
Statistical Machine Learning

UoC Stats 37700, Winter quarter

Lecture 8: Ensemble methods, boosting.

1 / 21



I The basic idea of ensemble methods is to learn a family of
classifiers f̂1, . . . , f̂K , and to output a final decision rule which is a
(possibly weighted) vote of these classifiers.

I What are possible reasons for doing so?
• one uses an “instable” learning procedure and the classifiers are

obtained by changing slightly the training set, hoping to make the
resulting rule more stable.

• individual classifiers are “weak” or of limited complexity; but if one
manages for different classifiers to concentrate on “subparts” of the
learning problem

I Strategies for learning ensembles:
• Iterative construction of classifiers, using some randomization

device or slight changes in the training set.
• Iterative construction of classifiers, concentrating on examples that

have been misclassified up to now.
• Fixed set of classifiers, choose the weights based on some convex

functional to optimize.

I The idea can be applied to regression as well.

Introduction, Bagging, Random Forests 2 / 21



I A (possibly weighted) voting procedure for a binary classification
problem can be written as

F̂ens =

(∑
i

αi

)−1 K∑
i=1

αi f̂i ,

where the f̂i are individual classifiers taking values in {−1, 1} and
the coefficients αi are positive.

I The decision is given by the sign of F̂ens.

I Assuming the f̂i ’s belong to a fixed set of “base classifiers”
F = {ft , t ∈ T} , the above can be idealized as

F̂ens(x) = Et∼α [ft(x)] ,

where α is a distribution on T . Hence the problem of constructing
an ensemble method can be seen as one of choosing (depending
on the data) a ditribution on the set of base classifiers.

Introduction, Bagging, Random Forests 3 / 21



Bagging

I One of the earliest methods for building an ensemble is Breiman’s
’Bagging’, initially based on the observation that decision trees
were very unstable.

I Strategy: draw bootstrap samples S1, S2, . . . , SK from S . Use
each of them as input for your favorite learning method. Use
simple voting of the K resulting classifiers or regressors.

I Provides a sort of “auto-cross-validation” estimate of error (or
other quantities) by the “out-of-bag” estimate:

• For each training example Xk , let i1, . . . , ink the indices of bootstrap
samples that do not contain Xi .

• Predict class or other quantity to estimate for Xi by simple voting
over the reduced family fi1 , . . . , fink

.
• Average over Xk .

Introduction, Bagging, Random Forests 4 / 21



Random Forests (Amit,Geman ’97; Breiman ’01)

I Heuristic randomization strategy for multiple trees that provides
some handle on the individual performance/pairwise decorrelation
tradeoff.

I Recipe:
• Construct trees in the usual greedy manner, but at each internal

node, instead of considering all possible “questions”, select a
random subset of questions to choose from. For example, select a
random subset of features.

• Construct many (a few dozen) random trees this way and perform a
regular vote.

• Not generally needed to prune; a coarse stopping criterion is
sufficient.

• Most important parameters to prune are the ize of the random
subset of questions and possibly the stopping criterion,

I Can be combined with bagging and o.o.b. estimates.
I Often surprisingly good in practice in particular for very

high-dimensional data.

Introduction, Bagging, Random Forests 5 / 21



The “edge” of a voting procedure

I The “edge” of F̂ens on instance (x , y) is defined by (assuming∑
i αi = 1 here)

M(F̂ens, x , y) = yF̂ens =
∑

i

αiy f̂i(x) = Et∼α [yft(x)] .

I Note the analogy with the margin of a linear classifier; imagine for
a moment the f̂i are picked from a fixed, finite set F . Then
formally, the “feature mapping” of the data maps an instance x to
the vector (f (x), f ∈ F) .

The edge of an ensemble classifier 6 / 21



Balancing individual performance and weak pairwise
covariance

I Intuitively, if all learnt functions are very close, averaging won’t
change much.

I On the other hand, if those functions are quite different they are
likely to be not very good individually.

I Various heuristics based on this point of view can be used.

The edge of an ensemble classifier 7 / 21



A simple inequality

I (Assume the training set S is fixed for now)

I Assume that µ = E
[
M (̂f , X , Y )

]
> 0 ; then by Chebychev’s

inequality

P
[
M (̂f , X , Y ) ≤ 0

]
≤ Var [M]

µ2

I Note that µ can be seen as a measure of averaged (over the
voting distribution) individual performance of the classifiers:

µ = EX ,Y

[
M (̂f , X , Y )

]
= EX ,Y Et [ft(X )Y ] = EtEX ,Y [ft(X )Y ]

I On the other hand, Var [M] can be seen as a measure of averaged
pairwise correlation of classifiers drawn from the voting
distribution:

Var [M] = Et ,t ′∼α

[
CovX ,Y (ft(X )Y , ft ′(X )Y )

]
.

The edge of an ensemble classifier 8 / 21



Reinterpretation

I The Chebychev inequality is coarse, but it can be seen to be
related to Fisher’s discriminant:

I Consider a linear binary classifier f (x) = w · x − b where b is
chosen to be the midpoint of the projection of the class centroids
m1 and m−1 on w .

I Then if we define Mw (x , y) = yfw (x) , the same Chebychev’s
inequality leads to the bound

Var [Mw ]

E [Mw ]2
= 4

p1s1 + p−1s−1

(w · (m1 −m−1))2 .

I Hence this way we recover (the inverse of) Fisher’s discriminant
criterion function.

The edge of an ensemble classifier 9 / 21



Relation to game theory

I Consider now a different point of view inspired by the “large
margin” interpretation: consider a fixed set of classifiers {ft , t ∈ T}
and assume T to be finite for simplification.

I We can consider the problem of finding the distribution α on T
such that the minimum edge on the training examples is maximal:

max
α

min
(X ,Y )∈S

M(α, (X , Y )) = max
α

min
D

Et∼αE(X ,Y )∼D [Yft(X )] ,

where D is a (discrete) distribution on the (fixed) points of the
sample S .

I In game-theoretic point of view, this is the “value” of a zero-sum
game where Player 1 (“nature”) plays an example (X , Y ) at
random according to distribution P and Player 2 (“learner”) plays a
classifier at random according to distribution α , and the payoff (for
Player 2) is Yft(X ) .

The edge of an ensemble classifier 10 / 21



Summary

I Understanding ensemble methods as a compromise between
individual strength of classifiers and weak pairwise covariance
(conditional to class) is a second order point of view akin to
Fisher’s discriminant philosophy.

I In the “large margin” understanding, the goal would be to find the
distribution realizing the “mini-max” edge .

I In this case, a crucial difference with the standard geometric large
margin view (hard-margin SVM) is the normalization: the 1-norm
of the weight vector is normalized to 1 (2-norm in the hard margin
SVM).

The edge of an ensemble classifier 11 / 21



The “Boosting” approach

I The Minimax theorem tells us that

max
α

min
D

Et∼αE(X ,Y )∼D [Yft(X )]

= min
D

max
α

Et∼αE(X ,Y )∼D [Yft(X )] = min
D

max
f∈F

E(X ,Y )∼D [Yf (X )] ,

I The interpretation of this is the following: the existence of a strictly
positive minimax edge γ is equivalent to the so-called weak
learning property:
For any distribution D on the training set, there exists a classifier
f ∈ F having averaged error less than 1

2 − γ/2 under D .

Boosting 12 / 21



AdaBoost

I Initially inspired by the weak learning/game theoretic point of view;
consists in constructing iteratively a sequence of weighted base
classifiers learnt on reweighted versions of the training sample.

I Recipe:
• (0) Initialize uniform weights di,0 = 1/n on the sample points.
• (1) Train a classifier f̂k based on the weighted sample. Denote εk its

weighted error. Stop if εt = 0 or εt ≥ 0.5 .
• (2) Pick weight for f̂k as

αk =
1
2

log
1− εk

εk
.

• (3) For examples (Xi , Yi) not correctly classified by f̂k , update the
corresponding weight by

di,k+1 = di,k
1− εk

εk
.

• (4) Renormalize the weights to sum to 1 and reiterate or exit if the
number of desired iterations is attained.

Boosting 13 / 21



Some examples

We apply boosting to (noiseless) binary classification data using linear
classifiers as base classifiers.
B Example with checkerboard-like classes
B Example with concentric circles classes

Boosting 14 / 21

./boosting_chessboard.avi
./boosting_concentric.avi


Properties of AdaBoost

I At step k + 1, the new reweighting of the sample S is such that
classifier f̂k has exactly weighted error of 50%.

I The weight di,k+1 of example i at step k is proportional to

di,k+1 ∝ exp

−∑
`≤k

α` f̂`(Xi)Yi

 = exp

−
∑

i≤k

αi

 F̂k (Xi)Yi

 ,

(where F̂T is the ensemble classifier at step T ) .

Boosting 15 / 21



The empirical edge of Adaboost

I Recall the notation εk for the weighted empirical error of classifier
f̂k . Then the empirical probablity that the edge at step T is less
than θ satifies:

1
N

T∑
i=1

1{F̂T (Xi)Yi ≤ θ} ≤
T∏

i=1

√
4ε1−θ

i (1 + εi)
(1+θ) .

I This implies in particular for the empirical error, putting
γt = 2(1

2 − εk ):

Ê(F̂T , S) ≤
T∏

i=1

√
(1− γt)(1 + γt) ≤ exp−1

2

∑
i≤T

γ2
i .

I Furthermore, if for all t , γt ≥ γ0 , then the empirical probability that
the edge is less that θ decreases exponentially to 0 for any
θ ≤ γ0/2 .

Boosting 16 / 21



Adaboost as a gradient procedure

I An alternative and fruitful view of AdaBoost is that it realizes a
“functional gradient descent” for the exponential loss function over
the space of linear combinations classifiers:

`(G, x , y) = exp(−G(x)y) , G =
∑

i

αi fi , ; fi ∈ F ,

I More precisely, if Ĝk is the current ensemble with unnormalized
weights, the learning step in AdaBoost aims at minimizing the
“gradient” of the loss function among functional directions f ∈ F :

”∇Ê(`(Ĝk ), S) · f ” =
d

dα
Ê(`(Ĝk + αf ), S) ∝

N∑
i=1

di,k1{f (Xi) 6= Yi}

I Then pick the weight αk+1 minimizing the loss function along the
chosen direction f̂k+1 .

I AdaBoost is therefore a forward, stagewise additive fitting.

Boosting 17 / 21



Multiclass boosting

I The iterative gradient point of view allows to build a natural
extension to multiclass with say L classes.

I Consider real-valued classifiers F (x , y) predicting a real value for
each class under the constraint

∑
y F (x , y) = 0 , and the loss

function
`(F , x , y) = exp(−F (x , y)) ;

I Then, let us code the base classifiers by functions f (x , y) taking
value 1 on the predicted class and −(L− 1)−1 otherwise.

I Applying the iterative gradient point of view in this case leads to
the following modification of AdaBoost:

• At step k + 1, the misclassified examples see their weights
multiplied by (L− 1).(1− εk )/εk

(remember εk is the weighted error at step k ) .
• The weright of classifier k is αk = log((L− 1).(1− εk )/εk ) .

Boosting 18 / 21



Generalizations

I From the point of view of the minimizing of the exponential loss
function, the target function is exactly the log-odds ratio

F ∗(x) =
1
2

log
P [Y = 1|x ]

P [Y = −1|x ]
.

I AdaBoost is thus a method of logistic regression using additive
modeling.

I This suggests the possibility of extending this method to other loss
functions and/or type of problems. For example, an interesting
alternative to the exponential loss (having the same target F ∗ ) is
the minus log-likelihood

`′(F , x , y) = log (1 + exp−2yF (x))

I The above loss leads to a more robust procedure wrt. outliers.

Boosting 19 / 21



−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4
Misclass. loss
Hinge loss
Exp. loss
Logistic loss

Different loss functions of the edge/margin.

Boosting 20 / 21



Overfitting and regularized boosting

I AdaBoost works very well in situations where the “base learner” is
quite weak, and the data is not too noisy.

I AdaBoost can overfit in noisy situations. This is not too surprising
given the agressive nature of the loss minimization procedure
which is not traded off with any regularization term.

I One possible form of implicit regularization is to limit the number
of iterations.

I Other possibilities are to regularize the objective function, inspired
by what is done for the SVM. An example of such a regularized
version, assuming we have a finite set F of base classifiers of
cardinality J , is

max
γ,α,ξ

γ − 1
νN

∑
1≤i≤N

ξi

 ,

subject to YiFα(Xi) ≥ γ − ξi , 1 ≤ i ≤ n ;
ξj , αj ≥ 0 , 1 ≤ j ≤ J ;

∑
j≤J αj = 1 .

Boosting 21 / 21


	Introduction, Bagging, Random Forests
	The edge of an ensemble classifier
	Boosting

