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The Support Vector Machine

I The SVM is “yet another” linear classifier.

I The main underlying geometric idea is to find a separation of the
data that achieves a “large margin”.

I The intuitive idea is that if training points of the two classes are
separated with a larger margin, the resulting classifier is less
prone to generalization error.

I We will see later what learning theory has to say about the SVM.
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Margin
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SVM: primal formulation

I Assume that the training points are linearly separable.

I For a hyperplane H given by (w , b), remember that the distance to
H is given by

d(x , H) =
|w · x − b|
‖w‖

.

I Hence, the goal is to find

Arg Max
w ,b

mini |w · Xi − b|
‖w‖

under the constraints (assuming Y ∈ {−1, 1}):

∀1 ≤ i ≤ n , (w · Xi − b)Yi > 0 .
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Reformulation

I Once again, the normalization of the parameters (w , b) is arbitrary.
I For any feasible (i.e. data-separating) (w , b) we can choose a

normalization such that

min
i

(w · Xi − b)yi = 1 .

I The previous optimization problem is then conveniently
reformulated as

Arg Min
w ,b

‖w‖2

under the constraints:

∀1 ≤ i ≤ n , (w · Xi − b)Yi ≥ 1 .

I Note that with this normalization the geometric margin is exactly
‖w‖−1 .
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A motivation for large margin classification

Theorem

Consider n points SX = (X1, . . . , Xn) and consider the set F of linear
separators (w , 0) passing through the origin (i.e. b = 0) and such that
the distance of SX to the corresponding hyperplane (margin) is lower
bounded by Λ .
If F shatters SX , then n ≤ R2

Λ2 , where R = maxi ‖Xi‖ .

I Observe that this result is dimension independent!
I Note that this result does not exactly fit into the VC theory (why?).
I It can however result in a rigorous result in the “transductive” case

(why?).
I It provides at least a first justification – at this point still non totally

rigorous – that for large margin classification methods, the
“margin” is the relevant criterion of complexity rather than the
dimension. Hence we should not be afraid of applying them to
very-high dimensional data.
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The Karush-Kuhn-Tucker theorem

Theorem

Consider the optimization problem: minx∈Ω f (x) ,
under the constraints:

∀1 ≤ i ≤ k , gi(x) ≤ 0 ; ∀1 ≤ j ≤ k ′ , hi(x) = 0 ,

where f , (gi), (hi) are convex functions and Ω is a convex set. Define
the Lagrangian

L(x , α, β) = f (x) +
∑

i

αigi(x) +
∑

j

βjhj(x) ;

and pose
θ(α, β) = inf

x
L(x , α, β) .

Then the solution of the initial problem is the same as the solution of:
supα,β θ(α, β) under the constraints ∀1 ≤ i ≤ k : αi ≥ 0 .
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KKT conditions

Theorem (Continued)

Furthermore, necessary and sufficient conditions for the existence of
(x∗, α∗, β∗) realizing the above problems are:

∂L(x∗, α∗, β∗)
∂x

= 0 ;

∂L(x∗, α∗, β∗)
∂β

= 0 ;

∂L(x∗, α∗, β∗)
∂α

≥ 0 ( i.e. : gi(x
∗) ≤ 0; )

α∗i ≥ 0

α∗i gi(x
∗) = 0 .

Note: the last contraint tells us that the Lagrange coefficients α∗i are
non-zero only for the “active” constraints at the solution.

SVM and constrained convex optimization 8 / 24



The Dual problem for the SVM

I The KKT theorem applied to the SVM problem gives

θ(λ) = −1
2

∑
i,j

λiλjYiYj(Xi · Xj) +
∑

i

λi

to maximize under the constraints:

∀1 ≤ i ≤ n λi ≥ 0 and
∑

i

λiYi = 0 .

I Furthermore, the first optimality condition gives

w∗ =
∑

i

λiYiXi .
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Some important observations:

I The optimizing w∗ is a linear combination of the training points
(positive examples have nonnegative weights and vice-versa:
compare perceptron).

I The dual optimization problem is entirely determined by the
knowledge of the dot products Xi · Xj .

I (This is relevant if the dimension of the ambient space is larger
than the number of points)

I From the KT conditions, only the examples that are correspond to
an active constraints, i.e. are exactly “on the margin”, have
non-zero cofficients in the above examples: support vectors .

I Any active constraint allows to compute the optimal offset b∗ .
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Support vectors

Margin

vectors
Support
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Problems with the hard margin SVM

"Outlier"

rien
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Problems with the hard margin SVM

"Slack"

rien
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The soft margin SVM

I Relax the initial constraints to

∀1 ≤ i ≤ n : Yi (w · Xi + b) ≥ 1− ξi ξi ≥ 0 .

ξi are called the “slack variables” .

I Include the slack variables as a penalization term with a factor
C ≥ 0 in the objective function, hence becoming

min
w ,b,ξ

1
2
‖w‖2 + C

∑
i

ξi ,

under the above constraints.

I The multiplier C can be made class-dependent for example to
compensate for unbalancedness of the classes’ prior distribution.
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The dual problem for the soft SVM

I The KKT theorem applied to the soft margin SVM problem gives

θ(λ) = −1
2

∑
i,j

λiλjYiYj(Xi · Xj) +
∑

i

λi

(same as hard margin SVM!) to maximize under the constraints:
∀a ≤ i ≤ n 0 ≤ λi ≤ C and

∑
i λiYi = 0 .

I Again, the optimal w∗ is a combination of training examples, and
we have a notion of support vectors.
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Support vectors for the soft SVM

Support
vectors

λ = C 0 <   < Cλ
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The soft SVM is a regularized ERM procedure

I Going back to the primal problem, we can refomulate it without
constraints as

min
w ,b

∑
i

(1− Yi (w · Xi + b))+ +
1
C
‖w‖2 .

I Hence, the soft SVM can be equally seen as a ridge regression (of
sorts) with an ad-hoc loss function

`(f , X , Y ) = (1− Yi f (Xi))+

where f belongs to the set of linear classifiers.
I Having a class-dependent coefficient C will correspond to a

reweighting of the examples depending on the class.
I This “hinge loss” is a convex upper bound for the usual 0-1

misclassification loss function.
I Using other losses or regularizers is also possible. . .
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The representer theorem

I Consider an optimization problem of the form

Arg Min
w ,b

Ψ((Xi · w)1≤i≤n, b, ‖w‖) ,

where Ψ is a function nondecreasing in its last variable.

I Then the solution w∗ is a linear combination of the Xi ’s,

w∗ =
∑

i

aiXi .

I Again, this is relevant in the case where the ambient space is of
dimension larger than the number of examples (and posssibly
infinite dimension).
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Role of the the regularizing constant
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Support vectors and leave-one-out error

I Consider a non-support vector training point (Xi , Yi) , i.e. such that
the corresponding coefficient λi in the expansion of w∗ is zero.

I Consider the training sample S−i with this point removed; then the
SVM solution of S−i coincide with the solution on S.

I Since a non-support vector is correctly classified, we deduce the
inequality on the leave-one out error

LOO(S, SVM) =
1
n

n∑
i=1

1{f̂−i(Xi) 6= Yi} ≤
#SV .

n

I This is a weak justification that if the number of SV is small, we
expect a better generalization error.
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Implementation issues

I The optimization can be solved using various iterative procedures.
I The convergence is generally monitored either by looking at the

KKT constraint conditions for the solution:

Yi f (Xi)


≥ 1 if λi = 0 ;

= 1 if0 < λi < C ;

≤ 1 if λi = C ,

and stop when they are satisfied up to some error ε .
I Alternatively, control the “duality gap”:

f (w , ξ)− θ(λ) = C
∑

i

ξi +
∑

i

λi − 2θ(λ) ,

where ξi = (1− Yi(
∑

j

YjαjXi · Xj + b))+ ,

and b is picked such that Yi f (Xi) = 1 for some arbitrary i0 s.t.
0 < λi0 < C .
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Naive implementation : gradient ascent
I Consider the case where we “replace” the free offset b by adding

a constant coordinate to all samples (why is that actually not
equivalent?)

I A very simple solution is to perform naive gradient ascent on the
dual problem:

∂θ

∂λi
= 1− Yi

∑
j

λjYj(Xi · Xj) .

I One update step is then

λi ←
[
λi + η

∂θ

∂λi

]
[0,C]

.

I Generally, this is actually updated one coefficient at a time
(compare perceptron), and with the choice of ηi corresponding to
the optimal line search, i.e. ηi = (Xi · Xi)

−1 .
I Various heuristics are used to select the order of the points, based

e.g. on the violations of the KT conditions and the current
estimate of the SV set.
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Platt’s SMO

I When considering the problem with free offset b the constraint∑
i λiYi = 0 prevents updating only one single coefficient at a time.

I A simple idea is to update 2 coefficients simultaneously.

I Calculations of the optimum (line search) lead to the update:

∆ =
(f (X1)− f (X2)− Y1 + Y2)

‖X1 − X2‖2
;

λnew
2 = λ2 + Y2∆ ;

λnew
1 = λ1 − Y1∆ ,

(plus additional clipping constraints)

I Again, choice of the points to update follow various clever
heuristics, e.g. based on a “working set”.
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The ν-SVM

I The choice of relaxation introducing the slack variables is
somewhat arbitrary. An alternative way (maybe closer to the initial
geometric view) to define an optimization problem is to consider
explicitly the “margin”:

Arg Min
w ,b,γ,ξ

−γ + C
∑

i

ξi

under the constraints:

‖w‖ = 1; ∀1 ≤ i ≤ n : ξi ≥ 0 and Yi(w · Xi + b) ≥ γ − ξi .

I The dual optimization can be shown to be

Arg Max
λ

−
∑
i,j

λiλjYiYj(Xi · Xj) ,

under constraints

∀0 ≤ i ≤ n : 0 ≤ λi ≤ C and
∑

i

λiYi = 0 and
∑

i

λi = 1 .
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Properties of the ν-SVM

I Note that the two formulations are not equivalent. In particular, for
the ν-SVM we must have C ≥ n−1 otherwise the problem is
infeasible .

I Putting C = 1
νn with ν ∈ (0, 1] , in can be seen (through the

constraints) that ν is an upper bound on the proportion of support
vectors of type I and a lower bound on the total number of support
vectors. This formulation is hence in a sense more “interpretable” .

I Finally, as ν varies in (0, 1] the set of attained solutions coincides
with the set of solutions in the standard formulation when C varies
in (0,∞] .
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