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Index Theorem and the Heat Equation 
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The purpose of this paper is to review the recent developments in the heat 
equation proofs of the Atiyah-Singer Index Theorem for Dirac operators. 

Let us briefly recall that if D+ is half a Dirac operator and if D- is its 
adjoint, the starting point of the method is the McKean-Singer formula for the 
index Ind JD+ [MS]: 

|Ind D+ = Tr[exp(-tD-D+/2)\ - Tr[exp{-tD+D-/2)], t > 0. (0.1) 

As t J4 0, the right-hand side has an expansion starting with negative powers 
of t, and the problem is to show that in certain situations, when expressing the 
traces using kernels, even locally 

• no negative powers of t arise; 
• the constant term coincides with the local Atiyah-Singer polynomial. 
After the pioneering papers of Patodi [PI , P2], Gilkey [Gil] and Atiyah-

Bott-Patodi [ABP] established that this is indeed the case for algebraic reasons. 
The method is indirect: 

• an algebraic argument gives the general form of the local terms arising in 
the expansion, and then excludes negative powers of t\ 

• the zero order term is calculated using a similar classification argument, and 
also explicit computations on examples. 

This approach has been extended by Patodi [P3] and Gilkey [Gi2] to include 
the fixed point formulas of Atiyah-Bott [ABl] and Atiyah-Singer [AS], and it 
is fully described in Gilkey's recent book [Gi3]. 

By using arguments based on supersymmetry considerations, physicists 
Witten [WI], Alvarez-Gaumé [Al], and Priedan-Windey [FW] strongly sug
gested that a direct proof of the local Index Theorem could be given, which 
would altogether prove the local cancellations and identify the local integrand 
by brute force. 

That this is indeed possible has been proved by Getzler [Gel, Ge2] for the 
Index Theorem, by Bismut [Bl] and Berline-Vergne [BV2] for the Index Theo
rem and for the Lefschetz fixed point formulas. The proofs of Getzler are based 
on the asymptotic representation of heat kernels on supermanifolds [Gel] and 
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also on adequate rescaling in time, space, and Clifford variables [Gel, Ge2]. 
Our proofs [Bl] use a probabilistic asymptotic representation of the heat kernel 
[B5], together with certain stochastic area formulas of P. Levy [Le]. The proofs 
of Berline-Vergne [BV2] are of group-theoretic nature. 

On the other hand, Atiyah and Witten [At] have found a remarkable formal 
link between the Index Theorem for Dirac operators on the spin complex and 
localization formulas in equivariant cohomology of Duistermaat-Heckman [DH], 
Berline-Vergne [BV1]. In particular the A genus was interpreted in [At] as 
the inverse of an equivariant Euler form associated with an infinite-dimensional 
bundle. This suggested that an alternative approach to the Index Theorem, in 
relation with the equivariant cohomology of the loop space, was possible. 

In [B2], we verified that the Atiyah-Witten formalism could be extended to the 
case of general Dirac operators, and also to fixed point theory. Also we showed 
in [B4] that the heat equation method is by itself such a reasonable proof of 
these formulas in infinite dimensions that it has a finite-dimensional counterpart, 
i.e., there is a proof of the formulas of [BV1] and [DH] which is at each step 
the finite-dimensional analogue of the probabilistic proof of the Index Theorem. 
This proof exhibits Patodi-like cancellations in finite dimensions. Conversely, it 
clearly demonstrates the purely geometric nature of these cancellations in Index 
Theory, the geometry to be considered being the geometry of the loop space. 

Until recently, the heat equation formula (0.1) for the Index was considered a 
tool, which happened to work. The introduction of superconnections by Quillen 
[QI] changed the situation dramatically. In [QI], Quillen introduced a new class 
of objects, the superconnections on Z<i graded finite-dimensional bundles, which 
makes (0.1) cry out to be considered as a formula for a Chern character. To 
briefly explain the analogy, let us just say that if E is a bundle with connection 
V, if V2 is the curvature of E, then eh E is represented in cohomology by 

eh E = Tr[exp(-V2/2ïV)]. (0.2) 

In [B3], we gave heat equation proofs of the Index Theorem of Atiyah-Singer 
for families of Dirac operators [AS], based on an infinite-dimensional analogue 
of Quillen's theory. To find the right choice of a superconnection, the finite-
dimensional baby model of [B4] was of critical importance. 

In relation with papers by Quillen [Q2] and Witten [W3] on determinant 
bundles and global anomalies, a transgressed form of Quillen's superconnection 
formalism has been introduced in Bismut-Freed [BF]. In particular, a remarkable 
argument of Witten [W3] relating the holonomy of determinant bundles to eta 
invariants has received a complete proof in [BF]. Another proof has recently 
been given by Cheeger [Ch]. 

Superconnections and the local form of the Index Theorem for families are 
currently used by Gillet and Soulé [GS] to construct direct images in Arakelov 
theory. 

On the other hand, the results of Witten [W2] on the Morse inequalities, and 
the asymptotic Morse inequalities of Demailly for complex manifolds [De] have 
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also been proved by us [B6, B7] using heat equation methods. Getzler [Ge3, 
Ge4] has given a degree-theoretic interpretation in infinite dimensions of certain 
Index problems. Current efforts are done to relate in a more direct way heat 
equation methods to the cyclic homology of Connes [Co]. 

This paper is organized in the following way. In §1, the current heat equation 
proofs of the Index Theorem for Dirac operators are briefly reviewed. The new 
proofs have been classified into 

• proofs related to supersymmetry, 
• probabilistic proofs, 
• group-theoretic proofs. 

The principle of the probabilistic proof is briefly described, to emphasize its re
lations with the localization formulas in equivariant cohomology of Duistermaat-
Heckman [DH], Berline-Vergne [BV1]. These relations are made explicit in §2, 
along the lines of Atiyah [At] and ourselves [B2, B4], 

In §3, we briefly describe Quillen's superconnections [QI] and their applica
tions to the heat equation proof of the Atiyah-Singer Index Theorem for families 
of Dirac operators [B3]. One application to anomalies is also briefly indicated 
[BF]. 

I. The heat equation proofs of the Index Theorem. In this section, we 
briefly review the heat equation proofs of the Index Theorem for Dirac operators. 

In (a) and (b), we summarize the now-classical proofs which rely on algebraic 
arguments. 

In (c), we indicate some of the ideas involved in the recent proofs in [Gel, 
Ge2, B l , BV2]. 

(a) The heat equation method. Let M be a compact connected Riemannian 
manifold of even dimension n = 21. Let E = E+ © E- be a Z2 graded complex 
Hermitian bundle over M, such that E+ and E- are orthogonal. Let r be the 
involution of E defining the grading, i.e., r = ±1 on E±. 

T(E), T(E±) denote the sets of C°° sections of E, E±. Clearly r(JS) = 
T(E+) © T(E-) is also naturally Z2 graded. We still denote by r the involution 
defining the grading in T(E). 

Also T(E) can be endowed with the L2 Hermitian product 

M'-> / (h,h')(x)dx. (1.1) 
JM 

Let D+ be a first-order elliptic differential operator mapping T(E+) into 
T(EJ). Let D_ be the formal adjoint of D+. Set 

D = 
0 D-

£>+ 0 
(1.2) 

End T(E) is naturally Z2 graded, the even (resp. odd) elements commuting 
(resp. anticommuting) with r. 
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D* = (1.3) 

Clearly 
rD-D+ 0 

0 D+D-

For any t > 0, exp(—tD2/2) is given by a C°° kernel Pt(a;,?/), so that if 
h E T(E) 

(1.4) exp l — j h(x) = / Pt(x,y)h(y)dy. 

For any a; G M, Pt(x, x) is even in Endx E. 
If A is a trace class operator acting on T(E), we define its supertrace Trs [A] 

by 
Trs [A] = Tr[rA]. 

Recall that the index Ind D+ of JD+ is given by 

Ind D+ = dim ker D+ — dim ker D-. (1.5) 

The first step in the calculation of Ind D+ is the McKean-Singer formula 
[MS, ABP]: 

Ind D+ = Trs exp ( ~ ^ ) 1 = I^Tra[Pt(x,x)]dx. (1.6) 

Let P{ (x,x) be the restriction of Pt(x,x) to E±}X. Well-known results on 
zêta functions [Se] and heat kernels [ABP] show that as t J, J, 0, for any k E N, 

k 

Tr[lf{x,x)] = X ! af{x)*+o(1*,x). (1.7) 
j=-n/2 

In (1.6), (a^(x)) are C°° functions which only depend on the local symbol of D. 
For j > - n / 2 , set 

aj(x) = af{x)-a-(x). 

Clearly 
k 

Tr3[Pt{x,x)}= J2 aj{x)tj + o{tk,x). 

From (1.5), (1.6), we find [MS, ABP], 

(1.8) 

(1.9) 

/ 
./A 

a,j(x)dx = 0, j ^ 0. 
M 

Ind 

(1.10) 

D+= a0(x) 
JM 

dx. 

McKean and Singer [MS] conjectured that if D = d + d* acting on the de Rham 
complex, some extraordinary cancellations would show that for j < 0, aj = 0, 
and that ao is exactly equal to the Chern-Gauss-Bonnet integrand for the Euler 
characteristic. In [PI], Patodi showed that this was indeed the case. In [P2], he 
extended his results to the Riemann-Roch theorem for Kahler manifolds. 
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(b) Gilkey's theory of invariants. In [Gil], Gilkey established an algebraic 
theory of invariants. He showed that if D = d + d*, the functions (aj) belong to 
a certain class of local functions of the metric. After classifying such functions, 
Gilkey proved on a priori grounds that for j < 0, aj = 0. The identification of ao 
was done in [Gil] in an indirect way. Also Gilkey [Gil] extended his approach 
to the Hirzebruch signature theorem. 

In [ABP], Atiyah, Bott, and Patodi systematized the arguments of Gilkey 
to obtain the same type of result for twisted signature complexes, and derived 
the general Index Theorem. They developed Gilkey's theory in the realm of 
Riemannian geometry. 

This point of view is systematically described in Gilkey's recent book [Gi3]. 
The theory of invariants has been also successfully applied [Gi2, 3] to prove the 
Lefschetz fixed point formulas of Atiyah-Bott [ABl] and Atiyah-Singer [AS]. 

(c) Direct proofs of the cancellations and identification of the local integrand. 
We now assume that M is orientable and spin. F = F+ © F- denotes the Z2 

graded Hermitian bundle of spinors over M. The Levi-Civita connection VL of 
TM lifts into a unitary connection on F. 

Let f be a complex Hermitian bundle over M, endowed with a unitary con
nection V^. 

Set E = F <g> £, E± — F± ® £. E± are Hermitian bundles, naturally endowed 
with the connection VL ® 1 + 1 ® V^, which we denote by V. 

Recall that if e G TM, e acts on F by Clifford multiplication. E = E+&E-
is then a TM Clifford module. 

We now define the Dirac operator. Let e\,... ,en be an orthonormal base of 
TM. 

DEFINITION 1.1. D denotes the operator acting on T(E), 

n 

D = J2^er (1-11) 
1 

D± is the restriction of D to T(E±). D± maps T(E±) into T(ET). 

Let R be the curvature of TM, K the scalar curvature of M, L the curvature 
of f. Let AH be the horizontal Laplacian on T(E). Lichnerowicz's formula [Li] 
asserts that 

K 1 

7 + 2 ^ D2 = -AH + — + -Y^^j^L(ei,ej). (1.12) 

1. The super symmetric proofs. We first briefly review the arguments of Witten 
[W], Alvarez-Gaumé [Al], Priedan-Windey [FW], and Zumino [Z] leading to a 
supersymmetric derivation of the Index Theorem for D+. 

Let LM be the loopspace of M. The idea is to rewrite (1.6) in the form 

Ind D+= j exp{Ct(x)}dD(x), (1.13) 
JLM 
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where £,l(x) is a supersymmetric Lagrangian, and dD(x) is the "volume element" 
of LM. Let us just say that £*(z) is a Lagrangian involving anticommuting vari
ables ip, ijj. Supersymmetry here means that £} is invariant under transforma
tions which involve x and the anticommuting variables ^ , ifi. By making t | | 0, 
and using arguments in particular from spectral theory, [AI, F W , Z] derive the 
local formula for the index 

^^^//(^h-^ (L14) 
In (1.14) A is the Hirzebruch polynomial on antisymmetric matrices: 

In [Gel], Getzler gave a rigorous formulation to the previous arguments. 
He used the supermanifold T*M to give an asymptotic representation of the 
supertrace Tr3[Pt(x,x)] in terms of the graded symbol of exp(-tD2/2). The 
local formula for the index is finally obtained by using a quadratic Gaussian 
approximation. 

Recently, Getzler [Ge2] has given a new proof of the local convergence closely 
related to [Gel] and also to [Bl]. In [Ge2], Getzler adequately rescales the 
time, space, and Clifford variables to show that if De is adequately rescaled with 
the factor e, (D£)2 converges to the partial differential operator on TXQM 

2 n ( 1 \ 

The explicit computations of the fundamental solution of d/dt + £ leads again 
to the formula (1.14). 

2. The probabilistic proof. We now briefly summarize our proof of the Index 
Theorem [Bl]. To simplify, we assume that £ is here the trivial bundle C. 

Let pt(x,y) be the scalar heat kernel on M. Let EXQXQ be the law on 
C([0,1]; M) of the Brownian bridge x\ starting at xo at time 0 and ending at XQ 
at time 1 associated with the scaled metric QMJt [B5, §2]. 

Let 7Q'* be the parallel transport operator from FXo into FXo along the loop 
xî. An easy application of Itô's formula [Bl] shows that 

Tr3[Pt(xo,xo)} = pt(xo,x0)EXOiXo 

As 11| 0, 

r_^^K[roMl 
* l ) d S ] , 

(1.16) 

pt(xQ,x0)^l/(V2rt)n. (1.17) 

Also using the techniques of [B5], we describe E*. Xo by means of a Brownian 
bridge w} in TXoM with WQ = W\= 0, so that approximately 

z* ~ exps (Vtwl) . (1.18) 
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Then TQ'* acting on TXQM has the expansion 

Tot = I - \ j R*0{dw\wi) + o{t). (1.19) 

An argument from representation theory shows that 

tn/1 -+( *)™\ 2 (1.20) 

We thus find that 

lhnTvB[Pt(x0ixo)] = jPîl^ J R^dw^w1) dP^w1). (1.21) 

If rj is the Riemannian orientation form of TM, we get 

limTrB[Pt(ao,a!o)]ij(!Bo) = /expA j ^ J R^dw^w1)] dP^w1), (1.22) 

where expA{...} is the exponential in A(T*M) of the corresponding 2 form. 
Using well-known symmetries of R, we find that 

\imTra[Pt(x0,x0)}v{xo) = JexpA (^ J <ÄXo(.,V»Ai'1}} dP1{w1). 

(1.23) 
A formula of P. Levy [Le], known as the stochastic area formula, shows that 

the r.h.s. of (1.23) is equal to Â(R/2TT). 

The Lefschetz fixed point formulas of Atiyah-Bott [ABl] and Atiyah-Singer 
[AS] were also proved in [Bl] using the same sort of arguments and formulas of 
P. Levy [Le]. 

3. The group-theoretic proof. In [BV], Berline and Vergne have given a proof 
of the Index formula and of the Lefschetz formulas by considering the scalar 
heat kernel on the bundle of orthonormal frames of TM. This idea is of course 
motivated by the G —• G/H situation in group theory. The A polynomial 
appears naturally in [BV2], being related to the jacobian of the exponential 
mapping in SO(n). 

II. Index Theorem and equivariant cohomology of the loop space. 
In this section, we discuss the relations of the Index Theorem for Dirac operators 
to the equivariant cohomology of the loop space. 

In (a), we summarize the observations of Atiyah and Witten [At]. In (b), 
we describe the baby model of [B4], where a proof of the localization formulas 
of [BV1,DH] is given, which is strictly parallel to the proof of [Bl]. Patodi's 
cancellations in finite dimensions are exhibited. 

(a) The remark of Atiyah and Witten. We now summarize the observation in 
[At]. 

Namely, the space LM of smooth loops s G R/Z —• xa G M is an infinite-
dimensional manifold with the Riemannian metric 

YeTxLM-+ / \Ya\
2ds. /V.I 
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Si acts naturally on LM by x. —> ktxo = x.+ti and the kt are isometries. Let X 
be the Killing vector field generating fc. so that 

X(x)3 = dx/ds. (2.1) 

Let X' be the 1 form on LM; 

Y E TLM - • X'{Y) = (X, Y). (2.2) 

One easily verifies that if F G TLM 

dX'(Y,Z) = 2^ /^,z)dSi (2.3) 

where DY/Ds is the covariant derivative of Y along x for the Levi-Civita con
nection. 

The parallel transport operator TQ along the loop x acts like an element of 
SO(n) on TXQM. Let ±9j be the angles of TQ. One verifies easily that the 
eigenvalues of D/Ds acting on TXLM are given by 

±2iirm ± i0j, m EN. (2.4) 

The Pfaffian Pî(-dX'/2) is given formally by 

P f ( -^)=n^n[ 4 ^ 2 -^ 2 ' (2-5) 

Dividing (2.5) formally by the infinite (flì 47r2m2)', we get 

Pi{-dX'/2) ^jn . / 0 , \ 

On the other hand, a formula from representation theory shows that if Trs[ro] 
is the supertrace of TQ acting on F±tXo, 

Tra{Tè]=±(i)lÌ[2Sin
e-Ì. (2.7) 

Using (1.6), (2.6), and (2.7), Atiyah gives the following formal formula 

Also LxX1 = 0, and so 

(d + ix)[{d + ix)X'] = 0. (2.9) 

The differential form ßt appearing in the r.h.s. of (2.9) is such that 
(d + ix)fit = 0. 

Now observe that M = {X = 0}. 
Assume temporarily that LM is instead a finite-dimensional compact mani

fold. A formula of Duistermaat-Heckman [DH] and Berline-Vergne [BV1] (also 
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see [AB2]) asserts that if e is the equivariant Euler class of the normal bundle 
to M in LM, then 

! * = / * ? • ( 2 - 1 0 ) 

JLM JM
 e 

Now by calculating e formally in terms of the Levi-Civita connections on M and 
LM, one shows easily that A(R/2TT) represents in cohomology 

nr(m2)y 
(2ir)1 e 

Also /it = 1 on Mo. We thus find that, rather surprisingly, a formal application 
of the formula of [DH, B VI] on LM "proves" the Index Theorem for the Dirac 
operators on the spin complex. 

In [B2], we have shown that the observations of [At] extend to the case of 
Dirac operators acting on twisted spin complexes. 

(b) From infinite to finite dimensions: PatodVs cancellations in finite di
mensions. We noticed in [B4] that formula (2.8) could lead to a proof of the 
localization formulas of [BV1, DH] which would be strictly parallel to the heat 
equation proof of the Index Theorem. 

In fact let N be a compact Riemannian orientable manifold. X is a Killing 
vector field, Xf the corresponding 1 from. Nx is the submanifold Nx = (X = 0). 
fi is a smooth section of K(T*N) such that (d + ix)^ = 0. We claim that for any 
s > 0 

[ l*= [ exp{-s(d + ix)X'}p. (2.11) 
JN JN 

In fact the derivative of the r.h.s. of (2.1) is given by 

- / (d + ix)[X'Aexp{-8(d + ix)X'}ii] = 0i (2.12) 
JM 

and so for any t > 0 

As t H 0, the integral in the r.h.s. localizes on Nx. To make the analogy with 
§lc, we now assume that p, = 1. Then 

If B is the normal bundle of Nx in N, let Jx be the infinitesimal action of X in 
B. By taking geodesic coordinates in the normal bundle and doing the change 
of variables y = y/iy' in B, we find that as t [[ 0, (2.14) is close to 

Let R be the curvature of TN. B is stable under R(Y, Z), for Y, Z e TNX. 
Since X is Killing, Vy (V • X) + R{X, Y) = 0, and so 

PÎTNx[-dX'(x,Vty)/2] 
tdimNX/2 • ftTNx ~^{Jxy,y) (2.16) 
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So as t j l 0, (2.14) converges—while staying constant—to 

JNX j B expA { - ^ ^ - f (Jxv, V)} PÎBIJX] dy. (2.17) 

At this stage the similarity of (2.17) with (1.20) and (1.22) should be obvious. 
(2.16) is a version of Patodi's cancellations in finite dimensions. It also gives a 
geometric origin to such cancellations. 

III. Superconnections and the families Index Theorem. We now de
scribe Quillen's superconnections [QI] and their applications to the Index The
orem for families [B3, BF]. 

In (a), we describe the results of Quillen [QI]. In (b), we summarize our 
heat equation proof of the Atiyah-Singer Index Theorem for families of Dirac 
operators [B3]. In (c), we summarize the results of [BF], in relation with [QI, 
WS]. 

(a) Quillen's superconnections. Let AT be a connected manifold. E = E+(BE-
is a Z<i graded vector bundle on N. End E<g>A(T*N) is a Z<i graded algebra. 
The supertrace Tra defined on End E extends to End Eé)A(T*N) and takes its 
values in A(T*N). Let V be a connection on E preserving the grading. V defines 
a first-order differential operator acting on smooth sections of k(T*N)®E. 

Let u be an odd smooth section of End E®A(T*N). V + w is a superconnec-
tion in the sense of Quillen [QI]. (V-j-u)2 is an even section of A(T*N) <8) End E 
and is the curvature of V -f u. 

Wè now have the result of Quillen [QI]. 

THEOREM 3.1. Trsexp{-(V + u)2/2} is a closed form on N which is a 
representative of the scaled Chern character of E+ —E-. 

In particular if D is an odd section of End E, V + D is a superconnection. 
In [QI], Quillen used superconnections to study differential forms and K-

theory with support conditions and was also motivated by the Index Theorem 
for families. Mathai and Quillen [MQ] have used superconnections to study 
various problems related to localization and Thorn forms. 

(b) The heat equation proof of the Index Theorem for families of Dirac opera
tors. Formula (1.6) for Ind D+ is now crying out to be considered as a formula 
for a Chern character in the special case of one single operator. 

In fact let M-+B be a fibering of compact manifolds, with compact connected 
fibers Z of even dimension n = 21. We assume that TZ is spin. Let gz be a 
smooth metric on TZ. 

Let F = F+ © F- be the bundle of spinors of TZ. Let £ be a Hermitian 
bundle on M, endowed with a unitary connection V*. 

For each y E B, there is a well-defined Dirac operator 

Dy = 
D 

0 D-,y 
+,y 0 

on Zy. 
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The Atiyah-Singer Index Theorem for families [AS] calculates ker D+ — 
kerD_ EK(B). 

In [B3], we have adapted Quillen's formalism in an infinite-dimensional 
situation. For y E B, let #£° = Hgy © H™y be the Z2 graded bundle of 
C°° sections of F <g> f over Zy. D is odd in End H°°. 

Let THM be a subbundle of TM such that TM = THM © TZ. THM 
identifies with n*TB. Any metric gB on TB lifts to THM. Let VL be the 
Levi-Civita connection on TM endowed with the metric QB © gz* If Pz is the 
projection operator from TM on TZ, let V z be the Euclidean connection on 
TZ, 

Vz = PZVL. (3.1) 

We proved in [B3] that Vz does not depend on gs, and is canonically defined 
by THM and gz- V z and V^ define a unitary connection V on F ® £. 

For F G T S , let y * be the lift of Y in THM. lìhEH00, set 

Vy/l = Vyf/h. (3.2) 

V is a connection on H°°. For any t > 0, V + \ / ïD is a superconnection 
on H°°. The curvature (V + y/tD)2 is a second-order elliptic operator acting 
fiberwise. 

The following result is proved in [B3]. 

THEOREM 3.2. For any t > 0, Tr8[exp{-(V + yftD)2/2}) is a C°° closed 
form on B, which represents the scaled Chern character of ker D+ — ker D-. 

As t | | 0, Tr8[exp{-(V + \/iD)2/2}] does not converge in general. 

Let S be defined by 

VL - VB © vz = s. 

Let e i , . . . , en be an orthonormal base of TZ. / i , . . . , / m is a base of TB which 
lifts into a base of THM\ dy1,..., dyM is the corresponding dual base. In [B3, 
§3], we introduce the Levi-Civita superconnection 

VL^ + yftD= J2 UtVtVei + ^iS^J^ejdy« 

+ -L(S(ei)fa,fß)dy<*dyP) (3.3) 

+ dya ( V / B + ^(S(fa)ei,fàeidyP) 

Let K be the scalar curvature of the fiber Z and L the curvature of f. 

The following formula is proved in [B3, §3]. 
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THEOREM 3.3. The curvature of the Levi-Civita superconnection is given by 

(VL-4 + VtD)2 = - t (v e i + ^(Stefa, fa)y/tej dya 

+ ü(S(ei)fa,fß)dyadyP) 

tfC 1 1 
+ — + -teiej ® Lita, e j) + -dya dyß <g> L(fa,fß) 

+ \fteidyc*®L(ei,fa). (3.4) 

We prove in [B3, §4] that as t | | 0, Tr s[exp{-(VL ' t + VtD)2/2}] converges. 
More precisely, we obtain a local version of this convergence. After adequately 
scaling the limit, we find that if Rz is the curvature of TZ, the rescaled limit is 

L_ 
2Ì7T 

We thus find that (3.5) represents ch(ker D+ — ker £>_). Recently, Berline and 
Vergne [BV3] have given a different proof of the convergence, using group-
theoretic ideas. 

(c) Determinant bundles and the holonomy theorem. In [Q2] Quillen has 
constructed a metric and a holomorphic connection on the determinant bundle 
of a family of d operators on Riemann surfaces. This construction has been 
extended in Bismut-Freed [BF] to the case of the family of Dirac operators 
considered in §3(b). 

Namely, set 
A = (det ker D+)* ® det ker Z>_. (3.6) 

À is a well-defined C°° line bundle on B, even if B is noncompact [Q2, BF]. 
The first result of [BF] is that if the bundle A is endowed with the Quillen 

metric, there is a unitary connection 1V on A, whose curvature is given by 
l (2 ) 

(3.7) 2%-K ÏAZ) Tr exp — —— 

In [W3] Witten has given an argument showing that in certain situations, the 
holonomy of a loop c in B could be calculated using the êta invariant of a Dirac 
operator on the cylinder 7r~1(c). 

This result has been fully proved in [BF] for a family of Dirac operators. 
Recall that the êta function of a selfadjoint elliptic operator has been defined in 
Atiyah-Patodi-Singer [APS]. 

THEOREM 3.4. Let c be a smooth loop in B. For e > 0, let D,£ be the Dirac 
operator on 7r_1(c) associated with the metric gjg/e © gz- Let r]e(s) be the êta 
function of D,£. Set 

rf = (rye(0) + dim ker D'£)/2. 

Then as e | | 0, [fj£] has a limit [fj] in R/Z. Also if r is the holonomy of X over 
c for the connection 1V, then 

r = (-l)IndD+exp(-2^7r[r/]). (3.8) 
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The result of Theorem 3.4 is strongly connected with Atiyah-Donelly-Singer 
[ADS]. A new proof of Theorem 3.4 has been recently given by Cheeger [Ch]. 
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