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Lecture 7: Koszul Duality for Commutative Algebras, Part I

In previous lectures, we studied Koszul duals of associative algebras and their modules.
Indeed, recall that given an augmented differential graded algebra A over a field k, we set

(1) D�1��A� � RHomA�k, k�,
and given a chain complex of left A-modules M , we defined

(2) M >ModA ( RHomA�k,M� >ModD�1��A�op .

There is also a contravariant Koszul duality functor, which is given by

(3) M >ModA ( RHomA�M,k� >ModD�1��A�.

But as the basic building blocks of algebraic geometry are commutative algebras, it is
important that we also address the following question:

Question 1. What is the right way of dualising an augmented commutative k-algebra R?

We could, of course, simply treat R as an augmented associative k-algebra and consider
its Koszul dual D�1��R�, which is generally no longer commutative.

Exercise 7.1. Find an example of an augmented commutative k-algebra R such that
D�1��R� is not commutative.

However, the construction R (D�1��R� is not optimal for commutative algebras. In the
following two lectures, we will use the commutative nature of R to define a much smaller
Koszul dual D�R�, which will carry the structure of a (generalised) Lie algebra.

7.1. From associative to commutative Koszul duality. The key idea which allows us
to take Koszul duals of augmented commutative algebras can be summarised as follows:
we should not modify the Koszul duality functor for augmented associative algebras in (1);
instead, we should generalise the contravariant Koszul duality functor for modules in (3).

At a first glance, this does not seem to make any sense, as the category CRaug
k of

augmented commutative k-algebras is not equivalent to modules over any specific ring.

Taking a closer look, however, we realise that the category CRaug
k is controlled by an

augmented monad Sym�
�>n���anΣn

on Mod£k , i.e. an augmented associative algebra object

in the monoidal category of endofunctors on Mod£k .
As Koszul duality is an inherently derived phenomenon, we will in fact need to enlarge

CRaug
k to the larger ª-category SCRaug

k of augmented simplicial commutative k-algebras

. . .
Ð�
�
Ð�
�
Ð�

R1
Ð�
�
Ð�

R0.

To construct SCRaug
k , we will need the important PΣ-contruction, also known as animation,

which we will introduce in Section 7.4 below.
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7.2. Warmup: Contravariant Koszul duality for modules. But first, let us unravel
the contravariant Koszul duality functor

M >ModA ( RHomA�M,k� >ModD�A�

for chain complexes of modules over an augmented k-algebra A in (3) above.
This functor can be constructed in four steps:

(1) Take the left derived tensor product to define a colimit-preserving functor

k aL
A ��� �ModA Ð�Modk;

its right adjoint is restriction of scalars along the augmentation A� k;
(2) Postcompose with k-linear duality ���- to obtain a limit-preserving functor

ModopA Ð�Modk

M ( �k aL
A M�- � RHomA�M,k�;

(3) Construct a differential graded k-algebra D�1��A� � RHomA�k, k�;
(4) Lift RHomA��, k� �ModopA �Modk to a refined functor

ModD�1��A�

ModopA >

>

Modk.
∨

7.3. From homological to homotopical algebra. In step (1) above, we implicitly used
homological algebra to replace the tensor product k aA M by the more refined derived
tensor product k aL

A M . Explicitly, k aL
A M can be computed by first picking a projective

resolution

. . .� P2 � P1 � P0

of k and then setting kaL
RM �� �. . .�M aR P1 �M aR P0�, thereby computing the value

of the left derived functor of k aA ��� on M .

To construct the desired commutative Koszul duality functor, we will need to derive
the tangent space functor defined on the category of augmented commutative k-algebras.
Classical homological algebra allows us to (left) derive additive functors F � A � B from
an abelian category A with enough projectives to an abelian category B. However:

Exercise 7.2. Show that the category of commutative k-algebras is not abelian.

To overcome this difficulty, we make use Quillen’s theory of homotopical algebra, cf.
[Qui06]. Its basic idea is straightforward: in homological algebra, we replaced modules
by connective chain complexes (or equivalently simplicial modules) to left derive func-
tors defined on modules; in homotopical algebra, we replace commutative algebras by
simplicial commutative algebras in order to derive functors defined on algebras.
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7.4. Animated rings. For the rest of this lecture, we work over a commutative ring A.
The ª-category SCRA of simplicial commutative A-algebras can be defined in two ways:

(1) We can either equip the category of simplicial objects in CRA, the category of
commutative A-algebras, with a suitable model structure and then pass to the
underlying ª-category;

(2) Or we can freely adjoin filtered colimits and geometric realisations to the category
PolyA of polynomial A-algebras A�X1, . . . ,Xn�.

Today, we will follow the second approach, as it will give as an excuse to learn an
important ª-categorical technique known (as of recently) as animation.

In Lecture 5, we already encountered two ways of formally adjoining certain colimits:

(1) If C is a small ª-category, the presheaf ª-category P�C� � Fun�Cop,S� freely adds
all colimits.

(2) If C admits finite limits, the ª-category Ind�C� � Funlex�Cop,S� of finite-limit-
preserving presheaves freely adds filtered colimits to C.

We will now introduce a third construction in this vein, which simultaneously adjoins
filtered colimits and geometric realisations:

Definition 7.3 (Animation). Given a small ª-category C with finite coproducts, we let

PΣ�C� ` P�C�
be the full subcategory spanned by all functors Cop � S which preserve finite products.

Recall from Definition 2.35 in Lecture 2 that an object is called compact if mapping out
of it preserves filtered colimits. There is an analogous notion for geometric realisations:

Definition 7.4 (Projective object). Let C be an ª-category with geometric realisations.
An object X > C is called projective if the functor

MapC�X,�� � C � S

preserves geometric realisations.

Animation has the following universal property (cf. [Lur09, Theorem 5.5.8.15]):

Proposition 7.5 (Universal property of animation). Let C be a small ª-category and let
D be any ª-category containing filtered colimits and geometric realisations.

Restriction along the Yoneda embedding induces an equivalence

FunΣ�PΣ�C�,D� �

ÐÐ� Fun�C,D�
between the ª-category Fun�C,D� of all functors C Ð� D and the full subcategory
FunΣ�PΣ�C�,D� ` Fun�PΣ�C�,D� spanned by those functors PΣ�C� Ð� D which preserve
filtered colimits and geometric realisations.

Notation 7.6 (Nonabelian left derived functors). Given a functor f � C Ð� D in the above
situation, we call the corresponding functor Lf � PΣ�C� Ð� D the nonabelian left derived
functor of f .
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This universal property in Proposition 7.5 is very helpful in applications, as it allows us
to easily construct functors out of categories of the form PΣ�C�. It is therefore important
to identify when a given ª-category takes this special form.

We state the following key criterion (cf. [Lur09, Proposition 5.5.8.22]):

Proposition 7.7. Let f � C � D be a functor from a small ª-category C with finite
coproducts to an ª-category D with filtered colimits and geometric realisations.

Then Lf � PΣ�C�Ð� D is an equivalence if and only if the following conditions hold:

(1) The functor f is fully faithful;
(2) The essential image of f consists of compact projective objects of D
(3) The essential image of f generates D under filtered colimits and geometric realisations.

Remark 7.8. If only conditions (1) and (2) hold, then Lf is automatically fully faithful.

Exercise 7.9. Write VectωA for the ordinary category of finite free (left) A-modules.
Construct an equivalence between PΣ�VectωA� and the full subcategory ModA,C0 ` ModA
spanned by all connective chain complexes over A.

We will now use animation to define simplicial commutative algebras.

Definition 7.10. Write PolyA ` CRA be the full subcategory spanned by all commutative
A-algebras of the form

A�x1, . . . , xn�.
The ª-category of simplicial commutative A-algebras (or animated A-algebras) is defined as

SCRA �� PΣ�PolyA�
Exercise 7.11.

a) Define a model structure on the category SCRA of simplicial objects in commutative
A-algebras whose weak equivalences are weak equivalences of underlying simplicial sets
and whose fibrations are levelwise surjections.

b) Prove that the underlying ª-category of SCRA is equivalent to SCRA �� PΣ�PolyA�.
Exercise 7.12. Let k be a field and write cdgak for the category of commutative differ-
ential graded k-algebras.

(1) Show that if char�k� � 0, the category cdgak admits a model structure whose
weak equivalences are given by quasi-isomorphisms and whose fibrations are given
by levelwise surjections. Writing cdgak for the underlying ª-category of cdgak,
show that SCRk is equivalent to full subcategory cdgak,C0 ` cdgak spanned by all
connective objects.

(2) Show that if char�k� � p, the category cdgak does not admit a model structure
whose weak equivalences are given by quasi-isomorphisms and whose fibrations are
given by levelwise surjections.

Let A > CR again be a general commutative ring. We need two variants of Definition 7.10:
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Variant 7.13. Let PolyaugA be the category of augmented commutative A-algebras of the form

A�x1, . . . , xn�� A

with morphisms given by those maps of A-algebras which commute with the augmentation.
The ª-category of augmented simplicial commutative A-algebras (or animated nonunital
A-algebras) is then defined as SCRaug

A �� PΣ�PolyaugA �.
Variant 7.14. Let PolynuA be the category of nonunital commutative A-algebras of the form

IA�x1, . . . , xn� � ker�A�x1, . . . , xn�� A�.
The ª-category of nonunital simplicial commutative A-algebras (or animated nonunital
A-algebras) is defined as SCRnu

A �� PΣ�PolynuA �.
Exercise 7.15.

(1) Show that the augmentation ideal functor I � SCRaug
A � SCRnu

A is an equivalence.
(2) Define the forgetful functor forgetnu � SCRnu

A �ModA,C0 and show that it is part of a
monadic adjunction freenu Ú forgetnu. Write LSymnu

A for the corresponding monad.
(3) Show that the underlying functor of LSymnu

A is given by >nA0LSymn
A, where

LSymn
A is the left derived functor of the nth symmetric power functor M (Man

Σn
.

7.5. The cotangent fibre. The formalism of nonabelian left derived functors will allow
us to construct the desired Koszul duality functor for commutative rings.

To begin with, recall that in Step 1) of Section 7.2, the augmentation A� k gave rise to
the restriction-of-scalars functor Modk �ModA, whose left adjoint k aL

A ��� was the main
ingredient for contravariant Koszul duality for modules.

In the commutative setting, we note that, given some A > CR, the monad

LSymnu
� LSymnu

A �?
nA0

LSymn
A

parametrising nonunital simplicial commutative A-algebras is naturally augmented over
the identity monad 1 � LSym1

A, and the restriction along LSymnu
A � 1 defines a functor

sqznu �ModA,C0 � SCRnu
A .

Exercise 7.16.

a) Use the equivalence ModA,C0 � PΣ�VectωA� to construct the (nonunital) trivial square-
zero algebra functor sqznu rigorously.

b) Show that sqznu admits a left adjoint cotnu and construct an equivalence cotnu Xfreenu � id,
where freenu �ModA,C0 � SCRnu

A is left adjoint to the forgetful functor forgetnu.

Definition 7.17 (Cotangent fibre). The cotangent fibre of an augmented simplicial com-
mutative A-algebra R > SCRaug

A is given by

cot�R� �� cotnu�IR�,
where I is the augmentation ideal functor from Exercise 7.15.
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Today and next week, we will review several methods for computing cotangent fibres.

The most general such technique uses the so-called bar construction. Indeed, given
an augmented simplicial commutative A-algebra R > SCRaug

A with augmentation ideal
IR > SCRnu

A , we consider the following simplicial object in SCRnu
A :

BarY�LSymnu,LSymnu, IR� � � . . .
//

//
// LSymnu �LSymnu�IR��oo

oo //
// LSymnu�IR�oo �

Exercise 7.18. Use the structure map LSymnu�IR� � IR, the monadic multiplication
LSymnu

XLSymnu
� LSymnu, and the monadic unit id� LSymnu to define all morphisms

in the above simplicial diagram.

Using the structure map of IR, we can extend BarY�LSymnu,LSymnu, IR� to an aug-
mented simplicial object in the ª-category SCRnu

A .

Proposition 7.19. The induced map

SBarY�LSymnu,LSymnu, IR�S �� colim∆op BarY�LSymnu,LSymnu, IR� �

ÐÐÐ� IR

is an equivalence.

Proof. By Exercise 7.15 (3), the monad LSymnu preserves geometric realisations. By
[Lur07, Corollary 2.3.7], this implies that the forgetful functor forgetnu detects geometric
realisations, so it suffices to show that SBarY�LSymnu,LSymnu, IR�S � IR is a colimit
diagram in chain complexes. But in ModA, this augmented simplicial diagram admits an
extra degeneracy, which implies that it is a colimit diagram. □

Corollary 7.20. Given an augmented simplicial commutative ring R > SCRaug
A , there is

an equivalence
cot�R� � SBarY�id,LSymnu, IR�S

Proof. As cot is a left adjoint and therefore preserves colimits, this follows immediately
from Exercise 7.16 and Proposition 7.19. □
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