Modular representations of GL_n and tensor products of Galois representations

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen

I.C.T.S. - T.I.F.R.

December 1, 2020

2 Statement of the main conjecture

2 Statement of the main conjecture

 \bigcirc Some results for GL_2

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

• • • • • • •

Throughout the talk:

• *p* = prime number

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Throughout the talk:

- *p* = prime number
- $\mathbb{F} =$ "big" finite field of characteristic *p* (coefficient field)

★ 3 → < 3</p>

Throughout the talk:

- *p* = prime number
- $\mathbb{F} =$ "big" finite field of characteristic *p* (coefficient field)
- $F^+ =$ totally real number field

★ 3 → < 3</p>

- *p* = prime number
- $\mathbb{F} =$ "big" finite field of characteristic *p* (coefficient field)
- $F^+ =$ totally real number field
- F = totally imag. quad. ext. of F^+ , any w|p in F^+ splits in F

.

- *p* = prime number
- $\mathbb{F} =$ "big" finite field of characteristic *p* (coefficient field)
- $F^+ =$ totally real number field
- F =totally imag. quad. ext. of F^+ , any w|p in F^+ splits in F

•
$$G/F^+ =$$
 unitary group s. t.
$$\begin{cases} G \times_{F^+} F = \operatorname{GL}_n & (n \ge 2) \\ G(F_w^+) \cong U_n(\mathbb{R}) & \forall w \mid \infty \end{cases}$$

.

- *p* = prime number
- $\mathbb{F} =$ "big" finite field of characteristic *p* (coefficient field)
- $F^+ =$ totally real number field
- F =totally imag. quad. ext. of F^+ , any w|p in F^+ splits in F
- $G/F^+ =$ unitary group s. t. $\begin{cases}
 G \times_{F^+} F = \operatorname{GL}_n & (n \ge 2) \\
 G(F_w^+) \cong U_n(\mathbb{R}) & \forall w \mid \infty \\
 \text{(in particular } G(F_w^+) \cong \operatorname{GL}_n(F_w), & w \mid p)
 \end{cases}$

- *p* = prime number
- $\mathbb{F} =$ "big" finite field of characteristic *p* (coefficient field)
- $F^+ =$ totally real number field
- $F = \text{totally imag. quad. ext. of } F^+$, any w|p in F^+ splits in F
- G/F⁺ = unitary group s. t. {
 G ×_{F⁺} F = GL_n (n ≥ 2) G(F⁺_w) ≅ U_n(ℝ) ∀ w|∞ (in particular G(F⁺_w) ≅ GL_n(F_w), w|p)
 v|p = fixed place of F

• • = • • = •

- *p* = prime number
- $\mathbb{F} =$ "big" finite field of characteristic *p* (coefficient field)
- $F^+ =$ totally real number field
- F =totally imag. quad. ext. of F^+ , any w|p in F^+ splits in F
- $G/F^+ =$ unitary group s. t. $\begin{cases}
 G \times_{F^+} F = \operatorname{GL}_n & (n \ge 2) \\
 G(F_w^+) \cong U_n(\mathbb{R}) & \forall w \mid \infty \\
 \text{(in particular } G(F_w^+) \cong \operatorname{GL}_n(F_w), & w \mid p)
 \end{cases}$

• $\omega = \mod p$ cyclo char. of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ or $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$.

• • = • • = •

- *p* = prime number
- $\mathbb{F} =$ "big" finite field of characteristic *p* (coefficient field)
- F⁺ = totally real number field
- F =totally imag. quad. ext. of F^+ , any w|p in F^+ splits in F
- $G/F^+ =$ unitary group s. t. $\begin{cases}
 G \times_{F^+} F = \operatorname{GL}_n & (n \ge 2) \\
 G(F_w^+) \cong U_n(\mathbb{R}) & \forall w \mid \infty \\
 \text{(in particular } G(F_w^+) \cong \operatorname{GL}_n(F_w), w \mid p)
 \end{cases}$

• $\omega = \mod p$ cyclo char. of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ or $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$.

General aim:

Study certain smooth admissible representations of $GL_n(F_v)$ over \mathbb{F} associated to automorphic (for *G*) mod *p* Galois representations.

Certain smooth admissible representations of $GL_n(F_v)$

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

< ∃ >

Certain smooth admissible representations of $GL_n(F_v)$

Let:

• $\mathbb{A}_{F^+}^{\infty,v}$ = finite adèles of F^+ outside v

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let:

- $\mathbb{A}_{F^+}^{\infty,v}$ = finite adèles of F^+ outside v
- U^{ν} = compact open subgroup of $G(\mathbb{A}_{F^+}^{\infty,\nu})$

Let:

- $\mathbb{A}_{F^+}^{\infty,v}$ = finite adèles of F^+ outside v
- U^{ν} = compact open subgroup of $G(\mathbb{A}_{F^+}^{\infty,\nu})$
- \overline{r} : $Gal(\overline{F}/F) \to GL_n(\mathbb{F})$ continuous, absolutely irreducible.

Let:

- $\mathbb{A}_{F^+}^{\infty,v}$ = finite adèles of F^+ outside v
- U^{ν} = compact open subgroup of $G(\mathbb{A}_{F^+}^{\infty,\nu})$
- \overline{r} : Gal(\overline{F}/F) \rightarrow GL_n(\mathbb{F}) continuous, absolutely irreducible. We define:

 $\begin{array}{lll} S(U^{v},\mathbb{F}) &:= & \{f:G(F^{+})\backslash G(\mathbb{A}_{F^{+}}^{\infty,v})/U^{v}\longrightarrow \mathbb{F}, \text{ loc. cst.}\}\\ S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}] &:= & \text{Hecke eigenspace associated to } \overline{r}. \end{array}$

• • = • • = •

Let:

- $\mathbb{A}_{F^+}^{\infty,v}$ = finite adèles of F^+ outside v
- U^{v} = compact open subgroup of $G(\mathbb{A}_{F^{+}}^{\infty,v})$
- \overline{r} : Gal $(\overline{F}/F) \to \operatorname{GL}_n(\mathbb{F})$ continuous, absolutely irreducible.

We define:

 $\begin{array}{lll} S(U^{v},\mathbb{F}) &:= & \{f: G(F^{+}) \backslash G(\mathbb{A}_{F^{+}}^{\infty,v}) / U^{v} \longrightarrow \mathbb{F}, \text{ loc. cst.} \} \\ S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}] &:= & \text{Hecke eigenspace associated to } \overline{r}. \end{array}$

 $G(F_{v}^{+})$ acts on $S(U^{v}, \mathbb{F})$ by right translation: $(g_{v}f)(g) := f(gg_{v})$, preserves $S(U^{v}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] =$ smooth admissible repres. of $G(F_{v}^{+})$.

伺 ト イヨ ト イヨ ト

Let:

- $\mathbb{A}_{F^+}^{\infty,v}$ = finite adèles of F^+ outside v
- $U^{\nu} = \text{compact open subgroup of } G(\mathbb{A}_{F^+}^{\infty,\nu})$
- \overline{r} : Gal $(\overline{F}/F) \to \operatorname{GL}_n(\mathbb{F})$ continuous, absolutely irreducible.

We define:

 $\begin{array}{lll} S(U^{v},\mathbb{F}) &:= & \{f: G(F^{+}) \setminus G(\mathbb{A}_{F^{+}}^{\infty,v})/U^{v} \longrightarrow \mathbb{F}, \text{ loc. cst.} \} \\ S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}] &:= & \text{Hecke eigenspace associated to } \overline{r}. \end{array}$

 $G(F_{v}^{+})$ acts on $S(U^{v}, \mathbb{F})$ by right translation: $(g_{v}f)(g) := f(gg_{v})$, preserves $S(U^{v}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] =$ smooth admissible repres. of $G(F_{v}^{+})$.

We want to relate $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ (assumed $\neq 0$) to $\overline{r}_{\nu} := \overline{r}|_{\mathsf{Gal}(\overline{F}_{\nu}/F_{\nu})}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ……

Let:

- $\mathbb{A}_{F^+}^{\infty,v}$ = finite adèles of F^+ outside v
- U^{v} = compact open subgroup of $G(\mathbb{A}_{F^{+}}^{\infty,v})$
- \overline{r} : Gal(\overline{F}/F) \rightarrow GL_n(\mathbb{F}) continuous, absolutely irreducible.

We define:

$$\begin{array}{lll} S(U^{\nu},\mathbb{F}) &:= & \{f:G(F^+)\backslash G(\mathbb{A}_{F^+}^{\infty,\nu})/U^{\nu}\longrightarrow \mathbb{F}, \text{ loc. cst.}\}\\ S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}] &:= & \text{Hecke eigenspace associated to } \overline{r}. \end{array}$$

 $G(F_{v}^{+})$ acts on $S(U^{v}, \mathbb{F})$ by right translation: $(g_{v}f)(g) := f(gg_{v})$, preserves $S(U^{v}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] =$ smooth admissible repres. of $G(F_{v}^{+})$.

We want to relate $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ (assumed $\neq 0$) to $\overline{r}_{\nu} := \overline{r}|_{\mathsf{Gal}(\overline{F}_{\nu}/F_{\nu})}$.

Remark

$$S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}] \neq 0 \Rightarrow \overline{r}(c \cdot c) \cong \overline{r}(\cdot)^{\vee \otimes \omega^{1-n}} \text{ where } \langle c \rangle = \operatorname{Gal}(F/F^+).$$

Quick review of the $GL_2(\mathbb{Q}_p)$ -case

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

< 同 > < 三 > ·

Quick review of the $GL_2(\mathbb{Q}_p)$ -case

Colmez: there is a contravariant exact functor: {finite length repr. of $GL_2(\mathbb{Q}_p)$ over \mathbb{F} } \rightarrow {étale (φ, Γ)-modules}.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

▶ < Ξ > ...

Quick review of the $GL_2(\mathbb{Q}_p)$ -case

Colmez: there is a contravariant exact functor: {finite length repr. of $GL_2(\mathbb{Q}_p)$ over \mathbb{F} } \rightarrow {étale (φ, Γ)-modules}.

Fontaine: there is a (contravariant) equivalence of categories: {étale (φ, Γ) -modules} \cong {fin. diml. repr. of Gal $(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ over \mathbb{F} }.

• • = • • = •

Quick review of the $GL_2(\mathbb{Q}_p)$ -case

Colmez: there is a contravariant exact functor: {finite length repr. of $GL_2(\mathbb{Q}_p)$ over \mathbb{F} } \rightarrow {étale (φ, Γ)-modules}.

Fontaine: there is a (contravariant) equivalence of categories: {étale (φ, Γ) -modules} \cong {fin. diml. repr. of Gal $(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ over \mathbb{F} }.

V := (covariant) composition of the two functors.

• • = • • = •

Quick review of the $GL_2(\mathbb{Q}_p)$ -case

Colmez: there is a contravariant exact functor: {finite length repr. of $GL_2(\mathbb{Q}_p)$ over \mathbb{F} } \rightarrow {étale (φ, Γ)-modules}.

Fontaine: there is a (contravariant) equivalence of categories: {étale (φ, Γ) -modules} \cong {fin. diml. repr. of Gal $(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ over \mathbb{F} }.

V := (covariant) composition of the two functors.

Theorem 1 (Colmez + Emerton + Chojecki-Sorensen)

Assume p > 3, n = 2, p splits completely in F. Assume:

- weak technical assumptions on \overline{r} and U^{v}
- \overline{r}_w absolutely irreducible for all w|p.

Then there is $d \geq 1$ such that $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]) \cong \overline{r}_{\nu}^{\oplus d} \otimes \omega^*$.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Quick review of the $GL_2(\mathbb{Q}_p)$ -case

Colmez: there is a contravariant exact functor: {finite length repr. of $GL_2(\mathbb{Q}_p)$ over \mathbb{F} } \rightarrow {étale (φ, Γ)-modules}.

Fontaine: there is a (contravariant) equivalence of categories: {étale (φ, Γ) -modules} \cong {fin. diml. repr. of Gal $(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ over \mathbb{F} }.

V := (covariant) composition of the two functors.

Theorem 1 (Colmez + Emerton + Chojecki-Sorensen)

Assume p > 3, n = 2, p splits completely in F. Assume:

- weak technical assumptions on \overline{r} and U^{v}
- \overline{r}_w absolutely irreducible for all w|p.

Then there is $d \geq 1$ such that $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]) \cong \overline{r}_{\nu}^{\oplus d} \otimes \omega^*$.

Should hold as soon as n = 2, $F_v = \mathbb{Q}_p$. For H^1 of modular curves, no need to assume \overline{r}_w irreducible (Colmez + Emerton).

2 Statement of the main conjecture

 \bigcirc Some results for GL_2

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

→ Ξ →

A simple generalization of Colmez's functor

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

A simple generalization of Colmez's functor

Let π = smooth representation of $GL_n(F_v)$ over \mathbb{F} . Set:

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

A simple generalization of Colmez's functor

Let π = smooth representation of $GL_n(F_v)$ over \mathbb{F} . Set:

• N_0 = upper unipotent in $GL_n(\mathcal{O}_{F_v})$

→

A simple generalization of Colmez's functor

Let π = smooth representation of $GL_n(F_v)$ over \mathbb{F} . Set:

•
$$N_0 =$$
 upper unipotent in $GL_n(\mathcal{O}_{F_v})$

• $\ell: N_0 \to \mathcal{O}_{F_v} =$ sum of entries on first diagonal

→ Ξ →

A simple generalization of Colmez's functor

Let π = smooth representation of $GL_n(F_v)$ over \mathbb{F} . Set:

- $N_0 =$ upper unipotent in $GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} =$ sum of entries on first diagonal

•
$$N_1 := \operatorname{Ker}(N_0 \stackrel{\ell}{\longrightarrow} \mathcal{O}_{F_v} \stackrel{\operatorname{trace}}{\longrightarrow} \mathbb{Z}_p)$$

• • = • • = •

A simple generalization of Colmez's functor

Let π = smooth representation of $GL_n(F_v)$ over \mathbb{F} . Set:

- $N_0 = \text{upper unipotent in } GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} =$ sum of entries on first diagonal
- $N_1 := \operatorname{Ker}(N_0 \xrightarrow{\ell} \mathcal{O}_{F_v} \xrightarrow{\operatorname{trace}} \mathbb{Z}_p)$ • $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), z \in \mathcal{O}_{F_v} \setminus \{0\}$

• • = • • = •

A simple generalization of Colmez's functor

Let π = smooth representation of $GL_n(F_v)$ over \mathbb{F} . Set:

- $N_0 = \text{upper unipotent in } GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} =$ sum of entries on first diagonal
- $N_1 := \operatorname{Ker}(N_0 \stackrel{\ell}{\longrightarrow} \mathcal{O}_{F_v} \stackrel{\operatorname{trace}}{\longrightarrow} \mathbb{Z}_p)$
- $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), \ z \in \mathcal{O}_{F_v} \setminus \{0\}$
- $\mathbb{F}[[X]][F] =$ non commutative ring defined by $FX^i = X^{ip}F$.

伺 と く ヨ と く ヨ と …

A simple generalization of Colmez's functor

Let π = smooth representation of $GL_n(F_v)$ over \mathbb{F} . Set:

- $N_0 =$ upper unipotent in $GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} =$ sum of entries on first diagonal

•
$$N_1 := \operatorname{Ker}(N_0 \stackrel{\ell}{\longrightarrow} \mathcal{O}_{F_v} \stackrel{\operatorname{trace}}{\longrightarrow} \mathbb{Z}_p)$$

- $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), z \in \mathcal{O}_{F_v} \setminus \{0\}$
- $\mathbb{F}[[X]][F] =$ non commutative ring defined by $FX^i = X^{ip}F$.

Then $\mathbb{F}[[N_0/N_1]] \xrightarrow{\sim} \mathbb{F}[[\mathbb{Z}_{\rho}]] \cong \mathbb{F}[[X]]$ naturally acts on π^{N_1} .

(日本)(日本)(日本)(日本)

A simple generalization of Colmez's functor

Let π = smooth representation of $GL_n(F_v)$ over \mathbb{F} . Set:

• N_0 = upper unipotent in $\operatorname{GL}_n(\mathcal{O}_{F_v})$ • $\ell : N_0 \to \mathcal{O}_{F_v}$ = sum of entries on first diagonal • $N_1 := \operatorname{Ker}(N_0 \xrightarrow{\ell} \mathcal{O}_{F_v} \xrightarrow{\operatorname{trace}} \mathbb{Z}_p)$ • $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), z \in \mathcal{O}_{F_v} \setminus \{0\}$ • $\mathbb{F}[[X]][F]$ = non commutative ring defined by $FX^i = X^{ip}F$. Then $\mathbb{F}[[N_0/N_1]] \xrightarrow{\sim} \mathbb{F}[[\mathbb{Z}_p]] \cong \mathbb{F}[[X]]$ naturally acts on π^{N_1} . Extend it to an action of $\mathbb{F}[[X]][F]$ via:

$$F(v) := \sum_{n_1 \in N_1/\xi(p)N_1\xi(p)^{-1}} n_1\xi(p)v, \ v \in \pi^{N_1}.$$

(日本)(日本)(日本)(日本)

Let $\pi = \text{smooth representation of } GL_n(F_v) \text{ over } \mathbb{F}$. Set:

• N_0 = upper unipotent in $\operatorname{GL}_n(\mathcal{O}_{F_v})$ • $\ell : N_0 \to \mathcal{O}_{F_v}$ = sum of entries on first diagonal • $N_1 := \operatorname{Ker}(N_0 \xrightarrow{\ell} \mathcal{O}_{F_v} \xrightarrow{\operatorname{trace}} \mathbb{Z}_p)$ • $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), z \in \mathcal{O}_{F_v} \setminus \{0\}$ • $\mathbb{F}[[X]][F]$ = non commutative ring defined by $FX^i = X^{ip}F$. Then $\mathbb{F}[[N_0/N_1]] \xrightarrow{\sim} \mathbb{F}[[\mathbb{Z}_p]] \cong \mathbb{F}[[X]]$ naturally acts on π^{N_1} . Extend it to an action of $\mathbb{F}[[X]][F]$ via:

$$F(v) := \sum_{n_1 \in N_1/\xi(p) N_1\xi(p)^{-1}} n_1\xi(p)v, \ v \in \pi^{N_1}.$$

Finally, let \mathbb{Z}_p^{\times} act on π^{N_1} via $z \cdot v := \xi(z)v$, $z \in \mathbb{Z}_p^{\times}$.

Introduction Statement of the main conjecture Some results for GL_2

A simple generalization of Colmez's functor

For any \mathbb{F} -vector space W recall $W^{\vee} = \mathbb{F}$ -linear dual of W.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

For any \mathbb{F} -vector space W recall $W^{\vee} = \mathbb{F}$ -linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type $\mathbb{F}[[X]][F]$ -module such that M is torsion as $\mathbb{F}[[X]]$ -module and satisfies dim $\mathbb{F} M[X] < \infty$. Then $M^{\vee}[1/X]$ is an étale φ -module over $\mathbb{F}((X))$.

For any \mathbb{F} -vector space W recall $W^{\vee} = \mathbb{F}$ -linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type $\mathbb{F}[[X]][F]$ -module such that M is torsion as $\mathbb{F}[[X]]$ -module and satisfies dim $\mathbb{F} M[X] < \infty$. Then $M^{\vee}[1/X]$ is an étale φ -module over $\mathbb{F}((X))$.

We apply this to $M \subseteq \pi^{N_1}$ of finite type over $\mathbb{F}[[X]][F]$ preserved by $\mathbb{Z}_p^{\times} \cong \Gamma$ with $\dim_{\mathbb{F}} M[X] < \infty \rightsquigarrow$ get $M^{\vee}[1/X] =$ étale (φ, Γ) -module.

For any \mathbb{F} -vector space W recall $W^{\vee} = \mathbb{F}$ -linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type $\mathbb{F}[[X]][F]$ -module such that M is torsion as $\mathbb{F}[[X]]$ -module and satisfies dim $\mathbb{F} M[X] < \infty$. Then $M^{\vee}[1/X]$ is an étale φ -module over $\mathbb{F}((X))$.

We apply this to $M \subseteq \pi^{N_1}$ of finite type over $\mathbb{F}[[X]][F]$ preserved by $\mathbb{Z}_p^{\times} \cong \Gamma$ with $\dim_{\mathbb{F}} M[X] < \infty \rightsquigarrow$ get $M^{\vee}[1/X] =$ étale (φ, Γ) -module.

Define the covariant functor V to ind-representations of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$:

$$\pi \longmapsto V(\pi) := \lim_{\stackrel{\longrightarrow}{M}} V^{\vee} (M^{\vee}[1/X])$$

where the limit is over \mathbb{Z}_{p}^{\times} -stable $M \subseteq \pi^{N_{1}}$ as above $(V^{\vee}(M^{\vee}[1/X])$ is the contravariant $\text{Gal}(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ -representation associated to $M^{\vee}_{=}[1/X])_{\mathbb{Q}_{p}}$. Introduction Statement of the main conjecture Some results for GL_2

Statement of the conjecture

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

Statement of the conjecture

Conjecture

There is an integer $d \ge 1$ such that:

$$V(S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\cong \left(\mathsf{Ind}_{F_{\nu}}^{\otimes\mathbb{Q}_{p}}(\overline{r}_{\nu}\otimes_{\mathbb{F}}\Lambda_{\mathbb{F}}^{2}\overline{r}_{\nu}\otimes\cdots\otimes\Lambda_{\mathbb{F}}^{n-1}\overline{r}_{\nu})\right)^{\oplus d}\otimes\omega^{*}$$

where $\operatorname{Ind}_{F_{\nu}}^{\otimes \mathbb{Q}_{\rho}} := \text{tensor induction from } \operatorname{Gal}(\overline{F}_{\nu}/F_{\nu}) \text{ to } \operatorname{Gal}(\overline{\mathbb{Q}}_{\rho}/\mathbb{Q}_{\rho}).$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Statement of the conjecture

Conjecture

There is an integer $d \ge 1$ such that:

$$V(S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\cong \left(\mathrm{Ind}_{F_{\nu}}^{\otimes\mathbb{Q}_{p}}\left(\overline{r}_{\nu}\otimes_{\mathbb{F}}\Lambda_{\mathbb{F}}^{2}\overline{r}_{\nu}\otimes\cdots\otimes\Lambda_{\mathbb{F}}^{n-1}\overline{r}_{\nu}\right)\right)^{\oplus d}\otimes\omega^{*}$$

where $\operatorname{Ind}_{F_{v}}^{\otimes \mathbb{Q}_{p}} := \text{tensor induction from } \operatorname{Gal}(\overline{F}_{v}/F_{v}) \text{ to } \operatorname{Gal}(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p}).$

Remark

An étale (φ, Γ) -module D has an operator ψ . The conjecture can be restated as: if $f : (S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{N_1})^{\vee} \to D$ is a contin., Γ -equivariant, $\mathbb{F}[[X]]$ -linear map sending F^{\vee} to ψ , then f uniquely factors through the (φ, Γ) -module of the above tensor induction.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

Introduction Statement of the main conjecture Some results for GL₂

2 Statement of the main conjecture

 \bigcirc Some results for GL_2

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

< ∃ > <

Introduction Statement of the main conjecture Some results for GL_2

Hypothesis on F, G, \overline{r} , U^{v}

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

(日) (同) (三) (

-

Introduction Statement of the main conjecture Some results for GL_2

Hypothesis on F, G, \overline{r} , U^{v}

Till the end of the talk: n = 2, F_v / \mathbb{Q}_p unramified of degree $f \ge 1$.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

• • = • • = •

-

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Statement of the main conjecture} \\ \mbox{Some results for } GL_2 \end{array}$

Hypothesis on F, G, \overline{r} , U^{v}

Till the end of the talk: n = 2, F_v / \mathbb{Q}_p unramified of degree $f \ge 1$.

Need the following extra assumptions (some of them standard):

- A I I I A I I I

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Statement of the main conjecture} \\ \mbox{Some results for } GL_2 \end{array}$

Hypothesis on F, G, \overline{r} , U^{v}

Till the end of the talk: n = 2, F_v / \mathbb{Q}_p unramified of degree $f \ge 1$.

Need the following extra assumptions (some of them standard):

• F/F^+ unramified, p inert in F^+ (the latter for simplicity)

(日) (日) (日)

Till the end of the talk: n = 2, F_v / \mathbb{Q}_p unramified of degree $f \ge 1$.

Need the following extra assumptions (some of them standard):

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F^+

イヨト イヨト イヨト

Till the end of the talk: n = 2, F_v / \mathbb{Q}_p unramified of degree $f \ge 1$.

Need the following extra assumptions (some of them standard):

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F^+
- $\overline{r}|_{Gal(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F

・ 同 ト ・ ヨ ト ・ ヨ ト …

Till the end of the talk: n = 2, F_v / \mathbb{Q}_p unramified of degree $f \ge 1$.

Need the following extra assumptions (some of them standard):

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F^+
- $\overline{r}|_{\mathsf{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F
- weak gener. assumptions on \overline{r}_w for $w \neq v$ when \overline{r}_w ramifies

イヨト イヨト イヨト

Till the end of the talk: n = 2, F_v / \mathbb{Q}_p unramified of degree $f \ge 1$.

Need the following extra assumptions (some of them standard):

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F^+
- $\overline{r}|_{\mathsf{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F
- weak gener. assumptions on \overline{r}_w for $w \neq v$ when \overline{r}_w ramifies

• $U^{v} = \prod_{w \neq v} U^{v}_{w}$ with $\begin{cases} U^{v}_{w} \text{ max. hyperspecial if } w \text{ is inert in } F \end{cases}$

イロト イポト イヨト イヨト

Till the end of the talk: n = 2, F_v / \mathbb{Q}_p unramified of degree $f \ge 1$.

Need the following extra assumptions (some of them standard):

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F^+
- $\overline{r}|_{\mathsf{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F
- weak gener. assumptions on \overline{r}_w for $w \neq v$ when \overline{r}_w ramifies

• $U^{v} = \prod_{w \neq v} U^{v}_{w}$ with $\begin{cases} U^{v}_{w} \text{ max. hyperspecial if } w \text{ is inert in } F \\ U^{v}_{w} \subseteq \operatorname{GL}_{2}(\mathcal{O}_{F^{+}_{w}}) \text{ if } w \text{ is split in } F \text{ with} \end{cases}$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Till the end of the talk: n = 2, F_v / \mathbb{Q}_p unramified of degree $f \ge 1$.

Need the following extra assumptions (some of them standard):

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F^+
- $\overline{r}|_{\mathsf{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F
- weak gener. assumptions on \overline{r}_w for $w \neq v$ when \overline{r}_w ramifies

• $U^{v} = \prod_{w \neq v} U^{v}_{w}$ with $\begin{cases} U^{v}_{w} \text{ max. hyperspecial if } w \text{ is inert in } F \\ U^{v}_{w} \subseteq \operatorname{GL}_{2}(\mathcal{O}_{F^{+}_{w}}) \text{ if } w \text{ is split in } F \text{ with} \\ U^{v}_{w} = \operatorname{GL}_{2}(\mathcal{O}_{F^{+}_{w}}) \text{ if } w \text{ split } + \overline{r}_{w} \text{ unram.} \end{cases}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction Statement of the main conjecture Some results for GL₂

Hypothesis on \overline{r}_{v}

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

< /₽ > < E > .

Introduction Statement of the main conjecture Some results for GL_2

Hypothesis on \overline{r}_v

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_{\nu} \subseteq \text{Gal}(\overline{F}_{\nu}/F_{\nu})$. Let f' := Max(2f, 10).

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_v \subseteq \text{Gal}(\overline{F}_v/F_v)$. Let f' := Max(2f, 10).

We assume that \overline{r}_{v} is semi-simple and such that:

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , ω_{2f} := associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_v \subseteq \text{Gal}(\overline{F}_v/F_v)$. Let f' := Max(2f, 10).

We assume that \overline{r}_v is semi-simple and such that:

•
$$\overline{r}_{v}$$
 reducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{f}^{(r_{0}+1)+\cdots+p^{f-1}(r_{f-1}+1)} & 0\\ 0 & 1 \end{pmatrix} \otimes \omega_{f}^{*}$
for some r_{i} with $f'-1 \le r_{i} \le p-2-f' \ (\Rightarrow p > 2f')$

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , ω_{2f} := associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_{\nu} \subseteq \text{Gal}(\overline{F}_{\nu}/F_{\nu})$. Let f' := Max(2f, 10).

We assume that \overline{r}_v is semi-simple and such that:

•
$$\overline{r}_{v}$$
 reducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{f}^{(r_{0}+1)+\dots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & 1 \end{pmatrix} \otimes \omega_{f}^{*}$
for some r_{i} with $f'-1 \leq r_{i} \leq p-2-f' \ (\Rightarrow p > 2f')$
• \overline{r}_{v} irreducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{2f}^{(r_{0}+1)+\dots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & \omega_{2f}^{p^{f}(\text{same})} \end{pmatrix} \otimes \omega_{f}^{*}$
for $f' \leq r_{0} \leq p-1-f'$ and $f'-1 \leq r_{i} \leq p-2-f'$ if $i > 0$.

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , ω_{2f} := associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_{\nu} \subseteq \text{Gal}(\overline{F}_{\nu}/F_{\nu})$. Let f' := Max(2f, 10).

We assume that \overline{r}_{v} is semi-simple and such that:

•
$$\overline{r}_{v}$$
 reducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{f}^{(r_{0}+1)+\dots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & 1 \end{pmatrix} \otimes \omega_{f}^{*}$
for some r_{i} with $f'-1 \leq r_{i} \leq p-2-f' \ (\Rightarrow p > 2f')$
• \overline{r}_{v} irreducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{2f}^{(r_{0}+1)+\dots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & \omega_{2f}^{p^{f}(\text{same})} \end{pmatrix} \otimes \omega_{f}^{*}$
for $f' \leq r_{0} \leq p-1-f'$ and $f'-1 \leq r_{i} \leq p-2-f'$ if $i > 0$.

(May-be this strong genericity assumption on \overline{r}_{v} can be improved.)

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Statement of the main conjecture}\\ \mbox{Some results for } GL_2 \end{array}$

Main result

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

< □ > < 同 > < 三 > .

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \ge 1$ such that:

$$V(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\cong (\mathrm{Ind}_{F_{v}}^{\otimes \mathbb{Q}_{p}}\overline{r}_{v})^{\oplus d}\!\!\otimes \omega^{*}$$

→

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \ge 1$ such that:

$$\mathcal{W}(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\cong \left(\mathrm{Ind}_{F_{v}}^{\otimes\mathbb{Q}_{p}}\overline{r}_{v}
ight)^{\oplus d}\!\!\otimes\omega^{*}$$

Remark

Although $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])$ only depends on \overline{r}_{ν} , we **do not know** if the $GL_2(F_{\nu})$ -representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ only depends on \overline{r}_{ν} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \ge 1$ such that:

$$\mathcal{W}(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\cong (\mathrm{Ind}_{F_{v}}^{\otimes\mathbb{Q}_{p}}\overline{r}_{v})^{\oplus d}\otimes\omega^{*}$$

Remark

Although $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])$ only depends on \overline{r}_{ν} , we **do not know** if the $GL_2(F_{\nu})$ -representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ only depends on \overline{r}_{ν} .

The proof of Theorem 2 is divided into two steps (we ignore $\otimes \omega^*$):

・ロト ・同ト ・ヨト ・ヨト

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \ge 1$ such that:

$$\mathcal{W}(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\cong \left(\mathrm{Ind}_{F_{v}}^{\otimes\mathbb{Q}_{p}}\overline{r}_{v}
ight)^{\oplus d}\!\!\otimes\omega^{*}$$

Remark

Although $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])$ only depends on \overline{r}_{ν} , we **do not know** if the $GL_2(F_{\nu})$ -representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ only depends on \overline{r}_{ν} .

The proof of Theorem 2 is divided into two steps (we ignore $\otimes \omega^*$): **Step** 1: There is an injection $(\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \overline{r}_v)^{\oplus d} \hookrightarrow V(S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]).$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer d > 1 such that:

$$\mathcal{W}(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\cong \left(\mathrm{Ind}_{F_{v}}^{\otimes\mathbb{Q}_{p}}\overline{r}_{v}
ight)^{\oplus d}\!\!\otimes\omega^{*}$$

Remark

Although $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])$ only depends on \overline{r}_{ν} , we **do not know** if the $GL_2(F_v)$ -representation $S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ only depends on \overline{r}_v .

The proof of Theorem 2 is divided into two steps (we ignore $\otimes \omega^*$): **Step** 1: There is an injection $(\operatorname{Ind}_{F_{\nu}}^{\otimes \mathbb{Q}_{p}}\overline{r}_{\nu})^{\oplus d} \hookrightarrow V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]).$ **Step** 2: dim_{\mathbb{F}} $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])$ is finite and bounded by $2^{f}d$. C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen

Modular representations of GL_n and tensor products

Introduction Statement of the main conjecture Some results for GL_2

Proof of Theorem 2: Step 1

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

< A

▶ < ∃ ▶

Introduction Statement of the main conjecture Some results for GL_2

Proof of Theorem 2: Step 1

Let $Z := F_v^{\times}$, $K := \operatorname{GL}_2(\mathcal{O}_{F_v})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_v})$.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

・ 同 ト ・ ヨ ト ・ ヨ ト ……

3

Proof of Theorem 2: Step 1

Let
$$Z := F_v^{\times}$$
, $K := \operatorname{GL}_2(\mathcal{O}_{F_v})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_v})$.

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \ge 1$ and an explicit representation D_0 of KZ over \mathbb{F} only depending on \overline{r}_v such that $S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)} \cong D_0^{\oplus d}$.

Proof of Theorem 2: Step 1

Let
$$Z := F_v^{\times}$$
, $K := \operatorname{GL}_2(\mathcal{O}_{F_v})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_v})$.

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \ge 1$ and an explicit representation D_0 of KZ over \mathbb{F} only depending on \overline{r}_v such that $S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)} \cong D_0^{\oplus d}$.

Let $I \subseteq K :=$ Iwahori, $I(1) \subseteq I :=$ pro-*p*-Iwahori, $\mathfrak{n} := \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} IZ =$ normalizer of I(1).

伺 と く ヨ と く ヨ と …

Proof of Theorem 2: Step 1

Let
$$Z := F_v^{\times}$$
, $K := \operatorname{GL}_2(\mathcal{O}_{F_v})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_v})$.

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \ge 1$ and an explicit representation D_0 of KZ over \mathbb{F} only depending on \overline{r}_v such that $S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)} \cong D_0^{\oplus d}$.

Let $I \subseteq K :=$ Iwahori, $I(1) \subseteq I :=$ pro-*p*-Iwahori, $\mathfrak{n} := \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} IZ =$ normalizer of I(1). Choose an action of \mathfrak{n} on $D_0^{I(1)}$ inside D_0 .

伺 ト イ ヨ ト イ ヨ ト

Let
$$Z := F_v^{\times}$$
, $K := \operatorname{GL}_2(\mathcal{O}_{F_v})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_v})$.

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \ge 1$ and an explicit representation D_0 of KZ over \mathbb{F} only depending on \overline{r}_v such that $S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)} \cong D_0^{\oplus d}$.

Let $I \subseteq K :=$ lwahori, $I(1) \subseteq I :=$ pro-*p*-lwahori, $\mathfrak{n} := \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} IZ =$ normalizer of I(1). Choose an action of \mathfrak{n} on $D_0^{I(1)}$ inside D_0 .

Theorem 4

Let π be a smooth admissible representation of $\operatorname{GL}_2(F_v)$ over \mathbb{F} such that $(\pi^{I(1)} \hookrightarrow \pi^{K(1)}) \cong (D_0^{I(1)} \hookrightarrow D_0)^{\oplus d}$ (compatibly with \mathfrak{n} and KZ). Then there is an injection $(\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \overline{r}_v)|_{I_v}^{\oplus d} \hookrightarrow V(\pi)|_{I_v}$.

Introduction Statement of the main conjecture Some results for GL_2

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$ -submodule $M(\pi)$ in π^{N_1} preserved by \mathbb{Z}_p^{\times} such that $V(M(\pi))|_{I_v} \cong (\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \overline{r}_v)|_{I_v}^{\oplus d}$.

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$ -submodule $M(\pi)$ in π^{N_1} preserved by \mathbb{Z}_p^{\times} such that $V(M(\pi))|_{I_v} \cong (\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \overline{r}_v)|_{I_v}^{\oplus d}$. (Only need 2*f* instead of $f' = \operatorname{Max}(2f, 10)$ in the bounds on the r_i .)

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$ -submodule $M(\pi)$ in π^{N_1} preserved by \mathbb{Z}_p^{\times} such that $V(M(\pi))|_{I_v} \cong (\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \overline{r}_v)|_{I_v}^{\oplus d}$. (Only need 2*f* instead of $f'=\operatorname{Max}(2f,10)$ in the bounds on the r_i .)

Theorem 5 (Dotto-Le + B.-H.-H.-M.-S.)

(i) There is an explicit action of \mathfrak{n} on $D_0^{I(1)}$, only depending on \overline{r}_v , such that there is an (\mathfrak{n}, KZ) -equivariant isomorphism:

$$(S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{l(1)}\hookrightarrow S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)})\cong (D_0^{l(1)}\hookrightarrow D_0)^{\oplus d}.$$

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$ -submodule $M(\pi)$ in π^{N_1} preserved by \mathbb{Z}_p^{\times} such that $V(M(\pi))|_{I_v} \cong (\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \overline{r}_v)|_{I_v}^{\oplus d}$. (Only need 2*f* instead of $f' = \operatorname{Max}(2f, 10)$ in the bounds on the r_i .)

Theorem 5 (Dotto-Le + B.-H.-H.-M.-S.)

(i) There is an explicit action of \mathfrak{n} on $D_0^{I(1)}$, only depending on \overline{r}_v , such that there is an (\mathfrak{n}, KZ) -equivariant isomorphism:

$$(S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{I(1)}\hookrightarrow S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)})\cong (D_0^{I(1)}\hookrightarrow D_0)^{\oplus d}.$$

(ii) For this action of ${\mathfrak n}$ we actually have:

$$V\big(M(S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\big)\cong\big(\mathrm{Ind}_{F_{\nu}}^{\otimes\mathbb{Q}_{p}}\overline{r}_{\nu}\big)^{\oplus d}.$$

Proof of Theorem 2: Step 2

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_a and tensor products

▶ ∢ ≣ ▶

Proof of Theorem 2: Step 2

Let:

•
$$Z(1) := 1 + p\mathcal{O}_{F_v} = \text{pro-}p\text{-center}$$

▶ ∢ ≣ ▶

Proof of Theorem 2: Step 2

Let:

• $Z(1) := 1 + p\mathcal{O}_{F_v} = \text{pro-}p\text{-center}$

• $\mathfrak{m}_I := \mathsf{maximal}$ ideal of Iwasawa algebra $\Lambda_I := \mathbb{F}[[I(1)/Z(1)]].$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Theorem 2: Step 2

Let:

•
$$Z(1) := 1 + p\mathcal{O}_{F_v} = \text{pro-}p\text{-center}$$

• $\mathfrak{m}_I := \mathsf{maximal}$ ideal of Iwasawa algebra $\Lambda_I := \mathbb{F}[[I(1)/Z(1)]].$

If π is a smooth representation of $GL_2(F_v)$ over \mathbb{F} with a central character, then $\pi^{l(1)} = \pi[\mathfrak{m}_l]$ and π is admissible if and only if $\dim_{\mathbb{F}} \pi[\mathfrak{m}_l] < \infty$.

伺下 イヨト イヨト

Let:

•
$$Z(1) := 1 + p\mathcal{O}_{F_v} = \text{pro-}p\text{-center}$$

• $\mathfrak{m}_I := \mathsf{maximal}$ ideal of Iwasawa algebra $\Lambda_I := \mathbb{F}[[I(1)/Z(1)]].$

If π is a smooth representation of $GL_2(F_v)$ over \mathbb{F} with a central character, then $\pi^{I(1)} = \pi[\mathfrak{m}_I]$ and π is admissible if and only if $\dim_{\mathbb{F}} \pi[\mathfrak{m}_I] < \infty$.

Theorem 6

Let π be a smooth admissible representation of $GL_2(F_v)$ over \mathbb{F} with a central character such that for any $\chi : I \to \mathbb{F}^{\times}$ appearing in $\pi[\mathfrak{m}_I]$:

$$[\pi[\mathfrak{m}_I]:\chi] = [\pi[\mathfrak{m}_I^3]:\chi].$$

Then dim_{\mathbb{F}} $V(\pi) \leq \dim_{\mathbb{F}} \pi[\mathfrak{m}_{I}]$, in particular $V(\pi)$ is finite dimensional.

Proof of Theorem 2: Step 2

Proof of Theorem 6:

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Λ_l -module π^{\vee} is generated by at most $r := \dim_{\mathbb{F}} \pi[\mathfrak{m}_l]$ elements.

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen Modular representations of GL_n and tensor products

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Λ_l -module π^{\vee} is generated by at most $r := \dim_{\mathbb{F}} \pi[\mathfrak{m}_l]$ elements.

For
$$0 \le i \le f-1$$
 set
$$\begin{cases} X_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & [\lambda] \\ 0 & 1 \end{pmatrix} \\ Y_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & 0 \\ p[\lambda] & 1 \end{pmatrix} \in \Lambda_I. \end{cases}$$

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Λ_I -module π^{\vee} is generated by at most $r := \dim_{\mathbb{F}} \pi[\mathfrak{m}_I]$ elements.

For
$$0 \leq i \leq f-1$$
 set
$$\begin{cases} X_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & [\lambda] \\ 0 & 1 \end{pmatrix} \\ Y_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & 0 \\ p[\lambda] & 1 \end{pmatrix} \in \Lambda_I. \end{cases}$$

Note that $\mathbb{F}[[N_0]] \cong \mathbb{F}[[X_0, \ldots, X_{f-1}]].$

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Λ_I -module π^{\vee} is generated by at most $r:=\dim_{\mathbb{F}}\pi[\mathfrak{m}_I]$ elements.

For
$$0 \le i \le f-1$$
 set
$$\begin{cases} X_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & [\lambda] \\ 0 & 1 \end{pmatrix} \\ Y_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & 0 \\ p[\lambda] & 1 \end{pmatrix} \in \Lambda_I. \end{cases}$$

Note that $\mathbb{F}[[N_0]] \cong \mathbb{F}[[X_0, \ldots, X_{f-1}]].$

Proposition 2

The hyp. on π in Thm. 6 implies that the action of $\operatorname{gr}_{\mathfrak{m}_{I}}\Lambda_{I}$ on $\operatorname{gr}_{\mathfrak{m}_{I}}\pi^{\vee}$ factors through the abelian quotient $\mathbb{F}[(X_{i}, Y_{i})_{i}]/(X_{i}Y_{i})$ of $\operatorname{gr}_{\mathfrak{m}_{I}}\Lambda_{I}$.

• • = • • = •

Proof of Theorem 6:

The Λ_I -module π^{\vee} is generated by at most $r:=\dim_{\mathbb{F}}\pi[\mathfrak{m}_I]$ elements.

For
$$0 \leq i \leq f-1$$
 set
$$\begin{cases} X_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & [\lambda] \\ 0 & 1 \end{pmatrix} \\ Y_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & 0 \\ p[\lambda] & 1 \end{pmatrix} \in \Lambda_I. \end{cases}$$
Note that $\mathbb{F}[[N_0]] \cong \mathbb{F}[[X_0, \dots, X_{f-1}]].$

Proposition 2

The hyp. on π in Thm. 6 implies that the action of $\operatorname{gr}_{\mathfrak{m}_{I}}\Lambda_{I}$ on $\operatorname{gr}_{\mathfrak{m}_{I}}\pi^{\vee}$ factors through the abelian quotient $\mathbb{F}[(X_{i}, Y_{i})_{i}]/(X_{i}Y_{i})$ of $\operatorname{gr}_{\mathfrak{m}_{I}}\Lambda_{I}$.

Hence $(\operatorname{gr}_{\mathfrak{m}_{i}}\pi^{\vee})[1/\prod X_{i}]$ is generated by at most *r* elements over:

 $(\mathbb{F}[(X_i, Y_i)_i]/(X_iY_i))[1/\prod X_i] \cong \mathbb{F}[(X_i)_i][1/\prod X_i].$

Proof of Theorem 2: Step 2

Endow $\pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i]$ with tensor product filtration for $\begin{cases} \mathfrak{m}_I \text{-adic filtration on } \pi^{\vee} \\ (X_0, ..., X_{f-1}) \text{-adic filtration on } \mathbb{F}[[N_0]][1/\prod X_i]. \end{cases}$

• • • • • • • • •

Proof of Theorem 2: Step 2

Endow $\pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i]$ with tensor product filtration for $\begin{cases} \mathfrak{m}_I\text{-adic filtration on } \pi^{\vee} \\ (X_0, ..., X_{f-1})\text{-adic filtration on } \mathbb{F}[[N_0]][1/\prod X_i]. \end{cases}$ Let $(\pi^{\vee}[1/\prod X_i])^{\wedge} :=$ corresponding completion.

伺 と く ヨ と く ヨ と …

Endow $\pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i]$ with tensor product filtration for $\begin{cases} \mathfrak{m}_{l}\text{-adic filtration on } \pi^{\vee} \\ (X_0, ..., X_{f-1})\text{-adic filtration on } \mathbb{F}[[N_0]][1/\prod X_i]. \end{cases}$ Let $(\pi^{\vee}[1/\prod X_i])^{\wedge} :=$ corresponding completion. It is generated by at

most *r* elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}$ (look at the graded modules).

伺 と く ヨ と く ヨ と …

Endow $\pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i]$ with tensor product filtration for $\begin{cases} \mathfrak{m}_I\text{-adic filtration on } \pi^{\vee} \\ (X_0, ..., X_{f-1})\text{-adic filtration on } \mathbb{F}[[N_0]][1/\prod X_i]. \end{cases}$

Let $(\pi^{\vee}[1/\prod X_i])^{\wedge} :=$ corresponding completion. It is generated by at most *r* elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}$ (look at the graded modules).

Let $J := \operatorname{Ker}(\mathbb{F}[[N_0]] \xrightarrow{\operatorname{trace}} \mathbb{F}[[X]])$, hence $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J$ is generated by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}/J \cong \mathbb{F}((X))$.

伺 と くき とくき とうき

Endow $\pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i]$ with tensor product filtration for $\begin{cases} \mathfrak{m}_l$ -adic filtration on $\pi^{\vee} \\ (X_0, ..., X_{f-1})$ -adic filtration on $\mathbb{F}[[N_0]][1/\prod X_i]$. Let $(\pi^{\vee}[1/\prod X_i])^{\wedge} :=$ corresponding completion. It is generated by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}$ (look at the graded modules).

Let $J := \operatorname{Ker}(\mathbb{F}[[N_0]] \xrightarrow{\operatorname{trace}} \mathbb{F}[[X]])$, hence $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J$ is generated by at most *r* elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}/J \cong \mathbb{F}((X))$.

For any $M \subseteq \pi^{N_1}$ such that $\dim_{\mathbb{F}} M[X] < \infty$, the morphism:

$$(\pi^{N_1})^{\vee} \cong \pi^{\vee}/J \longrightarrow M^{\vee}[1/X]$$

factors as a surjection $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J \twoheadrightarrow M^{\vee}[1/X].$

・ロト ・得ト ・ヨト ・ヨト

Endow $\pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i]$ with tensor product filtration for $\begin{cases} \mathfrak{m}_I$ -adic filtration on $\pi^{\vee} \\ (X_0, ..., X_{f-1})$ -adic filtration on $\mathbb{F}[[N_0]][1/\prod X_i]$. Let $(\pi^{\vee}[1/\prod X_i])^{\wedge} :=$ corresponding completion. It is generated by at most *r* elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}$ (look at the graded modules). Let $J := \operatorname{Ker}(\mathbb{F}[[N_0]] \xrightarrow{\operatorname{trace}} \mathbb{F}[[X]])$, hence $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J$ is generated

by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}/J \cong \mathbb{F}((X)).$

For any $M \subseteq \pi^{N_1}$ such that $\dim_{\mathbb{F}} M[X] < \infty$, the morphism:

$$(\pi^{N_1})^{\vee} \cong \pi^{\vee}/J \longrightarrow M^{\vee}[1/X]$$

factors as a surjection $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J \twoheadrightarrow M^{\vee}[1/X].$

In particular dim_{\mathbb{F}} $V(\pi) \leq \dim_{\mathbb{F}((X))} \left((\pi^{\vee}[1/\prod X_i])^{\wedge}/J \right) \leq r$. \Box

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_{i}])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_{i}])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\dim_{\mathbb{F}((X))} ((S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_{i}])^{\wedge}/J) \leq 2^{f}d.$

伺 ト イヨト イヨト

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_{i}])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\dim_{\mathbb{F}((X))} ((S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J) \leq 2^{f}d.$

Proof: \exists an *I*-equiv. surjection $\oplus_{i=1}^{2^{f}d} \Lambda_{I}(\chi_{i}) \twoheadrightarrow (\operatorname{soc}_{K} S(U^{v}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])|_{I}^{\vee}$. Λ_{I} projective \Rightarrow it lifts to $f : \oplus_{i=1}^{2^{f}d} \Lambda_{I}(\chi_{i}) \longrightarrow S(U^{v}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]|_{I}^{\vee}$.

イロト イポト イヨト イヨト

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_{i}])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\dim_{\mathbb{F}((X))} ((S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J) \leq 2^{f}d.$

Proof: \exists an *I*-equiv. surjection $\bigoplus_{i=1}^{2^{f_d}} \Lambda_I(\chi_i) \twoheadrightarrow (\operatorname{soc}_{\mathcal{K}} S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])|_I^{\vee}$. Λ_I projective \Rightarrow it lifts to $f : \bigoplus_{i=1}^{2^{f_d}} \Lambda_I(\chi_i) \longrightarrow S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]|_I^{\vee}$. By an explicit computation $(\operatorname{Coker}(f)[1/\prod X_i])^{\wedge} = 0$.

イロト イポト イヨト イヨト

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_{i}])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\dim_{\mathbb{F}((X))}((S(U^{v},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_{i}])^{\wedge}/J) \leq 2^{f}d.$

Proof: \exists an *I*-equiv. surjection $\bigoplus_{i=1}^{2^{f_d}} \Lambda_I(\chi_i) \twoheadrightarrow (\operatorname{soc}_{\mathcal{K}} S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])|_I^{\vee}$. Λ_I projective \Rightarrow it lifts to $f : \bigoplus_{i=1}^{2^{f_d}} \Lambda_I(\chi_i) \longrightarrow S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]|_I^{\vee}$. By an explicit computation $(\operatorname{Coker}(f)[1/\prod X_i])^{\wedge} = 0$. This implies we can replace $r = \dim_{\mathbb{F}} S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{I(1)}$ by 2^{f_d} in the proof of Thm. 6. \Box

イロト イポト イヨト イヨト