Partiel de mathématiques 9 novembre 2001, durée 1 heure 30

Exercice 1: Quelle est la matrice de l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 donnée par f(x,y,z) = (x+y+z,3x-2y+4z,-3x+2y-4z) dans la base canonique. Quelle est la dimension de son image? Trouver une équation de l'image.

Exercice 2: Soit

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3 | \begin{cases} x = \alpha + \beta + \gamma \\ y = 2\alpha + 5\beta + 3\gamma \\ z = -5\alpha + 4\beta + \gamma \end{cases} \quad \text{avec} \begin{cases} 0 \le \alpha \le 1 \\ 0 \le \beta \le 1 \end{cases}$$

Montrer que \mathcal{V} est un parallépipède, le dessiner et calculer son volume.

Exercice 3: Soit
$$A = \begin{pmatrix} -1 & -2 & 2 \\ 0 & 1 & -2 \\ -3 & -3 & 2 \end{pmatrix}$$
.

- 1) Montrer que A est diagonalisable et calculer une base de vecteurs propres V_1, V_2, V_3 de A.
- 2) Résoudre le système différentiel

(E)
$$X' = AX$$

Soit S_0 l'ensemble des solutions qui sont bornées lorsque $t \to +\infty$. Calculer S_0 et montrer que S_0 est un sous-espace vectoriel. Quelle est sa dimension?

- 3) a) Montrer que toute fonction vectorielle S de \mathbb{R} dans \mathbb{R}^3 s'écrit de manière unique sous la forme $S(t) = c_1(t)V_1 + c_2(t)V_2 + c_3(t)V_3$ avec c_1, c_2, c_3 des fonctions C^1 de \mathbb{R} dans \mathbb{R} et que si S est C^1 , il en est de même de c_1, c_2 et c_3 .
- b) Quelles sont les équations différentielles vérifiées par c_1 , c_2 et c_3 pour que S soit solution du système différentiel

(EE)
$$X'' = AX$$

Les résoudre.

- c) Calculer la dimension de l'espace vectoriel des solutions de (EE) et en donner une base.
 - d) Trouver toutes les solutions bornées de (EE).

Exercice 4: Auquel des systèmes différentiels suivants correspondent les courbes intégrales qui suivent

$$(1) \begin{cases} x'(t) = -2y \\ y'(t) = 2x + 3y \end{cases}$$

$$(2) \begin{cases} x'(t) = 2x \\ y'(t) = -y \end{cases}$$

$$(3) \begin{cases} x'(t) = -7x + 4y \\ y'(t) = -8x + 5y \end{cases}$$

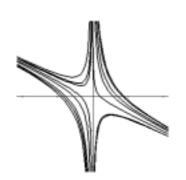
Faire de même pour

$$(4) \begin{cases} x'(t) = -x - 2y \\ y'(t) = y \end{cases}$$

$$(5) \begin{cases} x'(t) = x \\ y'(t) = -x - y \end{cases}$$

et

 d



e

