h_l^i: P_0^i \cap \partial D(0,\frac{3}{4}) \to P_0^{i}$, avec

(8.5)
$$||h_l^i||_{\infty} \to 0, k \to \infty \text{ et } ||\frac{d}{dx}h_l^i||_{\infty} \le 1, \ \forall l.$$

Maintenant, on prend $D_l^i = (P_0^i \cap D(0, \frac{3}{4})) \cup A_l^i$, où $A_l^i = \{(x, y) : x \in P_0^i \cap \partial D(0, \frac{3}{4}), y \in [0, h_l^i(x)]\}$, qui est simplement une 2-surface mince entre $P_0^i \cap \partial D(0, \frac{3}{4})$ et Γ_l^i , le graphe de h_l^i . (on note [a, b] la segment d'extrémités a et b). Ou on peut aussi écrire

(8.6)
$$A_l^i = \{(x, th_l^i(x)) : x \in P_0^i \cap \partial D(0, \frac{3}{4}), t \in [0, 1]\}.$$

On peut noter que D_l^i est une surface dont le bord est Γ_l^i , et que $D_l = D_l^1 \cup D_l^2$ contient une déformation de E_l dans $\overline{D}(0, \frac{3}{4})$.

Vérifions que

(8.7)
$$H^{2}(A_{l}^{i}) \leq \frac{3\sqrt{2}\pi}{2} ||h_{l}^{i}||_{\infty}.$$

Comme h_l^i est à valeurs dans \mathbb{R}^2 , le plus simple est d'utiliser un paramétrage. En effet, si on prend $g_l^i(x,t): \partial D(0,\frac{3}{4})\times [0,1] \to \mathbb{R}^4$; $g_l^i(x,t)=(x,th_l^i(x))$, alors A_l^i est son image. Donc pour calculer sa surface, on a

(8.8)
$$\frac{\partial}{\partial x}g_l^i = (1, t\frac{d}{dx}h_l^i(x)) \; ; \; \frac{\partial}{\partial t}g_l^i = (0, h_l^i(x))$$

et donc

(8.9)
$$|\overrightarrow{\frac{\partial}{\partial x}}g_l^i \times \overrightarrow{\frac{\partial}{\partial t}}g_l^i| = \sqrt{(1+t^2|\frac{\partial}{\partial x}h_l^i|^2)(|h_l^i|^2) - (t\frac{\overrightarrow{\partial}}{\partial x}h_l^i \cdot \overrightarrow{h_l^i})^2}$$

puisque on a $\left|\frac{\partial}{\partial x}h_l^i\right| \leq 1$, on a

$$(8.10) |\overrightarrow{\frac{\partial}{\partial x}}g_l^i \times \overrightarrow{\frac{\partial}{\partial t}}g_l^i| \le \sqrt{(1+t^2)|h_l^i|^2} \le \sqrt{2}|h_l^i|$$

et donc

(8.11)
$$H^{2}(A_{l}^{i}) = \int_{\partial D(0,\frac{3}{4})\times[0,1]} |\overrightarrow{\frac{\partial}{\partial x}}g_{l}^{i} \times \overrightarrow{\frac{\partial}{\partial t}}g_{l}^{i}|dtdx$$
$$\leq \sqrt{2} \int_{\partial D(0,\frac{3}{4})} |h_{l}^{i}| \leq \frac{3\sqrt{2}}{2}\pi||h_{l}^{i}||_{\infty}.$$

On obtient donc

(8.12)
$$H^{2}(D_{l}^{i}) \leq \frac{9}{16}\pi + \frac{3\sqrt{2}}{2}\pi||h_{l}^{i}||_{\infty}$$

et

(8.13)
$$H^{2}(D_{l}) \leq \frac{9}{8}\pi + \frac{3\sqrt{2}}{2}\pi(||h_{l}^{1}||_{\infty} + ||h_{l}^{2}||_{\infty}).$$

Mais E_l est un ensemble localement minimal, donc on a

(8.14)
$$H^{2}(E_{l} \cap D(0, \frac{1}{2})) \leq H^{2}(D_{l}) = \frac{9}{8}\pi + \frac{3\sqrt{2}}{2}\pi(||h_{l}^{1}||_{\infty} + ||h_{l}^{2}||_{\infty}).$$

On prend $b_l = \frac{3\sqrt{2}}{2}\pi(||h_l^1||_{\infty} + ||h_l^2||_{\infty})$ et obtient (8.4), puisque $||h_l^1||_{\infty} + ||h_l^2||_{\infty}$ tends vers 0 quand $l \to \infty$.

Puisque E_l tend vers P_0 dans $B(0,1)\backslash B(0,\frac{1}{2})$,

$$(8.15) E_l \cap (B(0,1) \setminus B(0,\frac{1}{2})) \to P_0 \cap (B(0,1) \setminus B(0,\frac{1}{2})) = E_\infty \cap (B(0,1) \setminus B(0,\frac{1}{2})).$$

Et par [9] lemme 3.3, (rappelons que E_{∞} est la limite des E_l)

(8.16)
$$H^{2}(E_{\infty} \cap D(0, \frac{3}{4})) \leq \liminf_{k \to \infty} H^{2}(E_{l} \cap D(0, \frac{3}{4})).$$

On a donc

$$H^{2}(E_{\infty}) = H^{2}(E_{\infty} \cap (B(0,1)\backslash D(0,\frac{3}{4})) + H^{2}(E_{\infty} \cap D(0,\frac{3}{4}))$$

$$\leq H^{2}(P_{0} \cap (B(0,1)\backslash D(0,\frac{3}{4}))) + \liminf_{k \to \infty} H^{2}(E_{l} \cap D(0,\frac{3}{4}))$$

$$= 2\pi + \liminf_{k \to \infty} b_{l} = 2\pi.$$

D'un autre côté, par (8.3) et le fait que E_{∞} est la limite de E_{l} , on sait que

(8.18)
$$p_0^i(E_\infty) \supset P_0^i \cap B(0, \frac{3}{4}).$$

Et par hypothèse, E_l tends vers P_0 dans $B(0,1)\backslash B(0,\frac{1}{2})$, donc $E_{\infty}\cap B(0,1)\backslash B(0,\frac{1}{2})=P_0\cap B(0,1)\backslash B(0,\frac{1}{2})$, et par conséquent

(8.19)
$$p_0^i(E_\infty) \supset p_0^i(E_\infty \cap B(0,1) \setminus B(0,\frac{1}{2})) = P_0^i \cap B(0,1) \setminus B(0,\frac{1}{2}).$$

On a donc

(8.20)
$$p_0^i(E_\infty) \supset P_0^i \cap B(0,1),$$

et

$$(8.21) E_{\infty} \cap \partial B(0,1) = P_0 \cap \partial B(0,1)$$

puisque E_l tends vers P_0 dans $B(0,1)\backslash B(0,\frac{1}{2})$. Alors par le théorèm 3.1, (8.17),(8.20) et (8.21) disent que

$$(8.22) E_{\infty} = P_0$$

C'est impossible, parce que chaque E_l est $\frac{\epsilon}{2}$ loin de P_0 .

Maintenant pour $0 < \theta = (\theta_1, \theta_2)$ avec $0 < \theta_1 \le \theta_2 < \frac{\pi}{2}$, notons, pour $x \in \mathbb{R}^4$, r > 0,

(8.23)
$$D_{\theta}(x,r) = x + \{ p_{\theta}^{1-1}[B(0,r) \cap P_{\theta}^{1}] \cap p_{\theta}^{2-1}[B(0,r) \cap P_{\theta}^{2}] \}$$

où $P_{\theta} = P_{\theta}^1 \cup P_{\theta}^2$ est l'union de deux plans avec des angles caractéristiques $\theta_1 \leq \theta_2$, et p_{θ}^i le projecteur orthogonal vers P_{θ}^i , i = 1, 2. On a alors

Corollaire 8.24. Pour tout $\epsilon > 0$, il existe $0 < \delta < \epsilon$ et $0 < \theta_0 < \frac{\pi}{2}$, qui ne dépendent que de ϵ , avec les propriétés suivantes. Si $\theta_0 < \theta < \frac{\pi}{2}$, et si E est un ensemble localement minimal dans $D_{\theta}(0,1)$ qui est δ proche de P_{θ} dans $D_{\theta}(0,1) \setminus D_{\theta}(0,\frac{1}{4})$, et si de plus

$$(8.25) p_{\theta}^{i}(E) \supset P_{\theta}^{i} \cap B(0, \frac{3}{4}),$$

alors E est ϵ proche de P_{θ} dans $D_{\theta}(0,1)$.

Démonstration. Observons d'abord qu'il existe $0 < \phi < \frac{\pi}{2}$ tel que pour tout $0 < \theta < \phi$ on a

(8.26)
$$B(x,r) \subset D_{\theta}(x,r) \subset B(x,2r).$$

Alors pour $\epsilon > 0$ on prend $\delta = \delta(\epsilon)$ et $\theta_0 = \max\{\phi, \theta_0(\epsilon)\}$, où $\theta_0(\epsilon)$ et $\delta(\epsilon)$ sont comme dans la proposition 8.1. Alors si E est δ proche de P_{θ} dans $D_{\theta}(0,1)\backslash D_{\theta}(0,\frac{1}{4})$, alors E est δ proche de P_{θ} dans $B(0,1)\backslash B(0,\frac{1}{2})$. Par la proposition 8.1, E est ϵ proche de P_{θ} dans B(0,1). Donc E est $\epsilon = \max\{\delta,\epsilon\}$ proche de P_{θ} dans $B(0,1)\cup [D_{\theta}(0,1)\backslash D_{\theta}(0,\frac{1}{4})] = D_{\theta}(0,1)$.

Revenons à la démonstration du théorème 1.32. On fixe encore un k grand, et on note $D(x,r) = D_k(x,r)$, $C^i(x,r) = C^i_k(x,r)$ pour i = 1, 2, et $d_{x,r} = d^k_{x,r}$.

On sait que dans $D(o_k, r_k)$, E_k n'est ϵr_k proche d'aucune translation de P_k , donc par le corollaire 8.24, E_k n'est δr_k proche d'aucune translation de P_k dans $D(o_k, r_k) \setminus D(o_k, \frac{1}{4}r_k)$. Mais par (6.2), on sait que $E_k \cap D(o_k, r_k) \setminus D(o_k, \frac{1}{4}r_k) = [G^1 \cup G^2] \cap [D(o_k, r_k) \setminus D(o_k, \frac{1}{4}r_k)]$, où G^i est un graphe C^1 de $P_k^i \cap D(0, \frac{39}{40}) \setminus D(o_k, \frac{1}{10}r_k)$. Donc il existe un $i \in \{1, 2\}$ tel que dans $D(o_k, r_k) \setminus D(o_k, \frac{1}{4}r_k)$ G^i n'est δr_k proche d'aucune translation de P_k^i . Supposons par exemple que c'est la cas pour i = 1.

Alors notons $P = P_k^1$, et soit g^1 comme dans (6.2); alors g^1 est une fonction de P dans P^{\perp} , et donc de \mathbb{R}^2 dans \mathbb{R}^2 . Ecrivons $g^1 = (\varphi_1, \varphi_2)$ où $\varphi_i : \mathbb{R}^2 \to \mathbb{R}$. Alors puisque le graphe de g^1 est δr_k loin de toute les translation de P, il existe $j \in \{1, 2\}$ tel que

(8.27)
$$\sup_{x,y\in P\cap D(o_k,r_k)\setminus D(o_k,\frac{1}{4}r_k)} |\varphi_j(x)-\varphi_j(y)| \geq \frac{1}{2}r_k\delta.$$

Supposons par exemple que c'est vrai pour j = 1. Et si on note

(8.28)
$$K = \{(z, \varphi_1(z)) : z \in (D(0, \frac{3}{4}) \setminus D(o_k, \frac{1}{4}r_k)) \cap P\},$$

alors

(8.29)
$$K \text{ est la projection orthogonale de } G^1 \cap D(0, \frac{3}{4})$$

sur un sous-espace de dimension 3 de \mathbb{R}^4 .

On définit, pour $\frac{1}{4}r_k \leq s \leq r_k$:

(8.30)
$$\Gamma_s = K \cap p^{-1}(\partial D(o_k, s) \cap P) = \{(x, \varphi_1(x)) | x \in \partial D(o_k, s) \cap P\}$$

le graphe de φ_1 sur $\partial D(o_k, s) \cap P$.

On sait que le graphe de φ_1 est $\frac{1}{2}\delta_k$ loin de P dans $D(o_k, r_k)\setminus D(o_k, \frac{1}{4}r_k)$; alors il y a deux cas :

1er cas : il existe $t \in [\frac{1}{4}r_k, r_k]$ tel que

(8.31)
$$\sup_{x,y\in\Gamma_t}\{|\varphi_1(x)-\varphi_1(y)|\}\geq \frac{\delta}{C}r_k$$

où $C = 4C(\frac{1}{2})$ est la constante de la corollaire 7.44.

Alors il existe $a, b \in \Gamma_t$ tels que $|\varphi_1(a) - \varphi_1(b)| > \frac{\delta}{C} r_k \ge \frac{\delta}{C} t$. Puisque $||\nabla \varphi_1||_{\infty} \le ||\nabla \varphi||_{\infty} < 1$, on a

(8.32)
$$\int_{\Gamma_t} |\varphi_1 - m(\varphi_1)|^2 \ge \frac{t^3 \delta^3}{4C^3} = (\frac{4}{3}t\delta)^3 (\frac{27}{4^4C^3}).$$

Maintenant dans $D(0, \frac{3}{4})$ on a $d(0, o_k) < 6\epsilon \le 10\epsilon \cdot \frac{3}{4}$, et $s < r_k < \frac{1}{8} < \frac{1}{2} \times \frac{3}{4}$, on peut donc appliquer le corollaire 7.30 et on obtient

(8.33)
$$\int_{(D(0,\frac{3}{4})\setminus D(o_k,t))\cap P} |\nabla \varphi_1|^2 \ge C_1(\delta)t^2.$$

2ème cas : pour tous les $\frac{1}{4}r_k \leq s \leq r_k$,

(8.34)
$$\sup_{x,y\in\Gamma_*} \{|\varphi_1(x) - \varphi_1(y)|\} \le \frac{\delta}{C} r_k.$$

Mais puisque on a déjà

(8.35)
$$\frac{1}{2}r_{k}\delta \leq \sup\{|\varphi_{1}(x) - \varphi_{2}(y)| : x, y \in P \cap D(o_{k}, r_{k}) \setminus D(o_{k}, \frac{1}{4}r_{k})\} \\
= \sup\{|\varphi_{1}(x) - \varphi_{2}(y)| : s, s' \in [\frac{1}{4}r_{k}, r_{k}], x \in \Gamma_{s}, y \in \Gamma_{s'}\},$$

il existe $\frac{1}{4}r_k \le t < t' \le r_k$ tel que

(8.36)
$$\sup_{x \in \Gamma_t, y \in \Gamma_{t'}} \{ |\varphi_1(x) - \varphi_1(y)| \} \ge \frac{1}{2} r_k \delta.$$

Fixons t et t', et sans perdre de généralité, supposons que

(8.37)
$$\sup_{x \in \Gamma_t, y \in \Gamma_{t'}} \{\varphi_1(x) - \varphi_1(y)\} \ge \frac{1}{2} r_k \delta.$$

Alors

(8.38)
$$\inf_{x \in \Gamma_t} \varphi_1(x) - \sup_{x \in \Gamma_{t'}} \varphi_1(x) \ge \frac{1}{2} r_k \delta - 2 \frac{\delta}{C} r_k = \left(1 - \frac{2}{C(\frac{1}{2})}\right) \frac{\delta}{2} r_k \ge \left(1 - \frac{2}{C(\frac{1}{2})}\right) \frac{\delta}{2} t'$$

puisque $C = 4C(\frac{1}{2})$.

Maintenant regardons dans notre boule $D(o_k, t') \cap P$. En appliquant le corollaire 7.44 à l'échelle t', on obtient

(8.39)
$$\int_{(D(o_k,t')\setminus D(o_k,t))\cap P} |\nabla \varphi_1|^2 \ge C(\delta,\frac{1}{2}) \frac{\pi(\frac{\delta}{2})^2 t'^2}{\log \frac{t'}{t}}.$$

Et puisque $\frac{t'}{t} \leq 4, t' > t$, on a

(8.40)
$$\int_{((D(o_k,t')\setminus D(o_k,t))\cap P} |\nabla \varphi_1|^2 \ge C_2(\delta)t^2.$$

Dans les deux cas, il existe un constante $C = C_0(\delta) = \min\{C_1(\delta), C_2(\delta)\}$, qui ne dépend que de δ , telle que

(8.41)
$$\int_{(D(0,\frac{3}{4})\backslash D(o_k,t_k))\cap P} |\nabla \varphi_1|^2 \ge C_0(\delta) t_k^2.$$

D'un autre côté, puisque $|\nabla \varphi_1| \leq |\nabla g^1| < 1$,

(8.42)
$$\sqrt{1+|\nabla\varphi_1|^2} > \sqrt{1+\frac{1}{2}|\nabla\varphi_1|^2+\frac{1}{16}|\nabla\varphi_1|^4} = 1+\frac{1}{4}|\nabla\varphi_1|^2.$$

Donc

$$(8.43) H^{2}(K \setminus C_{k}^{1}(o_{k}, t_{k})) = \int_{D(0, \frac{3}{4}) \setminus C_{k}^{1}(o_{k}, t_{k}) \cap P} \sqrt{1 + |\nabla \varphi_{1}|^{2}} \ge \int_{D(0, \frac{3}{4}) \setminus C_{k}^{1}(o_{k}, t_{k}) \cap P} 1 + \frac{1}{4} |\nabla \varphi_{1}|^{2}$$

$$\ge H^{2}((D(0, \frac{3}{4}) \setminus C_{k}^{1}(o_{k}, t_{k})) \cap P)) + \frac{1}{4} \int_{D(0, \frac{3}{4}) \setminus C_{k}^{1}(o_{k}, t_{k}) \cap P} |\nabla \varphi_{1}|^{2}$$

$$= H^{2}((D(0, \frac{3}{4}) \setminus C_{k}^{1}(o_{k}, t_{k})) \cap P_{k}^{1})) + C(\delta) t_{k}^{2}.$$

Alors à cause de (8.29) on obtient que

$$(8.44) H^{2}(G^{1} \cap D(0, \frac{3}{4}) \backslash D(o_{k}, t_{k})) \geq H^{2}(K \backslash D(o_{k}, t_{k}))$$

$$\geq H^{2}((P_{k}^{1} + o_{k}) \cap D(0, \frac{3}{4}) \backslash D(o_{k}, t_{k})) + C(\delta)t_{k}^{2}$$

$$= H^{2}(P_{k}^{1} \cap D(0, \frac{3}{4}) \backslash D(0, t_{k})) + C(\delta)t_{k}^{2}.$$

On a donc obtenu une estimation pour la partie régulière (mais un peu oscillante) de E_k . Et pour toutes les autre parties de E_k on va estimer la mesure par projections.

Faisons notre décomposition. Notons $F_1 = E_k \cap D(o_k, t_k)$, $F_2 = G_{t_k}^2$, $F_3 = G_{t_k}^1 \setminus D(0, \frac{3}{4})$, et $F_4 = G_{t_k}^1 \cap D(0, \frac{3}{4})$, où G_t^i est défini comme dans la proposition 6.1(2). Alors les F_i sont disjoints.

Pour F_1 , par la proposition 2.34 et le lemme 2.45

$$(8.45) (1 + 2\cos\theta_k(1))H^2(F_1) \ge H^2(p_k^1(F_1)) + H^2(p_k^2(F_1)),$$

où $\theta_k = (\theta_k(1), \theta_k(2))$ avec $\theta_k(1) \le \theta_k(2)$. (Rappelons que E_k a le même bord que $P_k = P^1 \cup_{\theta_k} P^2$ avec $\theta_k \ge \frac{\pi}{2} - \frac{1}{k}$). Mais puisque $\theta_k \ge \frac{\pi}{2} - \frac{1}{k}$, alors

(8.46)
$$H^{2}(F_{1}) \geq (1 - \frac{3}{k})[H^{2}(p_{k}^{1}(F_{1})) + H^{2}(p_{k}^{2}(F_{1}))]$$

quand k est grand. D'un autre côté, par la proposition 6.1(4),

$$(8.47) p_k^i(F_1) \supset P_k^i \cap C_k^i(o_k, t_k).$$

Par conséquent

(8.48)
$$H^{2}(F_{1}) \geq (1 - \frac{3}{k})H^{2}((P_{k} + o_{k}) \cap D(o_{k}, t_{k}))$$
$$\geq H^{2}((P_{k} + o_{k}) \cap D(o_{k}, t_{k})) - \frac{C}{k}t_{k}^{2} = H^{2}(P_{k} \cap D(0, t_{k})) - \frac{C}{k}t_{k}^{2}.$$

Pour F_2 , par la proposition 6.1(2), on a

$$(8.49) p_k^2(F_2) = p_k^2(G_{t_k}^2) \supset P_k^i \cap D(0,1) \setminus C_k^2(o_k, t_k),$$

et donc

$$(8.50) H^{2}(F_{2}) \ge H^{2}[P_{k}^{2} \cap D(0,1) \setminus C_{k}^{2}(o_{k}, t_{k})] = H^{2}[P_{k}^{2} \cap D(0,1) \setminus D(0, t_{k})].$$

Pour F_3 , encore à cause de la proposition 6.1(2), et par définition de F_3 on a

(8.51)
$$p_k^1(F_3) \supset p_k^1(G_{t_k}^1) \setminus p_k^1(D(0, \frac{3}{4})) \supset P_k^1 \cap D(0, 1) \setminus D(0, \frac{3}{4}),$$

et donc

(8.52)
$$H^{2}(F_{3}) \geq H^{2}(P_{k}^{1} \cap D(0,1) \setminus D(0,\frac{3}{4}).$$

Pour la dernière partie, la définition de F_4 donne

(8.53)
$$H^{2}(F_{4}) = H^{2}(G^{1} \setminus D(o_{k}, t_{k})) \ge H^{2}(P_{k}^{1} \cap D(0, \frac{3}{4}) \setminus D(0, t_{k})) + C(\delta)t_{k}^{2}.$$

Et maintenant on calcule la mesure de E_k en sommant les 4 morceaux :

(8.54)
$$H^{2}(E_{k}) = H^{2}(F_{1}) + H^{2}(F_{2}) + H^{2}(F_{3}) + H^{2}(F_{4})$$
$$\geq H^{2}(P_{k} \cap D(0,1)) + t_{k}^{2}(C(\delta) - \frac{C}{k}).$$

Alors quand k est tel que $C(\delta) > \frac{C}{k}$, on a que

(8.55)
$$H^{2}(E_{k}) > H^{2}(P_{k} \cap D(0,1)),$$

ce qui contredit la proposition 4.8(4).

9 Généralisation aux dimensions plus hautes

Pour le cas où P^1 et P^2 sont des hyperplans de dimension m dans \mathbb{R}^{2m} , on peut énoncer un théorème semblable au théorème 1.32 :

Théorème 9.1 (minimalité de l'union de deux hyperplans presque orthogonaux). Pour chaque m > 1, il existe un $0 < \theta < \frac{\pi}{2}$, tel que, si P^1 et P^2 sont deux hyperplans de dimension m dans \mathbb{R}^{2m} avec des angles caractéristiques $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$, où $\theta < \alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_m \leq \frac{\pi}{2}$, alors leur union $P^1 \cup P^2$ est un cône minimal.

On peut obtenir le résultat par un argument semblable à celui utilisé pour la dimension 2. Une bonne partie de la démonstration est exactement la même. Donc on va traiter ici seulement les parties un peu différentes, dans l'ordre d'entrée en scène.

9.1 Estimations algébriques pour la somme des projecteurs de deux hyperplans (parallèle au paragraphe 2)

Dans ce paragraphe on va discuter les projections d'un m-vecteur sur deux m-plans. D'abord on donne des définitions et des notations générales.

 $\wedge_m(\mathbb{R}^{2m})$ désigne l'espace de m-vecteurs dans \mathbb{R}^{2m} , et si $\{e_i\}_{1\leq i\leq 2m}$ forme une base orthonormée de \mathbb{R}^{2m} , alors on prend $\{e_{i(1)} \wedge e_{i(2)} \wedge \cdots \wedge e_{i(m)}, 1\leq i(1)< i(2)<\cdots< i(m)\leq 2m\}$ comme une base orthonormée de $\wedge_m\mathbb{R}^{2m}$, ce qui donne une structure hilbertienne; <, > désigne le produit scalaire pour cette structure, et $|\cdot|$ la norme induite.

Pour un m-vecteur simple unitaire ξ , $P(\xi) = \{v \in \mathbb{R}^{2m}, v \land \xi = 0\} \in G(2m, m)$ est le sous-espace de dimension m associé à ξ , où G(2m, m) est l'ensemble des sous-espace de dimension m dans \mathbb{R}^{2m} . Et si on a $\xi = x_1 \land x_2 \land \cdots x_m$, alors $P(\xi)$ est juste le sous-espace engendré par $\{x_i\}_{1 \le i \le m}$.

Si f est une application linéaire de $\mathbb{R}^{2m} \to \mathbb{R}^{2m}$, alors on note $\wedge_m f$ l'application linéaire de $\wedge_m(\mathbb{R}^{2m}) \to \wedge_m(\mathbb{R}^{2m})$ telle que

$$(9.2) \qquad \wedge_m f(x_1 \wedge x_2 \wedge \cdots \wedge x_m) = f(x_1) \wedge f(x_2) \wedge \cdots \wedge f(x_m).$$

Et pour $P \in G(2m, m)$, prenons $\xi \in \wedge_k(\mathbb{R}^{2m})$ simples unitaires tels que $P = P(\xi)$, alors on définit $|f(\cdot)| : G(2m, m) \to \mathbb{R}^+ \cup \{0\}$ par

$$(9.3) |f(P)| = | \wedge_m f(\xi)|.$$

La valeur de |f(P)| ne dépend pas du choix de ξ .

Pour les prochaines estimations, on pourrait faire des calculs semblables à ceux de la dimension 2, en faisant des calculs des matrices et leurs determinants, etc. Mais ça serait plus compliqué pour les dimensions générales, donc on ne va pas donner ici des détails précis. En revanche, on cite le lemme suivant.

Lemme 9.4. (c.f. [25] Lemme 5.2)

Soit P^1 , P^2 deux sous-espaces de \mathbb{R}^n avec

(9.5)
$$\dim(P^{1} \cap P^{2^{\perp}}) \ge \dim P^{1} - m + 2$$

Soit ξ un vecteur simple unitaire dans $\bigwedge_m \mathbb{R}^n$. Notons p^i le projecteur de P^i , i=1,2. Alors les projections de ξ vérifie

$$(9.6) |p^1 \xi| + |p^2 \xi| \le 1.$$

Si en plus,

$$(9.7) dim(P^1 \cap P^2) < m - 2,$$

alors

(9.8)
$$|p^1\xi| + |p^2\xi| = 1 \text{ si et seulement si } \xi \text{ appartient } \mathring{a} P^1 \text{ ou } P^2.$$

Notons qu'on peut se servir de ce lemme pour la dimension 2 aussi, mais pas totalement. En effet (9.6) est toujours vrai. Par contre (9.8) n'est pas vrai en dimension 2, parce que la condition (9.7) n'est pas vérifiée pour m=2. Pour m>2, on vérifie (9.7) facilement car $dim(P_0^1 \cap P_0^2)=0 < 1 \le m-2$, où $P_0=P_0^1 \cup_{\perp} P_0^2$ est l'union de deux hyperplans de dimension m orthogonales (c'est à dire les angles

caractéristiques de P_0^1 et P_0^2 sont tous $\frac{\pi}{2}$). On a donc (9.8), et si on désigne encore par Ξ l'ensemble des m-vecteurs simples unitaires $\xi \in \wedge_m \mathbb{R}^{2m}$, qui vérifient

$$(9.9) |p_0^1(\xi)| + |(p_0^2(\xi))| = 1,$$

alors $P(\Xi)$ ne contient que deux éléments P_0^1 et P_0^2 . Cela simplifie beaucoup la démonstration de l'unicité de P_0 , qu'on va voir tout à l'heure.

Maintenant on va regarder le cas de deux hyperplans transverses quelconques. (généralisation de la proposition 2.34).

Proposition 9.10. Soit $0 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_m \le \frac{\pi}{2}$, et soit $P^1, P^2 \subset \mathbb{R}^{2m}$ deux m-plans qui font des angles caractéristiques $(\alpha_1, \alpha_2 \cdots, \alpha_m)$. Si on note p^i la projection orthogonale sur P^i , alors pour tout m-vecteur simple unitaire $\zeta \in \bigwedge_m \mathbb{R}^{2m}$, la somme des projections vers les 2 plans satisfait à :

$$(9.11) |p^{1}\zeta| + |p^{2}\zeta| \le 1 + (m+1)\cos\alpha_{1}.$$

Démonstration. La démonstration marche comme dans 2.34 jusqu'à (2.40). Donc en bref on choisit une base orthonormée $\{e_i\}_{1\leq i\leq 2m}$ de \mathbb{R}^{2m} , avec $P^1=P(\wedge_{i=1}^m e_i)$ et $P^2=P(\wedge_{i=1}^m (\cos\alpha_i e_i+\sin\alpha_i e_{i+m}))$. Notons p le projecteur de $P^{1\perp}=P(\wedge_{i=m+1}^{2m} e_i)$. Alors

$$(9.12) |p^{1}(\zeta)| + |p^{2}(\zeta)| \le |p^{1}(\zeta)| + |p(\zeta)| + |(p^{2} - p)(\zeta)| \le 1 + |(p^{2} - p)(\zeta)|.$$

Pour estimer le dernier terme,

$$\begin{aligned} |(p^{2} - p)(\zeta)| &= | < \wedge_{i=1}^{m} (\cos \alpha_{i} e_{i} + \sin \alpha_{i} e_{i+m}) - \wedge_{i=m+1}^{2m} e_{i}, \zeta > | \\ &= | < \sum_{i=1}^{m+1} (\wedge_{j < i} \sin \alpha_{j} e_{j}) \wedge \cos \alpha_{i} e_{i} \wedge (\wedge_{j > i} (\cos \alpha_{j} e_{j} + \sin \alpha_{j} e_{j+m}) - \wedge_{i=m+1}^{2m} e_{i}, \zeta > | \\ &\leq \sum_{i=1}^{m} | < (\wedge_{j < i} \sin \alpha_{j} e_{j}) \wedge \cos \alpha_{i} e_{i} \wedge (\wedge_{j > i} (\cos \alpha_{j} e_{j} + \sin \alpha_{j} e_{j+m}), \zeta > | \\ &+ | < \wedge_{i=1}^{m} \sin \alpha_{i} e_{j+m} - \wedge_{i=m+1}^{2m} e_{i}, \zeta > | \\ &\leq \sum_{i=1}^{m} |\cos \alpha_{i}| + |1 - \prod_{i=1}^{m} \sin \alpha_{i}| \leq m \cos \alpha_{1} + (1 - \sin^{2} \alpha_{1}) \\ &< m \cos \alpha_{1} + \cos^{2} \alpha_{1} \leq (m+1) \cos \alpha_{1}. \end{aligned}$$

Et par conséquent

$$(9.14) |p^{1}(\zeta)| + |p^{2}(\zeta)| \le 1 + (m+1)\cos\alpha_{1}.$$

Fin de la démonstration du lemme.

On va maintenant énoncer un lemme semblable au lemme 2.45 (pour le citer plus facilement après), sans le démontrer, parce que la démonstration est la même.

Lemme 9.15. Soit $n > d \ge 2$, P,Q deux sous-espaces dans \mathbb{R}^n , $F \subset \mathbb{R}^n$ un ensemble d-rectifiable. Notons p le projecteur de P et q celui de Q. Soit $\lambda \ge 0$ tel que pour presque tout $x \in F$, le plan tangent $T_xF \in G(n,d)$ de F vérifie

$$(9.16) |p(T_x F)| + |q(T_x F)| \le \lambda.$$

Alors

$$(9.17) Hd(p(F)) + Hd(q(F)) \le \lambda Hd(F).$$

Ensuite, tout marche exactement comme dans §2.2, et on ne va pas refaire ici.

9.2 Unicité de P_0

On va montrer l'unicité de P_0 . Ici on est en dimension plus grande que 2, et donc il n'y a plus de résultat de régularité locale pour des ensembles minimaux, ni bi-Hölderienne, ni C^1 , sauf pour des points de type \mathbb{P} . Mais pour des points qui admettent un hyperplan comme une limite d'explosion, on a encore la régularité C^1 .

Proposition 9.18. Pour $2 \le m < n < \infty$, Il existe un $\epsilon_1 > 0$ tel que si E est un ensemble localement minimal de dimension m dans un ouvert $U \subset \mathbb{R}^n$, avec $B(0,2) \subset U$ et $0 \in E$. Alors si E est ϵ_1 proche d'un m-plan P dans B(0,1), alors E coïncide avec le graphe d'une application C^1 $f: P \to P^\perp$ dans $B(0,\frac{3}{4})$. De plus $||\nabla f||_{\infty} < 1$.

Démonstration. c.f. Proposition 6.14.

Par contre, l'avantage ici est que l'ensemble Ξ (l'ensemble des m-vecteurs simples unitaires qui vérifiant (9.9)) est beaucoup plus simple. Donc on va démontrer l'unicité d'une manière un peu différente, mais sans doute plus simple.

Proposition 9.19 (unicité de P_0). Soit $P_0 = P_0^1 \cup_{\perp} P_0^2$, et p_0^i la projection orthogonale sur P_0^i , i = 1, 2. Soit $E \subset \overline{B}(0,1)$ un ensemble de dimension m fermé réduit qui est minimal dans $B(0,1) \subset \mathbb{R}^{2m}$, et qui vérifie :

$$(9.20) p_0^i(E \cap B(0,1)) \supset P_0^i \cap B(0,1);$$

$$(9.21) E \cap \partial B(0,1) = P_0 \cap \partial B(0,1) ;$$

$$(9.22) H^m(E \cap B(0,1)) = 2v(m),$$

$$o\dot{u}\ v(m) = H^m(\mathbb{R}^m \cap B(0,1)).$$

Alors
$$E = P_0 \cap \overline{B}(0,1)$$
.

9.2 - Unicité de P_0 93

Démonstration.

Lemme 9.23. 1) Pour presque tout $x \in E$, $T_x E \in P(\Xi) = \{P_0^1, P_0^2\}$.

2) Pour chaque i = 1, 2, pour presque tout $z \in P_0^i \cap B(0, 1) = p_0^i(E)$,

$$(9.24) N(p_0^i, z) = \sharp \{p_0^{i-1}(z) \cap E\} = 1.$$

Démonstration. c.f. lemme 3.8.

Corollaire 9.25. Pour chaque i = 1, 2, si x est tel que son plan tangent vaut P_0^i , alors il existe r = r(x) > 0 tel que $E \cap B(x, r)$ est un disque de dimension m de rayon r, parallèle à P_0^i .

Démonstration. Prenons i=1 par exemple. Par la régularité C^1 , on sait qu'il existe r'>0 tel que dans B(x,r'), E est le graphe d'une application φ de classe C^1 de P_0^1 vers $P_0^{1\perp}$. Alors dans B(x,r'), chaque point y a un plan tangent T_xY , et l'application $T:E\to G(2m,m), T(y)=T_yE$ est continue. Il existe donc r>0 tel que pour tout $y\in E\cap B(x,r)$, T_yE n'est pas P_0^2 . Mais on sait que pour presque tout $y\in E\cap B(x,r)$, T_yE est soit P_0^1 soit P_0^2 , donc pour tout $y\in E\cap B(x,r)$, $T_yE=P_0^1$, et donc $E\cap B(x,r)=(P_0^1+x)\cap B(x,r)$.

Fin de la démonstration du lemme.

Maintenant regardons les point qui n'ont pas de plan tangent. Soit $y \in E$ un tel point. Notons K une limite d'explosion de E en y. On veut montrer que $K = P_0$.

Lemme 9.26. Pour tout $x \in K$ tel que le plan tangent de K à x T_xK existe, alors $T_xK = P_0^1$ ou P_0^2 .

Démonstration. Puisque K est un cône, on peut supposer que |x|=1.

K est une limite d'explosion de E en y, c'est à dire, il existe une suite r_k telle que $\lim_{k\to\infty} r_k=0$ et

$$(9.27) r_k^{-1}(E-y) \cap B(0,2) \xrightarrow{d_H} K \cap B(0,2).$$

Donc

$$(9.28) r_k^{-1}(E-y) \cap B(x,r) \xrightarrow{d_H} K \cap B(x,r)$$

uniformément en $r \in (0, \frac{1}{2})$.

Mais T_xK existe, donc T_xK est une limite d'explosion de K en x, de sorte qu'il existe un $0 < r < \frac{1}{2}$ tel que $d_H(K \cap B(x,r), P \cap B(x,r)) < \frac{1}{2}r\epsilon_1$, où $P = T_xE + x$, et on choisit ϵ_1 comme dans la proposition 9.18.

Fixons cet r, et il existe N > 0 tel que pour tout k > N, on a $d_H(r_k^{-1}(E-y) \cap B(x,r), K \cap B(x,r)) < \frac{1}{2}r\epsilon_1$, d'après (9.28). Et donc

(9.29)
$$d_H(r_k^{-1}(E-y) \cap B(x,r), P \cap B(x,r)) < \epsilon_1 r.$$

Notons $E_k = r_k^{-1}(E - y)$, alors E_k est un ensemble minimal aussi. Et de plus

$$(9.30) d_H(E_k \cap B(x,r), P \cap B(x,r)) < \epsilon_1 r.$$

Maintenant on peut se servir de la proposition 9.18, et on obtient que pour k assez grand, E_k est le graphe d'une C^1 application f_k de P à P^{\perp} dans $B(x, \frac{3}{4}r)$.

On note $x_k = r_k x + y$, alors $r_k^{-1}(x_k - y) = x$. Et donc

(9.31)
$$E_k \cap B(x,r) = r_k^{-1}((B(x_k, r_k r) \cap E) - y)$$

pour k > N. C'est à dire que dans $B(x_k, \frac{3}{4}r_kr)$, E est un graphe C^1 sur un plan Q_k parallèle à T_xK . Mais, comme pour presque tout $z \in B(x_k, \frac{3}{4}r_kr) \cap E$, le plan tangent de E à z existe et vaut P_0^1 ou P_0^2 , et l'application $z \to T_zE$ est continue sur le graphe C^1 , donc E coïncide avec P_0^1 ou P_0^2 dans $B(x_k, \frac{3}{4}r_kr)$. Autrement dit, $E_k \cap B(x, \frac{3}{4}r) = (P_0^1 + x) \cap B(x, \frac{3}{4}r)$ ou $E_k \cap B(x, \frac{3}{4}r) = (P_0^2 + x) \cap B(x, \frac{3}{4}r)$. Alors par (9.30), dans $B(x, \frac{3}{4}r)$, P est la limite d'une suite de plans, qui sont soit $P_0^1 + x$, soit $P_0^2 + x$. Donc $P = P_0^1 + x$ ou $P_0^2 + x$, de sorte que $T_xK = P_0^1$ ou P_0^2 .

Fin de la démonstration du lemme.

Lemme 9.32. $K = P_0$.

Démonstration. On note $K^i = \{x \in K : T_x K = P_0^i\}$, alors on affirme que

$$(9.33) K^i \subset P_0^i.$$

En effet, si $x \in K^1, x \neq 0$, alors, puisque K est un cône, on a $[0, x] \in K$, où [x, y] désigne le segment qui connecte 2 points $x, y \in \mathbb{R}^{2m}$. Mais puisque $T_x K = P_0^1$, et presque tout $z \in K$ a un plan tangent P_0^1 ou P_0^2 , par un argument semblable à celui du lemme 9.26, on obtient un rayon r = r(x) > 0 tel que $K \cap B(x, r)$ est un plan parallèle à P_0^1 . Mais $[0, x] \cap B(x, r) \subset K \cap B(x, r)$, donc $[0, x] \subset P_0^1$. En particulier, $x \in P_0^1$. On obtient donc

Un argument semblable donne aussi

$$(9.35) K^2 \subset P_0^2.$$

Mais K est minimal, donc il est rectifiable puisqu'il est minimal, de sorte que presque tout point de K admet un plan tangent. Alors par le lemme 9.23, on a

$$(9.36) H^m(K\backslash (K^1\cup K^2))=0,$$

et donc

$$(9.37) H^m(K \setminus (P_0^1 \cup P_0^2)) = 0,$$

de sorte que

$$(9.38) K \subset P_0,$$

puisqu'il est un ensemble fermé reduit.

Maintenant si $K \neq P_0$, il existe alors $x \in P_0 \cap \partial B(0,1)$ tel que $(0,x] \not\subset K$, puisque K est un cône. Supposons par exemple $x \in P_0^1$.

Mais K est aussi fermé, il existe donc r>0 tel que $B(\frac{1}{2}x,r)\cap K=\emptyset$. Autrement dit, K a un trou dans l'hyperplan P_0^1 . Alors on peut déformer $P_0^1\cap B(0,1)\backslash B(\frac{1}{2}x,r)$ dans B(0,1) en un ensemble de mesure arbitrairement petite, en fixant à la fois $\partial B(0,1)$ et P_0^2 . Ceci implique que $H^m(K\cap P_0^1)=0$, puisque K est minimal. Et donc $K=P_0^2$, ce qui contredit le fait que K n'est pas un plan.

Par conséquent, $K = P_0$.

Fin de la démonstration du lemme.

Maintenant on va donner la régularité autour d'un point x qui admet une limite d'explosion P_0 .

Lemme 9.39. Soit $x \in E$ tel qu'une limite d'explosion de E en x est P_0 . Alors il existe r > 0 tel que $E \cap B(x,r) = (P_0 + x) \cap B(x,r)$.

Démonstration. Par la démonstration des lemmes 9.26 et 9.32, P_0 est la seule limite d'explosion de E en x, parce qu'on part d'une limite d'explosions quelconque K, et on arrive toujours à P_0 . Il existe donc $r_0 > 0$ tel que pour tout $r < r_0$,

(9.40)
$$d_{x,r}(E, P_0 + x) < \min\{\frac{1}{100}, \frac{1}{10}\epsilon_1\}$$

où ϵ_1 est celui dans la proposition 9.18.

Notons $C^{i}(x,s) = p_{0}^{i-1}(B(0,s) \cap P_{0}^{i}) + x$ (qui est un "cylindre").

Pour tout $y \in E \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r)$, on a

$$(9.41) d_{y,\frac{1}{10}r}(E, P_0^1 + x) < \epsilon_1.$$

En effet, on sait par (9.40) que (9.41) est vrai si on remplace P_0^1 par P_0 . Mais on sait que $d(B(y, \frac{1}{10}r), P_0^2) > \frac{1}{10}r$ puisque $y \notin C^1(x, \frac{1}{5}r)$, et donc on doit avoir (9.41).

Alors par la proposition 9.18, on a que pour chaque $y \in E \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r)$, dans $B(y, \frac{3}{40}r)$ E est un graphe C^1 de P_0^1 , et en particulier $T_y E \neq P_0^2$. Par conséquent $T_y E = P_0^1$. Par le corollaire 9.25,

$$(9.42) \qquad \qquad \text{il existe } r_y' > 0 \text{ tel que } E \cap B(y, r_y') = (P_0^1 + y) \cap B(y, r_y').$$

Maintenant fixons un $y_r \in E \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r)$. Notons $A = E \cap (P_0^1 + y_r) \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r)$. Alors A est relativement fermé dans $(P_0^1 + y_r) \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r)$, puisque E l'est. Et A est non vide

parce que $y_r \in A$. Mais A est aussi ouvert dans $(P_0^1 + y_r) \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r)$, parce que pour chaque $y \in A$, (9.42) est vrai.

Par conséquent $A = (P_0^1 + y_r) \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r)$ puisque le dernier est connexe. On a donc

$$(9.43) (P_0^1 + y_r) \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r) \subset E \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r).$$

Mais par (9.42), pour chaque $y \in (P_0^1 + y_r) \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r)$,

(9.44)
$$E \text{ coïncide avec } P_0^1 + y \text{ dans } B(y, \frac{3}{40}r),$$

et donc

$$(9.45) P_0^1 + y = P_0^1 + y_r$$

 \mathbf{et}

(9.46)
$$E \text{ coïncide avec } P_0^1 + y_r \text{ dans } B((P_0^1 + y_r) \cap B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r), \frac{3}{40}r).$$

Mais on sait que

$$(9.47) d_{B(x,r)\setminus C^1(x,\frac{1}{10}r),r}(E,P_0^1+x) < \frac{1}{100},$$

et que

$$(9.48) d(y_r, P_0^1 + x) < \frac{1}{100}r,$$

de sorte que

$$(9.49) d_{B(x,r)\setminus C^1(x,\frac{1}{10}r),r}(E,P_0^1+y_r) < \frac{1}{20}$$

ce qui implique que

(9.50)
$$E \cap B(x, \frac{4}{5}r) \setminus C^{1}(x, \frac{1}{5}r) \subset B((P_{0}^{1} + y_{r}), \frac{3}{40}r) \cap B(x, \frac{4}{5}r) \setminus C^{1}(x, \frac{1}{5}r) \subset B((P_{0}^{1} + y_{r}) \cap B(x, \frac{4}{5}r) \setminus C^{1}(x, \frac{1}{5}r), \frac{3}{40}r).$$

Par conséquent, (9.46) implique que

(9.51)
$$E \cap B(x, \frac{4}{5}r) \setminus C^{1}(x, \frac{1}{5}r) = (P_{0}^{1} + y_{r}) \cap B(x, \frac{4}{5}r) \setminus C^{1}(x, \frac{1}{5}r).$$

Notons que (9.51) est vrai pour tout $r < r_0$. Par conséquent pour tout $r < r_0$, les $p_0^2(y_r)$ sont égaux, et égaux à $p_0^2(x)$, parce que (9.40) est vrai pour tout r suffisamment petit. Et donc on a

$$(9.52) (P_0^1 + x) \cap B(x, \frac{4}{5}r_0) \subset E \cap B(x, \frac{4}{5}r_0).$$

Un argument semblable donne

$$(9.53) (P_0^2 + x) \cap B(x, \frac{4}{5}r_0) \subset E \cap B(x, \frac{4}{5}r_0),$$

et donc

$$(9.54) (P_0+x)\cap B(x,\frac{4}{5}r_0)\subset E\cap B(x,\frac{4}{5}r_0).$$

On affirme alors que

$$(9.55) (P_0 + x) \cap B(x, \frac{1}{2}r_0) = E \cap B(x, \frac{1}{2}r_0).$$

En effet, soit $y \in E \cap B(x, \frac{1}{2}r_0)$. Prenons $r = 2|y-x| < r_0$, et supposons par exemple que $|p_0^1(y-x)| \ge |p_0^2(y-x)|$. Alors $y \in B(x, \frac{4}{5}r) \setminus C^1(x, \frac{1}{5}r)$, ce qui implique que $y \in P_0^1 + x$ par (9.51).

Fin de la démonstration du lemme.

Maintenant on peut arriver à la conclusion de la proposition 9.19.

Notons $E^i = \{x \in E \cap B(0,1); T_xE \text{ existe et vaut } P_0^i\}$. Alors pour $i=1,2, E^i$ est ouvert dans E, à cause du corollaire 9.25. De plus, au moins un des E^i est non vide, grâce au lemme 9.23(1). Supposons par exemple que $E^1 \neq \emptyset$. Notons aussi E^0 l'ensemble des points de type P_0 . Alors E est l'union disjointe de E^1 , E^2 et E^0 . Par conséquent $E^0 \cup E^1 = E \setminus E^2$ est fermé.

Alors soit $x \in E^1$. On affirme que

$$(9.56) (P_0^1 + x) \cap B(0, 1) \subset E^1 \cup E^0.$$

Notons $A = (P_0^1 + x) \cap B(0,1) \cap (E^1 \cup E^0)$. Alors A est non vide puisque $x \in A$. A est aussi fermé dans $(P_0^1 + x) \cap B(0,1)$ puisque $E^1 \cup E^0$ est fermé. Mais par le corollaire 9.25 et le lemme 9.39, A est aussi ouvert dans $(P_0^1 + x) \cap B(0,1)$. Maintenant puisque $(P_0^1 + x) \cap B(0,1)$ est connexe, on a que $A = (P_0^1 + x) \cap B(0,1)$, de sorte que (9.56) est vrai.

Par conséquent,

$$(9.57) (P_0^1 + x) \cap \partial B(0, 1) \subset E \cap \partial B(0, 1).$$

Alors par (9.21), $p_0^2(x) = 0$.

On obtient donc

$$(9.58) E1 \subset P10 \subset E1 \cup E0 \subset E,$$

si bien que $H^m(E^1) \leq H^m(P_0^1 \cap B(0,1)) = v(m)$. Mais $H^m(E^0) = 0$. Donc par (9.22), $H^m(E^2) > 0$. En particulier E^2 est non vide.

Alors un argument semblable donne

$$(9.59) E^2 \subset P_0^2 \subset E,$$

Et donc

$$(9.60) P_0 \subset E.$$

En utilisant encore une fois (9.22), on obtient que $E = P_0$.

9.3 L'argument de l'extension harmonique par les harmoniques sphériques

Les étapes après la démonstration de l'unicité de P_0 marchent complètement pareil jusqu'à l'extension harmonique. Donc on ne va pas les répéter. Dans cette section, on va traiter l'argument de l'extension harmonique en dimension plus grande.

On va d'abord parler des harmoniques sphériques (c.f. [31] Chpt 4.2).

Pour une dimension k fixée, notons

 \mathscr{P}_n : l'espace de tous les polynômes homogènes de degré n dans \mathbb{R}^k , c'est à dire, pour chaque polynôme $p(x) \in \mathscr{P}_n$, $p(\lambda x) = \lambda^n p(x)$;

 \mathscr{A}_n : l'ensemble de tous les polynômes harmoniques dans \mathscr{P}_n ;

 $\mathcal{H}_n: \mathcal{H}_n = \{p|_{S^{k-1}}: p \in \mathcal{A}_n\}$, ou S^{k-1} est la sphère unité dans \mathbb{R}^k . Donc \mathcal{H}_n coïncide avec l'ensemble de toutes les restrictions à S^{k-1} des membres de \mathcal{A}_n .

Donc, pour chaque $f \in \mathcal{H}_n$, la fonction

$$(9.61) p(r,\theta): \mathbb{R} \times S^{k-1} \to \mathbb{R}, \ p(r,\theta) = r^n f(\theta)$$

appartient à \mathcal{A}_n . Et donc

$$(9.62) \Delta p = 0.$$

Si on note $\Delta_{S^{k-1}}$ l'operateur de Laplace-Beltrami on S^{k-1} , la partie angulaire du Laplacian, on a la décomposition suivante :

(9.63)
$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{k-1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_{S^{k-1}}.$$

Donc pour $p = r^n f(\theta)$,

(9.64)
$$0 = \Delta p = (\frac{\partial^2}{\partial r^2} + \frac{k-1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_{S^{k-1}}) p$$
$$= n(n-1)r^{n-2} f(\theta) + n(k-1)r^{n-2} f(\theta) + r^{n-2} \Delta_{S^{k-1}} f(\theta),$$

et on obtient

(9.65)
$$\Delta_{S^{k-1}} f = -n(n+k-2)f.$$

Donc chaque $f \in \mathcal{H}_n$ est une fonction propre de $\Delta_{S^{k-1}}$ associée à la valeur propre $\lambda_n = -n(n+k-2)$.

Remarque 9.66. Par (9.65), si $f \in \mathcal{H}_n$, alors $r^{2-k-n}f(\theta)$ est aussi une fonction harmonique.

On va maintenant citer quelques résultats sans les démontrer (voir [31] pour plus de détails) :

Proposition 9.67. On a les propriétés suivantes :

1°
$$dim\mathcal{H}_n = dim\mathcal{A}_n = \begin{pmatrix} n+k-1 \\ n \end{pmatrix} - \begin{pmatrix} n+k-3 \\ n-2 \end{pmatrix}$$
;

2° La collection de toutes les combinations linéaires finies d'éléments de $\bigcup_{n=0}^{\infty} \mathscr{H}_n$ est dense dans $L^2(S^{n-1})$;

3° Soit $Y^{(n)}$ et $Y^{(m)}$ des harmoniques sphériques de degré n et m, et $n \neq m$, alors

(9.68)
$$\int_{S^{n-1}} Y^{(n)}(\theta) Y^{(m)}(\theta) d\theta = 0.$$

Maintenant, considérons \mathcal{H}_n comme un sous-espace de $L^2(S^{k-1})$ avec le produit scalaire $(f,g) = \int_{S^{k-1}} f(\theta) \overline{g(\theta)} d\theta$.

Corollaire 9.69. Notons $a_n = \dim \mathcal{H}_n = \binom{n+k-1}{n} - \binom{n+k-3}{n-2}$, et soit $\{Y_1^{(n)}, \dots, Y_{a_n}^{(n)}\}$ une base orthonormée de \mathcal{H}_n , alors $\bigcup_{n=0}^{\infty} \{Y_1^{(n)}, \dots, Y_{a_n}^{(n)}\}$ est une base orthonormale de $L^2(S^{k-1})$. De plus, pour chaque $f \in L^2(S^{k-1})$, il existe une representation unique :

(9.70)
$$f = \sum_{n=0}^{\infty} \sum_{i=1}^{a_n} b_i^{(n)} Y_i^{(n)},$$

où la série converge vers f sous la norme L^2 . Et on a donc

(9.71)
$$||f||_{L^2(S^{k-1})}^2 = \sum_{n=0}^{\infty} \sum_{i=1}^{a_n} |b_i^{(n)}|^2.$$

On peut maintenant démontrer la proposition suivante.

Proposition 9.72. Soit $0 < r_0 < \frac{1}{2}$ et $u_0 \in C^1(\partial B(0,r_0) \cap \mathbb{R}^k,\mathbb{R})$. On note $m(u_0) = (r_0^{k-1}s_{k-1})^{-1}\int_{\partial B(0,r_0)}u_0$ sa moyenne, où $s_{k-1} = H^{k-1}(S^{k-1})$ l'aire de la sphère unité de \mathbb{R}^k . Alors pour toute $u \in C^1((\overline{B(0,1)}\setminus B(0,r_0)) \cap \mathbb{R}^k,\mathbb{R})$ qui satisfait à

$$(9.73) u|_{\partial B(0,r_0)} = u_0$$

on a

(9.74)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 \ge \frac{1}{3} r_0^{-1} \int_{\partial B(0,r_0)} |u_0 - m(u_0)|^2.$$

Démonstration.

Supposons que u est une fonction C^1 comme dans l'énoncé de la proposition. Si v est une solution de l'équation

(9.75)
$$\begin{cases} \Delta v = 0; \\ v|_{\partial B(0,r_0)} = u_0; \\ \frac{\partial u}{\partial \vec{n}} = 0 \text{ sur } \partial B(0,1) \end{cases}$$

où \vec{n} est le vecteur normal unitaire extérieur sur $\partial B(0,1)$, alors v minimise l'énergie de Dirichlet parmi toutes les fonctions u de classe C^1 sur $\overline{B}(0,1)\backslash B(0,r_0)$ avec $u|_{\partial B(0,r_0)}=u_0$.

Donc on va juste chercher une solution v de l'équation (9.75), et puis démontrer (9.74) pour v.

Ecrivons

(9.76)
$$u(r_0, \theta) = u_0(\theta) = m(u_0) + \sum_{n=1}^{\infty} \sum_{i=1}^{a_n} B_i^{(n)} Y_i^{(n)}$$

avec $\{Y_1^{(n)}, \cdots, Y_{a_n}^{(n)}\}$ une base orthonormée de \mathcal{H}_n . Posons

(9.77)
$$v: \overline{B}(0,1)\backslash B(0,r_0) \to \mathbb{R},$$

$$v(r,\theta) = m(u_0) + \sum_{n=1}^{\infty} (A_n r^n + B_n r^{2-k-n}) \sum_{i=1}^{a_n} B_i^{(n)} Y_i^{(n)}.$$

Alors par la remarque 9.66, v est harmonique. On veut que v vérifie (9.75). Alors

(9.78)
$$v|_{\partial B(0,r_0)} = u_0 \Leftrightarrow (A_n r_0^n + B_n r_0^{2-k-n}) = 1, \text{ pour chaque } n \text{ et } 1 \leq i \leq a_n,$$

et

(9.79)
$$\frac{\partial v}{\partial \vec{n}} = \sum_{n=1}^{\infty} (A_n n r^{n-1} + B_n (2 - k - n) r^{1-k-n}) \sum_{i=1}^{a_n} b_i^{(n)} Y_i^{(n)} = 0$$

$$\operatorname{sur} \partial B(0, 1) = \{ (r, \theta) : r = 1 \}.$$

Donc on demande

(9.80)
$$\begin{pmatrix} r_0^n & r_0^{2-k-n} \\ n & 2-k-n \end{pmatrix} \begin{pmatrix} A_n \\ B_n \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Notons que le déterminant de la matrice des coefficients est $(2-k-n)r_0^n - nr_0^{2-k-n}$, avec n > 0, $r_0^{2-k-n} > r_0^n > 0$, 2-k-n < 0, donc il est toujours strictement négatif, de sorte que (9.80) admet toujours une solution

(9.81)
$$A_n = \frac{n+k-2}{(n+k-2)r_0^n + nr_0^{2-k-n}}, B_n = \frac{n}{(n+k-2)r_0^n + nr_0^{2-k-n}}.$$

On va maintenant calculer $\int_{\overline{B}(0,1)\backslash B(0,r_0)} |\nabla v|^2$. Pour estimer ∇v on écrit

(9.82)
$$\nabla_{S^{k-1}}v(r,\theta) = \sum_{n=1}^{\infty} (A_n r^n + B_n r^{2-k-n}) \sum_{i=1}^{a_n} B_i^{(n)} \nabla_{S^{k-1}} Y_i^{(n)},$$

(9.83)
$$\frac{\partial v}{\partial r} = \sum_{n=1}^{\infty} (nA_n r^{n-1} + (2-k-n)B_n r^{1-k-n}) \sum_{i=1}^{a_n} B_i^{(n)} Y_i^{(n)}.$$

et

(9.84)
$$\int_{S^{k-1}} |\nabla v|^2 d\theta = \int_{S^{k-1}} \left| \frac{\partial v}{\partial r} \right|^2 + \left| \frac{1}{r} \nabla_{S^{k-1}} v \right|^2 d\theta.$$

Notons que

$$(9.85) \langle Y_i^{(n)}, Y_j^{(m)} \rangle_{L^2(S^{k-1})} = \delta_{(i,n)(j,m)} \text{ pour } 1 \le n \text{ et } 1 \le i \le a_n,$$

où δ est le symbole de Kronecker, et donc

$$(9.86) \langle \nabla_{S^{k-1}} Y_i^{(n)}, \nabla_{S^{k-1}} Y_j^{(m)} \rangle_{L^2(S^{k-1})} = -\langle \Delta_{S^{k-1}} Y_i^{(n)}, Y_j^{(m)} \rangle_{L^2(S^{k-1})} \\ = -n(2-k-n)\langle Y_i^{(n)}, Y_j^{(m)} \rangle_{L^2(S^{k-1})} = n(n+k-2)\delta_{(i,n)(j,m)}$$

pour $1 \le n$ et $1 \le i \le a_n$. On a donc

(9.87)
$$\int_{S^{k-1}} \left| \frac{1}{r} \nabla_{S^{k-1}} v \right|^2 d\theta = \int_{S^{k-1}} \left| \sum_{n=1}^{\infty} (A_n r^{n-1} + B_n r^{1-k-n}) \sum_{i=1}^{a_n} B_i^{(n)} \nabla_{S^{k-1}} Y_i^{(n)} \right|^2 \\ = \sum_{n=1}^{\infty} n(n+k-2) (A_n r^{n-1} + B_n r^{1-k-n})^2 \sum_{i=1}^{a_n} (B_i^{(n)})^2,$$

et

(9.88)
$$\int_{S^{k-1}} \left| \frac{\partial v}{\partial r} \right|^2 d\theta = \int_{S^{k-1}} \left| \sum_{n=1}^{\infty} (nA_n r^{n-1} + (2-k-n)B_n r^{1-k-n}) \sum_{i=1}^{a_n} B_i^{(n)} Y_i^{(n)} \right|^2 \\ = \sum_{n=1}^{\infty} (nA_n r^{n-1} + (2-k-n)B_n r^{1-k-n})^2 \sum_{i=1}^{a_n} (B_i^{(n)})^2.$$

Par conséquent

$$(9.89) \int_{S^{k-1}} |\nabla v|^2 d\theta = \sum_{n=1}^{\infty} \left[(nA_n r^{n-1} + (2-k-n)B_n r^{1-k-n})^2 + n(n+k-2)(A_n r^{n-1} + B_n r^{1-k-n})^2 \right] \sum_{i=1}^{a_n} (B_i^{(n)})^2.$$

Ensuite

$$\int_{r=r_0}^{1} \left[(nA_n r^{n-1} + (2-k-n)B_n r^{1-k-n})^2 + n(n+k-2)(A_n r^{n-1} + B_n r^{1-k-n})^2 \right] r^{k-1} dr$$

$$= \int_{r=r_0}^{1} \left[(2n^2 + nk - 2n)A_n^2 r^{2n-2} + (2n+k-2)(n+k-2)B_n^2 r^{2-2k-2n} \right] r^{k-1} dr$$

$$= \int_{r=r_0}^{1} (2n^2 + nk - 2n)A_n^2 r^{2n+k-3} + (2n+k-2)(n+k-2)B_n^2 r^{1-k-2n} dr$$

$$= nA_n^2 (1 - r_0^{2n+k-2}) + (n+k-2)B_n^2 (r_0^{2-k-2n} - 1).$$

Alors par (9.81), on a

$$(9.91) nA_n^2(1-r_0^{2n+k-2}) + (n+k-2)B_n^2(r_0^{2-k-2n}-1)$$

$$= \frac{n(n+k-2)[r_0^{2-k-2n}-1][n+(n+k-2)r_0^{2n+k-2}]}{((n+k-2)r_0^n+nr_0^{2-k-n})^2}.$$

Mais on a $r_0 < \frac{1}{2}$, et donc pour tout $n \ge 1$,

(9.92)
$$\frac{r_0^{2-k-n}-1}{r_0^{2-k-n}+1} \ge \frac{r_0^{-1}-1}{r_0^{-1}+1} \ge \frac{\left(\frac{1}{2}\right)^{-1}-1}{\left(\frac{1}{2}\right)^{-1}+1} = \frac{1}{3},$$

et donc

$$(9.93) \qquad nA_{n}^{2}(1-r_{0}^{2n+k-2}) + (n+k-2)B_{n}^{2}(r_{0}^{2-k-2n}-1)$$

$$\geq \frac{n(n+k-2)[r_{0}^{2-k-2n}+1][n+(n+k-2)r_{0}^{2n+k-2}]}{3((n+k-2)r_{0}^{n}+nr_{0}^{2-k-n})^{2}}$$

$$\geq \frac{n[nr_{0}^{2-k-2n}+n+k-2][n+(n+k-2)r_{0}^{2n+k-2}]}{3((n+k-2)r_{0}^{n}+nr_{0}^{2-k-n})((n+k-2)r_{0}^{n}+nr_{0}^{2-k-n})}$$

$$= \frac{n}{3}[\frac{nr_{0}^{2-k-2n}+n+k-2}{(n+k-2)r_{0}^{n}+nr_{0}^{2-k-n}}][\frac{n+(n+k-2)r_{0}^{2n+k-2}}{(n+k-2)r_{0}^{n}+nr_{0}^{2-k-n}}]$$

$$= \frac{n}{3}r_{0}^{k-2}.$$

Par conséquent

$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla v|^2 d\theta \ge \sum_{n=1}^{\infty} \frac{n}{3} r_0^{k-2} \sum_{i=1}^{a_n} (B_i^{(n)})^2
\ge \frac{1}{3} r_0^{k-2} \sum_{n=1}^{\infty} \sum_{i=1}^{a_n} (B_i^{(n)})^2 = \frac{1}{3} r_0^{k-2} ||u_0(\theta) - m(u_0)||_{L^2(S^{k-1})}^2
= \frac{1}{3} r_0^{-1} \int_{\partial B(0,r_0)} |u_0 - m(u_0)|^2.$$

Corollaire 9.95. Soit $r_0 > 0, q \in \mathbb{R}^k$ tel que $r_0 < \frac{1}{2}d(q, \partial B(0, 1)), u_0 \in C^1(\partial B(q, r_0) \cap \mathbb{R}^k, \mathbb{R})$ et $m(u_0) = (s_{k-1}r_0^{k-1})^{-1} \int_{\partial B(q, r_0)} u_0$ sa moyenne.

Alors pour toute $u \in C^1((\overline{B(0,1)}\backslash B(q,r_0)) \cap \mathbb{R}^2, \mathbb{R})$ qui satisfait à

$$(9.96) u|_{\partial B(q,r_0)} = u_0$$

on a

(9.97)
$$\int_{B(0,1)\backslash B(q,r_0)} |\nabla u|^2 \ge \frac{1}{3} r_0^{-1} \int_{\partial B(q,r_0)} |u_0 - m(u_0)|^2.$$

Démonstration. Voir le corollaire 7.30.

Lemme 9.98. Soit $0 < r_0 < 1$, $u \in C^1(B(0,1) \setminus B(0,r_0), \mathbb{R})$, telle que $u|_{\partial B(0,r_0)} = \delta r_0$, $u|_{\partial B(0,1)} = 0$; alors

(9.99)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 \ge C(k)\delta^2 r_0^k$$

$$où c(k) = (k-2)H^{k-1}(S^{k-1}).$$

Démonstration.

Prenons $f(r,\theta)=Ar^{-k+2}-A$ avec $A=\frac{\delta r_0}{r_0^{-k+2}-1}$. Alors f est l'extension harmonique avec les valeurs au bord données. On a

(9.100)
$$\frac{\partial f}{\partial r} = (2 - k)Ar^{1-k}, \ \nabla_{S^{k-1}} f = 0,$$

et donc

$$(9.101) |\nabla f|^2 = A^2 (2-k)^2 r^{2-2k}.$$

Notons $s_{k-1} = H^{k-1}(S^{k-1})$, alors

$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla f|^2 = \int_{S^{k-1}} d\theta \int_{r_0}^1 r^{k-1} dr |\nabla f|^2
= s_{k-1} \int_{r_0}^1 r^{k-1} dr A^2 (2-k)^2 r^{2-2k}
= s_{k-1} A^2 (2-k)^2 \frac{1-r_0^{2-k}}{2-k} = \frac{s_{k-1} (k-2)\delta^2}{(r_0^{2-k}-1)} r_0^2
= C(k) \frac{\delta^2 r_0^2}{r_0^{2-k}-1} = \frac{r_0^{2-k}}{r_0^{2-k}-1} C(k) \delta^2 r_0^k \ge C(k) \delta^2 r_0^k.$$

On a donc

(9.103)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 \ge C(k)\delta^2 r_0^k$$

puisque f est harmonique.

Corollaire 9.104. Pour tout $0 < \epsilon < 1$, il existe $C = C(\epsilon) > 100$ telle que si $0 < r_0 < 1$, $u \in C^1(B(0,1)\backslash B(0,r_0),\mathbb{R})$ et

$$(9.105) ||u|_{\partial B(0,r_0)} - \delta||_{\infty} < \frac{\delta r_0}{C} et ||u|_{\partial B(0,1)}||_{\infty} < \frac{\delta r_0}{C}$$

alors

(9.106)
$$\int_{B(0,1)\setminus B(0,r_0)} |\nabla u|^2 \ge \epsilon C(k) \delta^2 r_0^k.$$

Démonstration. Appliquons encore une fois le lemme 7.47; pour chaque C, on prend $r=r_0,\ f=u,$ et g la fonction harmique telle que $g|_{\partial B(0,1)}=\frac{\delta}{C}r_0, g|_{\partial B(0,r)}=(1-\frac{1}{C})r_0\delta$, et on obtient

(9.107)
$$\int_{B(0,1)\backslash B(0,r_0)} |\nabla u|^2 \ge \int_{B(0,1)\backslash B(0,r_0)} |\nabla g|^2 = (1 - \frac{2}{C})^2 C(k) \delta^2 r_0^k.$$

Par conséquent, pour chaque $\epsilon < 1$ on peut toujours trouver un C assez grand tel que $(1 - \frac{2}{C})^2 \ge \epsilon$. \square

Le paragraphe 8 pour la dimension 2 marche de la même manière pour les dimensions plus hautes. Donc on ne répète pas ici. On a donc fini la démonstration du théorème 9.1.

10 Généralisation au cas de plusieurs plans et hyperplans

Dans ce paragraphe on va généraliser le théorème 1.32 à des unions de n hyperplans transverses de dimension m dans \mathbb{R}^{mn} .

Théorème 10.1 (minimalité de l'union de n hyperplans presque orthogonaux). Pour chaque $m \geq 2$ et $n \geq 2$, il existe un $0 < \theta < \frac{\pi}{2}$, tel que, si P^1, P^2, \dots, P^n sont n hyperplans de dimension m dans \mathbb{R}^{nm} avec des angles caractéristiques $\alpha^{ij} = (\alpha_1^{ij}, \alpha_2^{ij}, \dots, \alpha_m^{ij})$ entre P^i et $P^j, 1 \leq i < j \leq n$, qui vérifient $\theta < \alpha_1^{ij} \leq \alpha_2^{ij} \leq \dots \leq \alpha_m^{ij} \leq \frac{\pi}{2}$ pour tout $1 \leq i < j \leq n$, alors leur union $\bigcup_{i=1}^n P^i$ est un cône minimal.

Démonstration.

Notons encore $P_0 = \cup_{\perp} P_0^i$,

Comme dans le paragraphe précédent, l'idée de la démonstration est la même, et on va suivre les mêmes étapes que pour m=2, n=2. Donc ici on donnera seulement des preuves à l'endroit où la démonstration n'est pas complètement identique. En fait, tout marche bien sauf le théorème sur l'unicité de P_0 , dont on va donner les détail plus tard.

Un autre endroit un peu différent que précédemment est le minimalité de P_0 et le contrôle pour la somme des projections d'un m-vecteur unitaire simple sur n hyperplans avec des angles caractéristiques $\{\alpha^{ij}\}_{1\leq i< j\leq n}$.

Lemme 10.2. P_0 est minimal.

Démonstration. Par récurrence en n, en utilisant le lemme 9.4. Voir la proposition 11.1 pour plus de détails.

Lemme 10.3. Soit P^i , $1 \le i \le n$, n hyperplans de dimension m dans \mathbb{R}^{mn} et $\{\alpha^{ij}\}_{1 \le i < j \le n}$ les angles caractéristiques entre P^i et P^j . Si on note p^i la projection orthogonale sur P^i , alors il existe $C_{n,m}(\alpha)$, avec $\lim_{\alpha \to \frac{\pi}{2}} C_{n,m}(\alpha) = 0$, tel que pour tout m-vecteur simple unitaire $\zeta \in \wedge_m \mathbb{R}^{mn}$, la somme des projections vers ces n hyperplans satisfait à

(10.4)
$$\sum_{i=1}^{n} |p^{i}(\zeta)| \le 1 + C_{m,n}(\alpha),$$

 $o\dot{u} \alpha = \min_{1 < i < j < n} \alpha_1^{ij}$.

Démonstration.

Par récurrence en n. Pour n=2 on l'a déjà, par la proposition 9.10.

Suppsons que (10.4) est vrai pour n-1. Maintenant notons $P=(\bigoplus_{1\leq i\leq n-1}P^i)^{\perp}$ qui est un m-hyperplan, et p son projecteur, q le projecteur de $(\bigoplus_{1\leq i\leq n-1}P^i)$. On a alors par le lemme 9.4

$$(10.5) |p(\zeta)| + |q(\zeta)| \le 1,$$

et donc

(10.6)
$$\sum_{i=1}^{n} |p^{j}(\zeta)| = \sum_{i=1}^{n-1} |p^{j} \circ q(\zeta)| + |p^{n}(\zeta)| \\ \leq \sum_{i=1}^{n-1} |p^{j} \circ q(\zeta)| + |p(\zeta)| + |(p-p^{n})(\zeta)|.$$

Par l'hypothèse de récurrence,

(10.7)
$$\sum_{i=1}^{n-1} |p^{i} \circ q(\zeta)| \le (1 + C_{n-1,m}(\alpha))|q(\zeta)|$$

avec $\lim_{\alpha \to \frac{\pi}{2}} C_{n-1,m}(\alpha) = 0$, et donc

(10.8)
$$\sum_{i=1}^{n} |p^{j}(\zeta)| \leq (1 + C_{n-1,m}(\alpha))|q(\zeta)| + |p(\zeta)| + |(p - p^{n})(\zeta)|$$
$$\leq 1 + C_{n-1,m}(\alpha)|q(\zeta)| + |(p - p^{n})(\zeta)|$$
$$\leq 1 + C_{n-1,m}(\alpha) + |(p - p^{n})(\zeta)|.$$

Maintenant quand α tend vers $\frac{\pi}{2}$, l'angle entre P et P^n tend vers 0. Donc $|(p-p^n)(\zeta)| \leq C'_{n,m}(\alpha)$ avec $\lim_{\alpha \to \frac{\pi}{2}} C'_{n,m}(\alpha) = 0$ (par la démonstration de la proposition 9.10), et on obtient donc la conclusion.

Fin de la démonstration du lemme.

Il nous reste à montrer l'unicité de P_0 .

Proposition 10.9 (unicité de P_0). Soit $P_0 = \bigcup_{i=1}^n P_0^i$, et p_0^i la projection orthogonale sur P_0^i , $1 \le i \le n$. Soit $E \subset \overline{B}(0,1)$ un ensemble de dimension m fermé réduit qui est minimal dans $B(0,1) \subset \mathbb{R}^{nm}$, et qui vérifie pour $1 \le i \le n$,

$$(10.10) p_0^i(E \cap B(0,1)) \supset P_0^i \cap B(0,1) ;$$

(10.11)
$$E \cap \partial B(0,1) = P_0 \cap \partial B(0,1) ;$$

(10.12)
$$H^{m}(E \cap B(0,1)) = nv(m),$$

$$où v(m) = H^m(\mathbb{R}^m \cap B(0,1)).$$

Alors
$$E = P_0 \cap \overline{B}(0,1)$$
.

Démonstration.

D'abord notons encore $\Xi:=\{\xi\in\wedge_m\mathbb{R}^{nm} \text{ unitaire simple }, \sum_{i=1}^n|p^i(\xi)|=1\}$. Alors un lemme vient des hypothèses de la proposition.

Lemme 10.13. 1) Pour presque tout $x \in E$, $T_x E \in P(\Xi)$.

2) Pour chaque $1 \le i \le n$, pour presque tout $z \in P_0^i \cap B(0,1) = p_0^i(E)$,

(10.14)
$$N(p_0^i, z) = \sharp \{p_0^{i-1}(z) \cap E\} = 1.$$

Cas 1. Pour m > 2, en utilisant le lemme 9.4, on peut montrer par récurrence que

$$(10.15) \Xi = \{ P_0^i, 1 \le i \le n \},$$

et par la C^1 régularité (prop 9.18) on obtient que

- 1) autour de chaque $x \in E$ tel que T_xE existe, il existe $r_x > 0$ et $1 \le i \le n$ tel que $E \cap B(x, r_x) = (P_0^i + x) \cap B(x, r_x)$;
- 2) tout les autres points in E sont de type $P_I := \bigcup_{i \in I} P^i, I \subset \{1, 2, \dots, n\}$ (voir la démonstration pour le lemme 9.32). Et si $x \in E$, $I \subset \{1, 2, \dots, n\}$ sont tels que $C_x = P_I$, où C_x est l'unique limite d'explosion de E en x, alors il existe r > 0 tel que $E \cap B(x, r) = (P_I + x) \cap B(x, r)$. (voir la démonstration pour le lemme 9.39).

Alors notons $E^i = \{x \in E, T_x E = P_0^i\}$, $E^0 = E \setminus \bigcup_i E^i$, et notons $E^{0i} = \{x \in E^0, P_0^i \subset C_x\}$, où C_x est la limite d'explosion de E en x, qui vérifie 2) ci-dessus. Alors $E^0 = \bigcup_i E^{0i}$ est discret, et donc fini. Chaque E^i est ouvert dans E. Ensuite on peut montrer que $E^i \cup E^{0i} = P_0^i$, et tout est fini.

Cas 2. Pour m=2. C'est plus compliqué, puisque l'ensemble Ξ est beaucoup plus grand.

Lemme 10.16. Si $x \wedge y \in \Xi$ avec x, y unitaires, $x \perp y$, il existe alors $v_i, u_i \in P_0^i$ unitaires, $v_i \perp u_i$, $a_i > 0$, $\sum_i a_i^2 = 1$ tels que

(10.17)
$$\{(\sum_{i=1}^{n} a_i u_i) \wedge (\sum_{i=1}^{n} a_i v_i)\}.$$

Démonstration. Par récurrence en n. Supposons que c'est vrai pour n-1.

Notons $Q=\cup_{i=1}^{n-1}P_0^i$, q son projecteur. Si $x\wedge y\in \Xi$ avec $x\perp y,\ x,y$ unitaires, alors il existe $\theta_1,\theta_2\in [0,\frac{\pi}{2}]$ tels que

(10.18)
$$x = \cos \theta_1 p_0^n(x) + \sin \theta_1 q(x), y = \cos \theta_2 p_0^n(y) + \sin \theta_2 q(y).$$

Donc $\sum_{i=1}^{n} |p_0^i(x \wedge y)| = 1$ implique $|q(x \wedge y)| + |p_0^n(x \wedge y)| = 1$. Par la même démonstration du cas où n = 2, on obtient que

(10.19)
$$\theta_1 = \theta_2, p_0^n(x) \perp p_0^n(y), q(x) \perp q(y), |q(x) \wedge q(y)| = \sum_{i=1}^{n-1} |p_0^i \circ q(x)| + |p_0^i \circ q(y)|.$$

Par l'hypothèse de récurrence on obtient la conclusion.

Fin de la démonstration du lemme.

Corollaire 10.20. Pour chaque $1 \leq j \leq n$, pour chaque $x \in E$ tel que $T_x E$ existe et n'est pas P_0^i pour tout $i \neq j$ (ou de manière équivalente, $|p_0^j(T_x E)| > 0$), il existe $r_x > 0$ tel que dans $B(x, r_x)$ E coïncide avec le graphe d'une fonction $\varphi_x : P_0^j \to P_0^{j^{\perp}} = \bigoplus_{i \neq j} P_0^i$, où chaque fonction $\varphi_i = p_0^i \circ \varphi_x : P_0^j \to P_0^i$ est soit analytique, soit anti analytique.

Démonstration. Par le lemme 10.16, on sait que $D\varphi_i(P_0^j) = p_0^i \circ T_x E = (a_i u_i + a_j u_j) \wedge (a_i v_i + a_j v_j)$, où $u_i, v_i \in P_0^i, u_j, v_j \in P_0^j, a_i^2 + a_j^2 \neq 0$, parce que $T_x E \neq P_0^i$. Le reste de la démonstration est semblable comme celui du lemme 3.34.

Lemme 10.21. Il n'y a pas de point de type \mathbb{Y} dans E.

Démonstration.

Comme dans la démonstration du lemme 3.19, soit $x \in E$ qui est de type \mathbb{Y} , soit $C_x = \bigcup_{i=1}^3 P_i$ désigne le cône tangent qui est un \mathbb{Y} , avec P_i des demi plans fermés qui se rencontrent le long d'une droite D qui est engendrée par un vecteur unitaire v, soit Q_i le plan contenant P_i . On va montrer que

(10.22) au moins un des
$$Q_i$$
 n'appartient pas à $P(\Xi)$.

On procède comme dans 3.19, et il existe $w_i \in Q_i$, unitaire, $w_i \perp v$, et les angles entre les trois $w_i, 1 \leq i \leq 3$ sont tous de 120°. Alors si $P_1 \not\in P(\Xi)$ tout est bon. Sinon, puisque $P_1 = P(v \wedge w_1)$, par le lemme 10.16, il existe une base orthonormé $\{e_j\}_{1 \leq j \leq 2n}$ de \mathbb{R}^{2n} avec $P_0^i = P(e_i \wedge e_{n+i})$, et $a_i > 0, \sum_{i=1}^n a_i^2 = \sum_{i=1}^n a_{n+i}^2 = 1$, tels que

(10.23)
$$v = \sum_{i=1}^{n} a_i e_i, w_1 = \sum_{i=n+1}^{2n} a_i e_i.$$

Alors, pour que $Q_2 \in P(\Xi)$ aussi, il faut qu'il existe $\{\epsilon_i\}_{n+1 \leq i \leq 2n}$, chaque ϵ_i vaut 1 ou -1, tel que

$$(10.24) w_2 = \sum_{i=n+1}^{2n} \epsilon_i a_i e_i.$$

Notons $I = \{n+1 \le i \le 2n, \epsilon_i = 1\}$, et $J = \{n+1 \le i \le 2n, \epsilon_i = -1\}$. Posons $a_I = (\sum_{i \in I} a_i^2)^{\frac{1}{2}}, a_J = (\sum_{i \in J} a_i^2)^{\frac{1}{2}}, f_I = \frac{1}{a_I} \sum_{i \in I} a_i e_i, f_J = \frac{1}{a_J} \sum_{i \in J} a_i e_i$. Alors f_I, f_J sont unitaire perpendiculaires, $a_I^2 + a_J^2 = 1$, et

$$(10.25) w_1 = a_I f_I + a_J f_i, w_2 = a_I f_I - a_J f_J.$$

Si l'angle entre w_1 et w_2 est 120°, alors a_I, a_J sont non nuls, de sorte que w_1, w_2 engendrent un plan de dimension 2.

Maintenant on sait que les angles entre w_1, w_3 et w_2, w_3 sont aussi de 120°, ce qui implique que les trois w_i appartiennent à un plan. Par conséquent, $w_3 \in P(f_I \wedge f_J)$, et la seule possibilité est que $a_I = \frac{1}{2}, a_J = \frac{\sqrt{3}}{2}$, et $w_3 = -f_I$. Mais dans ce cas, pour que $P(v \wedge w_3) \in P(\Xi)$, on a que pour tout $j \in J$, $a_j = 0$, ce qui implique que $f_J = 0$, et donc $w_1 = w_2$, une contradiction.

Donc on a notre affirmation (10.22). Et le reste de la démonstration est exactement le même que celle du lemme 3.19.

Fin de la démonstration du lemme.

Corollaire 10.26. Pour chaque $x \in E$ tel que le plan tangent de E en x n'existe pas, il existe au plus n plans $Q_1, Q_2, \dots, Q_l \in P(\Xi)$, avec $Q_i \perp Q_j$ pour $i \neq j$, tels que la limite d'explosion C_x de E en x est unique et est égale à $\bigcup_{i=1}^{l} Q_i$.

Démonstration.

Voir le lemme 3.23 pour le fait que C_x est une union de plans transverses qui appartiennent à $P(\Xi)$. Et en particulier, C_x vérifie la propriété de "full-length à cause des angles" (c.f.[10], Remarque 14.40), donc par le théorème 1.15 de [10], on a la régularité de classe C^1 autour de x.

Pour montrer que $Q_i \perp Q_j$ pour $i \neq j$, On le montre pour Q_1, Q_2 par exemple.

Par le lemme 10.16, il existe $v_l^1, u_l^1, v_l^2, u_l^2 \in P_0^l$ unitaires, $v_l^1 \perp u_l^1, v_l^2 \perp u_l^2$, et $a_l^1, a_l^2 > 0$, $1 \le l \le n$, tels que $\sum_{l=1}^n a_l^{1^2} = \sum_{l=1}^N a_l^{2^2} = 1$, et

(10.27)
$$Q_1 = \left(\sum_{l=1}^n a_l^1 v_l^1\right) \wedge \left(\sum_{l=1}^n a_l^1 u_l^1\right), Q_2 = \left(\sum_{l=1}^n a_l^2 v_l^2\right) \wedge \left(\sum_{l=1}^n a_l^2 u_l^2\right).$$

Donc si l est tel que $a_l^1 \neq 0$, alors $p_0^l(Q_1) = a_l^{1^2} > 0$, alors par la C^1 régularité de E autour de x, si on note φ la C^1 correspondance locale entre E et C_x dans une boule B(x,r), il existe s>0 tel que $B(p_0^l(x),s)\cap P_0^l\subset p_0^l(\varphi(Q_1+x))$. (Voir autour de (3.32) pour plus de détails). Cela implique que $a_l^2=0$, parce que sinon, il existe s'>0 tel que $B(p_0^l(x),s')\cap P_0^l\subset p_0^l(\varphi(Q_2+x))$, et donc

$$(10.28) \qquad (B(p_0^l(x), \min\{x, s'\}) \setminus \{x\}) \cap P_0^l \subset \{z \in P_0^l, \sharp \{p_0^{l-1}\{z\} \cap E\} \ge 2\},$$

ce qui contredit le lemme 10.13(2).

Fin de la démonstration du lemme.

On sait ainsi qu'autour de chaque point $x \in E$, on a la régularité de classe C^1 , parce que une union des plans transverses vérifie aussi la propriété de "full-length". On a alors le lemme suivant.

Lemme 10.29. Pour chaque $x \in E$, notons C_x une limite d'explosion de E en x, alors il existe $r_x > 0$ et $\varphi_x : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ de classe C^1 avec $\varphi_x(x) = x$, $d\varphi(x) = Id$, et E coïncide avec le graphe de φ_x de $C_x + x$ dans $B(x, r_x)$.

Corollaire 10.30. Soit $x \in E$, C_x la limite d'explosion de E en x (on sait qu'il est unique à cause de la régularité de classe C^1). Supposons que $Q \subset C_x$ est un plan, et $i \in \{1, \dots, n\}$ est tel que $H^2(p_0^i(Q)) > 0$. Soit φ_x comme ci-dessus. Alors $\varphi_x(Q+x)$ est le graphe d'une fonction C^1 ψ_x de $P_0^i \to \bigoplus_{j \neq i} P_0^i$, où pour tout j, $p_0^j \circ \psi_x$ est analytique ou anti analytique de $P_0^i \to P_0^j$.

Démonstration. On applique le théorème des fonctions implicites et le lemme 10.16 pour chaque ψ_i . Voir le lemme 3.34 pour les détails.

Par les corollaires 10.20,10.26 et 10.30, on sait qu'il existe un nombre dénombrable de variétés de dimension 2 $S_1, S_2 \cdots S_n \cdots$ de classe C^1 , localement analytiques, tel que $E \cap B(0,1) = \bigcup_i S_i$, et les S_i s'intersectent transversement. Alors par la C^1 régularité, on sait que

$$(10.31) \overline{S}_l \backslash S_l \subset \partial B(0,1).$$

En effet si $x \in \overline{S}_l \cap B(0,1)$, alors il existe une boule C^1 $B(x,r_x)$ de E en x, avec φ_x la correspondance de classe C^1 entre C_x et E. Il existe donc un plan $Q \subset C_x$ tel que $Q = T_x S_l$, et donc $\varphi(B(x,r_x) \cap (x+Q) \subset S_l$, et donc x est un point intérieur de \overline{S}_l , de sorte que $x \in S_l$.

Lemme 10.32. S'il existe $x \in S_1$ tel que le plan tangent T_xS_1 de S_1 en x vérifie $T_xS_1 \perp P_0^1$, alors $p_0^1(S_1)$ est un point. Autrement dit, il existe $y \in P_0^1 \cap B(0,1)$ tel que $S_1 \subset (y + {P_0^1}^\perp)$.

Démonstration.

Soit $x \in S_1$ tel que $T_xS_1 \perp P_0^1$. Il existe i tel que $|p_0^i(T_xS_1)| > 0$, et donc par le corollaire 10.20 ou 10.30, il existe $r_x > 0$ tel que dans $B(x, r_x)$, E coïncide avec le graphe d'un fonction $\varphi_x : P_0^i \to \oplus_{j \neq i} P_0^j$, et la fonction $\varphi_1 = p_0^1 \circ \varphi_x$ est analytique ou antianalytique, avec $D\varphi_1 = 0$, c'est à dire, de degré $d \geq 2$. Si φ_1 n'est pas constant, alors il existe $0 < r < r_x$ tel que $U = \varphi_1(B(x, r) \cap P_0^i)$ est un ouvert dans P_0^1 , tel que chaque point dans $U \setminus \{x\}$ a précisément d images réciproques. Et donc $\{z \in P_0^1, \sharp \{p_0^{1-1}(z) \cap E\} \geq 2\}$ est de mesure non nulle, puisqu'il contient un ouvert U. Cela contredit le lemme 10.13(2).

Donc φ_1 est constant dans $B(x, r_x)$. Autrement dit, $p_0^1(S_1 \cap B(x, r_x)) = \{p_0^1(x)\}$.

Maintenant notons

(10.33)
$$A = \{ y \in S_1, \text{ il existe } r_y > 0 \text{ tel que } p_0^1(S_1 \cap B(y, r_y)) = \{ p_0^1(y) \} \}.$$

Alors A est ouvert dans S_1 et non vide. De plus, pour chaque $y \in A$, $T_yS_1 \perp P_0^1$. On va montrer que A est fermé dans S_1 . Donc prenons une suite $\{y_l\}_{l\in\mathbb{N}} \subset A$ qui converge vers un point $y_0 \in S_1$. Alors par la régularité de C^1 on a que $T_{y_0}S_1 \perp P_0^1$ aussi. Alors par l'argument ci-dessus, il existe r > 0 tel

que $p_0^1(S_1 \cap B(y_0, r)) = \{p_0^1(y)\}$. Mais $p_0^1(y) = \lim_{l \to \infty} p_0^1(y_l) = p_0^1(x)$, donc $y_0 \in A$. Par conséquent, A est fermé dans S_1 . Alors puisque S_1 est connexe, on a que $A = S_1$, ce qui donne l'enoncé du lemme.

Fin de la démonstration du lemme.

Corollaire 10.34. S'il existe $x \in S_1$ tel que T_xS_1 n'est pas perpendiculaire à P_0^1 , alors pour tout $y \in S_1$, T_yS_1 n'est pas perpendiculaire à P_0^1 .

Par (10.10), on sait qu'il existe $x \in E$ tel que $|p_0^1(C_x)| > 0$. Par conséquent, il existe $l \in \mathbb{N}$ tel que $x \in S_l$ et $T_x S_l$ n'est pas perpendiculaire à P_0^1 . Alors par le corollaire 10.34,

(10.35) pour tout
$$y \in S_l, T_y S_l$$
 n'est pas perpendiculaire à P_0^1 .

On affirme que

$$(10.36) p_0^1(S_l) \supset P_0^1 \cap B(0,1).$$

En effet, pour chaque $z \in P_0^1 \cap B(0,1) \cap p_0^1(S_l)$, par définition, il existe $y \in S_l$ tel que $p_0^1(x) = z$. Alors (10.34), (10.20) et (10.30) impliquent qu'il existe $r_x > 0$ tel que $B(z, r_x) \cap P_0^1 \subset p_0^1(S_l)$, et donc $p_0^1(S_l)$ est ouvert dans $P_0^1 \cap B(0,1)$. D'autre part on va montrer que $p_0^1(S_l)$ est aussi fermé dans $P_0^1 \cap B(0,1)$. Pour ça, soit $\{z_n\}_{n \in \mathbb{N}} \subset p_0^1(S_l) \cap P_0^1 \cap B(0,1)$, qui convergent vers un point $z_0 \in P_0^1 \cap B(0,1)$. Soit $x_n \in S_l$ tel que $p_0^1(x_n) = z_n$. Alors puisque \overline{S}_l est compact, il existe une sous suite $\{x_{n_k}\}_{k \in \mathbb{N}}$ qui converge vers un point $x_0 \in \overline{S}_l$. Alors $p_0^1(x_0) = z_0$. Si $z_0 \notin S_l$, par (10.31) on a que $z_0 \in \partial B(0,1)$, ce qui contredit le fait que $z_0 \in B(0,1)$.

Donc $p_0^1(S_l)$ est à la fois ouvert et fermé dans $P_0^1 \cap B(0,1)$, et non vide évidemment. Alors puisque $P_0^1 \cap B(0,1)$ est connexe, on obtient notre affirmation (10.36).

Mais $S_l \subset B(0,1)$, et donc $p_0^1(S_l) \subset B(0,1) \cap P_0^1$. On obtient donc

$$(10.37) p_0^1(S_l) = P_0^1 \cap B(0,1).$$

En suite on va montrer que la projection p_0^1 est injective sur S_l . Soient $x_1, x_2 \in S_l$ tels que $p_0^1(x_1) = p_0^1(x_2) = z \in P_0^1 \cap B(0,1)$. Alors il existe r > 0 tel que $B(x_1,r) \cap B(x_2,r) = \emptyset$. Par (10.35) et (10.20), il existe r' < r tel que dans $B(x_i,r')$ E coïncide avec le graphe d'une fonction φ_i de classe $C^1: P_0^1 \to P_0^{1^{\perp}}$. Par conséquent $B(z,r') \subset p_0^1(S_l \cap B(x_i,r')), i = 1, 2$. Mais r' < r implique que $[S_l \cap B(x_1,r')] \cap [S_l \cap B(x_2,r')] = \emptyset$, de sorte que $\{z \in P_0^1: \sharp \{p_0^{1^{-1}}(z) \cap E\} \geq 2\} \supset B(z,r') \cap P_0^1$ est de mesure non nulle. Cela contredit (10.14).

On obtient donc l'injectivité. Par conséquent, S_l est le graphe d'une fonction ψ classe C^1 sur $P_0^1 \cap B(0,1)$, et de plus pour chaque $i \neq 1$, la fonction $\psi_i = p_0^i \circ \psi$ est localement analytique ou antianalytique. En appliquant encore une fois le théorème 3.40 et l'argument autour, on sait que chaque ψ est analytique ou antianalytique.

Mais le fait que S_l est un graphe sur $P_0^1 \cap B(0,1)$ implique que $\overline{S}_l \setminus S_l \subset p_0^{1-1}[P_0^1 \cap \partial B(0,1)]$. Mais $\overline{S}_l \setminus S_l \subset E \cap \partial B(0,1)$ aussi, ce qui donne

$$(10.38) \overline{S}_l \backslash S_l \subset P_0^1 \cap \partial B(0,1),$$

de sorte que $\psi(z)$ tend vers 0 quand z tend vers $\partial B(0,1)$. Et donc les ψ_i aussi. Alors par le principe du maximum, on obtient que chaque ψ_i est une constante, qui vaut 0.

On en déduit que $S_l = P_0^1 \cap B(0,1)$. Et donc

$$(10.39) P_0^1 \cap B(0,1) \subset E.$$

On peut faire pareil pour les autres $2 \le i \le n$, et on obtient que

(10.40)
$$P_0 \cap B(0,1) = \bigcup_{1 \le i \le n} P_0^i \cap B(0,1) \subset E.$$

Mais par (10.12), $H^2(P_0 \cap B(0,1)) = n\pi = H^2(E)$, par conséquent,

(10.41)
$$E \cap B(0,1) = P_0 \cap B(0,1),$$

d'où la conclusion.

11 L'union presque orthogonale d'un plan et un \mathbb{Y} dans \mathbb{R}^5

11.1 Discussions générales

Jusqu'à maintenant, tout ce qu'on a fait concernait l'union de plans. Mais grâce au lemme 9.4, on peut montrer ce qui suit.

Proposition 11.1. Soit $d \geq 2$, et E_1, E_2 deux ensembles minimaux de dimension d dans \mathbb{R}^{m_1} et \mathbb{R}^{m_2} respectivement. Alors l'union orthogonale $E_1 \cup E_2$ est un ensemble minimal dans $\mathbb{R}^{m_1+m_2}$.

Démonstration. Soit F une déformation de $E_1 \cup E_2$ dans $\mathbb{R}^{m_1+m_2}$, il existe alors R > 0 et f une déformation Lipschitzienne dans $\mathbb{R}^{m_1+m_2}$ tels que

(11.2)
$$f(B(0,R)) \subset B(0,R); f|_{B(0,R)}c = Id, \text{ et } f(E_1 \cup E_2) = F.$$

Notons p_i le projecteur de \mathbb{R}^{m_i} , i=1,2. Alors $p_i \circ f(E_i)$ est une déformation de E_i dans $B(0,R) \cap \mathbb{R}^{m_i}$, i=1,2. Par la minimalité de E_i , $H^d(p_i \circ f(E_i)) \geq H^d(E_i)$, de sorte que

(11.3)
$$H^{d}(p_{i}(E)) = H^{d}(p_{i} \circ f(E_{1} \cup E_{2})) \ge H^{d}(p_{i} \circ f(E_{i})) \ge H^{d}(E_{i}), i = 1, 2.$$

On applique le lemme 9.4, et une version pour la dimension d du lemme 2.45 (dont la démonstration est exactement le même pour toutes les dimensions), et on obtient que

(11.4)
$$H^{d}(E) \ge H^{d}(p_{1}(E)) + H^{d}(p_{2}(E)) \ge H^{d}(E_{1}) + H^{d}(E_{2}) = H^{d}(E_{1} \cup E_{2}),$$

d'où la conclusion. □

C'est donc naturel de se demander si l'union presque orthogonale de deux ensembles minimaux est minimale, après tout ce qu'on a fait pour l'union des plans de toutes dimensions. Mais on a bien vu que la démonstration pour l'union des plans dépend beaucoup de la structure des plans, surtout l'unicité de l'union orthogonale, et la régularité pour la partie près d'un plan. Donc pour un ensemble minimal quelconque, on ne peut rien dire.

Et de plus si d=2, alors l'ensemble des 2-vecteurs simples qui vérifient l'égalité dans (9.6) est beaucoup plus compliqué quand les dimension ambientes deviennent plus grandes, parce qu'ils donne plus de flexibilité. Cela rend le probleme encore plus difficile. Mais pour d>2, on a (9.8), et donc si les ensembles minimaux ont des structures simples, par exemple deux cônes simples, la démonstration ne sera sans doute pas si difficile. De plus, peut être qu'on n'est pas très loin de montrer l'unicité de l'union orthogonale de deux cônes minimaux de même dimension (strictement plus grande que 2), à condition que tous les deux soient uniques, au sens de Mumford Shah (une condition topologique, la classe de minimiseurs au sens MS est toujours incluse dans la classes des minimiseurs au sens Almgren). On va discuter des minimiseurs au sens MS plus tard.

Alors on commence par le cône le plus simple. Dans ce paragraphe on va traiter de la minimalité de l'union presque orthogonale d'un plan et d'un Y.

Théorème 11.5 (minimalité de l'union d'un plan et un \mathbb{Y} presque orthogonaux). Il existe un $0 < \theta < \frac{\pi}{2}$, tel que, si P et Q sont deux sous-espaces de \mathbb{R}^5 de dimension 2 et 3 respectivement, qui vérifient

(11.6) pour tout
$$u \in P, v \in Q$$
 unitaires, l'angle entre u et v est plus grand que θ ,

et si Y est un cône de type Y dans Q centré au point de $P \cap Q$, alors l'union $P \cup Y$ est un cône minimal.

Pour la démonstration, on va toujours utiliser le même stratégie.

Pour chaque paire de sous-espaces P, Q, de dimension 2 et 3 respectivement, notons

(11.7)
$$\alpha_{P,Q} = \inf\{ \text{ l'angle entre } u, v; u \in P, v \in Q \text{ unitaires } \}.$$

Notons $Z_0 = P_0 \cup_{\perp} Y_0$ avec $Y_0 \in Q_0$ et $\alpha(P_0, Q_0) = \frac{\pi}{2}$.

Alors par la proposition 11.1, Z_0 est minimal.

Lemme 11.8. Pour tout $\xi \in \wedge_2(\mathbb{R}^5)$ simple unitaire, et tout choix de sous-espaces P, Q de \mathbb{R}^5 de dimension 2 et 3, on a

$$(11.9) |p(\xi)| + |q(\xi)| \le 1 + 2\cos\alpha(P, Q),$$

où p et q sont les projecteurs orthogonaux sur P et Q respectivement, qui agisent aussi sur les 2-vecteurs (voir (2.5) et (2.6)).

Démonstration. En effet si on note $P' = P(q(\xi))$ un sous-espace de dimension 2, et p' son projecteur, alors par la proposition 2.34 on a

(11.10)
$$|p(\xi)| + |p'(\xi)| \le 1 + 2\cos\alpha(P, Q).$$

On conclut en notant que $p'(\xi) = q(\xi)$.

11.2 L'unicité de Z_0

Ensuite on va traiter de l'unicité. Ici, puisque Y est de codimension 1, on ne peut plus poser la condition que la projection soit surjective. Mais une condition de séparation suffira. Notons que la séparation est en fait la condition qu'on pose pour les minimiseurs de Mumford-Shah en codimension 1 (voir la définition 13.7). C'est en fait pourquoi on s'intéresse à l'unicité de l'union de deux cônes minimaux au sens MS, parce qu'une déformation ne change pas la condition topologique qu'on pose pour MS, ni les valeurs au bord des déformations. Et par conséquent l'ensemble minimal qu'on obtient dans le théorème 4.1 garde aussi la condition topologique, ce qui pourrait nous donner une chance de montrer la minimalité de l'union presque orthogonale.

Proposition 11.11 (l'unicité de Z_0). Soit $Z_0 = P_0 \cup_{\perp} Y_0 \subset P_0 \cup_{\perp} Q_0 = \mathbb{R}^5$ défini comme précédemment, p_0, q_0 les projecteurs de P_0, Q_0 . Soit $E \subset \overline{B}(0,1)$ un ensemble de dimension 2 fermé réduit qui est minimal dans $B(0,1) \subset \mathbb{R}^5$, et qui vérifie

$$(11.12) p_0(E \cap B(0,1)) \supset P_0 \cap B(0,1);$$

$$(11.13) E \cap \partial B(0,1) = Z_0 \cap \partial B(0,1);$$

(11.14)
$$q_0(E)$$
 vérifie la condition de séparation dans Q_0 ,

c'est à dire, pour tout $x, y \in \partial B(0,1) \cap Q_0 \setminus Y_0$ tels que x et y n'appartiennent pas à la même composante connexe de $\overline{B}(0,1) \cap Q_0 \setminus Y_0$, ils n'appartiennent pas à la même composante connexe de $\overline{B}(0,1) \cap Q_0 \setminus Q_0(E)$ non plus;

(11.15)
$$H^{2}(E \cap B(0,1)) = \frac{5}{2}\pi.$$

Alors $E = Z_0 \cap \overline{B}(0,1)$.

Démonstration. Regardons d'abord les projections de E. D'abord puisque $E \subset \overline{B}(0,1)$,

(11.16)
$$p_0(E) \subset p_0(\overline{B}(0,1) = P_0 \cap \overline{B}(0,1).$$

Mais E est compact, donc $p_0(E)$ aussi, de sorte que par (11.12)

$$(11.17) p_0(E) \supset P_0 \cap \overline{B}(0,1).$$

Par conséquent,

(11.18)
$$p_0(E) = P_0 \cap \overline{B}(0,1).$$

Du côté de q_0 , par (11.14), $q_0(E)$ vérifie la condition de séparation. On montre d'abord le lemme suivant.

Lemme 11.19. Soit $F \subset \overline{B}(0,1)$ un ensemble rectifiable fermé de dimension 2 dans \mathbb{R}^3 qui vérifie $F \cap \partial B(0,1) = Y_0 \cap \partial B(0,1)$, et la condition de séparation (définie après (11.14)). Alors

(11.20)
$$H^{2}(F) \ge H^{2}(Y_{0} \cap B(0,1)) = \frac{3}{2}\pi.$$

Il y a égalité si et seulement si $F = [Y_0 \cap \overline{B}(0,1)] \cup N$, avec $N \cap [Y_0 \cap \overline{B}(0,1)] = \emptyset$, et $H^2(N) = 0$.

Démonstration. On va utiliser la méthode de slicing.

Donc notons L_0 l'épine de Y_0 , π son projecteur. Pour chaque $s \in L_0 \cap B(0,1)$, notons $F_s = \{x \in F, \pi(x) = s\}$, $B_s = \{x \in \overline{B}(0,1), \pi(x) = s\}$ qui est un disque. Alors $F_s \cap \partial B(0,1)$ est composé de trois points a,b,c, dont les distances entre chaque paire sont égales. Par l'hypothèse de séparation, F_s sépare les composantes connexes de $B_s \setminus \{a,b,c\}$ dans B_s . Alors on a

(11.21)
$$H^{1}(F_{s}) \geq \frac{3}{2}r_{s},$$

où r_s est le rayon de B_s . Il y a égalité si et seulement si $F_s = Y_s$ modulo un ensemble de 1-mesure de Hausdorff négligéable, où $Y_s := [o_s, a] \cup [o_s, b] \cup [o_s, c]$, $o_s = L_0 \cap B_s$, et [x, y] désigne le segment d'extrémités x et y (c'est facile à vérifier, voir par exemple le lemme 59.1, page 392 de [8]).

Maintenant la formule de coaire donne

(11.22)
$$H^{2}(F) \geq \int_{-1}^{1} H^{1}(F_{s})ds \geq \int_{-1}^{1} \frac{3}{2} r_{s} ds = \int_{-1}^{1} \frac{3}{2} \sqrt{1 - s^{2}} ds = \frac{3}{2} \pi.$$

La deuxième inégalité est une égalité si et seulement si pour presque tout $s, F_s = Y_s$ modulo un ensemble de 1-mesure de Hausdorff négligéable. Mais F est fermé, cela implique que $Y_0 \cap \overline{B}(0,1) \subset F$. Donc pour que $H^2(F) = \frac{3}{2}\pi$, il faut que $F \supset Y_0 \cap \overline{B}(0,1)$, et que $F \setminus Y_0 \cap \overline{B}(0,1)$ est un ensemble de mesure nulle.

Fin de la démonstration du lemme.

Par (11.4), (11.15) et (11.18),

(11.23)
$$H^{2}(q_{0}(E)) \leq H^{2}(E) - H^{2}(p_{0}(E)) = \frac{5}{2}\pi - \pi = \frac{3}{2}\pi.$$

Mais par (11.14), en applicant le lemme 11.19 à $q_0(E)$, $H^2(q_0(E)) \ge \frac{3}{2}\pi$. Donc $H^2(q_0(E)) = \frac{3}{2}\pi$. Encore par le lemme 11.19,

(11.24)
$$q_0(E) = [Y_0 \cap \overline{B}(0,1)] \cup N,$$

avec $H^2(N) = 0$, $[Y_0 \cap \overline{B}(0,1)] \cap N = \emptyset$, et

(11.25)
$$H^{2}(q_{0}(E)) + H^{2}(p_{0}(E)) = H^{2}(E),$$

ce qui donne le lemme suivant.

Lemme 11.26. 1) Pour presque tout $x \in E$, $T_x E \in P(\Xi)$ (voir (2.4) pour la définition de P), où

(11.27)
$$\Xi = \{ \xi \in G(5,2) \text{ simple unitaire }, |p_0(\xi)| + |q_0(\xi)| = 1 \}.$$

2) Pour pour presque tout $z \in P_0 \cap B(0,1) = p_0(E)$,

(11.28)
$$N(p_0, z) = \sharp \{p_0^{-1}(z) \cap E\} = 1,$$

et pour presque tout $z \in q_0(E)$,

(11.29)
$$N(q_0, z) = \sharp \{q_0^{-1}(z) \cap E\} = 1.$$

Mais par la C^1 régularité de E autour des points de type \mathbb{P} , on peut préciser le terme 1), en notant que $P(\Xi)$ est un fermé dans G(5,2).

Corollaire 11.30. Si $x \in E$ est de type \mathbb{P} , alors $T_x E \in P(\Xi)$.

Démonstration. Suppsons que $T_xE \not\in P(\Xi)$. Par la C^1 régularité de E autour de x, il existe un voisinage U de x, tel que pour tout $y \in U \cap E$, T_yE existe, et $T_yE \not\in P(\Xi)$, parce que $P(\Xi)$ est fermé. Mais U est ouvert, par la régularité d'Ahlfors des ensembles minimaux, $H^2(E \cap U)$ est de mesure positive, ce qui contredit le lemme 11.26 1).

On va maintenant déterminer la structure de Ξ .

Lemme 11.31. Soit x, y deux vecteurs unitaires dans \mathbb{R}^5 , alors $x \wedge y \in \Xi$ si et seulement si ils vérifient la propriété suivante.

Il existe u_1, u_2, v_1, v_2 unitaires, $u_i \in P_0, v_i \in Q_0, u_1 \perp u_2, v_1 \perp v_2, \text{ et } \alpha \in [0, \frac{\pi}{2}], \text{ tels que}$

$$(11.32) x = \cos \alpha u_1 + \sin \alpha v_1, y = \cos \alpha u_2 + \sin \alpha v_2.$$

Démonstration. On va juste montre la partie "seulement si". La partie réciproque est triviale.

Pour tout $x, y \in \mathbb{R}^5$ unitaires, on a

$$|p_{0}(x \wedge y)| + |q_{0}(x \wedge y)| = |p_{0}(x) \wedge p_{0}(y)| + |q_{0}(x) \wedge q_{0}(y)|$$

$$\leq |p_{0}(x)||p_{0}(y)| + |q_{0}(x)||q_{0}(y)|$$

$$\leq \frac{1}{2}(|p_{0}(x)|^{2} + |p_{0}(y)|^{2} + |q_{0}(x)|^{2} + |q_{0}(y)|^{2}) = 1.$$

La dernière égalité est parce que $\mathbb{R}^5=P_0\oplus Q_0$, et donc $|p_0(x)|^2+|q_0(x)|^2=|p_0(y)|^2+|q_0(y)|^2=1$.

Alors $x \wedge y \in \Xi$ si et seulement si toutes les inégalités dans (11.33) sont des égalités. La première implique que $p_0(x) \perp p_0(y)$ et $q_0(x) \perp q_0(y)$; la deuxième dit que $|p_0(x)| = |p_0(y)|$ et $|q_0(x)| = |q_0(y)|$. Alors notons $u_1 = p_0(x), u_2 = p_0(y), v_1 = q_0(x), v_2 = q_0(y)$, et $\alpha = \arctan \frac{|q_0(x)|}{|p_0(x)|}$, on obtient la conclusion.

Fin de la démonstration du lemme.

Maintenant pour tout ensemble F et $x \in F$, notons C_xF la limite d'explosion de F en x si elle existe. En particulier, notons $C_x = C_xE$ pour tout $x \in E$ tel que C_xE existe.

Lemme 11.34. Si $y \in E$ est un point de type \mathbb{Y} , alors $C_y \subset Q_0$.

Démonstration.

Soit $P_i, 1 \leq i \leq 3$, les trois demi plans fermés dans \mathbb{R}^5 tels que $C_y = \bigcup_{i=1}^3 P_i$. Alors les P_i se rencontrent en une droite D. Notons Q_i le plan qui contient P_i , v le vecteur unitaire qui engendre D, et w_i des vecteurs unitaires tels que $w_i \perp v$ et $Q_i = P(v \wedge w_i)$. Par conséquent l'angle entre w_i et w_j , $i \neq j$, est de 120°.

Maintenant supposons que $v \notin Q_0$, c'est à dire qu'il existe $e_1 \in P_0, e_2 \in Q_0, \alpha \in [0, \frac{\pi}{2}[$ tels que $v = \cos \alpha e_1 + \sin \alpha e_2$.

On affirme qu'au moins un des Q_i n'appartient pas à $P(\Xi)$.

Supposons que non, donc pour $i=1,2,3, w_i \wedge v \in \Xi$. Alors il existe $e_3 \in P_0, e_4 \in Q_0$ unitaires, $e_3 \perp e_1, e_4 \perp e_2$, tel que $w_1 = \cos \alpha e_3 + \sin \alpha e_4$. Notons que P_0 est de dimension 2, donc il n'y a que deux vecteurs unitaires $\pm e_3$ dans P_0 qui sont orthogonaux à e_1 . Par conséquent, pour w_2 , il existe $e_5, e_6 \in Q_0$ unitaires, $e_5 \perp e_2, e_6 \perp e_2$ tels que $w_2 = \pm \cos \alpha e_3 + \sin \alpha e_5, w_3 = \pm \cos \alpha e_3 + \sin \alpha e_6$.

Notons R l'espace engendré par w_1, w_2, w_3 . Alors R est de dimension 2. Notons π_R son projecteur. Alors $\pi_R(e_3) \neq 0$, parce que sinon, puisque $w_1 = \cos \alpha e_3 + \sin \alpha e_4$ donne $w_1 = \pi_R(w_1) = \sin \alpha \pi_R e_4$, on a $|w_1| = |\sin \alpha \pi_R e_4| < 1$, une contradiction.

Notons $f_1 = \pi_R(e_3)/|\pi_R(e_3)|$. Prenons f_2 un vecteur unitaire dans R qui est perpendiculaire à f_1 .

On a

(11.35)
$$|\langle w_i, f_1 \rangle| = |\langle w_i, \pi_R(e_3) / |\pi_R(e_3)| \rangle| = |\langle \pi_R(w_i), e_3 / |\pi_R(e_3)| \rangle|$$

$$= |\langle w_i, e_3 \rangle| / |\pi_R(e_3)| = \cos \alpha / |\pi_R(e_3)|,$$

qui ne dépend pas de i. Notons cette valeur b. Alors b < 1.

Puisque $w_i \in R = span\{f_1, f_2\}$, chaque w_i est de forme

$$(11.36) w_i = \epsilon_i b f_1 + \delta_i \sqrt{1 - b^2} f_2,$$

où $\epsilon_i, \delta_i \in \{\pm 1\}$. Mais les trois w_i ne peuvent pas faire des angles de 120° sous cette forme (voir 3.19 pour les détails).

Donc au moins un des Q_i n'appartient pas à $P(\Xi)$. On continue ensuite comme dans le lemme 3.19, et on arrive à montrer que $v \in Q_0$. Donc $\alpha = \frac{\pi}{2}$. Et par les expressions de w_i on sait que $w_i \in Q_0$. En particulier, $C_y \in Q_0$.

Fin de la démonstration du lemme.

Maintenant notons E_P l'ensemble des points de type $\mathbb P$ dans E, et E_Y l'ensemble des points de type $\mathbb Y$ dans E. Alors par la régularité C^1 autour des points de type $\mathbb P$ à l'intérieur de B(0,1), E_P est ouvert dans $E \cap B(0,1)$. Notons $E_S = E \setminus (E_P \cup E_Y)$, l'ensembles des points de singularité qui ne sont pas de type $\mathbb P$ ou $\mathbb Y$. Pour chaque $x \in E_S \cap B(0,1)$, si C_x est une limite d'explosion de E en x, alors la structure des cônes minimaux dit que $C_x \cap \partial B(0,1)$ est composé de cercles et d'arcs de cercles qui se rencontrent en faisant des angles de 120° . Et en particulier, C_x ne contient qu'un point de singularité (tous les autres points sont de type $\mathbb P$ et $\mathbb Y$). Alors par la régularité bi-Hölderienne, on sait qu'il existe $r_x > 0$ tel que dans $B(x, r_x)$, E est topologiquement un E_x , ce qui implique qu'il n'y a qu'un point de type différent que $\mathbb P$ et $\mathbb Y$ dans E0, E1. Et par conséquent, E2 est un ensemble discret.

Par la C^1 régularité autour des point de type \mathbb{Y} , on sait que

(11.37)
$$E_Y \cap B(0,1) \text{ est une union de courbes } C^1 \text{ ouvertes,}$$
 qui sont limitées par des points dans E_S ou $\partial B(0,1)$.

Et si on note E_{SY} l'ensemble des point dans E_S dont une limite d'explosion contient des point de type \mathbb{Y} . Alors l'argument ci-dessus donne aussi que

$$(11.38) E_{SY} \subset \overline{E}_{Y}.$$

Notons aussi $E_{SP} = E_S \backslash E_{SP}$, alors pour tout $x \in E_{SP}$, la limite d'explosion C_x de E en x est une union de plans, qui vérifie la propriété de "full-length". Alors un argument semblable à celui du lemme 3.23 donne

$$(11.39) C_x = P_0 \cup P_x,$$

où $P_x \subset Q_0$, et E coïncide avec une version C^1 de C_x dans un voisinage B(x,r) de x. En particulier, $q_0(B(x,r) \cap E) \text{ contient un disque dans } P_x \subset Q_0.$

On précise maintenant (11.24) par le lemme suivant.

Lemme 11.41. $q_0(E) = Y_0 \cap \overline{B}(0,1)$.

Démonstration. Notons $N \subset Q_0 \cap \overline{B}(0,1)$ l'ensemble N dans (11.24), qui est de mesure nulle. On veut montrer $N = \emptyset$, d'où la conclusion du lemme.

Par (11.13), $N \cap \partial B(0,1) = \emptyset$, de sorte que $N \subset B(0,1)$. Prenons un point $x \in N$. Puisque $Y_0 \cap \overline{B}(0,1)$ est fermé, il existe r > 0 tel que $B(x,r) \subset B(0,1)$ et $B(x,r) \cap [Y_0 \cap \overline{B}(0,1)] = \emptyset$, de sorte que $q_0(E) \cap B(x,r)$ est de mesure nulle.

Par définition de N, soit $y \in E \cap B(0,1)$ tel que $q_0(y) = x$, alors $q_0(B(y,r) \cap E) \subset q_0(E) \cap B(x,r)$, donc est de mesure nulle. Par conséquent, $y \notin E_{SP}$, parce que sinon, (11.40) implique que $q_0(B(y,r) \cap E)$ contient un disque dans Q_0 , qui est de mesure non nulle.

D'un autre côté, $E \cap B(y,r)$ ne contient pas de point de type \mathbb{Y} . Sinon supposons que $z \in B(y,r) \cap E$ est un point de type \mathbb{Y} . Par le lemme 11.34, $C_z \subset Q_0$. Par la C^1 régularité, il existe r' > 0 tel que $B(z,r') \subset B(y,r)$ et $H^2[q_0(E \cap B(z,r'))] > 0$. Mais $q_0(E \cap B(z,r')) \subset N$, ce qui contredit la définition de N.

Donc $E \cap B(y,r)$ ne contient pas de point de type \mathbb{Y} . Mais $E_{SY} \subset \overline{E}_Y$, de sorte que $E \cap B(y,r)$ ne contient pas de point de type E_{SY} .

Donc y n'appartient pas à E_S . Par conséquent, y est un point de type \mathbb{P} . Par la C^1 régularité autour des points de type \mathbb{P} , il existe r > r'' > 0 tel que $E \cap B(y, r'')$ est le graphe d'une fonction φ de classe C^1 qui va de $T_y E$ dans $T_y E^{\perp}$. Alors si $T_y E$ n'est pas P_0 , par le corollaire 11.30 et le lemme 11.31, $q_0(T_y E \cap B(0,1))$ contient un disque de rayon positive. Encore par la C^1 régularité, $q_0(B(y,r'') \cap E)$ contient un disque aussi, qui n'est pas de mesure nulle, ce qui contredit la définition de N.

Donc $T_yE=P_0$. De plus, le même argument marche pour tout $z\in q_0^{-1}(N)$. Donc pour tout $z\in q_0^{-1}(N)$, $T_zE=P_0$. En particulier, pour tout $z\in E\cap B(y,r'')$, $T_zE=P_0$. Par conséquent, $E\cap B(y,r'')=(P_0+y)\cap B(y,r'')=(P_0+x)\cap B(y,r'')$.

Cet argument donne que E est ouvert dans $(P_0 + x) \cap B(0, 1)$. Mais E est aussi fermé, donc E est ouvert fermé dans $(P_0 + x) \cap B(0, 1)$. Par définition de $N, x \in N$ implique que $E \cap (P_0 + x) \cap B(0, 1)$ n'est pas vide, donc $E \cap (P_0 + x) \cap B(0, 1) = (P_0 + x) \cap B(0, 1)$.

Alors $E \supset (P_0+x) \cap B(0,1)$. Mais E est fermé dans $\overline{B}(0,1)$, ce qui implique que $(P_0+x) \cap \partial B(0,1) \subset E \cap \partial B(0,1) \subset Z_0 \cap \partial B(0,1)$. Prenons l'image de la projection q_0 , et on obtient que $x = 0 \in Y_0 \cap B(0,1)$, ce qui contredit la définition de N.

Donc N est effectivement vide. On obtient donc la conclusion du lemme.

11.2 - L'unicité de Z_0

Fin de la démonstration du lemme.

Lemme 11.42. Si $x \in E_Y \cap B(0,1)$, alors $q_0(E)$ n'a pas de plan tangent en $q_0(x)$.

Démonstration. Notons C_x la limite d'explosion de E en x, alors C_x est un Y, puisque $x \in E_Y$. Par la C^1 régularité, il existe $r_x > 0$ et $\varphi : \mathbb{R}^5 \to \mathbb{R}^5$ un difféomorphisme de classe C^1 tel que $\varphi(x) = x, D\varphi(x) = Id$, et $B(x, r_x) \cap E = B(x, r_x) \cap \varphi(x + C_x)$. Mais par le lemme 11.34 on sait que $C_x + q_0(x) \subset Q_0$, donc $q_0|_{C_x + q_0(x)} = Id$, on peut donc définir $\varphi_0 = q_0 \circ \varphi \circ q_0^{-1}$ sur $C_x + q_0(x)$, qui est un C^1 difféomorphisme entre $q_0(E)$ et $C_x + q_0(x)$ dans une petite boule $B(x, r'_x) \cap Q_0$, avec $r'_x < r_x$. Et par conséquent, $q_0(E)$ n'admet pas de plan tangent en $q_0(x)$.

119

Fin de la démonstration du lemme.

Corollaire 11.43. $q_0(\overline{E}_Y \cap B(0,1)) = L_0 \cap B(0,1)$, où L_0 désigne l'épine de Y_0 .

Démonstration. Rappelons que $q_0(E \cap B(0,1)) = Y_0 \cap B(0,1)$, dont l'ensemble de singularités est $L_0 \cap B(0,1)$. Par le lemme 11.42, tout point dans $q_0(E_Y)$ n'a pas de plan tangent à $q_0(E)$, donc $q_0(E_Y \cap B(0,1)) \subset L_0 \cap B(0,1)$. Mais L_0 est fermé, donc $q_0(\overline{E}_Y \cap B(0,1)) \subset L_0 \cap B(0,1)$. Pour montrer la réciproque, soit $x \in E$, tel que $q_0(x) \in L_0$. On affirme que

(11.44) si
$$x$$
 est de type \mathbb{P} , alors $T_x E = P_0$.

En effet sinon, alors par le corollaire 11.30 et le lemme 11.31, $q_0(T_xE\cap B(0,1))$ contient un voisinage de 0. Et par la C^1 régularité autour des points de type \mathbb{P} , $q_0(E)$ contient un disque C^1 de dimension 2 avec $q_0(x)$ dans son intérieur. Par le lemme 11.41, $q_0(E) = Y_0 \cap \overline{B}(0,1)$, et donc $q_0(x) \in L_0$ implique que pour tout petit voisinage U de $q_0(x)$ dans Q_0 , $q_0(E) \cap U = Y_0 \cap U$, qui ne contient pas un tel disque. Cette contradiction donne l'affirmation (11.44).

D'un autre côté, soit $x \in E$ de type \mathbb{P} . Alors par la C^1 régularité autour des points de type \mathbb{P} , il existe $r_x > 0$, tel que dans $B(x, r_x)$, E est une variété de classe C^1 . Mais par la Proposition 11.17 de [17], E est aussi une variété harmonique dans $B(x, r_x)$, ce qui implique que E est une variété lisse dans $B(x, r_x)$.

Par conséquent, l'ensemble E_P est une variété lisse de dimension 2. Et donc $q_0: E_P \to Q_0$ est une fonction lisse entre deux variété lisses.

Notons que par (11.44), pour chaque $x \in E_P \cap q_0^{-1}(L_0)$, $T_x E = P_0$, ce qui implique que $q_0(T_x E)$ est un point, et donc est de mesure H^1 nulle.

Donc par le théorème de Sard,

(11.45)
$$H^1(q_0(E_P) \cap L_0) = H^1(q_0(E_P \cap q_0^{-1}(L_0))) = 0.$$

Donc

$$(11.46) L_0 \cap B(0,1) \subset q_0(\overline{E_Y \cup E_S}).$$

Mais E_S est un ensemble discret, donc on a

(11.47)
$$L_0 \cap B(0,1) \subset q_0(\overline{E}_Y \cap B(0,1)).$$

Par conséquent,

(11.48)
$$L_0 \cap B(0,1) = q_0(\overline{E}_Y \cap B(0,1)).$$

Corollaire 11.49. Pour tout $x \in E_Y \cap B(0,1)$, l'épine de C_x est L_0 .

Démonstration.

Soit $x \in E_Y \cap B(0,1)$, notons L_x l'épine de C_x , alors $L_x \subset Q_0$. Par la C^1 régularité autour de x, il existe r>0, φ un C^1 difféomorphisme de B(x,r) dans une partie de B(x,2r) tel que $\varphi(x)=x$, $D\varphi(x)=Id$ et E coïncide avec l'image par φ de $x+C_x$ dans B(x,r). Alors L_x est la droite tangente à la courbe régulière $\gamma=\varphi(L_x)$. Pour tout $y\in\varphi(L_x)$, $y\in E_Y$, et la droite tangente $T_y\gamma$ à γ en y est juste l'épine L_y de C_y . Alors par le lemme 11.34, $T_y\gamma=L_y\subset Q_0$ pour tout $y\in\gamma$, ce qui implique que $\gamma-x=q_0(\gamma)\subset L_0$, et donc

$$(11.50) L_x = T_x \gamma = L_0.$$

Lemme 11.51. Pour chaque $x \in E_Y \cap B(0,1)$, il existe r > 0 tel que $E_Y \cap B(x,r) = (L_0 + x) \cap B(x,r)$.

Démonstration. Ceci résulte de la régularité C^1 et le corollaire 11.49.

Corollaire 11.52. Pour tout $x \in E_Y \cap B(0,1)$, $C_x = Y_0$.

Démonstration. Par le lemme 11.34,

$$(11.53) C_x = q_0(C_x) = C_{q_0(x)} Y_0.$$

Mais pour tout point y de type \mathbb{Y} dans Y_0 , $C_y Y_0 = Y_0$, donc $C_x = Y_0$.

Maintenant on sait que E_Y est composé de segments ouverts S_i , $i = 1, 2, 3 \cdots$ parallèles à L_0 , par (11.37) et le lemme 11.51. Mais encore par (11.37), pour chaque i, si un extrémité a n'est pas dans

11.2 - L'unicité de Z_0 121

 $\partial B(0,1)$, alors il est dans E_S . Mais E_S est discret, de sorte qu'il existe $j \neq i$ tel que a est aussi un extrémité de S_j . Par conséquent, \overline{E}_Y est composé de segments parallèles à L_0 dont les extrémités appartiennent à $\partial B(0,1)$.

On en déduit que

(11.54) si
$$x \in E_Y$$
, alors $(x + L_0) \cap B(0,1) \subset \overline{E}_Y$.

Lemme 11.55. $\overline{E}_Y = L_0 \cap \overline{B}(0,1)$, et E_Y est ouvert dans $L_0 \cap B(0,1)$.

Démonstration.

Par le lemme 11.48, $q_0(E_Y)$ est ouvert dans $L_0 \cap B(0,1)$.

Maintenant si $x \in E_Y$, par (11.54), $(x + L_0) \cap B(0,1) \subset \overline{E}_Y$. Par le corollaire 11.43 on sait que $q_0(x) \in L_0$. Donc pour montrer le lemme, il suffit de montrer que $p_0(x) = 0$.

Notons $x_p = p_0(x)$. Alors

$$q_0((L_0 + x_p) \cap B(0, 1)) = L_0 \cap B(0, \sqrt{1 - |x_p|^2}).$$

Si $x_p \neq 0$, $\sqrt{1-|x_p|^2} < 1$, donc $q_0((L_0+x_p) \cap B(0,1)) = L_0 \cap B(0,\sqrt{1-|x_p|^2}) \neq L_0 \cap B(0,1) = q_0(\overline{E}_Y \cap B(0,1))$, ce qui implique qu'il existe un $y \in (E_Y \setminus (L_0+x_p)) \cap B(0,1)$, parce que $q_0(E_Y)$ est un ouvert dense dans $L_0 \cap B(0,1)$, à cause du corollaire 11.43 et du lemme 11.51.

Notons $y_p = p_0(y)$, alors $y_p \neq x_p$, et $(L_0 + y_p) \cap B(0,1) \subset \overline{E}_Y$, et donc aussi

(11.57)
$$L_0 \cap B(0, \sqrt{1 - |y_p|^2}) = q_0((L_0 + y_p) \cap B(0, 1)).$$

Maintenant $x, y \in B(0, 1)$ implique que $|x_p| < 1$, $|y_p| < 1$. Alors $r = \min\{\sqrt{1 - |x_p|^2}, \sqrt{1 - |y_p|^2}\} > 0$, et par conséquent, pour presque tout $z \in L_0 \cap B(0, r)$, $\sharp\{q_0^{-1}(z) \cap E_Y\} \geq 2$. Encore par la régularité C^1 , on obtient qu'il existe r' > 0 tel que pour presque tout $z \in Y_0 \cap B(0, r')$,

$$\sharp \{q_0^{-1}(z) \cap E\} \ge 2.$$

Mais $Y_0 \cap B(0, r')$ est de mesure non nulle, ce qui contredit (11.29).

Donc on a $p_0(x)=x_p=0$. Mais x est n'importe quel point dans E_Y . On obtient donc que $\overline{E}_Y=L_0\cap \overline{B}(0,1)$. Donc $q_0(E_Y)=E_Y$, de sorte que E_Y est ouvert dans L_0 , par le lemme 11.51.

Fin de la démonstration du lemme.

Notons maintenant R_1, R_2, R_3 les trois demi plans fermés qui composent Y_0 , et P_i le plan contenant R_i . On a $\bigcap_{i=1}^3 P_i = L_0$.

Lemme 11.59. Si $x \in E_P \cap B(0,1)$, et si T_xE n'est pas perpendiculaire à Q_0 , alors il existe $1 \le i \le 3$ tel que $q_0(T_xE) = P_i$.

Démonstration. Par le lemme 11.38 et la régularité de C^1 , on n'a pas d'autre choix.

Lemme 11.60. Pour chaque $1 \le i \le 3$ et x tel que $q_0(T_xE) = P_i$, il existe $r = r_x > 0$ tel que dans B(x,r), E est le graphe d'une fonction analytique ou antianalytique de P_i dans P_0 .

Démonstration.

Supposons par exemple que i = 1.

Par la régularité de C^1 , l'application $y \to T_y E$ est continue. Alors il existe r' > 0 tel que pour tout $y \in E \cap B(x, r')$, le plan tangent $T_y E$ de E en y existe, et $q_0(T_y E) \neq P_2, P_3, \{0\}$. Alors par le lemme 11.59,

(11.61)
$$q_0(T_y E) = P_1 \text{ pour tout } y \in E \cap B(x, r').$$

Encore par la C^1 régularité, il existe r < r' tel que dans B(x,r), E est le graphe d'une fonction φ de classe C^1 , de $P_1 = T_x E$ dans P_1^{\perp} . Alors par (11.61)

$$(11.62) \varphi = p_0 \circ \varphi.$$

Donc en fait, E coïncide dans B(x, r) avec le graphe d'une fonction de P_1 vers P_0 . Pour montrer qu'elle est analytique ou anti-analytique, on utilise le lemme 11.31, et l'argument du lemme 3.34.

Fin de la démonstration du lemme.

Lemme 11.63. Pour chaque $x \in E_Y \cap B(0,1) \subset L_0 \cap B(0,1)$, il existe r > 0 tel que $E \cap B(x,r) = Y_0 \cap B(x,r)$.

Démonstration. Soit $x \in E_Y \cap B(0,1)$. Par la C^1 régularité, il existe r > 0 et un difféomorphisme φ de classe C^1 de B(x,r) vers B(x,r) tels que $D\varphi(x) = 0, \varphi(x) = x$, et $E \cap B(x,r) = \varphi(Y_0) \cap B(x,r)$. Et pour chaque $1 \le i \le 3$, et chaque $y \in P_i \cap B(x,r)$,

$$q_0(T_{\varphi(y)}\varphi(P_i)) = P_i.$$

Rappelons que R_i est le demi plan fermé contenu dans P_i , et $\varphi(R_i \cap B(x,r)\backslash L_0) \subset E$, qui ne contient que des points de type \mathbb{P} . Alors par le lemme 11.60, pour chaque $y \in \varphi(R_i \cap B(x,r)\backslash L_0)$, il existe $r_y > 0$ tel que dans $B(y,r_y)$, E coïncide avec le graphe d'une fonction analytique ou anti analytique de P_i vers P_0 . Par conséquent, si on note $U_i = R_i \cap B(x,r)\backslash L_0$, alors dans P_i , U_i est un ouvert simplement connexe, avec $L_0 \cap B(x,r) \subset \partial U_i$, et

(11.65)
$$\varphi(U_i) \text{ est le graphe d'une fonction analytique ou antianalytique}$$

$$f_i \text{ de } U_i \text{ vers } P_0 \text{ et qui est continue sur } \partial U_i.$$

11.2 - L'unicité de Z_0 123

Mais $\varphi(L_0 \cap B(x,r)) = L_0 \cap B(x,r)$ implique que $\lim_{x \to L_0} f_i = 0$, où $L_0 \cap B(x,r)$ est un ouvert dans ∂U_i , et tout le reste de U_i n'intersecte pas L_0 . Alors en utilisant le principe de réflexion de Schwarz, on peut étendre f_i analytiquement sur $U_i \cup L_0 \cup U_i^*$, où U_i^* est le symétrie de U_i par rapport à L_0 .

Alors f_i admet une droite de zeros, ce qui implique $f_i \equiv 0$ sur U_i . On a donc $E \cap B(x,r) = Y_0 \cap B(x,r)$.

Fin de la démonstration du lemme.

Lemme 11.66. $Y_0 \cap B(0,1) \subset E$.

Démonstration. Notons maintenant $A_i = \{x \in E : \exists r > 0 \text{ tel que } E \cap B(x,r) = P_i \cap B(x,r)\}, 1 \le i \le 3$. On va montrer que

$$(11.67) A_i \cap R_i \cap B(0,1) \setminus (L_0 \cup E_S) = R_i \cap B(0,1) \setminus (L_0 \cup E_S), 1 \le i \le 3.$$

D'abord par le lemme 11.63, $A_i \neq \emptyset$. En effet prenons n'importe quel $y \in E_Y \cap B(0,1) \subset L_0$, il existe r > 0 tel que $E \cap B(y,r) = Y_0 \cap B(y,r)$. Alors $B(y,r) \cap R_i \setminus L_0 \subset A_i$.

Par définition, A_i est ouvert dans $R_i \cap B(0,1) \setminus (L_0 \cup E_S)$.

Mais on sait que pour tout $x \in E \cap B(0,1) \setminus L_0 \cup E_S$, x est de type \mathbb{P} . Par la C^1 régularité, A_i est aussi fermé dans $R_i \cap B(0,1) \setminus (L_0 \cup E_S)$. Notons que E_S est discret, $R_i \cap B(0,1) \setminus L_0$ est ouvert dans R_i et connexe, donc $R_i \cap B(0,1) \setminus (L_0 \cup E_S)$ est aussi connexe. On obtient donc (11.67). Mais $A_i \subset E$, donc $R_i \cap B(0,1) \setminus (L_0 \cup E_S) \subset E$, de sorte que $R_i \cap B(0,1) \subset \overline{R_i \cap B(0,1) \setminus (L_0 \cup E_S)} \subset E$, $1 \le i \le 3$, d'où la conclusion.

Fin de la démonstration du lemme.

On sait que $E_Y \subset \overline{E}_Y \subset L_0 \cap \overline{B}(0,1) \subset Y_0$. Donc si $x \in [E \cap B(0,1)] \setminus (Y_0 \cup E_S)$, x est de type \mathbb{P} . Par le lemme 11.59, si T_xE n'est pas perpendiculaire à Q_0 , il existe $i \in \{1,2,3\}$ tel que $q_0(T_xE) = P_i$. Par la C^1 régularité autour d'un point de type \mathbb{P} , il existe $r_x > 0$ tel que $P_i \cap B(q_0(x), r_x) \subset q_0(B(x, r_x) \cap E)$, et $B(x, r_x) \cap Y_0 = \emptyset$. Notons que $q_0(E) = Y_0$, donc $q_0(B(x, r_x) \cap E) \subset Y_0 \cap P_i = R_i$. Notons $P_i \cap B(q_0(x), r_x) = V$, alors $V \subset q_0(B(x, r_x) \cap E) \subset R_i$. Notons que $R_i \subset Y_0 \subset E$. Par conséquent, pour chaque $z \in V$, $q_0^{-1}(z) \cap E$ a au moins deux éléments : un est lui-même, un est dans $E \cap B(x, r_x)$. Mais V est ouvert dans P_i , de sorte qu'il est de mesure non nulle, ce qui contredit (11.29).

Donc pour tout $x \in E \cap B(0,1) \setminus (Y_0 \cup E_S)$, $T_x E$ existe et vaut P_0 .

Mais $E \cap B(0,1) \setminus Y_0$ est ouvert dans E. Donc si $x \in E \cap B(0,1) \setminus (Y_0 \cup E_S)$, il existe r > 0 tel que $B(x,r) \cap Y_0 = \emptyset$. Par la C^1 régularité autour d'un point de type \mathbb{P} , il existe $0 < r'_x < r$ tel que dans $B(x,r'_x)$, E est une variété de classe C^1 . Mais pour tout $y \in B(x,r'_x) \cap E$, $y \notin Y_0$, de sorte que $T_yE = P_0$. Donc $E \cap B(x,r'_x) = (P_0 + x) \cap B(x,r'_x)$.

Par (11.28), et le fait que $p_0(Y_0 \cup E_S)$ est de mesure nulle, $E \cap B(0,1) \setminus (Y_0 \cup E_S)$ n'est pas vide. Prenons $x \in E \cap B(0,1) \setminus (Y_0 \cup E_S)$, par l'argument d'ouvert et fermé, et en utilisant le fait que E_S est discret, $E_Y \subset L_0$ dont l'intersection avec $P_0 + x$ est un seul point, on a que $(P_0 + x) \cap B(0,1) \setminus (E_S \cup E_Y) \subset E$. Mais E est fermé, $(P_0 + x) \cap B(0,1) \cap (E_S \cup E_Y)$ est discret, donc $(P_0 + x) \cap B(0,1) \subset E$. Donc $(P_0 + x) \cap \partial B(0,1) \subset E \cap \partial B(0,1)$, ce qui implique $x \in P_0$. On a donc $P_0 \cap B(0,1) \subset E$.

Donc $Z_0 \cap B(0,1) \subset E$. Mais E est fermé, donc $Z_0 \cap \overline{B}(0,1) \subset E$.

Mais
$$H^{2}(E) = \frac{5}{2}\pi = H^{2}(Z_{0} \cap \overline{B}(0,1))$$
. On a donc

$$(11.68) E = Z_0 \cap \overline{B}(0,1).$$

Et c'est ce qu'on voulait.

11.3 Remarques sur d'autres préparatifs

Maintenant on fait comme dans le paragraphe 4. Supposons que pour chaque $k \in \mathbb{N}$, il existe $Z_k = P_k \cup Y_k$, où $Y_k \subset Q_k$, P_k, Q_k sont des sous-espaces de dimension 2 et 3 respectivement, et $\alpha_{P_k,Q_k} \geq \frac{\pi}{2} - \frac{1}{k}$, tel que Z_k n'est pas minimal dans B(0,1).

De plus, quitte à composer par une rotation, on suppose que tous les Q_k et les Y_k sont tous égaux à Q_0 et Y_0 .

En utilisant la proposition 4.1, on montre que

Proposition 11.69. Pour chaque k, il existe un ensemble E_k fermé réduit, qui vérifie

- (1) E_k est minimal dans $\mathbb{R}^5 \setminus [Z_k \setminus B(0,1)]$;
- (2) $\partial B(0,1) \cap E_k = \partial B(0,1) \cap Z_k$;
- (3) $p_k(E_k) \supset P_k \cap \overline{B}(0,1)$, et $q_k(E_k)$ vérifie la condition de séparation, c'est à dire, pour tout $x, y \in \partial B(0,1) \cap Z_k$ tels que x et y n'appartiennent pas à la même composante connexe de $\partial B(0,1) \setminus Z_k$, ils n'appartiennent pas à la même composante connexe de $\overline{B}(0,1) \setminus E_k$ non plus.

Ici p_k, q_k désigne le projecteur de P_k et Q_k ;

(4)
$$H^2(E_k) < H^2(Z_k \cap B(0,1)) = \frac{5}{2}\pi$$
.

De plus, E_k est contenu dans l'enveloppe convexe de $Z_k \cap \overline{B}(0,1)$.

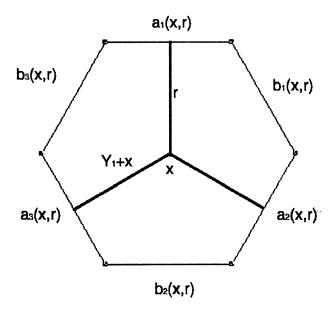
Remarque 11.70. Ici on utilise le fait qu'une déformation ne change pas la condition de séparation (c.f.[13] XVII 4.3).

Ensuite on peut continuer à chercher le rayon critique pour chaque k. Mais on change un peu la définition de C_k et D_k .

Pour P_k , on note, comme précédent,

(11.71)
$$C_k^P(x,r) = x + p_k^{-1}(P_k \cap B(0,r)).$$

Pour la côté Q_k , la vie est un peu plus compliquée. On rappelle que pour chaque k, $Q_k = Q_0$ et $Y_k = Y_0$. On écrit $Q_0 = \mathbb{R} \oplus \mathbb{R}^2$, où la première coordonée est L_0 , qui est l'épine de Y_0 . La deuxième est un plan, qui intersecte Y_0 en un ensemble Y^1 , qui est l'union de trois demi droites qui se rencontrenent en 0 en faisant des angles de 120 degrés (c'est un \mathbb{Y} de dimension 1). Pour chaque r > 0, on note $S(0,r) \subset \mathbb{R}^2$ l'hexagone régulier ouvert centré en 0 dont trois côtés non-adjacents intersectent respectivement les trois branches de Y^1 perpendiculairement. De plus, $H^1(S(0,r)\cap Y^1)=3r$, c'est à dire, la partie de Y^1 dans S(0,r) est l'union de trois segments de longeurs r. Notons aussi S(x,r)=x+S(0,r) pour $x\in Q_0, r>0$, et $a_1(x,r),a_2(x,r),a_3(x,r)$ les trois côtés de S(x,r) qui rencontrent Y_0 , et $b_1(x,r),b_2(x,r),b_3(x,r)$ les trois côtés restants. Voir le dessin 11-1.



11-1

Alors on note $U(0,r)=(-r,r)\times S(0,r)$, et U(x,r)=x+U(0,r). Ce sont donc des ouverts dans Q_0 , qui sont topologiquement des boules. On prend U(x,r) au lieu d'une boule, pour contrôler mieux la mesure autour d'une structure de \mathbb{Y} , qu'on va le voir. On note aussi $A_i(x,r)=(x-r,x+r)\times a_i(x,r), B_i(x,r)=(x-r,x+r)\times b_i(x,r), 1\leq i\leq 3$. Alors

$$\partial U(x,r) = [\cup_{i=1}^{3} \overline{A}_{i}(x,r)] \cup [\cup_{i=1}^{3} \overline{B}_{i}(x,r)] \cup \overline{S}(x-r,r) \cup \overline{S}(x+r,r).$$

On pose maintenant

(11.73)
$$C_k^Q(x,r) = x + q_k^{-1}(Q^k \cap U(0,r))$$

 $\mathbf{e}\mathbf{t}$

(11.74)
$$D_k(x,r) = C_k^P(x,r) \cap C_k^Q(x,r).$$

On définit aussi

(11.75)
$$d_k^{x,r}(E,F) = d_{r,D_k(x,r)}(E,F),$$

pour deux fermés E et F, où $d_{r,U}(E,F)$ est défini dans (5.4), pour tout U ouvert.

On énonce maintenant la proposition 11.76, qui est une nouvelle version de la proposition 5.11, par le même argument de récurrence, en utilisant bien sûr une nouvelle version du lemme 5.20, formulié dans la proposition 11.77.

Proposition 11.76. Il existe $\epsilon_0 > 0$, tel que si $\epsilon < \epsilon_0$, alors pour tout k assez grand, il existe $r_k \in]0, \frac{1}{2}[$ et $o_k \in B(0, 12\epsilon)$ tels que E_k est $2\epsilon r_k$ proche de $Z_k + o_k$ dans $D_k(o_k, 2r_k(1-12\epsilon))$, mais par contre il n'est ϵr_k proche de $Z_k + q$ dans $D_k(o_k, r_k)$ pour aucun $q \in \mathbb{R}^5$.

La démonstration de la proposition 11.76 se fait comme pour la proposition 5.11.

Ensuite la nouvelle version de la proposition 6.1.

Proposition 11.77. Il existe $\epsilon_0 > 0$, tel que pour $\epsilon < \epsilon_0$ fixé et k grand, si notre ϵ -processus ne s'arrête pas à l'étape n, alors

(1) $E_k \cap (D(0, \frac{39}{40}) \setminus D(q_n, \frac{1}{10}s_n))$ est composé de deux morceaux disjoints G^P et G^Q , tels que

(11.78)
$$G^P$$
 est le graphe d'une application C^1 $g^p: D_k(0, \frac{39}{40}) \setminus D_k(q_n, \frac{1}{10}s_n) \cap P_k \to P_k^{\perp}$,

avec

(11.79)
$$||\nabla g^P||_{\infty} < 1 ;$$

et

(11.80)
$$G^Q$$
 est l'image de Y_k d'une application g^Q de classe $C^1: \mathbb{R}^5 \to \mathbb{R}^5$,

avec

(11.81)
$$||Dg^Q - Id|| < \frac{1}{100}.$$

(2) pour chaque $\frac{1}{10}s_n \leq t \leq s_n$

(11.82)
$$E_k \cap (D_k(0,1) \setminus D_k(q_n,t)) = G_t^P \cup G_t^Q$$

où G_t^P, G_t^Q ne se rencontrent pas. De plus

$$(11.83) P_k \cap (D_k(0,1) \setminus C_k^P(q_n,t)) \subset p_k(G_t^P)$$

et

(11.84)
$$q_k(E_k)$$
 sépare les trois $B_i(q_n, t)$ dans $B(0, 1) \setminus D_k(q_n, t)$.

(3) Pour chaque $\frac{1}{10}s_n < t < s_n$, il existe une suite $\{F_l^n(t) = f_l^n(t)((Z_k + q_n) \cap \overline{D}_k(q_n, s_n + \frac{1}{l}))\}$ de déformations de $(Z_k + q_n) \cap \overline{D}_k(q_n, t + \frac{1}{l})$, avec

(11.85)
$$f_{l}^{n}(t)(Z_{k} \cap \partial C_{k}^{i}(q_{n}, t + \frac{1}{l}) \subset \partial C_{i}^{k}(q_{n}, t + \frac{1}{l}), i = P, Q$$

qui tend vers $E_k \cap D_k(q_n,t)$ dans B(0,1);

(4)

$$(11.86) p_k: E_k \cap D_k(q_n, t) \to P_k \cap C_k^P(q_n, t) \text{ est surjective,}$$

et

(11.87)
$$q_k(E_k \cap D_k(q_n, t) \text{ sépare les trois } B_i(q_n, t) \text{ dans } D_k(q_n, t).$$

Remarque 11.88. Le point différent de la proposition 6.1 est la condition de séparation. Mais notons que c'est une propriété invariante sous les déformations (c.f.[13] XVII 4.3), et conservée pour la limite pour la distance de Hausdorff, donc toute la démonstration marche comme dans la proposition 6.1.

Pour l'extension harmonique, on va encore avoir besoin d'une version pour des rectangles, pour traiter la partie proche de Y_0 . Mais ça ne coûte pas cher.

Lemme 11.89. Soit 0 < r < 1 et $u_0 \in C^1([0, r_0] \times \{0\}, \mathbb{R})$. On note $m(u_0) = \frac{1}{r_0} \int_0^{r_0} u_0$ sa moyenne.

Alors pour toute $u \in C^1([0,r_0] \times [0,1],\mathbb{R})$ qui satisfait à

$$(11.90) u|_{[0,r_0]\times\{0\}} = u_0$$

on a

(11.91)
$$\int_{[0,r_0]\times[0,1]} |\nabla u|^2 \ge \frac{1}{4}\pi r_0^{-1} \int_0^{r_0} |u_0 - m(u_0)|^2.$$

Démonstration. On peut d'abord définir, pour chaque $u, \tilde{u} : [0, 2r_0] \times [0, 1] \to \mathbb{R}$, pour chaque (x, y) tel que $r_0 < x \le 2r_0$, et $y \in [0, 1], \tilde{u}(x, y) = u(2r_0 - x, y)$. Alors $\tilde{u}(0, y) = \tilde{u}(2r_0, y)$, et

(11.92)
$$\int_{[0.2r_0]\times[0,1]} |\nabla \tilde{u}|^2 = 2 \int_{[0.r_0]\times[0,1]} |\nabla u|^2.$$

Notons aussi $\tilde{u}_0 = u_0|_{[0,2r_0]\times\{0\}}$.

Maintenant on peut transformer notre région $[0.2r_0] \times [0,1]$ conformément (qui ne change pas l'énergie de Dirichlet) dans un anneau de rayons 1 et $r_1 = exp(-\frac{\pi}{r_0}) < \frac{1}{2}$ par une application f. En

effet, si on regarde le plan comme une version de \mathbb{C} , en regardant $(x,y) \in \mathbb{R}^2$ comme $x+y_i$, alors $f(z) = \exp\{-\frac{\pi}{r_0}\}\exp\{-i\pi z/r_0\}$.

Notons $v = \tilde{u} \circ f^{-1}$. Alors v est une fonction de $B(0,1) \setminus B(0,r_1)$ dans \mathbb{R} , et $v|_{\partial B(0,r_1)} = v_0 := \tilde{u}_0 \circ f^{-1}$.

Par la proposition 7.1

(11.93)
$$\int_{B(0,1)\backslash B(0,r_1)} |\nabla v|^2 \ge \frac{1}{4} r_1^{-1} \int_{\partial B(0,r_1)} |v_0 - m(v_0)|^2.$$

Mais

(11.94)
$$m(v_0) = \frac{1}{2\pi r_1} \int_{\partial B(0,r_1)} v_0 = \frac{1}{2\pi r_1} \int_{[0,2r_0]} \tilde{u}_0 |Df|_{\partial B(0,r_1)} |$$
$$= \frac{1}{2\pi r_1} \int_{[0,2r_0]} \tilde{u}_0 \times \frac{\pi r_1}{r_0} = \frac{1}{r_0} \int_0^{r_0} u_0 = m(u_0),$$

et

(11.95)
$$r_1^{-1} \int_{\partial B(0,r_1)} |v_0 - m(v_0)|^2 = r_1^{-1} \int_{[0,2r_0]} |\tilde{u}_0 - m(u_0)|^2 |Df|_{\partial B(0,r_1)} |$$

$$= r_1^{-1} \int_{[0,2r_0]} |\tilde{u}_0 - m(u_0)|^2 \times \frac{\pi r_1}{r_0} = \pi r_0^{-1} \int_{[0,2r_0]} |\tilde{u}_0 - m(u_0)|^2.$$

Donc par (11.93)

(11.96)
$$\int_{B(0,1)\backslash B(0,r_1)} |\nabla v|^2 \ge \frac{1}{4}\pi r_0^{-1} \int_{[0,2r_0]} |\tilde{u}_0 - m(u_0)|^2 = \frac{1}{2}\pi r_0^{-1} \int_{[0,r_0]} |u_0 - m(u_0)|^2.$$

Mais f est une transformation conforme, de sorte que $\int_{B(0,1)\backslash B(0,r_1)} |\nabla v|^2 = \int_{[0.2r_0]\times[0,1]} |\nabla \tilde{u}|^2$. Par conséquent,

(11.97)
$$\int_{[0.2r_0]\times[0.1]} |\nabla \tilde{u}|^2 \ge \frac{1}{2}\pi r_0^{-1} \int_{[0.2r_0]} |u_0 - m(u_0)|^2,$$

et donc

(11.98)
$$\int_{[0,r_0]\times[0,1]} |\nabla u|^2 \ge \frac{1}{4}\pi r_0^{-1} \int_0^{r_0} |u_0 - m(u_0)|^2.$$

Fin de la démonstration du lemme.

La même argument, en combinant avec le corollaire 7.44, donne

Lemme 11.99. Pour tout $0 < \epsilon < 1$, il existe $C = C(\epsilon) > 100$ tel que si $r_1 : r_0 < \frac{1}{4}$, $u \in C^1([0, r_0] \times [0, r_1], \mathbb{R}$ et

(11.100)
$$u|[0,r_0] \times \{0\} > \delta r_0 - \frac{\delta r_0}{C} \ et \ u|_{[0,r_0] \times \{r_1\}} < \frac{\delta r_0}{C},$$

alors

(11.101)
$$\int_{[0,r_0]\times[0,r_1]} |\nabla u|^2 \ge C'\delta^2 r_0^2.$$

11.4 - Conclusion 129

11.4 Conclusion

Comme dans le paragraphe 8, on donne d'abord une proposition parallèle à la proposition 8.1, mais avec plus de restriction.

Proposition 11.102. Pour tout $0 < \epsilon < \epsilon_0$, il existe $0 < \delta < \epsilon$ et $0 < \theta_0 < \frac{\pi}{2}$, qui ne dépendent que de ϵ , avec les propriétés suivantes.

Soit $\theta_0 < \theta < \frac{\pi}{2}$, et soit P,Q deux espace dans \mathbb{R}^5 de dimension 2 et 3 respectivement, avec $\alpha = \alpha_{P,Q} > \theta_0$, et Y est un cône de type \mathbb{Y} dans Q. On définit $D_{\alpha}(x,r)$ comme dans (11.74) pour P et Q. Alors si $E \subset \overline{B}(0,1)$ est un ensemble minimal dans B(0,1) qui est ϵ proche de $Z_{\alpha} = Y \cup_{\alpha} P$ dans $D_{\alpha}(0,1)$, mais n'est $\frac{1}{2}\epsilon$ proche d'aucune translation $Z_{\alpha} + q$ de Z_{α} dans $D_{\alpha}(0,\frac{1}{2})$, et si de plus

(11.103)
$$p(E) \supset P \cap B(0, \frac{3}{8}),$$

et

(11.104)
$$q(E) \text{ sépare les trois } B_i(0, \frac{3}{8}), 1 \le i \le 3,$$

alors il n'est $\frac{1}{2}\delta$ proche d'aucune translation $Z_{\alpha} + q'$ de Z_{α} dans $D_{\alpha}(0, \frac{1}{2}) \setminus [C^{P}(0, \frac{1}{8}) \cap q^{-1}(S(0, \frac{1}{8}) \times [-\frac{1}{2}, \frac{1}{2}])].$

Démonstration. On montre d'abord ceci.

Lemme 11.105. Pour tout $0 < \epsilon < \epsilon_0$, il existe $0 < \delta_1 < \epsilon$ et $0 < \theta_0 < \frac{\pi}{2}$, qui ne dépendent que de ϵ , avec les propriétés suivantes.

Soit $\theta_0 < \theta < \frac{\pi}{2}$, et soit P,Q deux sous-espaces dans \mathbb{R}^5 de dimension 2 et 3 respectivement, avec $\alpha = \alpha_{P,Q} > \theta_0$, et Y un cône de type \mathbb{Y} dans Q. On définit $D_{\alpha}(x,r)$ comme dans (11.74) pour P et Q. Alors si $E \subset \overline{D}_{\alpha}(0,1)$ est un ensemble minimal dans $D_{\alpha}(0,1)$ qui est δ_1 proche de $Z = Y \cup P$ dans $D_{\alpha}(0,1) \setminus D_{\alpha}(0,\frac{1}{4})$, et si de plus

(11.106)
$$p(E) \supset P \cap B(0,1),$$

et

(11.107)
$$q(E) \text{ sépare les trois } B_i(0, \frac{3}{4}), 1 \leq i \leq 3,$$

alors il est ϵ proche de Z dans $D_{\alpha}(0,1)$.

Démonstration. Même argument pour que la proposition 8.1 et le corollaire 8.24, en remplaçant juste une des deux conditions de projections par la condition de séparation, et utilisant l'unicité de Z_0 .

On va démontrer la proposition 11.102 par l'absurde. Supposons que l'énoncé n'est pas vrai. Il existe alors une suite $\theta_l \to \frac{\pi}{2}$, $\delta_l \to 0$, et E_l minimaux dans B(0,1), tels que E_l est ϵ proche de

 $Z_l = P_l \cup_{\theta_l} Y_l$ dans B(0,1), et avec les propriétés suivantes. D'abord, E_l est $\frac{1}{2}\delta_l$ proche de Z_l dans $D_{\alpha}(0,\frac{1}{2})\setminus [C^P(0,\frac{1}{8})\cap q^{-1}(S(0,\frac{1}{8})\times [-\frac{1}{2},\frac{1}{2}])]$, et (11.103),(11.104) sont vrais pour chaque E_l , mais E_l n'est $\frac{1}{2}\epsilon$ proche d'aucune translation $Z_{\alpha}+q$ de Z_{α} dans $D(0,\frac{1}{2})$. Ainsi, par le lemme 11.105, il n'est $\frac{1}{2}\delta_1$ proche d'aucun $Z_{\alpha}+q$ de Z_{α} dans $D_{\alpha}(0,\frac{1}{2})\setminus D_{\alpha}(0,\frac{1}{8})$.

Quitte à composer par une rotation, on peut supposer que tous les Y_l sont les même. Alors quitte à extraire une sous suite, on peut supposer que les E_l convergent vers un ensemble $E_{\infty} \subset \overline{B}(0,1)$. Alors E_{∞} est un ensemble minimal qui est ϵ proche de Z_0 dans B(0,1). On a donc toutes les conclusions de la proposition 11.77, en utilisant (11.103) et (11.104).

Notons que $\delta_l \to 0$, chaque E_l est $\frac{1}{2}\delta_l$ proche de Z_l dans $\Omega_{\alpha} = D_{\alpha}(0, \frac{1}{2}) \setminus [C^P(0, \frac{1}{8}) \cap q^{-1}(S(0, \frac{1}{8}) \times [-\frac{1}{2}, \frac{1}{2}])]$, et que $Z_l \to Z_0$ puisque $\theta_l \to \frac{\pi}{2}$, donc on a

$$(11.108) E_{\infty} \cap \Omega_0 = Z_0 \cap \Omega_0,$$

où
$$\Omega_0 = D_0(0, \frac{1}{2}) \setminus [C_0^P(0, \frac{1}{8}) \cap q_0^{-1}(S(0, \frac{1}{8}) \times [-\frac{1}{2}, \frac{1}{2}])].$$

La région différence entre Ω_{α} et $D_{\alpha}(0,\frac{1}{2})\backslash D_{\alpha}(0,\frac{1}{8})$ est l'union de deux régions symétriques : $\Omega_{\alpha}^{1}=C_{0}^{P}(0,\frac{1}{8})\cap q_{0}^{-1}(S(0,\frac{1}{8})\times [-\frac{1}{2},-\frac{1}{8}])$ et $\Omega_{\alpha}^{2}=C_{0}^{P}(0,\frac{1}{8})\cap q_{0}^{-1}(S(0,\frac{1}{8})\times [\frac{1}{8},\frac{1}{2}])$.

Notons que $\Omega^i_{\alpha} \to \Omega^i_0, i=1,2$, et E_{∞} est ϵ proche de Z_0 dans ces deux régions. Mais dans chaque Ω^i_0, Z_0 est juste un morceau de Y, et ϵ est suffisament petit, donc par la régularité C^1, E_{∞} est le graphe d'un difféomorphisme φ de classe C^1 de Y dans Ω^i_0 , avec $||D\varphi - Id||_{\infty}$ suffisamment petit. On peut même étendre cette régularité jusqu'à $\Omega^i = C^P_0(0, \frac{1}{8}) \cap q_0^{-1}(S(0, \frac{1}{7}) \times [\frac{1}{10}, \frac{11}{20}])$.

Alors prenons Ω^1 par exemple. Notons F_j , $1 \leq j \leq 3$ les trois morceaux $\varphi(Y_j)$, où les Y_j sont les trois demi-plans ouverts de Y. Chaque F_j contient un morceau de plan dans $\Omega^1 \setminus \Omega^1_0$. Autour de chaque $x \in F_j$, x est un point de type \mathbb{P} , donc dans un voisinage de x, E_j est une variété harmonique (c.f.[17], Proposition 11.17). Par conséquent chaque F_j est une variété harmonique. Mais F_j contient un morceau de plan, donc F_j est forcément un morceau de plan lui même. Par conséquent, $E_{\infty} = Y$ dans Ω^1 .

Pareil pour Ω^2 . On obtient donc $E_{\infty} = Z_0$ dans $D_0(0, \frac{1}{2}) \setminus D_0(0, \frac{1}{8})$. Mais ce cas contredit le fait que E_{∞} n'est $\frac{1}{2}\delta_1$ proche d'aucun $Z_{\alpha} + q$ de Z_{α} dans $D_0(0, \frac{1}{2}) \setminus D_0(0, \frac{1}{8})$.

On obtient donc la propositon 11.102.

Ensuite on procéde comme dans le paragraphe 8. Mais pour gagner une mesure suffisante de la partie dans Q_0 hors de la boule critique, qui ressemble à un \mathbb{Y} , la manière est un peu différente que celle pour traiter une partie qui ressemble à un plan.

Donc fixons un k assez grand, et un $\epsilon < \epsilon_0$ tel que toutes les propriétés ci-dessus sont vraies.

Notons $D(x,r) = D_k(x,r)$. On va regarder dans $D(o_k, r_k)$. Par définition, E_k n'est ϵr_k proche de $Z_k + q$ pour aucun $q \in \mathbb{R}^5$. Alors par la proposition 11.102, E_k n'est δr_k proche de $Z_k + q$ dans $D(o_k, r_k) \setminus [C^P(o_k, \frac{1}{4}r_k) \cap q^{-1}(S(o_k, \frac{1}{4}r_k) \times [-r_k, r_k])]$ pour aucun $q \in \mathbb{R}^5$.

11.4 - Conclusion 131

Pour la partie $E_k \cap D(o_k, \frac{1}{4}r_k)$,

$$(11.109) H^2(E_k \cap D(o_k, r_k)) \ge (1 - \frac{C}{k})[H^2(p_k(E_k \cap D(o_k, r_k))) + H^2(q_k(E_k \cap D(o_k, r_k)))]$$

Alors par (11.86)

(11.110)
$$H^{2}(p_{k}(E_{k} \cap D(o_{k}, r_{k}))) \geq \pi r_{k}^{2},$$

et par (11.87) on a

(11.111)
$$H^2(q_k(E_k \cap D(o_k, r_k))) \ge 6r_k^2.$$

Par conséquent

(11.112)
$$H^{2}(E_{k} \cap D(o_{k}, r_{k})) \geq H^{2}(Z_{k} \cap D(o_{k}, r_{k})) - \frac{C}{k}.$$

Pour la partie $E_k \cap D(o_k, r_k) \setminus D(o_k, \frac{1}{4}r_k)$, si la partie proche de $P_k + o_k$ est déjà loin, c'est à dire, la partie $G_{\frac{1}{4}r_k}^P$ n'est $\frac{1}{2}\epsilon r_k$ proche de aucun P+q dans $D(o_k, r_k) \setminus D(o_k, \frac{1}{4}r_k)$, alors on gagne comme pour deux plans presque orthogonaux si k est grand, parce que pour la partie G^Q , la condition de séparation garantit toujours que la mesure est plus grande que celle de Y_k dans $B(0,1) \setminus D(o_k, \frac{1}{4}r_k)$. Sinon, alors la partie $G_{\frac{1}{4}r_k}^Q$ n'est $\frac{1}{2}\epsilon r_k$ proche de aucun $Y_k + q$ dans $D(o_k, r_k) \setminus (o_k - r_k, o_k + r_k) \times S(o_k, \frac{1}{4}r_k)$.

On va encore décomposer notre $G_{\frac{1}{4}r_k}^Q \cap D(o_k, r_k) \backslash D(o_k, \frac{1}{4}r_k)$.

Notons $F_1 = G_{\frac{1}{4}r_k}^Q \cap D(o_k, r_k) \setminus (o_k - r_k, o_k + r_k) \times S(o_k, \frac{1}{4}r_k)$. Alors F_1 est composé de trois parties plates $F_1^i, 1 \leq i \leq 3$, chaque F_1^i est $2\epsilon r_k$ proche d'un branche $R_i + o_k$ de $Y_k + o_k$ dans $D(o_k, r_k) \setminus (o_k - r_k, o_k + r) \times S(o_k, \frac{1}{4}r_k)$. Donc par la régularité de classe C^1 , chaque F_1^i est le graphe C^1 d'une fonction g^i sur $R_i \cap D(o_k, r_k) \setminus (o_k - r_k, o_k + r) \times S(o_k, \frac{1}{4}r_k)$.

 F_1 n'est $\frac{1}{4}\delta$ proche d'aucun $Y_k + q$, alors il y a deux possibilités.

- 1) il existe un F_1^i qui est $\frac{1}{4}\delta r_k$ loin des translations de R_i . Alors, comme pour l'union de deux plans, notons, pour chaque $a\in (Y^1\cap R_i)+o_k$, $\Gamma_a=g^i((o_k-r_k,o_k+r_k)\times\{a\})$, il existe alors, soit un segment $(o_k-r_k,o_k+r_k)\times\{a\}$ parallèle à L_0 , avec $a\in (Y^1\cap R_i)+o_k$, tel que la partie de F_1^i sur lui contient deux points $x\neq y$ dont les attitudes sont assez différents : $|g^i(x)-g^i(y)|\geq \frac{1}{4}\delta$; soit deux niveaux $a,b\in (Y^1\cap R_i)+o_k+o_k\cap D(o_k,r_k)\setminus (o_k-r_k,o_k+r)\times S(o_k,\frac{1}{4}r_k)$ tels que Γ_a,Γ_b n'osillent pas de $\frac{1}{200}\delta r_k$ eux-mêmes, mais la distance entre eux est plus grande que $\frac{1}{8}\delta r_k$. Dans les deux cas on peut, comme on a démontré dans le paragraphe 8, gagner une mesure $C_1(\delta)r_k^2$ sur Y_k .
 - 2) Si 1) n'est pas vrai. C'est à dire que

chaqune des trois parties est
$$\frac{\delta r_k}{200}$$
 proche des plans, mais l'ensemble n'est pas $\frac{1}{4}\delta$ proche d'aucun Y_k+q .

Notons $F_2 = q_k(G_{\frac{1}{4}r_k}^Q \cap [o_k + \frac{1}{4}r_k, o_k + r_k] \times S(o_k, \frac{1}{4}r_k))$. On va gagner un peu de mesure sur cette partie.

On sait que F_2 intersecte les trois faces $\Delta_i = S(o_k + \frac{1}{4}r_k, o_k + r_k) \times a_i(o_k, \frac{1}{4}r_k)$ en trois lignes qui sont $\frac{\delta r_k}{200}$ proche d'une droite parallèle à L_0 . Mais par (11.105), l'union des trois lignes n'est $\frac{1}{16}\delta r_k$ proche d'aucun $Y_k + q$. Alors puisque les lignes sont $\frac{\delta r_k}{200}$ proches des droites parallèle à L_0 respectivement, pour chaque $s \in (o_k + \frac{1}{4}r_k, o_k + r_k)$, la tranche $F_2^s = \{(x, y, z) \in F_2, x = s\}$ n'est $\frac{\delta r_k}{20}$ proche d'aucun $Y^1 + q$ pour $q \in Q_k$.

Lemme 11.114. Soit $S(0,1) \subset \mathbb{R}^2$ l'hexagone régulier définit comme avant, $a_i = a_i(0,1), b_i = b_i(0,1)$ ses δ côtés. Alors pour chaque $\delta > 0$ petit, il existe $C(\delta) > 0$ qui vérifie la propriété suivante. Soit $x_i, 1 \leq i \leq 3$ trois points tels que $x_i \in a_i$, et que $\bigcup_{i=1}^3 \{x_i\}$ n'est δ proche d'aucun $(Y^1+q) \cap (\bigcup_{i=1}^3 (a_i \cup b_i),$ et γ un ensemble connexe qui connecte les x_i , alors

(11.115)
$$H^{1}(\gamma) \ge 3 + C(\delta).$$

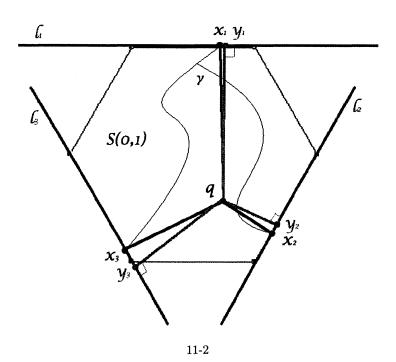
Admettons ce lemme pour l'instant; on obtient par la formule de la coaire que

(11.116)
$$H^{2}(F_{2}) \geq \int_{o_{k}+\frac{1}{4}r_{k}}^{o_{k}+r_{k}} H^{1}(F_{2}^{s}) ds \geq \left(\frac{3}{4}r_{k}\right) \left(1 + C(\delta)\right) \frac{3}{4}r_{k} + D(\delta) \frac{1}{3}r_{k}\right) \\ \geq H^{2}((Y_{k} + o_{k}) \cap S(o_{k} + \frac{1}{4}r_{k}, o_{k} + r_{k}) \times S(o_{k}, \frac{1}{4}r_{k})) + C_{2}(\delta)r_{k}^{2},$$

et on gagne comme précédemment.

Donc il nous reste à montrer le lemme.

Démonstration du lemme 11.114. Voir le dessin 11-2.



Notons $q \in \mathbb{R}^2$ le point tel que les angles entre les $[q, x_i]$ sont tous de 120°. Ce point existe et est dans $\Delta_{x_1x_2x_3} \subset S(0,1)$, puisque chaque angle du triangle $\Delta_{x_1x_2x_3}$ est au plus de 120°. Alors par définition de q, on a

(11.117)
$$H^{1}(\gamma) \ge \sum_{i=1}^{3} |x_{i}q|.$$

Pour chaque $1 \leq i \leq 3$, notons l_i la droite contenant a_i , et $y_i \in l_i$ le point tel que $[q,y_i] \perp l_i$. Alors

(11.118)
$$\sum_{i=1}^{3} |qy_i| = 3.$$

Notons que $(Y^1 + q) \cap (\bigcup_{i=1}^3 (a_i \cup b_i) = \{y_1, y_2, y_3\}$. Par hypothèse, $d_H(\bigcup_{i=1}^3 \{x_i\}, \bigcup_{i=1}^3 \{y_i\}) > \delta$. Donc il existe $1 \le i \le 3$, tel que $d(x_i, y_i) > \delta$. Supposons par exemple que $d(x_1, y_1) > \delta$. Par conséquent

(11.119)
$$|x_1q| = \sqrt{|y_1q|^2 + |x_1y_1|^2} = |y_1q| \sqrt{1 + (\frac{|x_1y_1|}{|y_1q|})^2}$$
$$\ge |y_1q| (1 + \frac{1}{4} (\frac{|x_1y_1|}{|y_1q|})^2) = |y_1q| + \frac{1}{4} \frac{|x_1y_1|^2}{|y_1q|}.$$

Mais $|y_1q| < 2$, $|x_1y_1| \ge \delta$, donc

$$|x_1q| > |y_1q| + \frac{1}{8}\delta^2.$$

D'autre part, puisque $[y_jq]\perp l_j$, et $x_j\in l_j,\ j=2,3$, on a donc

$$(11.121) |y_2q| \le |x_2q|, |y_3q| \le |x_3q|,$$

et donc

(11.122)
$$\sum_{i=1}^{3} |x_i q| > \sum_{i=1}^{3} |y_i q| + \frac{1}{8} \delta^2 \ge 3 + \frac{1}{8} \delta^2.$$

Posons $C(\delta) = \frac{1}{8}\delta^2$, et on obtient la conclusion.

Fin de la démonstration du lemme.

12 Produit et calibration

On commence encore par l'histoire de la liste de cônes minimaux de dimension 2 dans \mathbb{R}^4 . A part de l'union de deux plans presque orthogonaux, un autre canditat potentiel est le produit de deux exemplaires de Y orthogonaux, où $Y \subset \mathbb{R}^2$ est un \mathbb{Y} de dimension 1, qui est l'union de 3 demi-droites qui se rencontrent en faisant angles de 120°.

Il parait très naturel que le produit de deux ensembles minimaux soit minimal. Mais en fait c'est beaucoup moin évident. Même pour $Y \times Y \subset \mathbb{R}^4$, on ne sait pas le démontrer. Ici on donnera un resultat partiel, qui dit que $Y \times Y$ est de mesure minimale parmi toutes ses déformations injectives.

Proposition 12.1. Notons $E = Y_1 \times Y_2 \subset \mathbb{R}^4 = \mathbb{R}^2_1 \times \mathbb{R}^2_2$, où $Y_1 \subset \mathbb{R}^2_1$, $Y_2 \subset \mathbb{R}^2_2$. Alors pour toute application $f : \mathbb{R}^4 \to \mathbb{R}^4$ Lipschitzienne injective telle que f(x) = x hors d'une boule $B \subset \mathbb{R}^4$, alors

(12.2)
$$H^{2}(E \backslash F) \leq H^{2}(F \backslash E).$$

Démonstration. Sans perdre de généralité, on peut supposer que f = id hors du cylindre $D(0,1) = [B(0,1) \cap \mathbb{R}_1^2] \times [B(0,1) \cap \mathbb{R}_2^2]$, parce que E est un cône.

On sait que pour chaque i=1,2, il y a une calibration paire pour $Y_i\subset\mathbb{R}^2_i$. Plus précisément, notons $Y_1\cap\partial B(0,1)=\{x_0,x_1,x_2\}=\{x_i\}_{i\in\mathbb{Z}_3}$ et $Y_2\cap\partial B(0,1)=\{y_i\}_{i\in\mathbb{Z}_3}$. Notons aussi $x_i,y_j,i,j\in\mathbb{Z}_3$ les vecteurs $\overrightarrow{ox_i},\overrightarrow{oy_j}$. Notons $v_i\in\mathbb{R}^2_1$ le vecteur unitaire perpendiculaire à $[x_i,x_{i+1}]$, dont l'angle avec $\overrightarrow{0x_i}$ est 60° , $i\in\mathbb{Z}_3$, et semblablement $u_j\in\mathbb{R}^2_2$, $j\in\mathbb{Z}_3$. Posons $w_i=\frac{\overrightarrow{x_ix_{i+1}}}{|\overrightarrow{x_ix_{i+1}}|}=\frac{\overrightarrow{x_ix_{i+1}}}{\sqrt{3}}=$ et $W_j=\frac{y_jy_{j+1}}{|\overrightarrow{y_jy_{j+1}}|}=\frac{y_jy_{j+1}}{\sqrt{3}}$.

Maintenant fixons une base orthonormée $\{e_1 = w_0, e_2 = W_0, e_3 = v_0, e_4 = u_0\}$ de \mathbb{R}^4 .

On définit, pour chaque $i, j \in \mathbb{Z}_3$, le courant S_{ij} par,

$$(12.3) \langle S_{ij}, \varphi \rangle = \int_{[o,x_i] \times [o,y_j]} det(x_i \wedge y_j \wedge \varphi(x)) dH^2(x), \text{ pour tout champs de 2-vecteurs } \varphi,$$

et le courant T_{ij} par

$$(12.4) < T_{ij}, \varphi > = \int_{[x_i, x_{i+1}] \times [y_j, y_{j+1}]} det(w_i \wedge W_j \wedge \varphi(x)) dH^2(x), \text{ pour tout champs de 2-vecteurs } \varphi.$$

Alors pour f, on a

(12.5)
$$\langle f_{\#}S_{ij}, (v_{i+1} - v_i) \wedge (u_{j+1} - u_j) \rangle >$$

$$= \langle f_{\#}S_{ij}, v_{i+1} \wedge u_{j+1} - v_{i+1} \wedge u_j - v_i \wedge u_{j+1} + v_i \wedge u_j \rangle,$$

et en sommant sur $i \in \mathbb{Z}_3, j \in \mathbb{Z}_3$ on obtient

(12.6)
$$\sum_{i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{3}} \langle f_{\#} S_{ij}, (v_{i} - v_{i-1}) \wedge (u_{j} - u_{j-1}) \rangle >$$

$$= \sum_{i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{3}} \langle f_{\#} S_{ij} + f_{\#} S_{i+1,j+1} - f_{\#} S_{i,j+1} - f_{\#} S_{i+1,j}, v_{i} \wedge u_{j} \rangle.$$

Mais f ne bouge pas le bord, on a donc

$$\partial[f_{\#}S_{ij} + f_{\#}S_{i+1,j+1} - f_{\#}S_{i,j+1} - f_{\#}S_{i+1,j}] = \partial[S_{ij} + S_{i+1,j+1} - S_{i,j+1} - S_{i+1,j}],$$

Alors $dv_i \wedge u_j = 0$ implique que

(12.8)
$$\sum_{i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{3}} \langle f_{\#} S_{ij} + f_{\#} S_{i+1,j+1} - f_{\#} S_{i,j+1} - f_{\#} S_{i+1,j}, v_{i} \wedge u_{j} \rangle$$

$$= \sum_{i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{3}} \langle S_{ij} + S_{i+1,j+1} - S_{i,j+1} - S_{i+1,j}, v_{i} \wedge u_{j} \rangle.$$

Pour $i.j \in \mathbb{Z}_3$ fixés, on veut montrer, par un calcul simple, que

$$(12.9) \langle S_{ij} + S_{i+1,j+1} - S_{i,j+1} - S_{i+1,j}, v_i \wedge u_j \rangle = \langle T_{ij}, v_i \wedge u_j \rangle.$$

En effet, notons a le point au milieu de $[x_i, x_{i+1}]$ et b le point au milieu de $[y_j, y_{j+1}]$. Prenons S_{ij} par exemple. On a

$$(12.10) \langle S_{ij}, v_i \wedge u_j \rangle = \int_{[o,x_i] \times [o,y_i]} det(x_i \wedge y_j \wedge v_i \wedge u_j).$$

Mais $x_i, v_i \in span\{e_1, e_3\}, y_j, u_j \in span\{e_2, e_4\},$ donc

(12.11)
$$\int_{[o,x_{i}]\times[o,y_{j}]} det(x_{i} \wedge y_{j} \wedge v_{i} \wedge u_{j})$$

$$= -\int_{[o,x_{i}]} det_{e_{1} \wedge e_{3}}(x_{i} \wedge v_{i}) \int_{[o,y_{j}]} det_{e_{2} \wedge e_{4}}(y_{j} \wedge u_{j})$$

$$= -\int_{[o,x_{i}]} v_{i} \cdot \frac{1}{\sqrt{3}}(x_{i} - x_{i-1}) \int_{[o,y_{j}]} y_{j} \cdot \frac{1}{\sqrt{3}}(y_{j} - y_{j-1})$$

$$= -\int_{[a,x_{i}]} v_{i} \cdot v_{i} \int_{[b,y_{j}]} y_{j} \cdot u_{j}$$

$$= -\int_{[a,x_{i}]} det_{e_{1} \wedge e_{3}}(w_{i} \wedge v_{i}) \int_{[b,y_{j}]} det_{e_{2} \wedge e_{4}}(W_{j} \wedge u_{j})$$

$$= \int_{[a,x_{i}]\times[b,y_{j}]} det(w_{i} \wedge W_{j} \wedge v_{i} \wedge u_{j}).$$

Les autres trois $S_{i+1,j+1}, S_{i,j+1}, S_{i+1,j}$ sont pareil. On a donc

$$\langle S_{i+1,j+1}, v_{i} \wedge u_{j} \rangle = \int_{[a,x_{i+1}] \times [b,y_{j+1}]} \det(w_{i} \wedge W_{j} \wedge v_{i} \wedge u_{j});$$

$$\langle S_{i+1,j}, v_{i} \wedge u_{j} \rangle = -\int_{[a,x_{i+1}] \times [b,y_{j}]} \det(w_{i} \wedge W_{j} \wedge v_{i} \wedge u_{j});$$

$$\langle S_{i,j+1}, v_{i} \wedge u_{j} \rangle = -\int_{[a,x_{i}] \times [b,y_{j+1}]} \det(w_{i} \wedge W_{j} \wedge v_{i} \wedge u_{j}).$$

On somme sur les 4, et on obtient

(12.13)
$$\langle S_{ij} + S_{i+1,j+1} - S_{i,j+1} - S_{i+1,j}, v_i \wedge u_j \rangle$$

$$= \int_{[x_i, x_{i+1}] \times [y_j, y_{j+1}]} det(w_i \wedge W_j \wedge v_i \wedge u_j) = \langle T_{ij}, v_i \wedge u_j \rangle .$$

On déduit de (12.9) que

(12.14)
$$\sum_{i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{3}} \langle S_{ij} + S_{i+1, j+1} - S_{i, j+1} - S_{i+1, j}, v_{i} \wedge u_{j} \rangle$$

$$= \sum_{i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{3}} \langle T_{ij}, v_{i} \wedge u_{j} \rangle$$

$$= \sum_{i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{3}} \int_{[x_{i}, x_{i+1}] \times [y_{j}, y_{j+1}]} det(w_{i} \wedge W_{j} \wedge v_{i} \wedge u_{j})$$

$$= \sum_{i \in \mathbb{Z}_{3}, j \in \mathbb{Z}_{3}} H^{2}([x_{i}, x_{i+1}] \times [y_{j}, y_{j+1}]) = 27.$$

La deuxième égalité est parce que les w_i , W_j , v_i , u_j sont des vecteurs unitaires deux à deux orthogonaux. Alors en combinant (12.6),(12.8) et (12.14) on a

(12.15)
$$\sum_{i \in \mathbb{Z}_3, j \in \mathbb{Z}_3} \langle f_\# S_{ij}, (v_i - v_{i-1}) \wedge (u_j - u_{j-1}) \rangle = 27$$

pour toute déformation f (pas forcément injective) dans D(0,1).

Mais $|(v_i - v_{i-1}) \wedge (u_j - u_{j-1})| = 3$ pour chaque $i, j \in \mathbb{Z}_3$, et donc par la définition du courant,

$$(12.16) \langle f_{\#}S_{ij}, (v_i - v_{i-1}) \rangle \leq 3H^2(f(S_{ij})),$$

et donc

(12.17)
$$\sum_{i \in \mathbb{Z}_3, j \in \mathbb{Z}_3} H^2(f(S_{ij})) \ge 9 = H^2(E \cap D(0, 1)).$$

Mais l'injectivité de f donne

(12.18)
$$\sum_{i \in \mathbb{Z}_3, j \in \mathbb{Z}_3} H^2(f(S_{ij})) = H^2(f(E \cap D(0,1))),$$

on a donc

(12.19)
$$H^{2}(f(E \cap D(0,1))) \ge H^{2}(E \cap D(0,1)),$$

ce qui donne (12.2).

L'injectivité de f est juste pour montrer (12.18). Il est encore très possible que $Y \times Y$ soit minimal parmi toutes les déformations. Mais on n'a pas encore trouvé de bon moyen pour le montrer.

Plus généralement, on voudrait savoir si le produit de deux ensembles minimaux $E=E_1\times E_2$ reste minimal. Mais puisque déjà dans le cas plus simple de $Y\times Y$ on ne sait pas comment faire, le probleme parait plus compliqué. Un résultat partiel (et simple) est que si E est le support d'un courant qui minimise la taille (au sens des courents, ce qui implique la minimalité Al), alors $E\times \mathbb{R}^d$ est minimal. On peut l'obtenir par slicing.

Par contre, on peut donner un resultat dans la direction réciproque, qui dit que la minimalité du produit de deux ensembles donne la minimalité des deux.

Proposition 12.20. Soit E_i , i = 1, 2 deux ensembles rectifiables réduits fermés de dimension d_i dans \mathbb{R}^{n_i} respectivement. Notons $n = n_1 + n_2$, $d = d_1 + d_2$. Alors si $E = E_1 \times E_2 \subset \mathbb{R}^n$ est un ensemble minimal de dimension d dans \mathbb{R}^n , alors E_i est minimal, i = 1, 2.

Démonstration. On va suivre l'argument dans [9] proposition 8.3, en faisant quelques modifications.

Donc supposons par exemple que f est une déformation de E_1 dans une boule $B \subset \mathbb{R}^{n_1}$ (c'est à dire que f et B vérifient (1.12)(avec $U = \mathbb{R}^{n_1}$) et (1.13). Notons

(12.21)
$$H^{d_1}(E_1 \cap B) - H^{d_1}(F \cap B) = c.$$

On veut construire une application Lipschitzienne $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ et utiliser le fait que E est minimal.

Soit R>0 grand, à choisir plus tard, et on prend une application lisse ψ sur \mathbb{R}^{n_2} , avec

$$\psi(y)=1 \quad \text{pour} \quad |y| \leq R;$$

$$(12.22) \quad 0 \leq \psi(y) \leq 1 \quad \text{pour} \quad R < |y| < R+1;$$

$$\psi(y)=0 \quad \text{pour} \quad |y| \geq R+1,$$

et $|\nabla \psi(y)| \leq 2$ partout. Puis on définit $g: \mathbb{R}^n \to \mathbb{R}^{n_1}$ par

(12.23)
$$g(x,y) = \psi(y)f(x) + (1 - \psi(y))(f(x) - x) \text{ pour } x \in \mathbb{R}^{n_1} \text{ et } y \in \mathbb{R}^{n_2},$$

et pose $\varphi(x,y)=(g(x,y),y)$. Notons que $g(x,y)=x+\psi(y)(f(x)-x)$, et que f(x)-x est borné, (12.24)

g et φ sont Lipschitzienne, avec une borne sur les normes Lipschitziennes L qui ne dépend pas de R.

Posons $W = \{(x,y) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}; f(x,y) \neq (x,y), \text{ alors si } (x,y) \in W, \psi(y) \neq 0 \text{ et } f(x) \neq x. \text{ Par conséquent} \}$

$$(12.25) W \subset B \times B(0, R+1).$$

Notons aussi que par définition de φ , pour chaque $(x,y) \in E$, $\pi \varphi(x,y) = y$, où π désigne le projecteur sur \mathbb{R}^{n_2} . C'est-à-dire, la deuxième coordonnée ne change pas. Donc $\pi[\varphi(E) \cap B \times B(0,R+1)] \subset E_2$. Par conséquent on peut appliquer la formule de la coaire (c.f [14] Cor 3.3.22) à l'ensemble E, qui est rectifiable en tant qu'ensemble minimal.

(12.26)
$$\int_{\varphi(E)\cap(B\times B(0,R+1))} || \wedge_{d_2} \pi(x) || dH^d(x) \\ = \int_{E_2} dH^{d_2}(z) H^{d_1}[\pi^{-1}\{z\} \cap \varphi(E) \cap (B\times B(0,R))].$$

Pour le côté gauche, notons que $|| \wedge_{d_2} \pi(x) || = 1$, donc

(12.27)
$$\int_{\varphi(E)\cap (B\times B(0,R))} || \wedge_{d_2} \pi(x) || dH^d(x) = H^d(\varphi(E)\cap (B\times B(0,R)).$$

Pour le côté droit, notons que pour $z \in B(0,R) \cap E_2$, $\pi^{-1}\{z\} \cap \varphi(E) \cap (B \times B(0,R+1)) = f(E) \cap B$, et donc

(12.28)
$$H^{d_1}[\pi^{-1}\{z\} \cap \varphi(E) \cap (B \times B(0, R+1))] = H^2(E_1 \cap B) - c.$$

Par conséquent

$$\int_{E_2} dH^{d_2}(z)H^{d_1}[\pi^{-1}\{z\} \cap \varphi(E) \cap (B \times B(0, R))]
= \int_{E_2 \cap B(0, R)} dH^{d_2}(z)H^{d_1}[\pi^{-1}\{z\} \cap \varphi(E) \cap (B \times B(0, R + 1))]
= H^{d_2}(E_2 \cap B(0, R)) \times [H^{d_1}(E_1 \cap B) - c]
= H^d(E \cap (B \times B(0, R)) - cH^{d_2}(E_2 \cap B(0, R)).$$

D'un autre côté, pour $z \in B(0, R+1) \setminus B(0, R)$, notons que par définition de φ , $\varphi(E) \cap [B \times (B(0, R+1) \setminus B(0, R))] = \varphi(E \cap [B \times (B(0, R+1) \setminus B(0, R))])$, donc par (12.24)

(12.30)
$$H^{d}(\varphi(E) \cap [B \times (B(0, R+1) \setminus B(0, R))])$$
$$\leq CH^{d}(E \cap [B \times (B(0, R+1) \setminus B(0, R))])$$
$$= CH^{d_{1}}(E_{1} \cap B)H^{d_{2}}(E_{2} \cap B(0, R+1) \setminus B(0, R)),$$

où $C = L^d$ ne dépend pas de R.

En combinant (12.27), (12.29) et (12.30) on trouve que

(12.31)
$$H^{d}(\varphi(E) \cap (B \times B(0, R+1))) \leq H^{d}(E \cap (B \times B(0, R)) - cH^{d_2}(E_2 \cap B(0, R)) + CH^{d_1}(E_1 \cap B)H^{d_2}(E_2 \cap B(0, R+1) \setminus B(0, R)).$$

Notons $CH^1d_1(E_1 \cap B) = C'$, alors

(12.32)
$$H^{d}(E \cap (B \times B(0,R)) - H^{d}(\varphi(E) \cap (B \times B(0,R+1))) > cH^{d_{2}}(E_{2} \cap B(0,R)) - C'H^{d_{2}}(E_{2} \cap B(0,R+1) \setminus B(0,R))$$

où c, C' ne dépendent pas de R. Alor par la minimalité de E on obtient

$$cH^{d_2}(E_2 \cap B(0,R)) - C'H^{d_2}(E_2 \cap B(0,R+1) \setminus B(0,R)) \le 0 \text{ pour tout } R > 0.$$

Alors si on a

(12.34)
$$\liminf_{R \to \infty} \frac{H^{d_2}(E_2 \cap B(0, R+1) \setminus B(0, R))}{H^{d_2}(E_2 \cap B(0, R))} = 0,$$

on peut obtenir que c < 0 pour tout f (rappelons la définition de c dans (12.21)), et donc E_1 est minimal. Un argument semblable donne aussi que si

(12.35)
$$\lim \inf_{R \to \infty} \frac{H^{d_1}(E_1 \cap B(0, R+1) \setminus B(0, R))}{H^{d_1}(E_1 \cap B(0, R))} = 0$$

alors E_2 est minimal.

On affirme qu'au moins une des deux relations (12.34) et (12.35) est vraie. En effet, notons $B_i(0, r) = B(0, r) \cap \mathbb{R}^{d_i}$, alors pour chaque R > 0,

(12.36)
$$(E_2 \cap B_2(0,R+1) \setminus B_2(0,R)) \times (E_1 \cap B_1(0,R+1) \setminus B_1(0,R))$$
$$\subset E \cap [B_1(0,R+1) \times B_2(0,R+1)] \setminus [B_1(0,R) \times B_2(0,R)].$$

Mais E est minimal, donc par la régularité d'Ahlfors on a

(12.37)
$$H^{d}(E \cap [B_{1}(0, R+1) \times B_{2}(0, R+1)] \setminus [B_{1}(0, R) \times B_{2}(0, R))$$
$$= o(R^{d}) = o(H^{d}(E \cap B_{1}(0, R) \times B_{2}(0, R))),$$

ce qui implique que

(12.38)
$$H^{d}[(E_{2} \cap B_{2}(0, R+1) \setminus B_{2}(0, R)) \times (E_{1} \cap B_{1}(0, R+1) \setminus B_{1}(0, R))] = o(H^{d}(E \cap B_{1}(0, R) \times B_{2}(0, R))),$$

ou également

(12.39)
$$H^{d_1}(E_1 \cap B_1(0, R+1) \setminus B_1(0, R)) \times H^{d_2}((E_2 \cap B_2(0, R+1) \setminus B_2(0, R))) = o(H^{d_1}(E \cap B_1(0, R)) \times H^{d_2}(B_2(0, R))),$$

et donc

(12.40)
$$\lim_{R \to \infty} \frac{H^{d_2}(E_2 \cap B(0, R+1) \setminus B(0, R))}{H^{d_2}(E_2 \cap B(0, R))} \cdot \frac{H^{d_1}(E_1 \cap B(0, R+1) \setminus B(0, R))}{H^{d_1}(E_1 \cap B(0, R))} = 0,$$

ce qui implique que (12.34) ou (12.35) est vrai.

Supposons par exemple que (12.34) est vrai, alors E_1 est minimal. Mais dans ce cas là on peut utiliser la régularité d'Ahlfors de E_1 , qui donne (12.35), et par conséquent E_2 est aussi minimal. On obtient donc la conclusion.

Deuxième partie

Minimiseurs topologiques

Sommaire

13 Introduction de la deuxième partie	142
14 Minimiseurs Al dans \mathbb{R}^3	144
15 Contrôler la topologie par mesure	153
16 Préliminaires sur la topologie	161
16.1 Topologie algébrique	161
16.1.1 Homologie simpliciale (à coefficient dans $\mathbb Z$)	162
16.1.2 Homologie singulière (à coefficient dans $\mathbb Z$)	163
16.1.3 Les relations entre les deux groupes d'homologies	164
16.2 Transversalité	165
17 L'image réciproque d'une chaîne lisse par une application trans	- -
verse	167
18 Minimiseur topologique	171
19 Une discussion sur T	178

13 Introduction de la deuxième partie

Dans cette partie, on va introduire une définition de minimiseurs topologiques, qui généralise celle des MS-minimiseurs (voir la définition plus bas). On montrera des propriétés des minimiseurs topologiques, qui sont vérifiées déjà par les MS-minimiseurs. Par exemple, tout minimiseur topologique est un minimiseur d'Almgren. On fera ensuite un premier pas dans la direction d'une caractérisation des minimiseurs topologiques dans \mathbb{R}^n , qui est motivé par le théorème 13.9, qui dit que tout MS-minimiseur de dimension 2 dans \mathbb{R}^3 est un cône. Ensuite, on reviendra au problème de caractérisation des minimiseurs d'Almgren de dimension 2 dans \mathbb{R}^3 , et on restreindra la classe potentielle des Almgren-minimiseurs qui ne seraient pas des cônes.

On rappelle la définition générale des ensembles minimaux. On se donne au préalable définition de la classe des compétiteurs d'un ensemble E. Par exemple, la classe des compétiteurs d'Almgren utilisée dans la partie I, mais deux autres classes seront utilisés ci-dessous. Et l'on définit les ensembles minimaux comme suit.

Définition 13.1 (ensembles minimaux associés à une classe de compétiteurs donnée). Soient 0 < d < n des entiers, U un ouvert de \mathbb{R}^n . L'ensemble E fermé dans U est dit minimal de dimension d dans U si

(13.2)
$$H^d(E \cap B) < \infty$$
 pour toute boule compacte $B \subset U$

et

(13.3)
$$H^{d}(E \backslash F) \leq H^{d}(F \backslash E)$$

pour tout compétiteur F de E dans U.

Cette définition deviendra complète dès que nous aurons défini les classes de compétiteurs.

Dans cette partie, on va juste considérer des ensembles minimaux dans \mathbb{R}^n . C'est à dire, on prend $U = \mathbb{R}^n$ dans la définition. Alors par la remarque 1.17, un compétiteur d'Almgren est définit comme suit.

Définition 13.4 (compétiteur d'Almgren). Un compétiteur d'Almgren de E dans \mathbb{R}^n est un ensemble F = f(E), où :

$$(13.5) f = id hors d'une boule B,$$

et où on demande aussi que f soit Lipschitzienne.

Remarque 13.6. Comparé avec la définition 1.11, en prenant $U = \mathbb{R}^n$, ici on ne demande que (13.5), i.e. (1.12) dans (1.11). Mais par la continuité de f, il existe une boule plus grand $B' \supset B$, telle que $f(B) \subset B'$. Alors par (13.5), la boule B' vérifie (13.5) et (13.6). Donc en effet, cette définition coïncide avec la définition 1.11, avec $U = \mathbb{R}^n$.

Maintenant on va donner une classe plus grande de compétiteurs de codimension 1.

Définition 13.7 (compétiteur de Mumford-Shah (MS)). Soit $E \subset \mathbb{R}^n$ un fermé de dimension n-1 dans \mathbb{R}^n . On dit qu'un fermé $F \subset \mathbb{R}^n$ est un MS-compétiteur de E s'il existe une boule B telle que

- 1) $F \backslash B = E \backslash B$;
- 2) Pour tous $y, z \in \mathbb{R}^n \setminus (B \cup E)$ qui sont séparés par E, y, z sont aussi séparés par F.

Ici "y, z sont séparés par E" veut dire que y et z appartiennent à 2 composantes connexes différentes de $\mathbb{R}^n \backslash E$.

On appelle E un ensemble minimal au sens d'Almgren (resp. MS) si E est comme dans la définition 13.1, en prenant la classe de compétiteurs d'Almgren (resp. MS).

Remarque 13.8. La notion d'ensemble minimal de Mumford-Shah vient de la théorie de la fonctionnelle de Mumford-Shah, et en particulier des "minimas globaux" introduits par A.Bonnet. Dans ce cadre les ensembles MS-minimaux sont juste les minimas globaux pour lesquels la fonction supplémentaire u est constante. Voir [8] pour plus de détails.

En codimension 1 (où l'on peut définir des compétiteurs MS), un compétiteur d'Almgren est automatiquement un compétiteur MS (voir [13] Chap XVII 4.3 pour la démonstration). Et par conséquent un ensemble minimal MS est automatiquement un ensemble minimal au sens d'Almgren. On ne sait pas si la classe des MS-minimiseurs est strictement plus petite que la classe de minimiseurs au sens d'Almgren, bien que la classe de compétiteurs Al est strictement plus petite que la classe de compétiteurs MS. Mais de toute façon, la régularité des ensembles minimaux de dimension 2 dans \mathbb{R}^3 plus la condition topologique qu'on pose sur les compétiteurs MS donne déjà de bons résultats.

Théorème 13.9 ([9], Thm 1.9). Soit E un ensemble minimal au sens MS dans \mathbb{R}^3 , alors il existe un ensemble $E^* \subset E$, $H^2(E \setminus E^*) = 0$, tel que E^* est soit l'ensemble vide, soit un plan, soit un cône de type \mathbb{Y} ou \mathbb{T} .

En bref, le théorème dit qu'un MS-minimiseur dans \mathbb{R}^3 est un cône minimal. Rappelons que dans le cas des minimiseurs d'Almgren, on sait qu'un minimiseur d'Almgren de dimension 2 dans \mathbb{R}^3 est localement C^1 -équivalent à un cône minimal. Mais l'analogue du théorème 13.9 pour les minimiseurs d'Almgren n'est pas encore connu.

Donc dans le paragraphe 14, on veut aussi savoir si le théorème 13.9 est vrai pour des ensembles minimaux Al. Il existe un contre exemple potentiel connu (c.f. [9], paragraphe 19). Mais on va montrer qu'il n'est pas un vrai contre exemple, puisqu'il n'est pas minimal (voir le corollaire 14.21). Par contre, on donnera un autre contre-exemple potentiel d'une structure plus compliquée.

Tous ces contre-exemples sont des exemples topologiques, parce qu'on utilise toujours des arguments topologiques pour montrer qu'un ensemble n'est pas minimal, c'est à dire, on utilise la topologie pour

contrôler la mesure. Mais au paragraphe 15 on donne une méthode pour contrôler la topologie par la mesure.

Ensuite, aux paragraphes 16-18, on essaye d'abord de généraliser la définition de MS-minimiseur en codimension plus haute, et de donner des propriétés fondamentales. L'idée est de remplacer la condition 2) de la définition 13.7 par une condition sur l'homologie de sphères contenues dans $\mathbb{R}^n \setminus (B \cup E)$; voir la définition 18.1 pour la définition précise. On montre au corollaire 18.17 que tout minimiseur topologique est un minimiseur d'Almgren, ce qui permet d'utiliser la théorie de régularité qui est disponible dans ce cadre.

Dans le paragraphe 19, on essaye de regarder s'il y a de bons résultats semblables au théorème 13.9, et on donne un contre-exemple potentiel.

14 Minimiseurs Al dans \mathbb{R}^3

Dans ce paragraphe on se place à nouveau dans \mathbb{R}^3 , et on va discuter du théorème 13.9 en remplaçant les ensembles minimaux MS par des ensembles minimaux Al.

Le théorème dit qu'un ensemble minimal MS de dimension 2 dans \mathbb{R}^3 est forcément un cône. L'idée de la démonstration est la suivante.

Etant donné un ensemble minimal Al, on regarde les limites par implosion de cet ensemble. C'est à dire, on prend n'importe quel point $x \in E$ et on regarde les ensembles

(14.1)
$$E(r,x) = \frac{1}{r}(E-x)$$

en faisant tendre r vers l'infini.

Pour toute suite r_k qui tend vers l'infini telle que les $E(r_k, x)$ convergent (sur tout compact pour la distance de Hausdorff), la limite, qui ne dépend pas de x, est un ensemble minimal avec densité constante, et est donc un cône minimal. De plus, toutes les limites par implosion de E ont la même densité. Or on a trois types d'ensembles minimaux, ceux qui resemblent à un plan, un Y, et un T.

1° Si E ressemble à un plan à l'infini, on fixe n'importe quel point $x \in E$, alors la densité de E en x est au moins 1. Mais la densité à l'infini est 1. Par la monotonie par rapport à r de la fonction de densité $d(r,x) = \frac{H^2(E \cap B(x,r)}{r^2}$ en x (c.f.[9], proposition 5.16), on sait que d(r,x) est constante, de sorte que E est un cône centré en x (c.f.[9] Théorème 6.2), et est donc un plan passant par x.

2° Si E ressemble à un Y a l'infini, alors l'enjeu est de trouver un point de type Y dans E. Une fois qu'on a un tel point, on obtiendra que la densité en ce point est constante, et donc que E est un Y centré en ce point. Pour trouver un point de type Y, notons d'abord qu'il n'existe pas de point de type T, à cause de la monotonie de la densité. Alors s'il n'y a pas de point de type Y, tout point dans E est un point de type \mathbb{P} , et donc E est une variété de classe C^1 , par la C^1 régularité d'un ensemble minimal.

Alors par un argument de degré, on obtient une contradiction. (c.f.[9] proposition 16.24 et paragraphe 17).

3° Si E ressemble à un T à l'infini, on n'arrive pas à montrer l'existence d'un point de type T dans E par un argument topologique simple. En fait, il y a un contre exemple E_0 qui coïncide avec un T hors d'une boule B, et est localement C^1 équivalent à un plan ou un Y près de chaque point. (c.f.[9], paragraphe 19). Et donc pour garantir l'existence d'un point de type T, on ajoute une condition de séparation supplémentaire (voir [9],proposition 18.29), qui est vérifiée par tous les minimiseurs MS.

On peut donc observer que dans les cas 1° et 2°, la minimalité au sens Al garantit déjà que l'ensemble est un cône. Seulement pour 3° on a besoin d'un propriété supplémentaire. Mais en fait l'exemple E_0 n'est qu'un exemple topologique. On va montrer tout de suite qu'il n'est pas un ensemble minimal Al. Donc il est encore possible qu'en fait tous les ensembles minimaux Al de dimension 2 dans \mathbb{R}^3 soient des cônes, ce qu'on va discuter aussi.

Soit E un ensemble minimal Al dont la limite d'implosion est un T. Le but est de trouver un point de type \mathbb{T} (dans \mathbb{R}^3 , cela veut dire un point près duquel E est équivalent à T) dans E, parce que l'on en déduirait comme ci-dessus que la densité de E en ce point est constante, puis que E est un T.

Donc supposons que T est un cône minimal de type $\mathbb T$ centré à l'origine, et qu'il existe une suite $\{t_k\}$ tel que

(14.2)
$$\lim_{k \to \infty} t_k = +\infty \text{ et } \lim_{k \to \infty} d_{0,t_k}(E,T) = 0.$$

Alors d'abord, par la monotonie de la densité à l'origine, on sait que pour chaque k, $\frac{1}{t_k^2}H^2(E \cap B(0,t_k)) < d_T$, et donc

(14.3)
$$H^{2}(E \cap B(0, t_{k})) < H^{2}(T \cap B(0, t_{k})).$$

Notons B = B(0, 1). Notons $y_i, 1 \le i \le 4$ les quatre points de type \mathbb{Y} de $T \cap B$. Notons C l'enveloppe convexe de $\{y_i, 1 \le i \le 4\}$, qui est un tétraèdre régulier inscrit à B. Notons $T_C = T \cap C$.

On a alors

(14.4)
$$\frac{1}{2}H^2(\partial C) = \frac{4}{3}\sqrt{3} < 2\sqrt{2} = H^2(T_C).$$

En effet, notons o l'origine, alors l'angle $\angle y_i \circ y_j = arccos(-\frac{1}{3})$, de sorte que

$$(14.5) |y_i y_j| = (|oy_i|^2 + |oy_j|^2 - 2|oy_i||oy_j|\cos \angle_{y_i o y_j})^{\frac{1}{2}} = 2\sqrt{2}/\sqrt{3}.$$

Par conséquent

(14.6)
$$S_{\Delta y_1 y_2 y_3} = \frac{\sqrt{3}}{4} |y_i y_j|^2 = \frac{2}{3} \sqrt{3},$$

si bien que

(14.7)
$$\frac{1}{2}H^2(\partial C) = 2S_{\Delta y_1 y_2 y_3} = \frac{4}{3}\sqrt{3}.$$

D'autre part,

(14.8)
$$S_{\Delta y_i o y_j} = \frac{1}{2} \sin \angle_{y_i o y_j} |oy_i| |oy_j| = \frac{\sqrt{2}}{3},$$

de sorte que

(14.9)
$$H^2(T_C) = 6S_{\Delta y_i \circ y_i} = 2\sqrt{2}.$$

Notons $\delta = \frac{1}{4}(H^2(T_C) - H^2(\partial C))$. Alors la même démonstration du lemme 16.43 de [9] donne

Lemme 14.10. Il existe $\epsilon_1 > 0$ tel que si $d_{0,2}(E,T) < \epsilon_1$, alors

(14.11)
$$H^{2}(E \cap C) > H^{2}(T_{C}) - \delta.$$

D'un autre côté, il existe $\epsilon_2 > 0$ tel que si $d_{0,2}(E,T) < \epsilon_2$, alors dans $B(0,\frac{3}{2})\backslash B(0,\frac{1}{2})$, E est une version C^1 de T.

Alors par (14.2), et quitte à faire une dilatation, on peut supposer que pour $t_k = 2$,

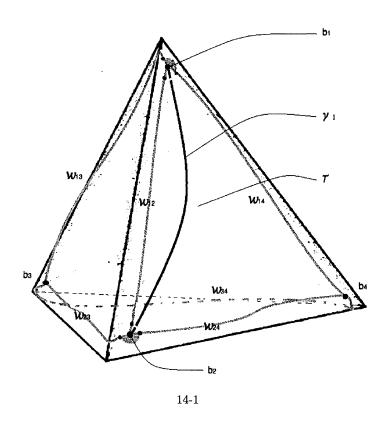
$$(14.12) d_{0,2}(E,T) < \min\{\epsilon_1, \epsilon_2\},$$

ce qui donne (14.11), et que dans $B(0,\frac{3}{2})\setminus B(0,\frac{1}{2})$ E est une version C^1 de T.

En particulier sur le bord de C, $E \cap \partial C$ est de la même topologie que $T \cap \partial C$, c'est à dire, $E \cap \partial C$ est composé de six courbes C^1 par morceaux, qui se rencontrent en 4 extrémités b_i , $1 \leq i \leq 4$, chaque b_i est très proche de chaque y_i , $1 \leq i \leq 4$, où les y_i , $1 \leq i \leq 4$, sont les quatre points de type $\mathbb Y$ dans $T \cap \partial C$. Notons w_{ij} la courbe dans $E \cap \partial C$ dont les extrémités sont b_i et b_j , alors w_{ij} est très proche de $[b_i, b_j]$, en particulier, si on note Ω_i , $1 \leq i \leq 4$, la composante connexe de $\partial C \setminus E$ qui est en face de b_i ($b_i \notin \Omega_i$), bordée par w_{kl} , k, $l \neq i$, alors on peut demande que ϵ soit suffisamment petit pour que

(14.13) pour chaque
$$1 \le i \le 4, H^2(\Omega_i) > \frac{1}{4}H^2(\partial C) - \delta$$
,

où $\frac{1}{4}H^2(\partial C)$ est la mesure d'une face de ∂C . (voir le dessin 14-1)



Maintenant, supposons qu'il n'y a pas de point de type \mathbb{T} dans $E \cap C$. Notons E_Y l'ensemble de points de type \mathbb{Y} dans E. Par la C^1 régularité autour des points de type \mathbb{Y} (c.f. [10] théorème 1.15 et lemme 14.6), $E_Y \cap C$ est composé de courbes C^1 , dont les bouts sont des b_i , $1 \leq i \leq 4$. Alors il existe deux de ces courbes γ_1, γ_2 dont les bouts sont des b_i . Supposons par exemple que $\gamma_1 \cap \partial C = \{b_1, b_2\}$ et $\gamma_2 \cap \partial C = \{b_3, b_4\}$.

Pour chaque point $x \in \gamma_1$, il existe un voisinage B(x,r) tel que dans B(x,r), E est une version C^1 d'un Y + x, qui coupe B(x,r) en 3 composantes connexes. C'est aussi vrai pour les deux points b_1 et b_2 , parce que b_1, b_2 sont des points de type $\mathbb Y$ dans E. Alors par la compacité de $\gamma_1 \cup \{b_1, b_2\}$, il existe r > 0 tel que dans le voisinagle tubulaire $B(\gamma_1, r)$ de γ , E est un Y tordu, dont l'épine est γ_1 , et qui découpe $B(\gamma_1, r)$ en trois composantes connexes, chacun étant un tube long qui joint l'un des trois Ω_i proches de b_1 à l'un des trois Ω_i qui sont proches de b_2 . Notons que si Ω_i et Ω_j sont liés par l'un de ces longs tubes, alors ils appartiennent à la même composante connexe de $B \setminus E$. Par conséquent, il existe $1 \le i, j \le 4, i \ne j$ tel que Ω_i et Ω_j sont dans les même composante connexe de $B \setminus E$, et il existe un tube \mathcal{T} le long de γ_1 qui les connecte.

Supposons qu'il existe une déformation f de E dans C (voir la définition 1.11), $1 \le i \ne j \le 4$, deux points $x \in \Omega_i, y \in \Omega_j$ tels que

$$(14.14) f(E) \subset C \setminus [x, y].$$

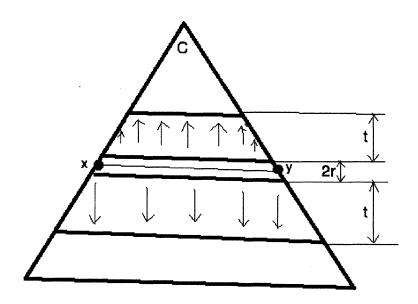
Puisque f(E) est fermé, il existe r > 0 tel que

(14.15)
$$f(E) \subset C \backslash B([x,y],r).$$

Pour chaque t > 0, posons

$$(14.16) g_t: C \backslash B([x,y],r) \to (\mathbb{R}^3 \backslash B([x,y],r+t)) \cup (\partial C \backslash B([x,y],r))$$

l'application définie comme suit : $g_t = Id$ sur $C \setminus B([x,y],r+t)$; pour chaque $z \in C \cap B([x,y],r+t) \setminus B([x,y],r)$, soit z_0 le point de [x,y] tel que $[z,z_0] \perp [x,y]$, alors $g_t(z)$ est l'intersection de la demidroite $[z_0,z)$ avec $\partial(C \cap B([x,y],r+t))$. Voir le dessin 14-2.



14-2

Par la définition on sait que g_t est une déformation Lipschitzienne. De plus, quand t est suffisament grand (par exemple t > 2), on a que $(\mathbb{R}^3 \backslash B([x,y],r+t)) \cup (\partial C \backslash B([x,y],r))$, donc $g_t(E) \subset \partial C \backslash B([x,y],r)$.

Maintenant notons $h_x: \Omega_i \backslash B(x,r) \to \partial \Omega_i$ et $h_y: \Omega_j \backslash B(y,r) \to \partial \Omega_j$ les déformations radiales centrées en x et y. C'est à dire, pour $z \in \Omega_i \backslash B(x,r)$, $h_x(z)$ est l'intersection de la demi-droite [x,z) avec $\partial \Omega_i$, et pour $z \in \Omega_j \backslash B(y,r)$, $h_y(z)$ est l'intersection de la demi-droite [y,z) avec $\partial \Omega_j$. Comme les Ω_j sont localement des version C^1 de triangles, il y a en effet une unique intersection, et que h_x et h_y sont Lipschitzienne. Notons $h_t = h_x \circ h_y \circ g_t \circ f$ la déformation de $C \backslash B([x,y],r) \to C \backslash B([x,y],r)$, qui envoie E dans $G = \partial C \backslash (\Omega_i \cup \Omega_j)$ pour t grand, et de plus, les h_t ne bougent pas $E \cap C = \bigcup_{k=1}^4 \partial \Omega_k$.

Ceci implique qu'on peut déformer E dans C vers un sous ensemble de G.

Par (18.13) et (18.11),

(14.17)
$$H^{2}(G) = H^{2}(\partial C) - H^{2}(\Omega_{i}) - H^{2}(\Omega_{j}) < \frac{1}{2}H^{2}(\partial C) + 2\delta$$
$$= H^{2}(T_{C}) - 2\delta < H^{2}(E \cap C),$$

ce qui contredit le fait que E est minimal. Par conséquent, si E ne contient pas de point de type \mathbb{T} , alors il n'existe pas de déformation f de E dans C telle que $C\backslash f(E)$ contient un segment qui connecte deux Ω_i différents. Mais d'un autre côté, si E contient un point de type \mathbb{T} , par l'argument au début de ce paragraphe, E est un E centré en ce point, de sorte qu'il n'existe pas de telle déformation E non plus. On a donc

Proposition 14.18. Soit E un minimiseur Al dans \mathbb{R}^3 tel que

- 1) $d_{0,2}(E,T) < \min\{\epsilon_1, \epsilon_2\}$;
- 2) E ne contient pas de point de type \mathbb{T} .

Soit C, Ω_i sont comme ci-dessus, alors il n'existe pas de déformation f de E dans C telle que $C \setminus f(E)$ contient un segment qui connecte deux Ω_i différents.

Un corollaire immédiat est que les γ_i font des noeud. En effet, par le lemme ci-dessus, le tube \mathcal{T} le long de γ_1 ne peut pas être trop simple, parce que, par exemple, si γ_1 ne fait pas de noeud, il existe un homéomorphisme Lipschitzien f qui est une déformation dans C telle que

$$(14.19) f(\gamma_1) = [b_1, b_2]$$

alors

$$(14.20) C\backslash f(E) = f(C\backslash E) \supset f(\gamma_1) = [b_1, b_2],$$

ce qui contredit la proposition 14.18.

Par conséquent, le comtre exemple potential proposé par Guy David dans son article [9] n'est pas un vrai contre exemple, puisque les deux γ_i dans cet exemple ne font pas de noeud tous les deux. On a donc

Corollaire 14.21. L'ensemble E_0 donné dans le paragraphe 19 de [9] n'est pas minimal.

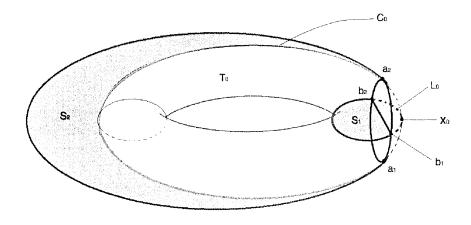
Par l'argument ci-dessus, quand on regarde à une grand échelle où E est très proche de T, γ_1 et γ_2 font des noeux tous les deux.

Topologiquement on ne peut pas éviter ce cas. Les discussions suivantes sont donc déstinées à donner un tel exemple topologique. On va maintenant chercher des propriétés nécéssaires de E si γ_1 fait un noeud. Et ensuite on essayera de construire un exemple où γ_1 fait un noeud, en profitant des proprétés obtenues.

On va donc construire notre exemple à partir d'une surface fermée orientable non simplement connexe.

Mais regardons d'abord le contre exemple E_0 donné dans le paragraphe 19 de [10]. Bien que dans cet exemple les γ_1 et γ_2 ne font pas des noeud, il est aussi un exemple qui contient une surface non simplement connexe. Regardons-le donc pour avoir une idée.

En effet, prenons un tore T_0 , (voir le dessin 14-3), prenons le plus grand cercle horizontal (l'équateur) C_0 (ligne verte), et prenons n'importe quel cercle vertical L_0 (ligne rouge). Notons x_0 leur intersection. Alors on prend $r_0 > 0$ tel que $B_0 = B(x_0, r_0) \cap T_0$ est un disque topologique. Notons a_1, a_2 l'intersection $\partial B_0 \cap C_0$, et b_1, b_2 l'intersection $\partial B_0 \cap L_0$.

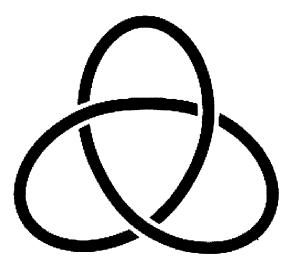


14-3

Notons $\widetilde{a_1a_2} = C_0 \backslash B_0$ le grand arc entre a_1 et a_2 , et $\widetilde{b_1b_2} = L_0 \backslash B_0$ le grand arc entre b_1 et b_2 . Puis notons S_1 la partie verticale plane dont le bord est $[b_1, b_2] \cup \widetilde{b_1b_2}$. D'un autre côté, notons P le plan contenant E_0 , et prenons un disque fermé $\overline{B}_1 \subset P$ qui contient $\widetilde{a_1a_2}$ et dont le bord contient a_1, a_2 . Alors notons $\widehat{a_1a_2} = \partial B_1 \backslash B_0$ le grand arc du ∂B_1 entre a_1 et a_2 , et notons $S_2 \subset P$ la partie entre $\widetilde{a_1a_2}$ et $\widehat{a_1a_2}$.

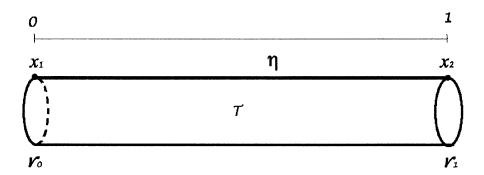
Alors l'ensemble $(T_0 \setminus B_0) \cup S_1 \cup S_2$ est topologiquement l'exemple donné dans le paragraphe 19 de [10]. Ici a_1, a_2, b_1, b_2 sont les 4 points de type $\mathbb Y$ qui correspondent aux 4 points de type $\mathbb Y$ dans $E \cap \partial B(0,1)$, $\widetilde{a_1a_2}$ et $\widetilde{b_1b_2}$ correspondent à γ_1 et γ_2 respectivement; et $\widehat{a_1a_2}$ et $[b_1b_2]$ et les 4 arcs sur ∂B_0 entre a_i et b_j pour i,j=1,2 correspondent aux 6 courbes de $E \cap \partial B(0,1)$.

Après la discussion ci-dessus, on est prêt à construire de la même manière, un exemple E où γ_1 est la partie non-triviale d'un noeud de trèfle. Autrement dit, l'union de γ_1 et du segment $[b_1, b_2]$ fait un noeud de trèfle (voir le dessin 14-4). Mais c'est juste un exemple topologique, et il est peu probable que l'ensemble E décrit ci-dessous puisse en fait être minimal. Notons que toutes les constructions sont dans \mathbb{R}^3 bien sûr.



14-4

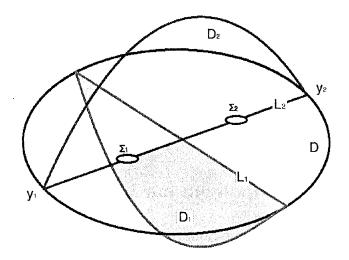
Donc prenons un tube fin droit $\mathcal{T} = \gamma \times [0,1]$, où γ est un cercle. Fixons un point $x_0 \in \gamma$. Notons les deux cercles $\gamma_1 = \gamma \times \{0\}$ et $\gamma_2 = \gamma \times 1$, notons $x_1 = (x_0, 0)$ et $x_2 = (x_0, 1)$. Notons $\eta = \{x_0\} \times [0, 1]$ le segment horizontal. (voir le dessin 14-5)



14-5

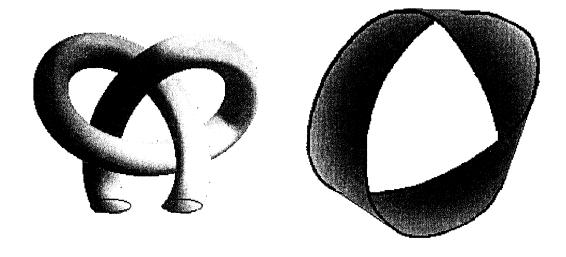
Prenons un grand disque D horizontal centré à l'origine de rayon R, fixons un de ces diamètres L_1 , et notons L_2 le diamètre orthogonal à L_1 , ses extrémités y_1, y_2 . Alors L_1 sépare D en deux composantes connexes. On enlève deux petits disques $\Sigma_1, \Sigma_2 \subset D$ symétriques par rapport à L_1 dont les centres o_1, o_2 appartiennent à L_2 avec $d(o_i, y_i) < \frac{1}{2}H^1(L_2)$, et dont les bords sont de même taille que γ .

Notons Q le plan orthogonal à D et passant par L_1 . Notons $D_1 \subset Q$ un demi disque dont le diamètre est L_1 . Notons aussi Q' le plan orthogonal à D et passant par L_2 , et $D_2 \subset Q'$ le demi disque dont le diamètre est L_2 , et choisissons D_2 de l'autre côté de D par rapport à D_1 . (dessin 14-6)



14-6

On tord maintenant le tube \mathcal{T} par un difféomorphisme f vers une partie d'un noeud de trèfle contenu dans B(0,R) (voir le dessin 14-7 à gauche), et on demande que $f(\gamma_i) = \partial \Sigma_i$ et que $f(x_i)$ soit le point le plus proche de y_i sur $\partial \Sigma_i$, i=1,2. Donc $f(x_i) \in L_2$. Par conséquent la courbe fermée $\eta_1 := f(\eta) \cup [f(x_1), y_1] \cup [f(x_2), y_2] \cup [\partial D_2 \setminus L_2]$ est un noeud de trèfle. On peut donc appuyer une surface $S_1 \subset B(0,R)$ de classe C^1 sur η_1 . Voir le dessin 14-7 à droite qui décrit une surface s'appuyant sur un noeud de trèfle.



14-7

Maintenant notons $E = [D \setminus \Sigma_1 \cup \Sigma_2] \cup f(\mathcal{T}) \cup D_1 \cup S_1$. Alors l'ensemble E et topologiquement l'exemple qu'on voulait décrire. Ici y_1, y_2 et les deux extrémités de L_1 z_1, z_2 sont les quatre points de type \mathbb{Y} dans $E \cap \partial B(0, R)$, $f(\eta) \cup [f(x_1), y_1] \cup [f(x_2), y_2]$ est γ_1 qui fait un noeud, et L_1 est γ_2 . Les 4

arcs courts $\widehat{y_i z_j}$, $1 \leq i, j \leq 2$ sur ∂D , et $\partial D_1 \setminus L_1$, $\partial D_2 \setminus L_2$ sont des six courbes de $E \cap \partial B(0, R)$.

On est donc arrivé à fabriquer un exemple pour lequel une courbe de E_Y fait un noeud. Vraisemblablement cet ensemble n'est pas minimal. Mais topologiquement on ne peut pas l'éviter.

Par contre quand on regarde un ensemble E dont l'intersection avec ∂B est vraiment $T \cap \partial B$, alors on sait montrer que E n'est pas minimal. On le fera dans le paragraphe suivant.

15 Contrôler la topologie par mesure

Rappelons que T est le cône sur le trétraèdre régulier centré à l'origine.

Notons $B = B(0,1) \subset \mathbb{R}^3$ la boule unité ouverte et \overline{B} son adhérence. Alors T coupe la sphère ∂B en quatre regions triangulaires égales $\{S_i\}_{1 \leq i \leq 4}$. On a alors

$$(15.1) \qquad \qquad \cup_{i=1}^4 \overline{S_i} = \partial B$$

et

$$(15.2) \qquad \qquad \cup_{i=1}^{4} S_i = \partial B \backslash T.$$

Notons a_j , $1 \le j \le 4$, les quatre sommets de $T \cap \partial B$, où $a_j = \bigcap_{i \ne j} \overline{S_j} \cap \partial B$ est le point qui se trouve en face de S_j .

Proposition 15.3. 1) Soit $E \subset \overline{B} \cap \mathbb{R}^3$ un ensemble fermé, 2-rectifiable, Ahlfors régulier de dimension 2. avec

$$(15.4) E \cap \partial B = T \cap \partial B.$$

Alors si $H^2(E) < H^2(T \cap B)$,

il existe $1 \le i < j \le 4$, et quatre points a,b,c,d appartenant à un plan,

(15.5)
$$tels \ que \ a \in S_i, d \in S_j, b, c \in B \setminus E, \angle abc > \frac{\pi}{2}, \angle bcd > \frac{\pi}{2}$$
$$et \ [a, b] \cup [b, c] \cup [c, d] \subset \overline{B} \setminus E.$$

où [x,y] désigne le segment d'extrémités x et y et $\angle abc \le \pi$ l'angle du plus petit secteur délimité par \overline{ba} et \overline{bc} .

2) Si de plus E est minimal dans B et vérifie (15.4), alors

(15.6)
$$soit E = T \cap \overline{B}, soit (15.5) est vrai.$$

Voici un corollaire direct de la proposition 15.3.

Corollaire 15.7.

(15.8)
$$H^{2}(E) \leq H^{2}((T \cap B \setminus C) \cup G) = H^{2}(T) - (2\sqrt{2} - \frac{4}{3}\sqrt{3}).$$

Démonstration. Si $E \subset \overline{B}$ est un ensemble minimal réduit qui vérifie (15.4), et qui n'est pas $T \cap \overline{B}$, alors par (15.6), (15.5) est vrai. Mais (15.5) donne l'existence d'une déformation f dans B(0,1) telle que $f(E) \subset B \setminus [a,d]$, on peut donc déformer E sur un sous ensemble de $(T \cap B \setminus C) \cup G$, où C,G sont comme dans le paragraphe précédent. On a donc par (14.4),

(15.9)
$$H^{2}(E) \leq H^{2}((T \cap B \setminus C) \cup G) = H^{2}(T) - (2\sqrt{2} - \frac{4}{3}\sqrt{3}).$$

Démonstration de la proposition 15.3.

Pour 1), on va démontrer la contraposée. Supposons donc que (15.5) n'est pas vrai.

Notons P_j le plan orthogonal à $o\vec{a}_j$ et tangent à la sphère unité, p_j son projecteur. Notons $R_j = p_j(\overline{S}_j) \subset p_j(\cup_{i \neq j} \overline{S}_i) \subset P_j$. Alors pour chaque $1 \leq j \leq 4$ et chaque $x \in R_j$,

$$(15.10) p_j^{-1}(x) \cap E \neq \emptyset.$$

En fait sinon, on a $R_j \setminus p_j(E) \neq \emptyset$, où $p_j(E)$ est compact, en tant que projection d'un compact. Donc $R_j \setminus p_j(E) \neq \emptyset$ est ouvert. Notons que puisque $R_j \setminus (\bigcup_{i \neq j} p_j(S_i))$ est de mesure nulle, on a

$$(15.11) (R_j \backslash p_j(E)) \cap (\cup_{i \neq j} p_j(S_i)) \neq \emptyset.$$

Prenons $x \in (R_j \setminus p_j(E)) \cap (\cup_{i \neq j} p_j(S_i))$. Alors $x \notin \partial R_j$, parce que $\partial S_j \subset E$ et donc $\partial R_j = \partial p_j(S_j) = p_j(\partial S_j) \subset p_j(E)$. Par conséquent, $p_j^{-1}(x) \cap B$ est un segment [a,d] perpendiculaire à P_j avec $a \neq d$, $a \in S_j^{\circ}$ et $d \in \cup_{i \neq j} S_i^{\circ}$. Prenons $b, c \in [a,d]$ tels que a,b,c,d sont différents, et alors (15.5) est vérifié. Une contradiction avec notre hypothèse.

Maintenant pour chaque $x \in R_j$, notons $f_j(x)$ le point dans $p_j^{-1}(x) \cap E$ qui est le plus proche de R_j . Autrement dit, $f_j(x)$ est le premier point dans E dont la projection est x. Ce point existe et est unique, puisque E est compact et que $p_j^{-1}(x)$ est une droite orthogonale à R_j .

Notons $A_j = f_j(R_j)$. Alors A_j est mesurable. En effet,

(15.12)
$$A_{j} = \{x \in E : \forall y \in E \text{ tel que } d(y, P_{j}) < d(x, P_{j}), |p_{j}(y) - p_{j}(x)| > 0\}$$
$$= \bigcap_{p,q} \{x \in E : \forall y \in E \text{ tel que } d(y, P_{j}) < d(x, P_{j}) - 2^{-p}, |p_{j}(y) - p_{j}(x)| > 2^{-q}\}.$$

Maintenant puisque E est rectifiable, $A_j \subset E$ l'est aussi. Donc pour presque tout $x \in A_j$, le plan tangent approximatif $T_x A_j$ de A_j en x existe. Notons v_j le vecteur normal extérieur unitaire de P_j , et notons $w_j(x)$ le vecteur unitaire normal de $T_x A_j$ tel que $\langle v_j, w_j(x) \rangle \geq 0$. Alors $w_j(x)$ est bien défini pour x tel que $T_x A_j \not\perp P_j$.

Posons

$$(15.13) E_j = \{x \in A_j : T_x A_j \not\perp P_j\}.$$

Alors w_j est un champs de vecteurs mesurable sur E_j . Par le théorème de Sard, on a

(15.14)
$$H^{2}(p_{i}(A_{i}\backslash E_{i})) = 0.$$

Mais p_j est injective sur A_j , donc $p_j(A_j \setminus E_j) = p_j(A_j) \setminus p_j(E_j) = R_j \setminus p_j(E_j)$, et donc $R_j \setminus p_j(E_j)$ est de mesure nulle. De plus, pour presque tout $x \in E_j$, $T_x A_j = T_x E_j$.

On veut montrer que

(15.15)
$$\int_{E_j} \langle v_j, w_j(x) \rangle dx = H^2(R_j).$$

Donc appliquons la formule de l'aire (c.f.[14] 3.2.20), avec $m=\nu=2,\,W=E_j,\,f=p_j,\,g=1_{R_j}$; on obtient

(15.16)
$$\int_{E_j} || \wedge_2 ap D p_j(x) || dH^2 x = \int_{R_j} N(p_j, z) dH^2 z.$$

De plus par (15.10), $N(p_j, z) \ge 1$ pour tout $z \in R_j$. Par contre $N(p_j, z) \le 1$ puisque $E_j \subset A_j$ sur lequel p_j est injective. Donc $N(p_j, z) = 1$ pour tout $z \in R_j$. Par conséquent

(15.17)
$$\int_{R_j} N(p_j, z) dH^2 z = H^2(R_j).$$

Pour le membre de gauche de (15.16), prenons $w_j^1(x)$ un vecteur unitaire dans $T_x E_j$ tel que $w_j^1(x) \| R_j$, et $w_j^2(x)$ le vecteur unitaire dans $T_x E_j$ orthogonal à $w_j^1(x)$. Alors $p_j(w_j^1(x)) \perp p_j(w_j^2(x))$, par géométrie élémentaire dans \mathbb{R}^3 . On a alors

(15.18)
$$|| \wedge_2 apDp_j(x)|| = ||p_j(w_j^1(x)) \wedge p_j^j(w_2(x))|| = |p_j(w_j^1(x))||p_j(w_j^2(x))|$$

$$= |p_j(w_j^2(x))|.$$

La première égalité est vraie parce que p_j est une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 , la deuxième égalité parce que $p_j(w_j^1(x)) \perp p_j(w_j^2(x))$, et la dernière parce que $w_j^1(x) \| S_j$.

Maintenant notons $v_j^2(x) = \frac{p_j(w_j^2(x))}{|p_j(w_j^2(x))|} \in P_j$. Il est bien défini parce que $T_x E_j \not\perp P_j$ et donc $|p_j(w_j^2(x))| > 0$. Alors $w_j(x), w_j^2(x), v_j, v_j^2(x)$ sont tous orthogonaux à $w_j^1(x)$, et donc appartiennent à un même plan, avec $w_j(x) \perp w_j^2(x), v_j \perp v_j^2(x)$. Donc

$$|\langle w_j(x), v_j \rangle| = |\langle w_j^2(x), v_i^2(x) \rangle| = |p_j(w_i^2(x))|.$$

Mais par définition on a $\langle w_i(x), v_i \rangle \geq 0$, donc

$$(15.20) \langle w_i(x), v_i \rangle = |p_i(w_i^2(x))| = || \wedge_2 apDp_i(x)||$$

par (19.18). En combinant avec (15.16) et (15.17) on obtient (15.15). Notons qu'ici v_j ne dépend pas de E.

Maintenant pour $x \in A_j \setminus E_j$, on définit un champs de vecteur mesurable $w_j(x)$ tel que $w_j(x) \perp T_x A_j$. Alors $\langle w_j(x), v_j \rangle = 0$ pour presque tout $x \in A_j \setminus E_j$. Et donc

(15.21)
$$\int_{A_j} \langle v_j, w_j(x) \rangle dx = H^2(R_j).$$

En sommant sur j, on a

(15.22)
$$\sum_{j=1}^{4} \int_{A_j} \langle v_j, w_j(x) \rangle dx = \sum_{j=1}^{4} \int_{E_j} \langle v_j, w_j(x) \rangle dx = \sum_{i=1}^{4} H^2(R_j).$$

Ensuite, notons $E_i^0 = E_j \setminus \bigcup_{i \neq j} E_i$, $E_{ij} = (E_i \cap E_j) \setminus \bigcup_{k \neq i,j} E_k$ pour $i \neq j$. On affirme que

(15.23)
$$E_j \setminus (E_i^0 \cup \cup_{i \neq j} E_{ij})$$
 est de mesure nulle pour tout j .

Supposons que non. Alors il existe i, j, k différents tel que $E_i \cap E_j \cap E_k$ est de mesure non nulle. Supposons par exemple que i=1, j=2, k=3, et notons $E_{123}=E_1 \cap E_2 \cap E_3$. Maintenant puisque E_{123} est un ensemble rectifiable mesurable de mesure positive, et que $E_{123} \subset E$, donc pour presque tout $x \in E_{123}$, le plan tangent approximatif $T_x E_{123}$ de E_{123} en x existe et est égal à $T_x E$. Et de plus puisque E est Ahlfors régulier, $T_x E$ est un vrai plan tangent (voir, par exemple, [8], Exercice 41.21, page 277). Choisissons donc un tel $x \in E_{123}$.

Alors par définition de A_j , on a que pour j=1,2,3, le segment $[x,p_j(x)]\cap E=\{x\}$. Et par définition de E_j , on a que $T_xE \not\perp P_j$ et donc $[x,p_j(x)]\cap (T_xE+x)=\{x\}$, puisque $[x,p_j(x)]\perp P_j$. Maintenant le sous espace affine T_xE+x sépare \mathbb{R}^3 en 2 demi espaces, et puisque pour $j=1,2,3,]x, p_j(x)]\cap (T_xE+x)=\emptyset$, il existe $1\leq i< j\leq 3$ tel que $]x,p_i(x)]$ et $]x,p_j(x)]$ se situent du même côté de T_xE+x . Supposons par exemple que i=1,j=2.

Notons, pour i=1,2, α_i l'angle entre $[x,p_i(x)]$ et T_xE+x . Posons $\alpha=\min\{\alpha_1,\alpha_2\}$. Alors puisque T_xE est un vrai plan tangent, il existe r>0 tel que pour tout $y\in E\cap B(x,r)$,

$$(15.24) d(y, T_x E + x) < \frac{r}{2} \sin \alpha.$$

Posons $b = [x, p_1(x)] \cap \partial B(x, r), c = [x, p_2(x)] \cap \partial B(x, r)$, alors par définition de α , $d(b, T_x E + x) \ge r \sin \alpha$, $etd(c, T_x E + x) \ge r \sin \alpha$. Mais b, c sont du même côté de $T_x E + x$, donc pour tout $y \in [b, c]$, $d(y, T_x E + x) \ge r \sin \alpha$, et donc $[b, c] \cap E = \emptyset$, à cause de (15.24).

Maintenant on pose $a = p_1(x)$, $d = p_2(x)$. Notons que dans le triangle Δ_{xbc} , |xb| = |xc|, de sorte que $\angle xbc = \angle xcb$. Mais $\angle xbc + \angle xcb + \angle bxc = \pi$, $\angle bxc > 0$, donc $\angle xbc = \angle xcb < \frac{\pi}{2}$. Par conséquent, $\angle abc = \pi = \angle xbc > \frac{\pi}{2}$, $\angle bcd = \pi - \angle xcb > \frac{\pi}{2}$. Ainsi on a trouvé quatre points a, b, c, d tel que (19.5) est vrai. Une contradiction.

On obtient donc (15.23). Et par conséquent, on a

(15.25)
$$H^{2}(\bigcup_{j=1}^{4} E_{j}) = \sum_{j=1}^{4} H^{2}(E_{j}^{0}) + \sum_{1 \leq i < j \leq 4} H^{2}(E_{ij}).$$

Pour estimer les mesures, on va appliquer la méthode de calibration. Rappelons que v_j est le vecteur normal extérieur unitaire de P_j . Alors on a par (15.22),

(15.26)
$$\sum_{i=1}^{4} H^{2}(R_{j}) = \sum_{j=1}^{4} \int_{E_{j}} \langle v_{j}, w_{j}(x) \rangle dx$$
$$= \sum_{j=1}^{4} \int_{E_{j}^{0}} \langle v_{j}, w_{j}(x) \rangle dx + \sum_{1 \leq i < j \leq 4} \int_{E_{ij}} \langle v_{i}, w_{i}(x) \rangle + \langle v_{j}, w_{j}(x) \rangle dx$$

Pour le premier terme

(15.27)
$$|\int_{E_j^0} \langle v_j, w_j(x) \rangle dx| \le \int_{E_j^0} |\langle v_j, w_j(x) \rangle |dx$$

$$\le \int_{E_j^0} |v_j| |w_j(x)| dx = H^2(E_j^0)$$

et donc

$$(15.28) |\sum_{j=1}^{4} \int_{E_{j}^{0}} \langle v_{j}, w_{j}(x) \rangle dx| \leq \sum_{j=1}^{4} |\int_{E_{j}^{0}} \langle v_{j}, w_{j}(x) \rangle dx| \leq \sum_{j=1}^{4} H^{2}(E_{j}^{0}).$$

Pour le deuxième terme, observons que $w_i(x) = \pm w_j(x)$ pour $x \in E_{ij}$, et notons $\epsilon_x = \frac{w_i(x)}{w_j(x)}$. Alors

(15.29)
$$|\langle v_i, w_i(x) \rangle + \langle v_j, w_j(x) \rangle| = |\langle v_i + \epsilon(x)v_j, w_i(x) \rangle|$$

$$\leq |v_i + \epsilon(x)v_j||w_i(x)| = |v_i + \epsilon(x)v_j| \leq \max\{|v_i + v_j|, |v_i - v_j|\}.$$

Par définition de v_j , l'angle entre v_i et v_j est l'angle supplémentaire de l'angle θ_{ij} entre P_i et P_j . Alors un calcul simple donne

(15.30)
$$|v_i + v_j| = \frac{2}{\sqrt{3}} < 1, |v_i - v_j| = \frac{2\sqrt{2}}{\sqrt{3}} > 1.$$

Donc $\max\{|v_i + v_j|, |v_i - v_j|\} = |v_i - v_j| > 1$. Notons D cette valeur. Par (15.29),

(15.31)
$$|\int_{E_{ij}} \langle v_i, w_i(x) \rangle + \langle v_j, w_j(x) \rangle dx |$$

$$\leq \int_{E_{ij}} |\langle v_i, w_i(x) \rangle + \langle v_j, w_j(x) \rangle | dx \leq DH^2(E_{ij})$$

et donc

(15.32)
$$|\sum_{1 \leq i < j \leq 4} \int_{E_{ij}} \langle v_i, w_i(x) \rangle + \langle v_j, w_j(x) \rangle dx |$$

$$\leq \sum_{1 \leq i < j \leq 4} |\int_{E_{ij}} \langle v_i, w_i(x) \rangle + \langle v_j, w_j(x) \rangle dx | = D \sum_{1 \leq i < j \leq 4} H^2(E_{ij}).$$

En combinant (15.26), (15.28) et (15.32) on obtient

(15.33)
$$\sum_{i=1}^{4} H^{2}(R_{j}) \leq \sum_{j=1}^{4} H^{2}(E_{j}^{0}) + D \sum_{1 \leq i < j \leq 4} H^{2}(E_{ij})$$

$$\leq D[\sum_{j=1}^{4} H^{2}(E_{j}^{0}) + \sum_{1 \leq i < j \leq 4} H^{2}(E_{ij})] \text{(puisque } D > 1)$$

$$= DH^{2}(\cup_{j=1}^{4} E_{j}) \leq DH^{2}(E).$$

D'un autre côté, on peut faire la même chose pour T, le cône sur l'union des arêtes de C, puisque T sépare les quatre faces de C et donc (15.5) est automatiquement faux. Alors par les définitions, on peut bien voir que $T_i^0 = \emptyset$ pour tout i, $\epsilon_{ij} = -1$ pour tout $i \neq j$, et $(v_i - v_j) \perp T_x T$ pour presque tout $x \in T_{ij}$, ce qui implique que

$$(15.34) \langle v_i, w_i(x) \rangle + \langle v_j, w_j(x) \rangle = D$$

pour tout $x \in T_{ij}$. En bref, toutes les inégalités sont des égalités pour T, par conséquent

(15.35)
$$DH^{2}(E) \ge \sum_{i=1}^{4} H^{2}(R_{i}) = DH^{2}(T),$$

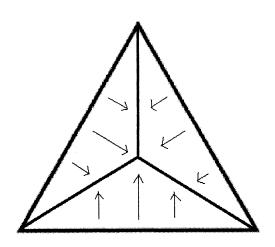
et donc

$$(15.36) H^2(E) \ge H^2(T)$$

pour tout E qui ne vérifie pas (15.5).

Démontrons 2). Soit E un ensemble minimal réduit, alors il est automatiquement rectifiable et Ahlfors régulier (c.f.[11]).

Notons d'abord que $H^2(E) \leq H^2(T)$. En effet, pour chaque $x \in \overline{B} \backslash T$, il existe $1 \leq i \leq 4$, tel que x et S_i appartiennent à la même composante connexe de $B \backslash T$. Alors posons f(x) l'intersection de $x + [0, a_i)$ avec T. Alors $f: \overline{B} \to T$ est une rétraction Lipschtzienne (voir le dessin ci-dessous). Maintenant si E est un ensemble minimal qui vérifie (15.4), alors posons $g: \partial B \cup E \to T \cup \partial B$, g(x) = f(x) pour $x \in E$, g(x) = x pour $x \in \partial T$. Ensuite on étend g en une fonction qui envoie \overline{B} dans \overline{B} . (dessin 15-1). Donc g déforme E en un sous-ensemble de $T \cap \overline{B}$.



15-1

Mais E est minimal, donc

$$(15.37) H^2(E) \le H^2(g(E)) \le H^2(T \cap \overline{B}).$$

Donc pour montrer 2), il faut montrer que si (15.5) n'est pas vrai, et $H^2(E) = H^2(T \cap \overline{B})$, alors $E = T \cap \overline{B}$. Et en particulier E contient un point de type \mathbb{T} .

Par les arguments dans 1), si (15.5) n'est pas vrai, et $H^2(E) = H^2(T)$, alors les inégalités (15.27)-(15.29) et (15.31)-(15.33) sont tous des égalités.

On a donc

- 1) pour presque tout $x \in E_{ij}$, $T_x E_{ij} \perp v_i v_j$. Notons P_{ij} le plan perpendiculaire à $v_i v_j$, alors pour presque tout $x \in E_{ij}$, $T_x E_{ij} = P_{ij}$.
 - 2) $H^2(E_i^0) = 0$ pour tout j, puisque D > 1.
 - 3) $H^2(A_i \setminus E_i) = 0$.
 - 4) $p_i(E) = p_i(E_i) = R_i$.

Alors pour presque tout $x \in E$, $T_x E$ est l'un des P_{ij} . Si x est un point tel que $T_x E$ existe, par la C^1 régularité (c.f.[10], Thm 1.15 et Lem 14.4), il existe r = r(x) > 0 tel que dans B(x,r), E est le graphe d'une fonction C^1 sur $T_x E$, ce qui implique que dans B(x,r), la fonction $f: E \cap B(x,r) \to G(3,2)$, $f(y) = T_y E$ est continue. Mais pour $T_y E$ on n'a que six choix P_{ij} , $1 \le i < j \le 4$, qui sont des points isolés dans G(3,2), et donc $T_y E = T_x E$ pour tout $y \in B(x,r) \cap E$. Par conséquent $E \cap B(x,r) = (T_x E + x) \cap B(x,r)$, un disque parallèle à P_{ij} .

Encore à cause de la régularité C^1 , on a que $E_P = \{x \in E \cap B : T_x E \text{ existe}\}$ est un variété de classe C^1 , qui est ouverte dans E. Et donc

Notons $E_Y = \{x \in E : x \text{ est de type } Y\}$. Alors si $x \in E_Y$, par la C^1 régularité (c.f.[10], Thm 1.15 et Lem 14.6), il existe r = r(x) > 0 tel que dans B(x,r) E est C^1 équivalent à un Y. Notons L_Y l'épine de ce Y, et S_1, S_2, S_3 les trois demi plans ouverts de ce Y, alors si on note φ l'homéomorphisme C^1 qui envoie Y sur E dans B(x,r), les $\varphi(S_i) \cap B(x,r)$ sont des variétés C^1 connexes, et donc chaqune est une partie d'un P_{ij} . Par conséquent, $\varphi(L_y) \cap B(x,r)$ est un segment ouvert passant par x et est parallèle à un D_j , où $D_j = P_{ij} \cap P_{jk}$.

Donc $E_Y \cap B$ est l'union de segments ouverts $I_1, I_2 \cdots$, chaque segment est parallèle à l'un des D_j , et son extrémité est soit un point dans la sphère ∂B , soit un point de type T. De plus

(15.39) pour chaque
$$x \in E_Y$$
 tel que $T_x E_Y = D_j$, il existe $r > 0$ tel que dans $B(x, r), E$ est un Y dont l'épine est $x + D_j$.

Maintenant si $x \in E$ est un point de type T, alors par les arguments ci-dessus, la limite d'exposion $C_x E$ de E en x est T. Par conséquent, pour chaque segment I_i , au moins une de ses extrémité est dans

la sphère unité. En effet, si I_i est limité par deux points x, y de type T, alors au moins l'un de $C_x E$ et $C_y E$ n'est pas T (deux T parallèles ne peuvent pas être connectés par une épine commune).

Donc les segments I_i vont jusqu'au bord.

Lemme 15.40. Si x est de type T, alors $(T + x) \cap B \subset E$.

Démonstration. Par la régularité C^1 autour des point de type T, il existe r > 0 tel que dans B(x,r) E est un exemple C^1 de T+x. Mais par (15.38) et (15.39) on a que en fait $E \cap B(x,r) = (T+x) \cap B(x,r)$. Notons $L_i, 1 \le i \le 4$ les 4 épines de T+x, alors $L_i \cap B \subset E_Y$, parce que $L_i \cap B(x,r)$ est une partie d'un segment $I_j \subset E_Y$, qui a déjà une extrémité x de type T, donc l'autre extrémité est dans la sphère, ce qui veut dire $I_j = L_i \cap B(0,1)$.

Maintenant on prend une famille à un paramètre de boules ouvertes B_s de rayon $r \leq s \leq 1$ qui vérifie

- 1) $B(x,r) \subset B_s \subset B$ pour tout s > r;
- 2) $B_s \subset B_{s'}$ pour tout s < s';
- 3) $\bigcap_{1 > t > s} B_t = \overline{B}_s$ et $\bigcup_{t < s} B_t = B_s$ pour tout r < s < 1.

Notons $R = \inf\{s > r, (T+x) \cap B_s \not\subset E\}$. On affirme que R = 1.

Supposons que non.

Alors par définition de B_s , les quatre épines et les six faces de T+x ne sont jamais tangentes à ∂B_s , r < s < 1, puisque $B(x,r) \subset B_s$.

Pour chaque $y \in \partial B_R \cap (T+x)$, y n'est pas un point de type T. En effet, si y appartient à l'un des L_i , alors y est automatiquement un point de type \mathbb{Y} , puisque $L_i \setminus \{x\} \subset E_Y$; Si y n'est pas de type \mathbb{Y} , il existe alors i,j tels que $y \in x + P_{ij}$. Donc il existe $r_y > 0$ tel que $B(y,r_y) \cap (x+T)$ est un disque D_y centré en y. Maintenant par la définition de R, pour tout s < R, $B_s \cap (T+x) \subset E$, et par conséquent $B_R \cap (T+x) \subset E$. Et donc $D \cap B_R \cap B(y,r_y) \subset E$, ce qui implique que y ne peut pas être un point de type \mathbb{T} .

Alors si y est un point de type \mathbb{P} , supposons que $y \in P_{ij} + x$, alors $T_y E = P_{ij}$. Par (15.38), et puisque R < 1, il existe un $r_y > 0$ tel que $E \cap B(y, r_y) = (P_{ij} + y) \cap B(y, r_y)$. Cela signifie que

(15.41) il existe
$$r_y > 0$$
 tel que E coïncide avec $T + x$ dans $B_R \cap B(y, r_y)$.

Si y est un point de type \mathbb{Y} , alors il est forcément dans l'un des L_i . Par le même argument que ci-dessus en utilisant (15.39), on obtient aussi (15.41).

Donc (15.39) est vrai pour tout $y \in \partial B_R \cap (T+x)$. Mais $\partial B_R \cap (T+x)$ est compact, on peut donc obtenir un r > 0 uniforme tel que pour chaque y (15.39) est vrai en posant $r_y = r$. Cela contredit la définition de R.

Donc R = 1. Mais $B_1 \subset B$ est de rayon 1, de sorte que $B_1 = B$. Par définition de R on obtient la conclusion.

Fin de la démonstration du lemme.

Par le lemme, on sait que si x est un point de type T, alors x est forcément l'origine, à cause de (15.4). Donc $T \cap B \subset E$. Mais dans ce cas la, on a $E = T \cap \overline{B}$, parce que $H^2(E) = H^2(T \cap \overline{B})$.

Il reste donc le cas où il n'y a pas de point de type T. Mais dans ce cas, le même sorte d'argument que le lemme 15.40 donne ce qui suit.

Lemme 15.42. Soit x un point de type \mathbb{Y} dans E, et $T_x E_Y = D_j$. Notons Y_j le Y dont l'épine est D_j . Alors

$$(15.43) (Y_j + x) \cap B \subset E.$$

Mais c'est impossible, parce que $E \cap \partial B = T \cap \partial B$ ne contient pas à la fois les deux bouts d'un $(Y_i + x) \cap \partial B(0, 1)$.

On obtient donc $E = T \cap \overline{B}$. Et donc (15.6).

16 Préliminaires sur la topologie

A partir de ce paragraphe, on commence à essayer de généraliser le concept de minimiseur de Mumford Shah aux codimensions plus grandes.

Dans ce paragraphe, on donne d'abord quelques rappels sur des définitions et théorèmes (sans démonstration) de topologie algébrique et de transversalité. Les lecteurs qui connaissent bien ce sujet peuvent bien sûr sauter ce paragraphe.

16.1 Topologie algébrique

Dans cette section on va discuter de deux sortes de groupes d'homologie. Un groupe d'homologie associé à un espace topologique est un invariant topologique, c'est à dire, à deux espaces homéomorphes sont associées deux groupes d'homologie isomorphes. Donc les groupes d'homologie sont utiles pour distinguer des espaces topologiques.

On donne d'abord les définitions de deux groupes d'homologies. Ensuite on donne des liens nécessaires entre les deux, pour continuer à discuter de la généralisation des minimiseurs MS.

16.1.1 Homologie simpliciale (à coefficient dans \mathbb{Z})

Définition 16.1 (simplexe). Un n-simplexe s est l'enveloppe convexe des n+1 points utilisés pour former un repère affine dans un espace euclidien de dimension n. L'enveloppe convexe de tout sous-ensemble de ce n+1 points est appelé une face du simplexe. Les faces sont des simplexes elles-mêmes. En particulier, l'enveloppe convexe d'un sous-ensemble de taille m+1 (de ce n+1 points) est un m-simplexe, appelé une m-face du simplexe initial. En particulier, pour m=n, une n-face d'un n-simplexe est lui-même.

Par exemple, un 1-simplexe est un segment, un 2-simplexe est un triangle, un 3-simplexe est un tétraèdre, etc.

Remarque 16.2. Un simplexe est une généralisation du triangle à une dimension quelconque. C'est la raison pour laquelle on parle de "triangulation" dans les définitions suivantes.

Définition 16.3 (complexe simplicial). Un complexe simplicial K est un ensemble de simplexes tel que

1° Toutes les faces de chaque simplexe de K appartiennent aussi à K;

2° L'intersection de n'importe quels deux simplexes non disjoints $\sigma_1, \sigma_2 \in \mathcal{K}$ est une face des deux σ_1 et σ_2 .

Un k-complexe simplicial K est un complexe simplical où la plus grande dimension de n'importe quel simplexe de K est k. On dit qu'un complexe K est fini si K est un ensemble fini.

Définition 16.4 (Polyèdre et triangulation). Le polyèdre associé à un complexe simplicial K est simplement la réunion de tous les simplexes qu'il contient. Il est noté |K|. La donnée (K, π) d'un complexe simplicial et d'un homéomorphisme entre son polyèdre |K| et un expace topologique X est appelée une triangulation de X. La triangulation est dite finie si K est un complexe simplicial fini.

Ainsi un cube ne se présente pas naturellement comme un complexe simplicial, notamment parce que ses faces ne sont pas triangulaires, mais il admet plusieurs triangulations possibles.

Définition 16.5 (chaîne simpliciale). Soit K un complexe simplicial. Une k-chaîne simpliciale (à coefficient dans \mathbb{Z}) est une somme formelle de k-simplexes

(16.6)
$$\sum_{i=1}^{N} c_{i} \sigma^{i}, \text{ où } c_{i} \in \mathbb{Z}, \sigma^{i} \in \mathcal{K} \text{ est le } i\text{-ème } k\text{-simplexe}.$$

Le groupe des k-chaînes sur K est le groupe abélien libre engendré par l'ensemble des k-simplexes dans K, et est noté $C_k^{\Delta}(K)$.

Définition 16.7 (l'application bord). L'application bord

(16.8)
$$\partial_k : C_k^{\Delta}(\mathcal{K}) \to C_{k-1}^{\Delta}(\mathcal{K})$$

est l'homomorphisme défini par

(16.9)
$$\partial_k(\sigma) = \sum_{i=0}^k (-1)^i < v^0, \dots, \hat{v}^i, \dots, v^k >,$$

où le simple $xe < v^0, \cdots, \hat{v}^i, \cdots, v^k > est$ la ième face de σ obtenue en supprimant son i-ème sommet.

Notons que

$$(16.10) \partial_k \circ \partial_{k+1} = 0 \text{ pour tout } k.$$

Définition 16.11 (cycles et bords, groupes d'homologies). Puisque $\partial_k \circ \partial_{k+1} = 0$, on a $Im(\partial_{k+1}) \subset Ker(\partial_k)$. Les éléments de $Im(\partial_{k+1})$ sont appelés bords; ce sont les chaînes qui sont images d'une autre chaîne par l'application bord. Les éléments de $Ker(\partial_k)$ sont appelés cycles; ce sont les chaînes dont le bord est nul. Tout bord est un cycle.

Le k-ème groupe $H_k^{\Delta}(\mathcal{K}, \mathbb{Z})$ d'homologie simpliciale (à coefficient dans \mathbb{Z}) du complexe simplicial \mathcal{K} est le quotient

(16.12)
$$H_{\mathbf{k}}^{\Delta}(\mathcal{K}, \mathbb{Z}) = Ker(\partial_{\mathbf{k}})/Im(\partial_{\mathbf{k}+1}).$$

La définition du groupe d'homologie simpliciale demande une bonne régularité de l'espace, c'est à dire, on peut la définir sur un espace qui admet une triangulation. On ne peut pas le définir sur n'import quel espace topologique. Par contre il est relativement facile à comprendre et à calculer, par rapport au groupe d'homologie singulière, dont on va donner la définition tout de suite.

16.1.2 Homologie singulière (à coefficient dans \mathbb{Z})

Définition 16.13 (simplexe standard). On appelle simplexe standard Δ_n de dimension n l'enveloppe convexe dans \mathbb{R}^n des points e_0, e_1, \dots, e_n où $e_0 = (0, \dots, 0)$ et où $e_i = (0, \dots, 0, 1, 0, \dots, 0)$, le 1 étant placé à la i-ème position.

Définition 16.14 (simplexe singulier). Un n-simplexe singulier d'un espace topologique X est une application continue de Δ_n dans X. Notons $S_n(x)$ l'ensemble des n-simplexes singuliers de X.

Ainsi, un 0-simplexe s'identifie à un point de X. Un 1-simplexe est un chemin reliant deux points, paramétré par [0,1].

Définition 16.15 (chaîne singulière). Soit X un espace topologique. Une k-chaîne singulière (à coefficient dans \mathbb{Z}) sur X est une somme formelle de k-simplexes

(16.16)
$$\sum_{i=1}^{N} c_{i}\sigma^{i}, \text{ où } c_{i} \in \mathbb{Z}, \sigma^{i} \in S_{k}(X) \text{ est le } i\text{-ème } k\text{-simplexe singulier.}$$

Le groupe de k-chaînes singulières sur X est le groupe abélien libre engendré par $S_k(X)$, et est noté $C_k(X,\mathbb{Z})$.

Définition 16.17 (l'application bord). Soit σ un n-simplexe de X (n > 0), la i-ème face σ_i de σ est la restriction de l'application au n-simplexe standard, enveloppe convexe des points $e_0, \dots, e_{i-1}, e_{i+1}, \dots, e_n$.

Le bord $\partial \sigma$ de σ est par définition égal à $\sum_{i=0}^{n} (-1)^{i} \sigma_{i}$. On convient que le bord d'un point (un 0-simplexe) est 0. L'application bord est étendue par linérité aux chaînes. Donc l'application bord ∂_{n} va de $C_{n}(X,\mathbb{Z})$ dans $C_{n-1}(X,\mathbb{Z})$ (si n=0, $C_{-1}(X,\mathbb{Z})=0$).

Notons que

(16.18)
$$\partial_n \circ \partial_{n+1} = 0 \text{ pour tout } k.$$

Définition 16.19 (cycles et bords, groupes d'homologies). Puisque $\partial_n \circ \partial_{n+1} = 0$, on a $Im(\partial_{n+1}) \subset Ker(\partial_n)$. Les éléments de $Im(\partial_{n+1})$ sont appelés bords; ce sont les chaînes qui sont images d'une autre chaîne par l'application bord. Les éléments de $Ker(\partial_n)$ sont appelés cycles; ce sont les chaînes dont le bord est nul. Tout bord est un cycle.

Le groupe quotient $Ker(\partial_n)/Im(\partial_{n+1})$ est le n-ème groupe $H_n(X,\mathbb{Z})$ d'homologie singulière de l'espace topologique X.

On associe ainsi à tout espace topologique une suite de groupes abéliens.

16.1.3 Les relations entre les deux groupes d'homologies

L'homologie singulière est définie sur tout espace topologique. Mais elle est, en général, difficile à calculer directement à partir de la définition. On veut donc décider, sur quel espace les deux homologies sont bien définies et coïncident, de sorte qu'on peut décider l'homologie singulière en calculant l'homologie simpliciale, qui est plus facile.

Notons d'abord que, si \mathcal{K} est un complexe simplicial, il existe un homomorphisme canonique $H_n^{\Delta}(\mathcal{K},\mathbb{Z}) \to H_n(|\mathcal{K}|,\mathbb{Z})$, induit par l'application des chaînes $C_n^{\Delta}(\mathcal{K},\mathbb{Z}) \to C_n(|\mathcal{K}|,\mathbb{Z})$, en envoyant chaque n-simplexe de \mathcal{K} dans son application caractéristique $\sigma: \Delta^n \to |\mathcal{K}|$.

Théorème 16.20 (c.f.[18], Thm 2.27). Les homomorphismes $H_n^{\Delta}(\mathcal{K}, \mathbb{Z}) \to H_n(|\mathcal{K}|, \mathbb{Z})$ sont isomorphismes pour tout n.

Remarque 16.21. Soit X un espace topologique qui admet une triangulation $|\mathcal{K}| \cong X$, alors pour toute triangulation $|\mathcal{K}'| \cong X$ on a

$$(16.22) H_n^{\Delta}(\mathcal{K}, \mathbb{Z}) \cong H_n(|\mathcal{K}|, \mathbb{Z}) \cong H_n(X, \mathbb{Z}) \cong H_n(|\mathcal{K}'|, \mathbb{Z}) \cong H_n^{\Delta}(\mathcal{K}', \mathbb{Z}),$$

ce qui implique qu'on peut définir l'homologie simpliciale sur X

(16.23)
$$H_n^{\Delta}(X, \mathbb{Z}) = H_n^{\Delta}(\mathcal{K}, \mathbb{Z}).$$

Par le théorème, pour tout espace qui admet une triangulation, on peut calculer l'homologie singulière par l'homologie simpliciale de la triangulation. Ensuite on va décider quels espaces admettent des triangulation.

Définition 16.24 (triangulation μ -lisse). Soit $\mu \geq 1$ un entier, ou $\mu = \infty$. Soit M une variété de classe C^{μ} de dimension n. Une triangulation (\mathcal{K}, π) (voir la définition 16.4) de M est dite μ -lisse si pour chaque n-simplexe σ de \mathcal{K} , il existe une carte (U, ξ) de M $(\xi : U \cong V \subset \mathbb{R}^n)$ telle que $\pi(\sigma) \subset U$, et $\xi \circ \pi$ est affine sur σ . Si de plus \mathcal{K} est un n-complexe simplicial, la triangulation est dite une μ -lisse n-triangulation.

Théorème 16.25 (c.f.[33],Chap. IV,§ 14B, Thm 12). Toute variété M de classe C^{μ} admet une triangulation μ -lisse.

L'idée (qui vient de S.S.Cairns, [5]) pour démontrer ce théorème n'est pas compliquée. On plonge d'abord M dans un espace euclidien \mathbb{R}^N . On donne d'abord une triangulation lisse à \mathbb{R}^N (par des cubes dyadiques) très fine, et on bouge un peu cette triangulation de sorte qu'elle soit transverse à M. Alors l'intersection de M avec la triangulation induit une triangulation sur M.

Une autre démonstration intéressante est donnée par le même mathématicien, voir [6].

Remarque 16.26 (c.f.[33],Chap.IV,§ 14B, Thm 12). a) Pour une sous-variété $M \subset \mathbb{R}^n$, il existe une triangulation lisse de \mathbb{R}^n dont M est un sous-complexe;

b) On peut aussi trianguler une "variété à bord", par la même méthode.

Remarque 16.27. Notons que toute triangulation (K, π) d'une variété de dimension n est forcément une n-triangulation.

Définition 16.28 (k-chaîne simpliciale lisse). Soit $k \leq n$ deux entiers, M une váriété lisse de dimension n. Une somme formelle Γ est dite une k-chaîne simpliciale lisse sur M (par rapport à la triangulation (\mathcal{K}, π)), s'il existe une triangulation (\mathcal{K}, π) ∞ -lisse de M, et une k-chaîne simpliciale $S = \sum_{i=1}^{N} c_i \sigma^i$ sur \mathcal{K} (avec les $\sigma^i \in \mathcal{K}$ des k-simplexes, $c_i \in \mathbb{Z}$), tel que $\Gamma = \sum_{i=1}^{N} c_i \pi(\sigma^i)$. Les images $\pi(\sigma)$ des d-faces σ de \mathcal{K} , $d \leq k$, sont appelées les d-faces de Γ . Le bord $\partial \Gamma$ de Γ est défini par

(16.29)
$$\partial \Gamma = \sum_{i=1}^{N} c_i \pi(\partial \sigma^i) =: \pi(\partial S).$$

C'est une k-1-chaîne lisse.

16.2 Transversalité

La propriété de transversalité décrit, en bref, une position générale de l'intersection de sous-espaces ou de sous-variétés. Elle est en quelque sorte l'opposé de la notion de tangence. 16.2 - Transversalité 165

Définition 16.30. Soit M, N deux variétés lisses de dimensions m et $n, f : M \to N$ une application lisse. Soit $\Gamma \subset N$ une sous-variété lisse de N. On dit que f est transverse à Γ , noté $f \pitchfork \Gamma$, si pour tout $x \in M$ tel que $y = f(x) \in \Gamma$, le plan tangent $T_y\Gamma$ et l'image $f_*(T_xM)$ engendrent T_yN .

La propriété utilisée le plus souvent est la suivante.

Proposition 16.31 (c.f.[4], Chapt II, Thm15.2). Soit M, N, f, Γ comme dans la définition. Si $f \pitchfork \Gamma$ alors $f^{-1}(\Gamma)$ est une sous-variété régulière (ou sous-variété plongée). De plus la codimension de $f^{-1}(\Gamma)$ dans M est la même que celle de Γ dans N.

Corollaire 16.32. Soit M, N, f, Γ, m, n comme dans la proposition précédente. Si de plus, M, N, Γ sont orientables, alors $f^{-1}(\Gamma)$ est aussi orientable.

Démonstration. Notons $\Gamma' = f^{-1}(\Gamma)$. Notons d la codimension de Γ dans N, et donc aussi celle de Γ' dans M, par la proposition.

 Γ est orientable, ce qui implique qu'il existe sur Γ un champs de d-vecteurs normal lisse ne s'anulant pas $v:\Gamma\to \wedge_d(TN)$, avec $v(x)\in \wedge_d(T_x\Gamma^\perp)$.

Maintenant pour chaque $y \in \Gamma'$, $x = f(y) \in \Gamma$, puisque f est transverse, $f_*(T_yM) \oplus T_x\Gamma$ engendre T_xN . Notons $N_y\Gamma'$ l'espace orthogonal de $T_y\Gamma'$ dans T_yM , et $N_x\Gamma$ l'espace orthogonal de $T_x\Gamma$ dans T_xN . On sait que $f_*(T_y\Gamma') \subset T_x\Gamma$, donc $f_*(N_y\Gamma') \oplus T_x\Gamma$ engendre $N_x\Gamma \oplus T_x\Gamma$. Notons π_x la projection orthogonale de T_xN sur $N_x\Gamma$, alors $\pi_x \circ f_*(N_y\Gamma')$ est surjective linéaire sur $N_x\Gamma$. Notons que par la proposition, $N_y\Gamma'$ et $N_x\Gamma$ sont tous les deux de dimension d, donc $\pi_x \circ f_*$ est bijective linéaire. Donc pour chaque $y \in \Gamma'$, définissons $v'(y) \in N_y\Gamma'$ l'image réciproque de v(x) par $\pi_x \circ f_*$, alors v' est un champ de d-vecteurs normal lisse, partout non nul sur Γ' , ce qui implique que Γ' est orientable. \square

Remarque 16.33. Par la démonstration du corollaire, l'orientation v' de $f^{-1}(\Gamma)$ est dite l'orientation induite par f de l'orientation v de Γ , noté $f^*(v)$. Il est facile à voir que si Γ est une variété lisse à bord orientable, f transverse à Γ et $\partial \Gamma$, alors $\partial f^{-1}(\Gamma) = f^{-1}(\partial \Gamma)$, et de plus si on note ∂v l'orientation de $\partial \Gamma$ induite par v, $\partial f^*(v)$ l'orientation de $\partial f^{-1}(\Gamma)$ induite par $f^{-1}(\Gamma)$, on a alors

(16.34)
$$\partial f^*(v) = f^*(\partial v).$$

Le théorème suivant dit que les fonctions transverses à une certaine variété forment un grand ensemble dans l'ensemble des fonctions de classe C^{∞} .

Théorème 16.35 (Théorème de transversalité, c.f.[20], Chapt 3, Thm 2.1). Soit M et W deux variétés lisses. Soit F un fermé de M. Soit Z une sous-variété lisse de W. Soit f une application de classe C^{∞} de M dans W qui est transverse à Z en tout point de F. Soit X l'ensemble des applications C^{∞} de M dans W qui coïncident avec f sur F. Alors l'ensemble des fonctions C^{∞} de M dans W qui coïncident avec f sur F et sont transverses à Z est une intersection dénombrable d'ouverts dense de X par rapport à la topologie de Whitney.

Remarque 16.36. Ici on n'explique pas ce que signifie la topologie de Whitney. Tout ce qu'on a besoin de savoir ici est que la topologie de Whitney est une topologie sur l'espace de fonctions C^{∞} , et que pour tout compact $K \subset M$, pour tout $\epsilon > 0$, pour tout $f: M \to W$ de classe C^{∞} , l'ensemble des fonctions $g: M \to W$ de classe C^{∞} telles que $|g-f| < \epsilon$ sur K est un ouvert pour la topologie de Whitney.

Remarque 16.37. Notons que si $A_i, i \in \mathbb{N}$, est une suite d'ensembles, chacun est une intersection dénombrable d'ouverts denses, alors leur intersection $\cap_{i \in \mathbb{N}} A_i$ est aussi une intersection dénombrable d'ouverts dense. Par conséquent, si $Z_i, i \in \mathbb{N}$, est une suite de sous-variétés lisses dans W, alors l'ensemble des fonctions lisses qui sont transverses à tous les Z_i est toujours une intersection dénombrable d'ouverts denses.

17 L'image réciproque d'une chaîne lisse par une application transverse

On va maintenant généraliser le théorème au cas où Γ est une k-chaîne simpliciale lisse. Notons que pour toute d-face σ de Γ , l'intérieur σ ° de σ est une d-sous-variété régulière lisse.

Définition 17.1. Soit m, n deux entiers, $k < \min\{m, n\}$, M, N deux variétés lisses de dimensions m et n. Soit $\Gamma \subset N$ une k-chaîne lisse, on dit qu'une application lisse $f: M \to N$ est transverse à Γ , si pour tout $d \le k$, pour toute d-face σ de Γ , f est transverse à la sous-variété σ °.

Maintenant on va regarder l'image réciproque d'une chaîne simpliciale lisse par une application transverse à elle, et on veut obenir un résultat semblable à (16.34). Pour avoir une idée, on énonce d'abord la proposition suivante, sans préciser certaines notations.

Proposition 17.2. Soit M, N deux variétés lisses orientées de dimensions m et $n, f : M \to N$ lisse et propre, $k \le \min\{m, n\}$. Soit Γ une n - k-chaîne simpliciale lisse dans N, et supposons que f est transverse à Γ . Alors $f^{-1}(\Gamma)$ est aussi une m - k-chaîne simpliciale lisse (sous une certaine triangulation) dans M; de plus,

(17.3)
$$\partial f^{-1}(\Gamma) = f^{-1}(\partial \Gamma).$$

Dans les discussion suivante on va expliquer les notations inconnues, et donner aussi une démonstration de la proposition.

Soit M, N deux variétés lisses orientées de dimensions m et n, notons leur orientations v_M, v_N . Soit $f: M \to N$ une application lisse et propre (c'est à dire, l'image réciproque d'un compact est compact).

Etape 1 : structure autour d'un simplexe lisse.

Soit $\Sigma \subset N$ un n-simplexe lisse. Soit f transverse à Σ .

Par définition, il existe une triangulation lisse (K, π) de N, un n-simplexe $\sigma \in K$, telle que $\pi(\sigma) = \Sigma$. Par la définition de triangulation lisse, il existe une carte (U, ξ) de N $(\xi : U \cong V \subset \mathbb{R}^n)$ telle que $\Sigma = \pi(\sigma) \subset U$, et $\xi \circ \pi$ est affine sur σ .

Mais σ est un sous ensemble d'intérieur non-vide de \mathbb{R}^n , et $\xi \circ \pi$ est affine sur σ , donc en fait $\xi \circ \pi$ est affine dans un voisinage w de σ . Notons $G = \xi \circ \pi(w) \cap V \subset \mathbb{R}^n$, il est alors une sous-variété ouverte de dimension n, qui contient $\xi(\Sigma) = \xi \circ \pi(\sigma)$. Notons que $\xi \circ \pi$ est affine, et est un homéomorphisme, donc $\Sigma' := \xi \circ \pi(\sigma)$ est un n-simplexe dans $G \subset \mathbb{R}^n$. D'un autre côté, notons que $\xi \circ f$ est transverse à Σ' par définition.

Notons que ξ est un difféomorphisme, donc sans perdre de généralité, en remplaçant f par $\xi \circ f$, N par G, Σ par Σ' , on peut juste discuter le cas où N est un ouvert dans \mathbb{R}^n , et $\Sigma \subset N$ est un n-simplexe.

Pour chaque $k \leq n$, σ une k-face de Σ , notons V_{σ} l'intersection de N avec le k-espace affine contenant σ .

On sait que f est transverse à σ . Alors pour chaque point $x \in \sigma$, il existe $d \leq k$ tel que x appartient à l'interieur d'une d-face γ de σ (pour d=0, l'intérieur d'un point est défini comme ce point là). Par définition, pour chaque $y \in f^{-1}(x)$, $f_*(T_yM) \supset N_xV_\gamma$ (l'espace normal de V_γ). Mais $V_\gamma \subset V_\sigma$, donc $N_xV_\gamma \supset N_xV_\sigma$. Par conséquent, $f_*(T_yM) \supset N_xV_\sigma$ pour tout $x \in \sigma$ et $y \in f^{-1}(x)$. Donc f est transverse à V_σ en tout point de σ .

Notons E l'ensemble des points dans N où f est transverse à V_{σ} . Il contient alors un voisinage ouvert O_{σ} de σ . En effet, prenons un compact $A \subset N$ tel que $\sigma \subset A^{\circ}$. Alors si $\{y_l\}_{l \in \mathbb{N}} \subset A$ est une suite de points où f n'est pas transverse à V_{σ} , et $y_{\infty} \in A$ est sa limite, alors par définition il existe $\{z_l\}_{l \in \mathbb{N}} \subset f^{-1}(A)$ tel que $f(z_l) = y_l$ et que $Df(z_l)(T_{z_l}M) \oplus T_{y_l}V_{\sigma} \neq T_{y_l}N$. Notons que les espaces normaux $N_{y_l}V_{\sigma}$ et $N_{z_l}f^{-1}(V_{\sigma})$ sont de même dimension, et $Df(z_l)(T_{z_l}f^{-1}(V_{\sigma}) \subset T_{y_l}V_{\sigma}$, donc $Det_{N_{z_l}f^{-1}(V_{\sigma}) \to N_{y_l}V_{\sigma}}p_{y_l} \circ Df(z_l) = 0$, où p_{y_l} désigne la projection orthogonale de $T_{y_l}N$ sur $N_{y_l}V_{\sigma}$.

On sait que f est propre, A est compact, donc $f^{-1}(A)$ est compact. La suite $\{z_l\}$ admet donc un point d'adhérence z_{∞} . Alors $f(z_{\infty}) = y_{\infty} \subset A$, et par la continuité de f et sa dérivée, on a aussi $Det_{N_{z_{\infty}}f^{-1}(V_{\sigma})\to N_{y_{\infty}}V_{\sigma}}[p_{y_{\infty}}\circ Df(z_{\infty})]=0$, ce qui implique que f n'est pas transverse à V_{σ} en y_{∞} .

On a donc que l'ensemble E^C des points où f n'est pas transverse à V_{σ} est fermé dans A. Donc E est ouvert dans A. Notons que $\sigma \subset A^{\circ}$, il existe alors un voisinage ouvert $O_{\sigma} \subset E$ tel que $\sigma \subset O_{\sigma}$. On peut demander aussi que $O_{\sigma} \supset \Sigma$. En effet, $E \supset N \backslash V_{\sigma}$, et on peut donc remplacer O_{σ} par $(O_{\sigma} \cap V_{\sigma}) \cup N \backslash V_{\sigma} = E \backslash (V_{\sigma} \backslash O_{\sigma})$.

Notons que la nombre de faces dans Σ est fini, donc $\bigcap_{k \leq n} \bigcap_{\sigma \in \{k-face \ de'\Sigma\}} O_{\sigma}$ est un ouvert. Il est non vide, parce qu'il contient Σ . Prenons un ouvert $O \subset \bigcap_{k \leq n} \bigcap_{\sigma \in \{k-faces\}} O_{\sigma}$ qui est difféomorphe à une boule. Remplaçons V_{σ} par $V_{\sigma} \cap O$.

Jusqu'à maintenant, pour chaque k-face σ de Σ , on a trouvé une k-variété affine V_{σ} dans O qui contient σ telle que f est transverse à V_{σ} .

Notons que pour chaque V_{σ} et $V_{\sigma'}$ de dimension k et k-1, soit ils sont disjoints, soit $V_{\sigma'} \subset V_{\sigma}$ et $V_{\sigma'}$ coupe V_{σ} en deux parties ouvertes.

Etape 2 : la structure de $f^{-1}(\Sigma)$.

Maintenant notons $\sigma^1, \dots, \sigma^{n+1}$ les n+1 n-1-faces de Σ . Notons G_i la composante connexe de $O\setminus \sigma^i$ qui contient Σ° . Alors $f^{-1}(\Sigma^\circ) = f^{-1}(\cap_{1\leq i\leq n+1}G_i) = \cap_{1\leq i\leq n+1}f^{-1}(G_i)$, c'est une region dans M, bordée par des variétés orientées $f^{-1}(V_{\sigma^i}), 1\leq i\leq n+1$. (On donne l'orientation induite par f de v_N à $f^{-1}(\Sigma^\circ)$, et l'orientation induite par ∂v_N à $f^{-1}(\sigma^{i^\circ})$, et donc aussi aux $f^{-1}(V_{\sigma^i}), 1\leq i\leq n+1$.)

Par conséquent, le bord topologique de $f^{-1}(\Sigma^{\circ})$ est contenu dans l'union des $\bigcap_{j\neq i} \overline{f^{-1}(G_i)} \cap f^{-1}(V_{\sigma^i}) = f^{-1}(\sigma^i)$.

D'un autre côté, chaque $f^{-1}(\sigma^i)$ est contenu dans le bord de $f^{-1}(\Sigma^{\circ})$. En effet, pour un point x qui appartient à l'intérieur σ^i , il existe une boule ouverte $B \subset O$ contenant x, tel que dans B, σ^i sépare B en deux parties $\Sigma^{\circ} \cap B$ et $B \setminus \Sigma$. Par conséquent dans $f^{-1}(B)$, $f^{-1}(\sigma^i)$ sépare ausse $f^{-1}(\Sigma^{\circ})$ et $f^{-1}(O \setminus \Sigma)$. Mais $f^{-1}(\sigma_{n-1}^{\circ})$ est une sous-variété lisse, donc $f^{-1}(\Sigma \cap B)$ est une variété lisse à bord orienté, dont le bord est $f^{-1}(\sigma_{n-1}) \cap f^{-1}(B)$.

Donc le bord de $f^{-1}(\Sigma^{\circ})$ est l'union des $f^{-1}(\sigma^{i})$, $1 \leq i \leq n+1$. Et de plus, près de chaque point intérieur de $f^{-1}(\sigma^{i})$, le bord est aussi le bord au sens "variété à bord". Et en des point où deux $f^{-1}(\sigma^{i})$ se rencontrent, ils se rencontrent en une variété lisse.

On obtient aussi, par l'argument ci-dessus, que comme le bord, la multiplicité de chaque $f^{-1}(\sigma^i)$ est 1, c'est à dire, c'est impossible que $f^{-1}(\sigma^i)$ touche $f^{-1}(\Sigma^{\circ})$ de ses deux côtés.

On donne alors l'orientation induite par f de Σ , σ^i à $f^{-1}(\Sigma)$ et des $f^{-1}(\sigma^i)$, $1 \le i \le n+1$.

On peut faire la même chose que Σ pour chaque σ^i , en remplaçant M par $f^{-1}(V_{\sigma^i})$, N par V_{σ^i} . On obtient donc que formellement le bord de $f^{-1}(\sigma^i)$ est l'union des images reciproques de ses m-2-faces. On peut continuer jusqu'à la dimension 0.

Etape 3: triangulation.

On fait maintenant une triangulation lisse sur $f^{-1}(O)$, en demandant que pour chaque $k \leq \min\{n, m\}$, pour chaque n - k-face σ , $f^{-1}(V_{\sigma})$ est l'union dénombrable de m - k-simplexes lisses. Ce n'est pas très compliqué.

En effet, prenons une triangulation lisse (K, π) de $f^{-1}(O)$. Pour des m-1-faces $\sigma^1, \dots, \sigma^{n+1}$, on bouge un peu π de façon que $f^{-1}(V_{\sigma}^1)$ soit transverse à cette triangulation. Alors $f^{-1}(V_{\sigma}^1)$ coupe chaque m-simplexe de cette triangulation en polyèdres lisses. On fait alors une subdivision pour chaque polyèdre lisse, et on obtient une nouvelle triangulation (K_1, π_1) . (Voir [33] pour plus de détails). Ensuite

on le fait pour $f^{-1}(V_{\sigma^2})$, et obtient (K_2, π_2) . Une remarque à faire est que quand on faire bouger π_1 pour obtenir la transversalité, on ne bouge pas les simplexes lisse contenus dans $f^{-1}(V_{\sigma^1})$. On peut le faire parce que sur $f^{-1}(V_{\sigma^1})$ on est déjà transverse à $f^{-1}(V_{\sigma^2})$, et on applique le théorème 16.35.

On fait ce processus jusquà σ_{n+1} , et on obtient (K_{n+1}, π_{n+1}) . C'est la triangulation dont on a besoin. Notons-la (L, χ) . Supposons aussi que χ préserve l'orientation.

On sait aussi que $f^{-1}(\Sigma)$ est compact. Alors pour chaque n-k-face σ de Σ , il est l'union finie de m-k-simplexes lisse de (L,χ) . Notons aussi $f^{-1}\sigma$ la k-chaîne de (L,χ) , qui est la somme de tous les m-k-simplexes lisses de (L,χ) contenu dans σ dont l'orientaion est induite par f de σ .

On a alors, par l'étape 2,

(17.4)
$$\partial f^{-1}(\Sigma) = \sum_{i=1}^{n+1} f^{-1}(\sigma_i).$$

Etape 4: Passer aux chaînes.

Maintenant soit $\Gamma = \sum_{i=1}^{l} c_i \Sigma^i$ une n-chaîne lisse. On va définir la triangulation par récurrence sur j sur $\bigcup_{i=1}^{j} f^{-1}(\Sigma^i), 1 \leq j \leq l$.

Pour i=1, on fait d'abord la triangulation (L_1,χ_1) décrite dans l'étape 3 pour $f^{-1}(\Sigma^1)$, qui est un n-simplexe lisse. On garde la triangulation dans $f^{-1}(\Sigma^1)$, et laisse libre son complémentaire. Notons que la triangulation restreinte à $f^{-1}(\Sigma^1)$ est finie, puisque $f^{-1}(\Sigma^1)$ est compact.

Maintenant supposons qu'il existe une triangulation lisse (L_{j-1}, χ_{j-1}) pour $\bigcup_{i=1}^{j} f^{-1}(\Sigma^{i})$, telle que pour chaque $k \leq \min\{m, n\}$, chaque n - k-simplexe de chaque $f^{-1}(\Sigma^{i})$ est une m - k-chaîne dans cette triangulation. On fait comme dans l'étape 3 une triangulation (L'_{j}, χ'_{j}) sur $f^{-1}(\Sigma^{j})$, mais en demandant aussi que cette triangulation soit transverse à la restriction de (L_{j-1}, χ_{j-1}) sur ses n-1 faces qui touchent les $f^{-1}(\Sigma^{i}), 1 \leq i \leq j-1$.

On fait une subdivision sur (L_{j-1}, χ_{j-1}) par rapport à la restriction de (L'_j, χ'_j) sur les m-1-faces de $f^{-1}(\Sigma^j)$ qui touchent les $f^{-1}(\Sigma^i)$, $1 \le i \le j-1$, et on fait la même chose sur (L'_j, χ'_j) par rapport à (L_{j-1}, χ_{j-1}) . On peut le faire parce que la triangulation (L'_j, χ'_j) restreinte à l'union des faces est finie, parce que l'union est compacte. L'ensemble de ces triangulation, notée (L_j, χ_j) , est la triangulation dont on a envie pour $\bigcup_{i=1}^j f^{-1}(\Sigma^i)$.

On arrive donc à définir une triangulation (L_l, χ_l) sur $\bigcup_{i=1}^l f^{-1}(\Sigma^i)$, telle que pour chaque $k \leq \min\{m, n\}$, pour chaque n-k-face de Γ , son image réciproque par f est une m-k-chaîne de (L_m, χ_m) . On continue à trianguler la reste de M. En effet, $M\setminus (\bigcup_{i=1}^l f^{-1}(\Sigma^i))^\circ$ est aussi une variété à bord topologique, dont le bord est l'union des m-1-faces des $f^{-1}(\Sigma^i)$ qui touchent $M\setminus \bigcup_{i=1}^l f^{-1}(\Sigma^i)$. On peut donc trianguler $M\setminus (\bigcup_{i=1}^l f^{-1}(\Sigma^i))^\circ$, en demandant que cette triangulation soit transverse à tous les sous-simplexes de son bord. Notons (L_0, χ_0) cette triangulation. Ensuite on fait comme avant, on fait des subdivisions pour que (L_l, χ_l) et (L_0, χ_0) soient cohérentes. Alors leur union est une triangulation

lisse sur M, telle que pour chaque $k \leq \min\{m, n\}$, l'image réciproque de chaque n - k-simplexe de Γ est une m - k-chaîne.

De plus, on a

(17.5)
$$\partial f^{-1}(\Gamma) = \sum_{i=1}^{l} c_i \partial f^{-1}(\Sigma^i),$$

où $\partial f^{-1}(\Sigma^i)$ est défini dans (17.4).

On peut vérifier la cohérence avec les dimensions plus petites. C'est à dire, soit σ un k-simplexe lisse, il est contenu alors dans une sous-variété régulière lisse N^k de N. On travaille alors sur N^k et $f^{-1}(N^k) \subset M$, la dernière est une sous-variété régulière de codimension n-k de M, par la transversalité de f. On continue comme précédemment. On arrive à la même conclusion. On obtient donc la proposition 17.2.

18 Minimiseur topologique

On va généraliser le concept MS-minimiseur à des codimensions plus hautes.

Dans ce paragraphe, soit $U \subset \mathbb{R}^n$ un ouvert, alors pour toute k-variété lisse à bord orientée compacte $\Gamma \subset U$, Γ représente aussi la chaîne $\sum_{i=1}^N \Sigma^i$, où $\{\Sigma^i, 1 \leq i \leq N\}$ est l'ensemble de tous les k-simplexes simpliciaux lisses de n'importe quelle triangulation sur la variété à bord Γ qui préserve l'orientation. Notons que par le théorème 16.20, l'élément representé par une variété sans bord Γ (noté encore Γ) dans le groupe d'homologie singulière $H_k(U,\mathbb{Z})$ ne dépend pas de la triangulation.

Définition 18.1 (compétiteur topologique). Soit E un fermé dans \mathbb{R}^n . On dit qu'un fermé F est un compétiteur topologique de dimension d (d < n) de E, s'il existe une boule B telle que

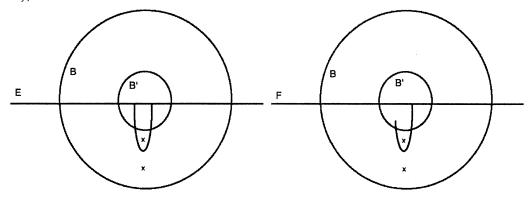
1)
$$F \backslash B = E \backslash B$$
;

2) Pour tout n-d-1-sphère euclidienne $S \subset \mathbb{R}^n \setminus (B \cup E)$, si S représente un élément non nul du groupe d'homologie singulière $H_{n-d-1}(\mathbb{R}^n \setminus E; \mathbb{Z})$, alors il est aussi non nul dans $H_{n-d-1}(\mathbb{R}^n \setminus F; \mathbb{Z})$.

Remarque 18.2. Notons que si d = n - 1, une sphère de dimension 1 est composée de deux points. Donc la sphère est nulle en homologie si et seulement si les deux points sont dans la même composante connexe. Donc dans le cas de la codimension 1, la définition de compétiteur topologique coïncide avec la définition de MS-compétiteur.

Remarque 18.3. Dans la définition, si F est un compétiteur topologique de E, et B est une boule qui vérifie 1) et 2), alors pour toute boule B' tel que $B \subset B'$, elle vérifie aussi 1) et 2); par contre pour une boule B' plus petite que B qui vérifie 1), 2) n'est pas forcément vrai pour B'. Voir le dessin 18-1 pour un contre exemple, où l'ensemble F est un compétiteur de E par rapport à la grande boule B, mais

pas pour la petite boule B'. En effet, E sépare les deux points (marqués par deux petites croix sur les dessins), mais F non.



18-1

On a donné d'abord la définition 18.1 en utilisant le groupe d'homologie singulière, pour éviter des ambiguïtés, parce que le groupe d'homologie est définie sur tout espace topologique, et ne dépend pas de triangulations, etc. Mais comme on a dit avant, l'homologie singulière n'est pas facile à calculer. Pour cette raison on donne aussi la définition suivante. Notons que E et F sont des fermés, et donc $\mathbb{R}^n \setminus E$ et $\mathbb{R}^n \setminus F$ sont des n-variétés lisse, donc par le théorème 16.25 et le théorème 16.20 on peut donner la définition équivalente suivante. Notons que par la remarque 16.21, la définition ne dépend pas de triangulations.

Définition 18.4 (compétiteur topologique). Soit E un fermé dans \mathbb{R}^n . On dit qu'un fermé F est un compétiteur topologique de dimension d (d < n) de E, s'il existe une boule B telle que

- 1) $F \backslash B = E \backslash B$;
- 2) Pour tout n-d-1-sphère euclidienne $S \subset \mathbb{R}^n \setminus (B \cup E)$, si S est le bord d'une n-d-chaîne simpliciale lisse dans $\mathbb{R}^n \setminus F$, alors elle est aussi le bord d'une n-d-chaîne simpliciale lisse dans $\mathbb{R}^n \setminus E$.

Proposition 18.5. Les définitions 18.1 et 18.4 sont équivalentes.

Démonstration. Il faut juste montrer que pour tout fermé $E \subset \mathbb{R}^n$, pour toute n-d-1-sphère $S \subset \mathbb{R}^n$, elle est un élément nul dans $H_{n-d-1}(\mathbb{R}^n \setminus E; \mathbb{Z})$ si et seulement si elle est le bord d'une n-d chaîne simpliciale lisse.

La partie "si" est triviale, à cause de l'homomorphisme canonique $H_d^{\Delta}(\mathcal{K}, \mathbb{Z}) \to H_d(|\mathcal{K}|, \mathbb{Z})$;

Pour la partie "seulement si", on donne d'abord une triangulation (K, π) de la n-variété lisse $\mathbb{R}^n \setminus E \subset \mathbb{R}^n$, telle que S est une n-d-1-chaîne lisse. Alors par le théorème 16.20, S est nul dans le groupe d'homologie singulière si et seulement s'elle est nulle dans le groupe d'homologie simpliciale par rapport à la triangulation (K, π) , ce qui implique qu'elle est le bord d'une n-d chaîne simpliciale lisse de cette triangulation.

Définition 18.6 (minimiseur topologique). Un ensemble minimal topologique est un minimiseur défini dans 13.1 en prenant les compétiteurs topologiques comme la classe de compétiteurs.

Par la remarque 18.2, en codimension 1, la définition des minimiseurs topologiques coïncident avec celle des minimiseurs MS.

Remarque 18.7. Il serait encore possible de définir des compétiteurs topologiques par le groupe d'homotopie π_{n-d-1} , où π_0 coïncide aussi avec la séparation quand d=n-1. Mais on connait un exemple simple dans \mathbb{R}^3 , un arc de Fox-Artin, dont une déformation ne préserve pas le groupe π_1 de son complément. Voir [16] pour plus de détails. Mais on a de la chance avec notre définition.

Proposition 18.8. Tout compétiteur d'Almgren est un compétiteur topologique.

Démonstration.

Soit E un ensemble fermé de dimension d dans \mathbb{R}^n , et F un compétiteur Al de E, c'est à dire, il existe $B = B(x, R) \subset \mathbb{R}^n$ une boule, f une application de \mathbb{R}^n vers \mathbb{R}^n telles que

(18.9)
$$f(B) \subset B, f|_{\mathbb{R}^n \setminus B} = id \text{ et } f(E) = F.$$

On note, pour chaque r > 0, rB = B(x, rR). On va montrer que F est un compétiteur topologique par rapport à 2B.

Soit $S \subset \mathbb{R}^n \setminus (2B \cup E)$ une sphère de dimension n-d-1, alors $S \subset \mathbb{R}^n \setminus F$. Supposons qu'il existe une n-d-chaîne lisse $\Gamma \subset \mathbb{R}^n \setminus F$ dont le bord est S, on va montrer qu'il existe aussi une n-d-chaîne lisse $\Gamma' \subset \mathbb{R}^n \setminus E$ dont le bord est S.

Notons $\delta = \operatorname{dist}(\Gamma, F)$. Alors on peut trouver une application g de \mathbb{R}^n dans \mathbb{R}^n de classe C^{∞} , avec

$$(18.10) g|_{\mathbb{R}^{n} \setminus \frac{3}{2}B} = f = id$$

 et

(18.11)
$$||g - f||_{\infty} = \sup\{||f(x) - g(x)||, s \in \frac{3}{2}B\} < \frac{\delta}{4}.$$

Par (16.10), g est transverse à Γ sur $\mathbb{R}^n\backslash \frac{3}{2}B,$ puisque'elle est l'identité.

Alors par le théorème 16.35 et la remarque 16.37, l'ensemble des fonctions lisses de \mathbb{R}^n dans \mathbb{R}^n transverses à Γ et coïncidant avec g sur $\mathbb{R}^n \setminus \frac{3}{2}B$ est un ensemble G_δ dense dans l'ensemble des fonctions lisses de \mathbb{R}^n dans \mathbb{R}^n qui coïncide avec g sur $\mathbb{R}^n \setminus \frac{3}{2}B$, pour la topologie de Whitney (voir la remarque 16.36). En particulier, il existe une application lisse h de $\mathbb{R}^n \to \mathbb{R}^n$ telle que

$$(18.12) h|_{\mathbb{R}^n \setminus \frac{3}{2}B} = g = id,$$

(18.13)
$$||g-h||_{\infty} = \sup\{||h(x) - g(x)||, x \in \frac{3}{2}B\} < \frac{\delta}{4},$$

et

(18.14)
$$h$$
 est transverse à Γ .

Notons que (18.12) implique que h est surjective et propre. Par la proposition 17.2, (18.14) donne que $\Gamma' = h^{-1}\Gamma$ est une k-chaîne simpliciale lisse dans \mathbb{R}^n , et de plus

(18.15)
$$\partial \Gamma' = f^{-1}(\partial \Gamma) = S.$$

Mais $\Gamma' \cap E = \emptyset$. En effet, si $x \in \Gamma' \cap E$, alors $|h(x) - f(x)| \le ||g - h||_{\infty} + ||g - f||_{\infty} \le \frac{\delta}{2}$. Mais $x \in E$ implique que $f(x) \in F$, et $h(x) \in \Gamma$, donc

(18.16)
$$d(F,\Gamma) \le \frac{\delta}{2} < \delta = \operatorname{dist}(\Gamma, F),$$

une contradiction.

On obtient donc que Γ' est une chaîne simpliciale lisse dans $\mathbb{R}^n \backslash E$, dont le bord est S. Donc F est un compétiteur topologique de E par rapport à 2B.

Corollaire 18.17. Tout ensemble minimal topologique est un ensemble minimal Al.

Proposition 18.18. Soit E un ensemble de dimension d. Alors s'il existe m > d tel que E est minimal topologique dans \mathbb{R}^m , il est minimal topologique dans \mathbb{R}^n pour tout n > d tel que $E \subset \mathbb{R}^n$.

Démonstration. Soit $E \subset \mathbb{R}^n$. On va juste le montrer pour deux cas : 1) E est minimal topologique dans $\mathbb{R}^n \Rightarrow E$ est minimal topologique dans \mathbb{R}^{n+1} ; 2)E est minimal topologique dans \mathbb{R}^n . La proposition suivra par récurrence.

1) Soit $E \subset \mathbb{R}^n$ un minimiseur topologique de dimension d. Soit F un compétiteur topologique de E dans $\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$. C'est à dire, il existe une boule $B \subset \mathbb{R}^{n+1}$, telle que $F \setminus B = E \setminus B$, et pour chaque n - d-sphère $S \subset \mathbb{R}^{n+1} \setminus (B \cup E)$, si S est non nulle dans $H_{n-d}(\mathbb{R}^{n+1} \setminus E, \mathbb{Z})$, alors elle est aussi non nulle dans $H_{n-d}(\mathbb{R}^{n+1} \setminus F, \mathbb{Z})$.

Par la remarque 18.3, on peut supposer que le centre de B appartient à \mathbb{R}^n . Notons que $E \subset \mathbb{R}^n$, donc $F \setminus B = E \setminus B \subset \mathbb{R}^n$. Notons π le projecteur sur \mathbb{R}^n , alors par la proposition 18.8, $\pi(F) \subset \mathbb{R}^n$ est un compétiteur topologique de E dans \mathbb{R}^{n+1} , par rapport à la boule 2B. Puisque π est 1-Lipschitzienne, $\pi(F)$ est un meilleur compétiteur topologique que F de E, c'est à dire,

(18.19)
$$H^{d}(\pi(F)\backslash F) \leq H^{d}(F\backslash \pi(F)).$$

Notons $B' = \pi(2B) = 2B \cap \mathbb{R}^n$ (puisque le centre de 2B appartient à \mathbb{R}^n). On va montrer que $\pi(F)$ est un compétiteur topologique de E dans \mathbb{R}^n par rapport à B'.

Soit $S \subset \mathbb{R}^n \setminus (B' \cup E)$ une n-d-1-sphère. Si S est nulle dans $\mathbb{R}^n \setminus \pi(F)$, il existe une n-d-chaine singulière $\Gamma \subset \mathbb{R}^n \setminus \pi(F)$, telle que $\partial \Gamma = S$.

Prenons $U \subset \mathbb{R}^n \backslash B'$ la n-d-boule dans \mathbb{R}^n telle que $\partial U = S$.

On sait que $H_{n-d}(\mathbb{R}^n, \mathbb{Z}) = 0$ pour $d \geq 1$, et que $U - \Gamma$ est une n - d chaine singulière sans bord, il existe donc une n - d + 1-chaine $R \subset \mathbb{R}^n$ telle que $\partial R = U - \Gamma$.

Posons $T = R \times \{1\} - R \times \{-1\} + \Gamma \times [-1,1]$, alors T est une n-d+1-chaine singulière, avec $\partial T = S \times [-1,1] + U \times \{1\} - U \times \{-1\}$. Alors ∂T est une variété topologique compacte sans bord, et est lisse sauf autour de $S \times \{-1,1\}$. Donc on bouge un peu ∂T dans un petit voisinage de $S \times \{-1,1\}$, et obtient que dans $\mathbb{R}^{n+1} \setminus (2B \cup \pi(F))$, elle est homotope à la n-d-sphère S' dont le centre appartient à \mathbb{R}^n et telle que $S' \cap \mathbb{R}^n = S$.

Or ∂T est nulle dans $H_{n-d}(\mathbb{R}^{n+1}\backslash \pi(F), \mathbb{Z})$, donc $S' \subset \mathbb{R}^{n+1}\backslash 2B$ est nulle dans $H_{n-d}(\mathbb{R}^{n+1}\backslash \pi(F), \mathbb{Z})$. Mais $\pi(F)$ est un compétiteur de E dans \mathbb{R}^{n+1} par rapport à 2B, donc S' est nulle dans $H_{n-d}(\mathbb{R}^{n+1}\backslash E, \mathbb{Z})$. Par la proposition 18.5, il existe alors une n-d+1-chaîne simpliciale lisse $R' \subset \mathbb{R}^{n+1}\backslash E$ dont le bord est S'. Prenons B_1 une boule telle que $R' \subset B_1$.

Notons i le plongement de $\mathbb{R}^n \to \mathbb{R}^{n+1}$. Alors i est transverse à R' sur $S' \cup B_1^C$. Donc par le théorème 16.35, l'ensemble des fonctions de classe C^{∞} qui coïncident avec i sur $S' \cup B_1^C$ et sont transverses à R' est un G_{δ} -dense dans l'ensembles des fonctions dans $C^{\infty}(\mathbb{R}^n, \mathbb{R}^{n+1})$ qui coïncident avec i sur $S' \cup B_1^C$. En particulier, il existe un plongement $g \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^{n+1})$, transverse à R', et tel que $||g-i||_{\infty}$ est aussi petit qu'on veut, tel que $g^{-1}(R') \cap E = \emptyset$, puisque l'ensemble des plongements est ouvert. Par conséquent, la proposition 17.2 donne que $\Gamma' = g^{-1}(R')$ est une n-d-chaîne simpliciale lisse dans \mathbb{R}^n avec $\partial \Gamma' = g^{-1}(S') = S$, ce qui implique que S est nulle dans $H_{n-d-1}(\mathbb{R}^n \backslash E, \mathbb{Z})$.

Donc $\pi(F)$ est un compétiteur topologique de E dans \mathbb{R}^n . Par la minimalité de E, on a que

(18.20)
$$H^{d}(E \backslash \pi(F)) < H^{d}(\pi(F) \backslash E).$$

En combinant avec (18.19) on obtient

(18.21)
$$H^{d}(E \backslash F) \leq H^{d}(F \backslash E),$$

et donc E est minimal topologique dans \mathbb{R}^{n+1} .

2) Soit $E \subset \mathbb{R}^n$ un minimiseur topologique de dimension d dans $\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$. Soit $F \subset \mathbb{R}^n$ un compétiteur de E dans \mathbb{R}^n . Donc il existe une boule $B \subset \mathbb{R}^n$ telle que $F \setminus B = E \setminus B$, et pour chaque n - d - 1-sphère $S \subset \mathbb{R}^n \setminus (B \cup E)$, si S est le bord d'une n - d-chaîne simpliciale lisse dans $\mathbb{R}^n \setminus E$, alors elle est aussi le bord d'une n - d-chaîne simpliciale lisse dans $\mathbb{R}^n \setminus F$.

Notons B' la boule dans \mathbb{R}^{n+1} avec le même centre et le même rayon que B. Alors $F \setminus B' = E \setminus B'$. On veut montrer que F est un compétiteur topologique de E dans \mathbb{R}^{n+1} aussi.

Soit $S' \subset \mathbb{R}^{n+1} \setminus (F \cup B')$ une sphère de dimension n-d, qui est nulle dans $H_{n-d}(\mathbb{R}^{n+1} \setminus F, \mathbb{Z})$, on veut montrer que S' est nulle dans $H_{n-d}(\mathbb{R}^{n+1} \setminus E, \mathbb{Z})$.

Si $S' \cap \mathbb{R}^n = \emptyset$, alors puisque S' est connexe, et \mathbb{R}^n sépare \mathbb{R}^{n+1} en 2 composantes, on voit que S'

appartient à l'une des deux composantes, qui est homéomorphe à \mathbb{R}^{n+1} , dont le groupe H_{n-d} est nul. Par conséquent, S' est nul dans $H_{n-d}(\mathbb{R}^{n+1}\setminus E,\mathbb{Z})$;

Si $S' \cap \mathbb{R}^n \neq \emptyset$, mais l'intersection est justement un point, c'est le cas où \mathbb{R}^n est tangent à S'. Alors S' appartient aussi à un des demi espaces fermés V de \mathbb{R}^{n+1} bordé par \mathbb{R}^n . Notons D le n-d+1 disque dans V dont le bord est S', alors \mathbb{R}^n est tangent à D aussi, et $D \cap \mathbb{R}^n = S' \cap \mathbb{R}^n$, qui n'intersecte pas F et E. Donc S' est nul dans $H_{n-d}(\mathbb{R}^{n+1} \setminus E, \mathbb{Z})$;

Si $S' \cap \mathbb{R}^n$ est d'interieur non vide dans \mathbb{R}^n , alors par la proposition 18.5, il existe une n-d+1-chaîne simpliciale lisse $\Gamma' \subset \mathbb{R}^{n+1} \setminus F$ dont le bord est S'. Notons $S = S' \cap \mathbb{R}^n$, Alors par un argument semblable à celui qui montre le S dans 1) est unélément nul, il existe une n-d-1-chaîne simpliciale lisse Γ dans $\mathbb{R}^n \setminus F$ dont le bord est S. Mais F est un compétiteur topologique de E dans \mathbb{R}^n , il existe donc une n-d-1-chaîne simpliciale lisse R dans $\mathbb{R}^n \setminus E$ dont le bord est S. Prenons $D \subset \mathbb{R}^n \setminus B'$ une -variété lisse compacte à bord de dimension n-d telle que $\partial D = -S$. Alors D+R est une n-d-chaine sans bord dans \mathbb{R}^n , il existe alors une n-d+1-chaine $U \subset \mathbb{R}^n$ telle que $\partial U = D+R$, puisque $H_{n-d}(\mathbb{R}^n, \mathbb{Z})$ est nul.

Notons $R' = R \times [-1, 1] + U \times \{1\} - U \times \{-1\}$, alors $R' \cap E = \emptyset$ et $\partial R' = S \times [-1, 1] + D \times \{1\} - D \times \{-1\}$, qui est homotope à S'. Donc S' est nulle dans $H_{n-d}(\mathbb{R}^n \setminus E, \mathbb{Z})$.

Par conséquent, F est un compétiteur topologique de E dans \mathbb{R}^{n+1} par rapport à B', de sorte que (18.22) $H^d(E\backslash F) \leq H^d(F\backslash E).$

Donc E est minimal topologique dans \mathbb{R}^n .

On considère aussi le produit de deux ensembles. C'est à dire, si $E = E_1 \times E_2$, avec $E_i \subset \mathbb{R}^{n_i}$, $E \subset \mathbb{R}^{n_1+n_2}$, quelles sont les relations entre les minimalités des trois ensembles?

Nous avons vu dans paragraphe 12 que si E est minimal Al dans $\mathbb{R}^{n_1+n_2}$, les E_i sont forcément des minimiseurs Al dans \mathbb{R}^{n_i} , i=1,2.

Pour l'autre direction, si les E_i sont minimaux au sens Al dans \mathbb{R}^{n_i} , i=1,2, on ne sait pas encore montrer la minimalité Al de leur produit E. En fait on ne sait même pas le montrer si l'un des deux E_i est \mathbb{R} . En effet, on aimerait procéder par "slicing". Pour $E_1 \times \mathbb{R}$ par exemple, on voudrait se servir de la minimalité de E_1 , donc naturellement on regarde la tranche $\pi^{-1}(x)$ pour chaque $x \in \mathbb{R}$, où π est le projecteur sur \mathbb{R} . Mais malheureusement on ne peut pas garantir que la tranche $\pi^{-1}(x)$ est une déformation de E_1 , donc on ne peut pas utiliser la minimalité de E_1 directement.

Alors pour le cas général $E = E_1 \times E_2$, la situation est encore plus compliquée. Les tranches $\pi^{-1}(x), x \in E_2$ ne sont pas de la même dimension que E_1 , parce que E_2 n'est pas de dimension pleine. Il faut sans doute trouver une moyen de faire le slicing plus intelligent.

Remarque 18.23. Un moyen de slicing généralisé est de le faire par rapport à un groupe. C'est à dire, soit G un groupe opérant sur \mathbb{R}^n . Notons O_x l'orbite de $x \in \mathbb{R}^4$, et G_x le sous groupe stable de x. Alors

a priori si G est suffisamment bon, $G_x = G_y$ pour tout x, y et $G_x \perp O_y$ pour tout x, y. Donc on a une décomposition de \mathbb{R}^4 en $\bigcup_{y \in O_x} G_x(y)$. Et on peut regarder les tranches $G_x(y) \cap E$ si E est invariant par rapport à G. Mais on ne sait pas mieux faire comme ceci.

Par contre pour les minimiseurs topologique, on peut au moins montrer la minimalité topologique pour le produit d'un minimiseur topologique avec \mathbb{R}^n .

Proposition 18.24. Soit $E \subset \mathbb{R}^n$ un minimiseur topologique de dimension d dans \mathbb{R}^n , alors pour tout m > 0, $E \times \mathbb{R}^m$ est minimal topologique de dimension d + m dans \mathbb{R}^{n+m} .

Démonstration. On va juste le montrer pour m=1. Le cas où m>1 s'en déduit aussitôt par récurrence.

On restreint d'abord la classe des compétiteur topologiques de $E \times \mathbb{R}$ à l'ensemble de compétiteurs topologiques rectifiables. En effet, si un ensemble F non rectifiable est un compétiteur topologique de $E \times \mathbb{R}$, par rapport à une boule B par exemple, alors forcément il n'est pas rectifiable dans B, parce que E est minimal topologique implique qu'il est Al minimal (par le corollaire 18.17), donc E est rectifiable, de sorte que $F \setminus B = E \setminus B$ est rectifiable.

Mais F n'est pas rectifiable dans B implique que F n'est pas Al minimal dans B (c.f. [11] Théorème 2.11). Alors par le théorème 4.1, il existe un ensemble F', obtenu par déformation de F dans B, qui est quasi-minimal (donc est rectifiable, c.f. [11], Thm 2.11), et dont la mesure dans B est strictement plus petite que celle de F dans B. Par la proposition 18.8, F' est aussi un compétiteur topologique de $E \times \mathbb{R}$. Et comme F' est rectifiable, cela implique que

(18.25)
$$\inf\{H^d(F); F \text{ est un compétiteur topologique de } E\}$$
$$= \inf\{H^d(F); F \text{ est rectifiable et est un compétiteur topologique de } E\}.$$

Donc soit F un compétiteur topologique de $E \times \mathbb{R}$, qui est aussi rectifiable. Par définition, on peut trouver R > 0 tel que

(18.26)
$$F \setminus B(0,R) = (E \times \mathbb{R}) \setminus B(0,R),$$

et pour toute n-d-1-sphère $S \in \mathbb{R}^{n+1} \setminus (E \times \mathbb{R} \cup B(0,R))$,

(18.27)
$$S \text{ est non nul dans } H_{n-d-1}(\mathbb{R}^{n+1} \setminus E \times \mathbb{R}, \mathbb{Z})$$
$$\Rightarrow \text{il est non nul dans } H_{n-d-1}(\mathbb{R}^{n+1} \setminus F, \mathbb{Z}).$$

On remplace B(0,R) par $C(R) := B_n(0,R) \times [-R,R]$, où $B_n(0,R) = B(0,R) \cap \mathbb{R}^n$, alors (18.26) et (18.27) sont encore vrais.

Notons π le projecteur sur \mathbb{R} , et pour tout $t \in [-R, R]$, notons $F_t = \pi^{-1}(t) \cap F$. Alors $F_t - t$ est un compétiteur topologique de E dans \mathbb{R}^n . En effet, soit $S \subset \mathbb{R}^n \setminus [(F_t - t) \cup B_n(0, R)]$ est une n - d - 1-sphère, qui s'annule dans $H_{n-d-1}(\mathbb{R}^n \setminus (F_t - t), \mathbb{Z})$. Ceci implique qu'il existe une n - d chaine singulière

 $\Gamma \subset \mathbb{R}^n \backslash (F_t - t) \text{ telle que } \partial \Gamma = S. \text{ Alors } \Gamma_t := \Gamma \times \{t\} \subset \mathbb{R}^{n+1} \backslash F \text{ est une } n - d\text{-chaîne et } \partial \Gamma_t = S \times \{t\}.$ Notons que $S \times \{t\} \subset (\mathbb{R}^n \backslash [(F_t - t) \cup B_n(0, R)]) \times \{t\} = [\mathbb{R}^n \backslash B_n(0, R)] \times \{t\} \backslash F_t \subset \mathbb{R}^{n+1} \backslash (F \cup B(0, R)),$ et que $\Gamma_t \subset \mathbb{R}^{n+1} \backslash F$ est tel que $\partial \Gamma_t = S \times \{t\},$ donc $[S \times \{t\}]$ s'annule dans $H_{n-d-1}(\mathbb{R}^{n+1} \backslash F, \mathbb{Z}).$ Par conséquent $[S \times \{t\}]$ s'annule dans $H_{n-d-1}(\mathbb{R}^{n+1} \backslash (E \times \mathbb{R}), \mathbb{Z}),$ puisque F est un compétiteur topologique de $E \times \mathbb{R}$ par rapport à B(0, R). Il existe alors une n - d-chaîne singulière $\Gamma' \subset \mathbb{R}^{n+1} \backslash (E \times \mathbb{R})$ telle que $\partial \Gamma' = S \times \{t\}.$ Notons $\Gamma'' = p(\Gamma')$, où p désigne le projecteur de \mathbb{R}^n . Alors $\Gamma'' \subset \mathbb{R}^n \backslash E$ et $\partial \Gamma'' = s$. Donc S s'annulle dans $H_{n-d-1}(\mathbb{R}^n \backslash E).$ Donc $F_t - t$ est un compétiteur topologique de E.

Par la minimalité topologique de E,

(18.28)
$$H^{d}(\pi^{-1}(t) \cap F \cap C(R)) = H^{d}([(F_{t} - t) \cap B_{n}(0, R)] \times \{t\})$$
$$= H^{d}((F_{t} - t) \cap B_{n}(0, R)) \ge H^{d}(E \cap B_{n}(0, R)).$$

Or par la formule de coaire (c.f.[14] Thm 3.2.22)

(18.29)
$$\int_{F \cap C(R)} ||apD\pi(x)|| dH^{d+1}(x) = \int_{-R}^{R} H^{d}(\pi^{-1}(t) \cap F \cap B_{n}(0, R) \times \{t\}) dH^{1}(t).$$

Mais π est 1-Lipschitzienne, donc $||apD\pi(x)|| \leq 1$, et

(18.30)
$$\int_{F \cap C(R)} ||apD\pi(x)|| dH^{d+1}(x) \le H^{d+1}(F \cap C(R)).$$

D'un autre côté par (18.28)

(18.31)
$$\int_{-R}^{R} H^{d}(\pi^{-1}(t) \cap F \cap B_{n}(0,R)) dH^{1}(t) \ge 2RH^{d}(E \cap B_{n}(0,R)).$$

On obtient donc

(18.32)
$$H^{d+1}(F \cap C(R)) \ge 2RH^d(E \cap B_n(0,R)) = H^{d+1}(E \cap C(R)),$$

ce qui donne la minimalité topologique de $E \times \mathbb{R}$.

19 Une discussion sur T

Maintenant on veut démontrer, pour des ensembles minimaux de dimension 2 dans \mathbb{R}^4 , un théorème semblable au théorème 13.9. Dans [9], on l'a démontré pour chaque type de limite d'implosion, qui est un cône minimal, et on a traité les cas un par un. Si on veut faire la même chose dans notre cas, cela demande encore une liste complète des cônes minimaux, qui est sans doute encore loin d'être connue.

Mais commençons par les types de singularité qu'on connait bien.

On sait déjà que pour un cône minimal (au sens d'Almgren) de type \mathbb{T} , sa densité à l'origine est toujours plus grand qu'un certain nombre d_T , qui est strictement supérieure à $\frac{3}{2}$. Ici un cône minimal de type \mathbb{T} veut dire seulement un cône minimal qui n'est pas un plan, ni un \mathbb{Y} . (c.f. [9], lemme 14.12).

Dans \mathbb{R}^3 , il n'y a qu'un cône minimal (au sens MS ou Al) de type \mathbb{T} , qui est le cône sur le tétraèdre, et qu'on note T. Et donc sa densité à l'origine est juste d_T , qui vaut environ 1.8. Notons que dans \mathbb{R}^3 , tous les cônes minimaux au sens Al de dimension 2 sont aussi minimaux au sens MS.

Pour notre cas \mathbb{R}^4 , on connait déjà 2 cônes minimaux de type \mathbb{T} : le cône sur le tétraèdre T, de densité environ 1.8, et l'union de deux plans presque orthogonaux, de densité 2. Un autre cône potentiel est le produit de 2 ensembles Y de dimension 1, dont on ne sait pas encore montrer la minimalité (mais on va en discuter un peu plus tard), et qui serait de densité $\frac{9}{4}$.

On ne sait pas non plus si dans \mathbb{R}^4 il existe un cône de type \mathbb{T} avec une densité inféreure à celle d'un T. Mais apparement T est le cône qui admet la structure topologique la plus simple parmi tous les cônes de type \mathbb{T} . Donc supposons que la densité de T vaut d_T dans \mathbb{R}^4 aussi. Alors on voudrait montrer un théorème semblable au théorème 13.9.

Remarque 19.1. Rappelons que le stratégie pour montrer le théorème 13.9 est que, pour chaque ensemble minimal E, on regarde la densité d_E d'une de ses limites d'implosion, et on essaye de trouver un point p dans E de densité d_E . Alors par la monotonie de la fonction $f(t) = \frac{H^2(E \cap B(p,t))}{t^2}$, on obtient que f est constante, c'est à dire que la densité de E en p est constante. Cela montre que E est un cône centré en p.

L'enjeu est donc de trouver un point de la densité caractéristique pour chaque type de cône minimal, et ça entraîne souvent un argument topologique correspondant à chaque type de cône minimal. Donc jusqu'à maintenant, on ne sait que de traiter les cônes un par un, et à condition qu'on sache déjà leur structure topologique.

Maintenant on va regarder un minimiseur topologique E qui ressemble à un T à l'infini, c'est à dire, on suppose qu'il existe un T centré à l'origine, et une suite $\{r_k\}_{k\in\mathbb{N}}$ telle que

(19.2)
$$\lim_{k \to \infty} r_k \to \infty \text{ et } \lim_{k \to \infty} d_{0,r_k}(E,T) = 0.$$

On suppose aussi, dans tout ce qui suit, que la densité de T est d_T (ce qui n'est pas démontré à ce jour).

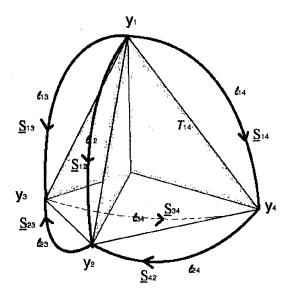
Notre ensemble E est maintenant de codimension 2, et donc la condition topologique est définie par le groupe $H_1(\mathbb{R}^4 \backslash E, \mathbb{Z})$.

Notons $\{y_i\}_{1\leq i\leq 4}$ les quatre points de type \mathbb{Y} dans $T\cap\partial B(0,1)$. Notons $l_{ij}\subset T\cap\partial B(0,1)$ l'arc de grand cercle connectant y_i et y_j . Le cône T est composé de 6 secteurs fermés $\{T_{ij}\}_{1\leq i\neq j\leq 4}$, où T_{ij} est le cône sur l_{ij} . Notons $x_{ij}, 1\leq i\neq j\leq 4$, le milieu de l_{ij} . Notons P_{ij} le 2-plan orthogonal à T_{ij} et passant par x_{ij} (et donc passant par l'origine aussi). Posons $B_{ij}=B(x_{ij},\frac{1}{10})\cap P_{ij}$ et s_{ij} le bord de B_{ij} . Alors les s_{ij} sont des cercles, qui ne touchent pas T, et $B_{ij}\cap T=B_{ij}\cap T_{ij}=x_{ij}$.

Fixons une base orthonormée $\{e_i\}_{1\leq i\leq 4}$ de \mathbb{R}^4 . Nous allons définir des cercles orientés $\vec{s_{ij}}$, c'est à dire, donner une orientation aux s_{ij} . Il y a deux orientations $\sigma_1 = x \wedge y$, $\sigma_2 = -x \wedge y$ pour B_{ij} ,

où x,y sont deux vecteurs unitaires orthogonaux appartenant au plan qui contient B_{ij} . Choisissons le $k \in \{1,2\}$ tel que $\det_{\{e_i\}_{1 \leq i \leq 4}} \overrightarrow{ox_{ij}} \wedge \overrightarrow{y_{i}y_{j}} \wedge \sigma_{k} > 0$, et notons \overrightarrow{B}_{ij} le disque orienté B_{ij} avec cette orientation. Notons $\vec{s}_{ij} = \partial \overrightarrow{B}_{ij}$ le cercle orienté. Et $[\vec{s}_{ij}]$ l'élément representé par \vec{s}_{ij} dans $H_1(\mathbb{R}^4 \backslash T; \mathbb{Z})$. Les $[\vec{s}_{ij}], 1 \leq i < j \leq 4$ sont deux à deux différents, par contre ils sont algébriquement dépendants.

Le dessin 19-1 ci-dessous donne un schéma (mais dans \mathbb{R}^3). Comme T est contenu dans un \mathbb{R}^3 , alors si on fixe l'orientation de la dimension restante de \mathbb{R}^4 , l'orientation de B_{ij} s'obtient en prenant l'orientation du vecteur normal à T_{ij} dans \mathbb{R}^3 . Cette orientation correspond à l'orientation de l_{ij} par la règle de la main droite. Donc dans le dessin on marque l'orientation de l_{ij} par des flèches, pour désigner l'orientation de $[\vec{s}_{ij}]$. Dans le dessin, l'orientation \underline{S}_{ij} désigne $[\vec{s}_{ij}]$.



19-1

Nous avons alors que

(19.3)
$$\vec{s}_{ij} = -\vec{s}_{ji}, [\vec{s}_{ij}] = -[\vec{s}_{ji}].$$

Notons que $\{[\vec{s}_{ij}], 1 \leq i, j \leq 4\}$ est un ensemble des générateurs du groupe d'homologie $H_1(\mathbb{R}^4 \backslash T; \mathbb{Z})$. Pour montrer ceci, notons $C_i, 1 \leq i \leq 4$ le cône fermé sur le triangle dont les sommets sont les $y_j, j \neq i$. Notons $V_{ij} = \mathbb{R}^4 \backslash (C_i \cup C_j)$, et $U_{ij} = V_{ij} \backslash T_{ij} \subset \mathbb{R}^4 \backslash T$. Notons que $C_i \cup C_j$ est un cône de dimension 3 et homéomorphe à un cône sur un disque fermé de dimension 2, donc V_{ij} est homémorphe à \mathbb{R}^4 , et U_{ij} est homémorphe à $\mathbb{R}^4 \backslash \mathbb{R}^2$. Pour chaque U_{ij} , le groupe d'homologie singulière $H_1(U_{ij}, \mathbb{Z})$ est donc le groupe libre engendré par l'élément enlaçant T_{ij} , qui est $[\vec{s}_{ij}]$. D'un autre côté, chaque U_{ij} est connexe, de sorte que $H_0(U_{ij}, \mathbb{Z}) = \mathbb{Z}$.

Maintenant pour les deux ouverts U_{12} et U_{13} , on a la suite exacte de Mayer-Vietoris (c.f.[18] Chap

2.2, Mayer-Vietoris Sequences)

(19.4)
$$H_1(U_{12} \cap U_{13}) \to H_1(U_{12}) \oplus H_1(U_{13}) \to H_1(U_{12} \cup U_{13})$$
$$\to H_0(U_{12} \cap U_{13}) \to H_0(U_{12}) \oplus H_0(U_{13}) \to H_0(U_{12} \cup U_{13}) \to 0.$$

Notons que $U_{12} \cap U_{13} = \mathbb{R}^4 \setminus \mathbb{R}^3 \cup C_4^\circ \cong \mathbb{R}^4$, il est donc connexe et simplement connexe, de sorte que $H_1(U_{12} \cap U_{13}) = 0$, $H_0(U_{12} \cap U_{13}) = \mathbb{Z}$; $U_{12} \cup U_{13} = \mathbb{R}^4 \setminus (T \cup C_1)$ est connexe, on a donc $H_0(U_{12} \cup U_{13}) = \mathbb{Z}$. Par conséquent, (19.4) devient

$$(19.5) 0 \rightarrow <[\vec{s}_{12}] > \oplus <[\vec{s}_{13}] > \rightarrow H_1(U_{12} \cup U_{13}) \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}^2 \rightarrow \mathbb{Z} \rightarrow 0.$$

On a donc

$$(19.6) 0 \to <[\vec{s}_{12}] > \oplus <[\vec{s}_{13}] > \to H_1(U_{12} \cup U_{13}) \to 0,$$

ce qui donne

(19.7)
$$H_1(U_{12} \cup U_{13}) = \langle \vec{s}_{12} \rangle \oplus \langle \vec{s}_{13} \rangle.$$

Ensuite regardons les deux ensembles $U_{12} \cup U_{13}$ et U_{34} . On a la suite exacte de Mayer-Vietoris

(19.8)
$$H_1([U_{12} \cup U_{13}] \cap U_{34}) \to H_1(U_{12} \cup U_{13}) \oplus H_1(U_{34}) \to H_1(U_{12} \cup U_{13} \cup U_{34}) \to H_0([U_{12} \cup U_{13}] \cap U_{34}) \to H_0(U_{12} \cup U_{13}) \oplus H_0(U_{34}) \to H_0(U_{12} \cup U_{13} \cup U_{34}) \to 0.$$

L'union des deux ouverts est $\mathbb{R}^4 \setminus T$, qui est connexe, de sorte que $H_0(\mathbb{R}^4 \setminus T) = \mathbb{Z}$. L'intersection des deux ouverts est $\mathbb{R}^4 \setminus \mathbb{R}^3 \cup C_2 \cong \mathbb{R}^4 \setminus \mathbb{R}^3 \cup C_4 = U_{12} \cap U_{13}$, dont les groupes d'homologies sont les mêmes que ceux de $U_{12} \cap U_{13}$. Par conséquent, (19.8) devient

$$(19.9) 0 \to < [\vec{s}_{12}] > \oplus < [\vec{s}_{13}] > \oplus < [\vec{s}_{34}] > \to H_1(\mathbb{R}^4 \backslash T) \to \mathbb{Z} \to \mathbb{Z}^2 \to \mathbb{Z} \to 0,$$

On a donc

(19.10)
$$H_1(\mathbb{R}^4 \setminus T) = \langle [\vec{s}_{12}] \rangle \oplus \langle [\vec{s}_{13}] \rangle \oplus \langle [\vec{s}_{34}] \rangle.$$

Remarque 19.11. Notons que si on remplace \vec{s}_{34} par \vec{s}_{23} ou \vec{s}_{24} , on a toujours le même resultat que (19.10). Par contre \vec{s}_{14} ne marche pas. En effet, si trois T_{ij} ne partargent pas un sommet y_l , alors $H_1(\mathbb{R}^4 \setminus T)$ est le groupe libre engendré par les trois s_{ij} correspondants.

On dit que $[s_{ij}]$ et $[s_{kl}]$ (sans flèche de vecteur) sont différents (dans un groupe d'homologie) si

$$[\vec{s}_{ij}] \neq \pm [\vec{s}_{kl}],$$

et on note $s_{ij} \sim s_{kl}$ si $[\vec{s}_{ij}] = \pm [\vec{s}_{kl}]$.

Revenons à notre ensemble E. Sans perdre de généralité, on peut supposer (quitte à remplacer E par un E/r_k , k grand) que $d_{0,3}(E,T)$ est aussi petit qu'on veut (inférieur à ϵ_0 par exemple). Vérifions qu'alors, dans $B(0,\frac{5}{2})\backslash B(0,\frac{1}{2})$, E est une version C^1 de T. En effet, l'ensemble E_Y des points de type \mathbb{Y} dans $E\cap B(0,\frac{5}{2})\backslash B(0,\frac{1}{2})$ est l'union de 4 courbes de classe C^1 $\gamma_i,1\leq i\leq 4$, chaque γ_i est très proche de la demi droite $[oy_i)$, et autour de chaque γ_i , il existe un voisinage tubulaire \mathcal{T}_i de γ_i qui contient $B([oy_i),r)$ pour un r>0, tel que E est une version C^1 de Y (voir [9] paragraphe 18 pour plus de détails). Pour des points dans E qui sont dans $B(T_{ij}\backslash B([oy_i),r))$, on peut montrer, par un argument semblable à celui de paragraphe 6, que E est le graphe d'une fonction C^1 de T_{ij} . Donc au total, dans $B(0,\frac{5}{2})\backslash B(0,\frac{1}{2})$, E est l'image de T par un homéomorphisme φ , dont la dérivé est très proche de l'identité. Notons $E_{ij}=\varphi(T_{ij})$, $1\leq i\neq j\leq 4$. De plus, comme E est très proche de T, $s_{ij}\cap E=\emptyset$, $s_{ij}\cap E=s_{ij}\cap E_{ij}$ est aussi un ensemble qui ne contient qu'un point, si bien que localement chaque s_{ij} enlace E_{ij} , et est donc un élément dans $H_1(\mathbb{R}^4\backslash E,\mathbb{Z})$ aussi.

Lemme 19.13. Soit E un ensemble minimal au sens Al et vérifiant (19.2). On continue à supposer que d_T vaut la densité de T. Prenons toutes les conventions ci-dessus. Alors si

(19.14) pour tout
$$1 \le i < j \le 4$$
, $[\vec{s_{ij}}] \ne 0$ dans $H_1(\mathbb{R}^4 \setminus E, \mathbb{Z})$,

et

(19.15) au moins 5 des
$$[s_{ij}]$$
 sont deux à deux différents dans $H_1(\mathbb{R}^4 \backslash E, \mathbb{Z})$,

alors E contient au moins un point de type \mathbb{T} .

Démonstation du lemme : On raisonne par l'absurde. Supposons qu'il n'existe pas de point de type \mathbb{T} . Pour tout point $x \in E$, la densité $d_E(x) = \lim_{r \to 0} \frac{H^2(B(x,r) \cap E)}{r^2}$ de E en x est strictement inférieure à d_T , qui vaut aussi la densité de T à l'origine. Alors $d_E(x)$ est soit $\frac{3}{2}$, soit 1. Autrement dit, tous les points singuliers de E sont de type \mathbb{Y} .

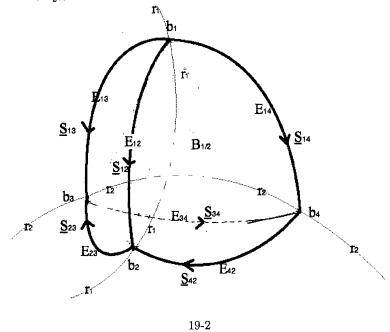
Notons E_Y l'ensemble des points de type \mathbb{Y} de E. Alors $E_Y \cap B(0,2)$ est composé de courbes localement bi-Hölder équivalentes à une droite, dont des bouts sont situés dans la sphère $\partial B(0,2)$.(c.f.[9], lemme 18.11).

L'argument ci-dessous est le même que celui après le lemme 18.11 dans [9] paragraphe 18, que l'on pourra donc consulter pour plus de détails. Ici on ne donne pas trop de détail.

Puisque E ressemble assez à un T dans $B(0,\frac{5}{2})\backslash B(0,\frac{1}{2})$, on a donc $E_Y \cap \partial B(0,2) = \{a_1,a_2,a_3,a_4\}, E_Y \cap \partial B(0,1) = \{b_1,b_2,b_3,b_4\}$, où b_i est le point le plus proche de a_i parmi les $b_j, 1 \leq j \leq 4$. Alors par chaque a_i passe une courbe de E_Y , et donc localement a_i est situé dans l'intersection de 3 demi surfaces $E_{ij}, j \neq i, 1 \leq j \leq 4$.

Maintenant puisqu'on a 4 bouts, sans perdre de généralité, on peut supposer que la courbe γ_1 de E_Y entre dans la boule B(0,2) par a_1 et sort par a_2 , l'autre courbe γ_2 part par a_3 et sort par a_4 (voir

le dessin 19-2 ci-dessous, où les traits verts représentent les γ_i , et on ne connait pas trop la structure de E dans $B_{1/2}=B(0,\frac{1}{2})$).



Autour de chaque point x de γ_1 , il existe une boule bi-hölderienne $B(x, r_x)$ de x. Par compacité de la courbe γ_1 , il existe donc un voisinage tubulaire I_1 de γ_1 , tel que $E \cap I_1$ est composé exactement de trois surfaces qui se rencontrent le long de γ_1 .

Mais γ_1 connecte a_1 et a_2 , donc il passe par b_1 et b_2 . Mais autour de y_i E est composé de trois surfaces $E_{ij}, j \neq i$. Alors puisque E est composé de trois surfaces tout le long de γ_1 , ces trois surface se connectent E_{12}, E_{13}, E_{14} à E_{21}, E_{23}, E_{24} . On sait donc que s_{12}, s_{13}, s_{14} sont homotopes à s_{21}, s_{23}, s_{24} (sans connaître l'attribution), et un argument semblable donne que s_{31}, s_{32}, s_{34} sont homotopes à s_{41}, s_{42}, s_{43} . Pour la partie γ_1 on a donc 6 cas.

$$\begin{array}{c} s_{12} \sim s_{21}, \quad s_{13} \sim s_{23}, \quad s_{14} \sim s_{24}; \\ s_{12} \sim s_{21}, \quad s_{13} \sim s_{24}, \quad s_{14} \sim s_{23}; \\ \\ (19.16) \\ s_{12} \sim s_{23}, \quad s_{13} \sim s_{21}, \quad s_{14} \sim s_{24}; \\ s_{12} \sim s_{23}, \quad s_{13} \sim s_{24}, \quad s_{14} \sim s_{21}; \\ s_{12} \sim s_{24}, \quad s_{13} \sim s_{21}, \quad s_{14} \sim s_{23}; \\ s_{12} \sim s_{24}, \quad s_{13} \sim s_{23}, \quad s_{14} \sim s_{23}. \end{array}$$

Notons que naturellement $s_{12} \sim s_{21}$, on a donc 4 cas (modulo la symétrie des indices 3 et 4)

$$(19.17) \begin{array}{c} s_{13} \sim s_{23}, s_{14} \sim s_{24}; \\ s_{13} \sim s_{24}, s_{14} \sim s_{23}; \\ s_{12} \sim s_{23} \sim s_{13}, s_{14} \sim s_{24}; \\ s_{12} \sim s_{23} \sim s_{14}, s_{13} \sim s_{24}. \end{array}$$

Semblablement on a, pour la partie γ_2

(19.18)
$$s_{31} \sim s_{41}, s_{32} \sim s_{42};$$

$$s_{31} \sim s_{42}, s_{32} \sim s_{41};$$

$$s_{34} \sim s_{41} \sim s_{31}, s_{32} \sim s_{42};$$

$$s_{34} \sim s_{41} \sim s_{32}, s_{31} \sim s_{42}.$$

En combinant (19.17) et (19.18) on a 8 cas

$$1^{\circ} \ s_{13} \sim s_{23} \sim s_{42} \sim s_{14};$$

$$2^{\circ} \ s_{13} \sim s_{23} \sim s_{42} \sim s_{14} \sim s_{43};$$

$$3^{\circ} \ s_{13} \sim s_{24}, s_{14} \sim s_{23};$$

$$4^{\circ} \ s_{34} \sim s_{41} \sim s_{32}, s_{13} \sim s_{24};$$

$$5^{\circ} \ s_{13} \sim s_{23} \sim s_{42} \sim s_{14} \sim s_{12};$$

$$6^{\circ} \ s_{13} \sim s_{24}, s_{12} \sim s_{23} \sim s_{14};$$

$$7^{\circ} \ s_{12} \sim s_{13} \sim s_{23} \sim s_{42} \sim s_{14} \sim s_{43};$$

$$8^{\circ} \ s_{13} \sim s_{24}, s_{12} \sim s_{14} \sim s_{23} \sim s_{34}.$$

Par conséquent, au plus 4 des $[s_{ij}]$, $1 \le i < j \le 4$, sont différents, d'où se produit la contradiction avec notre hypothèse, qui dit qu'au moins 5 des $\{[s_{ij}], 1 \le i < j \le 4\}$ sont des éléments différents de $H^1(\mathbb{R}^4 \setminus E; \mathbb{Z})$.

Fin de la démonstration du lemme.

Corollaire 19.20. Soit E un ensemble minimal au sens Al de dimension 2 dans \mathbb{R}^4 tel que (19.2),(19.14) et (19.15) sont vrais. Alors E est un T.

Démonstration. Par le lemme 19.13, E contient un point x de type \mathbb{T} , donc la densité $d_E(x)$ de E en x est supérieure ou égale à d_T . Posons $\theta(t) = t^{-2}H^2(E \cap B(x,t))$ la fonction de densité de E en x, elle est monotone, par la proposition 5.16 de [9]. Alors (19.2) et le lemme 16.43 de [9] donnent $\lim_{t\to\infty}\theta_t=d_T$. Notons que $d_E(x)=\theta(0)\geq d_T$, donc la monotonie de θ dit que $\theta(t)=d_T$ pour tout t>0. Par conséquent, le théorème 6.2 de [9] donne que E est un cône minimal centré en x, de densité d_T . Donc par (19.2) E et un E centré en E.

D'après le corollaire 19.20, il ne nous reste (pour démontrer un théorème semblable au théorème 13.9) qu'à discuter les cas où E est minimal topologique, et au plus 4 des $[s_{ij}]$ sont différents.

On va d'abord établir quelques propriétés des s_{ij} .

Lemme 19.21. 1)

(19.22)
$$\sum_{j \neq i} [\vec{s}_{ij}] = 0 \ pour \ tout \ 1 \le i \le 4.$$

2) Pour chaque $i \neq j \neq k$,

$$[\vec{s}_{ij}] \neq 0,$$

et

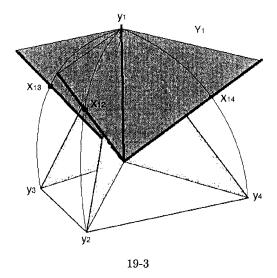
$$[\vec{s}_{ij}] \neq [\vec{s}_{jk}].$$

Démonstration. 1) Fixons un $1 \le i \le 4$.

On décompose $\mathbb{R}^4 = \mathbb{R}^3 \times \mathbb{R}$, où $T \subset \mathbb{R}^3$.

Rappelons que les $y_i, 1 \le i \le 4$ sont les 4 points de type \mathbb{Y} de $T \cap \partial B(0,1), T_{ij}$ est le secteur de T passant par l'origine et y_i, y_j, x_{ij} est le milieu du grand cercle passant par y_i, y_j, P_{ij} est le plan passant par x_{ij} et orthogonal à T_{ij} , et $s_{ij} = \partial B_{ij}$ où $B_{ij} = B(x_{ij}, \frac{1}{10}) \cap P_{ij}$.

Notons Y_i le cône sur $Z_i := \bigcup_{j \neq i} \widehat{y_i x_{ij}}$, où $\widehat{y_i x_{ij}}$ désigne l'arc de cercle entre y_i et x_{ij} (voir le dessin 19-3 de $Y_1 \subset \mathbb{R}^3$ ci-dessous), C_T l'enveloppe convexe de Y_i . Posons $C = C_T \times \mathbb{R}$. Notons que C est un cône, et donc $C \setminus T$ l'est aussi. Noter que $Z_i \subset S^3 \cap C$ est comme un Y de dimension 1. On va montrer que $\sum_{j \neq i} [\vec{s}_{ij}] = 0$ dans $H_1(C \setminus T, \mathbb{Z})$.



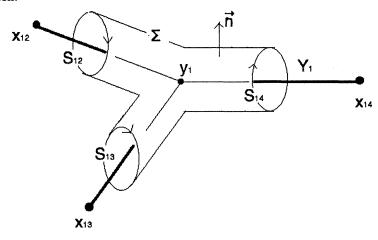
Observons d'abord que \vec{s}_{ij} est homotope dans $C\backslash T$ à sa projection radiale \vec{s}_{ij} sur S^3 (dont l'orientation est induite par \vec{s}_{ij} sur la sphère S^3). En effet, notons π_S le projecteur radial de $\mathbb{R}^4\backslash\{0\}$ sur S^3 , alors pour chaque $x\in s_{ij}$, le segment $[x,\pi_S(x)]$ appartient à une droite radiale, qui ne rencontre aucune autre droite radiale, en particulier, puisque $x\in\mathbb{R}^4\backslash T$, où T est décomposé de droites radiales, $[x,\pi_X(x)]\cap T=\emptyset$. Alors si on pose $f_t(x)=(1-t)x+t\pi_S(x), 0\leq t\leq 1$, alors f_t est un homotopie entre \vec{s}_{ij} et $\vec{s}_{ij}'=\pi_S(\vec{s}_{ij})$.

Alors sur la sphère, dans $C \cap S^3$, topologiquement les $s_{ij}, j \neq i$ sont trois cercles enlaçant les trois branches de Z_i (rappelons que le couple d'espaces topologiques $(C \cap S^3, Z_i)$ est homéomorphe à (\mathbb{R}^3, Y) avec Y un ensemble de type \mathbb{Y} de dimension 1. Alors dans (\mathbb{R}^3, Y) , l'union des trois cercles orientés

enlaçant les trois branches de Y est le bord d'une variété orientée à bord contenue dans $\mathbb{R}^3 \backslash Y$, ce qui donne qu'il existe une variété orientée à bord $\Sigma \subset C \cap S^3 \backslash Z_i$ de dimension 2 telle que $\partial \Sigma = \cup_{j \neq i} \vec{s}_{ij}'$ (voir le dessin 19-4 ci-dessous, où s_{ij} désigne le cercle orienté \vec{s}_{ij} , et l'orientation de Σ est marquée par un vecteur normal extérieur \vec{n}), de sorte que, après une triangulation lisse dont Γ et les s_{ij} sont des chaîne lisses, on a $\partial[\Sigma] = \cup_{j \neq i} [\vec{s}_{ij}']$. Mais $\Sigma \subset C \cap S^3 \backslash Z_i \subset \mathbb{R}^4 \backslash T$, par conséquent $\sum_{j \neq i} [\vec{s}_{ij}'] = 0$ dans $H_1(\mathbb{R}^4 \backslash T, \mathbb{Z})$. Alors puisque \vec{s}_{ij}' est homotope à \vec{s}_{ij} , on obtient

(19.25)
$$\sum_{j\neq i} [\vec{s}_{ij}] = 0 \text{ dans } H_1(\mathbb{R}^4 \backslash T, \mathbb{Z}).$$

Puisque E est très proche de T, on peut supposer que Σ et les $f_t(s_{ij})$ ne touchent pas E. On obtient donc la conclusion.



19-4

2)Supposons par exemple que
$$i = 1, j = 2, k = 3$$
. Si $[\vec{s}_{12}] = [\vec{s}_{23}]$, alors par (19.22)
$$[\vec{s}_{24}] = 0,$$

Donc il faut juste montrer (19.23). Supposons par exemple i=2, j=4. Alors (19.26) veut dire qu'il existe une 2-chaîne simpliciale lisse Γ dans $\mathbb{R}^4 \setminus E$ telle que $\partial \Gamma = \vec{s}_{24}$. Mais E est fermé, il existe donc un voisinage U de Γ tel que $U \cap E = \emptyset$. En particulier, $s_{24} \subset U$.

Posons $D = E \cap \overline{B}(x_{24}, \frac{1}{10})$. Alors par la régularité de E qui est très proche de T, E est dans $B(x_{24}, \frac{1}{8})$ égale à un morceau de surface qui est presque un disque. Par conséquent D est une surface de mesure non nulle.

On note $F = E \setminus D$, alors $F \setminus B(0,2) = E \setminus B(0,2)$. On va montrer que F est un compétiteur topologique de E par rapport à la boule B(0,2). Supposons donc que $\gamma \in \mathbb{R}^4 \setminus (B(0,2) \cup E)$ est un cercle orienté. On veut montrer que si $[\gamma]$ est nul dans $H_1(\mathbb{R}^4 \setminus F, \mathbb{Z})$, alors il est nul dans $H^1(\mathbb{R}^4 \setminus E, \mathbb{Z})$.

Puisque $[\gamma]$ est nul dans $H_1(\mathbb{R}^4 \backslash F, \mathbb{Z})$, il existe un 2 – chaine simpliciale lisse $\Sigma \subset \mathbb{R}^4 \backslash F$ tel que $\partial \Sigma = \gamma$. Par le théorème 16.35 et la remarque 16.37, et un argument semblable à celui de la proposition 18.8, on peut demander que Σ soit transverse à $\partial B(x_{24}, \frac{1}{10})$.

Si $\Sigma \cap B(x_{24}, \frac{1}{10}) = \emptyset$, alors $\Sigma \subset \mathbb{R}^4 \setminus E$ aussi, d'où $[\gamma] = 0 \in H_1(\mathbb{R}^4 \setminus E, \mathbb{Z})$. Si $\Sigma \cap B(x_{24}, \frac{1}{10}) \neq \emptyset$, alors par la transversalité de Σ et $\partial B(x_{24}, \frac{1}{10})$, par la proposition 17.2, leur intersection est une 1-chaîne simpliciale lisse $s \subset \partial B(x_{24}, \frac{1}{10})$ sans bord.

Maintenant on se place dans la boule $\overline{B}_1 := \overline{B}(x_{24}, \frac{1}{10})$. Puisque D est topologiquement un disque, on a

$$(19.27) H_1(\overline{B}_1 \backslash D) = \mathbb{Z},$$

donc l'élément générateur est $[\vec{s}_{24}]$. Par conséquent, il existe $n \in \mathbb{Z}$ tel que $[s] = n[\vec{s}_{24}]$. Il existe donc une 1-chaîne simpliciale lisse $R \subset \overline{B}_1 \setminus D$ tel que $\partial R = s - n\vec{s}_{24}$.

Rappelons que $\Gamma \subset \mathbb{R}^4 \setminus E$ est tel que $\partial \Gamma = \vec{s}_{24}$. Par conéquent, $\Sigma' = \Sigma \setminus \overline{B}_1 + n\Gamma + R$ est un 2-chaine tel que $\partial[\Sigma'] = [\gamma]$. De plus $\Sigma' \subset \mathbb{R}^4 \setminus E$. Donc $[\gamma]$ est aussi nul dans $H^1(\mathbb{R}^4 \setminus E, \mathbb{Z})$. Ainsi F est un compétiteur topologique de E.

Mais puisque D est de mesure non nulle,

$$(19.28) H^2(F) < H^2(E),$$

ce qui contredit le fait que E est MS minimal.

Fin de la démonstration du lemme 19.21.

On va maintenant reprendre la discussion des cas où E est trés proche d'un T à l'échelle 1, et ne contient pas de point de type \mathbb{T} . On va donc discuter les 8 cas qui apparaissent dans (19.19). Notons que parmi les 8 cas, le troisième cas contient déjà tous les autres 7. Mais on va comme même discuter tous les 8, pour en éliminer certains.

$$1^{\circ} s_{13} \sim s_{23} \sim s_{42} \sim s_{14}$$
.

Par (19.24), $[\vec{s}_{13}] \neq [\vec{s}_{32}]$, donc $[\vec{s}_{13}] = [\vec{s}_{23}]$; en fait

$$[\vec{s}_{13}] = [\vec{s}_{23}] = [\vec{s}_{24}] = [\vec{s}_{14}] := \alpha,$$

ensuite par (19.22)

$$[\vec{s}_{43}] = [\vec{s}_{24}] + [\vec{s}_{14}] = [\vec{s}_{13}] + [\vec{s}_{23}] = [\vec{s}_{34}],$$

donc

(19.31)
$$[\vec{s}_{43}] = [\vec{s}_{34}] = 2\alpha \text{ et } 4\alpha = 0.$$

On a semblablement

$$[\vec{s}_{12}] = [\vec{s}_{21}] = 2\alpha.$$

Dans ce cas, on a au plus 2 éléments différents parmis les $s_{ij}, 1 \leq i, j \leq 4$.

 $2^{\circ} \ s_{13} \sim s_{23} \sim s_{42} \sim s_{14} \sim s_{43}$.

On a $s_{13} \sim s_{43} \sim s_{14}$, (19.24) donne

$$[\vec{s}_{13}] = [\vec{s}_{43}], [\vec{s}_{13}] = [\vec{s}_{14}], [\vec{s}_{14}] = [\vec{s}_{34}],$$

donc

(19.34)
$$[\vec{s}_{13}] = [\vec{s}_{43}] = [\vec{s}_{14}] := \alpha \text{ avec } 2\alpha = 0.$$

Mais dans ce cas, par (19.22),

$$[\vec{s}_{12}] = [\vec{s}_{41}] + [\vec{s}_{31}] = 2\alpha = 0,$$

ce qui contredit (19.23). Donc ce cas n'existe pas.

$$3^{\circ} s_{13} \sim s_{24}, s_{14} \sim s_{23}.$$

Ici on a 4 cas

(19.36)
$$1)[\vec{s}_{13}] = [\vec{s}_{24}] := \alpha, \qquad [\vec{s}_{14}] = [\vec{s}_{23}] := \beta;$$

$$2)[\vec{s}_{13}] = [\vec{s}_{24}] := \alpha, \qquad [\vec{s}_{14}] = -[\vec{s}_{23}] := \beta;$$

$$3)[\vec{s}_{13}] = -[\vec{s}_{24}] := \alpha, \qquad [\vec{s}_{14}] = [\vec{s}_{23}] := \beta;$$

$$4)[\vec{s}_{13}] = -[\vec{s}_{24}] := \alpha, \qquad [\vec{s}_{14}] = -[\vec{s}_{23}] := \beta.$$

Pour 1), on a $[\vec{s}_{34}] = -[\vec{s}_{24}] - [\vec{s}_{14}] = -\alpha - \beta$, aussi $[\vec{s}_{34}] = [\vec{s}_{13}] + [\vec{s}_{23}] = \alpha + \beta$. D'autre part, $[\vec{s}_{12}] = -[\vec{s}_{13}] - [\vec{s}_{14}] = -\alpha - \beta = \alpha + \beta = [\vec{s}_{23}] + [\vec{s}_{24}]$. On a donc

(19.37)
$$2\alpha + 2\beta = 0 \text{ et } [\vec{s}_{34}] = [\vec{s}_{12}],$$

et dans ce cas on a au plus 3 éléments différents parmis les s_{ij} , $1 \le i, j \le 4$;

Pour 2), on a
$$\alpha - \beta = [\vec{s}_{13}] + [\vec{s}_{23}] = [\vec{s}_{34}] = -[\vec{s}_{24}] - [\vec{s}_{14}] = -\alpha - \beta$$
, $\alpha - \beta = [\vec{s}_{23}] + [\vec{s}_{24}] = [\vec{s}_{12}] = -[\vec{s}_{13}] - [\vec{s}_{14}] = -\alpha - \beta$. Donc

(19.38)
$$2\alpha = 0 \text{ et } [\vec{s}_{34}] = [\vec{s}_{12}],$$

et dans ce cas on a au plus 3 éléments différents parmis les $s_{ij}, 1 \le i, j \le 4$;

Pour 3), on a
$$\alpha + \beta = [\vec{s}_{13}] + [\vec{s}_{23}] = [\vec{s}_{34}] = -[\vec{s}_{24}] - [\vec{s}_{14}] = \alpha - \beta$$
, $\beta - \alpha = [\vec{s}_{23}] + [\vec{s}_{24}] = [\vec{s}_{12}] = -[\vec{s}_{13}] - [\vec{s}_{14}] = -\alpha - \beta$, donc

(19.39)
$$2\beta = 0 \text{ et } [\vec{s}_{34}] = -[\vec{s}_{12}],$$

et dans ce cas on a au plus 3 éléments différents parmis les $s_{ij}, 1 \leq i, j \leq 4$;

Pour 4), on a
$$\alpha - \beta = [\vec{s}_{13}] + [\vec{s}_{23}] = [\vec{s}_{34}] = -[\vec{s}_{24}] - [\vec{s}_{14}] = \alpha - \beta$$
, $-\beta - \alpha = [\vec{s}_{23}] + [\vec{s}_{24}] = [\vec{s}_{12}] = -[\vec{s}_{13}] - [\vec{s}_{14}] = -\alpha - \beta$, donc

$$[\vec{s}_{34}] = \alpha - \beta, [\vec{s}_{12}] = -\alpha - \beta,$$

et dans ce cas on a au plus 4 éléments différents parmis les s_{ij} , $1 \le i, j \le 4$.

$$4^{\circ} \ s_{34} \sim s_{41} \sim s_{32}, s_{13} \sim s_{24}.$$

Par (19.24) on a

$$[\vec{s}_{34}] = [\vec{s}_{14}] = [\vec{s}_{32}] := \alpha,$$

alors

$$(19.42) [\vec{s}_{24}] = [\vec{s}_{14}] - [\vec{s}_{34}] = -2\alpha, |\vec{s}_{21}| = -[\vec{s}_{24}] + |\vec{s}_{32}| = 3\alpha, |\vec{s}_{13}| = |\vec{s}_{32}| + |\vec{s}_{34}| = 2\alpha.$$

C'est un cas particulier de 3°4), et dans ce cas on a au plus 3 éléments différents parmis les s_{ij} , $1 \le i, j \le 4$.

5°
$$s_{13} \sim s_{23} \sim s_{42} \sim s_{14} \sim s_{43}$$
.

Cas semblable que 2°, impossible.

6°
$$s_{13} \sim s_{24}, s_{12} \sim s_{23} \sim s_{14}$$
.

Par (19.24) on a

$$[\vec{s}_{12}] = [\vec{s}_{32}] = [\vec{s}_{14}] := \alpha,$$

et donc

$$(19.44) [\vec{s}_{42}] = -[\vec{s}_{12}] - [\vec{s}_{32}] = -2\alpha, |\vec{s}_{43}| = -[\vec{s}_{42}] + |\vec{s}_{14}| = 3\alpha, |\vec{s}_{13}| = |\vec{s}_{32}| + |\vec{s}_{34}| = -2\alpha.$$

C'est un cas particulier de 3°4), et dans ce cas on a au plus 3 éléments différents parmis les s_{ij} , $1 \le i, j \le 4$.

$$7^{\circ} \ s_{12} \sim s_{13} \sim s_{23} \sim s_{42} \sim s_{14} \sim s_{43}$$

C'est un cas contenu dans 2° ou 5°, donc impossible.

8°
$$s_{13} \sim s_{24}, s_{12} \sim s_{14} \sim s_{23} \sim s_{34}$$

C'est un sous cas de 6°, et donc par la conclusion de 6°, $s_{34} \sim s_{14}$ donne $3\alpha = [\vec{s}_{43}] = [\vec{s}_{41}] = -\alpha$, de sorte que $2\alpha = 0$, ce qui impique que $[\vec{s}_{13}] = 0$, impossible.

En gros, topologiquement tous les cas sont contenus dans le cas 3° 4) (notons que les cas 1°, 3°, 4°, 6° sont tous des cas parcituliers de 3° 4)). Alors dans le cas 3° 4), il y a au plus 2 éléments indépendants parmis les s_{ij} , $1 \le i \le 4$. Modulo changement de noms, on a

$$(19.45) [\vec{s}_{13}] = -[\vec{s}_{24}] = \alpha, [\vec{s}_{14}] = -[\vec{s}_{23}] = \beta, [\vec{s}_{34}] = \alpha - \beta, [\vec{s}_{12}] = -\alpha - \beta.$$

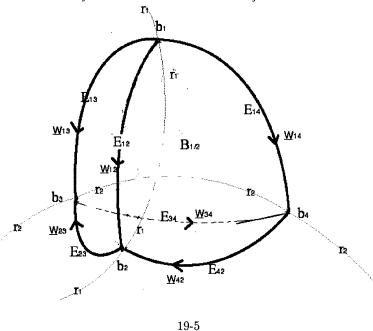
On obtient donc la proposition suivante.

Proposition 19.46. Soit E un minimiseur topologique réduit de dimension 2 dans \mathbb{R}^4 , qui vérifie (19.2). Prenons toutes les conventions énoncé au debut du paragraphe, et suppsons aussi que γ_1 connecte a_1, a_2, γ_2 connecte a_3, a_4 . Alors s'il existe r > 0 tel que $d_{0,3r}(E,T) < \epsilon_0$ (où ϵ_0 est celui juste après (19.12)), mais les s_{ij} ne vérifie pas (19.45) par rapport à $\frac{1}{r}E$, alors E est un T.

La proposition ci-dessus n'est pas encore aussi forte que le théorème 13.9. On n'arrive pas à exclure le cas 3° 4). Mais cela vient d'une discussion plutôt algébrique. On regarde ci-dessous que signifie-t-il topologiquement.

Supposons que (19.45) est vrai.

Notons $w_{ij} = E_{ij} \cap \partial B(0,1)$, (voir le dessin 19-5 ci-dessous, où \underline{w}_{ij} désigne \vec{w}_{ij}), alors les w_{ij} sont des courbe C^1 . Notons aussi \vec{w}_{ij} la courbe orientée de b_i vers b_j .



Maintenant supposons que $E_Y = \gamma_1 \cup \gamma_2$. C'est à dire, tout point est de type \mathbb{P} , sauf les deux courbes. (Pour le cas où $E_Y \neq \gamma_1 \cup \gamma_2$, on sait que $E_Y \setminus (\gamma_1 \cup \gamma_2)$ est une union de courbes fermées, parce que les seuls bouts des courbes dans E_Y sont les $\{b_i\}_{1 \leq i \leq 4}$. C'est donc un cas plus compliqué.)

Lemme 19.47. $\gamma_1 \cup \gamma_2 \cup w_{12} \cup w_{34}$ est le bord d'une surface $S_0 \subset E$ de classe C^1 , et S_0 ne contient que des points de type \mathbb{P} .

Démonstration. Par la C^1 régularité des ensembles minimaux, la partie de E qui est dans B(0,1) est composé de variétés S_1, S_2, \cdots de classe C^1 dont les bords sont composés des éléments dans l'ensemble $Bd = \{w_{ij}, \gamma_1, \gamma_2\}$. Alors w_{12} fait partie du bord d'une variété S_k . Mais ∂S_k doit être une union de plusieurs courbes fermées. Il existe donc un courbe γ dans Bd qui touche w_{12} et telle que γ fait partie de

190 Une discussion sur T

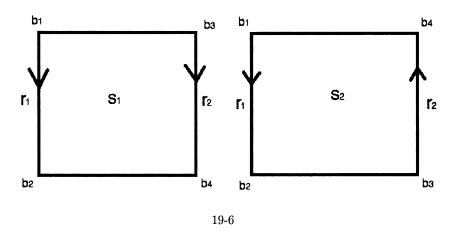
 ∂S_k aussi. Si l'un des w_{1i} (resp. l'un des w_{2j}) est contenu dans ∂S_k à la suite de w_{12} , on a $[\vec{s}_{12}] = [\vec{s}_{i1}]$ (avec orientation) (resp. $[\vec{s}_{12}] = [\vec{s}_{2i}]$), ce qui contredit (19.24).

Par conséquent la seule possibilité est γ_1 . C'est à dire, w_{12} et γ_1 font partie du bord d'une même variété S_k , et sauf w_{34} , le bord de S_k ne contient pas les autre w_{ij} . Un argument semblable donne que w_{12} et γ_1 font partie d'une même variété S_l , dont le bord ne contient pas les autre w_{ij} , sauf w_{12} .

Alors soit l'union des quatre est le bord d'une surface, soit l'union de w_{34} et γ_2 est le bord d'une surface et l'union des deux autres est le bord d'une autre surface. En tout cas, l'union des quatre est le bord d'une surface (pas forcément connexe).

Fin de la démonstration du lemme.

D'après ce lemme, si on enlève la surface S_0 de E, alors $E \setminus S$ est composé de surfaces de classe C^1 dont les bords sont composés d'éléments de l'ensemble $Bd' = \{w_{13}, w_{14}, w_{23}, w_{24}, \gamma_1, \gamma_2\}$. Alors par le même argument, il y a 2 surfaces S_1, S_2 , avec $\partial S_1 = w_{13} \cup \gamma_2 \cup w_{24} \cup \gamma_1$, et l'autre $\partial S_2 = w_{23} \cup \gamma_2 \cup w_{14} \cup \gamma_1$. De plus $S_1 \cup S_2$ est aussi une variété topologique connexe, dont on peut définir l'orientation locale, y compris près de ∂S_1 et ∂S_2 .



Donc topologiquement, les bords des deux surfaces S_1, S_2 sont comme les bords de deux carrés, l'un avec les quatre sommets (écrit dans l'ordre voisin) b_1, b_3, b_4, b_2 , l'autre avec les somments b_1, b_4, b_3, b_2 . De plus, on doit coller $b_1 \vec{b}_2$ ensemble, et $b_3 \vec{b}_4$ ensemble. Notons que (voir le dessin 19-6 par exemple) ces deux collages sont de directions contraires.

Alors si l'un des S_1, S_2 est non orientable, $S_1 \cup S_2$ est automatiquement non-orientable. Si S_1, S_2 sont orientables, alors par la collage, $S_1 \cup S_2$ est aussi non-orientable. En tout cas $S_1 \cup S_2$ est non-orientable.

Remarque 19.48. Puisque $S_1 \cup S_2$ n'est pas orientable, $[\vec{s}_{13}], [\vec{s}_{14}], [\vec{s}_{24}], [\vec{s}_{23}]$ sont tous d'ordre 2 dans $H_1(\mathbb{R}^4 \setminus E, \mathbb{Z})$.

En effet pour une surface connexe S, la non-orientabilité veut dire que pour chaque point $x \in S$ on peut trouver un chemin $\gamma: [0,1] \to S$ tel que $\gamma(0) = \gamma(1) = x$, et si on note $n(t) = x(t) \land y(t) \in \land_2 N_{\gamma(t)} S$

un champ de 2-vecteurs normal unitaire sur γ , où $x(t), y(t) \in N_{\gamma(t)}S$ des champs de vecteurs unitaires, n, x, y continus par rapport à t, alors n(0) = -n(1). Notons que n(t) désigne aussi le plan orienté dans \mathbb{R}^4 . Notons, pour chaque r > 0 $s_r(t) : T = \mathbb{R}/\mathbb{Z} \to P_t = P(x(t) \land y(t)), \theta \mapsto r[\cos(2\pi\theta)x(t) + \sin(2\pi\theta)y(t)]$. Alors l'image de $s_r(0)$ et $s_r(1)$ sont le même cercle, mais ils sont d'orientation contraire : $s_r(0)(t) = s_r(1)(-t)$.

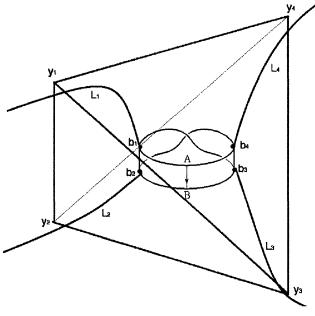
Notons $Q_t = \gamma(t) + P(t)$. Fixons r > 0 suffisamment petit, tel que pour chaque $t \in [0, 1]$, $B(\gamma(t), r) \cap Q_t \cap S = \{\gamma(t)\}$.

Notons $G: T \times [0,1] \to \mathbb{R}^4$, $G(\theta,t) = s_r(t)(\theta) + \gamma(t)$. C'est une application continue, telle que $G(T \times \{0\}) = s_r(0)$ et $G(T \times \{1\}) = s_r(1) = -s_r(0)$. Par conséquent, le cercle orienté $s_r(0)$ est homotope à $-s_r(0)$, il est donc d'ordre 2.

Maintenant pour chaque $s \in \{[\vec{s}_{13}], [\vec{s}_{14}], [\vec{s}_{24}], [\vec{s}_{23}]\}$, on peut trouver d'abord trouver un s' homotope à s, tel qu'il existe x, γ comme avant, et qu'il existe R > 0 tel que $s_R(0) = s'$. On peut trouver r > 0 comme ci-dessus, alors $s_r(0)$ est homotope à s', et donc s. Par conséquent $[s] = [s_r(0)]$ est d'ordre 2.

On va construire un ensemble $E \subset \mathbb{R}^4$, avec les propriétés ci-dessus, c'est à dire, dans B(0,1), l'ensemble E est composé de S_0 et $S_1 \cup S_2$ comme ci-dessus, $S_1 \cup S_2$ est une variété topologique non-orientable; S_0 a deux composante connexe, qui rencontre $S_1 \cup S_2$ en γ_1 et γ_2 respectivement. Hors de la boule B(0,1), E est une versions C^1 de T, et il resemble à T à l'infini. De plus, $H_1(\mathbb{R}^4 \setminus E)$ est juste comme le cas $3^{\circ}4$) ci-dessus.

Prenons deux exemplaires de carrés (voir le dessin 19-6), l'un avec des sommets (écrit dans les sens des aiguilles d'une montre) b_1, b_3, b_4, b_2 , l'autre avec les somments b_1, b_4, b_3, b_2 . On colle les deux côtés $\overrightarrow{b_3b_4}$ et $\overrightarrow{b_1b_2}$. On obtient alors une bande de Möbius dans \mathbb{R}^3 .



192 RÉFÉRENCES

En suite, prenons un grand tétraèdre (dont les sommets y_i , $1 \le i \le 4$) régulier qui contient la bande de Möbius. Prenons, pour chaque i, une courbe lisse L_i emis de b_i et allant à l'infini, telle que L_i tends vers la demi droite émise du centre de T et passant par y_i . (voir le dessin 19-7).

Prenons, pour chaque $1 \leq i \neq j \leq 4$, une surface E_{ij} de classe C^1 , homéomorphe à \mathbb{R}^2 , dont le bord est $L_i \cup L_j \cup [b_i b_j]$. Notons que tous les E_{ij} vont à l'infini, de sorte que dans \mathbb{R}^3 , E_{23} et E_{14} , ou E_{13} et E_{24} se croisent forcément. Donc on déménage dans \mathbb{R}^4 pour l'éviter.

On obtient comme ça un ensemble qui ressemble à un T à l'infini, et du premier coup, on ne peut pas dire facilement qu'il existe pas un ensemble minimal topologique qui admet une telle topologie.

Références

- [1] William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417-491, 1972.
- [2] F. J. Almgren. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. *Memoirs of the American Mathematical Society*, 4(165), 1976.
- [3] A. Bonnet. On the regularity of edges in image segmentation. Ann. Inst. H. Poincaré, Analyse non linéaire, 13(4):485-528, 1996.
- [4] Glen E. Bredon. *Topology and Geometry*. Graduate Texts in Mathematics 139. Springer-Verlag, 1993.
- [5] S. S. Cairns. On the triangulation of regular loci. Ann. of Math., 35:579-587, 1934.
- [6] S. S. Cairns. A simple triangulation method for smooth manifolds. Bull. Amer. Math. Soc, 67(4):389-390, 1961.
- [7] Guy David. Limits of Almgren-quasiminimal sets. Proceedings of the conference on Harmonic Analysis, Mount Holyoke, A.M.S. Contemporary Mathematics series, 320:119-145, 2003.
- [8] Guy David. Singular sets of minimizers for the Mumford-Shah functional. Progress in Mathematics. Birkhäuser, 2005.
- [9] Guy David. Hölder regularity of two-dimensional almost-minimal sets in ℝⁿ. Annales de la Faculté des Sciences de Toulouse, XVIII(1):65-246, 2009.
- [10] Guy David. $C^{1+\alpha}$ -regularity for two-dimensional almost-minimal sets in \mathbb{R}^n . Journal of geometric analysis, à paraître.
- [11] Guy David and Stephen Semmes. Uniform rectifiablility and quasiminimizing sets of arbitrary codimension. *Memoirs of the A.M.S.*, 144(687), 2000.
- [12] D.Mumford and J.Shah. Boundary detection by minimizing functionals. In IEEE Conference on computer vision and pattern recognition, San Francisco, 1985.
- [13] James Dugundji. Topology. Allyn and Bacon.Inc., Boston, 1966.

RÉFÉRENCES

- [14] Herbert Federer. Geometric measure theory. Grundlehren der Mathematishen Wissenschaften 153.
 Springer Verlag, 1969.
- [15] Vincent Feuvrier. Un résultat d'existence pour les ensembles minimaux par optimisation sur des grilles polyédrales. PhD thesis, Université de Paris-Sud 11, orsay, september 2008.
- [16] Ralph H. Fox and E. Artin. Some wild cells and spheres in three-dimensional space. Ann. of Math., 49:979–990, 1948.
- [17] Mariano Giaquinta and Luca Martinazzi. An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Edizioni della normale, 2005.
- [18] Allen Hatcher. Algebraic topology. cambridge university press, 2001.
- [19] A. Heppes. Isogonal sphärischen netze. Ann. Univ. Sci. Budapest Eötvös Sect. Math, 7:41-48, 1964.
- [20] Morris W. Hirsch. Differential Topology. Graduate Texts in Mathematics 33. Springer-Verlag, 1976.
- [21] E. Lamarle. Sur la stabilité des systèmes liquides en lames minces. Mémoires de l'Académie Royale de Belgique, 35:3-104, 1864.
- [22] Gary Lawlor. The angle criterion. Invent.math., 95:437-446, 1989.
- [23] Gary Lawlor. Pairs of planes which are not size-minimizing. Indiana Univ. Math. J., 43:651–661, 1994.
- [24] Pertti Mattila. Geometry of sets and measures in Euclidean space. Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, 1995.
- [25] Frank Morgan. Examples of unoriented area-minimizing surfaces. Transactions of the American mathematical society, 283(1):225-237, 1984.
- [26] Frank Morgan. Soap films and mathematics. Proceedings of Symposia in Pure Mathematics, 54:Part 1, 1993.
- [27] Dana Nance. Sufficient conditions for a pair of n-planes to be area-minimizing. Math. Ann., 279:161-164, 1987.
- [28] Thierry De Pauw. Size minimising surfaces. Annales scientifiques de l'école normale supérieure, 42:37-101, 2009.
- [29] Thierry De Pauw and Robert Hardt. Size minimization and approximating problems. Calculus of Variations, 17:405–442, 2003.
- [30] Walter Rudin. Real and complex analysis. McGRAW-HILL Publishins Co., 3rd edition, 1987.
- [31] Elias Stein and Guido Weiss. *Introduction to Fourier analysis on Euclidean spaces*. Princeton University Press, 1971.
- [32] Jean Taylor. The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces.

 Ann. of Math. (2), 103:489–539, 1976.
- [33] Hassler Whitney. Geometric integration theory. Princeton University Press, 1957.

