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Lecture 8: Koszul Duality for Commutative Algebras, Part II

Last lecture, we started setting up Koszul duality for augmented commutative k-algebras.

Our plan was to generalise the contravariant Koszul duality functor

M >ModA ( RHomA�M,k� >ModD�1��A�

for (left) modules over an associative k-algebra A. This functor can be built in four steps:

(1) Take the left derived tensor product to obtain a colimit-preserving functor

k aL
A ��� �ModA Ð�Modk.

Its right adjoint is given by restriction of scalars along the augmentation A� k;
(2) Postcompose with k-linear duality ���- to obtain a limit-preserving functor

ModopA Ð�Modk

M ( �k aL
A M�- � RHomA�M,k�;

(3) Construct a differential graded k-algebra D�1��A� � RHomA�k, k�;
(4) Lift RHomA��, k� �ModopA �Modk to a refined functor

ModD�1��A�

ModopA >

>

Modk.
∨

To construct Koszul duality in the commutative setting, we make the following substitutes:

Associative algebra k // Identity monad 1 � LSym1
k on Modk,C0

Augmented algebra A // Augmented monad LSymnu
k on Modk,C0

ª-category ModA of

chain complexes over A
//

ª-category SCRnu
k of nonunital

simplicial commutative k-algebras

Restriction of scalars functor

Modk �ModA

defined via A� k

//

Trivial algebra functor

sqznu �Modk,C0 � SCRnu
k

defined via LSymnu
k � 1

Extension of scalars functor

k aL
A ��� �ModA Ð�Modk

//
Cotangent fibre functor

cotnu � SCRnu
k �Modk,C0
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Using the constructions introduced in Section 7.5 of last lecture, we can generalise step
(1) and (2) above to the setting of nonunital simplicial commutative k-algebras as follows:

(1’) Take the colimit-preserving cotangent fibre functor

cotnu � SCRnu
k ÐÐ�Modk,C0.

Its right adjoint is the trivial algebra functor sqznu �Modk,C0 � SCRnu
k ;

(2’) Postcompose with k-linear duality ���- to obtain a limit-preserving functor

�SCRnu
k �op Ð�Modk

R ( cot�R�-
The goal of today’s lecture is to also generalise steps �3� and �4� to the commutative setting.

8.1. The naive Koszul dual monad. In step �3� above, we defined the Koszul dual

of an augmented associative algebra A as D�1��A� � RHomA�k, k�. Our next goal is to
construct a well-behaved Koszul dual monad of the augmented monad LSymnu

k , which
encodes nonunital simplicial commutative k-algebras.

To this end, we begin by observing that the functor

�SCRnu
k �op Ð�Modk,B0

R ( cotnu�R�-
preserves limits; its right adjoint is given by the assignment V ( sqznu�V -�.

By abstract nonsense, this adjunction gives rise to a canonical monad

T naive��� � �cotnu�sqznu����-���-
on the full subcategory Modk,B0 `Modk of coconnective chain complexes over k.

This monad T naive suffers from two defects:

a) It is only defined on coconnective complexes, so will not recover the differential graded
Lie algebra monad in characteristic 0;

b) It does not preserve sifted colimits, which, as we will see later, is a problem for appli-
cations in deformation theory.

To circumvent these obstacles, we will replace T naive by a more well-behaved monad
Lieπk , which is obtained by left Kan extending a certain restriction of T naive. Making this
idea precise will be the goal of the rest of this lecture, and will require several preliminaries.

8.2. Tangent fibres via partition complexes. We start by giving a concrete expression
for cotangent fibres of trivial square-zero extensions in terms of the following simplicial sets:

Definition 8.1 (Doubly suspended partition complexes). For each n C 0, we define a
simplicial Σn-set P �n� by specifying its set of k-simplices as

P �n�k � � �0̂ � σ0 B σ1 B . . . B σk � 1̂� W σi are partitions of �1, . . . , n� ¡ O ���,
where 0̂ is the discrete partition and 1̂ is the indiscrete partition of the set �1, . . . , n�.
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Degeneracy maps insert repeated partitions into chains and fix �. Face maps delete
partitions from chains whenever this yields a “legal” chain starting in 0̂ and ending in 1̂;
otherwise, they map to �.

Let us fix a simplicial k-vector space VY with associated chain complex SVYS > Modk,C0.
As cot preserves geometric realisations, we obtain, by Corollary 7.20 of the last lecture,
the following equivalence:

cotnu�sqznu�SVYS�� � SBarY�id,LSymnu, SVYS�S
� WW . . .

Ð�
�
Ð�
�
Ð�
�
Ð�

?
mC1

�?
nC1

�VY�anΣn
�amΣm

Ð�
�
Ð�
�
Ð�

?
nC1

�VY�anΣn

Ð�
�
Ð�

VY WW .
For �X,�� a pointed set, let k�X� be the free k-module on X subject to the relation 0 � �.

We will now relate the simplicial sets P �n�Y, defined using partitions, to the cotangent
fibre of trivial square-zero extensions:

Exercise 8.2. Let VY be a simplicial k-vector space with associated chain complex V � SVYS.
(1) Expand symmetric powers binomially to prove that cotnu�sqznu�V �� is equivalent

to the realisation of the following bisimplicial set:

WW . . .
Ð�
�
Ð�
�
Ð�
�
Ð�

?
nC1

k�P �n�2�a
Σn

�VY�an Ð�
�
Ð�
�
Ð�

?
nC1

k�P �n�1�a
Σn

�VY�an Ð�
�
Ð� ?

nC1

k�P �n�0�a
Σn

�VY�an WW,
(2) Deduce the following equivalence:

cotnu�sqznu�V �� �?
nC1

ÇCY�SP �n�S, k� a
Σn

�VY�an.
Here ÇCY�SP �n�S, k� are the k-valued chains on the geometric realisation SP �n�S of P �n�.

(3) Write Modftk,C0 ` Modk for the full subcategory spanned by all connective chain

complexes with dim�πi�V �� @ª.

Using the above formula, or otherwise, show that V > Modftk,C0 is coconnective

and of finite type, then cotnu�sqznu�V �� >Modftk,C0 shares the same property.

8.3. The partition Lie algebra monad. We return to our goal of replacing the naive
Koszul dual monad T naive on Modk,B0 by a more well-behaved monad defined on Modk –
We briefly outline our construction:

Construction 1 (Partition Lie algebra monad).

a) First, we observe that Exercise 8.2(3) implies that T naive preserves the full subcat-

egory Modftk,B0 ` Modk of all chain complexes V which are coconnective and satisfy

dim�πi�V �� @ª for all i. Hence T naiveSModftk,B0
acquires the structure of a monad.

Exercise 8.2(2) gives a quite explicit description of this restriction T SModftk,B0
. In-

deed, if V Y is a cosimplicial k-module whose associated chain complex Tot�V Y� is
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of finite type, then

T SModftk,B0
�Tot�V Y�� �?

n
Tot � ÇCY�SP �n�YS, k�a �V Y�an�Σn

.

Here ÇCY�SP �n�YS, k� are the k-valued cosimplices of SP �n�YS, the functor ���Σn takes
strict fixed points, and the tensor product is computed in cosimplicial k-modules.

b) We then check that the functor T SModftk,B0
Y is right complete, which means that the canonical map

colimn T �τB�nV � �

Ð� T �V �
is an equivalence for all V >Modftk,B0;

Y preserves finite coconnective geometric realisations, which means that if VY is a sim-
plicial object in Modftk,B0 which is m-skeletal (for some m) and with SVYS >Modftk,B0,

then the canonical map ST �VY�S �

Ð� T �SVYS� is an equivalence.

c) Let us write End
Modftk,B0
Σ ` End�Modk� for the full subcategory of sifted-colimit-preserving

endofuctors of Modk which preserve Modftk,B0, and let

End
�

σ�Modftk,B0� ` End�Modftk,B0�
be the full subcategory of right complete endofunctors of Modftk,B0 which preserve fi-

nite coconnective geometric realisations. We prove in [BM19, Corollary 3.17] that the
following monoidal restriction functor is an equivalence:

End
Modftk,B0
Σ �Modk� �

Ð� End
�

σ�Modftk,B0�.
d) Using this equivalence, we extend the monad T SModftk,B0

from part (a) to obtain the monad

Lieπk on Modk. This monad Lieπk preserves filtered colimits and geometric realisations,
and if V Y is a cosimplicial K-module with associated chain complex Tot�V Y�, then

Lieπk�Tot�V Y�� �?
n
Tot � ÇCY�ΣSΠnSl,K�a �V Y�an�Σn

.

Definition 8.3. The ª-category of partition Lie algebras is the ª-category of algebras
over the monad Lieπk . We will denote this ª-category by AlgLieπk .

We have generalised step �3� from the very beginning of this lecture:

(3’) Construct the monad Lieπk from the augmented monad LSym�.

To generalise step �4�, we want to construct a partition Lie algebra for any augmented
simplicial commutative k-algebra. To this end, we will use the category Polyaugk of aug-
mented commutative k-algebras of the form

k�x1, . . . , xn�� k

from Variant 7.13 of last lecture. By [Lur04, Proposition 3.2.14], we know that cotaug�A�-
belongs to Modftk,B0 for any A > Polyaugk . Hence the tautological T naive-algebra structure
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on cotaug�A�- � cotnu�IA�- equips this chain complex with a Lieπk -algebra structure. We
therefore obtain a functor Polyaugk � AlgopLieπk

, which allows us to define:

(4’) The Koszul duality functor

D � SCRaug
k � PΣ�Polyaugk �Ð� AlgopLieπk

is the unique sifted-colimit-preserving extension of the above functor Polyaugk � AlgopLieπk
.

8.4. Partition Lie algebras in characteristic zero. In this section, we will show that
partition Lie algebras reduce to the following classical notion in characteristic zero:

Definition 8.4 (Differential graded Lie algebras). Let k be a field of characteristic zero.
A differential graded Lie algebra (‘DGLA’) over k is a complex

. . .� g2 � g1 � g0 � g�1 � g�2 � . . .

with a bilinear map ��,�� � gi � gj � gi�j satisfying the following rules:

(Antisymmetry) �x, y� � ��1�SxSSyS�1�y, x�

(Jacobi identity) ��1�SxSSzS��x, y�, z� � ��1�SzSSyS��z, x�, y� � ��1�SySSxS��y, z�, x� � 0

(Leibniz rule) d��x, y�� � �dx, y� � ��1�SxS�x, dy�.

The category dglak of differential graded Lie algebras admits the structure of a left
proper combinatorial model category (c.f. e.g. [Lur11, Proposition 2.1.10]) whose weak
equivalences are the quasi-isomorphisms and whose fibrations are the levelwise surjections.

We write dglak for the underlying ª-category of dglak.

Recall from Exercise 7.12 of last lecture that if k is a field of characteristic 0, the category
cdgak of commutative differential graded k algebras carries a model structure whose weak
equivalences are the quasi-isomorphisms and whose fibrations are the levelwise surjections.
Write cdgak for the underlying ª-category of cdgak.

We will also need the model category cdgaaugk � �cdgak�~k of augmented commutative

differential graded k-algebras and its underlying ª-category cdgaaugk .

To compare differential graded Lie algebras with partition Lie algebras, we will rely on
the following well-known construction (cf. e.g. [Lur11, Construction 2.2.13]):

Construction 2 (Chevalley–Eilenberg complex). Given a differential graded Lie algebra
g > dglak, consider its homological Chevalley–Eilenberg complex CE��g� � �Sym��g�1��,D�.
Here Sym��g�1�� is the sum of all symmetric powers of the underlying graded vector space
of g�1�. The differential D sends the product of homogeneous elements xi in degree pi to

D�x1 . . . xn� � Q
1BiBn

��1�p1�...�pi�1x1 . . . xi�1dxixi�1 . . . xn
� Q

1Bi@jBn

��1�pi�pi�1�...�pj�1�x1 . . . xi�1xi�1 . . . xj�1�xi, xj�xj�1 . . . xn.
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Write CE��g� for the linear dual of CE��g�, and define a graded-commutative multipli-
cation on CE��g� by declaring the product of f > CEp�g� and g > CEq�g� to be the element
fg > CEn�m�g� satisfying

�fg��x1 . . . xn� � Q
S,T

ϵ�S,T �f�xi1 . . . xim�g�xj1 . . . xjn�m�.
Here xi > gri are homogeneous elements, the sum is indexed by disjoint sets S � �i1, . . . , im�,
T � �j1, . . . , jn�m� with S 8 T � �1, . . . , n� and ri1 � . . . � rrm � p, and the sign ϵ�S,T � is
given by ϵ�S,T � �Li>S,j>T,i@j��1�rirj .
Remark 8.5. Let Ug be the universal enveloping algebra of g. There are weak equivalences
CE��g� � k aL

Ug k and CE��g� � RHomUg�k, k� (cf. [Lur11, Remarks 2.2.11 and 2.2.14 ]).

Noting that CE��g� is naturally augmented, the above construction defines a functor

CE� � dlgaopk � cdgaaugk .

Inverting weak equivalences, we obtain an induced functor

dglaopk � cdgaaugk

from the ª-category of differential graded Lie algebras to the ª-category of augmented
commutative differential graded k-algebras. This functor preserves limits and therefore
admits a left adjoint

Ddg
� cdgaaugk � dglaopk

These ingredients allow us to prove:

Proposition 8.6. Let k be a field of characteristic zero. The composite

AlgLieπk Ð�Modk
Σ�1

ÐÐ�Modk

of the forgetful functor and the shift functor lifts to a canonical equivalence

AlgLieπk
�

ÐÐ� dglak

along the forgetful functor dglak �Modk.

Proof. We consider the following pair of adjunctions:

cdgaaugk

Ddg

ÐÐÐÐÐÐÐ�

�
�ÐÐÐÐÐÐÐ

CE�

dglaopk

forgetdgla
ÐÐÐÐÐÐÐÐ�

�
�ÐÐÐÐÐÐÐÐ

freedgla

Modopk

By a straightforward computation (cf. [Lur11, Proposition 2.2.15]), we have

CEdg�freedgla�V �� � k `Σ�1V -
� sqzaug�Σ�1V -�.

Taking adjoints, we obtain an equivalence

forgetdgla�Ddg�A�� � Σ�1 cotaug�A�-.
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Hence the composite of the above adjunctions is

cdgaaugk

Σ�1 cot���-

ÐÐÐÐÐÐÐÐÐÐÐ�

�
�ÐÐÐÐÐÐÐÐÐÐÐÐÐ

sqzaug��Σ��-�

Modopk

Inserting the unit id�Ddg
XCE�, we obtain a map of monads

Liedgk ��� � forgetdgla Xfreedgla���ÐÐÐ� Σ�1�cotaug�sqzaug�Σ��-�-� � Σ�1T naiveΣ���
Observe that Liedgk preserves the full subcategory Modftk,B�1 `Modk of ��1�-coconnective

chain complexes V with dim�πi�V �� @ª for all i, as Lie brackets decrease degree.
By (a variant of) [Lur07, Lemma 2.3.5], the unit map g�Ddg�CE��g�� is an equivalence

for all differential graded Lie algebras g with underlying chain complex in Modftk,B�1. Hence

the above transformation of monads Liedgk ���Ð� Σ�1T naiveΣ��� restricts to an equivalence

on Modftk,B�1. We obtain an equivalence of monads

�ΣLiedgk Σ�1�SModftk,B0
� Lieπk SModftk,B0

As ΣLiedgk Σ�1 preserves sifted colimits, Construction 1(3) gives an equivalence of monads

ΣLiedgk Σ�1
� Lieπk , which implies the claim. □
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