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Lecture 9: Koszul duality for Formal moduli problems

In the last two lectures, we set up the Koszul duality functor

D � SCRaug
k Ð� AlgopLieπk

, R ( cot�R�-
from augmented simplicial commutative k-algebras to partition Lie algebras; we introduced
these new objects in Definition 8.3 of last lecture. In Proposition 8.6, we then showed that
in characteristic zero, partition Lie algebras are equivalent to (shifted) differential graded
Lie algebras.

Differential graded Lie algebras have numerous applications, ranging from deformation
theory in geometry to rational homotopy theory and configuration space theory in topology.
Today, we will outline how partition Lie algebras relate to deformations in characteristic p.

9.1. A reminder on Kodaira–Spencer theory. To begin with, let us review the role
of differential graded Lie algebras in deformation theory over the complex numbers and
introduce several key definitions along the way.

Let Z be a smooth and proper complex algebraic variety. We fix a first order deformationÇZ of Z, i.e. a pullback square

Z ÇZ

Spec�C� Spec�C�ϵ�~ϵ2�
where the right vertical map is smooth and proper. The underlying space of ÇZ is simply Z,
and all interesting information is concentrated in the deformation of the structure sheaf OZ .

To capture this geometric situation algebraically, we pick a cover Z by open affines
Spec�Bi� with open affine intersections Spec�Bi� 9 Spec�Bj� � Spec�Bij�. On each of those
affines, we can trivialise our first order deformation, and comparing trivialisations on over-
laps gives rise to derivations Bij � Bij . i.e. sections in Γ�Spec�Bij�, TZ�. These sections
in turn glue to an element in xZ̃ > H1�Z,TZ�, which is in fact independent of the choices
we made. Kodaira–Spencer theory [KS58] then asserts that the assignment

ÇZ ( xÇZ

defines a bijection between first order deformations of Z and elements of H1�Z,TZ�.
We can now ask:

Question 1. Does a given first order deformation ÇZ extend to a higher order deformation?

To formulate an algebraic answer, we use the commutator of vector fields to define a graded
Lie algebra structure on H��Z,TZ�. Then ÇZ extends to C�ϵ�~ϵ3 if and only if �xÇZ , xÇZ� � 0.
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In fact, H��Z,TZ� is the homology of a differential graded Lie algebra gZ , i.e. a chain
complex with a bilinear bracket satisfying the Jacobi identity, antisymmetry, and the Leib-
niz rule, all in a graded sense. Concretely, gZ is given by the Dolbeault complex

gZ � �A0,0�TZ�� A0,1�TZ�� A0,2�TZ�� . . .� .
Miraculously, this differential graded Lie algebra in fact controls all infinitesimal defor-

mations of Z. Indeed, if A is a local Artin C-algebra with maximal ideal mA, one can
construct a bijection

� Deformations ÇZ of Z

over Spec�A� ¡�
isomorphism

restricting to idZ

� � Maurer–Cartan elements

x > �gZ��1 amA : dx � 1
2�x,x� � 0

¡�
gauge

equivalence

.

Here x, y > �gZ��1amA are called gauge equivalent if there is some a > �gZ�0amA satisfying

y � x �
ª

Q
n�0

�a,��Xn
�n � 1�!��a, x� � da�.

9.2. Towards derived algebraic geometry. There are numerous other algebro-geometric
objects Y over C whose infinitesimal deformations are governed by some differential graded
Lie algebra gY , for inxtance subschemes, vector bundles, and representations.

It is natural to ask:

Question 2. Given an algebro-geometric object Y over C, how can we construct the
differential graded Lie algebra gY controlling its infinitesimal deformations?

Unfortunately, many non-equivalent differential graded Lie algebras can control defor-
mations of the same object, and it is not possible to pick a preferred one. We give a
well-known example of this phenomenon, cf. e.g. [Toë14]:

Example 9.1. Given a closed immersion of smooth complex varieties

Z0 ` Z,

the infinitesimal deformations of Z0 inside Z are governed by two differential graded Lie
algebras: one interprets Z0 as a point in the Hilbert scheme of Z, the other interprets it
as a point in the Quot scheme of OZ .

In a visionary letter [Dri] from 1988, Drinfel’d suggested that this issue would disappear
once we also took derived infinitesimal deformations into account, i.e. deformations over
simplicial local Artin C-algebras

A � �. . . Ð��Ð�
�
Ð�

A1
Ð�
�
Ð�

A0� .
Here A > SCRaug

C a local Artin if dim�π��A�� @ª and π0�A� is local (with residue field C).
Derived infinitesimal deformation functors are most naturally axiomatised using the

language of ª-categories. These are generalisations of categories where the collection of
maps between any two objects forms a space rather than merely a set; we refer to Lecture
2 for further details. One then defines:
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Definition 9.2. A formal moduli problem over C is a functor X � SCRart
C � S from the

ª-category SCRart
C of simplicial local Artin C-algebras to the ª-category S of spaces

satisfying:

(1) Normalisation: The space X�C� is contractible.
(2) Gluing: Applying X to a pullback square

ÇA
��

// A�

��

A // A��

with π0�A��� π0�A���, π0�A�� π0�A��� surjective gives another pullback square.

We will write ModuliC ` Fun�SCRart
C ,S� for the ª-category of formal moduli problems.

Example 9.3. Given a smooth and proper complex variety Z as above, we can enhance
its classical deformation functor to a formal moduli problem DefZ � SCR

art
C � S by sending

a simplicial local Artin C-algebra A to the space of pullback diagrams

Z ÇZ

Spec�C� Spec�A�
,

where Z̃ is a smooth and proper derived scheme over Spec�A�, cf. [Lur16, Section 19.4].

9.3. The Lurie–Pridham theorem. We can now outline the relation between derived
infinitesimal deformation functors, i.e. formal moduli problems, and differential graded
Lie algebras over C.

Given a differential graded Lie algebra g and a simplicial local Artin C-algebra A
with maximal ideal mA, Goldman-Millson [GM88] and Hinich [Hin01] constructed a space
of Maurer–Cartan elements

MC�mA a g�,
which is equivalent to the mapping space

Mapdglak�Ddg�A�,g�.
Varying A, we obtain a functor

Ψ � dglaC �ModuliC,

g(Mapdglak�Ddg���,g�
from differential graded Lie algebras to formal moduli problems. The following result by
Lurie [Lur10] and Pridham [Pri10], which generalises earlier work of many others including
Kontsevich–Soibelman [KS02] and Manetti [Man09], asserts that differential graded Lie
algebras control derived infinitesimal deformations:
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Theorem 9.4 (Lurie, Pridham). The functor

Ψ � dglaC �ModuliC, g(Mapdglak�Ddg���,g�
defines an equivalence between theª-categories of formal moduli problems and differential
graded Lie algebras over C.

Given a formal moduli problem X > ModuliC, it is easy to describe the underlying
spectrum of the associated differential graded Lie algebra. Up to a shift, it is given by the
tangent fibre TX of X, which is obtained by assembling the sequence of spaces

�TX�n ��X�C`C�n��
and the equivalences Ω�TX�n�1 � �TX�n into a spectrum. Here C`C�n� denotes the trivial
square-zero extension of C by a class in homological degree n.

Exercise 9.5. Describe the tangent spectrum for (pro-)representable formal moduli prob-
lems using the tangent fibre formalism.

Remark 9.6. The Lurie–Pridham theorem holds over any field of characteristic zero.

9.4. Deformation theory in characteristic p. Many key players in number theory,
arithmetic geometry, and representation theory are not defined over C, but over Fp or Fp,
and it is vital to understand how they deform. Unfortunately, differential graded Lie
algebras are ill-behaved in this context, and no longer classify formal moduli problems. In
fact, they do not even admit a model structure satisfying the most basic desiderata:

Exercise 9.7. Show that if k is a field of characteristic p, the category dglak of differential
graded Lie algebras over k does not admit a model structure whose weak equivalences are
given by quasi-isomorphisms and whose fibrations are given by levelwise surjections.

To resolve this problem, we must use partition Lie algebras, which we introduced in the
preceeding lecture. They can be defined in two equivalent ways:

(1) Abstractly viaª-categories, cf. Section 8.4 from last lecture, [BM19, Construction 1.9].

The (contravariant) tangent fibre functor A ( cot�A�- � �k aA LA~k�- from aug-
mented simplicial commutative k-algebras to chain complexes over k is part of an
adjunction. The associated monad T on Modk behaves badly, but we can use
Goodwillie’s functor calculus to approximate T by a monad Lieπk which preserves
filtered colimits and geometric realisations.

If V Y is a cosimplicial k-module with associated chain complex Tot�V Y�, then
Lieπk�Tot�V Y�� �?

n
Tot � ÇCY�ΣSΠnSl, k�a �V Y�an�Σn

.

Here ΣSΠnSl is a simplicial Σn-complex known as the nth (doubly suspended)
partition complex. For d A 0, the nondegenerate d-simplices of ΣSΠnSl correspond
to chains of increasingly coarse partitions �0̂ � x0 @ x1 @ . . . @ xt � 1̂� of �1, . . . n�.

Partition Lie algebras are then defined as algebras over the monad Lieπk .
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(2) Concretely via model categories, cf. [BCN21, Construction 5.34].

We can construct an ordinary category whose objects are cosimplicial-simplicial
k-modules with n-ary operations indexed by nested chains of partitions of �1, . . . , n�,
that is, by pairs

�σ,S�
where σ � �0̂ � x0 @ x1 @ . . . @ xt � 1̂� is a chain of increasingly coarse partitions of�1, . . . , n� and S � �S0 b . . . b Sd� is a chain of increasing subsets of Sd � �0, . . . , t�.
There are also “divided power operations”, and all these satisfy various conditions.

We can then equip this ordinary category with a natural model structure, and
after inverting weak equivalences, we obtain theª-category of partition Lie algebras.

Partition Lie algebras satisfy the following gold standard property (cf. [BM19, Theorem
1.11]) which singles them out as the correct analogues of differential graded Lie algebras
in characteristic p:

Theorem 9.8. Given a field k of arbitrary characteristic, the functor

AlgLieπk �Modulik, g(Mapdglak�Ddg���,g�
defines an equivalence between theª-categories of partition Lie algebras and formal moduli
problems over k.

Hence partition Lie algebras completely classify derived infinitesimal deformation functors,
and thereby provide a helpful tool in deformation theory.

The above generalisation of the Lurie–Pridham theorem relies on the following affine
statement, which asserts that for suitably nice R > SCRaug

k , the complex cot�R�- with its
partition Lie algebra structure remembers the structure of R:

Theorem 9.9 ([BM19]). The functor D � SCRaug
k Ð� AlgopLieπk

, R ( cot�R�- defined in

Section 8.3 of last lecture restricts to an equivalence

SCRcN
k � AlgLieπk �Modftk,B0�op,

between

(1) the full subcategory

SCRcN
k ` SCRaug

k

spanned by all R for with π0�R� is a complete local Noetherian ring and πi�R� is
a finitely generated π0�R�-module for all i.

(2) the (opposite of the) full subcategory

AlgLieπk �Modftk,B0� ` AlgLieπk

spanned by all partition Lie algebras g whose underlying chain complex is cocon-
nective and satisfies dim�πi�g�� @ª for all i.
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