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Lecture 3. Monoidal ª-categories

Last week, we introduced ª-categories and defined colimits (and limits) in this context.
To state Lurie’s higher categorical Barr-Beck theorem, we will also need the theory of
monads (and their algebras) in this setting, which in turn relies on the theory of monoidal
(and tensored) ª-categories – these will be the topic of today.

3.1. CoCartesian fibrations. To examine ª-categories in families, we will need:

Definition 3.1 (coCartesian lifts). Given a map of simplicial sets p � C � S and an edge
f � x� y in S, an edge

Çf � Çx� Çy

in C is said to be a p-coCartesian lift of f if

a) The edge Çf lifts f , which means that p� Çf� � f .
b) The map CÇf � CÇx~ �Sx~ Sf~ is a trivial Kan fibration of simplicial sets.

Condition b) says that in the diagram below, specifying the upper triangle, an element of CÇf ,

is equivalent to compatibly specifying �Çx� Çz� > CÇx~ and the lower triangle, an element of Sf~.

(1)

Çx
Çf
> Çy

+ + z̃
>>

x
f
> y +

z
>>

Definition 3.2 (CoCartesian fibration). A map C
p
Ð� S in sSet is a coCartesian fibration if

(1) p is an inner fibration, i.e. it satisfies the right lifting property for all inner horns:

Λn
i > C

∆n
∨

>

>

S
∨

(2) Given x
f
Ð� y in S and Çx > C with p�Çx� � x, there is a p-coCartesian lift Çx

Çf
Ð� Çy of f .

As a heuristic, it might be helpful to think of coCartesian fibrations as bundles with flat
connection; in this picture, coCartesian lifts correspond to paths along the connection.
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3.2. Unstraightening. One can show that coCartesian fibrations over S are equivalent to
functors from S into the ª-category Catª introduced last lecture. The proof of this result
is challenging, and we refer to [Lur09, Section 3.2] for a more comprehensive treatment.

We will content ourselves with constructing coCartesian fibrations for certain functors
to Catª. More precisely, let J be an ordinary category and fix a functor

F � J � sSet .

Definition 3.3 (Relative nerve). The relative nerve NF �J� is the simplicial set over N�J� with

NF �J�0 � ��j0 > N�J�0 , x0 > F �j0��

NF �J�1 � ��j0 � j1� > N�J�1 , x0>F �j0�
x1>F �j1�

, F �j0 � j1��x0�� x1�

NF �J�2 �

¢̈
¨̈̈
¨
¦
¨̈̈
¨̈
¤

j0 > j1

j2
∨>

,
x0>F �j0�
x1>F �j1�
x2>F �j2�

,
F �j0�j1��x0��x1

F �j0�j2��x0��x2

F �j1�j2��x1��x2

,

F �j0 � j2��x0� > F �j1 � j2��x1�

x2
∨>

£̈
¨̈̈
¨
§
¨̈̈
¨̈
¥

Exercise 3.4. a) Write down NF �J�n for all n and check that it is a simplicial set.

b) Show that if F �j� is anª-category for all j, then NF �J�
p
Ð� N�J� is a coCartesian fibration.

3.3. Monoidalª-categories. We are finally in a position to define monoidalª-categories.
But first, we observe that the category ∆op from Lecture 2 admits an alternative de-

scription. Indeed, the objects of ∆op can be written as

�0� � �� ��, �1� � �� Y ��, �2� � �� Y Y ��, �3� � �� Y Y Y ��, . . .

Morphisms from �n� to �m� are maps which preserve the order and send � to � and � to �:

� Y Y Y Y Y Y Y . . . Y �

�

∨>

Y Y

>

Y Y

∨>>
Y

∨<

. . . Y

<

�

<

Exercise 3.5. Show that the category defined in this way indeed agrees with the opposite
of the usual simplex category ∆.

Informally, we think of the bullets as placeholders of potential elements in a monoidal cat-
egory. The symbols � and � will act as “trashcans”; arrows will parametrise multiplications.

We give a name to the morphisms which “throw away” all but one element:

Definition 3.6. Given n C 0 and 1 B i B n, we write ρni � �n�� �1� for the morphism

� Y Y Y Y
i

Y Y Y . . . Y �

�

>>>>
Y

>

�

∨
<<<

>
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This motivates the following definition:

Definition 3.7 (Monoidal ª-categories). A monoidal ª-category is a coCartesian fibra-
tion p � Ce � N�∆op� such that for all n, the following morphism is an equivalence:

C
e

�n�

L
n
i�1�ρ

n
i �!

ÐÐÐÐÐÐÐ�

n

M
i�1

C
e

�1� (Segal condition)

Here Ce
�n�

denotes the fibre of p over �n�, and Ce
�n�

�ρni �!
ÐÐÐ� Ce

�1�
is the functor associated with ρni .

Informally, we simply say that C � Ce
�1�

is equipped with a monoidal structure.

Remark 3.8. The functor �ρni �! sends x > C
e

�n�
to the endpoint of a coCartesian lift of ρni

starting at x̃. For a complete definition, we refer to [Lur09, Section 2.2.1].

The monoidal product X is determined, up to equivalence, by the following composite:

C
e

�1� � C
e

�1�

�

�ÐÐÐÐ C
e

�2�

m!
ÐÐÐÐ� C

e

�1�,

where m � �2�� �1� is the morphism in ∆op represented by the diagram

� Y Y �

�

>

Y

<
>

�.

<

Exercise 3.9. Define the monoidal unit 1 of a monoidal ª-category Ce � N�∆op�.

Notation 3.10. We will often say “let �C, X,1� be a monoidal ª-category” instead of “let
C
e � N�∆op� be a monoidal ª-category with Ce

�1�
� C, multiplication X, and unit 1”.

Using the relative nerve from Definition 3.3, we can now equip ª-categories of endo-
functors C � End�D� with monoidal structures:

Definition 3.11 (Endomorphism ª-categories). Given an ª-category D, we equip

C � End�D� �� DD

(cf. Definition 2.7 in Lecture 2) with the structure of a monoidal ª-category as follows.
First, use that C is a simplicial monoid (under composition) to construct a diagram

. . . C � C
//

//
// Coo

oo //
// �0�oo

Second, apply the relative nerve (cf. Definition 3.3) to obtain a coCartesian fibration

End�D�e � N�∆op�.

Exercise 3.12. Check that End�D�e � N�∆op� is a monoidal ª-category.
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3.4. Algebra objects. To generalise the notion of a monad to a higher categorical context,
we first need to define what we mean by an algebra A in a monoidal ª-category �C, X,1�.

We certainly want to specify a multiplication map A XA� A, which, by diagram (1), is
equivalent to lifting the morphism m � �2�� �1� in ∆op drawn below along p � Ce � N�∆op�.

� Y Y �

�

>

Y

<
>

�.

<

We can also specify higher compositions (e.g. AXAXA
mXid
ÐÐ� AXA) as lifts of corresponding

maps in ∆op. One might hope that algebra objects are simply sections of p � Ce � N�∆op�.

This is almost true, but we need to make sure that certain dull morphisms have dull lifts:

Definition 3.13 (Inert morphism). A morphism f � �n� � �m� in ∆op is inert if every
bullet Y in �m� has a unique preimage in �n�:

� Y Y Y Y Y Y . . . Y Y �

�

∨>>
Y

∨
Y

∨
Y

∨
Y

∨
. . . Y

∨
�

∨ <

Definition 3.14 (Algebras). An algebra in a monoidal ª-category p � Ce � N�∆op� is a
section s � N�∆op�� Ce of p sending inert morphisms to p-coCartesian morphisms.

Exercise 3.15. Show that if s � N�∆op�� Ce specifies an algebra, then s��2�� corresponds
to the pair �s��1��, s��1��� under the equivalence Ce

�2�
� C � C.

Finally, we can generalise Definition 1.30 from Lecture 1 to the setting of ª-categories:

Definition 3.16 (Monads). A monad on an ª-category C is an algebra object in End�C�.

3.5. Algebras over monads. To state the monadicity theorem, we will need to define
what we mean by algebras over a monad. We will use the setup of tensored ª-categories.

Let Ce � N�∆op� be a monoidal ª-category, written informally as �C,a,1�.

Definition 3.17 (Tensored ª-categories). A C-tensored ª-category is given by a diagram

of ª-categories Me
q
Ð� Ce

p
Ð� N�∆op� satisfying the following conditions:

a) p X q �Me � N�∆op� is a coCartesian fibration;
b) q �Me � Ce is a categorical fibration sending �pXq�-coCartesian to p-coCartesian edges;

c) For all n, the inclusion �n� ` �n� induces an equivalence Me

�n�

�

Ð� Ce
�n�

�M
e

�n�
.

We say that theª-categoryM ��M
e

�0�
is equipped with a C-tensored structure, written a.

Informally, elements ofMe

�n�
correspond to tuples �c1, c2, . . . , cn,m� with ci > C, m >M;

we think of the ci’s as labels of the bullets and m as a label of the �. The �pXq�-coCartesian
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lifts tensor according to the arrows; for example, the coCartesian lift of the morphism
� Y Y Y Y Y Y �

�

∨>

Y Y

>

Y Y

∨>>
�

∨<

starting at a tuple �c1, c2, c3, c4, c5, c6,m� ends at the tuple �1, c2,1, c3 a c4 a c5, c6am�.

Example 3.18. Any ª-category M � D is naturally tensored over the monoidal ª-
category C � End�D�, where the tensoring evaluates functors on objects.

To formally construct this tensored structure, observe that the simplicial set M � D is
equipped with an action by the simplicial monoid C � End�D�.

We obtain the diagram N�∆op� �∆1 � sSet drawn below.

. . . C � C �M

��

//

//
// C �Moo

oo

��

//
// M

��

oo

. . . C � C
//

//
// Coo

oo //
// �0�oo

Exercise. Applying the relative nerve construction to this diagram gives rise to an C �

End�D�-tensored structure onM � C.

Let Ce
p
Ð� N�∆op� be a monoidal ª-category and Me

q
Ð� Ce

p
Ð� N�∆op� be a C-tensored

ª-category. Fix an algebra object A in C, parametrised by a section s � N�∆op�� Ce of p.

Definition 3.19 (Modules). An A-module M inM consists of a section s� � N�∆op��Me

with qXs� � s and such that all morphisms drawn below are sent to �p X q�-coCartesian edges:
� . . . Y Y Y Y Y . . . Y �

�

∨>>
Y

∨
Y

∨
Y

∨
Y

∨
. . . Y

∨
�

∨

Informally, an A-module is an element M >M with a multiplication map A aM �M
which is unital and associative up to coherent homotopy.

Definition 3.20 (Algebras over monads). Given a monad T on an ª-category D, i.e.
an algebra object in the monoidal ª-category End�D�, a T -algebra is simply a T -module
object in the End�D�-tensored ª-category D.

Remark 3.21. One could argue that T -algebras should be called T -modules instead, and
this notational convention is indeed implemented in [Lur07]. However, we decided against
this for higher consistency with the 1-categorical literature on monads.
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