Chargés de TD : Blanche Buet et Thomas Letendre.

Feuille 8 – Transformation de Fourier dans \mathcal{S} et \mathcal{S}'

Définition. Soit $\varphi : \mathbb{R}^d \to \mathbb{C}$ une fonction \mathcal{C}^{∞} , pour tout $p \in \mathbb{N}$ on note

$$N_p(\varphi) = \sup \left\{ |x^{\alpha} \partial^{\beta} \varphi(x)| \mid x \in \mathbb{R}^d, \alpha, \beta \in \mathbb{N}^d, |\alpha| \leqslant p, |\beta| \leqslant p \right\} \in [0, +\infty].$$

On rappelle que $\varphi \in \mathcal{S}(\mathbb{R}^d)$ si et seulement si $N_p(\varphi) < +\infty$ pour tout $p \in \mathbb{N}$.

Exercice 1 (Distributions tempérées, exemples et contre-exemples). 1. Soient $f \in L^1_{loc}(\mathbb{R}^d)$ et P un polynôme tels que f(x) = O(P(x)) lorsque $|x| \to +\infty$, au sens où il existe $C \ge 0$ et $R \ge 0$ tels que : pour tout $x \in \mathbb{R}^d$ tel que $|x| \ge R$, $|f(x)| \le C|P(x)|$. Montrer que $f \in \mathcal{S}'(\mathbb{R}^d)$.

- 2. Est-ce que $g: x \mapsto e^{x^2}$ est dans $\mathcal{S}'(\mathbb{R})$?
- 3. Est-ce que $h: x \mapsto e^x e^{ie^x}$ est dans $\mathcal{S}'(\mathbb{R})$?

Exercice 2 (Transformation de Fourier dans S', calculs élémentaires). Soit $a \in \mathbb{R}$, on rappelle que pour tout $\varphi \in S'(\mathbb{R})$, $\tau_a \varphi : x \mapsto \varphi(x-a)$ et, pour tout $S \in S'(\mathbb{R})$, $\tau_a S : \varphi \mapsto \langle S, \tau_{-a} \varphi \rangle$. Justifier que les distributions sur \mathbb{R} suivantes sont tempérées et calculer leurs transformées de Fourier.

- 1. $\delta_a^{(k)}$ pour tout $k \in \mathbb{N}$ et $a \in \mathbb{R}$.
- 2. $\cos : \mathbb{R} \to \mathbb{R}$.
- 3. $f = \mathbf{1}_{[-1,1]}$, la fonction indicatrice de [-1,1].
- 4. (facultatif) $g_{ab} = \mathbf{1}_{[a,b]}$, la fonction indicatrice de [a,b], où $-\infty < a < b < +\infty$.

Exercice 3 (Parité et transformée de Fourier). Pour tout $\varphi : \mathbb{R}^d \to \mathbb{C}$ on note $\check{\varphi} : x \mapsto \varphi(-x)$. Pour tout $T \in \mathcal{D}'(\mathbb{R}^d)$, on note \check{T} la distribution définie par $\check{T} : \varphi \mapsto \langle T, \check{\varphi} \rangle$. En généralisant le cas des fonctions, on dit que $T \in \mathcal{D}'(\mathbb{R}^d)$ est paire (resp. impaire) si $\check{T} = T$ (resp. si $\check{T} = -T$).

- 1. Montrer que $\delta_0 \in \mathcal{D}'(\mathbb{R})$ est paire et que $\operatorname{vp}\left(\frac{1}{x}\right) \in \mathcal{D}'(\mathbb{R})$ est impaire.
- 2. Soit $\varphi \in \mathcal{S}(\mathbb{R}^d)$, montrer que $\dot{\hat{\varphi}} = \dot{\hat{\varphi}}$.
- 3. Soit $S \in \mathcal{S}'(\mathbb{R}^d)$, montrer que $\hat{S} = \hat{S}$.

Exercice 4 (Transformation de Fourier dans S', calculs moins élémentaires). On note $H = \mathbf{1}_{[0,+\infty[}$ la fonction de Heaviside et $S : \mathbb{R} \to \mathbb{R}$ la fonction signe, définie par S(x) = -1 si x < 0, S(0) = 0 et S(x) = 1 si x > 0.

- 1. Justifier que S définit une distribution tempérée sur $\mathbb R$ et montrer que $x\widehat S=-2i$.
- 2. En déduire que $\hat{S} = -2i \operatorname{vp} \left(\frac{1}{x}\right)$.
- 3. Calculer \widehat{H} dans $\mathcal{S}'(\mathbb{R})$.
- 4. Justifier que $\operatorname{vp}\left(\frac{1}{x}\right) \in \mathcal{S}'(\mathbb{R})$ et calculer sa transformée de Fourier.

L'exercice suivant est adapté de l'examen final de 2021.

Exercice 5 (Transformation de Fourier et convolution dans \mathcal{S}'). Soient $\rho \in \mathcal{D}(\mathbb{R}^d)$ et $T \in \mathcal{D}'(\mathbb{R}^d)$ on rappelle que leur convolée est la fonction définie par $\rho * T : x \mapsto \langle \tau_x \check{T}, \rho \rangle = \langle T, \rho(x - \cdot) \rangle$.

- 1. Soient $\rho \in \mathcal{S}(\mathbb{R}^d)$ et $p \in \mathbb{N}$, montrer qu'il existe C > 0 tel que $\forall \varphi \in \mathcal{S}(\mathbb{R}^d)$, $N_p(\varphi * \rho) \leqslant CN_p(\varphi)$.
- 2. Soient φ et $\rho \in \mathcal{S}(\mathbb{R}^d)$, montrer que $\varphi * \rho \in \mathcal{S}(\mathbb{R}^d)$ et que $\widehat{\varphi * \rho} = \widehat{\varphi} \widehat{\rho}$.
- 3. Soient $\rho \in \mathcal{D}(\mathbb{R}^d)$ et $S \in \mathcal{S}'(\mathbb{R}^d)$, montrer que $\rho * S \in \mathcal{S}'(\mathbb{R}^d)$ et que $\widehat{\rho * S} = \widehat{\rho}$ \widehat{S} .

 Indication. Rappelons qu'on a prouvé dans l'exerice 5 de la feuille 5 que $\rho * S \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ et que $\langle \rho * S, \varphi \rangle = \langle S, \varphi * \check{\rho} \rangle$ pour tout $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Exercice 6 (Régularité du Dirac). Déterminer les $s \in \mathbb{R}$ tels que $\delta_0 \in H^s(\mathbb{R}^d)$.

Exercice 7 (Distributions harmoniques). Soit $T \in \mathcal{D}'(\mathbb{R}^d)$ une distribution telle que $\Delta T = 0$.

- 1. Montrer que T est une fonction \mathcal{C}^{∞} sur \mathbb{R}^d .
- 2. Si $T \in \mathcal{S}'(\mathbb{R}^d)$, montrer que T est un polynôme.
- 3. Si T est bornée, montrer que T est constante.

Exercice 8 (Théorème de structure des distributions tempérées — facultatif). Soit $S \in \mathcal{S}'(\mathbb{R}^d)$, on se propose de prouver qu'il existe $p, q \in \mathbb{N}$ et une fonction $f \in L^{\infty}(\mathbb{R}^d)$ tels que :

$$S = (1 + |x|^2)^p (\operatorname{Id} -\Delta)^q f. \tag{1}$$

Commençons par des résultats préliminaires concernant la fonction $\psi: x \mapsto \frac{1}{1+|x|^2}$ de \mathbb{R}^d dans \mathbb{R} .

- 1. Soient $p \in \mathbb{N}^*$ et $\alpha \in \mathbb{N}^d$, montrer qu'il existe un polynôme $P_{p,\alpha}$ de degré au plus $|\alpha|$ tel que $\partial^{\alpha}(\psi^p) = \psi^{p+|\alpha|} P_{p,\alpha}$.
- 2. Soient $p \in \mathbb{N}^*$ et $k \in \{0, \dots, p\}$, montrer qu'il existe $A \geqslant 0$ tel que, pour tout $\varphi \in \mathcal{S}(\mathbb{R}^d)$ on ait $N_k(\psi^p \varphi) \leqslant A \max_{|\gamma| \leqslant k} \|\partial^{\gamma} \varphi\|_{\infty}$.

On revient maintenant à notre problème principal.

- 3. Soit $f \in \mathcal{S}(\mathbb{R}^d)$, résoudre l'équation $(\operatorname{Id} \Delta)\varphi = f$ d'inconnue $\varphi \in \mathcal{S}(\mathbb{R}^d)$.
- 4. En déduire que, pour tout $q \in \mathbb{N}$, l'opérateur $(\operatorname{Id} -\Delta)^q$ réalise une bijection de $\mathcal{S}(\mathbb{R}^d)$ sur lui-même. Expliciter son inverse $(\operatorname{Id} -\Delta)^{-q}$.

Pour tout $p, q \in \mathbb{N}$, on définit la distribution $S_{pq}: \varphi \longmapsto \left\langle S, \left(1+|x|^2\right)^{-p} (\operatorname{Id} -\Delta)^{-q} \varphi \right\rangle$.

- 5. Pour p et q assez grands, montrer qu'il existe C > 0 tel que, $\forall \varphi \in \mathcal{S}(\mathbb{R}^d), |\langle S_{pq}, \varphi \rangle| \leqslant C \|\varphi\|_1$.
- 6. Conclure.