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Lecture 5: Koszul Duality for Modules

In Lecture 1, we have used the classical Barr-Beck theorem to determine when two rings
R and S have equivalent categories of left modules Mod♡R ≅ Mod♡S . Namely, this happens
precisely if there is a compact projective generator Q ∈Mod♡R with EndR(Q)

op ≅ S.
Today, we will use Lurie’s ∞-categorical monadicity theorem from last class to prove a

similar statement for derived ∞-categories of chain complexes. In a second step, we will
then use this generalisation to establish a Koszul duality for modules.

For these applications, we need to briefly discuss some further categorical constructions.

5.1. Stable ∞-categories. The axioms for stable∞-categories capture the key properties
of derived ∞-categories of chain complexes, just like abelian categories axiomatise the key
properties of ordinary categories of modules. We define:

Definition 5.1 (Stable ∞-categories). An ∞-category C is stable if

a) C is pointed, which means that C admits an object 0 which is both initial and final;
b) Every morphism f ∶ X → Y in C admits a fibre fib(f) and a cofibre cofib(f), i.e. the

following pullback and pushout squares exist in C:

fib(f) > X

0
∨

> Y

f

∨

X
f

> Y

0
∨

> cofib(f)
∨

c) A square in C of shape depicted below is a pullback if and only if it is a pushout.

X > Y

0
∨

> Z
∨

These axioms are equivalent to a priori stronger conditions (cf. [Lur, Proposition 1.1.3.4]).

Proposition 5.2. An∞-category C is stable if and only if it has a zero object, admits finite
limits and colimits, and a general square in C is a pullback if and only if it is a pushout.

Notation 5.3. Given an objectX in a pointed∞-category C, we will write ΣX = cofib(X → 0)
for the suspension of X and ΩX = fib(0→X) for the loop object of X.

Exercise 5.4. Prove that if C is stable, then Ω and Σ define inverse equivalences.

We then have the following key result (cf. [Lur, Proposition 1.1.4.1]):

Proposition 5.5. A functor F ∶ C → D between stable ∞-categories preserves finite limits
if and only if it preserves finite colimits.
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5.2. Spectra. The primeval example of a stable ∞-category is the ∞-category of spectra,
which is an analogue of the category of abelian groups in ordinary category theory.

We briefly outline its construction. Write S∗ = S∗/ for the ∞-category of pointed spaces
(cf. Lecture 2, Example 2.23.c). The one-point space ∗ is a zero object in S∗, and we obtain
a loops functor Ω ∶ S∗ → S∗.

Definition 5.6 (Spectra). The ∞-category Sp if spectra is given by the homotopy limit of
the following tower of ∞-categories:

. . .
Ω
Ð→ S∗

Ω
Ð→ S∗

Ω
Ð→ S∗

Informally, spectra are sequences of pointed spacesX0,X1, . . . with equivalences ΩXn+1 ≃Xn.

We will now state several important facts about the ∞-category Sp without proof; for a
comprehensive treatment of spectra in the language of ∞-categories, we refer to [Lur], in
particular Section 1.4.3.

a) The natural functor Ω∞ ∶ Sp → S∗ admits a left adjoint Σ∞ ∶ S∗ → Sp, which exhibits
spectra as the stabilisation of spaces (the precise universal property of Sp is articulated
in [Lur, Corollary 1.4.4.5]).

b) The functor Ω∞ preserves filtered colimits, but it does not preserve geometric realisations.
c) Any X ∈ Sp is a canonical filtered colimit of pointed spaces X ≃ colimnΣ

∞−nΩ∞−nX,
where Ω∞−n = Ω∞ ○Σn and Σ∞−n = Ωn ○Σ∞.

d) The∞-categories S∗ and Sp admit monoidal structures ∧ and ⊗, both called smash product,
and Σ∞ is monoidal. In fact, both ∧ and ⊗ define symmetric monoidal structures. We
have not defined this notion yet, but this is a simple variation of Definition 3.7 in Lecture 3
(obtained by replacing ∆op by the category of finite pointed sets Fin∗).

e) The∞-category Sp admits a t-structure, which means that there are full subcategories Sp≥0
(connective spectra) and Sp≤0 (coconnective spectra), satisfying the following conditions:
i) For X ∈ Sp≥0 and Y ∈ Sp≤0, we have MapSp(X,Σ−1Y ) = 0;
ii) The functor Σ preserves Sp≥0 and the functor Ω preserves Sp≤0;
iii) AnyX ∈ Sp sits in a fibre sequence τ≥0X →X → τ≤−1X with τ≥0X ∈ Sp≥0,Στ≤−1X ∈ Sp≤0.
The heart Sp♡ = Sp≥0 ∩Sp≤0 of this t-structure is equivalent to N(Ab), the (nerve of the)
ordinary category of abelian groups.

f) Using the monoidal structure ⊗ on Sp, we obtain an ∞-category Alg(Sp) of algebra
objects (cf. Definition 3.14, Lecture 3) in Sp, which are usually called E1-ring spectra.

g) The full subcategory of Alg(Sp) spanned by all objects whose underlying spectrum
lies in Sp♡ is equivalent to the (nerve of the) ordinary category of associative rings (cf.
[Lur, Proposition 7.1.3.18]). Hence, we can identify rings with discrete E1-ring spectra.

h) Given an E1-ring A ∈ Alg(Sp), Definition 3.19 from Lecture 3 gives an∞-category ModA
of A-module objects, which we will refer to as A-module spectra. Here, we have used
that the monoidal ∞-category Sp is naturally tensored over itself.

i) Given objects X,Y in a general stable∞-category C, the space MapC(X,Y ) deloops to a
spectrumMapC(X,Y ), whose nth space is satisfies Ω∞−nMap C(X,Y ) ≃MapC(X,ΣnY ).
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When X = Y , then End C(X) ∶=Map C(X,X) can be equipped with the structure of an

E1-ring spectrum, with multiplication given by composition (cf. [Lur, Remark 7.1.2.2]).
j) If A is an ordinary ring, then ModA can be identified with the unbounded derived ∞-

category of A, whose objects are chain complexes of A-modules . . . →M2 →M1 → . . ..

Given ordinary R-modules M,N , we have Ext−∗R (M,N) ≅ π∗ (Map
ModR

(M,N)).

We will discuss this point in more detail later.

5.3. The Ind-construction. Given an ∞-category C, the presheaf ∞-category

P(C) ∶= Fun(Cop,S)

freely adds small colimits (cf. [Lur09, Theorem 5.1.5.6]):

Proposition 5.7 (Universal property of the presheaf category). Let C be a small ∞-
category and D an ∞-category with small colimits. The Yoneda embedding C → P(C)
induces an equivalence

FunL(P(C),D)
≃
ÐÐ→ Fun(C,D)

between the∞-category of small-colimit-preserving functors P(C) → D and the∞-category
of all functors C → D.

A variant of the P(−)-construction only adds filtered colimits (cf. Definition 2.32, Lecture 2):

Definition 5.8 (Ind-construction). Given a small ∞-category C, let Ind(C) ⊂ P(C) be the
full subcategory spanned by all functors Cop → S which preserve finite limits.

This construction satisfies the following universal property (cf. [Lur09, Proposition 5.3.5.10]

Proposition 5.9 (Universal property of the Ind-construction). Let C be a small ∞-
category and D be any ∞-category containing small filtered colimits. Restriction along

the Yoneda embedding C induces an equivalence Funω(Ind(C),D)
≃
ÐÐ→ Fun(C,D) between

the ∞-category Funω(Ind(C),D) of filtered-colimit-preserving functors Ind(C) → D and
the ∞-category of all functors C → D.

We now assume that C is an ∞-category with finite colimits, and state several key
properties of the Ind-construction Ind(C):

a) The Yoneda embedding j ∶ C → Ind(C), X ↦ j(X) = MapC(X,−) is fully faithful,
preserves finite colimits and small limits, and j(X) ∈ Ind(C) is compact for all X ∈ C;

b) The ∞-category Ind(C) admits small colimits;
c) If C is stable, then so is Ind(C).
d) Any X ∈ Ind(C) can be obtained as a filtered colimit X = colima j(Xa) of objects X ∈ C.

If Y = colimb j(Yb) is another such object, we can compute the mapping space as

MapInd(C)(X,Y ) ≃ limbMapInd(C)(X, j(Yb))

≃ limb colimaMapC(j(Xa), j(Yb))

≃ limb colimaMapC(Xa, Yb).

The first equivalence is tautological, the second used that any object in the image of
the Yoneda embedding is compact, and the third uses that j is fully faithful.
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Definition 5.10 (Compact generation). An∞-categoryD is said to be compactly generated
if there is a small ∞-category C with finite colimits and an equivalence D ≃ Ind(C).

Remark 5.11. Many ∞-categories in nature are compactly generated. For example, the
∞-categories of spaces S, spectra Sp, and module spectra ModR over a given E1-ring
R ∈ Alg(Sp) satisfy this property. The easiest way to prove this is to exhibit all these
∞-categories as sifted-colimit-completions (cf. [Lur09, Proposition 5.5.8.10]).

Digression 5.12. There are also various ∞-categories of interest which are not compactly
generated, such as the∞-category Shv(R,Modk) of sheaves of k-linear chain complexes on R.

However, most of them fit into the more general framework of presentable ∞-categories,
which we shall briefly outline. Given a regular cardinal κ, we say that a simplicial set is
κ-small if its set of nondegenerate simplices has cardinality less than κ. For κ = ω, this
recovers the notion of a finite simplicial set. We can then define the notion of a κ-filtered
∞-category (cf. [Lur09, Definition 5.3.1.7]) generalising Definition 2.32 in Lecture 2, by
allowing extensions over cones of all κ-small simplicial sets (rather than just finite ones). A
generalisation of the Ind-construction, denoted by Indκ, then freely adds κ-filtered colimits.

An ∞-category D is said to be presentable if it can be written as D ≃ Indκ(C) for some
regular cardinal κ, where C is a small ∞-category containing all κ-small colimits. A list of
equivalent conditions for presentability is given in [Lur09, Theorem 5.5.1.1].

Presentable∞-categories D ≃ Indκ(C) always admit small colimits; this is implied by the
assumption that C admits κ-small colimits. If one removes this assumption, one obtains
the notion of an accessible ∞-category.

5.4. Colimit-preserving monads on Spectra. The universal property of stabilisation
(alluded to in Definition 5.6a)) implies that Sp is the free stable ∞-category generated by
a single object, the sphere spectrum S = Σ∞(S0) (cf. [Lur, Corollary 1.4.4.6.]):

Proposition 5.13. Given a compactly generated (or in fact presentable) stable∞-category D,

evaluation at S induces an equivalence FunL(Sp,D)
≃
ÐÐÐ→ D. Here FunL(Sp,D) ⊂ FunL(Sp,D)

is the full subcategory spanned by functors which preserve small colimits.

Taking D = Sp, we obtain an identification FunL(Sp,Sp)
≃
Ð→ Sp. The left hand side carries

a natural monoidal structure given by composition, and this can be taken as a definition of
the smash product ⊗ on the right hand side Sp. However, more work is necessary to show
that ⊗ symmetric; we refer to the beginning of [Lur, Section 4.8.2] for a discussion. The

inverse of the above equivalence carries X ∈ Sp to X⊗(−). Passing to algebras, we deduce:

Proposition 5.14. Evaluation at S induces an equivalence Alg(FunL(Sp,Sp))
≃
Ð→ Alg(Sp)

between small-colimit-preserving monads on Sp and E1-ring spectra.

If an E1-ring R = TR(S) corresponds to a monad TR ∈ Alg(Fun
L(Sp,Sp)), then there is

a canonical equivalence ModR ≃ AlgTR
(Sp).

5.5. The Recognition Principle. We will now develop a derived variant of Morita theory.
Let C be a compactly generated (or in fact presentable) ∞-category. Given any Q ∈ C,

the assignment GQ = Map C(Q,−) ∶ C → Sp preserves small limits. By a version of the
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adjoint functor theorem (cf. [Lur09, Corollary 5.5.2.9]), the functor GQ admits a left adjoint
FQ ∶ Sp→ C, which we will write as FQ(X) =X ⊗Q. As notation suggests, the assignment
(X,Q) ↦ FQ(X) = X ⊗Q equips C with the structure of a Sp-tensored ∞-category. Note
that by Proposition 5.13, FQ is uniquely determined by the requirement that it preserves
small colimits and sends the sphere spectrum S to FQ(S) = Q. We can now show:

Theorem 5.15 (Schwede–Shipley). Let C be a compactly generated (or in fact presentable)
stable ∞-category . Let Q ∈ C be an object satisfying the following properties:

a) Q is compact (cf. Lecture 2, Definition 2.35);
b) Q is a generator for C, which means that Map C(Q,D) ≃ 0 implies D ≃ 0.

Then G = Map C(Q,−) ∶ C → Sp is part of a monadic adjunction F ⊣ G, the associated

monad T preserves small colimits, and we obtain equivalences C ≃ AlgT (Sp) ≃ModEndC(Q)op .

Proof. We begin by checking that the right adjointG (and hence T ) preserves small colimits.
Indeed, using Definition 5.6 c), we can write the functor G as

G(X) ≃ colimnΣ
∞−nΩ∞−nMap C(Q,X) ≃ colimnΣ

∞−nMapC(Q,ΣnX).

Since Q is assumed to be compact, this composite of filtered-colimit-preserving functors
must preserve filtered colimits. As G tautologically preserves finite (and in fact all) limits,
it also preserves finite colimits Proposition 5.5. Any functor which preserves both finite
and filtered colimits must preserve all small colimits.

By Proposition 5.14, the monad T is therefore given by T (−) = R⊗(−) for some E1-ring
spectrum S. Unraveling the definition, we see that S is equivalent to EndC(Q)

op = T (S),
which implies the second asserted equivalence.

To prove the equivalence C ≃ AlgT (Sp), we apply Lurie’s∞-categorical Barr-Beck theorem.
To verify that G is conservative, assume that G sends a morphism f ∶ X → Y in C
to an equivalence G(f) ∶ G(X) → G(Y ) in Sp. Since G preserves colimits, we have
G(cof(f)) ≃ cof(G(f)) ≅ 0, which implies that cof(f) ≃ 0 since Q is a generator. Hence
f is an equivalence. Since G preserves small colimits, it in particular preserves geometric
realisations . The (crude) Barr–Beck–Lurie theorem (cf. Lecture 4, Theorem 4.6) shows
that G induces an equivalence C ≃ AlgT (Sp). □

Remark 5.16. Any equivalence ModR ≃ ModS between module ∞-categories of E1-ring
spectra arises as in Theorem 5.15 (cf. [Lur, Section 4.8.4]).

Remark 5.17. If R and S are ordinary rings and Q ∈ ModR is a compact generator
of C = ModR for which EndQ(R)

op is the discrete ring spectrum S, then R and S have
equivalent derived ∞-categories ModR ≃ModS . This (of course) happens whenever R and
S are Morita equivalent, but may also happen when R and S are not Morita equivalent.
Example 3.25 in [Sch04] gives an example by considering two matrix rings over a field k:

R =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

x11 x12 x13
0 x22 x23
0 0 x33

⎞
⎟
⎠
∣ xij ∈ k

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

S =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

y11 y12 y13
0 y22 0
0 0 y33

⎞
⎟
⎠
∣ yij ∈ k

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.
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5.6. Koszul Duality for Modules. Let k be a field andA ∈ Algaug(Modk) = Alg(Modk)/k
an augmented algebra object in Modk, i.e. an augmented differential graded k-algebra.

The idea behind Koszul duality is to try to use the functor

G(−) ∶=Map
Modk

(k,−) ∶ModA → Sp

to produce an equivalence of∞-categories, in spite of the fact that k is usually not compact
(cf. Exercise 1.24. in Lecture 1).

We will be able to give an explicit Koszul equivalence if A is “small” in the following
sense (cf. [Lur11, Definition 3.0.1]):

Definition 5.18 (Small algebras). A differential graded k-algebraA ∈ Alg(Modk) is small if

a) A is connective;
b) dimk(π∗(A)) < ∞;

c) Writing n for the radical of A, the canonical map k
≃
Ð→ π0(A)/n is an equivalence.

Note that small algebras are canonically augmented. The main point of interest is that
we can explicitly describe a certain subcategory of ModA if particular interest (cf. [Lur11,
Remark 3.4.2]):

Proposition 5.19. The thick subcategory (cf. Definition 1.26, Lecture 1) ThickA(k) of
ModA generated by k is equivalent to the full subcategory CohA ⊂ ModA spanned by all
M ∈ModA for which dimk(π∗(M)) < ∞.

Remark 5.20. Module spectra lying in CohA ⊂ModA are said to be coherent.

Proof of Proposition 5.19. Since CohA is evidently thick and contains k, the inclusion
ThickA(k) ⊂ CohA is evident. For the converse, pick M ∈ CohA nonzero. We can then chose
n minimal with πn(M) ≠ 0 and an element x ∈ πn(M) which is annihilated by the (nilpo-

tent) augmentation ideal ker(π0(A) → k). The cofibre sequence Σnk
x
Ð→M →M ′ induces a

long exact sequence on homotopy groups, which shoes that dimk(π∗(M
′)) < dimk(π∗(M)).

By induction, we can therefore assume that M ′ ∈ ThickA(k), which also implies the claim
for M as Σnk ∈ ThickA(k) . □

We deduce the following well-known result (cf. [Lur11, Remark 3.4.5]), which goes back
to the work of Beilinson-Ginzburg-Soergel ([BGS96]):

Theorem 5.21. For A a small E1-ring as above, there is an equivalence of stable ∞-
categories Ind(CohA) ≃ModD(1)(A)op for D(1)(A) ∶= EndModA(k).

Proof. We start with the ∞-category Ind(CohA) ≃ Ind(ThickA(k)), which is stable as
ThickA(k) has this property. Like any element in the image of the Yoneda embedding, k
is a compact object. To see that k is also a generator, assume that MapC(k,M) = 0 and

consider the full subcategory {N ∈ ThickA(k) ∣ MapC(N,M) = 0} ⊂ ThickA(k). Since it

is thick, we deduce that any N ∈ ThickA(k) satisfies MapC(N,M) = 0. In particular, this

applies to M itself, and we have MapC(M,M) = 0. This implies that M = 0. □
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