∞ -Categories in Algebraic Geometry Université Paris-Saclay (Orsay)

Lecture 3. Monoidal ∞-categories

Last week, we introduced ∞ -categories and defined colimits (and limits) in this context. To state Lurie's higher categorical Barr-Beck theorem, we will also need the theory of monads (and their algebras) in this setting, which in turn relies on the theory of monoidal (and tensored) ∞ -categories – these will be the topic of today.

3.1. CoCartesian fibrations. To examine ∞ -categories in families, we will need:

Definition 3.1 (coCartesian lifts). Given a map of simplicial sets $p: \mathcal{C} \to S$ and an edge $f: x \to y$ in S, an edge

$$\widetilde{f}:\widetilde{x}\to\widetilde{y}$$

in \mathcal{C} is said to be a *p*-coCartesian lift of f if

a) The edge \tilde{f} lifts f, which means that $p(\tilde{f}) = f$. b) The map $C_{\tilde{f}} \to C_{\tilde{x}/} \times_{S_{x/}} S_{f/}$ is a trivial Kan fibration of simplicial sets.

Condition b) says that in the diagram below, specifying the upper triangle, an element of $\mathcal{C}_{\tilde{f}}$, is equivalent to compatibly specifying $(\tilde{x} \to \tilde{z}) \in \mathcal{C}_{\tilde{x}/}$ and the lower triangle, an element of $S_{f/}$.

(1)
$$\begin{array}{c} \widetilde{x} & \overbrace{f}^{\widetilde{f}} > \widetilde{y} \\ \downarrow & \downarrow & \overbrace{z}^{\widetilde{f}} \\ x & \overbrace{f}^{\widetilde{f}} > y & \downarrow \\ z \end{array}$$

Definition 3.2 (CoCartesian fibration). A map $\mathcal{C} \xrightarrow{p} S$ in **sSet** is a *coCartesian fibration* if

(1) p is an *inner fibration*, i.e. it satisfies the right lifting property for all inner horns:

(2) Given $x \xrightarrow{f} y$ in S and $\widetilde{x} \in \mathcal{C}$ with $p(\widetilde{x}) = x$, there is a p-coCartesian lift $\widetilde{x} \xrightarrow{\widetilde{f}} \widetilde{y}$ of f.

As a heuristic, it might be helpful to think of coCartesian fibrations as bundles with flat connection; in this picture, coCartesian lifts correspond to paths along the connection.

3.2. Unstraightening. One can show that coCartesian fibrations over S are equivalent to functors from S into the ∞ -category Cat_{∞} introduced last lecture. The proof of this result is challenging, and we refer to [Lur09, Section 3.2] for a more comprehensive treatment.

We will content ourselves with constructing coCartesian fibrations for *certain* functors to Cat_{∞} . More precisely, let J be an ordinary category and fix a functor

$$F: J \to \mathbf{sSet}$$

Definition 3.3 (Relative nerve). The relative nerve $N_F(J)$ is the simplicial set over N(J) with $N_F(J) = \{(i_0 \in N(J)), (i_0 \in N(J)), (i_0 \in N(J))\}$

$$N_{F}(J)_{0} = \{(j_{0} \in N(J)_{0}, x_{0} \in F(j_{0})\}$$

$$N_{F}(J)_{1} = \{(j_{0} \rightarrow j_{1}) \in N(J)_{1}, \frac{x_{0} \in F(j_{0})}{x_{1} \in F(j_{1})}, F(j_{0} \rightarrow j_{1})(x_{0}) \rightarrow x_{1}\}$$

$$F(j_{0} \rightarrow j_{2})(x_{0}) \rightarrow F(j_{1} \rightarrow j_{2})(x_{1})$$

$$V_{F}(J)_{2} = \begin{cases} j_{0} \implies j_{1} & F(j_{0} \rightarrow j_{1})(x_{0}) \rightarrow x_{1} \\ \downarrow & \chi_{1} \in F(j_{1}), F(j_{0} \rightarrow j_{2})(x_{0}) \rightarrow x_{2} \\ \chi_{2} \in F(j_{2}), F(j_{1} \rightarrow j_{2})(x_{1}) \rightarrow x_{2} \end{cases}$$

Exercise 3.4. a) Write down $N_F(J)_n$ for all n and check that it is a simplicial set. b) Show that if F(j) is an ∞ -category for all j, then $N_F(J) \xrightarrow{p} N(J)$ is a coCartesian fibration.

3.3. Monoidal ∞ -categories. We are finally in a position to define monoidal ∞ -categories. But first, we observe that the category Δ^{op} from Lecture 2 admits an alternative description. Indeed, the objects of Δ^{op} can be written as

 $[0] = (-+), \quad [1] = (-+), \quad [2] = (-++), \quad [3] = (-++), \quad \dots$

Morphisms from [n] to [m] are maps which preserve the order and send – to – and + to +:

Exercise 3.5. Show that the category defined in this way indeed agrees with the opposite of the usual simplex category Δ .

Informally, we think of the bullets as placeholders of potential elements in a monoidal category. The symbols + and – will act as "trashcans"; arrows will parametrise multiplications.

We give a name to the morphisms which "throw away" all but one element:

Definition 3.6. Given $n \ge 0$ and $1 \le i \le n$, we write $\rho_i^n : [n] \to [1]$ for the morphism

This motivates the following definition:

Definition 3.7 (Monoidal ∞ -categories). A monoidal ∞ -category is a coCartesian fibration $p: \mathcal{C}^{\otimes} \to \mathcal{N}(\Delta^{op})$ such that for all n, the following morphism is an equivalence:

$$\mathcal{C}^{\circledast}_{[n]} \xrightarrow{\Pi^n_{i=1}(\rho^n_i)_!} \prod_{i=1}^n \mathcal{C}^{\circledast}_{[1]} \qquad (\text{Segal condition})$$

Here $\mathcal{C}_{[n]}^{\circledast}$ denotes the fibre of p over [n], and $\mathcal{C}_{[n]}^{\circledast} \xrightarrow{(\rho_i^n)_!} \mathcal{C}_{[1]}^{\circledast}$ is the functor associated with ρ_i^n . Informally, we simply say that $\mathcal{C} \simeq \mathcal{C}_{[1]}^{\circledast}$ is equipped with a monoidal structure.

Remark 3.8. The functor $(\rho_i^n)_!$ sends $x \in \mathcal{C}_{[n]}^{\circledast}$ to the endpoint of a coCartesian lift of ρ_i^n starting at \tilde{x} . For a complete definition, we refer to [Lur09, Section 2.2.1].

The monoidal product \circ is determined, up to equivalence, by the following composite:

$$\mathcal{C}^{\circledast}_{[1]} \times \mathcal{C}^{\circledast}_{[1]} \xleftarrow{\simeq} \mathcal{C}^{\circledast}_{[2]} \xrightarrow{m_!} \mathcal{C}^{\circledast}_{[1]},$$

where $m: [2] \rightarrow [1]$ is the morphism in Δ^{op} represented by the diagram

Exercise 3.9. Define the monoidal unit **1** of a monoidal ∞ -category $\mathcal{C}^{\circledast} \to \mathcal{N}(\Delta^{op})$.

Notation 3.10. We will often say "let $(\mathcal{C}, \circ, \mathbf{1})$ be a monoidal ∞ -category" instead of "let $\mathcal{C}^{\circledast} \to \mathcal{N}(\Delta^{op})$ be a monoidal ∞ -category with $\mathcal{C}^{\circledast}_{[1]} \simeq \mathcal{C}$, multiplication \circ , and unit $\mathbf{1}$ ".

Using the relative nerve from Definition 3.3, we can now equip ∞ -categories of endofunctors $\mathcal{C} = \text{End}(\mathcal{D})$ with monoidal structures:

Definition 3.11 (Endomorphism ∞ -categories). Given an ∞ -category \mathcal{D} , we equip

$$\mathcal{C} = \operatorname{End}(\mathcal{D}) \coloneqq \mathcal{D}^{\mathcal{I}}$$

(cf. Definition 2.7 in Lecture 2) with the structure of a monoidal ∞ -category as follows. First, use that C is a simplicial monoid (under composition) to construct a diagram

$$\dots \qquad \mathcal{C} \times \mathcal{C} \quad \stackrel{\longrightarrow}{\longleftrightarrow} \quad \mathcal{C} \quad \stackrel{\longrightarrow}{\longleftrightarrow} [0]$$

Second, apply the relative nerve (cf. Definition 3.3) to obtain a coCartesian fibration

$$\operatorname{End}(\mathcal{D})^{\otimes} \to \operatorname{N}(\Delta^{op}).$$

Exercise 3.12. Check that $\operatorname{End}(\mathcal{D})^{\circledast} \to \operatorname{N}(\Delta^{op})$ is a monoidal ∞ -category.

3.4. Algebra objects. To generalise the notion of a monad to a higher categorical context, we first need to define what we mean by an algebra A in a monoidal ∞ -category ($\mathcal{C}, \circ, \mathbf{1}$).

We certainly want to specify a multiplication map $A \circ A \to A$, which, by diagram (1), is equivalent to lifting the morphism $m : [2] \to [1]$ in Δ^{op} drawn below along $p : \mathcal{C}^{\circledast} \to \mathrm{N}(\Delta^{op})$.

We can also specify higher compositions (e.g. $A \circ A \circ A \xrightarrow{m \circ id} A \circ A$) as lifts of corresponding maps in Δ^{op} . One might hope that algebra objects are simply sections of $p : \mathcal{C}^{\circledast} \to \mathcal{N}(\Delta^{op})$.

This is almost true, but we need to make sure that certain dull morphisms have dull lifts:

Definition 3.13 (Inert morphism). A morphism $f : [n] \to [m]$ in Δ^{op} is *inert* if every bullet • in [m] has a unique preimage in [n]:

Definition 3.14 (Algebras). An algebra in a monoidal ∞ -category $p : \mathcal{C}^{\otimes} \to \mathcal{N}(\Delta^{op})$ is a section $s : \mathcal{N}(\Delta^{op}) \to \mathcal{C}^{\otimes}$ of p sending inert morphisms to p-coCartesian morphisms.

Exercise 3.15. Show that if $s : N(\Delta^{op}) \to \mathcal{C}^{\circledast}$ specifies an algebra, then s([2]) corresponds to the pair (s([1]), s([1])) under the equivalence $\mathcal{C}^{\circledast}_{[2]} \simeq \mathcal{C} \times \mathcal{C}$.

Finally, we can generalise Definition 1.30 from Lecture 1 to the setting of ∞ -categories:

Definition 3.16 (Monads). A monad on an ∞ -category \mathcal{C} is an algebra object in End(\mathcal{C}).

3.5. Algebras over monads. To state the monadicity theorem, we will need to define what we mean by algebras over a monad. We will use the setup of tensored ∞ -categories. Let $\mathcal{C}^{\otimes} \to \mathcal{N}(\Delta^{op})$ be a monoidal ∞ -category, written informally as $(\mathcal{C}, \otimes, 1)$.

Definition 3.17 (Tensored ∞ -categories). A *C*-tensored ∞ -category is given by a diagram of ∞ -categories $\mathcal{M}^{\circledast} \xrightarrow{q} \mathcal{C}^{\circledast} \xrightarrow{p} N(\Delta^{op})$ satisfying the following conditions:

a) $p \circ q : \mathcal{M}^{\otimes} \to \mathcal{N}(\Delta^{op})$ is a coCartesian fibration;

b) $q: \mathcal{M}^{\circledast} \to \mathcal{C}^{\circledast}$ is a categorical fibration sending $(p \circ q)$ -coCartesian to *p*-coCartesian edges; c) For all *n*, the inclusion $\{n\} \subset [n]$ induces an equivalence $\mathcal{M}_{[n]}^{\circledast} \xrightarrow{\sim} \mathcal{C}_{[n]}^{\circledast} \times \mathcal{M}_{\{n\}}^{\circledast}$.

We say that the ∞ -category $\mathcal{M} := \mathcal{M}_{[0]}^{\otimes}$ is equipped with a \mathcal{C} -tensored structure, written \otimes .

Informally, elements of $\mathcal{M}_{[n]}^{\circledast}$ correspond to tuples $(c_1, c_2, \ldots, c_n, m)$ with $c_i \in \mathcal{C}, m \in \mathcal{M}$; we think of the c_i 's as labels of the bullets and m as a label of the +. The $(p \circ q)$ -coCartesian lifts tensor according to the arrows; for example, the coCartesian lift of the morphism

starting at a tuple $(c_1, c_2, c_3, c_4, c_5, c_6, m)$ ends at the tuple $(1, c_2, 1, c_3 \otimes c_4 \otimes c_5, c_6 \otimes m)$.

Example 3.18. Any ∞ -category $\mathcal{M} = \mathcal{D}$ is naturally tensored over the monoidal ∞ -category $\mathcal{C} = \operatorname{End}(\mathcal{D})$, where the tensoring evaluates functors on objects.

To formally construct this tensored structure, observe that the simplicial set $\mathcal{M} = \mathcal{D}$ is equipped with an action by the simplicial monoid $\mathcal{C} = \text{End}(\mathcal{D})$.

We obtain the diagram $N(\Delta^{op}) \times \Delta^1 \to \mathbf{sSet}$ drawn below.

Exercise. Applying the relative nerve construction to this diagram gives rise to an C = End(D)-tensored structure on $\mathcal{M} = C$.

Let $\mathcal{C}^{\circledast} \xrightarrow{p} \mathcal{N}(\Delta^{op})$ be a monoidal ∞ -category and $\mathcal{M}^{\circledast} \xrightarrow{q} \mathcal{C}^{\circledast} \xrightarrow{p} \mathcal{N}(\Delta^{op})$ be a \mathcal{C} -tensored ∞ -category. Fix an algebra object A in \mathcal{C} , parametrised by a section $s : \mathcal{N}(\Delta^{op}) \to \mathcal{C}^{\circledast}$ of p.

Definition 3.19 (Modules). An A-module M in \mathcal{M} consists of a section $s' : \mathbb{N}(\Delta^{op}) \to \mathcal{M}^{\circledast}$ with $q \circ s' = s$ and such that all morphisms drawn below are sent to $(p \circ q)$ -coCartesian edges:

Informally, an A-module is an element $M \in \mathcal{M}$ with a multiplication map $A \otimes M \to M$ which is unital and associative up to coherent homotopy.

Definition 3.20 (Algebras over monads). Given a monad T on an ∞ -category \mathcal{D} , i.e. an algebra object in the monoidal ∞ -category End(\mathcal{D}), a T-algebra is simply a T-module object in the End(\mathcal{D})-tensored ∞ -category \mathcal{D} .

Remark 3.21. One could argue that T-algebras should be called T-modules instead, and this notational convention is indeed implemented in [Lur07]. However, we decided against this for higher consistency with the 1-categorical literature on monads.

References

- [Lur07] Jacob Lurie, Derived algebraic geometry II: Noncommutative algebra, Preprint from the author's web page (2007).
- [Lur09] _____, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659