SÉANCE 1

Graphe et plus court chemin

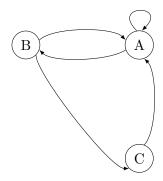
Exercice 1.— Représentation des graphes finis orientés.

(1) On se donne un ensemble de sommets $S = \{A; B; C; D\}$ et un ensemble d'arcs

$$\mathcal{A} = \{ (A, B); (B, A); (C, A); (B, C); (C, B); (D, B); (D, D) \}.$$

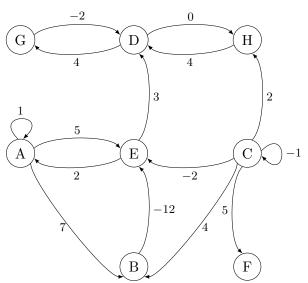
Représenter le graphe fini orienté $\mathcal{G}_1 = (\mathcal{S}, \mathcal{A})$.

(2) Donner la représentation $\mathcal{G}_2 = (\mathcal{S}, \mathcal{A})$ du graphe suivant:



- (3) Donner un chemin de A vers C constitué de 2 arcs, 3 arcs, n arcs pour tout $n \in \mathbb{N}, n \ge 2$.
- (4) Y a-t-il plusieurs chemins de B vers C?

Exercice 2.— Chemins et circuits. On considère le graphe orienté valué $\mathcal{G}_3 = (\mathcal{S}, \mathcal{A}, v)$ suivant



- (1) Vérifier que les suites de sommets suivantes définissent bien des chemins dans le graphe \mathcal{G}_3 et donner leur valuation:
 - $c_1 = (G, D, H),$
 - $c_2 = (G, D, G, D, H),$
 - $c_3 = (G, D, H, D, H)$.
- (2) Lister l'ensemble des chemins élémentaires de
 - G vers H,
 - \bullet A vers D.
- (3) Lister l'ensemble des circuits **élémentaires** de \mathcal{G} . Lesquels sont absorbants ?
- (4) Existe-t-il un plus court chemin de
 - A vers C?
 - A vers D?
 - C vers F?
 - G vers H?

Exercice 3.— Algorithme de Dijkstra. Détailler les étapes de l'algorithme de Dijkstra permettant de trouver un plus court chemin de ... à

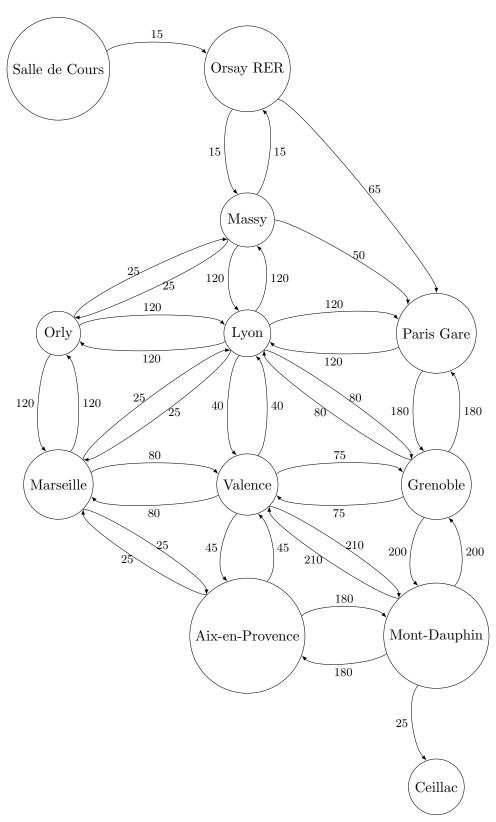


Tableau des marques

Étape	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Salle de Cours														
Orsay RER														
Massy														
Orly														
Lyon														
Paris Gare														
Marseille														
Valence														
Grenoble														
Aix-en-Pce														
Mt-Dauphin														
Ceillac														

Tableau des poids

Étape	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Salle de Cours														
Orsay RER														
Massy														
Orly														
Lyon														
Paris Gare														
Marseille														
Valence														
Grenoble														
Aix-en-Pce														
Mt-Dauphin														
Ceillac														

Tableau des antécédents

Étape	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Salle de Cours														
Orsay RER														
Massy														
Orly														
Lyon														
Paris Gare														
Marseille														
Valence														
Grenoble														
Aix-en-Pce														
Mt-Dauphin														
Ceillac														

Exercice 4.— Soit $\mathcal{G} = (\mathcal{S}, \mathcal{A})$ un graphe fini orienté à valuation positive. Soit $x_0 \in S$ notre sommet origine. On considère l'ensemble des sommets \mathcal{S}' atteignables depuis x_0 .

(1) Justifier que pour $s \in \mathcal{S}'$, la distance de x_0 à s dans le graphe:

$$d_{x_0}(s) = \min \{ v(c) : c \text{ chemin de } x_0 \text{ vers } s \}$$

est bien défini.

On renumerote les sommets de S' par ordre de distance à x_0 , c'est-à-dire que $S' = \{x_0, x_1, \dots, x_n\}$ et

$$x_0 = d_{x_0}(x_0) \le d_{x_0}(x_1) \le d_{x_0}(x_2) \le \ldots \le d_{x_0}(x_n)$$
.

Afin de simplifier l'exercice, on suppose que les inégalités ci-avant sont toutes strictes. On va montrer par récurrence la propriété \mathcal{P}_k :

Après k itérations de l'agorithme, chaque sommet marqué s vérifie $Poids(s) = d_{x_0}(s)$ et l'ensemble des sommets marqués est $M = \{x_0, \dots, x_{k-1}\}.$

- (2) Initialiser la récurrence.
- (3) Hérédité: on fixe $k \in \mathbb{N}$, $k \le n+1$, on suppose que \mathcal{P}_i est vrai pour tout $i=0\ldots k$ et on montre qu'alors \mathcal{P}_{k+1} est vraie.
 - (a) Soit $c = (x_0, \dots, x_p, x_k)$ un plus court chemin de x_0 vers x_k . Montrer que

$$d_{x_0}(x_p) \le d_{x_0}(x_k) \text{ et } p < k.$$

(b) En déduire (utiliser l'hypothèse de récurrence) que

$$Poids(x_p) = d_{x_0}(x_p)$$
, puis que $Poids(x_k) = d_{x_0}(x_k)$.

(c) Soit x_q un sommet non marqué à la k+1-ème itération, montrer que

$$Poids(x_k) \le Poids(x_q)$$
 et $k < q$

- (d) En déduire que x_k est bien marqué à la k+1-ème itération et conclure l'hérédité.
- (4) Conclusion de la récurrence:
- (5) Que peut-on déduire concernant l'algorithme de Dijkstra?