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Lecture 1. Prelude: Morita Theory

Koszul duality patterns have influenced several recent developments in algebraic geometry,
ranging from the classification of formal deformations by Lie algebras and the unobstructedness
of Calabi–Yau varieties to purely inseparable Galois theory and derived Galois deformation rings.
In this class, we will explain some of these results and review the required∞-categorical background.

1.1. Categorical Morita Theory. Before discussing Koszul duality, which is an inherently higher
categorical phenomenon, we will review Morita theory [Mor58], a good toy example which can be
treated using only ordinary categories. It is centered around the following simple question:

Question. Given two associative rings R and S, is there an equivalence between the categories of
left modules ModR and ModS?

If such an equivalence exists, then the rings R and S are said to be Morita equivalent. Isomorphic
rings are clearly Morita equivalent, but the converse need not be true:

Proposition 1.1 (Morita functors). Let Q ∈ ModR be a left module over a ring R such that

(1) Q is finite projective, i.e. a direct summand of R⊕n for some n;
(2) Q is a generator, which means that the functor HomR(Q,−) is faithful.

Then R and S = EndR(Q)op are Morita equivalent, which is witnessed by inverse equivalences

G̃ : ModR → ModS , M 7→ HomR(Q,M)

F̃ : ModS → ModR, N 7→ Q⊗S N.

Before proving this claim, we give a simple exercise:

Exercise 1.2 (Examples of Morita equivalences).

a) Prove directly that for any ring R and any n > 0, the ring R is Morita equivalent to Mn(R).
b) Find a ring R and a finite projective generator Q ∈ ModR such that S = EndR(Q)op is not a

matrix algebra.

We present a categorical proof of Proposition 1.1 which we have learned from [Lur, Section 4.8].
While needlessly abstract, it will generalise well to ∞-categories of chain complexes and serve as
good excuse to revise some basic categorical notions.

Our goal is to implement the following strategy:

Strategy 1.3.

(0) Consider the functor G : ModR → ModZ given by M 7→ HomR(Q,M);
(1) Construct the associative ring S = EndR(Q)op from the functor G;

(2) Lift G to a functor G̃ : ModR → ModS by exhibiting an S-module structure on each HomR(Q,M);

(3) Show that G̃ is an equivalence.

ModS (1)

ModR
G (0)

>

G̃ >

ModZ

(2),(3) U

∨
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1.2. Properties of Functors. We begin by reformulating the algebraic conditions imposed in
Proposition 1.1 on Q ∈ ModR in terms of the associated functor G : ModR → ModZ. We treat the
“finite” and the “projective” part in (1) separately, and start with the former.

Compactness. The categorical notion of compactness aims to capture the smallness of a given
object X by asserting that it cannot be “spread out” arbitrarily.

For example, given a diagram Y0 → Y1 → . . ., any map from a small object X to the sequential
colimit colimi Yi (which we might think of as an increasing union) should factor through some Yi.

In fact, we will also want to take slightly more general diagrams into account:

Definition 1.4 (Filtered categories). A category I is filtered if it is nonempty and

a) any two objects x, y map into a third object z via morphisms x → z, y → z;
b) for all parallel morphisms f, g : x⇒ y in C, there exists h : y → z with h ◦ f = h ◦ g.
A filtered colimit in a category C is a colimit over a diagram D : I → C, where I is filtered.

Exercise 1.5. Establish the following facts:

(1) The category N = (• → • → . . .) is filtered; hence sequential colimits are filtered;
(2) The product of filtered categories is filtered;
(3) The category • • is not filtered, and neither is ∆op, the opposite of the category of nonempty

finite linearly ordered sets.

We can explicitly compute filtered colimits in the category of sets:

Exercise 1.6 (Filtered colimits of sets). Given a diagram D : I → Set with I a small filtered
category, show that colim i∈ID(i) is given by the set

∐
i∈I D(i)/∼=, where ∼= is the equivalence

relation identifying a ∈ D(i), b ∈ D(j) if there are arrows f : i → k, g : j → k with D(f)(a) = D(g)(b).

Exercise 1.7 (Limits of sets). Given a diagram D : I → Set with I small, write down its limit.

We will often need the following important fact:

Exercise 1.8 (Filtered colimits and finite limits in Set).

a) Given a diagram D : I × J → Set with I a small filtered category and J a category with finitely
many objects and morphisms, the following canonical arrow is an isomorphism:

colim
i∈I

(
lim
j∈J

D(i, j)

)
∼=−−→ lim

j∈J

(
colim
i∈I

D(i, j)

)
.

b) Show that filtered colimits generally do not commute with limits in Set.
c) Show that in Setop, filtered colimits need not commute with finite limits.

Filtered colimits and finite limits also commute in categories that are sufficiently similar to sets.
To make this precise, we need several notions.

Notation 1.9. Given a category I, the right cone I▷ is obtained from I by adding a new object
1 and a unique morphism from every i ∈ I to the new object 1.

Definition 1.10. Let I be a category. We say that a functor F : C → D preserves and reflects
colimits of shape I ifD▷ : I▷ → C is a colimit diagram if and only if this is true for U◦D▷ : I▷ → D.
A similar definition applies to limits.

Using that faithful functors reflect isomorphisms (which we establish in Proposition 1.26 below),
we can deduce the following basic fact from Exercise 1.8:
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Corollary 1.11. Let U : C → Set be a faithful functor which preserves and reflects finite limits
and filtered colimits. Then finite limits commute with filtered colimits in C.
Exercise 1.12. Show that for any ring R, the forgetful functor U : ModR → Set satisfies the
assumptions of Corollary 1.11. Hint: equip the colimit of sets colim i∈I(U ◦ D)(i) constructed in
Exercise 1.7 with the structure of an R-module.

We can now give a categorical notion of smallness:

Definition 1.13. An object X in a locally small category C is called compact if the functor
MapC(X,−) : C → Set preserves filtered colimits.

Using Exercise 1.8, we can prove an intuitive closure property for compact objects:

Corollary 1.14. Finite colimits of compact objects in a category C are compact.

Proof. For any finite diagramD : J → C which admits a colimit in C, we have a natural isomorphism

of functors MapC(colim j∈JD(j),−)
∼=−−→ limj∈J MapC(D(j),−). For any filtered diagram D′ : I →

C, compactness of all D(j) and Exercise 1.8 implies:

MapC(colim j∈JD(j), colim i∈ID
′(i)) ∼= limj∈J colim i∈I MapC(D(j), D′(i))

∼= colim i∈I limj∈J MapC(D(j), D′(i)) ∼= colim i∈I MapC(colim j∈JD(j), D′(i))

□
Example 1.15 (Compact sets). A set is compact if and only if it is finite.

For the “if” part, we first observe that the set ∗ with one object is compact. As finite sets are
finite coproducts of points, Corollary 1.14 shows that they are compact.

To see the “only if” part, let S be an infinite set and consider the category I with objects
{ xT | T ⊂ S finite } and a unique morphism xT → xT ′ whenever T is contained in T ′. An easy
check shows that I is filtered, and that S is the colimit of the functor D : I → Set given by xT 7→ T .
If S were compact, then MapSet(S, S)

∼= colim i∈I MapSet(S,D(i)) and we could factor the identity
map S → S through a finite subset, which is absurd.

Exercise 1.16 (Compact topological spaces). Compact objects in the category of topological spaces
are finite sets with the discrete topology. We will revisit this example later.

Example 1.17 (Compact modules). A (left) module M over a ring R is compact if and only if it
is finitely presented. The proof is almost identical to Example 1.15.

First observe that R is compact because MapR(R,M) ∼= M and the forgetful functor ModR →
Set preserves filtered colimits by Exercise 1.12. Since any finitely presented R-module is an iterated
finite colimit of copies of R, the “if” part follows.

For the converse direction, we need that any R-module is a filtered colimit of finitely presented
modules; we leave this as an exercise. If M is compact, then we can factor the identity map on M
through a finitely presented submodule. This shows that M is a summand of a finitely presented
module, and hence finitely presented itself.

We have completed the first step towards the desired reformulation of Proposition 1.1:

Corollary 1.18. A module Q ∈ ModR is finitely presented if and only if the functor G =
MapModR

(Q,−) : ModR → ModZ preserves filtered colimits.

Remark 1.19. Since the forgetful functor ModZ → Set preserves and reflects filtered colimits, this
is an instance of Definition 1.13.
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Projectivity. We now give a reformulation of the condition that a moduleQ ∈ ModR be projective,
with an eye towards later higher-categorical generalisations. First, we recall a well-known result in
homological algebra:

Proposition 1.20. Given a module Q ∈ ModR, the following are equivalent:

a) Q is a summand of a free module;
b) The functor MapR(Q,−) preserves surjections;
c) The functor MapR(Q,−) preserves short exact sequences;
d) The functor MapR(Q,−) preserves cokernels.

If these conditions hold, we call the module Q projective.

We will reformulate the “cokernel” condition d) using the following notion:

Definition 1.21. A reflexive pair in a category C is a diagram consisting of two arrows d0, d1 :
X1 ⇒ X0 and a common section s : X0 → X1 satisfying f ◦ s = g ◦ s = idX0 . In other words, it is a
∆op
≤1-indexed diagram, where ∆≤1 is the category of nonempty ordered sets of cardinality ≤ 1; we

will return to this perspective in the next lectures.

A reflexive coequaliser is the colimit of a reflexive pair. Note that this agrees with the coequaliser
of the arrows d0 and d1.

We also record the following notion:

Definition 1.22. A functor F : ModR → ModZ is called additive if for all M,N , the functor
MapR(M,N) → MapZ(FM,FN) is a homomorphism of abelian groups.

Condition d) in Proposition 1.20 can be reformulated in terms of reflexive coequalisers:

Proposition 1.23. An additive functor F : ModR → ModZ preserves cokernels if and only if it
preserves reflexive coequalisers.

Proof. Assume that F preserves cokernels. The coequaliser of a reflexive pair A
f−−→←−−→
g

B is

the cokernel of A
f−g−−−→ B. As F is additive, this shows that it preserves reflexive coequalisers.

Conversely, assume that F preserves reflexive coequalisers. The cokernel of A
f−→ B agrees with the

coequaliser of the reflexive pair A⊕B
f+idB−−−−→←−−−−−→
idB

B, which implies the claim. □

Corollary 1.24. A module Q ∈ ModR is projective if and only if the functor MapR(Q,−) preserves
reflexive coequalisers.

Exercise 1.25.

a) Prove that the forgetful functor ModZ → Set preserves and reflects reflexive coequalisers.
b) Show that this becomes false once we drop the word “reflexive”.
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Conservativity. Recall that a functor G : C → D is called conservative if f : X → Y is an
isomorphism whenever G(f) is one. We can then reformulate condition (2) of Proposition 1.1 by
making the following simple observation:

Proposition 1.26. Any faithful functor G : ModR → ModZ is conservative. Any conservative
functor which preserves coequalisers is faithful.

Proof. First assume that G is faithful. If G(f) is an isomorphism, then it is both an epi- and a
monomorphism. Since G is faithful, this implies that f is both an epi- and a monomorphism, which
shows that f is an isomorphism since ModR is an abelian category.

Conversely, assume that G is a conservative functor which preserves coequalisers. Note that

arrows f, g : A → B are equal if and only if in the coequaliser diagram A
f−−→−−→
g

B
h−→ C, the map h

is an isomorphism; this condition is preserved and reflected by the functor G. □

Coming back to Proposition 1.1, we can now rephrase algebraic conditions imposed on Q in
terms of categorical conditions on the functor G = HomR(Q,−):

Q is finitely presented ↭ G preserves filtered colimits, i.e. Q is compact;
Q is projective ↭ G preserves reflexive coequalisers;
Q is a generator ⇝ G is conservative.

1.3. Monads and Adjunctions. To construct the crucial diagram in Strategy 1.3, we will first
use that G admits a left adjoint to construct a monad T on ModZ, and then identify T -algebras
with S-modules. We briefly review the categorical notions appearing in this sentence.

Monads. Monads provide a way of axiomatising algebraic structures that is convenient for certain
abstract arguments. We start with a simple example:

Example 1.27 (Groups). Traditionally, groups are defined as sets X with a binary multiplication
(x, y) 7→ x · y, a unary inverse x 7→ x−1, and a unit e satisfying various axioms.

We could also choose a less economical approach, and specify many more operations, e.g.

(1) (x1, x2, x3) 7→ x1 · x10
3 · x−12 , (x1, x2, x3, x4) 7→ x4

1 · x2
2 · x3 · x−154 , etc.

More precisely, consider the endofunctor TGp : Set → Set sending a set X to the set of expressions

TGp(X) := { xa1
1 xa2

2 . . . xak

k | k ≥ 0, xi ∈ X, ak ∈ Z− {0}, xi ̸= xi+1 for all i. }

Here the empty word ( ) is considered a valid element of the set TGp(X).

In our uneconomical approach to groups, defining all operations as in (1) amounts to specifying
a single map α : TGp(X) → X sending a formal expression xa1

1 xa2
2 . . . xak

k to the value of the
corresponding product xa1

1 · xa2
2 · . . . · xak

k in X.

However, not all such maps α : TGp(X) → X define valid group structures on the set X, as we
have not yet imposed any of the group axioms. To fix this, we exhibit additional structure on the
endofunctor TGp by specifying the following natural maps for all sets X:

ηX : X → TGp(X) µX : TGp(TGp(X)) → TGp(X).

The first map ηX takes an element s ∈ X to the corresponding one-letter word in TGp(X). The

second map µX sends a “word of words” (xa11
11 . . . x

a1k1

1k1
)b1 . . . . . . (xan1

n1 . . . x
ankn

nkn
)bn in TGp(TGp(X))
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to the corresponding word in TGp(X) given by

(xa11
11 . . . x

a1k1

1k1
) . . . (xa11

11 . . . x
a1k1

1k1
)︸ ︷︷ ︸

b1

. . . . . . (xan1
n1 . . . x

ankn

nkn
) . . . (xan1

n1 . . . x
ankn

nkn
)︸ ︷︷ ︸

bn

Here, we have implicitly simplified this word by reducing subwords of the form xaxb to xa+b.

Exercise 1.28. The maps ηX and µX are natural in X and satisfy the following identities:

µX ◦ TGp(µX) ∼= µX ◦ µTGp(X), µX ◦ ηTGp(X) = idTGp(X) = µX ◦ TGp(ηX).

Using the natural transformations η and µ, we can now formulate a condition for when a map
α : TGp(X) → X defines a group structure on X:

Exercise 1.29. Given a map α : TGp(X) → X, the operations (x, y) 7→ α(xy), x 7→ α(x−1),
e = α( ) define a group structure on X if and only if α ◦ ηX = idX and α ◦ µX = α ◦ TGp(α).

We therefore obtain a second definition of what a group is, namely a set X together with a map
of sets TGp(X) → X satisfying α ◦ ηX = idX and α ◦ µX = α ◦ TGp(α).

Definitions of this kind can also be given for most other algebraic structures of interest (like
modules, rings, Lie algebras, . . . ). We therefore axiomatise this situation:

Definition 1.30 (Monads). A monad on a category C is an associative algebra object in the
monoidal category End(C) of endofunctors (with the composition product ◦).

Concretely, this means that a monad is an endofunctor T : C → C equipped with natural
transformations idC → T and µ : T ◦ T → T such that the following two diagrams commute:

T ◦ T ◦ T T (µ)
> T ◦ T

T ◦ T

µT

∨
µ

> T

µ

∨

T
ηT

> TT

T 2

T (η)
∨

µ
> T

µ

∨
id

>

Definition 1.31 (Algebras over monads). An algebra over a monad T on C is a T -module object
in the End(C)-tensored category C. Concretely, this means that an algebra is a pair (A ∈ C, α :
T (A) → A) for which the following two diagrams commute:

A
ηA

> T (A)

A

α

∨idA >

T (T (A))
T (α)

> T (A)

T (A)

µA

∨
α

> A

α

∨

We write AlgT (C) for the category of T -algebras in C.
In Example 1.27, we constructed a monad TGp acting on Set whose category of algebras AlgTGp

(Set)
is equivalent to the category of groups. We can construct similar monads for other algebraic structures:

Exercise 1.32.

a) Define a monad TAb on the category of sets Set such that AlgTAb
(Set) is equivalent to the category

Ab = ModZ of abelian groups.

b) Define a monad TRing on the category Ab such that AlgTRing
(Ab) is the category of rings.

c) Given a ring R, define a monad TRing on Ab whose category of algebras is equivalent to the
category of (left) R-modules.
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Adjunctions. In Example 1.27, we have adopted the perspective that the monad TGp can be used
as a tool for defining the notion of a group.

We could also reverse this logic and try to define the monad TGp assuming that we already know
what a group is. To this end, recall the following standard notion from category theory (which we
will later generalise to higher categories):

Definition 1.33 (Adjunctions). An adjunction consists of functors F : C ⇆ D : G together with
natural transformations η : idC → GF (the “unit”), ϵ : FG → idD (the “counit”) for which the
following diagrams commute:

F
F (η)

> FGF

F

ϵF
∨idF >

G
ηG

> GFG

G

G(ϵ)

∨idG >

The functor F is called the left adjoint, whereas G is called a right adjoint; we write F ⊣ G.

Remark 1.34. Fix an adjunction (F,G, η, ϵ) as in Definition 1.33. For any pair of objects X ∈ C
and Y ∈ D, we obtain natural isomorphisms MapD(FX, Y ) ∼= MapC(X,GY ). Indeed, given f :
FX → Y in D, we attach the map f : X → GY defined by f = Gf ◦ ηX . Conversely, to a map
g : X → GY , we attach the map g = ϵY ◦ Fg : FX → Y . In fact, specifying natural isomorphisms
MapD(FX, Y ) ∼= MapC(X,GY ) leads to an equivalent definition of adjunctions

Example 3.1 (continued). There is a free-forgetful adjunction Free : Set ⇆ Gp : Forget between
the category of sets and the category of groups. The right adjoint Forget sends a group to its
underlying set, and the left adjoint Free builds the free group on a given set. The unit ηX :
X → Forget(Free(X)) embeds a set X into the free group generated by X. The counit ϵG :
Free(Forget(G)) → G takes a formal product ga1

1 . . . gan
n in the free group on the set G and computes

the corresponding product ga1
1 · . . . · gan

n in the group G.
We note that the endofunctor TGp : Set → Set defined above is equal to the composite Forget ◦Free.

The transformation idSet → TGp agrees with the unit η of the adjunction, and the monad multiplication
µ : TGp ◦ TGp → TGp is given by GϵF : GFGF → GF .

The functor Gp → AlgTGp
(Set) sending a group G to the TGp-algebra(

Forget(G) , TGp(Forget(G))
Forget(ϵG)−−−−−−−→ Forget(G)

)
gives the equivalence between groups and TGp-algebras mentioned above.

Indeed, we obtain a monad for every adjunction:

Exercise 1.35 (Monads from adjunctions). Given an adjunction F : C ⇆ D : G with unit
η : idC → GF and counit ϵ : FG → idD, show that the endofunctor T = GF is equipped with the
structure of a monad with unit η : idC → GF and multiplication GϵF : T ◦ T → T .

Exercise 1.36. Given a monad T on a category C, consider the functor FreeT : C → AlgT (C)
sending an object X ∈ C to the T -algebra (TX, T (T (X))

µX−−→ T (X)).

a) Prove that FreeT is a left adjoint to the forgetful functor ForgetT : AlgT (C) → C.
b) Verify that the adjunction FreeT ⊣ ForgetT induces the monad T .

This implies the interesting fact that any monad is induced by an adjunction.
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Notation 1.37. We will usually denote the free T -algebra on an object X ∈ C by T (X) instead of
FreeT (X). Moreover, we will often drop the functor ForgetT from our notation.

If T = GF is a monad obtained from an adjunction F ⊣ G , we always obtain a functor

G̃ : D → AlgT (C)

sending an object X ∈ D to the T -algebra (G(X) , T (G(X))
G(ϵX)−−−−→ G(X)).

Coming back to Proposition 1.1, we can now give a purely categorical construction of the category

ModS and the functor G̃ : ModR → ModS for S = EndR(Q)op, as desired.

Observation 1.38. The functor G = MapR(Q,−) admits a left adjoint given by F = Q⊗ (−).

This tensor-hom-adjunction

Q⊗ (−) : ModZ ⇆ ModR : MapR(Q,−)

induces a monad TQ on Ab ∼= ModZ which sends M to MapR(Q,Q⊗M). Hence TQ(Z) = EndR(Q).

In fact, we can use the conditions on Q to identify the endofunctor T more explicitly.

Observation 1.39. The functor G = MapR(Q,−) preserves biproducts.

As G = MapR(Q,−) also preserves filtered colimits and reflexive coequalisers, it must preserve
small colimits. As this is also true for the left adjoint Q ⊗ (−), we deduce that the monad
TQ : Ab → Ab preserves small colimits.

Exercise 1.40.

a) Given two rings R1, R2, show that a functor ModR1
→ ModR2

is of the form M 7→ B ⊗R1
M

for some (R2, R1)-bimodule B if and only if it is right exact and preserves coproducts (this is
known as the Eilenberg-Watts theorem).

b) Identify AlgTQ
(Ab) with the category of left modules ModS over the ring S = EndR(Q)op.

1.4. The Barr-Beck Theorem. To prove Proposition 1.1, it remains to show that the induced

functor G̃ → ModS ∼= AlgTQ
is an equivalence. We will deduce this from the important Barr–Beck

theorem, which we will now review. First, let us introduce some terminology:

Definition 1.41. An adjunction F ⊣ G with associated monad T is monadic if the induced functor

G̃ : D → AlgT (C) is an equivalence.

In the case of groups, we have seen in Example 1.27 that the forgetful-free adjunction is monadic,
thereby giving an alternative definition of groups as TGp-algebras.

However, not all adjunctions share this desirable property:

Exercise 1.42 (A non-monadic adjunction). Consider the adjunction F : Set ⇄ Top : G between
sets and topological spaces whose right adjoint G sends a space to its underlying set of points, and
whose left adjoint F equips a set with the discrete topology.

Show that this adjunction is not monadic. Hint: what does G do to isomorphisms?

The Barr-Beck theorem establishes a simple criterion for when an adjunction is monadic:
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Theorem 1.43 (Barr-Beck theorem, crude version).
Assume that an adjunction F : C ⇆ D : G satisfies the following two properties:

a) D admits and G preserves reflexive coequalisers;
b) G is conservative (i.e. reflects isomorphisms).

Then (F ⊣ G) is monadic, i.e. G̃ : D
∼=−−→ AlgT (C) is an equivalence.

In Definition 1.21, we have introduced the notion of “reflexive coequaliser”. To prove Theorem 1.43,
we will also need a second notion of coequaliser, which looks similar, but is in fact quite different:

Definition 1.44 (Split coequaliser). Two parallel arrows d0, d1 : X1 ⇒ X0 in a category C are
called a split pair if there exist arrows

h : X0 → X−1, s : X−1 → X0, t : X0 → X1

satisfying the following identities:

hd0 = hd1 hs = idX−1
d0t = idX0

d1t = sh

Exercise 1.45. Show that in the situation of Definition 1.44, X1 ⇒ X0 → X−1 is a coequaliser.
Deduce that it is preserved by any functor – we call this an absolute colimit.

Using split coequalisers, we can build canonical free resolutions of algebras over monads:

Proposition 1.46 (Free resolutions). Fix a monad T on a category C and a T -algebra specified by
(A,α : T (A) → A). The following diagram of T -algebras is a coequaliser in AlgT (C):

(2) T (T (A))
T (α)−−−−−−→−−−−−−→
µA

T (A)
α−−−→ A

Here, we have used the free functor C → AlgT (C) from Exercise 1.36 (using Notation 1.37), which

sends an object X ∈ C to the free T -algebra (T (X), T (T (X))
µX−−→ T (X)) on X.

Proof. Observe that after applying the forgetful functor AlgT (C) → C, the above diagram is part
of a split coequaliser with maps s = ηA : A → T (A) and t = ηT (A) : T (A) → T (T (A)).

To verify that (2) is also a coequaliser in AlgT (C), assume we are given a T -algebra (B, β :
T (B) → B) together with a map of T -algebras f : TA → B with f ◦ T (α) = f ◦ µA. By
Exercise 1.45, there is a unique g = f ◦ ηA in C such that the following triangle commutes:

TA
α

> A

B

g

∨f
>

Hence, it suffices to check that g is a map of T -algebras, which follows from the computation

β ◦ Tf ◦ T (ηA) = f ◦ µA ◦ T (ηA) = f = f ◦ µA ◦ ηTA = f ◦ T (α) ◦ ηTA = (f ◦ ηA) ◦ α.
We have used that f is a map of T -algebras, the monad axioms for T , and the naturality of η. □

With these free resolutions at our disposal, we can now prove the Barr-Beck theorem.
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Proof of Theorem 1.43. We proceed in three main steps.

Step 1: Left adjoint F̃ to G̃. We have a commuting triangle

AlgT (C)

D
G

>

G̃
>

C

ForgetT
∨

where both G and ForgetT admit left adjoints (cf. Exercise 1.36).

As left adjoints of commuting right adjoints commute, we know that if G̃ admits a left adjoint

F̃ , then its value on free T -algebras must be given by F̃ (T (X)) = F (X).
Since left adjoints also preserve small colimits, Proposition 1.46 motivates us to define the value

of F̃ on a general T -algebra (A,α) as the following coequaliser in D:

(3) F (T (A))
F (α)−−−−−−→−−−−−−→
ϵFA

F (A)
θ−−−→F̃ (A)

This makes sense as F (T (A))
F (α)−−−−−−→−−−−−−→
ϵFA

F (A) is a reflexive pair in D with common section FηA.

One easily extends this definition to morphisms of T -algebras.

To verify that F̃ is indeed left adjoint to G̃, we make the following computation:

F̃ (A,α) → B

FA
f−→ B s.t. f ◦ F (α) = f ◦ ϵFA

A
f−→ B s.t. f ◦ α = G(ϵB)G(Ff)

(A,α) → G̃(B) = (GB,GϵB).

In the second step, we have used that f ◦ α = f ◦ F (α) = f ◦ ϵFA
3)
= G(f)

4)
= G(ϵB)G(F (f)). Here

( ) denotes the adjoint bijection on morphisms introduced in Remark 1.34. The first two equalities
are straightforward; equalities 3) and 4) follow from the commutative diagrams

3)

GFA > GB

GFGFA

ηGFA

∨
GϵFA

> GFA

Gf

∧
id

>
4)

FA
Ff

> FGB

B

ϵB
∨f >

.

Step 2: The unit idAlgT (C) → F̃ ◦ G̃ is an equivalence.

Given (A,α) ∈ AlgT (C), we have a reflexive coequaliser F (T (A))
F (α)−−−−−→−−−−−→
ϵFA

F (A)
θ−−−→F̃ (A).

Using that G preserves reflexive coequalisers, we obtain another coequaliser diagram

GF (GF (A))
GF (α)−−−−−−−→−−−−−−−→
GϵFA

GF (A)
Gθ−−−−→GF̃ (A)
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As in the proof of Proposition 1.46, the following diagram admits a splitting:

GF (GF (A))
GF (α)−−−−−−−→−−−−−−−→
GϵFA

GF (A)
α−−−→ A

Having computed the coequaliser of GF (GF (A))
GF (α)−−−−−−−→−−−−−−−→
GϵFA

GF (A) in two ways, we obtain an

isomorphism

GFA
Gθ

> GF̃ (A,α)

A

∼=
∨α

>

We can therefore identify A with GF̃ (A,α).
Next, we check that GϵF̃ (A,α) = α. Since α = Gθ, it suffices to check that ϵF̃ (A,α) = θ. This

follows from the following computation:

θ = θ ◦ Fα ◦ FηA = θ ◦ ϵFA ◦ FηA = ϵF̃ (A,α) ◦ FG(θ) ◦ FηA = ϵF̃ (A,α)

In the first and last step, we used the algebra axiom for (A,α), in the second the adjunction axiom
relating unit and counit, in the third a naturality square for ϵ.

Altogether, we have verified that G̃(F̃ (A,α)) = (GF̃ (A,α), GϵF̃ (A,α))
∼= (A,α).

Step 3: The counit G̃ ◦ F̃ → idD is an equivalence.

By definition, we have a coequaliser diagram computing F̃ (G̃(B)):

(4) FGFGB
FGϵB−−−−−−→−−−−−−−→
ϵFGB

FGB
θ−−−→F̃ (G̃(B))

By the universal property, the map ϵB : FGB → B induces a map τ : F̃ (G̃(B)) → B.
Applying the functor G to the entire situation, we obtain a diagram

GFGFGB
GFGϵB−−−−−−−−→−−−−−−−−→
GϵFGB

GFGB −−−→GF̃ (G̃(B))

GB
∨>

The top line is a coequaliser as G preserves reflexive coequalisers. The diagram

GFGFGB
GFGϵB−−−−−−−→−−−−−−−−→
GϵFGB

GFGB −→ GB

is a split coequaliser (cf. Proposition 1.46). Together, these facts imply that the map GF̃ (G̃(B)) →
GB is an isomorphism, which shows that F̃ (G̃(B)) ∼= B as G is conservative. □

We have almost proven a sharper version of the Barr-Beck theorem. To state it, we need a new notion:

Definition 1.47. Given a functor G : D → C, a parallel pair d0, d1 : X1 ⇒ X0 is said to be G-split
if G(d0), G(d1) : X1 ⇒ X0 is a split pair in the sense of Definition 1.44.

We can now state the desired refinement:
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Theorem 1.48 (Barr-Beck theorem, precise version).
An adjunction F : C ⇆ D : G is monadic if and only if it has the following two properties:

a) D admits and G preserves coequalisers of G-split pairs; this means that whenever a pair d0, d1 :
X1 ⇒ X0 has the property that G(X1), G(X0) : G(X1) ⇒ G(X0) is part of a split coequaliser
diagram, then d0, d1 : X1 ⇒ X0 admits a colimit, which G preserves.

b) G is conservative (i.e. reflects isomorphisms).

Exercise 1.49. Taking inspiration from the proof of the crude Barr-Beck Theorem 1.43, prove
Theorem 1.48.

1.5. Conclusion. To conclude this lecture, we now give the desired categorical proof of Proposition 1.1.
By Observation 1.38, the functorG = Map(Q,−) : ModR → ModZ admits a left adjoint F = Q⊗ (−).
Writing TQ for the associated monad on ModZ, we obtain a canonical diagram

AlgTQ
(ModZ)

ModR
G

>

G̃ >

ModZ

U

∨

The functor G preserves biproducts by Observation 1.39, filtered colimits by Corollary 1.18, and
reflexive coequalisers by Corollary 1.24. This shows that G and therefore also TQ preserves small
colimits, which allows us to identify AlgTQ

(Ab) with the category of left EndR(Q)op-modules as in
Exercise 1.40. Since G is also conservative by Proposition 1.26, we can apply the crude Barr-Beck

theorem Theorem 1.43 to conclude that G̃ is an equivalence.

Exercise 1.50. Deduce that all Morita equivalences are realised by the construction in Proposition 1.1,
and make this statement precise.
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