Modular representations of GL_{n} and tensor products of Galois representations

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen
I.C.T.S. - T.I.F.R.

December 1, 2020

Contents

(1) Introduction
(2) Statement of the main conjecture
(3) Some results for GL_{2}

(1) Introduction

(2) Statement of the main conjecture

(3) Some results for GL_{2}

Throughout the talk:

- $p=$ prime number

Throughout the talk:

- $p=$ prime number
- $\mathbb{F}=$ "big" finite field of characteristic p (coefficient field)

Throughout the talk:

- $p=$ prime number
- $\mathbb{F}=$ "big" finite field of characteristic p (coefficient field)
- $F^{+}=$totally real number field

Throughout the talk:

- $p=$ prime number
- $\mathbb{F}=$ "big" finite field of characteristic p (coefficient field)
- $F^{+}=$totally real number field
- $F=$ totally imag. quad. ext. of F^{+}, any $w \mid p$ in F^{+}splits in F

Throughout the talk:

- $p=$ prime number
- $\mathbb{F}=$ "big" finite field of characteristic p (coefficient field)
- $F^{+}=$totally real number field
- $F=$ totally imag. quad. ext. of F^{+}, any $w \mid p$ in F^{+}splits in F
- $G / F^{+}=$unitary group s.t. $\left\{\begin{array}{l}G \times F^{+} F=G L_{n}(n \geq 2) \\ G\left(F_{w}^{+}\right) \cong U_{n}(\mathbb{R}) \forall w \mid \infty\end{array}\right.$

Throughout the talk:

- $p=$ prime number
- $\mathbb{F}=$ "big" finite field of characteristic p (coefficient field)
- $F^{+}=$totally real number field
- $F=$ totally imag. quad. ext. of F^{+}, any $w \mid p$ in F^{+}splits in F
- $G / F^{+}=$unitary group s.t. $\left\{\begin{array}{l}G \times_{F^{+}} F=G L_{n}(n \geq 2) \\ G\left(F_{w}^{+}\right) \cong U_{n}(\mathbb{R}) \forall w \mid \infty\end{array}\right.$ (in particular $G\left(F_{w}^{+}\right) \cong G L_{n}\left(F_{w}\right), w \mid p$)

Throughout the talk:

- $p=$ prime number
- $\mathbb{F}=$ "big" finite field of characteristic p (coefficient field)
- $F^{+}=$totally real number field
- $F=$ totally imag. quad. ext. of F^{+}, any $w \mid p$ in F^{+}splits in F
- $G / F^{+}=$unitary group s.t. $\left\{\begin{array}{l}G \times_{F^{+}} F=G L_{n}(n \geq 2) \\ G\left(F_{w}^{+}\right) \cong U_{n}(\mathbb{R}) \forall w \mid \infty\end{array}\right.$ (in particular $G\left(F_{w}^{+}\right) \cong G L_{n}\left(F_{w}\right), w \mid p$)
- $v \mid p=$ fixed place of F

Throughout the talk:

- $p=$ prime number
- $\mathbb{F}=$ "big" finite field of characteristic p (coefficient field)
- $F^{+}=$totally real number field
- $F=$ totally imag. quad. ext. of F^{+}, any $w \mid p$ in F^{+}splits in F
- $G / F^{+}=$unitary group s.t. $\left\{\begin{array}{l}G \times_{F^{+}} F=G L_{n}(n \geq 2) \\ G\left(F_{w}^{+}\right) \cong U_{n}(\mathbb{R}) \forall w \mid \infty\end{array}\right.$ (in particular $G\left(F_{w}^{+}\right) \cong G L_{n}\left(F_{w}\right), w \mid p$)
- $v \mid p=$ fixed place of F
- $\omega=\bmod p$ cyclo char. of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ or $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$.

Throughout the talk:

- $p=$ prime number
- $\mathbb{F}=$ "big" finite field of characteristic p (coefficient field)
- $F^{+}=$totally real number field
- $F=$ totally imag. quad. ext. of F^{+}, any $w \mid p$ in F^{+}splits in F
- $G / F^{+}=$unitary group s.t. $\left\{\begin{array}{l}G \times_{F^{+}} F=G L_{n}(n \geq 2) \\ G\left(F_{w}^{+}\right) \cong U_{n}(\mathbb{R}) \forall w \mid \infty\end{array}\right.$ (in particular $G\left(F_{w}^{+}\right) \cong G L_{n}\left(F_{w}\right), w \mid p$)
- $v \mid p=$ fixed place of F
- $\omega=\bmod p$ cyclo char. of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ or $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$.

General aim:

Study certain smooth admissible representations of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F} associated to automorphic (for G) mod p Galois representations.

Certain smooth admissible representations of $\mathrm{GL}_{n}\left(F_{v}\right)$

Certain smooth admissible representations of $\mathrm{GL}_{n}\left(F_{v}\right)$

Let:

- $\mathbb{A}_{F^{+}}^{\infty, v}=$ finite adèles of F^{+}outside v

Certain smooth admissible representations of $\mathrm{GL}_{n}\left(F_{v}\right)$

Let:

- $\mathbb{A}_{F^{+}}^{\infty, v}=$ finite adèles of F^{+}outside v
- $U^{v}=$ compact open subgroup of $G\left(\mathbb{A}_{F^{+}}^{\infty, v}\right)$

Certain smooth admissible representations of $\mathrm{GL}_{n}\left(F_{v}\right)$

Let:

- $\mathbb{A}_{F^{+}}^{\infty, v}=$ finite adèles of F^{+}outside v
- $U^{v}=$ compact open subgroup of $G\left(\mathbb{A}_{F^{+}}^{\infty, v}\right)$
- $\bar{r}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ continuous, absolutely irreducible.

Certain smooth admissible representations of $\mathrm{GL}_{n}\left(F_{v}\right)$

Let:

- $\mathbb{A}_{F^{+}}^{\infty, v}=$ finite adèles of F^{+}outside v
- $U^{v}=$ compact open subgroup of $G\left(\mathbb{A}_{F^{+}}^{\infty, v}\right)$
- $\bar{r}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ continuous, absolutely irreducible.

We define:

$$
\begin{aligned}
S\left(U^{v}, \mathbb{F}\right) & :=\left\{f: G\left(F^{+}\right) \backslash G\left(\mathbb{A}_{F^{+}, v}^{\infty}\right) / U^{v} \longrightarrow \mathbb{F}, \text { loc. cst. }\right\} \\
S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right] & :=\text { Hecke eigenspace associated to } \bar{r} .
\end{aligned}
$$

Certain smooth admissible representations of $\mathrm{GL}_{n}\left(F_{v}\right)$

Let:

- $\mathbb{A}_{F^{+}}^{\infty, v}=$ finite adèles of F^{+}outside v
- $U^{v}=$ compact open subgroup of $G\left(\mathbb{A}_{F^{+}}^{\infty, v}\right)$
- $\bar{r}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ continuous, absolutely irreducible.

We define:

$$
S\left(U^{v}, \mathbb{F}\right):=\left\{f: G\left(F^{+}\right) \backslash G\left(\mathbb{A}_{F^{+}}^{\infty, v}\right) / U^{v} \longrightarrow \mathbb{F}, \text { loc. cst. }\right\}
$$

$S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]:=$ Hecke eigenspace associated to \bar{r}.
$G\left(F_{v}^{+}\right)$acts on $S\left(U^{v}, \mathbb{F}\right)$ by right translation: $\left(g_{v} f\right)(g):=f\left(g g_{v}\right)$, preserves $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]=$ smooth admissible repres. of $G\left(F_{v}^{+}\right)$.

Certain smooth admissible representations of $\mathrm{GL}_{n}\left(F_{v}\right)$

Let:

- $\mathbb{A}_{F^{+}}^{\infty, v}=$ finite adèles of F^{+}outside v
- $U^{v}=$ compact open subgroup of $G\left(\mathbb{A}_{F^{+}}^{\infty, v}\right)$
- $\bar{r}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ continuous, absolutely irreducible.

We define:

$$
S\left(U^{v}, \mathbb{F}\right):=\left\{f: G\left(F^{+}\right) \backslash G\left(\mathbb{A}_{F^{+}}^{\infty, v}\right) / U^{v} \longrightarrow \mathbb{F} \text {, loc. cst. }\right\}
$$

$S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]:=$ Hecke eigenspace associated to \bar{r}.
$G\left(F_{v}^{+}\right)$acts on $S\left(U^{v}, \mathbb{F}\right)$ by right translation: $\left(g_{v} f\right)(g):=f\left(g g_{v}\right)$, preserves $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]=$ smooth admissible repres. of $G\left(F_{v}^{+}\right)$.
We want to relate $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]($ assumed $\neq 0)$ to $\bar{r}_{v}:=\left.\bar{r}\right|_{\text {Gal }\left(\bar{F}_{v} / F_{v}\right)}$.

Certain smooth admissible representations of $\mathrm{GL}_{n}\left(F_{v}\right)$

Let:

- $\mathbb{A}_{F^{+}}^{\infty, v}=$ finite adèles of F^{+}outside v
- $U^{v}=$ compact open subgroup of $G\left(\mathbb{A}_{F^{+}}^{\infty, v}\right)$
- $\bar{r}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ continuous, absolutely irreducible.

We define:

$$
S\left(U^{v}, \mathbb{F}\right):=\left\{f: G\left(F^{+}\right) \backslash G\left(\mathbb{A}_{F^{+}}^{\infty, v}\right) / U^{v} \longrightarrow \mathbb{F}, \text { loc. cst. }\right\}
$$

$S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]:=$ Hecke eigenspace associated to \bar{r}.
$G\left(F_{v}^{+}\right)$acts on $S\left(U^{v}, \mathbb{F}\right)$ by right translation: $\left(g_{v} f\right)(g):=f\left(g g_{v}\right)$, preserves $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]=$ smooth admissible repres. of $G\left(F_{v}^{+}\right)$.
We want to relate $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ (assumed $\left.\neq 0\right)$ to $\bar{r}_{v}:=\left.\bar{r}\right|_{\text {Gal }\left(\bar{F}_{v} / F_{v}\right)}$.

Remark

$S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right] \neq 0 \Rightarrow \bar{r}(c \cdot c) \cong \bar{r}(\cdot)^{\vee} \otimes \omega^{1-n}$ where $\langle c\rangle=\operatorname{Gal}\left(F / F^{+}\right)$.

Quick review of the $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$-case

Quick review of the $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$-case

Colmez: there is a contravariant exact functor: $\left\{\right.$ finite length repr. of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ over $\left.\mathbb{F}\right\} \rightarrow\{$ étale (φ, Γ)-modules $\}$.

Quick review of the $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$-case

Colmez: there is a contravariant exact functor: $\left\{\right.$ finite length repr. of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ over $\left.\mathbb{F}\right\} \rightarrow\{$ étale (φ, Γ)-modules $\}$.
Fontaine: there is a (contravariant) equivalence of categories: $\{$ étale (φ, Γ)-modules $\} \cong\left\{\right.$ fin. diml. repr. of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ over $\left.\mathbb{F}\right\}$.

Quick review of the $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$-case

Colmez: there is a contravariant exact functor: $\left\{\right.$ finite length repr. of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ over $\left.\mathbb{F}\right\} \rightarrow\{$ étale (φ, Γ)-modules $\}$. Fontaine: there is a (contravariant) equivalence of categories: $\{$ étale (φ, Γ)-modules $\} \cong\left\{\right.$ fin. diml. repr. of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ over $\left.\mathbb{F}\right\}$. $V:=$ (covariant) composition of the two functors.

Quick review of the $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$-case

Colmez: there is a contravariant exact functor: $\left\{\right.$ finite length repr. of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ over $\left.\mathbb{F}\right\} \rightarrow\{$ étale (φ, Γ)-modules $\}$.
Fontaine: there is a (contravariant) equivalence of categories: $\{$ étale (φ, Γ)-modules $\} \cong\left\{\right.$ fin. diml. repr. of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ over $\left.\mathbb{F}\right\}$. $V:=$ (covariant) composition of the two functors.

Theorem 1 (Colmez + Emerton + Chojecki-Sorensen)

Assume $p>3, n=2, p$ splits completely in F. Assume:

- weak technical assumptions on \bar{r} and U^{v}
- \bar{r}_{w} absolutely irreducible for all $w \mid p$.

Then there is $d \geq 1$ such that $V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right) \cong \bar{r}_{v}{ }^{\oplus d} \otimes \omega^{*}$.

Quick review of the $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$-case

Colmez: there is a contravariant exact functor: $\left\{\right.$ finite length repr. of $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$ over $\left.\mathbb{F}\right\} \rightarrow\{$ étale (φ, Γ)-modules $\}$.
Fontaine: there is a (contravariant) equivalence of categories: $\{$ étale (φ, Γ)-modules $\} \cong\left\{\right.$ fin. diml. repr. of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ over $\left.\mathbb{F}\right\}$. $V:=$ (covariant) composition of the two functors.

Theorem 1 (Colmez + Emerton + Chojecki-Sorensen)

Assume $p>3, n=2, p$ splits completely in F. Assume:

- weak technical assumptions on \bar{r} and U^{v}
- \bar{r}_{w} absolutely irreducible for all $w \mid p$.

Then there is $d \geq 1$ such that $V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right) \cong \bar{r}_{v}{ }^{\oplus d} \otimes \omega^{*}$.
Should hold as soon as $n=2, F_{v}=\mathbb{Q}_{p}$. For H^{1} of modular curves, no need to assume \bar{r}_{w} irreducible (Colmez + Emerton).

(1) Introduction

(2) Statement of the main conjecture

(3) Some results for GL_{2}

A simple generalization of Colmez's functor

A simple generalization of Colmez's functor

Let $\pi=$ smooth representation of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F}. Set:

A simple generalization of Colmez's functor

Let $\pi=$ smooth representation of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F}. Set:

- $N_{0}=$ upper unipotent in $\mathrm{GL}_{n}\left(\mathcal{O}_{F_{v}}\right)$

A simple generalization of Colmez's functor

Let $\pi=$ smooth representation of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F}. Set:

- $N_{0}=$ upper unipotent in $\mathrm{GL}_{n}\left(\mathcal{O}_{F_{v}}\right)$
- $\ell: N_{0} \rightarrow \mathcal{O}_{F_{v}}=$ sum of entries on first diagonal

A simple generalization of Colmez's functor

Let $\pi=$ smooth representation of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F}. Set:

- $N_{0}=$ upper unipotent in $\mathrm{GL}_{n}\left(\mathcal{O}_{F_{v}}\right)$
- $\ell: N_{0} \rightarrow \mathcal{O}_{F_{v}}=$ sum of entries on first diagonal
- $N_{1}:=\operatorname{Ker}\left(N_{0} \xrightarrow{\ell} \mathcal{O}_{F_{v}} \xrightarrow{\text { trace }} \mathbb{Z}_{p}\right)$

A simple generalization of Colmez's functor

Let $\pi=$ smooth representation of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F}. Set:

- $N_{0}=$ upper unipotent in $\mathrm{GL}_{n}\left(\mathcal{O}_{F_{v}}\right)$
- $\ell: N_{0} \rightarrow \mathcal{O}_{F_{v}}=$ sum of entries on first diagonal
- $N_{1}:=\operatorname{Ker}\left(N_{0} \xrightarrow{\ell} \mathcal{O}_{F_{v}} \xrightarrow{\text { trace }} \mathbb{Z}_{p}\right)$
- $\xi(z):=\operatorname{diag}\left(z^{n-1}, z^{n-2}, \ldots, 1\right) \in \mathrm{GL}_{n}\left(F_{v}\right), z \in \mathcal{O}_{F_{v}} \backslash\{0\}$

A simple generalization of Colmez's functor

Let $\pi=$ smooth representation of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F}. Set:

- $N_{0}=$ upper unipotent in $\mathrm{GL}_{n}\left(\mathcal{O}_{F_{v}}\right)$
- $\ell: N_{0} \rightarrow \mathcal{O}_{F_{v}}=$ sum of entries on first diagonal
- $N_{1}:=\operatorname{Ker}\left(N_{0} \xrightarrow{\ell} \mathcal{O}_{F_{v}} \xrightarrow{\text { trace }} \mathbb{Z}_{p}\right)$
- $\xi(z):=\operatorname{diag}\left(z^{n-1}, z^{n-2}, \ldots, 1\right) \in \mathrm{GL}_{n}\left(F_{v}\right), z \in \mathcal{O}_{F_{v}} \backslash\{0\}$
- $\mathbb{F}[[X]][F]=$ non commutative ring defined by $F X^{i}=X^{i p} F$.

A simple generalization of Colmez's functor

Let $\pi=$ smooth representation of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F}. Set:

- $N_{0}=$ upper unipotent in $\mathrm{GL}_{n}\left(\mathcal{O}_{F_{v}}\right)$
- $\ell: N_{0} \rightarrow \mathcal{O}_{F_{v}}=$ sum of entries on first diagonal
- $N_{1}:=\operatorname{Ker}\left(N_{0} \xrightarrow{\ell} \mathcal{O}_{F_{v}} \xrightarrow{\text { trace }} \mathbb{Z}_{p}\right)$
- $\xi(z):=\operatorname{diag}\left(z^{n-1}, z^{n-2}, \ldots, 1\right) \in \mathrm{GL}_{n}\left(F_{v}\right), z \in \mathcal{O}_{F_{v}} \backslash\{0\}$
- $\mathbb{F}[[X]][F]=$ non commutative ring defined by $F X^{i}=X^{i p} F$.

Then $\mathbb{F}\left[\left[N_{0} / N_{1}\right]\right] \xrightarrow{\sim} \mathbb{F}\left[\left[\mathbb{Z}_{p}\right]\right] \cong \mathbb{F}[[X]]$ naturally acts on $\pi^{N_{1}}$.

A simple generalization of Colmez's functor

Let $\pi=$ smooth representation of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F}. Set:

- $N_{0}=$ upper unipotent in $G L_{n}\left(\mathcal{O}_{F_{v}}\right)$
- $\ell: N_{0} \rightarrow \mathcal{O}_{F_{v}}=$ sum of entries on first diagonal
- $N_{1}:=\operatorname{Ker}\left(N_{0} \xrightarrow{\ell} \mathcal{O}_{F_{v}} \xrightarrow{\text { trace }} \mathbb{Z}_{p}\right)$
- $\xi(z):=\operatorname{diag}\left(z^{n-1}, z^{n-2}, \ldots, 1\right) \in \mathrm{GL}_{n}\left(F_{v}\right), z \in \mathcal{O}_{F_{v}} \backslash\{0\}$
- $\mathbb{F}[[X]][F]=$ non commutative ring defined by $F X^{i}=X^{i p} F$.

Then $\mathbb{F}\left[\left[N_{0} / N_{1}\right]\right] \xrightarrow{\sim} \mathbb{F}\left[\left[\mathbb{Z}_{p}\right]\right] \cong \mathbb{F}[[X]]$ naturally acts on $\pi^{N_{1}}$.
Extend it to an action of $\mathbb{F}[[X]][F]$ via:

$$
F(v):=\sum_{n_{1} \in N_{1} / \xi(p) N_{1} \xi(p)^{-1}} n_{1} \xi(p) v, \quad v \in \pi^{N_{1}} .
$$

A simple generalization of Colmez's functor

Let $\pi=$ smooth representation of $\mathrm{GL}_{n}\left(F_{v}\right)$ over \mathbb{F}. Set:

- $N_{0}=$ upper unipotent in $G L_{n}\left(\mathcal{O}_{F_{v}}\right)$
- $\ell: N_{0} \rightarrow \mathcal{O}_{F_{v}}=$ sum of entries on first diagonal
- $N_{1}:=\operatorname{Ker}\left(N_{0} \xrightarrow{\ell} \mathcal{O}_{F_{v}} \xrightarrow{\text { trace }} \mathbb{Z}_{p}\right)$
- $\xi(z):=\operatorname{diag}\left(z^{n-1}, z^{n-2}, \ldots, 1\right) \in G L_{n}\left(F_{v}\right), z \in \mathcal{O}_{F_{v}} \backslash\{0\}$
- $\mathbb{F}[[X]][F]=$ non commutative ring defined by $F X^{i}=X^{i p} F$.

Then $\mathbb{F}\left[\left[N_{0} / N_{1}\right]\right] \xrightarrow{\sim} \mathbb{F}\left[\left[\mathbb{Z}_{p}\right]\right] \cong \mathbb{F}[[X]]$ naturally acts on $\pi^{N_{1}}$.
Extend it to an action of $\mathbb{F}[[X]][F]$ via:

$$
F(v):=\sum_{n_{1} \in N_{1} / \xi(p) N_{1} \xi(p)^{-1}} n_{1} \xi(p) v, \quad v \in \pi^{N_{1}} .
$$

Finally, let \mathbb{Z}_{p}^{\times}act on $\pi^{N_{1}}$ via $z \cdot v:=\xi(z) v, z \in \mathbb{Z}_{P}^{\times}$.

A simple generalization of Colmez's functor

For any \mathbb{F}-vector space W recall $W^{\vee}=\mathbb{F}$-linear dual of W.

A simple generalization of Colmez's functor

For any \mathbb{F}-vector space W recall $W^{\vee}=\mathbb{F}$-linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type $\mathbb{F}[[X]][F]$-module such that M is torsion as $\mathbb{F}[[X]]$-module and satisfies $\operatorname{dim}_{\mathbb{F}} M[X]<\infty$. Then $M^{\vee}[1 / X]$ is an étale φ-module over $\mathbb{F}((X))$.

A simple generalization of Colmez's functor

For any \mathbb{F}-vector space W recall $W^{\vee}=\mathbb{F}$-linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type $\mathbb{F}[[X]][F]$-module such that M is torsion as $\mathbb{F}[[X]]$-module and satisfies $\operatorname{dim}_{\mathbb{F}} M[X]<\infty$. Then $M^{\vee}[1 / X]$ is an étale φ-module over $\mathbb{F}((X))$.

We apply this to $M \subseteq \pi^{N_{1}}$ of finite type over $\mathbb{F}[[X]][F]$ preserved by $\mathbb{Z}_{p}^{\times} \cong \Gamma$ with $\operatorname{dim}_{\mathbb{F}} M[X]<\infty \rightsquigarrow$ get $M^{\vee}[1 / X]=$ étale (φ, Γ)-module.

A simple generalization of Colmez's functor

For any \mathbb{F}-vector space W recall $W^{\vee}=\mathbb{F}$-linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type $\mathbb{F}[[X]][F]$-module such that M is torsion as $\mathbb{F}[[X]]$-module and satisfies $\operatorname{dim}_{\mathbb{F}} M[X]<\infty$. Then $M^{\vee}[1 / X]$ is an étale φ-module over $\mathbb{F}((X))$.

We apply this to $M \subseteq \pi^{N_{1}}$ of finite type over $\mathbb{F}[[X]][F]$ preserved by $\mathbb{Z}_{p}^{\times} \cong \Gamma$ with $\operatorname{dim}_{\mathbb{F}} M[X]<\infty \rightsquigarrow$ get $M^{\vee}[1 / X]=$ étale (φ, Γ)-module.
Define the covariant functor V to ind-representations of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$:

$$
\pi \longmapsto V(\pi):=\lim _{\vec{M}} V^{\vee}\left(M^{\vee}[1 / X]\right)
$$

where the limit is over \mathbb{Z}_{p}^{\times}-stable $M \subseteq \pi^{N_{1}}$ as above $\left(V^{\vee}\left(M^{\vee}[1 / X]\right)\right.$ is the contravariant $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$-representation associated to $\left.M_{\equiv}^{\vee}[1 / X]\right)$.

Statement of the conjecture

Statement of the conjecture

Conjecture

There is an integer $d \geq 1$ such that:

$$
V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right) \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}}\left(\bar{r}_{v} \otimes_{\mathbb{F}} \Lambda_{\mathbb{F}}^{2} \bar{r}_{v} \otimes \cdots \otimes \Lambda_{\mathbb{F}}^{n-1} \bar{r}_{v}\right)\right)^{\oplus d} \otimes \omega^{*}
$$

where $\operatorname{Ind}{ }_{F_{v}}^{\otimes \mathbb{Q}_{p}}:=$ tensor induction from $\operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$ to $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$.

Statement of the conjecture

Conjecture

There is an integer $d \geq 1$ such that:

$$
V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right) \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}}\left(\bar{r}_{v} \otimes_{\mathbb{F}} \Lambda_{\mathbb{F}}^{2} \bar{r}_{v} \otimes \cdots \otimes \Lambda_{\mathbb{F}}^{n-1} \bar{r}_{v}\right)\right)^{\oplus d} \otimes \omega^{*}
$$

where $\operatorname{Ind} \bar{F}_{v}^{\otimes \mathbb{Q}_{p}}:=$ tensor induction from $\operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$ to $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$.

Remark

An étale (φ, Γ)-module D has an operator ψ. The conjecture can be restated as: if $f:\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{N_{1}}\right)^{\vee} \rightarrow D$ is a contin., Γ-equivariant, $\mathbb{F}[[X]]$-linear map sending F^{\vee} to ψ, then f uniquely factors through the (φ, Γ)-module of the above tensor induction.

(1) Introduction

(2) Statement of the main conjecture

(3) Some results for GL_{2}

Hypothesis on F, G, \bar{r}, U^{V}

Hypothesis on F, G, \bar{r}, U^{v}

Till the end of the talk: $n=2, F_{v} / \mathbb{Q}_{p}$ unramified of degree $f \geq 1$.

Hypothesis on F, G, \bar{r}, U^{v}

Till the end of the talk: $n=2, F_{v} / \mathbb{Q}_{p}$ unramified of degree $f \geq 1$. Need the following extra assumptions (some of them standard):

Hypothesis on F, G, \bar{r}, U^{V}

Till the end of the talk: $n=2, F_{v} / \mathbb{Q}_{p}$ unramified of degree $f \geq 1$.
Need the following extra assumptions (some of them standard):

- F / F^{+}unramified, p inert in F^{+}(the latter for simplicity)

Hypothesis on F, G, \bar{r}, U^{V}

Till the end of the talk: $n=2, F_{v} / \mathbb{Q}_{p}$ unramified of degree $f \geq 1$.
Need the following extra assumptions (some of them standard):

- F / F^{+}unramified, p inert in F^{+}(the latter for simplicity)
- G quasi-split at all finite places of F^{+}

Hypothesis on F, G, \bar{r}, U^{V}

Till the end of the talk: $n=2, F_{v} / \mathbb{Q}_{p}$ unramified of degree $f \geq 1$.
Need the following extra assumptions (some of them standard):

- F / F^{+}unramified, p inert in F^{+}(the latter for simplicity)
- G quasi-split at all finite places of F^{+}
- $\left.\bar{r}\right|_{\operatorname{Gal}(\bar{F} / F(\sqrt[p]{1}))}$ adequate and \bar{r}_{w} unramified if w inert in F

Hypothesis on F, G, \bar{r}, U^{V}

Till the end of the talk: $n=2, F_{v} / \mathbb{Q}_{p}$ unramified of degree $f \geq 1$.
Need the following extra assumptions (some of them standard):

- F / F^{+}unramified, p inert in F^{+}(the latter for simplicity)
- G quasi-split at all finite places of F^{+}
- $\left.\bar{r}\right|_{\operatorname{Gal}(\bar{F} / F(\sqrt[p]{1}))}$ adequate and \bar{r}_{w} unramified if w inert in F
- weak gener. assumptions on \bar{r}_{w} for $w \neq v$ when \bar{r}_{w} ramifies

Hypothesis on F, G, \bar{r}, U^{V}

Till the end of the talk: $n=2, F_{v} / \mathbb{Q}_{p}$ unramified of degree $f \geq 1$.
Need the following extra assumptions (some of them standard):

- F / F^{+}unramified, p inert in F^{+}(the latter for simplicity)
- G quasi-split at all finite places of F^{+}
- $\left.\bar{r}\right|_{\operatorname{Gal}(\bar{F} / F(\sqrt[p]{1}))}$ adequate and \bar{r}_{w} unramified if w inert in F
- weak gener. assumptions on \bar{r}_{w} for $w \neq v$ when \bar{r}_{w} ramifies
- $U^{v}=\prod_{w \neq v} U_{w}^{v}$ with $\left\{\begin{array}{l}U_{w}^{v} \text { max. hyperspecial if } w \text { is inert in } F \\ \end{array}\right.$

Hypothesis on F, G, \bar{r}, U^{v}

Till the end of the talk: $n=2, F_{v} / \mathbb{Q}_{p}$ unramified of degree $f \geq 1$.
Need the following extra assumptions (some of them standard):

- F / F^{+}unramified, p inert in F^{+}(the latter for simplicity)
- G quasi-split at all finite places of F^{+}
- $\left.\bar{r}\right|_{\operatorname{Gal}(\bar{F} / F(\sqrt[p]{1}))}$ adequate and \bar{r}_{w} unramified if w inert in F
- weak gener. assumptions on \bar{r}_{w} for $w \neq v$ when \bar{r}_{w} ramifies
- $U^{v}=\prod_{w \neq v} U_{w}^{v}$ with $\left\{\begin{array}{l}U_{w}^{v} \text { max. hyperspecial if } w \text { is inert in } F \\ U_{w}^{v} \subseteq \mathrm{GL}_{2}\left(\mathcal{O}_{F_{w}^{+}}\right) \text {if } w \text { is split in } F \text { with }\end{array}\right.$

Hypothesis on F, G, \bar{r}, U^{V}

Till the end of the talk: $n=2, F_{v} / \mathbb{Q}_{p}$ unramified of degree $f \geq 1$.
Need the following extra assumptions (some of them standard):

- F / F^{+}unramified, p inert in F^{+}(the latter for simplicity)
- G quasi-split at all finite places of F^{+}
- $\left.\bar{r}\right|_{\operatorname{Gal}(\bar{F} / F(\sqrt[p]{1}))}$ adequate and \bar{r}_{w} unramified if w inert in F
- weak gener. assumptions on \bar{r}_{w} for $w \neq v$ when \bar{r}_{w} ramifies

$$
\text { - } U^{v}=\prod_{w \neq v} U_{w}^{v} \text { with }\left\{\begin{array}{l}
U_{w}^{v} \text { max. hyperspecial if } w \text { is inert in } F \\
U_{w}^{v} \subseteq \mathrm{GL}_{2}\left(\mathcal{O}_{F_{w}^{+}}\right) \text {if } w \text { is split in } F \text { with } \\
U_{w}^{v}=\mathrm{GL}_{2}\left(\mathcal{O}_{F_{w}^{+}}\right) \text {if } w \text { split }+\bar{r}_{w} \text { unram. }
\end{array}\right.
$$

Hypothesis on \bar{r}_{v}

Hypothesis on \bar{r}_{v}

Fix an embedding $\mathbb{F}_{p^{2 f}} \hookrightarrow \mathbb{F}$ and let $\omega_{f}, \omega_{2 f}:=$ associated Serre's fundamental charac. of level $f, 2 f$ of inertia sgp $I_{v} \subseteq \operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$. Let $f^{\prime}:=\operatorname{Max}(2 f, 10)$.

Hypothesis on \bar{r}_{v}

Fix an embedding $\mathbb{F}_{p^{2 f}} \hookrightarrow \mathbb{F}$ and let $\omega_{f}, \omega_{2 f}:=$ associated Serre's fundamental charac. of level $f, 2 f$ of inertia sgp $I_{v} \subseteq \operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$. Let $f^{\prime}:=\operatorname{Max}(2 f, 10)$.

We assume that \bar{r}_{V} is semi-simple and such that:

Hypothesis on \bar{r}_{v}

Fix an embedding $\mathbb{F}_{p^{2 f}} \hookrightarrow \mathbb{F}$ and let $\omega_{f}, \omega_{2 f}:=$ associated Serre's fundamental charac. of level $f, 2 f$ of inertia sgp $I_{v} \subseteq \operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$. Let $f^{\prime}:=\operatorname{Max}(2 f, 10)$.

We assume that \bar{r}_{v} is semi-simple and such that:

- \bar{r}_{v} reducible: $\left.\bar{\rho}\right|_{\iota_{V}} \cong\left(\begin{array}{cc}\omega_{f}^{\left(r_{0}+1\right)+\cdots+p^{f-1}\left(r_{f-1}+1\right)} & 0 \\ 0 & 1\end{array}\right) \otimes \omega_{f}^{*}$ for some r_{i} with $f^{\prime}-1 \leq r_{i} \leq p-2-f^{\prime}\left(\Rightarrow p>2 f^{\prime}\right)$

Hypothesis on \bar{r}_{v}

Fix an embedding $\mathbb{F}_{p^{2 f}} \hookrightarrow \mathbb{F}$ and let $\omega_{f}, \omega_{2 f}:=$ associated Serre's fundamental charac. of level $f, 2 f$ of inertia sgp $I_{v} \subseteq \operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$. Let $f^{\prime}:=\operatorname{Max}(2 f, 10)$.

We assume that \bar{r}_{V} is semi-simple and such that:

- \bar{r}_{v} reducible: $\left.\bar{\rho}\right|_{\iota_{v}} \cong\left(\begin{array}{cc}\omega_{f}^{\left(r_{0}+1\right)+\cdots+p^{f-1}\left(r_{f-1}+1\right)} & 0 \\ 0 & 1\end{array}\right) \otimes \omega_{f}^{*}$ for some r_{i} with $f^{\prime}-1 \leq r_{i} \leq p-2-f^{\prime}\left(\Rightarrow p>2 f^{\prime}\right)$
- \bar{r}_{v} irreducible: $\left.\bar{\rho}\right|_{v} \cong\left(\begin{array}{cc}\omega_{2 f}^{\left(r_{0}+1\right)+\cdots+p^{f-1}\left(r_{f-1}+1\right)} & 0 \\ 0 & \omega_{2 f}^{p^{f}(\text { same })}\end{array}\right) \otimes \omega_{f}^{*}$ for $f^{\prime} \leq r_{0} \leq p-1-f^{\prime}$ and $f^{\prime}-1 \leq r_{i} \leq p-2-f^{\prime}$ if $i>0$.

Hypothesis on \bar{r}_{v}

Fix an embedding $\mathbb{F}_{p^{2 f}} \hookrightarrow \mathbb{F}$ and let $\omega_{f}, \omega_{2 f}:=$ associated Serre's fundamental charac. of level $f, 2 f$ of inertia sgp $I_{v} \subseteq \operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$. Let $f^{\prime}:=\operatorname{Max}(2 f, 10)$.

We assume that \bar{r}_{V} is semi-simple and such that:

- \bar{r}_{v} reducible: $\left.\bar{\rho}\right|_{\iota_{v}} \cong\left(\begin{array}{cc}\omega_{f}^{\left(r_{0}+1\right)+\cdots+p^{f-1}\left(r_{f-1}+1\right)} & 0 \\ 0 & 1\end{array}\right) \otimes \omega_{f}^{*}$ for some r_{i} with $f^{\prime}-1 \leq r_{i} \leq p-2-f^{\prime}\left(\Rightarrow p>2 f^{\prime}\right)$
- \bar{r}_{v} irreducible: $\left.\bar{\rho}\right|_{v} \cong\left(\begin{array}{cc}\omega_{2 f}^{\left(r_{0}+1\right)+\cdots+p^{f-1}\left(r_{f-1}+1\right)} & 0 \\ 0 & \omega_{2 f}^{p^{f}(\text { same })}\end{array}\right) \otimes \omega_{f}^{*}$ for $f^{\prime} \leq r_{0} \leq p-1-f^{\prime}$ and $f^{\prime}-1 \leq r_{i} \leq p-2-f^{\prime}$ if $i>0$.
(May-be this strong genericity assumption on \bar{r}_{v} can be improved.)

Main result

Main result

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \geq 1$ such that:

$$
V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right) \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)^{\oplus d} \otimes \omega^{*}
$$

Main result

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \geq 1$ such that:

$$
V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right) \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)^{\oplus d} \otimes \omega^{*}
$$

Remark

Although $V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)$ only depends on \bar{r}_{v}, we do not know if the $\mathrm{GL}_{2}\left(F_{v}\right)$-representation $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ only depends on \bar{r}_{v}.

Main result

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \geq 1$ such that:

$$
V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right) \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)^{\oplus d} \otimes \omega^{*}
$$

Remark

Although $V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)$ only depends on \bar{r}_{v}, we do not know if the $\mathrm{GL}_{2}\left(F_{v}\right)$-representation $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ only depends on \bar{r}_{v}.

The proof of Theorem 2 is divided into two steps (we ignore $\otimes \omega^{*}$):

Main result

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \geq 1$ such that:

$$
V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right) \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)^{\oplus d} \otimes \omega^{*}
$$

Remark

Although $V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)$ only depends on \bar{r}_{V}, we do not know if the $\mathrm{GL}_{2}\left(F_{v}\right)$-representation $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ only depends on \bar{r}_{v}.

The proof of Theorem 2 is divided into two steps (we ignore $\otimes w^{*}$):
Step 1: There is an injection $\left(\operatorname{Ind}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)^{\oplus d} \hookrightarrow V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)$.

Main result

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \geq 1$ such that:

$$
V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{r}\right]\right) \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p_{V}}}{ }_{r_{v}}\right)^{\oplus d} \otimes \omega^{*} .
$$

Remark

Although $V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)$ only depends on \bar{r}_{V}, we do not know if the $\mathrm{GL}_{2}\left(F_{v}\right)$-representation $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ only depends on \bar{r}_{v}.

The proof of Theorem 2 is divided into two steps (we ignore $\otimes \omega^{*}$):
Step 1: There is an injection $\left(\operatorname{Ind}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{V}\right)^{\oplus d} \hookrightarrow V\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)$.
Step 2: $\operatorname{dim}_{\mathbb{F}} V\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{r}\right]\right)$ is finite and bounded by $2^{f} d$.

Proof of Theorem 2: Step 1

Proof of Theorem 2: Step 1

$$
\text { Let } Z:=F_{v}^{\times}, K:=\mathrm{GL}_{2}\left(\mathcal{O}_{F_{v}}\right) \text { and } K(1):=1+p M_{2}\left(\mathcal{O}_{F_{v}}\right) \text {. }
$$

Proof of Theorem 2: Step 1

$$
\text { Let } Z:=F_{v}{ }^{\times}, K:=\mathrm{GL}_{2}\left(\mathcal{O}_{F_{v}}\right) \text { and } K(1):=1+p M_{2}\left(\mathcal{O}_{F_{v}}\right) \text {. }
$$

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen,
B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \geq 1$ and an explicit representation D_{0} of $K Z$ over \mathbb{F} only depending on \bar{r}_{v} such that $S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{K(1)} \cong D_{0}^{\oplus d}$.

Proof of Theorem 2: Step 1

$$
\text { Let } Z:=F_{v}{ }^{\times}, K:=G L_{2}\left(\mathcal{O}_{F_{v}}\right) \text { and } K(1):=1+p M_{2}\left(\mathcal{O}_{F_{v}}\right) \text {. }
$$

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \geq 1$ and an explicit representation D_{0} of $K Z$ over \mathbb{F} only depending on \bar{r}_{v} such that $S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{K(1)} \cong D_{0}^{\oplus d}$.

Let $I \subseteq K:=$ Iwahori, $I(1) \subseteq I:=$ pro- p-Iwahori, $\mathfrak{n}:=\left(\begin{array}{ll}0 & 1 \\ p & 0\end{array}\right) I Z=$ normalizer of $I(1)$.

Proof of Theorem 2: Step 1

$$
\text { Let } Z:=F_{v}{ }^{\times}, K:=G L_{2}\left(\mathcal{O}_{F_{v}}\right) \text { and } K(1):=1+p M_{2}\left(\mathcal{O}_{F_{v}}\right) \text {. }
$$

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \geq 1$ and an explicit representation D_{0} of $K Z$ over \mathbb{F} only depending on \bar{r}_{v} such that $S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{K(1)} \cong D_{0}^{\oplus d}$.

Let $I \subseteq K:=$ Iwahori, $I(1) \subseteq I:=$ pro- p-Iwahori, $\mathfrak{n}:=\left(\begin{array}{ll}0 & 1 \\ p & 0\end{array}\right) I Z=$ normalizer of $I(1)$. Choose an action of \mathfrak{n} on $D_{0}^{I(1)}$ inside D_{0}.

Proof of Theorem 2: Step 1

$$
\text { Let } Z:=F_{v}^{\times}, K:=\mathrm{GL}_{2}\left(\mathcal{O}_{F_{v}}\right) \text { and } K(1):=1+p M_{2}\left(\mathcal{O}_{F_{v}}\right) \text {. }
$$

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Pas̆kūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \geq 1$ and an explicit representation D_{0} of $K Z$ over \mathbb{F} only depending on \bar{r}_{v} such that $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{r}\right]^{K(1)} \cong D_{0}^{\oplus d}$.

Let $I \subseteq K:=$ Iwahori, $I(1) \subseteq I:=$ pro- p-Iwahori, $\mathfrak{n}:=\left(\begin{array}{cc}0 & 1 \\ p & 0\end{array}\right) I Z=$ normalizer of $I(1)$. Choose an action of \mathfrak{n} on $D_{0}^{\prime(1)}$ inside D_{0}.

Theorem 4

Let π be a smooth admissible representation of $\mathrm{GL}_{2}\left(F_{v}\right)$ over \mathbb{F} such that $\left(\pi^{\prime(1)} \hookrightarrow \pi^{K(1)}\right) \cong\left(D_{0}^{\prime(1)} \hookrightarrow D_{0}\right)^{\oplus d}$ (compatibly with \mathfrak{n} and $K Z$). Then there is an injection $\left.\left.\left(\mid \operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)\right|_{\left.\right|_{v} d} ^{\oplus d} \hookrightarrow V(\pi)\right|_{v}$.

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$-submodule $M(\pi)$ in $\pi^{N_{1}}$ preserved by \mathbb{Z}_{p}^{\times}such that $\left.\left.V(M(\pi))\right|_{I_{v}} \cong\left(\operatorname{Ind}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)\right|_{I_{v}} ^{\oplus d}$.

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$-submodule $M(\pi)$ in $\pi^{N_{1}}$ preserved by \mathbb{Z}_{p}^{\times}such that $\left.\left.V(M(\pi))\right|_{I_{v}} \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)\right|_{I_{v}} ^{\oplus d}$. (Only need $2 f$ instead of $f^{\prime}=\operatorname{Max}(2 f, 10)$ in the bounds on the r_{i}.)

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$-submodule $M(\pi)$ in $\pi^{N_{1}}$ preserved by \mathbb{Z}_{p}^{\times}such that $\left.\left.V(M(\pi))\right|_{I_{v}} \cong\left(\operatorname{Ind}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)\right|_{I_{v}} ^{\oplus d}$. (Only need $2 f$ instead of $f^{\prime}=\operatorname{Max}(2 f, 10)$ in the bounds on the r_{i}.)

Theorem 5 (Dotto-Le + B.-H.-H.-M.-S.)

(i) There is an explicit action of \mathfrak{n} on $D_{0}^{l(1)}$, only depending on \bar{r}_{v}, such that there is an ($\mathfrak{n}, K Z$)-equivariant isomorphism:

$$
\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{l(1)} \hookrightarrow S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{K(1)}\right) \cong\left(D_{0}^{I(1)} \hookrightarrow D_{0}\right)^{\oplus d}
$$

Proof of Theorem 2: Step 1

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$-submodule $M(\pi)$ in $\pi^{N_{1}}$ preserved by \mathbb{Z}_{p}^{\times}such that $\left.\left.V(M(\pi))\right|_{I_{v}} \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)\right|_{I_{v}} ^{\oplus d}$. (Only need $2 f$ instead of $f^{\prime}=\operatorname{Max}(2 f, 10)$ in the bounds on the r_{i}.)

Theorem 5 (Dotto-Le + B.-H.-H.-M.-S.)

(i) There is an explicit action of \mathfrak{n} on $D_{0}^{\prime(1)}$, only depending on \bar{r}_{v}, such that there is an ($\mathfrak{n}, K Z$)-equivariant isomorphism:

$$
\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{l(1)} \hookrightarrow S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{K(1)}\right) \cong\left(D_{0}^{l(1)} \hookrightarrow D_{0}\right)^{\oplus d}
$$

(ii) For this action of \mathfrak{n} we actually have:

$$
V\left(M\left(S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)\right) \cong\left(\operatorname{lnd}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \bar{r}_{v}\right)^{\oplus d}
$$

Proof of Theorem 2: Step 2

Proof of Theorem 2: Step 2

Let:

- $Z(1):=1+p \mathcal{O}_{F_{v}}=$ pro- p-center

Proof of Theorem 2: Step 2

Let:

- $Z(1):=1+p \mathcal{O}_{F_{v}}=$ pro- p-center
- $\mathfrak{m}_{l}:=$ maximal ideal of Iwasawa algebra $\Lambda_{l}:=\mathbb{F}[[/(1) / Z(1)]]$.

Proof of Theorem 2: Step 2

Let:

- $Z(1):=1+p \mathcal{O}_{F_{v}}=$ pro- p-center
- $\mathfrak{m}_{l}:=$ maximal ideal of Iwasawa algebra $\Lambda_{l}:=\mathbb{F}[[/(1) / Z(1)]]$.

If π is a smooth representation of $\mathrm{GL}_{2}\left(F_{V}\right)$ over \mathbb{F} with a central character, then $\pi^{\prime(1)}=\pi\left[\mathfrak{m}_{l}\right]$ and π is admissible if and only if $\operatorname{dim}_{\mathbb{F}} \pi\left[\mathfrak{m}_{l}\right]<\infty$.

Proof of Theorem 2: Step 2

Let:

- $Z(1):=1+p \mathcal{O}_{F_{v}}=$ pro- p-center
- $\mathfrak{m}_{l}:=$ maximal ideal of Iwasawa algebra $\Lambda_{l}:=\mathbb{F}[[/(1) / Z(1)]]$.

If π is a smooth representation of $\mathrm{GL}_{2}\left(F_{v}\right)$ over \mathbb{F} with a central character, then $\pi^{l(1)}=\pi\left[\mathfrak{m}_{l}\right]$ and π is admissible if and only if $\operatorname{dim}_{\mathbb{F}} \pi\left[\mathfrak{m}_{l}\right]<\infty$.

Theorem 6

Let π be a smooth admissible representation of $\mathrm{GL}_{2}\left(F_{v}\right)$ over \mathbb{F} with a central character such that for any $\chi: I \rightarrow \mathbb{F}^{\times}$appearing in $\pi\left[\mathfrak{m}_{l}\right]$:

$$
\left[\pi\left[\mathfrak{m}_{l}\right]: \chi\right]=\left[\pi\left[\mathfrak{m}_{l}^{3}\right]: \chi\right] .
$$

Then $\operatorname{dim}_{\mathbb{F}} V(\pi) \leq \operatorname{dim}_{\mathbb{F}} \pi\left[\mathfrak{m}_{l}\right]$, in particular $V(\pi)$ is finite dimensional.

Proof of Theorem 2: Step 2

Proof of Theorem 6:

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Λ_{l}-module π^{\vee} is generated by at most $r:=\operatorname{dim}_{\mathbb{F}} \pi\left[\mathfrak{m}_{l}\right]$ elements.

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Λ_{l}-module π^{\vee} is generated by at most $r:=\operatorname{dim}_{\mathbb{F}} \pi\left[\mathfrak{m}_{l}\right]$ elements.
For $0 \leq i \leq f-1$ set $\left\{\begin{array}{l}X_{i}:=\sum_{\lambda \in \mathbb{F}_{p^{f}}^{\times}} \lambda^{-p^{i}}\left(\begin{array}{cc}1 & {[\lambda]} \\ 0 & 1\end{array}\right) \\ Y_{i}:=\sum_{\lambda \in \mathbb{F}_{p^{f}}^{\times}} \lambda^{-p^{i}}\left(\begin{array}{cc}1 & 0 \\ p[\lambda] & 1\end{array}\right)\end{array} \in \Lambda_{l}\right.$.

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Λ_{l}-module π^{\vee} is generated by at most $r:=\operatorname{dim}_{\mathbb{F}} \pi\left[\mathfrak{m}_{l}\right]$ elements.
For $0 \leq i \leq f-1$ set $\left\{\begin{array}{l}X_{i}:=\sum_{\lambda \in \mathbb{F}_{p^{f}}^{\times}} \lambda^{-p^{i}}\left(\begin{array}{cc}1 & {[\lambda]} \\ 0 & 1\end{array}\right) \\ Y_{i}:=\sum_{\lambda \in \mathbb{F}_{p} \times} \lambda^{-p^{i}}\left(\begin{array}{cc}1 & 0 \\ p[\lambda] & 1\end{array}\right)\end{array} \in \Lambda_{/}\right.$.
Note that $\mathbb{F}\left[\left[N_{0}\right]\right] \cong \mathbb{F}\left[\left[X_{0}, \ldots, X_{f-1}\right]\right]$.

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Λ_{l}-module π^{\vee} is generated by at most $r:=\operatorname{dim}_{\mathbb{F}} \pi\left[\mathfrak{m}_{l}\right]$ elements.
For $0 \leq i \leq f-1$ set $\left\{\begin{array}{l}X_{i}:=\sum_{\lambda \in \mathbb{F}_{p^{f}}^{\times}} \lambda^{-p^{i}}\left(\begin{array}{cc}1 & {[\lambda]} \\ 0 & 1\end{array}\right) \\ Y_{i}:=\sum_{\lambda \in \mathbb{F}_{p^{f}}^{\times}} \lambda^{-p^{i}}\left(\begin{array}{c}1 \\ p[\lambda] \\ p[\lambda]\end{array}\right)\end{array} \in \Lambda_{l}\right.$.
Note that $\mathbb{F}\left[\left[N_{0}\right]\right] \cong \mathbb{F}\left[\left[X_{0}, \ldots, X_{f-1}\right]\right]$.

Proposition 2

The hyp. on π in Thm. 6 implies that the action of $\mathrm{gr}_{\mathfrak{m}_{l}} \Lambda_{I}$ on $\mathrm{gr}_{\mathfrak{m}_{l}} \pi^{\vee}$ factors through the abelian quotient $\mathbb{F}\left[\left(X_{i}, Y_{i}\right)_{i}\right] /\left(X_{i} Y_{i}\right)$ of $\mathrm{gr}_{\mathrm{m}_{l}} \Lambda_{l}$.

Proof of Theorem 2: Step 2

Proof of Theorem 6:

The Λ_{l}-module π^{\vee} is generated by at most $r:=\operatorname{dim}_{\mathbb{F}} \pi\left[\mathfrak{m}_{l}\right]$ elements.
For $0 \leq i \leq f-1$ set $\left\{\begin{array}{l}X_{i}:=\sum_{\lambda \in \mathbb{F}_{p^{f}}^{\times}} \lambda^{-p^{i}}\left(\begin{array}{cc}1 & {[\lambda]} \\ 0 & 1\end{array}\right) \\ Y_{i}:=\sum_{\lambda \in \mathbb{F}_{p^{f}}^{\times}} \lambda^{-p^{i}}\left(\begin{array}{c}1 \\ p[\lambda] \\ p[\lambda]\end{array}\right)\end{array} \in \Lambda_{l}\right.$.
Note that $\mathbb{F}\left[\left[N_{0}\right]\right] \cong \mathbb{F}\left[\left[X_{0}, \ldots, X_{f-1}\right]\right]$.

Proposition 2

The hyp. on π in Thm. 6 implies that the action of $\mathrm{gr}_{\mathfrak{m}_{l}} \Lambda_{I}$ on $\mathrm{gr}_{\mathfrak{m}_{l}} \pi^{\vee}$ factors through the abelian quotient $\mathbb{F}\left[\left(X_{i}, Y_{i}\right)_{i}\right] /\left(X_{i} Y_{i}\right)$ of $\mathrm{gr}_{\mathfrak{m}_{l}} \Lambda_{l}$.

Hence $\left(\mathrm{gr}_{\mathfrak{m}}, \pi^{\vee}\right)\left[1 / \Pi X_{i}\right]$ is generated by at most r elements over:

$$
\left(\mathbb{F}\left[\left(X_{i}, Y_{i}\right)_{i}\right] /\left(X_{i} Y_{i}\right)\right)\left[1 / \Pi X_{i}\right] \cong \mathbb{F}\left[\left(X_{i}\right)_{i}\right]\left[1 / \prod X_{i}\right]
$$

Proof of Theorem 2: Step 2

Endow $\pi^{\vee}\left[1 / \Pi X_{i}\right] \cong \pi^{\vee} \otimes_{\mathbb{F}\left[\left[N_{0}\right]\right]} \mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]$ with tensor product filtration for $\left\{\begin{array}{l}\mathfrak{m}_{l} \text {-adic filtration on } \pi^{\vee} \\ \left(X_{0}, \ldots, X_{f-1}\right) \text {-adic filtration on } \mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right] .\end{array}\right.$

Proof of Theorem 2: Step 2

Endow $\pi^{\vee}\left[1 / \Pi X_{i}\right] \cong \pi^{\vee} \otimes_{\mathbb{F}\left[\left[N_{0}\right]\right]} \mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]$ with tensor product filtration for $\left\{\mathfrak{m}_{l}\right.$-adic filtration on π^{\vee}
(X_{0}, \ldots, X_{f-1})-adic filtration on $\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]$.
Let $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge}:=$ corresponding completion.

Proof of Theorem 2: Step 2

Endow $\pi^{\vee}\left[1 / \Pi X_{i}\right] \cong \pi^{\vee} \otimes_{\mathbb{F}\left[\left[N_{0}\right]\right]} \mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]$ with tensor product filtration for $\left\{\begin{array}{l}\mathfrak{m}_{1} \text {-adic filtration on } \pi^{\vee} \\ \left(X_{0}, \ldots, X_{f-1}\right) \text {-adic filtration on } \mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right] \text {. }\end{array}\right.$
Let $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge}:=$ corresponding completion. It is generated by at most r elements over $\left(\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]\right)^{\wedge}$ (look at the graded modules).

Proof of Theorem 2: Step 2

Endow $\pi^{\vee}\left[1 / \Pi X_{i}\right] \cong \pi^{\vee} \otimes_{\left.\mathbb{F}\left[N_{0}\right]\right]} \mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]$ with tensor product filtration for $\left\{\begin{array}{l}\mathfrak{m}_{l} \text {-adic filtration on } \pi^{\vee} \\ \left(X_{0}, \ldots, X_{f-1}\right) \text {-adic filtration on } \mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right] \text {. }\end{array}\right.$
Let $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge}:=$ corresponding completion. It is generated by at most r elements over $\left(\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]\right)^{\wedge}$ (look at the graded modules). Let $J:=\operatorname{Ker}\left(\mathbb{F}\left[\left[N_{0}\right]\right] \xrightarrow{\text { trace }} \mathbb{F}[[X]]\right)$, hence $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J$ is generated by at most r elements over $\left(\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J \cong \mathbb{F}((X))$.

Proof of Theorem 2: Step 2

Endow $\pi^{\vee}\left[1 / \Pi X_{i}\right] \cong \pi^{\vee} \otimes_{\mathbb{F}\left[\left[N_{0}\right]\right]} \mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]$ with tensor product filtration for $\left\{\mathfrak{m}_{l}\right.$-adic filtration on π^{\vee}
$\left(X_{0}, \ldots, X_{f-1}\right)$-adic filtration on $\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]$.
Let $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge}:=$ corresponding completion. It is generated by at most r elements over $\left(\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]\right)^{\wedge}$ (look at the graded modules).
Let $J:=\operatorname{Ker}\left(\mathbb{F}\left[\left[N_{0}\right]\right] \xrightarrow{\text { trace }} \mathbb{F}[[X]]\right)$, hence $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J$ is generated by at most r elements over $\left(\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J \cong \mathbb{F}((X))$.
For any $M \subseteq \pi^{N_{1}}$ such that $\operatorname{dim}_{\mathbb{F}} M[X]<\infty$, the morphism:

$$
\left(\pi^{N_{1}}\right)^{\vee} \cong \pi^{\vee} / J \longrightarrow M^{\vee}[1 / X]
$$

factors as a surjection $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J \rightarrow M^{\vee}[1 / X]$.

Proof of Theorem 2: Step 2

Endow $\pi^{\vee}\left[1 / \Pi X_{i}\right] \cong \pi^{\vee} \otimes_{\mathbb{F}\left[\left[N_{0}\right]\right]} \mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]$ with tensor product filtration for $\left\{\mathfrak{m}_{l}\right.$-adic filtration on π^{\vee}
$\left(X_{0}, \ldots, X_{f-1}\right)$-adic filtration on $\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]$.
Let $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge}:=$ corresponding completion. It is generated by at most r elements over $\left(\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]\right)^{\wedge}$ (look at the graded modules). Let $J:=\operatorname{Ker}\left(\mathbb{F}\left[\left[N_{0}\right]\right] \xrightarrow{\text { trace }} \mathbb{F}[[X]]\right)$, hence $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J$ is generated by at most r elements over $\left(\mathbb{F}\left[\left[N_{0}\right]\right]\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J \cong \mathbb{F}((X))$.
For any $M \subseteq \pi^{N_{1}}$ such that $\operatorname{dim}_{\mathbb{F}} M[X]<\infty$, the morphism:

$$
\left(\pi^{N_{1}}\right)^{\vee} \cong \pi^{\vee} / J \longrightarrow M^{\vee}[1 / X]
$$

factors as a surjection $\left(\pi^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J \rightarrow M^{\vee}[1 / X]$.
In particular $\operatorname{dim}_{\mathbb{F}} V(\pi) \leq \operatorname{dim}_{\mathbb{F}((X))}\left(\left(\pi^{\vee}\left[1 / \Pi X_{i}\right)^{\wedge} / J\right) \leq r\right.$.

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)
The representation $S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ satisfies the hypothesis of Theorem 6 . (Only need 10 instead of $f^{\prime}=\operatorname{Max}(2 f, 10)$ in the bounds on the r_{i}.)

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ satisfies the hypothesis of Theorem 6 . (Only need 10 instead of $f^{\prime}=\operatorname{Max}(2 f, 10)$ in the bounds on the r_{i}.)

Thus $\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J$ is finite dimensional over $\mathbb{F}((X))$.

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ satisfies the hypothesis of Theorem 6 . (Only need 10 instead of $f^{\prime}=\operatorname{Max}(2 f, 10)$ in the bounds on the r_{i}.)

Thus $\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\operatorname{dim}_{\mathbb{F}((X))}\left(\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J\right) \leq 2^{f} d$.

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ satisfies the hypothesis of Theorem 6 . (Only need 10 instead of $f^{\prime}=\operatorname{Max}(2 f, 10)$ in the bounds on the r_{i}.)

Thus $\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\operatorname{dim}_{\mathbb{F}((X))}\left(\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J\right) \leq 2^{f} d$.
Proof: \exists an I-equiv. surjection $\left.\oplus_{i=1}^{2^{f} d} \Lambda_{l}\left(\chi_{i}\right) \rightarrow\left(\operatorname{soc}_{K} S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)\right|_{l} ^{\vee}$. Λ_{l} projective \Rightarrow it lifts to $f:\left.\oplus_{i=1}^{2^{f} d} \Lambda_{l}\left(\chi_{i}\right) \longrightarrow S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right|_{l} ^{\vee}$.

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ satisfies the hypothesis of Theorem 6 . (Only need 10 instead of $f^{\prime}=\operatorname{Max}(2 f, 10)$ in the bounds on the r_{i}.)

Thus $\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\operatorname{dim}_{\mathbb{F}((X))}\left(\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J\right) \leq 2^{f} d$.
Proof: \exists an I-equiv. surjection $\left.\oplus_{i=1}^{2^{f} d} \Lambda_{l}\left(\chi_{i}\right) \rightarrow\left(\operatorname{soc}_{K} S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)\right|_{I} ^{\nu}$. Λ_{l} projective \Rightarrow it lifts to $f:\left.\oplus_{i=1}^{2^{f} d} \Lambda_{l}\left(\chi_{i}\right) \longrightarrow S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right|_{l} ^{\vee}$. By an explicit computation $\left(\operatorname{Coker}(f)\left[1 / \Pi X_{i}\right]\right)^{\wedge}=0$.

Proof of Theorem 2: Step 2

Theorem 7 (B.H.H.M.S., Spring 2020)

The representation $S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]$ satisfies the hypothesis of Theorem 6 . (Only need 10 instead of $f^{\prime}=\operatorname{Max}(2 f, 10)$ in the bounds on the r_{i}.)

Thus $\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\operatorname{dim}_{\mathbb{F}((X))}\left(\left(S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{\vee}\left[1 / \Pi X_{i}\right]\right)^{\wedge} / J\right) \leq 2^{f} d$.
Proof: \exists an I-equiv. surjection $\left.\oplus_{i=1}^{2^{f} d} \Lambda_{l}\left(\chi_{i}\right) \rightarrow\left(\operatorname{soc}_{K} S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right)\right|_{l} ^{\nu}$. Λ_{l} projective \Rightarrow it lifts to $f:\left.\oplus_{i=1}^{2^{f} d} \Lambda_{l}\left(\chi_{i}\right) \longrightarrow S\left(U^{v}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]\right|_{l} ^{\vee}$. By an explicit computation $\left(\operatorname{Coker}(f)\left[1 / \Pi X_{i}\right]\right)^{\wedge}=0$. This implies we can replace $r=\operatorname{dim}_{\mathbb{F}} S\left(U^{\vee}, \mathbb{F}\right)\left[\mathfrak{m}_{\bar{r}}\right]^{1(1)}$ by $2^{f} d$ in the proof of Thm. 6 .

