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Week 1 (September 10 and 12): Introduction

Week 2 (September 17 and 19): Classification of 2-dimensional represen-
tations of Gal(Qp/F ) over Fp; classification of weights

Week 3 (September 24 and 26): Bruhat-Tits tree and Ihara-Tits Lemma;
compact induction and the Hecke operator T

Week 4 (October 1 and 3): Classification of smooth admissible represen-
tations of GL2(Qp) over Fp; semi-simple modulo p Langlands correspondence

Week 5 (October 8 and 10): Diagrams, examples coming from represen-
tations of GL2(Qp), other examples; statement of the existence theorem and
beginning of proof: injective envelopes of weights

Week 6 (October 15 and 17): Proof of existence theorem: injective en-
velopes of diagrams

Week 7 (October 22 and 24): Results on some representations of GL2(Fq)
over Fp: principal series and injective envelopes of weights

Week 8 (October 29 and 31): Diamond weights: background and defini-
tion; Diamond diagrams I: definition
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Week 9 (November 7): Diamond diagrams II: construction

Week 10 (November 12 and 14): Diamond diagrams III: decomposition;
Back to representations of GL2(F )

Week 11 (November 19 and 21): The irreducibility theorem: sketch of
proof

Week 12 (November 26 and 28): The split Galois case

Week 13 (December 3): Open questions (not written)

1 Week 1

1.1 Introduction I

Fix p a prime number and F a finite extension of Qp. The subject of this
course is to look for a modulo p Langlands “correspondence” between on
the one side (continuous) representations of the linear group GL2(F ) over an
algebraically closed field of characteristic p (usually an algebraic closure of
Fp) and on the other side (continuous) 2-dimensional representations of the
Galois group Gal(Qp/F ) over the same field. Here Qp is an algebraic closure

of F (which is also an algebraic closure of Qp ⊆ F ) and Gal(Qp/F ) is the set

of field automorphisms of Qp fixing F pointsetwise. Before stating some of
the results that will be proved (or at least sketched) in this course, I first need
to recall briefly some well known results about Langlands correspondences
for GL1(F ) and GL2(F ).

Let me start with GL1(F ) and recall the main result of local class field
theory.

The field Qp contains a ring of integers Zp which is a local ring with

maximal ideal mZp . The field Zp/mZp is an algebraic closure of Fp and we call

it Fp. Let Gal(Fp/Fp) := {field automorphisms of Fp fixing Fp pointsetwise}.
As Gal(Qp/F ) preserves both Zp and mZp , we deduce a group morphism:

Gal(Qp/F )
α−→ Gal(Fp/Fp)

and we denote by I(Qp/F ) the kernel: the subgroup I(Qp/F ) is called the

inertia subgroup of Gal(Qp/F ). Recall that all the above groups are profinite

2



(i.e. projective limits of finite groups) and thus compact (for the projective
limit topology of the discrete topology on each finite group). The group
Gal(Fp/Fp) is pro-cyclic and topologically generated by a specific element Fr
called the Frobenius element which acts on Fp as Fr(x) = xp (x ∈ Fp). We
denote by W(Qp/F ) ⊂ Gal(Qp/F ) the subgroup of Gal(Qp/F ) of elements

that map to a finite power of Fr in Gal(Fp/Fp). It is called the Weil group
of F .

Theorem 1.1. (i) If K/F is a finite Galois extension and NK/F : K → F
is the norm map, there is a canonical group morphism:

Gal(K/F ) −→ F×/NK/F (K×)

which induces an isomorphism:

Gal(K/F )ab ∼−→ F×/NK/F (K×)

where Gal(K/F )ab is the maximal abelian quotient of Gal(K/F ).

(ii) Taking the projective limit over all K and restricting to W(Qp/F ), the
isomorphisms in (i) induce a group isomorphism:

rF : W(Qp/F )ab ∼−→ F×

where W(Qp/F )ab is the maximal abelian quotient of W(Qp/F ).

Let me briefly recall how the morphism (i) is defined. Let Kunr be the
maximal unramified extension of K inside Qp. For any K as in (i), the
above map α factors through Gal(Kunr/F ). Let Fr(Kunr/F ) ⊂ Gal(Kunr/F )
be the subset of elements w such that α(w) ∈ Z>0. The restriction map
Fr(Kunr/F ) → Gal(K/F ) turns out to be surjective. Recall that for any
finite extension L of Qp inside Qp, the ring Zp ∩ L is a local ring and that

we call a uniformizer of L any element of Zp ∩ L which is a generator of its
maximal ideal. Then the morphism in (i) of Theorem 1.1 is determined by
sending g ∈ Gal(K/F ) to the class of the element NK(ĝ)/F (π(ĝ))−1 ∈ F×

where ĝ ∈ Fr(Kunr/F ) is a lifting of g, K(ĝ) is the subfield of Kunr of ele-
ments fixed by ĝ (a finite extension of F ), π(ĝ) is a uniformizer of K(ĝ) and
NK(ĝ)/F is the norm map from K(ĝ) to F .

Theorem 1.1 has the following obvious corollary, which is local Langlands
correspondence for GL1:

Corollary 1.2. Let E be any algebraically closed field. There is a canonical
bijection between isomorphism classes of locally constant 1-dimensional rep-
resentations of W(Qp/F ) over E and isomorphism classes of locally constant
irreducible admissible representations of GL1(F ) over E.
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By definition, a locally constant representation of a topological group on
a vector space means a representation such that each vector is fixed by an
open subgroup. We also say “smooth” representation. A smooth represen-
tation is called admissible if moreover the subvector space of elements fixed
by an open subgroup is always finite dimensional (over E). Using that an
endomorphism acting on a finite dimensional E-vector space always has non-
zero eigenvectors, one easily deduces that a smooth admissible irreducible
representation of GL1(F ) over E is necessarily 1-dimensional.

Since the end of the seventies, we have:

Theorem 1.3. Let E be any algebraically closed field of characteristic 0.
There is a canonical bijection between isomorphism classes of smooth ir-
reducible 2-dimensional representations of W(Qp/F ) over E and isomor-
phism classes of smooth admissible irreducible supercuspidal representations
of GL2(F ) over E.

Theorem 1.3 involves the work of many people (Weil, Jacquet, Langlands,
Kutzko). It was extended in 1998 to GLn(F ) by Harris-Taylor and (indepen-
dently) Henniart. We write ρ for a representation of W(Qp/F ) and π for a
representation of GL2(F ). So the theorem is a correspondence ρ ↔ π. It is
a result of Casselman that any smooth irreducible representation of GLn(F )
over an algebraically closed field of characteristic zero is automatically ad-
missible, hence we can forget “admissible” in Theorem 1.3. I have now to
explain what “supercuspidal” means. Among smooth admissible representa-
tions of GL2(F ), there are very easy ones called parabolic inductions. They
are of the form:

ind
GL2(F )
B(F ) χ

where B(F ) ⊂ GL2(F ) is the subgroup of upper triangular matrices, χ :
B(F )→ E× is a locally constant character and where:

ind
GL2(F )
B(F ) χ := {f : GL2(F )→ E locally constant, f(bg) = χ(b)f(g)}

(b ∈ B(F ), g ∈ GL2(F )) with left action of GL2(F ) given by (g′f)(g) :=
f(gg′). Such representations are always smooth admissible (whatever char(E)
is) and are irreducible for “most” χ.

Definition 1.4. A smooth irreducible admissible representation of GL2(F )
over E is called supercuspidal if it is not a subquotient of a parabolic induc-
tion.
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Definition 1.4 works for all E. Finally, I have to explain how Theorem
1.1 is “incorporated” in Theorem 1.3. For a smooth irreducible (admis-
sible) representation π of GL2(F ) over E, Schur’s lemma applies, that is
F× ↪→ GL2(F ) acts on the underlying E-vector space by multiplication by a
smooth character χπ : F× → E×. Then the correspondence of Theorem 1.3,
among many other deep properties, satisfies χπ ◦ rF = det(ρ) if ρ↔ π. That
is, det(ρ) and χπ match under the correspondence of Corollary 1.5. Finally,
let us mention that Theorem 1.3 can be extended to include all smooth ir-
reducible representations of GL2(F ), not just those supercuspidal, but one
needs to introduce the Weil-Deligne group and I don’t want to go into this
(as I won’t use it in this course).

We now have a look at what happens when char(E) 6= 0. Let us first
assume that char(E) = ` with ` 6= p. Then it is a theorem of Vignéras
that Theorem 1.3 goes through without change in that case (and we can
as well forget the word “admissible” in the statement as admissibility again
follows from irreducibility). The proof is essentially a reduction modulo `
proof starting from Theorem 1.3. I won’t say more in that case and assume
now, and till the end of that course, that char(E) = p.

Then it is not an exaggeration to say: “we enter a new universe”.

We first look at the case F = Qp. As usual when one enters a new
universe, things look quite the same at the beginning: it turns out that
Theorem 1.3 goes through in that case and this was proven by Barthel-Livné
(and myself) some time ago.

Theorem 1.5. Let E be any algebraically closed field of characteristic p.
There is a canonical bijection between isomorphism classes of smooth ir-
reducible 2-dimensional representations of W(Qp/Qp) over E and isomor-
phism classes of smooth admissible irreducible supercuspidal representations
of GL2(Qp) over E.

We have the same compatibility as in the previous cases with class field
theory (Corollary 1.2). Note however that it is not known here whether we
can forget the word “admissible” as for the two other cases. Let us make
explicit the correspondence of Theorem 1.5 as it is important in this course.

Fix an embedding Fp = Zp/mZp ↪→ E and consider the character ω2 of
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I(Qp/Qp) obtained as follows:

g ∈ I(Qp/Qp) 7→
g
(
p2−1
√
p
)

p2−1
√
p
∈ µp2−1(Zp) 7→ (Zp/mZp)

× ↪→ E×

where p2−1
√
p is any (p2 − 1)-root of p. The character ω2 doesn’t depend

on the chosen root but depends on the chosen embedding. However, any
other choice of embedding gives either ω2 or ωp2 and this won’t matter in the
sequel. The characters (ω2, ωp2) were first introduced by Serre and are called
Serre’s fundamental characters of level 2. For each integer r ∈ {0, · · · , p−2}
there exists a unique smooth irreducible 2-dimensional representation ρr of
W(Qp/Qp) over E such that:

ρr|I(Qp/Qp)
∼=
(
ωr+1

2 0

0 ω
p(r+1)
2

)
and with determinant the modulo p cyclotomic character to the power r+ 1
(this representation actually extends to Gal(Qp/Qp)). Moreover any smooth

irreducible 2-dimensional representation of W(Qp/Qp) over E is isomorphic

to some ρr ⊗E χ where χ : W(Qp/Qp)→ E× is a smooth character.

Remark 1.6. In fact, up to unramified twist, we have ρr ' ind
W(Qp/Qp)

W(Qp/Qp2 )
ωr+1

2

where Qp2 is the quadratic unramified extension of Qp inside Qp (and ωr+1
2

is an extension of ωr+1
2 to W(Qp/Qp2)).

The correspondence of Theorem 1.3 in the case char(E) = p and F = Qp

is then as follows:

ρr ⊗E χ 7→ πr ⊗
(
χ ◦ r−1

Qp ◦ det
)

(1)

with:
πr :=

(
ind

GL2(Qp)

GL2(Zp)Q×p
SymrE2

)
/T.

Let me briefly explain what πr is. First, SymrE2 is the r-th symmetric
product of the standard representation E2 of GL2(Zp) (acting via its quotient
GL2(Fp) on the canonical basis of E2). Note that this is possible as E has
characteristic p. This action is extended to GL2(Zp)Q×p by sending p ∈ Q×p
to the identity. Such a representation of GL2(Zp) is called a weight. Now if

σ is a weight, the representation ind
GL2(Qp)

GL2(Zp)Q×p
σ means the E-vector space of

functions:
f : GL2(Qp)→ underlying space of σ

6



with compact support modulo Q×p (that is, with compact image in the
quotient PGL2(Qp)) and such that f(kg) = σ(k)(f(g)) (k ∈ GL2(Zp)Q×p ,
g ∈ GL2(Qp)). Such an induction is called a compact induction. As for
the parabolic induction, the (left) action of GL2(Qp) is given by (g′f)(g) :=

f(gg′). Finally, T ∈ EndGL2(Qp)

(
ind

GL2(Qp)

GL2(Zp)Q×p
SymrE2

)
is a certain entertwin-

ing operator analogous to the Hecke operator “Tp” that I won’t describe here

(in fact, one has EndGL2(Qp)

(
ind

GL2(Qp)

GL2(Zp)Q×p
SymrE2

)
= E[T ]). One important

property of the representations πr is:

Theorem 1.7. We have socGL2(Zp) πr = SymrE2 ⊕ (Symp−1−rE2 ⊗ detr).

Recall that the socle of a representation of a group G (over E) is the
maximal semi-simple subrepresentation, that is the maximal subrepresenta-
tion which is a direct sum of irreducible representations.

For F = Qp, the representations πr exhaust all irreducible supercuspidal
representations of GL2(Qp) over E× up to twist. This turns out to completely
break down when F 6= Qp.

1.2 Introduction II

I now give the main new results of that course that for most of them con-
cern the case F 6= Qp but F unramified over Qp and were all obtained in
collaboration with V. Paskunas. I will assume for simplicity that E is an
algebraic closure of Fp, but I will keep the notation E to distinguish it from
Zp/mZp . This assumption has the advantage that now, smooth finite dimen-

sional representations of W(Qp/F ) over E all extend to Gal(Qp/F ). So I will
also forget about Weil groups and only use now Galois groups.

Let me just say right away that Theorem 1.4 completely breaks down in
that case: there are many more supercuspidal representations of Gal(Qp/F )

over E than 2-dimensional smooth irreducible representations of Gal(Qp/F )
over E. Although no full classification of supercuspidal is known so far when
F 6= Qp, I will build many of them in that course, and relate some of them
to 2-dimensional smooth irreducible representations of Gal(Qp/F ) over E.

I introduce now some notations that I will keep throughout. Let OF be
the ring of integers in F . Recall OF is a local principal ring, that is every
ideal can be generated by one element and there is a unique maximal ideal
mF . As mF is maximal, OF/mF is a field which is a finite extension of Fp,
therefore isomorphic to Fq, q = pf for an integer f ∈ Z≥1. I assume till the
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end of this introduction F unramified, that is [F : Qp] = f (and will tell
when this assumption is actually useless). In the unramified case, p is still a
generator of mF .

I let K := GL2(OF ), I ⊂ K the subgroup of upper triangular matrices
modulo p, I1 ⊂ I its maximal pro-p subgroup, that is the subgroup of up-
per unipotent matrices modulo p, K1 ⊂ I1 the subgroup of matrices that
are congruent to ( 1 0

0 1 ) modulo p and N ⊂ GL2(F ) the normalizer of I in
GL2(F ), that is the subgroup of GL2(F ) generated by K, F× and the matrix
Π :=

(
0 1
p 0

)
. If χ : I → E is a smooth character, I let χs := χ(Π · Π−1) and

note that ΠgΠ−1 ∈ I if g ∈ I.

The main idea to construct representations π of GL2(F ) over E is to first
construct the triple (πK1 , πI1 , can) where πK1 (resp. πI1) denotes the sub-
vector space (of the underlying space of π) of elements fixed by K1 (resp.
I1). More precisely πK1 is seen as a representation of K/K1 = GL2(Fq), πI1
is seen as a representation of N (as N also normalizes I1) and can is the
canonical injection πI1 ⊂ πK1 .

I try now to formalize this: I call a basic diagram any triple D :=
(D0, D1, r) where D0 is a smooth representation of KF× over E such that
p ∈ F× acts trivially, D1 a smooth representation of N over E and r : D1 ↪→
D0 an injection inducing an IF×-equivariant isomorphism D1

∼→ DI1
0 . For

instance (πK1 , πI1 , can) is such a diagram. A basic diagram is said to be
irreducible if it doesn’t contain any non-zero strict basic subdiagram.

Theorem 1.8. Assume p > 2. Let D = (D0, D1, r) be a basic diagram and
assume DK1

0 is finite dimensional.

(i) There exists at least one smooth admissible representation π of GL2(F )
over E such that:

(a) socK π = socK D0

(b) (πK1 , πI1 , can) contains D

(c) π is generated by D0.

(ii) Assume D is irreducible. Then any smooth admissible π satisfying (a),
(b) and (c) is irreducible.

This theorem has to be thought of as an existence theorem only, as unic-
ity in (i) is wrong in general. Moreover, it has nothing to do with F un-
ramified over Qp and works for any finite extension of Qp. The idea (due
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to Paskunas) is to build π inside the injective envelope injK D0 of the K-
representation D0 in the category of smooth representations of K over E.
Roughly speaking, the main point is to prove one can non-canonically ex-
tend the action of I on injK D0 to an action of N such that there exists an
injection (D0, D1, r) ↪→ (injK D0, injK D0, id), which is possible as injective
envelopes are very flexible. Then the two compatible actions of K and N on
the same vector space injK D0 glue to give an action of GL2(F ) (this is Ihara-
Tits Lemma) and π is defined as the subspace generated by D0. The whole
process is highly non-canonical both because the action of K on injK D0 is
only defined up to non-unique isomorphism and because the extension to
an action of N involves choices. The converse to (ii) is wrong in general:
reducible diagrams can lead to π as in (i) being irreducible.

Let me now fix an irreducible 2-dimensional representation ρ of Gal(Qp/F )
over E. There is a description of ρ in terms of fundamental characters anal-
ogous to the one above for F = Qp. Buzzard, Diamond and Jarvis, in their
quest for a generalization of Serre’s conjecture to totally real field, have asso-
ciated to ρ a set of weights D(ρ), that is a set of irreducible representations
of K over E.

Example 1.9. If F = Qp and ρ = ρr with 0 ≤ r ≤ p − 1, then the set of
weights D(ρr) is precisely {SymrE2, Symp−1−rE2⊗detr}, that is the weights
in the K-socle of πr by Theorem 1.7.

We won’t however consider in that course all irreducible ρ but only those
which are generic (I will give a precise definition below).

Example 1.10. If F = Qp then ρ is generic provided 1 ≤ r ≤ p− 2.

Most of irreducible ρ are generic. For such ρ, one has exactly |D(ρ)| = 2f .
Because of Theorem 1.7 (and because of the conjectures of Buzzard, Diamond
and Jarvis), it is natural to get primarily interested in those irreducible su-
percuspidal π such that their K-socle is the direct sum of the weights of
D(ρ) (when f > 1, using Theorem 1.8 one can build many irreducible super-
cuspidal that don’t satisfy such a property for any ρ). We first build basic
diagrams such that socK D0 satisfies this property:

Theorem 1.11. Fix an irreducible generic Galois representation ρ.

(i) There exists a unique finite dimensional representation D0(ρ) of
GL2(Fq) over E such that:

(a) socGL2(Fq) D0(ρ) ' ⊕σ∈D(ρ)σ
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(b) each irreducible σ in D(ρ) only occurs once as a Jordan-Hölder
factor of D0(ρ) (hence in the socle)

(c) D0(ρ) is maximal (for inclusion) for properties (a) and (b).

(ii) Each Jordan-Hölder factor of D0(ρ) only occurs once in D0(ρ).

(iii) As an I-representation, one has:

D0(ρ)I1 '
⊕

certain (χ,χs)
χ6=χs

χ⊕ χs

(in particular D0(ρ)I1 is stable under χ 7→ χs).

This is a theorem on representation theory of finite groups. The assertion
(i) is a general fact that works for any set of distinct weights (not just the
sets D(ρ)) but (ii) seems quite specific to the combinatorics of the weights
of D(ρ).

Example 1.12. If F = Qp and ρ = ρr with 1 ≤ r ≤ p − 2, then we have
D0(ρr) = Er ⊕ (Ep−1−r ⊗ detr) where Es is an extension 0 → SymsE2 →
Es → Symp−3−s ⊗ dets+1 → 0 (Es = SymsE2 if p− 3− s < 0).

Let me now go back to the setting of the first theorem and assume that
p acts trivially on det(ρ) (via the local reciprocity map rF of Theorem 1.1)
which is always possible up to twist. Using (ii) and (iii) of Theorem 1.1,
one can uniquely extend the action of I on D0(ρ)I1 to an action of N . I
denote by D1(ρ) the resulting representation of N . The idea is then to use
D0(ρ) and D1(ρ) to associate a basic diagram to ρ but one needs to choose
an IF×-equivariant injection r : D1(ρ) ↪→ D0(ρ). Up to isomorphisms of
basic diagrams, it turns out there are infinitely many such injections as soon
as f > 1! We denote by D(ρ, r) := (D0(ρ), D1(ρ), r) any such basic diagram:
it is not irreducible in general.

Example 1.13. If F = Qp and ρ = ρr with 1 ≤ r ≤ p − 2, then there is
a unique possible Dr := D(ρr) (sorry for the conflict of notations with the
r’s!) and we will see that (πK1

r , πI1r , can) ∼= Dr.

I would have liked to state in general that there exists a unique (up
to isomorphism) smooth admissible representation π(ρ, r) of GL2(F ) over
E which is generated by its K1-invariant vectors and which is such that
(π(ρ, r)K1 , π(ρ, r)I1 , can) ∼= D(ρ, r). However, when f > 1, we could prove
neither unicity nor existence. The only result we have so far is the following
corollary to Theorem 1.8:
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Corollary 1.14. (i) There exists a smooth admissible representation π of
GL2(F ) over E such that:
(a) socK π =

⊕
σ∈D(ρ) σ

(b) (πK1 , πI1 , can) contains D(ρ, r)
(c) π is generated by D0(ρ).

(ii) If D(ρ, r) and D(ρ, r′) are two non-isomorphic basic diagrams associ-
ated to ρ, and π, π′ are as in (i) respectively for D(ρ, r) and D(ρ, r′),
then π and π′ are non-isomorphic.

My student Hu recently proved that a π satisfying (a), (b), (c) as in (i)
of Corollary 1.14 is actually not unique.

We can at least prove an irreducibility result :

Theorem 1.15. Any π as in (i) of Theorem 1.8 is irreducible and is a
supercuspidal representation.

Theorem 1.15 uses in a crucial way the fact F is unramified over Qp and
is the most involved result of this course. Note that one can’t use (ii) of
Theorem 1.8 as the basic diagrams D(ρ, r) are not irreducible in general.

2 Week 2

2.1 Classification of 2-dimensional representations of
Gal(Qp/F ) over Fp

We let F be a finite extension of Qp, OF the ring of integers in F , mF its
maximal ideal and Fq = Fpf its residue fieldOF/mF . We fix $F a uniformizer
of F . We have [F : Qp] = ef where e ∈ Z≥1 is called the ramification in-
dex. Recall E is an algebraic closure of Fp and Qp is an algebraic closure of F .

We have an exact sequence of profinite groups:

I(Qp/F ) ↪→ Gal(Qp/F ) � Gal(Fp/Fq)

where I(Qp/F ) is the inertia subgroup of Gal(Qp/F ) and Gal(Fp/Fq) ⊂
Gal(Fp/Fp) is the image of Gal(Qp/F ) in Gal(Fp/Fp). Let I(Qp/F )w be

the maximal pro-p subgroup of I(Qp/F ) (called wild inertia). Recall that for

any n ∈ Z≥1, the subgroup {x ∈ F×p , xp
n−1 = 1} is just F×pn where Fpn ⊂ Fp is

the unique subfield of cardinality pn. If A is a commutative group and m an
integer, µm(A) denotes the subgroup of elements a such that am = 1A (with
multiplicative notations).
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Lemma 2.1. For n ∈ Z≥1, the maps I(Qp/F ) → F×pn obtained by sending

g ∈ I(Qp/F ) to the image of:

g
(
pn−1
√
$F

)
pn−1
√
$F

∈ µpn−1(Zp)

in F×p = (Zp/mZp)
× are well defined (and independent of any choice) and

induce an isomorphism of topological groups:

I(Qp/F )/I(Qp/F )w
∼−→ lim

←−
n

F×pn

where the projective limit is taken with respect to the norm maps F×pnm → F×pn.

Proof. Let F unr be the infinite extension of F obtained by adding all m-
roots of elements of O×F for all m prime to p, then one has I(Qp/F )

∼→
Gal(Qp/F

unr). Let Fm be the infinite extension of F unr obtained by adding
all m-roots of $F for some m prime to p. Then one has:

I(Qp/F )/I(Qp/F )w
∼−→ lim

←−
m

Gal(Fm/F unr)

where the transition maps are restriction maps (the quotient on the left is

called tame inertia). But the map g 7→ g( m
√
$F )

m
√
$F

induces a group isomorphism

Gal(Fm/F unr) ' µm(Zp) which is independent both of the choice of the
uniformizer $F and of the m-root m

√
$F (all this because the m-root of a

element of O×F is in F unr and therefore g ∈ Gal(Qp/F
unr) acts trivially on

it). As m is prime to p, reduction modulo mZp induces a group isomorphism

µm(Zp)
∼→ µm(Fp) (this is Hensel’s Lemma applied to P (x) = xm − 1).

Therefore, one has I(Qp/F )/I(Qp/F )w
∼−→ lim

←−
m

µm(Fp) where the transition

maps are µ ∈ µmm′(Fp) 7→ µm ∈ µm′(Fp). But any integer m prime to p
divides an integer of the form pn − 1 for a convenient n (take n such that
pn = 1 in (Z/mZ)× where p ∈ (Z/mZ)× is the image of p). It is thus enough
to take the projective limits over integers of the form pn − 1. The result

follows then from µpn−1(Fp) = F×pn ⊂ F
×
p .

Lemma 2.2. Any continuous character θ : I(Qp/F )→ E× (where the latter

is endowed with the discrete topology) factors through I(Qp/F ) � F×pn
θ−→ E×

for some n > 0.

Proof. Because of the continuity assumption, the inverse image of the open
subgroup {1} ⊂ E× is an open subgroup U of I(Qp/F ) and therefore θ
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factors through the finite quotient I(Qp/F )/U . The image of I(Qp/F )w in

I(Qp/F )/U is a finite p-group, but E× doesn’t contain any non-trivial p-
torsion element, that is any x such that xp

m
= 1 with m > 0, therefore

θ(I(Qp/F )w) = {1} and I(Qp/F )w ⊂ U . So we see that θ factors through

a finite quotient of I(Qp/F )/I(Qp/F )w, hence through some F×pn by Lemma
2.1.

Definition 2.3 (Serre). A fundamental character of level n > 0 is a charac-
ter I(Qp/F )→ E× that factors through I(Qp/F ) � F×pn → E×.

Let us fix a field embedding ι : Fpn ↪→ E and denote by ωn the funda-

mental character I(Qp/F ) � F×pn
ι
↪→ E× (which depends on ι). We see that

any fundamental character of level n is of the form ωi0+pi1+···+pn−1in−1
n with

0 ≤ ij ≤ p− 1. Note that, if all ij = p− 1, we get ωp
n−1
n = 1.

Lemma 2.4. If m divides n, we have ω1+pm+p2m+···+p(
n
m−1)m

n = ωm.

Proof. This follows from Lemma 2.1 and the fact that:

NFpn/Fpm (x) = x1+pm+p2m+···+p(
n
m−1)m

for x ∈ F×pn (product of all conjugates).

Lemma 2.5. The character ωn extends (non-canonically) from I(Qp/F ) =

Gal(Qp/F
unr) to Gal(Qp/F ) if and only if n divides f .

Proof. The Galois group Gal(Fp/Fq) is topologically generated by the ele-
ment Frf : x 7→ xq (x ∈ Fq). Let s ∈ Gal(Qp/F ) be any lifting of Frf that
acts trivially on F ( pn−1

√
$F ) (it exists because F ( pn−1

√
$F ) has the same

residue field as F and thus one still has a surjection Gal(Qp/F ( pn−1
√
$F )) �

Gal(Fp/Fq)). As I(Qp/F ) is normal in Gal(Qp/F ) (being the kernel of

Gal(Qp/F ) → Gal(Fp/Fq)), one has sgs−1 ∈ I(Qp/F ) for any g ∈ I(Qp/F ).

As s( pn−1
√
$F ) = pn−1

√
$F and s( pn−1

√
1) = ( pn−1

√
1)q (recall µpn−1(Zp)

∼→
µpn−1(Fp)), one gets:

ωn(sgs−1) =
sgs−1( pn−1

√
$F )

pn−1
√
$F

= s
(g( pn−1

√
$F )

pn−1
√
$F

)
=
(g( pn−1

√
$F )

pn−1
√
$F

)q
= ωn(g)q

for any g ∈ I(Qp/F ). If ωn extends to Gal(Qp/F ), one also has ωn(sgs−1) =

ωn(s)ωn(g)ωn(s−1) = ωn(g). Thus we get ωn(g) = ωn(g)q for any g ∈ I(Qp/F )
which implies ωq−1

n = 1 which implies n divides f by Definition 2.3. Here is

13



an obvious explicit way to extend ωn when n divides f : use that for any
(q − 1)-root q−1

√
$F of $F and any g ∈ Gal(Qp/F ), the element:

g
(
q−1
√
$F

)
q−1
√
$F

∈ µq−1(Zp)

still doesn’t depend on q−1
√
$F and induces a character Gal(Qp/F ) → F×q

which is ωf in restriction to I(Qp/F ) (use that µq−1(Zp) ⊂ F× and hence g
acts trivially on it). Note that this character depends on the choice of $F .

Now, take ω1+pn+p2n+···+p(
f
n−1)n

f .

The same proof yields that a fundamental character extends to Gal(Qp/F )
if and only if it is a power of ωf .

Lemma 2.6. Let G be a finite group such that |G| = pn and let V be a
non-zero Fp-vector space on which G acts. Then V G 6= 0.

Proof. This is a standard result of finite group theory. We recall the proof
as it is easy: let x ∈ V , x 6= 0 and let W ⊆ V be the non-zero sub-Fp-vector
space generated by gx, g ∈ G. As G is finite, W is a finite set of cardinality
pm with m > 0. As G acts on the additive group W , one has W = qiGwi
for a finite set {wi} of elements of W . We have |Gwi| = pni for each i and
ni = 0 if and only if wi ∈ WG, therefore pm = |W | = pc + |WG| where c is
an integer. As m > 0, this implies p divides |WG|, and as WG 6= ∅ (because
0 ∈ WG), we get |WG| > 1: there is y ∈ V , y 6= 0 such that y ∈ V G.

We fix in the sequel a (field) embedding Fq2 ↪→ E and denote by ω2f the
corresponding fundamental character. Recall we have ωf = ω1+q

2f (Lemma
2.4).

Proposition 2.7. Let ρ : Gal(Qp/F ) → GL2(E) be a continuous represen-
tation, then ρ is of one of the following forms:

(i) ρ is reducible and:

ρ|I(Qp/F )
∼=
(
ωm1
f ∗
0 ωm2

f

)
where mi are two integers

(ii) ρ is irreducible and:

ρ|I(Qp/F )
∼=
(
ωm2f 0
0 ωqm2f

)
where m is an integer such that q + 1 doesn’t divide m.

14



Proof. (i) Assume first that ρ is reducible, hence in particular ρ|I(Qp/F ) is re-

ducible of the form
( χ1 ∗

0 χ2

)
where χ1, χ2 are continuous characters I(Qp/F )→

E× that extend to Gal(Qp/F ). By Lemma 2.2 we have χi = ωmini for some
integers ni (i ∈ {1, 2}) and we can choose ni as small as possible via Lemma
2.4. As the characters extend to Gal(Qp/F ), we have ni divides f (i ∈ {1, 2})
by Lemma 2.5 (the same proof works with ωmini instead of ωni) and by Lemma
2.4 we go back to n1 = n2 = f .
(ii) The subgroup I(Qp/F )w is also normal in Gal(Qp/F ). Let ρI(Qp/F )w

be the subspace of (the underlying space of) ρ where I(Qp/F )w acts triv-

ially. For v ∈ ρI(Qp/F )w , g ∈ Gal(Qp/F ) and w ∈ I(Qp/F )w, one has

wgv = g(g−1wg)v = gv because g−1wg ∈ I(Qp/F )w, hence gv ∈ ρI(Qp/F )w

and ρI(Qp/F )w is Gal(Qp/F )-stable. But ρI(Qp/F )w 6= 0 by Lemma 2.6. As ρ is

irreducible, we must thus have ρ = ρI
w

and I(Qp/F )w acts trivially (that is,

ρ|I(Qp/F ) factors through I(Qp/F )/I(Qp/F )w). Because I(Qp/F )/I(Qp/F )w is

abelian and “prime to p” by Lemma 2.1, ρ|I(Qp/F ) is the direct sum of two

fundamental characters χ1 ⊕ χ2. Arguing as in the proof of Lemma 2.5, we
have χi(sgs

−1) = χi(g)q for g ∈ I(Qp/F ) where s ∈ Gal(Qp/F ) is a lift of Frf .
As the representation ρs := ρ(s ·s−1) is isomorphic to ρ (being a conjugate of
ρ), we have {χ1, χ2} = {χq1, χ

q
2}. If χ1 = χq1, then χ2 = χq2 and the characters

χi extend to Gal(Qp/F ) by Lemma 2.5. It is easy then to deduce that ρ is
reducible so this case can’t happen (you can do this as an exercice, you may

have to distinguish the cases χ1 = χ2 and χ1 6= χ2). Hence χ1 = χq2 6= χp
f

1

and χ2 = χq1 which implies χq
2

i = χi, i ∈ {1, 2}. We easily derive (ii) from
this.

Remark 2.8. In fact, one only needs to fix an embedding Fq ↪→ E because
in the irreducible case, we see that we sum up on the fundamental characters
corresponding to all field embeddings Fq2 ↪→ E giving back the fixed one on
restriction to Fq (there are 2 of them).

Corollary 2.9. Let ρ : Gal(Qp/F ) → GL2(E) be a continuous representa-
tion, then ρ is of one of the following forms:

(i) ρ is reducible and:

ρ|I(Qp/F )
∼=

(
ω
∑f−1
i=0 (ri+1)pi

f ∗
0 1

)
⊗ η

for some character η that extends to Gal(Qp/F ) and some integers ri
with −1 ≤ ri ≤ p− 2 and (r0, · · · , rf−1) 6= (p− 2, · · · , p− 2)
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(ii) ρ is irreducible and:

ρ|I(Qp/F )
∼=

(
ω
∑f−1
i=0 (ri+1)pi

2f 0

0 ω
q
∑f−1
i=0 (ri+1)pi

2f

)
⊗ η

for some character η that extends to Gal(Qp/F ) and some integers ri
with 0 ≤ r0 ≤ p − 1, −1 ≤ ri ≤ p − 2 for i > 0 and (r0, · · · , rf−1) 6=
(p− 1, p− 2, · · · , p− 2).

Proof. (i) follows from (i) of Proposition 2.7 and Lemma 2.5 by twisting by
ω−m2
f and using ωq−1

f = 1. (ii) Write first ρ|I(Qp/F ) as in (ii) of Proposition 2.7.

We can assume that q doesn’t divide m otherwise use ωq
2

2f = ω2f to replace m
by m/q and switch the two characters. Write m = a+ qb with 1 ≤ a ≤ q− 1
and 0 ≤ b ≤ q− 1. As 1 + q doesn’t divide m, we have either b < a or a < b.
If b < a, we write m = (a − b) + (1 + q)b and set η := ω

(1+q)b
2f = ωbf . As

1 ≤ a − b ≤ q − 1, there is a unique way to write a − b =
∑f−1

i=0 (ri + 1)pi

with ri as in (ii) (easy check). If a < b, replace m by b + qa (using again

ωq
2

2f = ω2f ) and argue as for the previous case.

The integers ri and the character η in Corollary 2.9 are not quite unique.
If ∗ = 0 in (i), we can replace (ri)0≤i≤f−1 by (p − 3 − ri)0≤i≤f−1 and η by

ηω
∑f−1
i=0 p

i(ri+1)

f . In (ii), we can replace (ri)0≤i≤f−1 by (p − 1 − r0, p − 3 −

r1, · · · , p− 3− rf−1) and η by ηω
r0+

∑f−1
i=1 p

i(ri+1)

f . However, there are no other
possibilities (prove it!).

Exercise 2.10. Prove that ω = ωe1 where ω : Gal(Qp/F ) → F×p is defined

by g( p
√

1) = ( p
√

1)ω(g) where p
√

1 is a non-trivial p-root of 1.

We will need the following definition in the sequel.

Definition 2.11. Let ρ : Gal(Qp/F )→ GL2(E) be a continuous irreducible
representation. We say ρ is generic if in the description (ii) above one has
1 ≤ r0 ≤ p− 2 and 0 ≤ ri ≤ p− 3 for i > 0.

Note that for p = 2, there are no generic ρ. In most of this course, we
will thus have p > 2.

Exercise 2.12. Prove that the definition of genericity doesn’t depend on the
choice of the embedding Fq ↪→ E.
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2.2 Classification of weights for GL2

We fix once and for all an embedding Fq ↪→ E.

Definition 2.13. A weight (for K = GL2(OF )) is a continuous irreducible
representation of K over E.

By the continuity assumption, a weight is trivial on restriction to an open
subgroup of K and in particular factors through a finite quotient of K. The
following lemma gives more:

Lemma 2.14. A weight is trivial on restriction to the first congruence sub-
group of K, i.e. the subgroup of matrices of the form Id+$FM2(OF ). Thus,
in particular, a weight factors through GL2(OF/mF ) = GL2(Fq).

Proof. This follows from Lemma 2.6 (as Id + $FM2(OF ) is a pro-p-group)
and from the exact sequence:

1→ Id +$FM2(OF )→ GL2(OF )→ GL2(OF/($F ))→ 1.

We recall without proof the following theorem:

Theorem 2.15 (Brauer). Let G be a finite group and Greg the subset of
elements of order prime to p. Then the number of irreducible representations
of G on a E-vector space is the number of conjugacy classes in Greg (note
that if h ∈ Greg and g ∈ G, ghg−1 ∈ Greg as its order is that of h).

For any integer r in Z≥0, consider the r+ 1-dimensional representation of
the finite group GL2(Fq): SymrE2 where GL2(Fq) acts through its natural
action on the canonical basis of E2. Here, we use the fixed embedding Fq ↪→
E. This representation can be identified with ⊕ri=0Ex

r−iyi where the action
of GL2(Fq) is given by:(

a b
c d

)
xr−iyi = (ax+ cy)r−i(bx+ dy)i (2)

and where a, b, c, d ∈ Fq are seen in E via the above fixed embedding. If

0 ≤ j ≤ f−1, we denote by (SymrE2)Frj the r+1-dimensional representation
⊕ri=0Ex

r−iyi with the action of GL2(Fq) given by:(
a b
c d

)
xr−iyi = (ap

j

x+ cp
j

y)r−i(bp
j

x+ dp
j

y)i.

Note that (SymrE2)Frf = SymrE2.
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Lemma 2.16. Let r0, · · · , rf−1 and m be integers such that 0 ≤ ri ≤ p − 1
and 0 ≤ m < q − 1. Then the representations:

(Symr0E2)⊗E (Symr1E2)Fr ⊗E · · · ⊗E (Symrf−1E2)Frf−1 ⊗ detm (3)

are irreducible and non-equivalent.

Proof. The representation (3) can be identified with

⊕r0i0=0 ⊕
r1
i1=0 · · · ⊕

rf−1

if−1=0 Ex
∑f−1
j=0 (rj−ij)pjy

∑f−1
j=0 ijp

j

where the action of GL2(Fq) is as in (2) above replacing r by
∑f−1

j=0 rjp
j and

i by
∑f−1

j=0 ijp
j (and twisting). One can check irreducibility as follows: any

non-zero stable subspace has a non-zero vector fixed by the p-group of upper
unipotent matrices by Lemma 2.6. An easy calculation shows that the only

such vector in the representation is x
∑f−1
j=0 rjp

j

. The same computation using
the action of the lower unipotent matrices shows this vector generates the
whole representation (use that the E-vector space generated by

∑q−1
i=0 λ

ivi
for all λ ∈ Fq is the E-vector space generated by vi for all i). Therefore,
any non-zero subrepresentation must be the whole representation and we
have irreducibility. Assume now two representations are isomorphic, then
the characters giving the action of the diagonal matrices

(
a 0
0 a−1

)
(a ∈ F×p )

on the vectors fixed by subgroup of upper unipotent matrices must be the

same. As this character is a
∑f−1
j=0 rjp

j

, the list of the ri have to be the same
unless may-be all ri are 0 and all ri are p − 1. However, in this case, the
corresponding representations obviously don’t have the same dimension (1
and q). Therefore any two isomorphic representations can at most differ by a
twist det∗. But the characters giving the action of matrices

(
1 0
0 a−1

)
on upper

unipotent fixed vectors again must be the same which immediately implies
this twist is trivial.

For simplicity, we denote in the sequel by (r0, · · · , rf−1) ⊗ detm the rep-
resentation (3).

Proposition 2.17. The representations (r0, · · · , rf−1)⊗ detm with 0 ≤ ri ≤
p− 1 and 0 ≤ m < q − 1 exhaust the irreducible representations of GL2(Fq)
on E.

Proof. This is a special case of a very general theorem on modular algebraic
representations of finite groups of Lie type, but I give here an elementary
proof specific to GL2. By Theorem 2.15 and Lemma 2.16, we just have
to check that GL2(Fq)reg has exactly q(q − 1) conjugacy classes, as this is
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the number of irreducible representations in Lemma 2.16. But GL2(Fq)reg is
the subset of matrices that become diagonalizable over an extension of Fq
(those which can only be made upper triangular non diagonal don’t have
an order prime to p). So the conjugacy classes of GL2(Fq)reg are of two
types: those of the diagonal matrices and those of the matrices which become
diagonalizable over Fq2 only. There are q−1+((q−1)2−(q−1))/2 = q(q−1)/2
conjugacy classes of the first type (easy count and don’t forget permutation
of eigenvalues!). The matrices of the second type are all obtained up to
conjugation as ι(x) where ι : Fq2 ↪→ M2(Fq) is a fixed algebra embedding
and x ∈ F×q2 \ F

×
q (any two such embeddings are conjugate in GL2(Fq)).

Moreover ι(x) and ι(y) (for x, y ∈ F×q2 \ F
×
q = Fq2 \ Fq) are conjugate in

GL2(Fq) if and only if x = sy where s is the unique non-trivial element of
Gal(Fq2/Fq). An easy count gives again q(q − 1)/2 classes. We thus finally
get q(q − 1)/2 + q(q − 1)/2 = q(q − 1) conjugacy classes.

3 Week 3

3.1 Tree and amalgam

We first recall (or define) the Bruhat-Tits tree associated to GL2. We keep
the previous notations: F is a finite extension of Qp, $F is a fixed uniformizer

in F etc. We denote by Π the matrix

(
0 1
$F 0

)
.

Fix a 2-dimensional F -vector space V and denote by X the set of equiv-
alence classes [L] of OF -lattices L of V for the equivalence relation: L ∼ L′

if L = L′x for some x ∈ F×. We endow X with the structure of a graph as
follows: the vertices are the equivalence classes [L] and two distinct vertices
[L] and [L′] are connected by a unique edge if there exist representatives L,
L′ such that $FL ( L′ ( L. Note that this is equivalent to L/L′ ' Fq and,
replacing L by $FL (which doesn’t change [L]), this is also equivalent to
$FL

′ ( L ( L′.

Lemma 3.1. The graph X is a tree, that is, it is connected and has no
circuit.

Proof. Take L and L′ two distinct lattices in V and assume L′ ( L. Taking
the inverse image in L of a Jordan-Hölder sequence of L/L′ (seen as a OF -
module) gives a sequence of lattices L′ = L0 ( · · · ( Ln−1 ( Ln ( · · · (
Lr = L such that Ln/Ln−1 ' Fq. In particular, the vertices [Ln] and [Ln−1]
are connected, which proves that [L] and [L′] are always connected by a
succession of edges. This proves connectedness. Let us prove that there is
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no circuit. Assume we have lattices L0 ( · · · ( Ln−1 ( Ln ( · · · ( Lr
such that Ln/Ln−1 ' Fq = OF/$F and such that there are no “round
trip”, that is [Ln−2] 6= [Ln] for all n. We prove that Lr/L0 ' OF/$r

F ,
so that in particular one always has [L0] 6= [Lr] (and the graph has no
circuit). There is nothing to prove if r = 1. Assume r = 2 (we know that
[L0] 6= [L2] but we prove L2/L0 = OF/$2

F ). We have an exact sequence
0 → L1/L0 → L2/L0 → L2/L1 → 0. If L2/L0 ' (OF/$F )⊕ (OF/$F ) then
L0 = $FL2 which implies [L0] = [L2] and contradicts the fact that there is no
“round trip”. Hence we necessarily have L2/L0 ' OF/$2

F . Assume r > 2.
By induction and the case r = 2, we can assume Lr/L1 ' OF/$r−1

F and
Lr−1/L0 ' OF/$r−1

F . We have an exact sequence 0 → L1/L0 → Lr/L0 →
Lr/L1 → 0. Assume we have Lr/L0 ' (OF/$F )f1 ⊕ (OF/$r−1

F )f2 where f1

generates L1/L0. The injection OF/$r−1
F ' Lr−1/L0 ↪→ Lr/L0 necessarily

sends a generator of Lr−1/L0 to af1 ⊕ b$Ff2 (for some a, b ∈ OF ) since
the composition Lr−1/L0 ↪→ Lr/L0 � Lr/L1 ' (OF/$r−1

F )f2 has kernel
L1/L0 ' OF/$F . As $Ff1 = 0 and r > 2, we have $r−2

F (af1⊕b$Ff2) = 0 in
Lr/L0 which contradicts the fact Lr−1/L0 ↪→ Lr/L0 is an injection. Therefore
we must have Lr/L0 ' OF/$r

F .

The graph X is called the Bruhat-Tits tree. The group AutF (V ) naturally
acts on X since it acts on the lattices. Fixing a basis (e1, e2) of V , we can
identify this group with GL2(F ) and thus get a right action of GL2(F ) on X
via: (

a b
c d

)
e1 = ae1 + ce2,

(
a b
c d

)
e2 = be1 + de2.

The class of the lattice L0 := OF e1 ⊕OF e2 is called the central vertice. It is
the only vertice fixed by K. The class of the lattice L1 := OF e1⊕OF$F e2 =
ΠL0 is fixed by ΠKΠ−1, hence in particular fixed by I (drawing for F = Q2).

Let GL2(F )0 := {g ∈ GL2(F ), det(g) ∈ O×F }.

Lemma 3.2. Let T be the subtree of X made out of the vertices {[L0], [L1]}
and of the edge connecting them. Then the map T → GL2(F )0\X (induced
by T ↪→ X) is an isomorphism.

Proof. Any lattice in V is of the form gL0 for some g ∈ GL2(F ). If val(det(g))
∈ 2Z, then [gL0] = [g0L0] = g0[L0] with g0 ∈ GL2(F )0. If val(det(g)) /∈ 2Z,
then [gL0] = [gΠΠL0] = [gΠL1] = [h0L1] = h0[L1] with h0 ∈ GL2(F )0. This
proves the map is surjective. But injectivity is obvious.

Let G1, G2, H be three groups and H
ιi
↪→ Gi be two injections of groups.
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By definition, the amalgam G1 ∗H G2 is the inductive limit of the diagram:

H
ι1
↪→ G1

‖
H

ι2
↪→ G2.

Equivalently, it is the quotient of the free group generated by G1 and G2

(i.e. G1 ∗{e} G2) by the relations ι1(h)ι2(h−1), h ∈ H.

The following result is due to Ihara and Tits:

Theorem 3.3. The two injections K ↪→ GL2(F )0 and ΠKΠ−1 ↪→ GL2(F )0

induce a group isomorphism:

K ∗I ΠKΠ−1 ∼→ GL2(F )0

where I ⊂ K and I ⊂ ΠKΠ−1 are the natural injections identifying I with
K ∩ ΠKΠ−1.

Proof. The proof uses the Bruhat-Tits tree X. Following Serre, we first prove
that GL2(F )0 is generated by K and ΠKΠ−1 and then that the map:

K ∗K∩ΠKΠ−1 ΠKΠ−1 → GL2(F )0

is injective. Note that K is the subgroup of GL2(F )0 of elements fixing
[L0] and that ΠKΠ−1 is the subgroup of GL2(F )0 of elements fixing [L1].
Let G be the subgroup of GL2(F )0 generated by K and ΠKΠ−1. We have
X = GT ∪ (GL2(F )0 −G)T as GL2(F )0T = X by Lemma 3.2. But GT and
(GL2(F )0 − G)T are disjoint subtrees of X and GT is connected (all this
easily follows by induction from the fact that gT and g′T for g, g′ ∈ GL2(F )0

have a vertice in commun if and only if g = g′h with h ∈ K ∪ ΠKΠ−1).
We thus have X = GT q (GL2(F )0 − G)T and as X is connected (Lemma
3.1), we must have X = GT , that is GL2(F )0 = G. The map K ∗K∩ΠKΠ−1

ΠKΠ−1 → GL2(F )0 is not injective if and only if there exist g0, · · · , gr ∈
(K ∪ΠKΠ−1)\ (K ∩ΠKΠ−1) with r > 1 such that gi−1 ∈ K (resp. ΠKΠ−1)
implies gi ∈ ΠKΠ−1 (resp. K) and such that g0g1 · · · gr = 1. If this happens,
assume, say, g0 ∈ K, r even and consider the sequence of vertices [L0],
g0[L1], g0g1[L0], g0g1g2[L1],...,g0g1 · · · gr−1[L0], g0g1 · · · gr[L1] = [L1], [L0]. It
induces a circuit in X without “tround trip” (as is easily checked). But this
contradicts Lemma 3.1 and thus can’t happen. The other possibilities also
lead to circuits in X without “round trip”, and can’t happen either.

We will constantly use the following corollary in the sequel:
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Corollary 3.4. Let V be an E-vector space endowed with an action of K
and N which coincide on I = K ∩ N . Then there exists a unique action of
GL2(F ) on V extending the previous actions of K and N .

Proof. Unicity is clear since K and N generate GL2(F ), the problem is ex-
istence. Let ρ0 : K → AutE(V ) and ρ1 : N → AutE(V ) the correspond-
ing group homomorphisms. Define a group homomorphism ρ′0 : ΠKΠ−1 →
AutE(V ) by ρ′0(ΠgΠ−1) := ρ1(Π)ρ0(g)ρ1(Π−1). Since ρ0|I = ρ1|I , one has for
g ∈ I (recall ΠgΠ−1 ∈ I and Π ∈ N):

ρ′0(ΠgΠ−1) = ρ1(Π)ρ0(g)ρ1(Π−1)

= ρ1(Π)ρ1(g)ρ1(Π−1)

= ρ1(ΠgΠ−1)

= ρ0(ΠgΠ−1)

hence ρ0 and ρ′0 induce a group homomorphism K ∗I ΠKΠ−1 → AutE(V ).
From Theorem 3.3, we deduce a group homomorphism ρ : GL2(F )0 →
AutE(V ). Now GL2(F ) is the semi-direct product GL2(F )0 · F×〈Π〉 and
GL2(F )0 is a normal subgroup. One can extend ρ to GL2(F ) by ρ(zΠ) :=
ρ1(zΠ) (z ∈ F× ⊂ N). To check that ρ is a group homomorphism, it is
enough to check that ρ(ΠgΠ−1) = ρ(Π)ρ(g)ρ(Π−1) = ρ1(Π)ρ(g)ρ1(Π−1) for
g ∈ GL2(F )0. It is enough to check it for g ∈ K and g ∈ ΠKΠ−1. But in
both cases it readily follows from the definition of ρ. Finally, it is clear that
ρ|K = ρ0 and ρ|N = ρ1.

3.2 Compact induction and Hecke operator

I now give elementary properties of some compact induction.

Let H be a closed subgroup of GL2(F ), e.g. H = B(F ), H = K, H = I,
H = KF×, etc. and σ a smooth representation of H on a finite dimensional
E-vector space Vσ. As in §1.1, we consider the representation ind

GL2(F )
H σ

which is the E-vector space of functions:

f : GL2(F )→ Vσ

which are locally constant, have compact support modulo H and such that
f(hg) = σ(h)(f(g)) (h ∈ H, g ∈ GL2(F )). The action of GL2(F ) is defined
as usually by (g′f)(g) := f(gg′).

From now on, we assume that H is compact open modulo F×, e.g. H =
K, H = I, H = KF×, etc. In that case, any function f : GL2(F )→ Vσ such
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that f(hg) = σ(h)(f(g)) is locally constant as σ is smooth and H contains
an open neighborhood of 1H . For g ∈ GL2(F ) and v ∈ Vσ, we denote by

[g, v] : GL2(F )→ Vσ the following element of ind
GL2(F )
H σ:

[g, v](g′) = σ(g′g)v if g′ ∈ Hg−1

[g, v](g′) = 0 if g′ /∈ Hg−1.

That is, [g, v] is the unique element of ind
GL2(F )
H σ with support on Hg−1

which sends g−1 to v. We have g([g′, v]) = [gg′, v] and [gh, v] = [g, σ(h)v] if
h ∈ H.

Lemma 3.5. Any element f of ind
GL2(F )
H σ can be written f =

∑
i∈I [gi, vi]

where I is a finite set, gi ∈ GL2(F ) and vi ∈ Vσ.

Proof. Indeed, as the support of such an element f must be compact modulo
F×, it is a finite union of (disjoint) cosets Hg−1

i and we let vi := f(g−1
i ).

Lemma 3.6. Let π be any smooth representation of GL2(F ) over E , then:

HomGL2(F )(ind
GL2(F )
H σ, π) = HomH(σ, π|H).

Proof. The image of Φ ∈ HomGL2(F )(ind
GL2(F )
H σ, π) is given by v 7→ Φ([1H , v])

(v ∈ Vσ). The image of φ ∈ HomH(σ, π|H) is given by [g, v] 7→ g(φ(v))
(g ∈ GL2(F ), v ∈ Vσ, note that this uniquely determines Φ by Lemma
3.5).

Lemma 3.6 is called Frobenus reciprocity.

By Definition, the Hecke algebra of ind
GL2(F )
H σ is:

H(H, σ) := EndGL2(F )(ind
GL2(F )
H σ).

It is an algebra via addition and composition of endomorphisms (it is non
commutative in general).

Lemma 3.7. The E-vector space H(H, σ) is naturally isomorphic to the
E-vector space of functions ϕ : GL2(F ) → EndE Vσ with compact support
modulo F× and such that:

ϕ(h1gh2) = σ(h1) ◦ ϕ(g) ◦ σ(h2) (4)

for h1, h2 ∈ H and g ∈ GL2(F ).
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Proof. By Lemma 3.6 we haveH(H, σ) = HomH(σ, ind
GL2(F )
H σ|H). To ϕ, one

associates Tϕ ∈ HomH(σ, ind
GL2(F )
H σ|H) by Tϕ(v) :=

(
g 7→ ϕ(g)(v)

)
. To T ∈

HomH(σ, ind
GL2(F )
H σ|H), one associates ϕT by ϕT (g) :=

(
v 7→ T (v)(g)

)
.

Exercise 3.8. Making explicit the bijection of Lemma 3.7, prove the follow-
ing formula:

Tϕ([g, v]) =
∑

g′H∈GL2(F )/H

[gg′, ϕ(g′
−1

)(v)]. (5)

Exercise 3.9. Prove that the multiplication on the algebra H(H, σ) corre-
sponds to the convolution of functions: Tϕ1 ◦ Tϕ2 = Tϕ1∗ϕ2 where:

ϕ1 ∗ ϕ2(g) :=
(
v 7→

∑
y∈GL2(F )/H

(ϕ1(y) ◦ ϕ2(y−1g))(v)
)
. (6)

We now assume that H = KF× and that σ is an irreducible representa-
tion ofK over E that we extend toKF× by sending$F to the identity. Recall
from §2.2 that we have then σ = (r0, · · · , rf−1) ⊗ detm with 0 ≤ ri ≤ p − 1
and that:

Vσ = ⊕r0i0=0 ⊕
r1
i1=0 · · · ⊕

rf−1

if−1=0 Ex
∑f−1
j=0 (rj−ij)pjy

∑f−1
j=0 ijp

j

.

Lemma 3.10. With the previous assumptions, we have H(KF×, σ) = E[Tϕ],
ϕ being defined as follows:

(i) ϕ(g) = 0 if g /∈ KF×ΠK = KF×
(

1 0
0 $−1

F

)
K

(ii) ϕ
( ( 1 0

0 $−1
F

) )
(x
∑f−1
j=0 (rj−ij)pjy

∑f−1
j=0 ijp

j

) = 0 if (ij) 6= (rj)

(iii) ϕ
( ( 1 0

0 $−1
F

) )
(y
∑f−1
j=0 rjp

j

) = y
∑f−1
j=0 rjp

j

Proof. Set α :=
(

1 0
0 $−1

F

)
, Iwasawa decomposition tells us that GL2(F ) =

qn≥0KZα
−nK therefore any element of H(KF×, σ) is a direct sum of ele-

ments that have support in one double coset. Let us find all ϕ satisfying
(4) that have support in KZα−nK. If n = 0, then the irreducibility of σ
together with Schur’s lemma imply that ϕ is scalar. If n > 0, ϕ must satisfy
σ(k1)ϕ(α−n) = ϕ(α−n)σ(k2) whenever k1α

−n = α−nk2. Granting the fact
that σ is trivial on K1 (Lemma 2.14), this is equivalent to:

σ
(

( a 0
c d )

)
ϕ(α−n) = ϕ(α−n)σ

(
( a b0 d )

)
(7)
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for all a, d ∈ O×F , b, c ∈ OF . In particular, one must have:

σ
(

( 1 0
t 1 )

)
ϕ(α−n) = ϕ(α−n)

ϕ(α−n) = ϕ(α−n)σ
(

( 1 t
0 1 )

)
for t ∈ OF . The first equality implies ϕ(α−n)(v) ∈ Ey

∑f−1
j=0 rjp

j

for all v ∈ Vσ
and the second implies ϕ(α−n)(v) = 0 if v /∈ Ey

∑f−1
j=0 rjp

j

. Conversely, any
such ϕ satisfies (7). Therefore ϕ satisfies (ii) and (iii) up to multiplication by
a non-zero scalar and with α−n instead of α−1. Denote by ϕn the unique such

ϕ with ϕn(α−n)(y
∑f−1
j=0 rjp

j

) = y
∑f−1
j=0 rjp

j

and by Tn the corresponding Hecke
operator (Lemma 3.7), then we have just proven thatH(KF×, σ) = ⊕n≥0ETn
with T0 = 1. But an explicit computation using the convolution formula (6)
yields Tn+1 = T1◦Tn if n > 1 and T2 = T1◦T1 if dimE σ > 1, T2 = −1+T1◦T1

if dimE σ = 1. Therefore, we have H(KF×, σ) = E[T1].

In the sequel, we write T instead of T1. When σ is trivial, there is a nice
way to see T using the tree X:

Lemma 3.11. Assume σ = 1. Then the GL2(F )-representation ind
GL2(F )

KF× 1
can naturally be identified with the E-vector space of functions F : X → E
with finite support (that is, functions on the vertices of X which send all
vertices to zero except a finite number). Moreover T (F ) is then the function
which sends [L] to

∑
[L′] F ([L′]) where the sum runs over all vertices such

that there is an edge between [L] and [L′].

Proof. Fixing a basis of V as in §3.1, we see that the set of equivalence classes
of lattices {[L]} can be identified with GL2(F )/KF× by sending gKF× to

[gL0]. Therefore, any f ∈ ind
GL2(F )

KF× 1 defines a function on X by [gL0] 7→
f(g−1). In particular, [g, v] corresponds to the function on X which sends
the vertice g[L0] to v ∈ E and all other vertices to 0. The fact f has compact
support modulo F× implies this function has finite support. There is an
edge between [L′0] and [L0] if and only if L′0 = kαL0 for some k ∈ KF×, or
equivalently L′0 = kα−1L0 for some k ∈ KF× (using ( 0 1

1 0 )). Hence there is
an edge between [L′] and [L] = g[L0] if and only if L′ = gkα−1L0 for some
k ∈ KF× (with α as in the proof of Lemma 3.10). The formula for T (F )
therefore follows directly from the formula (5) and the definition of T .

When σ is not trivial, one can still interpret ind
GL2(F )

KF× σ as the H0 of some
“sheaf” on X, but we won’t need this in the sequel.

Exercise 3.12. For σ irreducible and λ ∈ E, prove that T − λ is injective
on ind

GL2(F )

KF× σ.
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Exercise 3.13. For σ irreducible and λ ∈ E, prove that (ind
GL2(F )

KF× σ)/(T−λ)
has infinite dimension over E.

4 Week 4

4.1 Classification theorem for GL2(Qp)

In this section and the next, we assume most of the time F = Qp and
$F = p. In that case, the classification of irreducible admissible representa-
tions of GL2(Qp) over E is known.

I start with two easy lemmas for which there is no need to assume F = Qp:

Lemma 4.1. A smooth irreducible admissible representation of GL2(F ) over
E always has a central character.

Proof. Let π be such a representation and H ⊂ K be an open subgroup such
that πH 6= 0 (e.g. any open pro-p subgroup). Because π is admissible, πH

has finite dimension over E, and there is v ∈ πH such that F× acts on v by
multiplication by a (smooth) character. As π is irreducible, we necessarily
have π = 〈GL2(F )v〉 and we are done since F× commutes with GL2(F ).

Remark 4.2. It is not known, even for F = Qp, whether smooth irreducible
representations of GL2(F ) over E are admissible, or even just whether they
have a central character (all this is true when E has a characteristic distinct
from p). It is not known, unless F = Qp (see below), whether smooth
irreducible representations of GL2(F ) over E with a central character are
admissible.

Lemma 4.3. There is a canonical GL2(F )-equivariant surjection:

ind
GL2(F )

KF× 1

(T − 1)
� 1.

Proof. By Lemma 3.11 (or Lemma 3.6), there is a GL2(F )-equivariant sur-

jection ind
GL2(F )

KF× 1 � 1 sending F to
∑

[L] F ([L]) where the sum is over all

vertices of X (recall F has finite support). As there are q + 1 vertices [L′]
such that there is an edge between [L′] and a fixed [L], we see by Lemma 3.11
again that TF is sent to

∑
[L] TF ([L]) =

∑
[L](q + 1)F ([L]) =

∑
[L] F ([L]).

Therefore TF − F is in the kernel of the surjection.

We have introduced in §4.1 the representations ind
GL2(Qp)

KQ×p
SymrE2. The

following theorem is due to Barthel-Livné and myself:
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Theorem 4.4. The smooth irreducible admissible representation of GL2(Qp)
over E are the following:

(i) the one dimensional representations η ◦ det

(ii) the representations:

ind
GL2(Qp)

KQ×p
SymrE2

(T − λ)
⊗ (η ◦ det)

for 0 ≤ r ≤ p− 1, λ ∈ E× and (r, λ) /∈ {(0,±1), (p− 1,±1)}

(iii) the representations:

Ker

( ind
GL2(Qp)

KQ×p
1

(T − 1)
� 1

)
⊗ (η ◦ det)

(iv) the representations:

ind
GL2(Qp)

KQ×p
SymrE2

(T )
⊗ (η ◦ det).

In the sequel, I give comments on the theorem and give some details on
its proof. In the next section, I give a survey of why the representations in
(iv) are irreducible. For simplicity, I will denote:

π(r, λ, η) :=
ind

GL2(Qp)

KQ×p
SymrE2

(T − λ)
⊗ (η ◦ det)

for any r, λ, η. If x ∈ E×, unr(x) : Q×p → E× is the character sending p to x
and Z×p to 1.

(i) It is known that the representations in Theorem 4.4 actually exhaust
all smooth irreducible representations of GL2(Qp) over E with a cen-
tral character (no need to assume admissibility once there is a central
character).

(ii) The representations in (ii) are actually isomorphic to principal series.
More precisely, if (r, λ) is as in (ii), we have:

π(r, λ, 1) ' ind
GL2(Qp)

B(Qp) unr(λ)⊗ ωr1unr(λ−1).

This is not specific to the case F = Qp.
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(iii) The representation Ker(π(0, 1, 1) � 1) in (iii) is called the Steinberg

representation. It is isomorphic to the quotient (ind
GL2(Qp)

B(Qp) 1)/1. This
representation together with its twists constitute the so called special
series.

(iv) The representations in (iv) are the supercuspidal ones. They are also
called supersingular.

(v) There are entertwinings between the above representations:

π(r, λ, η) ' π(r,−λ, ηunr(−1))

π(0, λ, η) ' π(p− 1, λ, η) (λ 6= ±1)

π(r, 0, η) ' π(p− 1− r, 0, ηωr1).

(vi) Some of the above entertwinings are known more generally: without
any assumption on F , one has:

ind
GL2(F )

KF× σ/(T − λ) ' (ind
GL2(F )

KF× σ/(T + λ))⊗ (unr(−1) ◦ det)

ind
GL2(F )

KF× 1/(T − λ) ' ind
GL2(F )

KF× (p− 1)/(T − λ)

where p− 1 := (p− 1, · · · , p− 1), σ is a weight and λ 6= ±1 in the last
entertwining.

Let us now start (part of) the proof of Theorem 4.4. The following two
propositions don’t need F = Qp.

Proposition 4.5. Let π be a smooth irreducible admissible representation of
GL2(F ) such that $F acts trivially. Then there exist (σ, λ) with λ ∈ E and
σ a finite dimensional irreducible representation of KF× over E such that π
is a quotient of (ind

GL2(F )

KF× σ)/(T − λ).

Proof. As π is admissible, the K/K1 = GL2(Fq)-representation πK1 has fi-
nite dimension over E. Let us choose an irreducible subobject σ in πK1 . By
Lemma 4.1, F× acts on π (hence on πK1) by a smooth character and we can
extend σ to a representation ofKF× so that F× acts on σ by the same charac-
ter (with $F acting trivially). We therefore have HomGL2(F )(ind

GL2(F )

KF× σ, π) =
HomKF×(σ, π) = HomKF×(σ, πK1) 6= 0 by Lemma 3.6. There is a right ac-

tion of H(GL2(F ), σ) on HomGL2(F )(ind
GL2(F )

KF× σ, π) given by Φ|T := Φ ◦ T .

As HomGL2(F )(ind
GL2(F )

KF× σ, π) is finite dimensional, it has a non-zero eigen-
vector for the action of H(GL2(F ), σ) ' E[T ], that is, there exist λ ∈ E

and a non-zero map (ind
GL2(F )

KF× σ)/(T − λ) → π. As π is irreducible, it is
surjective.
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Note that there is always a twist π⊗ (η ◦det) such that $F acts trivially.

If π is a quotient of (ind
GL2(F )

KF× σ)/(T − λ) with λ 6= 0, then π is either a
character, or a principal series or a twist of the Steinberg representation.

Proposition 4.6. The supercuspidal representations of GL2(F ) such that

$F acts trivially are the irreducible admissible quotients of (ind
GL2(F )

KF× σ)/(T )
for σ a weight.

Proof. (sketch) Let π be such a supercuspidal. By Proposition 4.5, π is

a quotient of (ind
GL2(F )

KF× σ)/(T − λ). If λ 6= 0, then π is a subquotient of
a principal series by what we said above. Therefore we must have λ =
0. Conversely, assume one can find a quotient π of (ind

GL2(F )

KF× σ)/(T ) that
is also a subquotient of a principal series. In particular, it is a quotient
of some (ind

GL2(F )

KF× σ′)/(T − λ) for λ 6= 0. Let us assume for simplicity
that this representation is irreducible (this is the generic case) so that we
identify it with π (the general case is similar). One can prove that in
such a principal series, the subrepresentation of K1-invariants is isomor-
phic to a principal series of K, that is, an induction of the type indKI χ
for χ : I → E× a smooth character. More precisely it is isomorphic to
the unique such principal series with socle σ′ (see §7.1). By Frobenius reci-

procity HomGL2(F )(ind
GL2(F )

KF× σ, π) = HomK(σ, π|K) = HomK(σ, πK1|K), we

must therefore have [( 1 0
0 1 ) , σ]

∼→ [( 1 0
0 1 ) , σ′]. Hence the image of the line

[( 1 0
0 1 ) , σI1 ] in π coincides with the line [( 1 0

0 1 ) , σ′I1 ]. Using formula (5) and
the decomposition:

KΠK = ΠK q
(
qν∈Fq

(
$F [ν]
0 1

)
K
)
, (8)

one has if v′ generates σ′I1 and dimE σ
′ 6= 1:

T ([( 1 0
0 1 ) , v′]) =

∑
ν∈Fq

[
(
$F [ν]
0 1

)
, v′] = λ[( 1 0

0 1 ) , v′]

and an analogous formula if dimE σ
′ = 1. Likewise, one has in the represen-

tation (ind
GL2(F )

KF× σ)/(T ) (if v generates σI1 and dimE σ 6= 1):

T ([( 1 0
0 1 ) , v]) =

∑
ν∈Fq

[
(
$F [ν]
0 1

)
, v] = 0.

But we must have
∑

ν∈Fq

(
$F [ν]
0 1

)
[( 1 0

0 1 ) , v] maps to
∑

ν∈Fq

(
$F [ν]
0 1

)
[( 1 0

0 1 ) , v′]

(up to scalar) as the surjection (ind
GL2(F )

KF× σ)/(T ) � π is GL2(F )-equivariant.
This is impossible as λ′ 6= 0. If dimE σ = dimE σ

′ = 1, a similar argument
applies.
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Unfortunately, we will see that classifying the irreducible quotients of
(ind

GL2(F )

KF× σ)/(T ) is a hard task. So far, the classification of supercuspidal
representations of GL2(F ) over E is only known for F = Qp (part (iv) of
Theorem 4.4).

4.2 Irreducibility for supersingular and semi-simple cor-
respondence

The aim of this section is to sketch the proof of (iv) of Theorem 4.4, i.e. to
classify supercuspidal over E for GL2(Qp).

Recall that the K-socle of a GL2(OF )-representation is the union of all ir-
reducible K-subrepresentations. It is a semi-simple K-representation. Recall

also that π(r, 0, 1) := (ind
GL2(Qp)

KQ×p
SymrE2)/(T ). By Frobenius reciprocity (or

a straightforward check), we have a canonical injection SymrE2 ↪→ π(r, 0, 1)
given by v 7→ image of [( 1 0

0 1 ) , v] (see §3.2 for notations). Recall Π :=
(

0 1
p 0

)
and (SymrE2)I1 = Exr (see §2.2).

Proposition 4.7. Assume F = Qp. The K-subrepresentation of π(r, 0, 1)
generated by the image of [Π, (SymrE2)I1 ] is isomorphic to Symp−1−rE2 ⊗
detr.

Proof. As Π normalizes I1, [Π, (SymrE2)I1 ] = [Π, Exr] is fixed by I1 and I
acts on it by the character

(
a b
pc d

)
7→ d

r
= ap−1−r(ad

r
). Consider the induction

indKI (1⊗ dr) = ind
GL2(Fp)

B(Fp) (1⊗ dr). As for compact inductions (c.f. §3.2) any

element of ind
GL2(Fp)

B(Fp) (1 ⊗ dr) can be written [g, v] where g ∈ GL2(Fp) and

v ∈ E (for instance, [( 1 0
0 1 ) , v] is the unique function with support in B(Fp)

sending ( 1 0
0 1 ) to v) and there is an analogous Frobenius reciprocity. It is a

standard result of the representation theory of GL2(Fp) that ind
GL2(Fp)

B(Fp) 1 =

1⊕Symp−1E2 and, if r 6= 0, ind
GL2(Fp)

B(Fp) (1⊗dr) is the unique non-split extension:

0→ SymrE2 → ind
GL2(Fp)

B(Fp) (1⊗ dr)→ Symp−1−rE2 ⊗ detr → 0. (9)

If r > 0, the subspace (SymrE2)I1 ⊂ ind
GL2(Fq)
B(Fq) (1⊗dr) is E

(∑
λ∈Fp [(

λ 1
1 0 ) , v]

)
(for any v ∈ E×) and if r = 0, it is the subspace of constant functions
E
(
[( 1 0

0 1 ) , v] +
∑

λ∈Fp [(
λ 1
1 0 ) , v]

)
. Now, let σ be the K-subrepresentation of

π(r, 0, 1) generated by the image of [Π, Exr]. Note that σ 6= 0 as SymrE2 and
hence [Π, Exr] generate π(r, 0, 1). Since I acts on [Π, Exr] by

(
a b
pc d

)
7→ d

r
, we

have by Frobenius reciprocity an equivariant surjection ind
GL2(Fp)

B(Fp) (1⊗ dr) �
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σ, [g, v] 7→ ĝ[Π, vxr] = [ĝΠ, vxr] where ĝ is any lifting of g in K and v ∈ E.
This surjection sends

∑
λ∈Fp [(

λ 1
1 0 ) , v] to the image of:∑

λ∈Fp

[
(

[λ] 1
1 0

)
Π, vxr] =

∑
λ∈Fp

[
(
p [λ]
0 1

)
, vxr]

where [λ] ∈ Z×p is the multiplicative representative of λ (Teichmüller repre-
sentative). But using formula (5) and the decomposition (8), as in the proof
of Proposition 4.6 one has in π(r, 0, 1) for r > 0:∑

λ∈Fp

[
(
p [λ]
0 1

)
, vxr] = T ([( 1 0

0 1 ) , vxr]) = 0

and for r = 0:

[Π, v] +
∑
λ∈Fp

[
(
p [λ]
0 1

)
, v] = T ([( 1 0

0 1 ) , v]) = 0.

Therefore, the image of SymrE2 in σ is 0. As Symp−1−rE2⊗detr is irreducible
and σ 6= 0, we must have Symp−1−rE2 ⊗ detr

∼→ σ by (9).

Note that the two weights SymrE2 and Symp−1−rE2 ⊗ detr are always
distinct. We therefore have a canonical injection SymrE2 ⊕ (Symp−1−rE2 ⊗
detr) ↪→ π(r, 0, 1).

Theorem 4.8. Assume F = Qp. For 0 ≤ r ≤ p − 1, socK π(r, 0, 1) =
SymrE2 ⊕ (Symp−1−rE2 ⊗ detr).

Remark 4.9. As we have already mentionned in the proof of Proposition 4.6,
when π is an irreducible principal series or special series and π is not the twist
of an unramified principal series, one can prove that socK π is irreducible (i.e.
contains just one weight). When π is the twist of an unramified principal
series, one can prove that socK π = 1⊕ Symp−1E2 up to twist.

I am not going to really prove Theorem 4.8 here, just indicate the steps
of the proof. Before this, here is an important corollary:

Corollary 4.10. Assume F = Qp. For 0 ≤ r ≤ p − 1, the representations
π(r, 0, 1) are irreducible and admissible.

Proof. Denote π := π(r, 0, 1). Let 0 ( π′ ⊆ π be a sub-representation. As
0 ( socK π

′ ⊆ socK π, we have either SymrE2 ⊆ socK π
′ or Symp−1−rE2 ⊗

detr ⊆ socK π
′. But Proposition 4.7 tells us that both generate π(r, 0, 1).

Therefore, we must have π′ = π and π is irreducible. To check admissibility,
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it is enough to check that πKn is finite dimensional for Kn := Ker
(
K �

GL2(Z/pnZ)
)
. We always have πKn ↪→ injK/Kn(socK/Kn(πKn)) where the

latter is the injective envelope in the category of E[K/Kn]-modules (I’ll come
back to that later). But socK/Kn(πKn) = socK π is finite dimensional by
Theorem 4.8 and therefore so is its injective envelope (as for instance it is
contained in E[K/Kn]). Hence πKn is finite dimensional and π is admissible.

One can also prove there is a GL2(Qp)-equivariant isomorphism π(r, 0, 1) '
π(p− 1− r, 0, ωr1) (see (v) in §4.1).

Now I would like to give the main steps of the proof of Theorem 4.8. For
n ≥ 0, let K0(pn) ⊆ K be the subgroup of matrices of the form

(
a b
pnc d

)
,

a, b, c, d ∈ Zp (so K0(1) = K and K0(p) = I). Set σ := SymrE2 and for
n ≥ 0 denote by σn the following representation of K0(pn) over E:

σn
( (

a b
pnc d

) )
:= σ

( (
d c
pnb a

) )
(note that for n = 0, σ0 is a conjugate of σ and thus isomorphic to σ). Let
Rn := indKK0(pn) σn. Note also that we have a K-equivariant isomorphism:

ind
K
(

0 1
pn 0

)
K

K σ
∼−→ indKK0(pn) σn

sending f on the left hand side to the function k 7→ f(
(

0 1
pn 0

)
k) for k ∈ K.

Let us assume r > 0 (the case r = 0 is analogous but slightly different). We
prove:

(i) ind
GL2(Qp)

KQ×p
σ = ⊕n≥0Rn (this has nothing to do with F = Qp: we just

decompose functions over the “concentric circles” in the Bruhat-Tits
tree of §3.1)

(ii) the Hecke operator T |Rn : Rn → Rn+1 ⊕ Rn−1 is the sum of a K-
equivariant injection T+ : Rn ↪→ Rn+1 and (for n > 0) a K-equivariant
surjection T− : Rn � Rn−1 (ibid.)

(iii) we have an isomorphism of K-representations:

π(r, 0, 1) '
(

inj lim
n even

R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn−1 Rn

)
⊕(

inj lim
n odd

R1/R0 ⊕R2 R3 ⊕R4 · · · ⊕Rn−1 Rn

)
where the maps Ri → Ri±1 are T± (ibid.)
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(iv) the K-socle of the first inductive limit is that of R0, that is σ0 =
σ = SymrE2, and the K-socle of the second is that of R1/R0, that is
Symp−1−rE2 ⊗ detr (this is totally specific to F = Qp).

The more important step is (iv). It is based on an explicit computa-
tion (which is analogous to the one of Lemma 11.8 below) and is definitely
wrong when F is not Qp (that is, the K-socles are different and contain more
weights).

We can now at least state the “semi-simple modulo p Langlands corre-
spondence for GL2(Qp)”. Denote by ind(ωr+1

2 ) the unique irreducible rep-
resentation of Gal(Qp/Qp) over E such that its restriction to I(Qp/Qp) is

ωr+1
2 ⊕ ωp(r+1)

2 and its determinant is ωr+1
1 (see §2.1). Also let unr(x) be the

character Gal(Qp/Qp) � Gal(Fp/Fp) → E× sending Fr−1 ∈ Gal(Fp/Fp) to
x ∈ E×.

Definition 4.11. Let r ∈ {0, . . . , p−1}, λ ∈ E, η : Q×p → E× and [p−3−r]
the unique integer in {0, . . . , p − 2} congruent to p − 3 − r modulo p − 1.
With the previous notations, we define the following “semi-simple modulo p
correspondence”:

(i) if λ = 0 :

(ind(ωr+1
2 ))⊗ η ←→

ind
GL2(Qp)

KQ×p
SymrE2

(T )
⊗ η

(ii) if λ 6= 0 :(
ωr+1

1 unr(λ) 0
0 unr(λ−1)

)
⊗ η ←→

( ind
GL2(Qp)

KQ×p
SymrE2

(T − λ)

)ss

⊗ η⊕

( ind
GL2(Qp)

KQ×p
Sym[p−3−r]E2

(T − λ−1)
⊗ ωr+1

1

)ss

⊗ η

where “ss” means “semi-simplification”.

Here, η is a smooth character of Q×p over E and I should write η ◦ det on
the right hand side and η ◦ rQp on the left hand side. This correspondence
can be refined into a non-semi-simple correspondence. More precisely, there

is generically a unique non-split extension
(
ωr+1
1 unr(λ) ∗

0 unr(λ−1)

)
. Accordingly,

one can prove there is generically a unique non-split extension:

0 −→
ind

GL2(Qp)

KQ×p
SymrE2

(T − λ)
−→ ∗ −→

ind
GL2(Qp)

KQ×p
Sym[p−3−r]E2

(T − λ−1)
⊗ ωr+1

1 −→ 0
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“corresponding” to the non-split Galois extension. We won’t deal with that
in this course. Moreover, Colmez has found an important “functorial” way to
reinterpret this correspondence for GL2(Qp) using (ϕ,Γ)-modules that makes
it (surprisingly) deep.

Next time, we switch to GL2(F ).

5 Week 5

5.1 Basic diagrams: definition and examples

In this section, we define group theoretic structures called (basic) diagrams
and give their first properties. We will use them in the next sections to build
smooth admissible representations of GL2(F ) over E with a given K-socle.

Diagrams were first introduced by Schneider and Stuhler (although in a
somewhat different form) years ago for characteristic 0 coefficient fields E
and first used in the characteristic p context by Paskunas. To motivate their
definition, let us go back to GL2(Qp).

Let us consider a supercuspidal representation π(r, 0, 1) of GL2(Qp) as in
§4.2. Let χ : I → E be the character giving the action of I on (SymrE2)I1

and recall χs := χ(Π · Π−1).

Lemma 5.1. (i) We have (socK π(r, 0, 1))I1 = χ⊕ χs.

(ii) The action of Π preserves (socK π(r, 0, 1))I1 and interchanges χ and χs.

Proof. (i) follows readily from Theorem 4.8. (ii) follows from Proposition 4.7
where we have already noticed that Π(SymrE2)I1 = [Π, (SymrE2)I1 ] is fixed
by I1 and generates Symp−1−rE2 ⊗ detr (recall that Π2 acts trivially).

Thanks to Lemma 5.1, we can see (socK π(r, 0, 1))I1 as a representation of
N (the action of Q×p is that on π(r, 0, 1)). We can then consider the following
triple (socK π(r, 0, 1), (socK π(r, 0, 1))I1 , can) where socK π(r, 0, 1) is seen as
a representation of KQ×p , (socK π(r, 0, 1))I1 is seen as a representation of N
and can is the canonical injection (socK π(r, 0, 1))I1 ↪→ socK π(r, 0, 1). It
turns out this triple completely characterizes the representation π(r, 0, 1):

Lemma 5.2. Let π be an irreducible admissible representation of GL2(Qp)
over E. Assume that π “contains” (socK π(r, 0, 1), (socK π(r, 0, 1))I1 , can),
that is, πK1 contains socK π(r, 0, 1) and the action of N on πI1 is compatible
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with that on the subspace (socK π(r, 0, 1))I1 given by Lemma 5.1. Then π '
π(r, 0, 1).

Proof. Assume first r > 0. By Theorem 4.4, Theorem 4.8 and Remark 4.9,
we necessarily have π ' π(r, 0, 1) and we are done. Assume r = 0, then
from the same statements we get either π ' π(0, 0, 1) or π is an unramified

principal series, that is π ' (ind
GL2(Qp)

KQ×p
1)/(T − λ) with λ ∈ E× \ {±1}. But

we can rule out the latter case because the action of Π is not as in Lemma
5.1 (more precisely, Proposition 4.7 is wrong in that case: the image of [Π, 1]
is isomorphic to 1K ⊕ Symp−1E2).

Remark 5.3. One can actually prove that (socK π(r, 0, 1))I1 ' π(r, 0, 1)I1 .

Let us now come to the general definition of diagrams (for any F ).

Definition 5.4. (i) A diagram is a triple (D0, D1, r) where D0 is a smooth
representation of KF× over E, D1 is a smooth representation of N over
E and r : D1 → D0 is an IF×-equivariant map.

(ii) A basic diagram is a diagram (D0, D1, r) such that $F acts trivially
and r induces an isomorphism D1

∼→ DI1
0 ↪→ D0.

One defines morphisms of diagrams in the obvious way and gets an abelian
category. In this course, we will mainly consider basic diagrams. The full
subcategory of basic diagrams is of course not abelian any-more. A basic
diagram (D0, D1, r) is said to be irreducible if it doesn’t contain any non-
zero strict basic subdiagram, that is if there is no non-zero (D′0, D

′
1, r
′) with

D′0 ( D0, D′1 ⊆ D1, D′1
∼→ D′0

I1 and with:

D′1
r′

↪→ D′0
↓ ↓
D1

r
↪→ D0

commutative. Equivalently, there is no K-subrepresentation 0 ( D′0 ( D0

such that D′0
I1 is preserved by N inside DI1

0 . If (D0, D1, r) is irreducible, note
that D0 = 〈KDI1

0 〉 = DK1
0 and thus K1 acts trivially on D0.

Example 5.5. Let π be any smooth representation of GL2(F ) over E such
that $F acts trivially:

(i) (π, π, id) is a diagram (not basic)

(ii) (πK1 , πI1 , can) is a basic diagram where can is the canonical injection
πI1 ↪→ πK1 (here of course πI1 is seen as a representation of N)
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(iii) (〈KπI1〉, πI1 , can) is a basic diagram which is a subdiagram of (πK1 , πI1 ,
can).

Example 5.6. We see any weight as a representation of KF× by sending $F

to 1. Let σ be a weight, χ the character giving the action of I on σI1 and σs 6=
σ the only weight such that I acts on (σs)I1 by χs. Let D0 := σ⊕σs and let Π
act on DI1

0 = Evχ ⊕Evχs by interchanging vχ and vχs (Π2 must act trivially
and vχ (resp. vχs) is a basis of σI1 (resp. (σs)I1)). This defines an irreducible
basic diagram Dσ = Dσs . When F = Qp, Lemma 5.2 together with Remark
5.3 imply that the map π 7→ (〈KπI1〉, πI1 , can) induces a bijection between
the set of equivalence classes of supercuspidal representations of GL2(Qp)
such that p acts trivially and the set of equivalence classes of diagrams Dσ.

Example 5.7. Let χ : I → E× such that χ 6= χs. Consider the induction
D0 := indKI χ as in the proof of Proposition 4.6 (where we make $F act
trivially as usual). We will prove later (Lemma 7.3) that DI1

0 = (indKI χ)I1 =
Efχ ⊕ Efχs where I acts on fχ (resp. fχs) by χ (resp. χs). We then set
Πfχ := λfχs and Πfχs := λ−1fχ where λ ∈ E×. This defines a family of non-
isomorphic basic irreducible diagrams D(λ) parametrized by E×. One can
actually prove that each basic diagram D(λ) is of type (iii) (or equivalently
(ii)) of Example 5.5 for π an irreducible principal series.

For q 6= p, there are many more irreducible basic diagrams than the ones
of Examples 5.6 and 5.7.

Example 5.8. Assume F/Qp is quadratic unramified (so q = p2) and fix an
embedding Fp2 ↪→ E. We give an example of a family of irreducible basic
diagrams that can’t show up in the case F = Qp. Let r0, r1 be two integers
such that 1 ≤ r0 ≤ p− 2, 0 ≤ r1 ≤ p− 3 and consider the following weights
(with the notations of §2.2):

σ1 := (r0, r1)

σ2 := (r0 − 1, p− 2− r1)⊗ detp(r1+1)

σ3 := (p− 1− r0, p− 3− r1)⊗ detr0+p(r1+1)

σ4 := (p− 2− r0, r1 + 1)⊗ detr0+p(p−1).

For 1 ≤ i ≤ 4, the representation theory of GL2(Fp2) over E (see later,
in particular §10.1 and Proposition 10.4) tells us there are unique non-split
K/K1-extensions:

0→ σi → Xi → σsi−1 → 0

with σ−1 := σ4. Moreover, the K/K1-representations Xi (that we see as
KF×-representations by making $F = p act trivially) are such that XI1

i =
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χi ⊕ χsi−1 (with obvious notations). For each i, let us fix an E-basis ei of

χi and esi−1 of χsi−1 so that XI1
i = Eei ⊕ Eesi−1. Let λ ∈ E× and define an

action of Π (hence of N) on ⊕XI1
i as follows: for 1 ≤ i ≤ 3, Πei := esi and

Πe4 := λes4 (since Π2 = 1, this determines Πesi ). This defines a family of basic
diagrams by setting D0 := ⊕Xi, D1 := ⊕XI1

i with the above action of N and
r : D1 → D0 is the canonical injection. Any change of λ gives another isomor-
phism class of basic dagrams as is easily checked. Any other choice of E-basis
on XI1

i gives rise to a basic diagram isomorphic to one in the previous family.

Claim: All of the above basic diagrams are irreducible.

Proof. Let 0 6= D′0 ⊆ D0 such that D′0
I1 is preserved by Π. As D′0 6= 0

and as the σi are distinct, there is i such that ei ∈ D′0. Hence D′0 contains
〈KΠei〉 = 〈Kesi 〉 = Xi+1. This implies ei+1 ∈ D′0. Starting again with ei+1,
we see in the end that ⊕Xi ⊆ D′0, hence D′0 = D0. �

I now finish with an example of reducible basic diagrams.

Example 5.9. Keep the notations of Examples 5.6 and 5.7. Let D0 :=
σ⊕indKI χ⊕σs. We have DI1

0 = Evχ⊕Efχ⊕Efχs⊕Evχs . Set Πvχ := λfχs and
Πvχs := fχ with Π2 = 1 (which determines the rest). We will see in §7.1 that
fχs generates σs ⊂ indKI χ (which is the K-socle). Thus the corresponding
basic diagram is reducible as it strictly contains the basic diagram of Example
5.6.

5.2 Basic diagrams: the existence theorem I

We use basic diagrams to build supercuspidal representations of GL2(F )
over E with a given K-socle. This was suggested by a recent conjecture
of Buzzard, Diamond and Jarvis (we will come to it later) predicting some
non-trivial K-socles in the case F is unramified. For the moment, there is
no restriction on F .

The main theorem that we will prove in this section and the next (already
mentionned in §1.2) is the following theorem (contained in joint work with
Paskunas but actually due to Paskunas):

Theorem 5.10. Assume p > 2. Let D = (D0, D1, r) be a basic diagram
and assume DK1

0 is finite dimensional. Then there exists at least one smooth
admissible representation π of GL2(F ) over E such that:

(i) socK π = socK D0
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(ii) (πK1 , πI1 , can) contains D

(iii) π is generated by D0.

We can already prove an irreducibility result.

Proposition 5.11. Let D be as in Theorem 5.10 (no restriction on p) and
assume D is irreducible. Let π be any smooth admissible representation of
GL2(F ) over E satisfying (i), (ii) and (iii) of Theorem 5.10. Then π is
irreducible.

Proof. Let 0 ( π′ ⊆ π be a subrepresentation. Because 0 6= socK π
′ ⊆

socK π = socK D0, we have π′∩D0 6= 0. As (π′∩D0)I1 = π′∩D1 is preserved
by Π, the diagram (π′ ∩D0, π

′ ∩D1, can) is basic and non-zero, hence equals
D as D is irreducible. Thus we have D0 ⊂ π′ which implies π′ = π as π is
generated by D0.

Unfortunately (πK1 , πI1 , can) or even (〈KπI1〉, πI1 , can) is usually not ir-
reducible if π is irreducible (the second is if F = Qp).

We now start the proof of Theorem 5.10 which will keep us busy for quite
a while. For this, we need to introduce (or recall) injective envelopes. Recall
that an injective object in an abelian category C is an object I such that,
given objects A,B and morphisms f : A ↪→ B, j : A → I in C where the
first morphism is injective, there is a morphism h : B → I in C such that
j = h ◦ f .

Definition 5.12. Let C be an abelian category and X an object in C. An
object I of C is called an injective envelope (or injective hull) of X if it
satisfies the following conditions:

(i) I is an injective object

(ii) there is an injection i : X ↪→ I (in C)

(iii) for any non-zero injection Y ↪→ I in C the composed map Y ↪→ I �
coKer(i) has a non-zero kernel (that is “Y ∩X 6= 0”).

Injections i : X ↪→ I satisfying (iii) in Definition 5.12 are called essential
injections (for any objects X, I of C).

Proposition 5.13. Let C and X be as in Definition 5.12. An injective
envelope of X is unique up to (non-unique) isomorphism.
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Proof. Assume one has i : X ↪→ I and i′ : X ↪→ I ′ with I, I ′ as in Definition
5.12. Because I ′ is an injective object and i is an injective map, there exists
j : I → I ′ such that i = j ◦ i′. Because i : X ↪→ I is an essential injection, if
Ker(j) 6= 0 then we have Ker(j)∩X 6= 0 which is impossible as i is injective.
Therefore Ker(j) = 0 and j is injective. Because I is an injective object
and j is an injective map, there exists h : I ′ → I such that id = h ◦ j.
Because i′ : X ↪→ I ′ is an essential injection, if Ker(h) 6= 0 then we have
Ker(h) ∩X 6= 0 which is impossible as i is injective. Therefore h is injective
and hence j and h are inverse isomorphisms.

The main result of this section is the following well-known theorem:

Theorem 5.14. Let G be a finite group and σ a finite dimensional repre-
sentation of G over E. Then σ admits an injective envelope in the category
of finite dimensional representations of G over E.

Proof. Step 1: reduce to the case σ irreducible.
Indeed, assume every irreducible representation of G has an injective enve-
lope. Then socG σ has an injective envelope, denoted injG(socG σ), which is
the direct sum of the injective envelopes of the summands. From the injectiv-
ity property of injG(socG σ), the embedding socG σ ↪→ injG(socG σ) extends
to a morphism σ → injG(socG σ). This morphism is necessarily injective be-
cause the injection socG σ ↪→ injG(socG σ) is essential. It is then a fortiori
also an essential injection and injG(socG σ) is thus an injective envelope of σ.

Step 2: the regular representation E[G] (with G acting by g′[g] := [g′g]) is
injective.
Indeed, dualizing everything and because E[G] is self-dual (map f ∈ E[G]∗

to
∑

g∈G f([g])[g] ∈ E[G]), it is equivalent to prove that E[G] is a projective
object. Given a G-equivariant map j : E[G] → σ, necessarily of the form
[g] 7→ gv where v is the image of [1G], and a surjection σ′ � σ, it is straight-
forward to lift j to ĵ : E[G]→ σ′ by sending [g] to gv̂ where v̂ ∈ σ′ maps to
v ∈ σ.

Step 3: there exists an embedding σ ↪→ E[G].
Indeed, let 0 6= f ∈ σ∗, the map E[G] → σ∗, [g] 7→ gf is surjective as σ∗ is
irreducible and one takes its dual (recall E[G] is self-dual).

Step 4: construction of a candidate for an injective envelope.
Let I ⊆ E[G] be a maximal subrepresentation containing σ and such that
the injection σ ↪→ I is essential. Such a representation always exists as E[G]
is finite dimensional although it might not be unique: in the non-empty set
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of subrepresentations R containing σ and such that the injection σ ↪→ R is
essential, pick up one which has maximal dimension.

Step 5: proof that the candidate is injective.
I claim that I in Step 4 is an injective object, and is thus an injective envelope
of σ. Let I be a maximal quotient of E[G] (that is, which has minimal
dimension) such that the injection σ ↪→ E[G] still induces an injection σ ↪→ I.
Again, arguing as in Step 4, such a maximal quotient always exists as E[G]
has finite dimension, eventhough it might not be unique. The maximality
property of I implies that the injection σ ↪→ I is then essential. Because
σ ↪→ I is an essential injection, the induced map I → I remains injective.
Because E[G] is an injective object, there exists a map I → E[G] such that
the composition I ↪→ I → E[G] is the inclusion I ⊆ E[G]. Because σ ↪→ I
is an essential injection and σ → E[G] is an injection, the map I → E[G]
is again an injection. By maximality of I, the injection I ↪→ I is therefore
an isomorphism, that is we have a direct summand E[G] = I ⊕ J for some
representation J . It is straightforward from this and the injectivity of E[G]
to deduce that I is injective, and therefore is an injective envelope of σ.

Theorem 5.14 of course holds whatever the characteristic of E is. I denote
by injGσ the injective envelope of σ.

Example 5.15. If p doesn’t divide the order of G, more generally if char(E)
doesn’t divide the order of G (e.g. char(E) = 0), then the injective envelope
of σ is σ itself as the category of finite dimensional representations of G over
E is semi-simple.

Example 5.16. If on the other hand the order of G is a power of p (i.e. G
is a p-group), then injG σ is isomorphic to a direct sum of E[G].

Now let σ be a weight and Kn ⊂ K as in Corollary 4.10 for integers n > 0.
We denote by injK/Kn σ an injective envelope of σ in the category of finite
dimensional representations of K/Kn = GL(OF/$n

F ) over E. Because a rep-
resentation of K/Kn can be seen as a representation of K/Kn+1, the injec-
tivity property of injK/Kn+1

σ applied to σ ↪→ injK/Kn σ and σ → injK/Kn+1
σ

yields (non-canonical) injections injK/Kn σ ↪→ injK/Kn+1
σ in the category of

K/Kn+1-representations. Let injK σ := inj limn injK/Kn σ.

Proposition 5.17. The K-representation injK σ is an injective envelope of σ
in the abelian category of smooth representations of K over E (and therefore
doesn’t depend up to isomorphism on the transition maps).
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Proof. The K-injection σ ↪→ injK σ is essential as socK injK σ = σ (which
follows from socK/Kn injK/Kn σ = σ for every n). Therefore it is enough to
prove that injK σ is an injective object in the above category. For any n,m >
0, it is straightforward to check that (injK/Kn+m σ)Kn is an injective object
in the category of K/Kn-representations (just use the fact injK/Kn+m σ is an
injective object for K/Kn+m-representations). As it contains injK/Kn σ, we

thus have injK/Kn σ
∼→ (injK/Kn+m σ)Kn . Taking inductive limit, this implies

injK/Kn σ
∼→ (injK σ)Kn . Let π ↪→ π′ and π → injK σ be K-equivariant

morphisms with π, π′ smooth K-representations over E and the first map
injective. By the injectivity property of (injK σ)K1 , the map πK1 → injK σ
extends to π′K1 → injK σ. Applying the injectivity property of (injK σ)Kn

with πKn ⊕πKn−1 π
′Kn−1 ↪→ π′Kn for n ≥ 2 together with an induction on n,

we get a compatible system of maps π′Kn → injK σ extending πKn → injK σ.
As π′ is smooth, we have π′ = inj limn π

′Kn and taking the inductive limit
yields a map π′ → injK σ which extends π → injK σ.

Be aware that injK σ is an infinite dimensional representation. As usual,
we see all the above injective K-representations as KF×-representations by
making $F act trivially. We are now going to make use them.

6 Week 6

6.1 Basic diagrams: the existence theorem II

In this lecture and the next, we prove Theorem 5.10. Let us first explain the
rough strategy of the proof:

(i) We extend (non-canonically) the action of I on injK D0 to an action
of N such that there exists an injection of diagrams (D0, D1, r) ↪→
(injK D0, injK D0, id).

(ii) We use Corollary 3.4 to glue the two compatible actions of K and N
on injK D0 and get an action of GL2(F ). We then take π ⊆ injK D0 to
be the subrepresentation generated by D0.

Let us start with (i). Note first that the construction of the injective
envelopes injK σ given in §5.2 also works for other compact groups. In par-
ticular, if χ : I → E× is a smooth character, one can define in an analogous
way injI χ = inj limn injI/Kn χ.

In this lecture, we prove several technical lemmas of group theory (that
we will use in the next lecture).
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Lemma 6.1. Let G be a finite group, σ a finite dimensional representation
of G over E and injG σ an injective envelope of σ. Let D ⊆ G be a normal
subgroup, then (injG σ)D = injG/D σ

D.

Proof. It is straightforward to check that (injG σ)D is an injective object in
the category of G/D-representations over E. Therefore we have to prove that
the injection σD ↪→ (injG σ)D is essential. Let τ ↪→ (injG σ)D be a non-zero
injection in the category of G/D-representations over E. As σ ↪→ injG σ is
essential and as any G/D-representation can be seen as a G-representation,
we have τ ∩ σ 6= {0}, hence τ ∩ σD 6= {0} since D acts trivially on τ .

Lemma 6.2. Let G be a finite group, σ a finite dimensional representation
of G over E and injG σ an injective envelope of σ. Let H ⊆ G be a subgroup,
then (injG σ)|H is an injective object in the category of finite dimensional
representations of H over E.

Proof. Let A,B be objects in this category together with H-equivariant
maps A ↪→ B and A → (injG σ)|H . By Frobenius reciprocity, we get a
G-equivariant map indGH A → injG σ. As injG σ is an injective object, this
map extends to a G-equivariant map indGH B → injG σ. As B ↪→ (indGH B)|H
(functions with support on H), we get an H-equivariant map B → (injG σ)|H
extending A→ (injG σ)|H .

In general, it is not true that (injG σ)|H is an injective envelope of σ|H in
the category of finite dimensional representations of H over E.

Lemma 6.3. Let G be a finite group and I an injective object in the category
of finite dimensional representations of G over E. Then I ' ⊕σnσ injG σ
where σ runs over all irreducible representations of K over E and nσ ≥ 0
are integers such that socG I = ⊕σnσσ.

Proof. As the injection socG I ↪→ I is essential, we have I ' injG(socG I) =
injG(⊕σnσσ) ' ⊕σnσ injG σ.

In particular applying Lemmas 6.2 and 6.3, we get that (injG σ)|H is a
direct summand of representations injH τ for some irreducible representations
τ of H over E.

Corollary 6.4. Let σ be a weight, then (injK σ)|I = ⊕χnχ injI χ where χ
runs over all smooth characters of I over E and nχ are integers ≥ 0 such
that (injK/K1

σ)I1|I = ⊕χnχχ.
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Proof. For n ≥ 0 and as I/I1 has order prime to p, we have by Lemma 6.1:

socI((injK/Kn σ)|I) ⊆ ((injK/Kn σ)|I)I1 = ((injK/Kn σ)K1)I1

= (injK/K1
σ)I1 = ⊕χnχχ

which implies thus socI((injK/Kn σ)|I) = ⊕χnχχ. The result then follows
from Lemma 6.3, Lemma 6.2 and the equalities injK σ = inj limn injK/Kn σ,
injI χ = inj limn injI/Kn χ.

Lemma 6.5. Let G be a finite group, σ a finite dimensional representation
of G over E and injG σ an injective envelope of σ. Let D ⊆ G be a normal
p-group and assume G/D has order prime to p. Then there exists a unique
(up to isomorphism) action of G on injD(σ|D) extending the given action of
D and such that the injection σ|D ↪→ injD(σ|D) is G-equivariant. This action
makes injD(σ|D) isomorphic to injG σ.

Proof. In particular, in that special situation, (injG σ)|D is really an injec-
tive envelope of injD(σ|D). By Lemma 6.1 and Example 5.15, (injG σ)D =
injG/D(σD) = σD. I claim that the injection σ|D ↪→ (injG σ)|D is essential.
Indeed, let τ ⊆ (injG σ)|D be a D-subrepresentation such that σ|D ⊕ τ ↪→
(injG σ)|D, therefore σD⊕ τD ↪→ (injG σ)D = σD which implies τD = 0 which
implies τ = 0 as D is a p-group (Lemma 2.6). As (injG σ)|D is injective (as
a D-representation) by Lemma 6.2, we thus have injD(σ|D) ' (injG σ)|D. So
there is an action of G on injD(σ|D) as in the statement. Let us now prove it
is unique. Assume we have another action and denote by (injG σ)′ this second
representation of G. The G-injection σ ↪→ (injG σ)′ is again essential because
the D-injection σ|D ↪→ (injG σ)′|D = injD(σ|D) is. By the injectivity prop-
erty of injG σ, we thus have a G-equivariant injection i : (injG σ)′ ↪→ injG σ.
Using that (injG σ)′|D = injD(σ|D) is an injective D-representation, we have
another D-equivariant injection j : injG σ ↪→ (injG σ)′ such that j ◦ i = id.
This implies j is also surjective, hence an isomorphism. Thus i is also an
isomorphism.

Example 6.6. Let χ : I → E× be a smooth character, then (injI χ)|I1 =
injI1 1 ' F(I1, E) where F(I1, E) denotes the E-vector space of smooth
functions f : I1 → E with usual action of I1 by right translation. The first
equality follows from Lemma 6.5 applied to G = I/Kn, D = I1/Kn and using
injI χ = inj limn injI/Kn χ. The second equality follows from Example 5.16,
the fact I1 is pro-p and the same inductive limit argument.

Corollary 6.7. Let τ be a smooth admissible representation of N over E
such that $F acts trivially and assume p > 2. Then there exists a unique
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(up to isomorphism) action of N on injI1(τ |I1) (resp. injI(τ |I)) extending
the given action of I1 (resp. I) and such that the injection τ |I1 ↪→ injI1(τ |I1)
(resp. τ |I ↪→ injI(τ |I)) is N-equivariant.

Proof. For n ≥ 1 let In ⊆ I be the subgroup of matrices ( a bc d ) such that
a, d ≡ 1 ($n

F ), c ≡ 0 ($n
F ) and b ≡ 0 ($n−1

F ). Then In is an open normal
compact pro-p subgroup in N . Since $F acts trivially, we can replace N
by N/$Z

F . The result for I1 in the corollary then follows from Lemma 6.5
applied to G = N/In$

Z
F and D = I1/In (note that N/I1$

Z
F is of order

prime to p as p > 2) using the equalities injI1(τ |I1) = inj limn(injI1(τ |I1))
In =

inj limn injI1/In((τ |I1)In) (Lemma 6.1). The result for I is analogous.

6.2 Basic diagrams: the existence theorem III

We finish the proof of Theorem 5.10.

We need yet two other lemmas.

Lemma 6.8. Let σ be a weight and χ a character of I on E. Then we have:

dimE HomI(χ, (injK σ)I1|I) = dimE HomI(χ
s, (injK σ)I1|I) ≤ 1.

Proof. We have:

HomI(χ, (injK σ)I1|I) = HomI(χ, (injK σ)|I) = HomK(indKI χ, injK σ)

where the last equality follows from Frobenius reciprocity as in the proof of
Proposition 4.7. Assume σ doesn’t occur as a subquotient of indKI χ. Then we
have HomK(indKI χ, injK σ) = 0 as σ = socK(injK σ). But it is a result on the
representation theory of GL2(Fq) that the irreducible constituants of indKI χ
are the same as those of indKI χ

s (although in a different order) and that they
occur in both representations with multiplicity 1: see the coming Theorem
7.6. Hence we also have HomI(χ

s, (injK σ)I1|I) = HomK(indKI χ
s, injK σ) = 0.

Assume σ occurs in indKI χ, or equivalently in indKI χ
s, then because indKI χ is

multiplicity free, injK σ is an injective object and σ = socK(injK σ), we have
dimE HomK(indKI χ, injK σ) = 1, and likewise dimE HomK(indKI χ

s, injK σ) =
1 (assume there are two non-colinear homomorphisms, take a linear combi-
nation sending σ to 0 and find a contradiction). This proves the lemma.

Lemma 6.9. Assume p > 2. Let σ = ⊕mi=1σi where (σi)1≤i≤m are irreducible
representations of K over E and let e ∈ EndI(injK σ) be an I-equivariant
idempotent (that is e2 = e). Suppose that there exists an action of N on
e((injK σ)|I) extending the given action of I with $F acting trivially. Then
there exists an action of N on (1− e)((injK σ)|I) extending the given action
of I with $F acting trivially.

44



Proof. Set V := e((injK σ)I1) and W := (1 − e)((injK σ)I1). Denote by Vχ
and Wχ the respective χ-isotypic subspaces for the action of I where χ runs
over the smooth characters of I over E. We thus have V =

⊕
χ Vχ and

W =
⊕

χWχ. The action of Π on V induces an isomorphism Vχ ∼= Vχs as

χs = χ(Π · Π−1) and hence dimE Vχ = dimE Vχs for all χ. It follows from
Lemma 6.8 and injK σ

∼= ⊕mi=1 injK σi that dimE(injK σ)I1χ = dimE(injK σ)I1χs .
As (injK σ)I1χ = Vχ ⊕ Wχ for all χ, we have dimEWχ = dimEWχs for all
χ. For every ordered pair (χ, χs) such that χ 6= χs, choose an isomorphism
of vector spaces φχ,χs : Wχ → Wχs so that φχ,χs = φ−1

χs,χ. If χ = χs then
Wχ = Wχs and we set φχ,χs := idWχ . Define φ ∈ EndE(W ) by:

φ(wχ) := φχ,χs(wχ), ∀wχ ∈ Wχ, ∀χ.

Then φ2 = idW and:

(φuφ−1)w = (φuφ−1)(⊕χwχ) = ⊕χφ(χs(u)φ−1(wχ)) = ⊕χχs(u)wχ =

⊕χ χ(ΠuΠ−1)wχ = ⊕χ(ΠuΠ−1)wχ = (ΠuΠ−1)w

where u ∈ I, w ∈ W . Hence by sending Π to φ we obtain an action of N on
W extending the action of I such that $F acts trivially. Since (injK σ)|I is
an injective I-representation (Lemma 6.2) so is (1 − e)((injK σ)|I) as it is a
direct I-summand. Since:

W = (1− e)((injK σ)I1) = ((1− e)((injK σ)|I))I1 = socI((1− e)((injK σ)|I)),

we have that (1− e)((injK σ)|I) is an injective envelope of W . Corollary 6.7
applied to τ = W implies there exists an action of N on (1− e)((injK σ)|I) =
injIW extending the given action of I and such that the injection W ↪→
(1− e)((injK σ)|I) is N -equivariant.

Now we can prove the following key proposition:

Proposition 6.10. Assume p > 2. Let (D0, D1, r) be a basic diagram such
that DK1

0 is finite dimensional. Then there exists a smooth action of N on
injK(socK D0) satisfying the following two conditions:

(i) the induced action of I is the one already defined on injK(socK D0)

(ii) the map D1
r→ D0 ↪→ injK(socK D0) is N-equivariant.

Proof. Let σ := socK D0 ⊆ DK1
0 . By Proposition 5.17, we have a K-

equivariant injection i0 : D0 ↪→ injK σ which induces an I-equivariant in-
jection i1 = i0 ◦ r : D1|I ↪→ (injK σ)|I . This injection factors through
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(injK σ)|I1I = (injK/K1
σ)|I1I = ⊕χnχχ with the notations of Corollary 6.4.

As D1|I is also a direct sum of characters of I, we can write:

(injK/K1
σ)|I1I = D1|I ⊕X

where X is again a direct sum of characters of I (I/I1 has order prime to p).
As (injK σ)|I = injI((injK/K1

σ)|I1I ) (see proof of Corollary 6.4), we have:

(injK σ)|I ' injI(D1|I)⊕ Y

where Y = injI X is an I-direct factor. Since injI(D1|I)|I1 = injI1(D1|I1)
(Example 6.6), Corollary 6.7 applied to τ = D1 tells us that there is a
unique action of N on injI(D1|I) compatible with that of I and compatible
with the action of N on D1. Let e ∈ EndI(injK σ) be the projector onto
injI(D1|I) parallel to Y . Then Lemma 6.9 tells us that there exists an action
of N on (1− e)((injK σ)|I) = Y compatible with that of I and such that $F

acts trivially. Summing up the actions of N on both summands, we get an
action on injK σ = injK(socK D0) as in the statement.

Remark 6.11. In Proposition 6.10, we use that D1 ↪→ DI1
0 but we don’t use

that this is an isomorphism.

Usually, this action of N is not unique. This finishes the proof of step (i)
(cf. beginning of §6.1). We now prove step (ii) and thus finish the proof of
Theorem 5.10. Consider the E-vector space injK(socK D0) as in Proposition
4.8 together with two actions of K and N that coincide on K ∩N = I. By
Corollary 3.4, there is a unique smooth action of GL2(F ) on injK(socK D0)
extending these actions. Define:

π := 〈GL2(F )D0〉 ⊆ injK(socK D0).

We have socK D0 ⊆ socK π ⊆ socK(injK(socK D0)) = socK D0 hence socK π =
socK D0. We have πKn ⊆ (injK(socK D0))Kn = injK/Kn(socK D0) by Proposi-
tion 5.17 (more precisely its proof). As the latter space is finite dimensional
by construction (Theorem 5.14), we get that π is admissible. Finally, the two
other properties “(πK1 , πI1 , can) contains D” and “π is generated by D0” hold
by construction.

We will soon apply this theorem to some explicit diagrams coming from
the “weight part” of the recent conjectures of Buzzard, Diamond and Jarvis
generalizing Serre’s conjecture. Before that, we need some more representa-
tion theory of GL2(Fq).
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7 Week 7

7.1 Principal series of GL2(Fq) over Fp
We now fix an embedding Fq ↪→ E till the end of the course.

We give the structure of principal series of GL2(Fq) over E, mostly with-
out proof. Let χ : B(Fq) → E× be a character. Principal series are the

parabolic inductions ind
GL2(Fq)
B(Fq) χ with the usual action of GL2(Fq) by right

translation on functions. We already met them several times, e.g. in the
proof of Proposition 4.7. We start with a few easy lemmas on them.

Lemma 7.1. The E-representations ind
GL2(Fq)
B(Fq) χ have dimension q + 1.

Proof. This comes from the fact that B(Fq) is of index q+ 1 in GL2(Fq).

Let U(Fq) ⊂ GL2(Fq) be the subgroup of upper unipotent matrices. We

let φ ∈ ind
GL2(Fq)
B(Fq) χ be the unique function with support on B(Fq) such that

φ(u) = 1 for all u ∈ U(Fq). For 0 ≤ j ≤ q − 1, set:

fj :=
∑
λ∈Fq

λj
(
λ 1
1 0

)
φ

with the convention 00 = 1 and 0q−1 = 0 (and where we have used the fixed
embedding Fq ↪→ E).

Lemma 7.2. The set {fj, 0 ≤ j ≤ q − 1, φ} is a basis of ind
GL2(Fq)
B(Fq) χ of

eigenvectors for the subgroup
(
F×q 0

0 F×q

)
of diagonal matrices.

Proof. The fact that the fj and φ are eigenvectors for diagonal matrices is a
straightforward computation. The non-zero function ( λ 1

1 0 )φ has support in
B(Fq) ( λ 1

1 0 )
−1

. As these supports are disjoint in GL2(Fq) when λ ∈ Fq varies
and are disjoint from B(Fq) (see (10) below), the functions (( λ 1

1 0 )φ, λ ∈ Fq, φ)
are linearly independent. Since there are q + 1 of them, they form a basis of

ind
GL2(Fq)
B(Fq) χ by Lemma 7.1. Since the q × q-matrix (λj)λ,j is invertible in E,

the functions {fj, 0 ≤ j ≤ q − 1, φ} also form a basis.

Lemma 7.3. The vector space (ind
GL2(Fq)
B(Fq) χ)U(Fq) has dimension 2 over E

and a basis is (φ, f0).
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Proof. Using the Bruhat-type decomposition:

GL2(Fq) = B(Fq)qB(Fq) ( 0 1
1 0 )U(Fq)

we see that any U(Fq)-invariant function is a linear combination of φ and the
unique U(Fq)-invariant function with support on B(Fq) ( 0 1

1 0 )U(Fq) sending
( 0 1

1 0 ) to 1. Using:

B(Fq) ( 0 1
1 0 )U(Fq) = qλ∈FqB(Fq) ( λ 1

1 0 )
−1

(10)

and ( 1 λ′
0 1 ) ( λ 1

1 0 )
(
λ+λ′ 1

1 0

)
(λ, λ′ ∈ Fq), one checks that this function is precisely∑

λ∈Fq ( λ 1
1 0 )φ = f0.

As irreducible representations of GL2(Fq) over E have dimension at most
q, we see that principal series must be reducible as GL2(Fq)-representations.
We now study their decomposition. The character χ can be uniquely written:

χ :

(
a ∗
0 d

)
7→ ar(ad)m

where r =
∑f−1

i=0 p
iri and m =

∑f−1
i=0 p

imi with 0 ≤ ri ≤ p−1, 0 ≤ mi ≤ p−1,
not all mi = p− 1. We denote by χs the character:

χs :

(
a ∗
0 d

)
7→ dr(ad)m = aq−1−r(ad)r+m.

One case is easy and we can get rid of it right away:

Lemma 7.4. Assume χ = χs (that is r = 0), then:

ind
GL2(Fq)
B(Fq) χ = detm ⊕ (p− 1, · · · , p− 1)⊗ detm.

Proof. Recall (p − 1, · · · , p − 1) ⊗ detm means the weight (Symp−1E2) ⊗E
(Symp−1E2)Fr ⊗E · · · ⊗E (Symp−1E2)Frf−1 ⊗ detm (see §2.2). Twisting every-

thing by det−m, we can assumem = 0. It is obvious that 1 ⊂ ind
GL2(Fq)
B(Fq) 1 (just

take the subspace of constant functions on GL2(Fq)). For f ∈ ind
GL2(Fq)
B(Fq) 1

define S(f) ∈ E by:

S(f) :=
∑

g∈B(Fq)\GL2(Fq)

f(g).

Then the map f 7→ S(f) induces an E-linear GL2(Fq)-equivariant surjection

ind
GL2(Fq)
B(Fq) 1 � 1. Because 1 /∈ Ker(S), one has ind

GL2(Fq)
B(Fq) 1 = Ker(S)⊕ 1. By

Lemma 7.1, this implies Ker(S) has dimension q. It is thus sufficient to prove
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that Ker(S) is irreducible, as it must be then isomorphic to (p−1, · · · , p−1)
by Proposition 2.17. By Lemma 7.3, we have:

Ker(S)U(Fq) = (ind
GL2(Fq)
B(Fq) 1)U(Fq) ∩Ker(S) = Ef0 = E(φ− 1) (11)

(recall 1 is the constant function). Since φ generates ind
GL2(Fq)
B(Fq) χ, any func-

tion f ∈ ind
GL2(Fq)
B(Fq) 1 can be written

∑
i λigiφ. When f ∈ Ker(S), we have

S(f) =
∑

i λi = 0 and f can be written f =
∑

i λigi(φ − 1). Thus φ − 1
generates Ker(S). By (11) this implies Ker(S) is irreducible as any non-zero
subrepresentation has a non-zero invariant vector under U(Fq) by Lemma
2.6.

Before stating the result for χ 6= χs, I need to recall a few definition of
finite groups representation theory. Let G be a finite group and R be a repre-
sentation of G on a finite dimensional E-vector space (actually, we just need
that E is a field). Then we define by induction a G-invariant increasing filtra-
tion (socR)i on R called the socle filtration as follows. We set (socR)0 := 0
and (socR)i+1 to be the inverse image in R of soc(R/(socR)i). We also de-
fine by induction a decreasing filtration (cosocR)i on R called the co-socle
(or radical) filtration as follows. We set (cosocR)0 := R and (cosocR)i+1 to
be Ker

(
(cosocR)i � cosoc((cosocR)i)

)
. Recall that the co-socle cosocR of

a representation R of G is the maximal semi-simple quotient of R. Usually,
these two filtrations are distinct even up to renumbering (drawing). I denote
by Ri := (socR)i+1/(socR)i.

I assume now χ 6= χs. I will assume m = 0 to make things simpler.
Let σ be the unique weight such that χ is the character giving the action
of B(Fq) on σU(Fq), that is σ = (r0, · · · , rf−1). By Frobenius reciprocity

HomB(Fq)(χ, σ|B(Fq)) = HomGL2(Fq)(ind
GL2(Fq)
B(Fq) χ, σ), we aready know that σ

will appear as a quotient of ind
GL2(Fq)
B(Fq) χ. For conveniency, I will actually

rather study ind
GL2(Fq)
B(Fq) χs (this is just a “change of variable”).

To describe the constituents of ind
GL2(Fq)
B(Fq) χs, I introduce combinatorial

notations that I will use at many places in the rest of this course. Let
(x0, · · · , xf−1) be f variables. We define a set P(x0, · · · , xf−1) of f -tuples
λ := (λ0(x0), · · · , λf−1(xf−1)) where λi(xi) ∈ Z ± xi as follows. If f = 1,
λ0(x0) ∈ {x0, p− 1− x0}. If f > 1, then:

(i) λi(xi) ∈ {xi, xi − 1, p− 2− xi, p− 1− xi} for i ∈ {0, · · · , f − 1}

(ii) if λi(xi) ∈ {xi, xi − 1}, then λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}
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(iii) if λi(xi) ∈ {p−2−xi, p−1−xi}, then λi+1(xi+1) ∈ {p−1−xi+1, xi+1−1}

with the conventions xf = x0 and λf (xf ) = λ0(x0). Concretely, we see that
(λ0(x0), · · · , λf−1(xf−1)) is a succession of sequences like p− 2− xj, p− 1−
xj+1, · · · , p− 1− xj+l, xj+l+1 − 1 among the xi.

For λ ∈ P(x0, · · · , xf−1), define:

e(λ) :=
1

2

( f−1∑
i=0

pi(xi − λi(xi))
)

if λf−1(xf−1) ∈ {xf−1, xf−1 − 1}

e(λ) :=
1

2

(
pf − 1 +

f−1∑
i=0

pi(xi − λi(xi))
)

otherwise.

Exercise 7.5. Prove that e(λ) ∈ Z⊕
⊕f−1

i=0 Zxi.

For λ ∈ P(x0, · · · , xf−1), define also:

S(λ) := {i ∈ {0, · · · , f − 1}, λi(xi) ∈ {p− 1− xi, xi − 1}}

and set `(λ) := |S(λ)|. If λ, λ′ ∈ P(x0, · · · , xf−1), we write λ′ ≤ λ if S(λ′) ⊆
S(λ).

Theorem 7.6. Let χ : ( a ∗0 d ) 7→ ar and assume χ 6= χs (that is r /∈ {0, q−1}).

(i) The irreducible subquotients of ind
GL2(Fq)
B(Fq) χ and of ind

GL2(Fq)
B(Fq) χs are the

same, and are exactly the all distinct weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)

for λ ∈ P(x0, · · · , xf−1) forgetting the weights such that λi(ri) < 0 for
some i.

(ii) If τ is an irreducible subquotient of ind
GL2(Fq)
B(Fq) χs and λ ∈ P(x0, · · · , xf−1)

its associated f -tuple by (i), we set `(τ) := `(λ). The socle and co-

socle filtrations on ind
GL2(Fq)
B(Fq) χs are the same (up to renumbering), with

graded pieces:

(ind
GL2(Fq)
B(Fq) χs)i =

⊕
`(τ)=i

τ

for 0 ≤ i ≤ f .

(iii) We have (ind
GL2(Fq)
B(Fq) χ)i = (ind

GL2(Fq)
B(Fq) χs)f−i.
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(iv) If τ, τ ′ are irreducible subquotients of ind
GL2(Fq)
B(Fq) χs, we write τ ′ ≤ τ

if the corresponding f -tuples λ′, λ by (i) satisfy λ′ ≤ λ. Let τ be an

irreducible subquotient of ind
GL2(Fq)
B(Fq) χs and U(τ) the unique subrepre-

sentation with co-socle τ . Then the socle and co-socle filtrations on
U(τ) are the same (up to renumbering), with graded pieces:

(U(τ))i =
⊕
`(τ ′)=i
τ ′≤τ

τ ′

for 0 ≤ i ≤ `(τ).

(v) Let τ be an irreducible subquotient of ind
GL2(Fq)
B(Fq) χs and Q(τ) the unique

quotient with socle τ . Then the socle and co-socle filtrations on Q(τ)
are the same (up to renumbering), with graded pieces:

(Q(τ))i =
⊕

`(τ ′)=i+`(τ)
τ≤τ ′

τ ′

for 0 ≤ i ≤ f − `(τ).

Note that (i) of Theorem 5 is still true if χ = χs. Note also that (i)

implies that all irreducible constituents of ind
GL2(Fq)
B(Fq) χ appear at most once

and thus the representations U(τ) and Q(τ) in (iv) and (v) are well defined.

We say that ind
GL2(Fq)
B(Fq) χ is multiplicity free.

7.2 Injective envelopes of weights

Let σ be a weight of GL2(Fq), we describe the constituents of the injective
envelope injGL2(Fq) σ (see Theorem 5.14) without their multiplicities.

Twisting if necessary, we can assume σ = (r0, · · · , rf−1). Again, there is
one case which is simple:

Lemma 7.7. If σ = (p− 1, · · · , p− 1) then injGL2(Fq) σ = σ.

Proof. We have to prove that (p−1, · · · , p−1) is an injective object. Note first
that we actually have (p−1, · · · , p−1) ' Symq−1E2 in the notations of §2.2.
Let us first prove that σ|B(Fq) is injective as a B(Fq)-representation. Let v ∈ σ
be a non-zero vector fixed by the lower unipotent matrices (for instance v =
yq−1 in the notations of loc.cit.). An easy computation shows that the map
E[U(Fq)] → σ, [g] 7→ gv is surjective (recall U(Fq) is the subgroup of upper
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unipotent matrices), hence bijective as source and target have dimension
q. But since U(Fq) is a p-group, we know that E[U(Fq)] is isomorphic to
injU(Fq) 1 (see Example 5.16). Hence σ|U(Fq) ' injU(Fq) 1. By Lemma 6.5
applied to G = B(Fq) and D = U(Fq), we thus have σ|B(Fq) ' injB(Fq) 1. As
σ is self-dual, we can as well prove it is projective. Let B � A be a surjection
of E[GL2(Fq)]-modules and σ → A a non-zero GL2(Fq)-equivariant map. As
σ|B(Fq) is projective, there exists a B(Fq)-equivariant lift σ → B. As σB(Fq) =
Exq−1 is one dimensional and generates σ, its image in B must be non-zero
and we have HomB(Fq)(1, B|B(Fq)) 6= 0. By Frobenius reciprocity, this implies

there is a non-zero Φ ∈ HomGL2(Fq)(ind
GL2(Fq)
B(Fq) 1, B) which composed with

B � A gives back the non-zero map ind
GL2(Fq)
B(Fq) 1 � (ind

GL2(Fq)
B(Fq) 1)/1 = σ →

A. By Lemma 7.4, the induced map σ ↪→ ind
GL2(Fq)
B(Fq) 1

Φ−→ B is GL2(Fq)-
equivariant and lifts σ → A.

For other weights σ, it is much less trivial to work out injGL2(Fq) σ and
its full structure doesn’t seem to be known in general. However, we can list
its irreducible constituents. As in §7.1, let (x0, · · · , xf−1) be f variables and
define a set I(x0, · · · , xf−1) of f -tuples λ := (λ0(x0), · · · , λf−1(xf−1)) where
λi(xi) ∈ Z± xi as follows. If f = 1, λ0(x0) ∈ {x0, p− 1− x0, p− 3− x0}. If
f > 1, then:

(i) λi(xi) ∈ {xi, xi − 1, xi + 1, p − 2 − xi, p − 3 − xi, p − 1 − xi} for i ∈
{0, · · · , f − 1}

(ii) if λi(xi) ∈ {xi, xi − 1, xi + 1}, then λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}

(iii) if λi(xi) ∈ {p− 2− xi, p− 3− xi, p− 1− xi}, then λi+1(xi+1) ∈ {xi+1−
1, xi+1 + 1, p− 3− xi+1, p− 1− xi+1}

with the conventions xf = x0 and λf (xf ) = λ0(x0). Concretely, we see that
(λ0(x0), · · · , λf−1(xf−1)) is a succession of sequences like p− 2− xj, p− 2−
±1− xj+1, · · · , p− 2−±1− xj+l, xj+l+1 ± 1 among the xi.

As previously, we define for λ ∈ I(x0, · · · , xf−1):

e(λ) :=
1

2

( f−1∑
i=0

pi(xi − λi(xi))
)

if λf−1(xf−1) ∈ {xf−1, xf−1 − 1, xf−1 + 1}

e(λ) :=
1

2

(
pf − 1 +

f−1∑
i=0

pi(xi − λi(xi))
)

otherwise.

Exercise 7.8. Prove that e(λ) ∈ Z⊕
⊕f−1

i=0 Zxi.
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The following lemma makes explicit the weights which appear as subquo-
tients of injGL2(Fq) σ.

Theorem 7.9. Assume σ = (r0, · · · , rf−1) 6= (p− 1, · · · , p− 1).

(i) Assume σ 6= (0, · · · , 0). The irreducible subquotients of injGL2(Fq) σ
(without multiplicities) are the all distinct weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)

for λ ∈ I(x0, · · · , xf−1) forgetting the weights such that λi(ri) < 0 or
λi(ri) > p− 1 for some i.

(ii) Assume σ = (0, · · · , 0) = 1. The irreducible subquotients of injGL2(Fq) σ
(without multiplicities) are the all distinct weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)

for λ ∈ I(x0, · · · , xf−1) forgetting the weights such that λi(ri) < 0 for
some i and forgetting the weight (p− 1, · · · , p− 1).

Example 7.10. The case Fq = Fp is easy. Let σ = SymrE2 with 0 ≤ r <
p− 1. If r 6= 0, we have:

injGL2(Fp) σ =
Symp−1−rE2 ⊗ detr

SymrE2 ⊕ SymrE2

Symp−3−rE2 ⊗ detr+1

(forgetting Symp−3−r if r = p− 2) and if r = 0, we have:

injGL2(Fp) σ = 1 Symp−3E2 ⊗ det 1

(forgetting Symp−3 if p = 2) where we write a finite dimensional indecom-
posable representation R of GL2(Fp) over E as follows:

R = R0 R1 R2 · · · Rn

where (Ri)i are the graded pieces of the socle filtration (see §7.1).

As we can already see with Fp, it is not true that the constituents of
injGL2(Fq) σ appear there with multiplicity 1 in general. Although this doesn’t
happen for q = p, it is not even true in general that the socle σ appears only
twice. So the situation is different and more complicated than what happens
with principal series which are multiplicity free. However, there is a smaller
representation Vσ inside injGL2(Fq) σ which behaves just as well as principal
series if one adds a small assumption on σ:

53



Theorem 7.11. (i) There is a unique maximal subrepresentation Vσ ⊂
injGL2(Fq) σ such that σ occurs in Vσ with multiplicity 1 (hence as its
socle).

(ii) A weight occurs as a subquotient of injGL2(Fq) σ if and only if it occurs
as a subquotient of Vσ.

(iii) If moreover σ = (r0, · · · , rf−1) is such that 0 ≤ ri ≤ p − 2 for all i,
then Vσ is multiplicity free.

Example 7.12. Assume q = p and let σ = SymrE2 with 0 ≤ r < p − 1. If
r 6= 0, we have:

Vσ =
Symp−1−rE2 ⊗ detr

SymrE2 ⊕
Symp−3−rE2 ⊗ detr+1

(forgetting Symp−3−r if r = p− 2) and if r = 0, we have:

Vσ = 1 Symp−3E2 ⊗ det

(forgetting Symp−3 if p = 2).

We will at least prove (i) of Theorem 7.11 in §9.1 (see Proposition 9.1).
When 0 ≤ ri ≤ p − 2 for all i, one can then describe the graded pieces of
the socle and co-socle filtrations on the representation Vσ in a similar way to
what is done in Theorem 7.6 for principal series. For λ ∈ I(x0, · · · , xf−1),
define:

S(λ) := {i ∈ {0, · · · , f − 1}, λi(xi) ∈ {p− 2− xi −±1, xi ± 1}}

and set `(λ) := |S(λ)|. If τ = (λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1), set
`(τ) := `(λ). We need yet another definition:

Definition 7.13. Let λ, λ′ ∈ I(x0, · · · , xf−1). We say λ and λ′ are compat-
ible if, whenever λi(xi) ∈ {p− 2−xi−±1, xi± 1} and λ′i(xi) ∈ {p− 2−xi−
±1, xi ± 1} for the same i, then the signs of the ±1 are the same in λi(xi)
and λ′i(xi).

We write τ ≤ τ ′ if the corresponding λ, λ′ satisfy S(λ) ⊆ S(λ′) and λ and
λ′ are compatible.

Theorem 7.14. Let σ = (r0, · · · , rf−1) with 0 ≤ ri ≤ p − 2 for all i. If
σ = 1, we forget below the weight (p− 1, · · · , p− 1).
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(i) The socle and co-socle filtrations on Vσ are the same, with graded pieces:

(Vσ)i =
⊕
`(τ)=i

τ

for 0 ≤ i ≤ f .

(ii) Let τ be an irreducible subquotient of Vσ and U(τ) the unique subrep-
resentation with co-socle τ . Then the socle and co-socle filtrations on
U(τ) are the same, with graded pieces:

(U(τ))i =
⊕
`(τ ′)=i
τ ′≤τ

τ ′

for 0 ≤ i ≤ `(τ).

(iii) Let τ be an irreducible subquotient of Vσ and Q(τ) the unique quotient
with socle τ . Then the socle and co-socle filtrations on Q(τ) are the
same, with graded pieces:

(Q(τ))i =
⊕

`(τ ′)=i+`(τ)
τ≤τ ′

τ ′

for 0 ≤ i ≤ f − `(τ).

If σ is not one dimensional, then the representation Vσ in particular con-

tains the unique principal series ind
GL2(Fq)
B(Fq) χs with K-socle σ and Theorem

7.14 is immediately checked to be consistent with Theorem 7.6.

8 Week 8

8.1 Diamond weights: definition

We now assume till the end of that course that F is unramified. We define
Diamond weights associated to a continuous generic irreducible representa-
tion ρ : Gal(Qp/F ) → GL2(E) (which were actually defined by Buzzard,
Diamond and Jarvis). The combinatorics of these weights is similar to that
of the irreducible constituents of principal series (§7.1) or injective envelopes
(§7.2). They will be described by a set D(x0, · · · , xf−1) analogous to the sets
P(x0, · · · , xf−1) and I(x0, · · · , xf−1). Recall we have fixed an embedding
Fq ↪→ E.
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Before defining Diamond weights, let us go back to F = Qp. Remember

that if ρ is such that ρ|I(Qp/Qp) = ωr+1
2 ⊕ ωp(r+1)

2 with 0 ≤ r ≤ p − 1, then

the modulo p local Langlands correspondence associates to it the GL2(Qp)-
representation π(r, 0, 1) up to unramified twist. Remember also from Theo-
rem 4.8 that the socle of π(r, 0, 1) is SymrE2 ⊕ (Symp−1−rE2)⊗ detr. So we
have:

SymrE2 ↔ ωr+1
2 ⊕ ωp(r+1)

2 . (12)

Let us look at the other weight (Symp−1−rE2)⊗ detr. We have:

(ω
p((p−1−r)+1)
2 ⊕ ω(p−1−r)+1

2 )⊗ ωr1 = ω
p(p−r)+(1+p)r
2 ⊕ ωp−r+(1+p)r

2 =

ωp
2+r

2 ⊕ ωp+pr2 = ωr+1
2 ⊕ ωp(r+1)

2 = ρ|I(Qp/Qp)

where we have used ω1 = ω1+p
2 and ωp

2

2 = ω2 (Lemma 2.4). What this shows
is that we can somehow “see” the weight (Symp−1−rE2) ⊗ detr in the same
way we saw SymrE2 in (12) but replacing ω2 by ωp2.

We try to generalize this to f > 1. Start with ρ irreducible as in (ii)
of Corollary 2.9 and assume moreover that ρ is generic (Definition 2.11).
Let us try to find other ways to write down ρ|I(Qp/F ) by replacing ω2f by

its conjugate ωp
f

2f at arbitrary places. For each i ∈ {0, · · · , f − 1}, choose

qi ∈ {pi, qpi}. Then can one find integers r′i such that there is, say, a twist

ρ′ of ρ satisfying ρ′|I(Qp/F ) = ω
∑f−1
i=0 (r′i+1)qi

2f ⊕ ω
q
∑f−1
i=0 (r′i+1)qi

2f ? The following

lemma (which extends (ii) of Corollary 2.9) gives the answer:

Lemma 8.1. Let ρ : Gal(Qp/F ) → GL2(E) be a continuous irreducible
generic representation and for each i ∈ {0, · · · , f − 1} choose an element
qi ∈ {pi, qpi}, then ρ|I(Qp/F ) can be written:

ρ|I(Qp/F )
∼=

(
ω
∑f−1
i=0 (r′i+1)qi

2f 0

0 ω
q
∑f−1
i=0 (r′i+1)qi

2f

)
⊗ η′

for some character η′ that extends to Gal(Qp/F ) and some integers r′i which
are such that:

if i = 0 and (qf−1, q0) ∈ {(pf−1, 1), (qpf−1, q)} then 1 ≤ r′0 ≤ p − 2
otherwise 0 ≤ r′0 ≤ p− 3

if i > 0 and (qi−1, qi) ∈ {(pi−1, pi), (qpi−1, qpi)} then 0 ≤ r′i ≤ p − 3
otherwise 1 ≤ r′i ≤ p− 2.
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Proof. Write ρ|I(Qp/F ) as in (ii) of Corollary 2.9. Let us explain how one can

replace (ri + 1)pi by (r′i + 1)qpi (at the expense of twisting). One has the
congruences:

(ri + 1)pi ≡ (p− 1− ri)qpi + pi+1 (q + 1) if 0 ≤ i ≤ f − 2

(rf−1 + 1)pf−1 ≡ (p− 1− rf−1)qpf−1 − 1 (q + 1).

This implies if 0 ≤ i ≤ f − 2:

f−1∑
j=0

(rj + 1)pj =
∑

j 6=i,i+1

(rj + 1)pj + (ri + 1)pi + (ri+1 + 1)pi+1

=
∑

j 6=i,i+1

(rj + 1)pj + (p− 1− ri)qpi + (ri+1 + 2)pi+1 + a(q + 1)

and if i = f − 1:

f−1∑
j=0

(rj + 1)pj =

f−2∑
j=1

(rj + 1)pj + (rf−1 + 1)pf−1 + (r0 + 1)

=

f−2∑
j=1

(rj + 1)pj + (p− 1− rf−1)qpf−1 + r0 + a(q + 1)

for some integer a. Hence ω
∑f−1
j=0 (rj+1)pj

2f η = ω
∑f−1
j=0 (r′j+1)qj

2f η′ where qj = pj,

r′j = rj if j /∈ {i, i + 1} (resp. j /∈ {f − 1, 0}), qi = qpi, r′i = p − 2 − ri,
qi+1 = pi+1, r′i+1 = ri+1 + 1 (resp. qf−1 = qpf−1, r′f−1 = p − 2 − rf−1,

q0 = 1, r′0 = r0 − 1) and where η′ = ηω
a(q+1)
2f . Note that η′ still extends to

Gal(Qp/F ). Moreover, we see from the genericity of ρ that if i = f − 1, then
(qf−1, q0) = (qpf−1, 1) and r′0 = r0− 1 ∈ {0, · · · , p− 3} and if i < f − 1, then
(qi, qi+1) = (qpi, pi+1) and r′i+1 = ri+1 + 1 ∈ {1, · · · , p − 2}. Iterating this
process gives the proposition.

From what happens for F = Qp, one is tempted to associate the weight
(r′0, · · · , r′f−1)⊗ η′ to ρ|I(Qp/F ).

Definition 8.2. Let Gal(Qp/F )→ GL2(E) be a continuous irreducible gene-
ric representation. The set of Diamond weights D(ρ) associated to ρ (in fact
to ρ|I(Qp/F )) is the set of weights {(r′0, · · · , r′f−1)⊗η′} for all possible writings:

ρ|I(Qp/F )
∼=

(
ω
∑f−1
i=0 (r′i+1)qi

2f 0

0 ω
q
∑f−1
i=0 (r′i+1)qi

2f

)
⊗ η′

as in Lemma 8.1 for all choices of qi.
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One should of course read (r′0, · · · , r′f−1)⊗(η′◦r−1
F ◦det). It turns out one

can describe explicitly the set D(ρ) in the same way we described irreducible
constituents of principal series and injective envelopes in §7.

Let (x0, · · · , xf−1) be f variables. We define a set D(x0, · · · , xf−1) of
f -tuples λ := (λ0(x0), · · · , λf−1(xf−1)) where λi(xi) ∈ Z ± xi as follows. If
f = 1, λ0(x0) ∈ {x0, p− 1− x0}. If f > 1, then:

(i) λ0(x0) ∈ {x0, x0− 1, p− 2− x0, p− 1− x0} and λi(xi) ∈ {xi, xi + 1, p−
2− xi, p− 3− xi} if i > 0

(ii) if i > 0 and λi(xi) ∈ {xi, xi + 1} (resp. λ0(x0) ∈ {x0, x0 − 1}), then
λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}

(iii) if 0 < i < f − 1 and λi(xi) ∈ {p− 2− xi, p− 3− xi}, then λi+1(xi+1) ∈
{p− 3− xi+1, xi+1 + 1}

(iv) if λ0(x0) ∈ {p− 1− x0, p− 2− x0}, then λ1(x1) ∈ {p− 3− x1, x1 + 1}

(v) if λf−1(xf−1) ∈ {p − 2 − xf−1, p − 3 − xf−1}, then λ0(x0) ∈ {p − 1 −
x0, x0 − 1}

with the conventions xf = x0 and λf (xf ) = λ0(x0). Concretely, we see that
(λ0(x0), · · · , λf−1(xf−1)) is a succession of sequences like p− 2− xj, p− 3−
xj+1, · · · , p−3−xj+l, xj+l+1 +1 among the xi with the caveat that p−3−x0

(resp. x0 + 1) has to be replaced by p− 1− x0 (resp. x0 − 1).

For λ ∈ D(x0, · · · , xf−1), define if f > 1:

e(λ) :=
1

2

( f−1∑
i=0

pi(xi − λi(xi))
)

if λf−1(xf−1) ∈ {xf−1, xf−1 + 1}

e(λ) :=
1

2

(
pf − 1 +

f−1∑
i=0

pi(xi − λi(xi))
)

otherwise,

and, if f = 1, e(λ) := 0 if λ0(x0) = x0, e(λ) := x0 if λ0(x0) = p− 1− x0. As
previously, one checks that e(λ) ∈ Z⊕

⊕f−1
i=0 Zxi.

Proposition 8.3. Let ρ : Gal(Qp/F )→ GL2(E) be a continuous irreducible
generic representation, that is:

ρ|I(Qp/F )
∼=

(
ω
∑f−1
i=0 (ri+1)pi

2f 0

0 ω
q
∑f−1
i=0 (ri+1)pi

2f

)
⊗ η
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with 1 ≤ r0 ≤ p − 2 and 0 ≤ ri ≤ p − 3 for i > 0. Then D(ρ) is the set of
(all distinct) weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ ∈ D(x0, · · · , xf−1).

When F = Qp and ρ|I(Qp/Qp) = ωr0+1
2 ⊕ ωp(r0+1)

2 , we just recover D(ρ) =

{Symr0E2, Symp−1−r0E2 ⊗ detr0}. Let us examine the case f = 2:

Example 8.4. Assume f = 2 and consider ρ as in Proposition 8.3 with η = 1
(for simplicity). Then D(ρ) is the following list:

{(r0, r1), (r0 − 1, p− 2− r1)⊗ detp(r1+1)

(p− 1− r0, p− 3− r1)⊗ detr0+p(r1+1), (p− 2− r0, r1 + 1)⊗ detr0+p(p−1)}

(look at Example 5.8!). Indeed, one can check the following equalities:(
ω

(r0+1)+(r1+1)p
4 0

0 ω
(r0+1)p2+(r1+1)p3

4

)
=(

ω
r0+(p−1−r1)p3

4 0

0 ω
r0p2+(p−1−r1)p
4

)
⊗ ωp(r1+1)

2 =(
ω

(p−r0)p2+(p−2−r1)p3

4 0

0 ω
p−r0+(p−2−r1)p
4

)
⊗ ωr0+p(r1+1)

2 =(
ω

(p−1−r0)p2+(r1+2)p
4 0

0 ω
(p−1−r0)+(r1+2)p3

4

)
⊗ ωr0+p(p−1)

2 .

We don’t prove Proposition 8.3 as it is technical and doesn’t present any
difficulty from the analysis of the possible r′i in Lemma 8.1. Note that one
can replace (ri)0≤i≤f−1 by (p − 1 − r0, p − 3 − r1, · · · , p − 3 − rf−1) in the
way we start writing ρ (see the comment after Corollary 2.9), hence D(ρ)
shouldn’t be affected by this “change of variables”. Indeed, one can check
that D(x0, · · · , xf−1) is symmetrical with respect to x0 7→ p − 1 − x0 and
xi 7→ p− 3− xi, i > 0.

The set D(x0, · · · , xf−1) can be naturally identified with the set of sub-
sets S of {0, · · · , f − 1} as follows. Fix λ ∈ D(x0, · · · , xf−1). If i > 0 set
i ∈ S(λ) if and only if λi(xi) ∈ {p − 3 − xi, xi + 1} and set 0 ∈ S(λ) if and
only if λ0(x0) ∈ {p− 1− x0, x0 − 1}. One checks that, given S, there is only
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one possible λ ∈ D(x0, · · · , xf−1) such that S = S(λ). By Proposition 8.3
we can thus identify D(ρ) with the subsets of {0, · · · , f − 1}. In particular
we see that |D(ρ)| = 2f .

Let us finish with a few easy definitions. If σ ∈ D(ρ) corresponds to
λ ∈ D(x0, · · · , xf−1), we set `(σ) = `(λ) := |S(λ)|. If λ, λ′ ∈ D(x0, · · · , xf−1)
define λ∩λ′ ∈ D(x0, · · · , xf−1) as the element corresponding to S(λ)∩S(λ′)
and λ ∪ λ′ ∈ D(x0, · · · , xf−1) as the element corresponding to S(λ) ∪ S(λ′).
We have a partial order on the elements of D(x0, · · · , xf−1) by declaring that
λ′ ≤ λ if and only if S(λ′) ⊆ S(λ). If σ, σ′ ∈ D(ρ) correspond to λ, λ′, we
let σ ∩ σ′ (resp. σ ∪ σ′) be the unique weight in D(ρ) which corresponds to
λ ∩ λ′ (resp. λ ∪ λ′). We also write σ ≤ σ′ if λ ≤ λ′.

8.2 Diamond diagrams I

We fix a continuous generic irreducible representation ρ : Gal(Qp/F ) →
GL2(E). We define basic diagrams with K-socle being the direct sum of the
weights in D(ρ).

Again, let us go back to F = Qp. Remember that to ρ|I(Qp/Qp) = ωr0+1
2 ⊕

ω
p(r0+1)
2 we associate π(r0, 0, 1) and that:

socK π(r0, 0, 1) = Symr0E2 ⊕ Symp−1−r0E2 ⊗ detr0 = ⊕σ∈D(σ)σ.

Hence it is natural when F is arbitrary (unramified) to look for smooth
admissible and (hopefully) irreducible representations π of GL2(F ) over E
such that socK π = ⊕σ∈D(σ)σ. Inspired by our machinery of §5.2 (Theorem
5.10), we first wish to construct natural basic diagrams (D0, D1, r) such that
socK D0 = ⊕σ∈D(σ)σ. We saw in §5.1 that for f = 1 one could indeed make
a unique basic diagram such that D0 = Symr0E2⊕ Symp−1−r0E2⊗ detr0 and
that this diagram could be used to characterize π(r0, 0, 1). However, when
f > 1, it is impossible to proceed in the same easy way:

Example 8.5. Assume f = 2 and go back to Example 8.4. We know that
D(ρ) is the list:

{(r0, r1), (r0 − 1, p− 2− r1)⊗ detp(r1+1)

(p− 1− r0, p− 3− r1)⊗ detr0+p(r1+1), (p− 2− r0, r1 + 1)⊗ detr0+p(p−1)}.

If we take D0 to be the direct sum of these four weights, then we can’t put
an action of N on DI1

0 . Indeed, the I-representation DI1
0 (which is a sum
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of characters) is not stable under χ 7→ χs contrary to what happened for
f = 1. For instance if χ is the action of I on (r0, r1)I1 then χs is missing
as the weight (p − 1 − r0, p − 1 − r1) ⊗ detr0+pr1 is not in D(ρ). The same
phenomena happens for f > 2.

Therefore we will have to “enlarge” D0 to get stability by χ 7→ χs. We
already saw such an enlargement in Example 5.8, but actually there is a
bigger one. To see how to get it, let us again have a look at F = Qp.
Although the basic diagram with D0 = Symr0E2⊕ Symp−1−r0E2⊗ detr0 was
sufficient to characterize π(r0, 0, 1), it is not the biggest basic diagram that
is actually contained in π(r0, 0, 1):

Theorem 8.6. With the previous notations, let σ1 := Symr0E2 and σ2 :=
Symp−1−r0E2 ⊗ detr0 with 1 ≤ r0 ≤ p− 2. Then π(r0, 0, 1)K1 = D0,σ1 ⊕D0,σ2

where:

D0,σ1 = Symr0E2 Symp−3−r0E2 ⊗ detr0+1

D0,σ2 = Symp−1−r0E2 ⊗ detr0 Symr0−2E2 ⊗ det

(with the notations of Example 7.10) forgetting Symp−3−r0E2⊗detr0+1 (resp.
Symr0−2E2 ⊗ det) when r0 = p− 2 (resp. r0 = 1).

Proof. We actually only give here a sketch of the proof (the proof will be
finished later, see below). Since socK π(r0, 0, 1) = socGL2(Fq) π(r0, 0, 1)K1 , we
have:

π(r0, 0, 1)K1 ↪→ injGL2(Fq)(σ1)⊕ injGL2(Fq)(σ2)

by the universal property of injective envelopes. Note that we have canonical
injections D0,σ1 ⊂ injGL2(Fq) σ1 and D0,σ2 ⊂ injGL2(Fq) σ2, in fact we even have
D0,σ1 ⊆ Vσ1 and D0,σ2 ⊆ Vσ2 as D0,σ1 and D0,σ2 are multiplicity free. Let
us first explain why one has π(r0, 0, 1)K1 ⊆ D0,σ1 ⊕ D0,σ2 . Assume this
is not the case. Then π(r0, 0, 1)K1 contains as a subquotient one of the
constituents of injGL2(Fq)(σ1 ⊕ σ2) which is not in D0,σ1 ⊕D0,σ2 . Looking at
this injective envelope (Example 7.10), we see that this constituent must be
either σ1 or σ2. Then a close examination of all the possibilities yields that
π(r0, 0, 1)K1 must necessarily contain either the unique non-split extension
σ1 σ2 or the unique non-split extension σ2 σ1. But we have already met
this kind of extension in the proof Proposition 4.7 (see the exact sequence
(9)) and by Lemma 7.3 we know it has a 2-dimensional space of I1-invariants.
Together with the other weight in the socle, we see that either π(r0, 0, 1)
contains σ2 ⊕ (σ1 σ2) or it contains σ1 ⊕ (σ2 σ1). In all cases we have
dimE π(r0, 0, 1)I1 ≥ 3. This contradicts Remark 5.3 (although we have not
proven the latter). To prove that we have exactly D0,σ1⊕D0,σ2 , I will exhibit
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elements in π(r0, 0, 1)K1 that generate the 2 “extra” weights Symp−3−r0E2 ⊗
detr0+1 and Symr0−2E2 ⊗ det. By the entertwining π(r0, 0, 1) ' π(p − 1 −
r0, 0, ω

r0
1 ) (see §4.1) it is enough to find an element generating Symr0−2E2⊗det

and we can thus assume r0 ≥ 2 (otherwise there is nothing to prove). Such
an element is (using the notations of §3.2 and §4.2)

∑
λ∈Fp [

(
p [λ]
0 1

)
, xr0−1y] if

r0 ≥ 3 and
∑

λ∈Fp [
(
p [λ]
0 1

)
, xy] − [Π, xy] if r0 = 2 (to check this requires a

certain amount of computation, see Lemma 11.8 and Proposition 11.6).

Now, comparing Theorem 8.6 with Example 7.10, we see that D0,σ1⊕D0,σ2

is the maximal subrepresentation of injGL2(Fq)(σ1 ⊕ σ2) such that σ1 and σ2,
that is the weights of the socle, appear only once. What happens for Qp is
that when one considers I1-invariants, then they actually coincide with the
I1-invariants of the socle.

Since considering just the socle doesn’t work when f > 1, Theorem 8.6
suggests another approach: we could instead try to consider the maximal
subrepresentation of injGL2(Fq)(⊕σ∈D(ρ)σ) such that the weights σ of the socle
appear only once (assuming it exists).

This indeed will lead to beautiful basic diagrams, except that this time
we will have (for f > 1) an infinite family of basic diagrams associated to
one given ρ!

Theorem 8.7. Fix a continuous irreducible generic Galois representation
ρ : Gal(Qp/F )→ GL2(E).

(i) There exists a unique finite dimensional representation D0(ρ) of
GL2(Fq) over E such that:

(a) socGL2(Fq) D0(ρ) ' ⊕σ∈D(ρ)σ

(b) each irreducible σ in D(ρ) only occurs once as a Jordan-Hölder
factor of D0(ρ) (hence in the socle)

(c) D0(ρ) is maximal (for inclusion) for properties (a) and (b).

(ii) Each Jordan-Hölder factor of D0(ρ) only occurs once in D0(ρ).

(iii) As an I-representation, one has:

D0(ρ)I1 '
⊕

certain (χ,χs)
χ6=χs

χ⊕ χs

(in particular D0(ρ)I1 is stable under χ 7→ χs).
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We will prove (part of) this theorem in the next lecture.

Example 8.8. Assume f = 2 as in Example 5.8 or Example 8.4 or Example
8.5. Then one can check using Theorem 7.14 that D0(ρ) = D0,σ1 ⊕ D0,σ2 ⊕
D0,σ3 ⊕ D0,σ4 with the D0,σi as follows (forgetting the twists in the weights
and forgetting weights with negative entries):

D0,σ1 = (r0, r1) S1 (p− 3− r0, p− 1− r1)

D0,σ2 = (r0 − 1, p− 2− r1) S2 (p− r0, r1 − 1)

D0,σ3 = (p− 1− r0, p− 3− r1) S3 (r0 − 2, r1 + 2)

D0,σ4 = (p− 2− r0, r1 + 1) S4 (r0 + 1, p− 4− r1)

where:

S1 = (p− 2− r0, r1 − 1)⊕ (r0 + 1, p− 2− r1)

S2 = (r0 − 2, r1)⊕ (p− 1− r0, p− 1− r1)

S3 = (r0 − 1, p− 4− r1)⊕ (p− r0, r1 + 1)

S4 = (p− 3− r0, p− 3− r1)⊕ (r0, r1 + 2).

Indeed, as the socle appears in D0(ρ) with multiplicity 1, we have a for-
tiori D0(ρ) ⊆ Vσ1 ⊕ Vσ2 ⊕ Vσ3 ⊕ Vσ4 (denoting as in Example 5.8 by σi,
1 ≤ i ≤ 4 the four weights of the socle). Theorem 7.14 together with The-
orem 7.11 and Theorem 7.9 give us the complete structure of each Vσi and
an explicit computation yields then the above result. In particular, D0(ρ)
contains the representation D0 of Example 5.8. In fact, one can prove that
D0 = 〈KD0(ρ)I1〉 ⊂ D0(ρ).

One can manufacture many basic zero diagrams from D0(ρ) as follows.
First, we extend the action of K on D0(ρ) to an action of KF× by sending
$F to the identity. Then, because of (iii) of Theorem 8.7 above, there is up to
isomorphism a unique action of Π onD0(ρ)I1 such that Π2 = $F acts trivially.
Let us denote by D1(ρ) the resulting N -representation. Now, to make a basic
diagram, one needs an IF×-equivariant injection r : D1(ρ) ↪→ D0(ρ). Up
to isomorphism of basic diagrams, there are plenty of such injections when
f > 1. For instance when f = 2, one can check that the resulting diagrams
D(ρ, r) := (D0(ρ), D1(ρ), r) are parametrized by λ ∈ E× as is shown in
Example 5.8. When f grows, things get worse, and the basic diagramsD(ρ, r)
form a family which depends on more and more parameters. The meaning of
those parameters in terms of the Galois representation ρ (if any) is mysterious
so far. Note that the basic diagrams D(ρ, r) will never be irreducible. We
have seen this for f = 1 in this lecture and for f = 2, compare Examples 5.8
and 8.8. The cases f > 2 are similar. Thus, we cannot apply Proposition
5.11 to the diagrams D(ρ).
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9 Week 9

Diamond diagrams II: We prove (i) and (iii) of Theorem 8.7 and give hints
for the proof of (ii).

We start with a general proposition:

Proposition 9.1. Let D be a finite set of distinct weights. Then there exists
a unique (up to isomorphism) finite dimensional smooth representation D0

of GL2(Fq) over E such that:

(i) socGL2(Fq) D0 =
⊕

σ∈D σ

(ii) any weight of D appears at most once (as a subquotient) in D0

(iii) D0 is maximal with respect to properties (i), (ii).

Proof. Note first that condition (iii) means that, if D′0 is any finite dimen-
sional representation of GL2(Fq) over E that strictly contains D0 as a sub-
representation, then (ii) is not satisfied for D′0. Set τ := ⊕σ∈Dσ and let τ ′ be
a representation of GL2(Fq) satisfying (i). Then τ ′ satisfies (ii) if and only if
HomGL2(Fq)(τ

′/τ, injGL2(Fq) σ) = 0 for all σ ∈ D. Since injGL2(Fq) σ is an injec-
tive representation, we have an exact sequence of GL2(Fq)-representations:

0→ HomGL2(Fq)(τ
′/τ, injGL2(Fq) σ)→ HomGL2(Fq)(τ

′, injGL2(Fq) σ)→
HomGL2(Fq)(τ, injGL2(Fq) σ)→ 0

and hence τ ′ satisfies (ii) if and only if:

dimE HomGL2(Fq)(τ
′, injGL2(Fq) σ) = 1 for all σ ∈ D.

Let τ1 and τ2 be two GL2(Fq)-invariant subspaces of injGL2(Fq) τ containing
τ and satisfying (ii). We are going to prove that τ1 + τ2 ⊆ injGL2(Fq) τ still
satisfies (ii), that is, satisfies dimE HomGL2(Fq)(τ1 +τ2, injGL2(Fq) σ) = 1. Since
injGL2(Fq) σ is injective, we again have an exact sequence:

0→ HomGL2(Fq)(τ1 + τ2, injGL2(Fq) σ)→ HomGL2(Fq)(τ1 ⊕ τ2, injGL2(Fq) σ)→
HomGL2(Fq)(τ1 ∩ τ2, injGL2(Fq) σ)→ 0.

Since τ1 + τ2 and τ1 ∩ τ2 both contain τ as a subobject, they also contain
σ. By the injectivity property of injGL2(Fq) σ we get that HomGL2(Fq)(τ1 +
τ2, injGL2(Fq) σ) and HomGL2(Fq)(τ1 ∩ τ2, injGL2(Fq) σ) are non-zero. Moreover,
since the term in the middle has dimension 1+1 = 2 (by what we have proven
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above), we obtain in particular dimE HomGL2(Fq)(τ1 +τ2, injGL2(Fq) σ) = 1. All
this implies there exists a maximal subspace D0 of injGL2(Fq) τ satisfying (i)
and (ii). Since any representation τ ′ of GL2(Fq) with socGL2(Fq) τ

′ ∼= τ can be
embedded into injGL2(Fq) τ , we obtain unicity and thus the proposition.

Note that if D = {σ}, then D0 = Vσ where Vσ is as in Theorem 7.11.
Indeed, by the universal property of injGL2(Fq) σ, one has an embedding D0 ⊆
injGL2(Fq) σ and it then follows from the maximality that D0 = Vσ.

Lemma 9.2. Keep the notations of Proposition 9.1. Then we have an iso-
morphism of GL2(Fq)-representations:

D0
∼=
⊕
σ∈D

D0,σ

where socGL2(Fq) D0,σ
∼= σ.

Proof. We keep the notations of the previous proof. Since injGL2(Fq) τ '
⊕σ∈D injGL2(Fq) σ, let us denote by eσ the projector onto injGL2(Fq) σ (note that
this is well defined as D is multiplicity free). Now consider ⊕σ∈Deσ(D0). It
obviously satisfies (i). It also satisfies (ii) because if σ ∈ D appears elsewhere
than as the socle of eσ(D0), it a fortiori appears elsewhere in D0 than in the
socle and this is impossible. By maximality of D0 the natural injection:

D0 ↪→ ⊕σ∈Deσ(D0)

has to be an isomorphism. Thus we have D0,σ = eσ(D0).

Exercise 9.3. Prove that if D and D0 are as above, then EndGL2(Fq)(D0) ∼=
E|D|.

Lemma 9.4. Keep the notations of Proposition 9.1. If χ appears in D
U(Fq)
0

(as a character of B(Fq)) then so does χs.

Proof. By Frobenius reciprocity:

HomB(Fq)(χ,D0|B(Fq)) = HomGL2(Fq)(ind
GL2(Fq)
B(Fq) χ,D0),

we have a non-zero map ind
GL2(Fq)
B(Fq) χ → D0 and hence there is a quotient of

ind
GL2(Fq)
B(Fq) χ withK-socle contained in⊕σ∈Dσ. As ind

GL2(Fq)
B(Fq) χ and ind

GL2(Fq)
B(Fq) χs

have the same irreducible constituents (Theorem 7.6), we get that ind
GL2(Fq)
B(Fq) χs

contains irreducible constituents that are in D. Consider all the non-zero
quotients of ind

GL2(Fq)
B(Fq) χs with irreducible GL2(Fq)-socle which is a weight of
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D. Then at least one of these quotients Q satisfies (ii) of Proposition 9.1,
i.e. doesn’t contain any other weight of D. For instance, among all quotients

of ind
GL2(Fq)
B(Fq) χs with irreducible GL2(Fq)-socle which is a weight of D, take

one which has a minimal number of constituents. By maximality of D0, we
deduce an embedding:

Q⊕ (⊕ σ∈D
σ 6=socQ

σ) ↪→ D0

hence a non-zero map ind
GL2(Fq)
B(Fq) χs → D0 which implies χs appears in D

U(Fq)
0

by Frobenius reciprocity.

Note that Lemma 9.4 doesn’t say that χ appears as many times as χs

(and indeed this is wrong in general), it just says that if one appears, then so
does the other. For instance consider the case D = {(r0, r1), (p− 2− r0, r1−
1) ⊗ detr0+1, (r0 − 1, p − 2 − r1) ⊗ detp(r1+1)}. Let χ be the action of I on
(r0, r1)I1 , then one can check that χ appears only once in D0 (as must be)
but χs appears twice.

Now I would like to sketch the proof of (ii) of Theorem 8.7. This statement
is again specific to the set of weights D(ρ) and is not true for an arbitrary
set of distinct weights D (take e.g. the example D above). It is based on the
following lemma:

Lemma 9.5. Let ρ : Gal(Qp/F ) → GL2(E) be a continuous irreducible
generic Galois representation. Let τ be an arbitrary weight and assume there
exist two distinct weights σ, σ′ ∈ D(ρ) such that τ is a subquotient of both
Vσ and Vσ′ (see Theorem 7.11). Let I(σ, τ) (resp. I(σ′, τ)) be the unique
subrepresentation of Vσ (resp. Vσ′) with socle σ (resp. σ′) and co-socle τ .
Then there exists σ′′ ∈ D(ρ) such that either σ′′ 6= σ and σ′′ occurs in I(σ, τ)
or σ′′ 6= σ′ and σ′′ occurs in I(σ′, τ).

Note that the genericity of ρ implies that each σ ∈ D(ρ) satisfies the
assumption in (iii) of Theorem 7.11 and hence Vσ is multiplicity free. This
implies that I(σ, τ) and I(σ′, τ) are well defined. Note also that if σ′′ 6= σ
and σ′′ occurs in I(σ, τ), it is possible that σ′′ = σ′, and likewise in the other
case. The proof of this lemma is a combinatorial computation. Here is the
idea: writing τ = (s0, · · · , sf−1)⊗ θ we can find λ, λ′ ∈ I(x0, · · · , xf−1) such
that:

σ = (λ0(s0), · · · , λf−1(sf−1))⊗ dete(λ)(r0,··· ,rf−1)θ

σ′ = (λ′0(s0), · · · , λ′f−1(sf−1))⊗ dete(λ
′)(r0,··· ,rf−1)θ

(using that τ occurs in Vσ and Vσ′ and using Theorem 7.9 “backwards”).
Then, using the fact that both σ and σ′ are in D(ρ), one can compute that
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λ and λ′ must be compatible in the sense of Definition 7.13. We can thus
define λ′′ := λ ∩ λ′ ∈ I(x0, · · · , xf−1) in a way analogous to what we did in
§8.1 for Diamond weights. The weight σ′′ is then (λ′′0(s0), · · · , λ′′f−1(sf−1))⊗
dete(λ

′′)(r0,··· ,rf−1)θ which, by another computation, is proved to be again in
D(ρ) and satisfy the property of Lemma 9.5.

It is then straightforward to deduce from this thatD0(ρ) = ⊕σ∈D(ρ)D0,σ(ρ)
is multiplicity free. Note first that one has an embedding D0,σ(ρ) ↪→ Vσ. As
Vσ is multiplicity free, so is D0,σ(ρ). Now, assume that some weight τ ap-
pears twice in D0(ρ). Since each D0,σ(ρ) is multiplicity free, it must appear
in D0,σ(ρ) and D0,σ′(ρ) for two distinct weights σ, σ′ ∈ D(ρ). By Lemma 9.5
we obtain that D0,σ(ρ), say, contains a weight σ′′ ∈ D(ρ) distinct from σ (as
it contains I(σ, τ)). This is impossible by definition of D0(ρ).

Finally, once we have that D0(ρ) is multiplicity free, we get that the
B(Fq)-representation D0(ρ)U(Fq) is also multiplicity free. Indeed, if χ 6= χs,
then it is clear that χ appears at most once in D0(ρ)U(Fq). If χ = χs appears,
then by Frobenius reciprocity and Lemma 7.4, either a twist of the trivial
representation or a twist of (p − 1, · · · , p − 1) must appear in the socle of
D0(ρ), that is in D(ρ) and this can’t happen as we have assumed ρ generic
(easy check). Together with Lemma 9.4, this finishes the proof of (iii) of
Theorem 8.7.

Next week, we will study in more details the basic diagrams D(ρ, r) made
out of D0(ρ).

10 Week 10

10.1 Diamond diagrams III

We study more closely D0(ρ) and the “indecomposability” of the diagrams
D(ρ, r).

Let us first completely determine the representation D0(ρ), that is to
say the representations D0,σ(ρ) for σ ∈ D(ρ). Fix σ ∈ D(ρ) and write

σ = (λ0(r0), · · · , λf−1(rf−1))⊗dete(λ)(r0,··· ,rf−1)η with λ ∈ D(x0, · · · , xf−1) as
in Proposition 8.3. One defines µλ ∈ I(y0, · · · , yf−1) as follows:

(i) µλ,i(yi) := p − 1 − yi if λi(xi) ∈ {p − 3 − xi, xi} and i > 0 or if
λ0(x0) ∈ {p− 2− x0, x0 − 1}
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(ii) µλ,i(yi) := p − 3 − yi if λi(xi) ∈ {p − 2 − xi, xi + 1} and i > 0 or if
λ0(x0) ∈ {p− 1− x0, x0}.

For µ ∈ I(y0, · · · , yf−1), define µ ◦ λ := (µi(λi(xi))i and e(µ ◦ λ) ∈⊕f−1
i=0 Zxi as in Lemma 7.8 according to whether µf−1(λf−1(xf−1)) ∈ Z+xf−1

or Z− xf−1.

Theorem 10.1. Let ρ : Gal(Qp/F ) → GL2(E) be a continuous irreducible
generic Galois representation. Fix σ ∈ D(ρ) and λ the corresponding f -tuple.

(i) The irreducible subquotients of D0,σ(ρ) are exactly the (all distinct)
weights:

(µ0(λ0(r0)), · · · , µf−1(λf−1(rf−1)))⊗ dete(µ◦λ)(r0,··· ,rf−1)η (13)

for µ ∈ I(y0, · · · , yf−1) such that µ and µλ are compatible (see Defini-
tion 7.13) forgetting the weights such that µi(λi(ri)) < 0 or µi(λi(ri)) >
p− 1 for some i.

(ii) The graded pieces of the socle filtration on D0,σ(ρ) are:

D0,σ(ρ)i =
⊕
`(µ)=i

τ

for 0 ≤ i ≤ f − 1 and weights τ as in (13) with `(µ) as in §7.2.

Proof. We may embed D0,σ(ρ) into injGL2(Fq) σ, and actually even into the
subspace Vσ. By Lemma 7.9, all weights of D0,σ(ρ) are of type (13) for certain
µ ∈ I(y0, · · · , yf−1). Take µ ∈ I(y0, · · · , yf−1) which is not compatible with
µλ, assume 0 ≤ µi(λi(ri)) ≤ p − 1 for all i and let τ be the corresponding
weight (13). Two possibilities can occur: (1) there is j ∈ {1, · · · , f − 1}
such that either λj(xj) ∈ {p − 3 − xj, xj} and µj(yj) ∈ {p − 3 − yj, yj + 1}
or λj(xj) ∈ {p − 2 − xj, xj + 1} and µj(yj) ∈ {p − 1 − yj, yj − 1} or (2)
λ0(x0) ∈ {p − 2 − x0, x0 − 1} and µ0(y0) ∈ {p − 3 − y0, y0 + 1} or λ0(x0) ∈
{p− 1− x0, x0} and µ0(y0) ∈ {p− 1− y0, y0 − 1}. We give the proof for (1)
as (2) is completely similar. In the first case of (1), define µ′ = (µ′i(yi))i by
µ′i(yi) := yi if i /∈ {j − 1, j}, µ′j−1(yj−1) := p− 2− yj−1 and µ′j(yj) := yj + 1.
In the second case, define µ′ = (µ′i(yi))i by µ′i(yi) := yi if i /∈ {j − 1, j},
µ′j−1(yj−1) := p− 2− yj−1 and µ′j(yj) := yj − 1. Let τ ′ be the corresponding
weight (13). Then one checks that in both cases τ ′ ∈ D(ρ) and τ ′ 6= σ
(this is straightforward). Moreover, one has that τ ′ is a subquotient of the
representation I(σ, τ) of Lemma 9.5. This follows from (ii) of Theorem 7.14
using that S(µ′) ⊆ S(µ) and that µ and µ′ are compatible. Hence τ cannot
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appear inD0,σ(ρ) by multiplicity 1. Conversely, if µ is compatible with µλ and
µ 6= (y0, · · · , yf−1), then the weight (13) is never in D(ρ) as is immediately
checked. By maximality of D0,σ(ρ) together with Theorem 7.14, it is then
easy to derive (i). (ii) follows also from Theorem 7.14.

One can work out D0,σ(ρ) in a few examples. For f = 1, this is in the
statement of Theorem 8.6. For f = 2, this is Example 8.8. One can work
out f = 3 (one instance of D0,σ(ρ) given completely). Here is a non-trivial
exercise:

Exercise 10.2. Prove that dimE D0,σ(ρ) = q− 1 for all σ ∈ D(σ) and hence
dimE D0(ρ) = 2f (q − 1).

The basic diagrams D(ρ, r) are not irreducible. But there is in some sense
a trace of the irreducibility of ρ in the following statement:

Theorem 10.3. The basic diagrams D(ρ, r) are indecomposable, that is one
cannot write D(ρ, r) = D1⊕D2 where D1, D2 are non-zero basic subdiagrams.

Of course, for this, you have to use the action of Π on I1-invariants.
This can be immediately checked on the above examples f = 1, 2. I shall
indicate now how one can prove Theorem 10.3. Let V be a finite dimensional
representation of GL2(Fq) over E and assume that V is multiplicity free.
Let τ be an irreducible constituent of V . We say that τ I1 has a lift in
V I1 if the map V (τ)I1 → τ I1 is surjective where V (τ) ⊆ V is the unique
subrepresentation with co-socle τ .

Proposition 10.4. Let σ = (r0, · · · , rf−1) with 0 ≤ ri ≤ p − 2 for all i
and let Vσ be the representation in §7.2. The irreducible subquotients τ of
Vσ such that τ I1 has a lift in V I1

σ are exactly the weights of Vσ such that
µi(yi) ∈ {p− 2− yi, p− 1− yi, yi, yi + 1}.

You can check that this statement is consistent with what we did for
f = 2 in Examples 5.8 and 8.8. To describe the action of Π on DI1

0 , we have
to introduce some more notations.

Let S be a subset of {0, · · · , f − 1} and define δ(S) as follows (with the
convention f − 1 + 1 = 0): if i 6= 0, i ∈ δ(S) if and only if i + 1 ∈ S and
0 ∈ δ(S) if and only if 1 /∈ S. If ρ : Gal(Qp/F ) → GL2(E) is a continuous
irreducible generic Galois representation and σ ∈ D(ρ) corresponds to S (see
§8.1), we write δ(σ) for the unique weight in D(ρ) corresponding to δ(S).

Remark 10.5. Going back to the case f = 2 (Examples 5.8 and 8.5), we
have that σ1 corresponds to S1 := ∅, σ2 to S2 := {0}, σ3 to S3 := {0, 1} and
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σ4 to S4 := {1}. Recall that σsi is a constituent of D0,σi+1
(with “5 = 1”).

Now, we see that Si+1 = δ(Si).

Let ρ, σ be as above and let τ be an irreducible subquotient of D0,σ(ρ)
such that τ I1 has a lift in D0,σ(ρ)I1 . Then Πτ I1 = (τ s)I1 for a unique weight
τ s which is a constituent of a unique D0,σ′ , σ

′ ∈ D(ρ). I want to give the
formula for σ′.

Let λ ∈ D(x0, · · · , xf−1) correspond to σ and S ⊆ {0, · · · , f − 1} cor-
respond to λ. Write τ as in (13) for a µ ∈ I(y0, · · · , yf−1). Note that by
Proposition 10.4, one has µi(yi) ∈ {p − 2 − yi, p − 1 − yi, yi, yi + 1}. Define
S− ⊆ {0, · · · , f − 1} as follows:

• If i 6= 1, i ∈ S− if and only if
(
λi−1(xi−1) ∈ {p− 3− xi−1, p− 2− xi−1}

and µi−1(yi−1) = p − 2 − yi−1

)
or
(
λi−1(xi−1) = p − 2 − xi−1 and

µi−1(yi−1) = yi−1 + 1
)

(with “−1 = f − 1”)

• 1 ∈ S− if and only if
(
λ0(x0) ∈ {p − 1 − x0, p − 2 − x0} and µ0(y0) =

p− 2− y0

)
or
(
λ0(x0) = p− 1− x0 and µ0(y0) = y0 + 1

)
.

Likewise, define S+ ⊆ {0, · · · , f − 1} as follows:

• If i 6= 1, i ∈ S+ if and only if
(
λi−1(xi−1) ∈ {xi−1, xi−1 + 1} and

µi−1(yi−1) = p − 2 − yi−1

)
or
(
λi−1(xi−1) = xi−1 + 1 and µi−1(yi−1) =

yi−1 + 1
)

(with “−1 = f − 1”)

• 1 ∈ S+ if and only if
(
λ0(x0) ∈ {x0 − 1, x0} and µ0(y0) = p − 2 − y0

)
or
(
λ0(x0) = x0 and µ0(y0) = y0 + 1

)
.

Note that we have S− ⊆ S and S+ ∩ S = ∅ (this just follows from λ ∈
D(x0, · · · , xf−1)). In Remark 10.5, we always have S− = S+ = ∅. Remark
10.5 generalizes as follows:

Lemma 10.6. With the previous notations, the weight σ′ ∈ D(ρ) such that
τ s is a constituent of D0,σ′(ρ) is the weight of D(ρ) that corresponds to the
subset δ((S \ S−) ∪ S+).

In particular if we take τ = σ we check that S− = S+ = ∅ and thus
Lemma 10.5 tells us that σs is a constituent of D0,δ(σ)(ρ). This lemma is the
main ingredient in the (very much combinatorial!) proof of Theorem 10.3 as
we now know where is χs starting from χ (drawings for f = 2, f = 3 and
f = 4).

Counting the dimension of the subspace of I1-invariants in D0(ρ) (using
Proposition 10.4) yields the nice result:
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Proposition 10.7. With the previous notations, we have dimE D0(ρ)I1 =
3f − 1.

For f = 1, we recover 3− 1 = 2 and for f = 2, 32 − 1 = 8.

10.2 Back to representations of GL2(F )

We associate supercuspidal representations of GL2(F ) to irreducible generic
ρ (F unramified).

Fix a continuous irreducible generic Galois representation ρ : Gal(Qp/F )→
GL2(E) and assume that $F = p acts trivially on det(ρ) (via r−1

F ). The two
main results of the course are the following two theorems:

Theorem 10.8. (i) Let D(ρ, r) be one of the basic diagrams associated to
ρ in §8.2. There exists a smooth admissible representation π of GL2(F )
over E such that:
(a) socK π =

⊕
σ∈D(ρ) σ

(b) (πK1 , πI1 , can) contains D(ρ, r)
(c) π is generated by D0(ρ)
where can is the canonical injection πI1 ⊂ πK1.

(ii) If D(ρ, r) and D(ρ, r′) are non-isomorphic and π, π′ satisfy (a), (b), (c)
for D(ρ, r) and D(ρ, r′) respectively, then π and π′ are non-isomorphic.

Proof. (i) is exactly Theorem 5.10 applied to D(ρ, r). Let us prove (ii). Let π
satisfy (a), (b) and D0(π) be the unique maximal K-subrepresentation of πK1

such that each σ ∈ socK π occurs in D0(π) only once. The existence of D0(π)
is proved exactly by the same argument as in (i) of Proposition 9.1: if τ1 and
τ2 are two subspaces of πK1 such that socK τ1 = socK τ2 = socK π

K1 = socK π
and each σ ∈ socK π occurs in each τi exactly once, then τ1+τ2 ⊆ πK1 satisfies
the same property. Then it is clear from (b) and the definition of D0(ρ) that
we have D0(π) = D0(ρ) (as D0(ρ) is already as maximal as can be) and
even (D0(ρ), D1(ρ), r) ' (D0(π), D0(π) ∩ πI1 , can). Now if π and π′ are as
in (ii) and π ∼= π′, then we certainly also have (D0(π), D0(π) ∩ πI1 , can) '
(D0(π′), D0(π′) ∩ π′I1 , can) and thus D(ρ, r) ' D(ρ, r′) which is impossible.
Thus π � π′.

Note that any π satisfying (a), (b), (c) above is such that p acts trivially
(because this is so on D0(ρ)).

Theorem 10.9. Any smooth admissible π satisfying (a), (b), (c) in Theorem
10.8 is irreducible and is a supercuspidal representation.
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Assuming irreducibility, let us prove supercuspidability. We can assume
f > 1 as we know the result for f = 1 by Lemma 5.2. But the K-socle of any
such π contains strictly more than 2 irreducible constituents (as 2f > 2 if
f > 1). If π is a subquotient of a principal series, we know from Remark 4.9
that the K-socle of π has at most two components. Thus this can’t happen
here and therefore π is supercuspidal.

When F = Qp, it follows from Lemma 5.2 and Theorem 8.6 that there
exists a unique (up to isomorphism) smooth admissible representation π(ρ, r)
of GL2(F ) over E satisfying (a), (b), (c) as in (i) of Theorem 10.8. More-
over, this representation is then such that (π(ρ, r)K1 , π(ρ, r)I1 , can) ∼= D(ρ, r).
However, this results seems to be wrong when f > 1 (a counter-example was
recently found by Yongquan Hu).

Let us sum up what we have done so far (postponing the proof of irre-
ducibility in Theorem 10.9 for below). By the above two theorems, to each
continuous irreducible generic representation ρ : Gal(Qp/F )→ GL2(E) such
that p acts trivially on det(ρ) we associate a non-empty family of smooth
irreducible admissible supercuspidal representations with K-socle made out
of the weights of D(ρ) (those representations satisfying (a), (b), (c) above for
some basic diagram associated to ρ). Note however that we are still far from a
complete understanding of this family (which is may-be too big for instance).

We now start the proof of irreducibility in Theorem 10.9. We will deduce
it from Theorem 10.3 and from another theorem that I want now to state. Fix
σ ∈ D(ρ) and let δ(σ) ∈ D(ρ) be the weight defined in §10.1. From Lemma
10.6, recall we can characterize δ(σ) as being the unique weight of D(ρ) such
that D0,δ(σ)(ρ) contains the weight σs as a subquotient (the notation δ(σ)
is actually quite bad since this weight depends on σ and on ρ). Denote by
I(δ(σ), σs) the unique subrepresentation of D0,δ(σ)(ρ) with co-socle σs (and
socle δ(σ)). Equivalently, it is the unique subrepresentation of Vδ(σ) with
co-socle σs.

Theorem 10.10. With the previous notations, let π be a smooth represen-
tation of GL2(F ) over E such that p acts trivially and ψ : ind

GL2(F )

KF× σ →
π a GL2(F )-equivariant morphism. Assume that π has a K-socle which
is contained in ⊕σ∈D(ρ)σ and that the K-subrepresentation of π generated
by the image of [Π, σI1 ] is isomorphic to I(δ(σ), σs). Then the embedding
I(δ(σ), σs) ↪→ π extends uniquely to an embedding D0,δ(σ)(ρ) ↪→ π.

Let us first prove a preliminary lemma:
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Lemma 10.11. Keep the previous notations and let χ : I → E be the
character giving the action of I on σI1. Then both I(δ(σ), σs) and the K-
subrepresentation of π generated by the image of [Π, σI1 ] are non-zero quo-
tients of indKI χ

s.

Proof. Denote by τ the K-subrepresentation of π generated by the image
of [Π, σI1 ]. As I acts on [Π, σI1 ] via χs, by Frobenius reciprocity, we have
HomI(χ

s, τ |I) = HomK(indKI χ
s, τ) and the non-zero embedding χs ↪→ τ

induces a surjection indKI χ
s � τ . Hence τ is a quotient of indKI χ

s. By
construction, (σs)I1 has a lift in I(δ(σ), σs)I1 ⊂ D0,δ(σ)(ρ)I1 and thus we
have again a non-zero I-equivariant embedding χs ↪→ I(δ(σ), σs)|I which by
Frobenius reciprocity gives a non-zero map indKI χ

s → I(δ(σ), σs). This map
must be surjective as σs is the co-socle of I(δ(σ), σs) and doesn’t appear
elsewhere inside I(δ(σ), σs).

So we see that the above lemma is consistent with Theorem 10.10 in the
sense that it can a priori happen that the two quotients I(δ(σ), σs) and τ of
indKI χ

s are isomorphic.

Let us now explain how to derive irreducibility from Theorems 10.3 and
10.10. Let π′ ⊆ π be a non-zero subrepresentation and pick up a weight σ in
socK π

′. We prove that D0,δ(σ)(ρ) ⊆ π′ (inside π). By Frobenius reciprocity

we have a non-zero map ind
GL2(F )

KF× σ → π′. Let τ be the K-subrepresentation
of π′ ⊆ π generated by the image of [Π, σI1 ]. From Lemma 10.11, τ has
co-socle σs. By definition of δ(σ), we have τ ⊆ D0,δ(σ)(ρ) inside π. By
definition of I(δ(σ), σs), we thus have τ ' I(δ(σ), σs). By Theorem 10.10
applied to π′, the embedding τ ⊆ π′ extends to an embedding D0,δ(σ)(ρ) ⊆ π′.
Starting again with δ(σ) instead of σ, we obtain that π′ contains D0,δ2(σ)(ρ)
etc. As δn(σ) = σ for some n > 0 (this is easily checked from the definition
of σ 7→ δ(σ)), we finally get D0,σ(ρ) ⊂ π′. As this is true for all σ ∈ socK π

′,
we deduce: ⊕

σ∈socK π′

D0,σ(ρ) = π′ ∩
⊕
σ∈D(ρ)

D0,σ(ρ),

the intersection being taken inside π. Indeed, we have just proven the in-
clusion of the left hand side into the right hand side and if R is a subrepre-
sentation of

⊕
σ∈D(ρ) D0,σ(ρ) then we certainly have R ⊆

⊕
σ∈socK RD0,σ(ρ)

(this follows from the fact that all weights of D(ρ) are distinct) which implies
inclusion of the right hand side into the left hand side. All this implies that
⊕σ∈socK π′D0,σ(ρ)I1 = π′I1 ∩D0(ρ)I1 is preserved by the action of Π inside π′

(inside π). As ⊕σ∈socK π′D0,σ(ρ) is a non-zero direct factor of D0(ρ), Theorem
10.3 tells us that it must be the whole of D0(ρ), that is, we have D0(ρ) ⊂ π′.
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As π is generated by D0(ρ), this implies π′ = π. Thus π is irreducible.

Next week, we prove the crucial Theorem 10.10.

11 Week 11

11.1 Irreducibility theorem I

We sketch the proof of Theorem 10.10 using as input a theorem on extensions
of weights that will be proved in the next lecture.

We will actually work in a small K-subrepresentation Rσ of ind
GL2(F )

KF× σ
that will be sufficient for our purpose as it will contain (as subquotient)
all the representations D0,δ(σ)(ρ) for varying ρ (and fixed σ). We fix σ =
(r0, · · · , rf−1)⊗ η a weight such that σ 6= σs (this always holds if σ ∈ D(ρ))
and let χ be the character giving the action of I on σI1 . Let r := r0 + pr1 +
· · · + pf−1rf−1 and, for any t = t0 + pi1 + · · · + pf−1tf−1 with 0 ≤ tj ≤ rj,
Jt := {i = i0 + pi1 + · · ·+ pf−1if−1, 0 ≤ ij ≤ tj}. Recall that any element of
σ can be seen as a polynomial over E in the variables xr−iyi for i ∈ Jr. We
first define R̃σ to be the K-subrepresentation of ind

GL2(F )

KF× σ generated by the
elements: [

Π, xr−iyi
]
, i ∈ Jr.

An easy calculation shows that this is the E-subvector space of ind
GL2(F )

KF× σ
generated by the elements:[(

p [λ0]
0 1

)
, xr−iyi

]
,
[(

0 1
p 0

)
, xr−iyi

]
, i ∈ Jr, λ0 ∈ Fq.

For Jt ⊆ Jr, we define FiltR̃σ to be the K-subrepresentation of R̃σ generated
by the elements [Π, xr−iyi] , i ∈ Jt. We obviously have Filt

′
R̃σ ⊆ FiltR̃σ

whenever Jt′ ⊆ Jt. Let α : I → E,
(
a b
pc d

)
7→ ad

−1
.

Lemma 11.1. We have:

FiltR̃σ∑
Jt′(Jt

Filt
′
R̃σ

= ind
GL2(Fq)
B(Fq) χsα

∑f−1
j=0 tjp

j

. (14)

Proof. Let us call Grt the quotient on the left. By definition, Grt is generated
under K by the image of

[(
0 1
p 0

)
, xr−tyt

]
. By an easy calculation, we find that

Grt is exactly the E-vector space generated by[(
p [λ0]
0 1

)
, xr−tyt

]
,
[(

0 1
p 0

)
, xr−tyt

]
, λ0 ∈ Fq
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(more precisely by the image of these elements in Grt). But I acts on the im-

age of
[(

0 1
p 0

)
, xr−tyt

]
by the character χsα

∑f−1
j=0 tjp

j

as is immediately checked
(recall we work modulo the xr−iyi with i < t). Therefore we have by Frobe-

nius reciprocity ind
GL2(Fq)
B(Fq) χsα

∑f−1
j=0 tjp

j

� Grt. This is an isomorphism as it
is surjective and both spaces have dimension q + 1.

So we see that R̃σ is a successive extension of principal series of type (14),
although we a priori know nothing about these extensions (i.e. we don’t know
in which subquotient they become split, or just if some of them are already
split). The only thing we know for sure is what happens inside the principal
series thanks to Theorem 7.6. It turns out there exists a subrepresentation
of R̃σ that has exactly the same constituents as Vσs without multiplicities
(see §7.2):

Proposition 11.2. There exists a K-subrepresentation Rσ of R̃σ containing[(
p [λ0]
0 1

)
, xr
]
,
[(

0 1
p 0

)
, xr
]

(λ0 ∈ Fq) and such that its irreducible constituents
are exactly the (all distinct) weights:

(µ0(r0), · · · , µf−1(rf−1))⊗ dete(µ)(r0,··· ,rf−1)η

for µi(xi) := λi(p − 1 − xi) with λ ∈ I(x0, · · · , xf−1) (see §7.2) and e(µ)
defined in the usual way (forgetting the weights such that µi(ri) < 0 or
µi(ri) > p− 1 for some i).

In particular, Rσ is multiplicity free. Note that in general Rσ is not iso-
morphic to Vσs . For example, the action of K1 on Rσ is not trivial in general
contrary to what happens by definition on Vσs . Since the q + 1 elements[(

p [λ0]
0 1

)
, xr
]
,
[(

0 1
p 0

)
, xr
]

(λ0 ∈ Fq) form a basis of the K-representation

Fil0R̃σ = ind
GL2(Fq)
B(Fq) χs, Proposition 11.2 tells us that Rσ contains Fil0R̃σ

(which is consistent with the fact that the constituents of ind
GL2(Fq)
B(Fq) χs are

symmetric with respect to λ ↔ λ(p − 1 − ·) by Theorem 7.6). Of course,
Proposition 11.2 tells us nothing about extensions between the weights or
about the order in which the weights might appear in Rσ (the composition
series). I won’t prove at all Proposition 11.2 as it is technical and doesn’t
really bring anything enlightening. Suffice it here to give the example for
f = 1:

Example 11.3. Assume f = 1. If r0 = 1 (and r0 6= p − 1), we have

Rσ = ind
GL2(Fp)

B(Fp) χs. If 2 ≤ r0 < p− 1, Rσ is an extension:

0→ ind
GL2(Fp)

B(Fp) χs → Rσ → Symr0−2E2 ⊗ detη → 0
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where the weight on the right hand side comes from the socle of ind
GL2(Fp)

B(Fp) χsα

(compare with Example 7.12). Here, Rσ is a GL2(Fp)-representation only if
r0 = 1.

We now work inside the K-representation Rσ (inside ind
GL2(F )

KF× σ) and
wish to prove that it contains as subquotients all the GL2(Fq)-representations
D0,δ(σ) for varying ρ (σ being fixed). To do this, we will need to prove that
Rσ contains the same non-split extensions between weights as those which
appear in D0,δ(σ) (and in the same order). We first need to recall a lemma
about extensions for representations of GL2(Fq):

Lemma 11.4. Let τ := (t0, · · · , tf−1) ⊗ ητ and τ ′ := (t′0, · · · , t′f−1) ⊗ ητ ′ be
two distinct weights. Then there exists a non-split GL2(Fq)-extension between
these two weights if and only if we are in one of the following cases:

(i) f = 1, t0 = p − 2 − t′0 ± 1 and ητ = ητ ′dett
′
0+1−1/2(1±1)p (unless t′0 = 0

in which case only t0 = p− 3 can occur)

(ii) f > 1 and there is i ∈ {0, · · · , f − 1} such that tj = t′j if j 6= i, i + 1,

ti = p − 2 − t′i, ti+1 = t′i+1 ± 1, ητ = ητ ′detp
i(t′i+1)−1/2(1±1)pi+1

(with
i+ 1 = 0 if i = f − 1).

Moreover, there is then a unique non-split GL2(Fq)-extension 0→ τ → ∗ →
τ ′ → 0 and a unique non-split GL2(Fq)-extension 0→ τ ′ → ∗ → τ → 0.

Note that there can also exist non-split K-extensions between two weights
that are not GL2(Fq)-extensions but I won’t describe them here (any K-
extension between τ and τ ′ as in (i) or (ii) of Lemma 11.4 is necessarily a
GL2(Fq)-extension).

The most important result about Rσ is the following:

Theorem 11.5. Let τ := (t0, · · · , tf−1)⊗ ητ and τ ′ := (t′0, · · · , t′f−1)⊗ ητ ′ be
two irreducible subquotients of Rσ and assume we are in one of the situations
(i), (ii) of Lemma 11.4. Then either the unique non-split GL2(Fq)-extension
0 → τ → ε → τ ′ → 0 or the unique non-split GL2(Fq)-extension 0 → τ ′ →
ε→ τ → 0 occurs as a subquotient of Rσ.

That is, for any pair of distinct weights (τ, τ ′) of Rσ such that there can
exist a non-split GL2(Fq)-extension between the 2 weights, such a non-split
extension does occur in Rσ. I will indicate next time the proof of this im-
portant theorem in the case f = 1. Although technically more involved, the
proof for f > 1 ultimately relies on the same computation. I should mention
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that this computation, although “just” a computation, is somewhat critical.

I now indicate how one can use it to finish the proof of Theorem 10.10.

Proposition 11.6. Fix ρ : Gal(Qp/F ) → GL2(E) a continuous irreducible
generic Galois representation and assume that p acts trivially on det(ρ). Let
σ ∈ D(ρ) and define σs and δ(σ) as in §10.2. Then the representation Rσ

contains D0,δ(σ)(ρ) as a subquotient.

Proof. (rough sketch) We first check that any irreducible constituent τ of
D0,δ(σ)(ρ) is also a constituent of Rσ. Write σs = (s0, · · · , sf−1) ⊗ θ and
δ(σ) = (s′0, · · · , s′f−1)⊗ θ′. Equivalently by Proposition 11.2, it is enough to

prove there is λ ∈ I(y0, · · · , yf−1) such that τ = (λi(si))⊗dete(λ)(si)θ. By (i)
of Theorem 10.1 we have:

τ = (ν0(s′0), · · · , νf−1(s′f−1))⊗ dete(ν)(s′0,··· ,s′f−1)θ′

σs = (ν ′0(s′0), · · · , ν ′f−1(s′f−1))⊗ dete(ν
′)(s′0,··· ,s′f−1)θ′

for compatible ν, ν ′ ∈ I(y0, · · · , yf−1) in the sense of Definition 7.13. Let
ν ′−1 ∈ I(y0, · · · , yf−1) be the unique f -tuple such that ν ′(ν ′−1(yi)) = yi.
From the compatibility of ν and ν ′, one checks that the unique f -tuple
(λi(yi))i such that λi(yi) := νi(ν

′−1
i (yi)) is in I(y0, · · · , yf−1). This λ gives

the result. Now pick up two weights τ , τ ′ of D0,δ(σ)(ρ). Lemma 11.4 and (ii)
of Theorem 10.1 tell us that each time there can be a GL2(Fq)-extension be-
tween these two weights, then one of the two non-split extensions of Lemma
11.4 occurs in D0,δ(σ)(ρ). Analogously, Lemma 11.4 and Theorem 11.5 tell us
that each time there can be a GL2(Fq)-extension between these two weights,
then one of the two non-split extensions of Lemma 11.4 occurs in Rσ. More
work shows that these extensions are actually the same in both cases (that
is, they are in the same sense). From this, we deduce that we exactly have a
copy of D0,δ(σ) appearing “inside” Rσ.

The interested reader can check Proposition 11.6 on Example 11.3 in the
case f = 1.

We can now deduce the proof of Theorem 10.10. Let Rσ be the image of
Rσ in π. From the assumptions, we have that Rσ contains I(δ(σ), σs) as in-

duced quotient of ind
GL2(Fq)
B(Fq) χs ⊆ Rσ. But it is not difficult using Proposition

11.2 to check that none of the constituents of Rσ/ ind
GL2(Fq)
B(Fq) χs are in D(ρ),

and hence in socK π. If there is a weight τ 6= δ(σ) in socK Rσ ⊆ socK π, then

τ is necessarily a constituent of Rσ/ ind
GL2(Fq)
B(Fq) χs which is thus impossible.
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Hence we have socK Rσ = δ(σ). By Proposition 11.6 and the fact Rσ is multi-
plicity free, this implies Rσ contains D0,δ(σ). Since D0,δ(σ) is indecomposable,
the injection Rσ → π necessarily induces an injection D0,δ(σ) ↪→ π. Finally
this injection is unique up to scalar otherwise socK π would contain a weight
that is not in D(ρ).

11.2 Irreducibility theorem II

We sketch the proof of Theorem 11.5 for f = 1.

Lemma 11.7. Let τ , τ ′ be two weights and ε a K-extension 0 → τ → ε →
τ ′ → 0. Let F ∈ ε be a non-zero eigenvector for the diagonal matrices with
eigencharacter χ where χ is the action of I on τ ′I1. Assume that χ doesn’t
occur as an eigencharacter on τ (for the diagonal matrices) and that 〈K ·F 〉
contains τ . Then ε is non-split.

Proof. Note that τ and τ ′ are necessarily distinct because of the assumption
on χ. If ε was split, as χ doesn’t occur in τ we would have that F necessarily
belongs to τ ′ via a splitting τ ′ ↪→ ε. This would imply 〈K · F 〉 = τ ′ which
contradicts τ ⊂ 〈K · F 〉.

When f = 1, recall we have described Rσ in Example 11.3. Looking at

that example and using what we know on ind
GL2(Fp)

B(Fp) χs, we see that Theorem
11.5 boils down in that case to the following statement:

Lemma 11.8. If r0 ≥ 2, the extension:

0→ Symp−1−r0E2 ⊗ detr0η → ε→ Symr0−2E2 ⊗ detη → 0

induced by the push-out of the extension Rσ in Example 11.3 is a non-split
GL2(Fp)-extension.

Proof. One can prove that any such extension is actually always a GL2(Fp)-
extension (and not just a K-extension), see the comment after Lemma 11.4.
Twisting if necessary, I can assume η = 1. I will work inside the K-extension:

0→ ind
GL2(Fp)

B(Fp) χs → ∗ → ind
GL2(Fp)

B(Fp) χsα→ 0

of Lemma 11.1 (recall that Symr0−2E2 ⊗ det is just the socle of the right

hand side). This extension is the E-subvector space of ind
GL2(Qp)

KQ×p
Symr0E2

generated by the elements:[(
p [λ]
0 1

)
, xr0

]
,
[(

0 1
p 0

)
, xr0

]
,
[(

p [λ]
0 1

)
, xr0−1y

]
,
[(

0 1
p 0

)
, xr0−1y

]
, λ ∈ Fp.
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Define the following element in ∗:

F :=
∑
λ∈Fp

[
(
p [λ]
0 1

)
, xr0−1y] if r0 ≥ 3

F :=
∑
λ∈Fp

[
(
p [λ]
0 1

)
, xy]− [Π, xy] if r0 = 2

(see end of proof of Theorem 8.6). I first prove that (i) the K-subrepresenta-
tion 〈K · F 〉 ⊆ ∗ actually sits inside Rσ and (ii) the image of 〈K · F 〉 ⊆ Rσ

in the above quotient ε of Rσ contains Symp−1−r0E2 ⊗ detr0 . I only give the
details for r0 > 2, that is χsα 6= (χsα)s (check it as an exercise when r0 = 2!).
Let us start with (i). By Lemma 7.3 together with Theorem 7.6, it is enough

to check that I acts on the image F of F in the quotient ind
GL2(Fp)

B(Fp) χsα by

the character (χsα)s = χα−1. Let
(
a b
pc d

)
∈ I, we have in GL2(F ):(

a b
pc d

)(
p [λ]
0 1

)
=

(
p [µ]
0 1

)(
a′ b′

pc′ d′

)
where µ = b+aλ

d
∈ Fp and a′ ≡ a mod. p, d′ ≡ d mod. p. We compute:(

a b
pc d

)
F =

∑
λ∈Fp

[(
p [ b+aλ

d
]

0 1

)
,

(
a ∗
0 d

)
xr0−1y

]
= ar0−1d

∑
λ∈Fp

[(
p [λ]
0 1

)
, xr0−1y

]
= ar0−1dF

= ar0(ad
−1

)−1F

which is precisely χα−1 applied to
(
a b
pc d

)
. This proves (i). Let us now prove

(ii). We have in GL2(F ):(
1 [µ]
0 1

)(
p [λ]
0 1

)
=

(
p [µ] + [λ]
0 1

)
.

Now, we use the following property of addition in Zp = W (Fp):

[µ] + [λ] ≡ [µ+ λ]− p[X] (p2)

where:

X = Xp :=

p−1∑
s=1

(
p
s

)
p
µp−sλs ∈ Fp.
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We then compute again:(
1 [µ]
0 1

)
F =

∑
λ∈Fp

[(
p [µ] + [λ]
0 1

)
, xr0−1y

]
=

∑
λ∈Fp

[(
p [µ+ λ]
0 1

)
,

(
1 −X
0 1

)
xr0−1y

]

= −
∑
λ∈Fp

(
p−1∑
s=1

(
p
s

)
p
µp−sλs

)[(
p [µ+ λ]
0 1

)
, xr0

]
+ F

= −
∑
λ∈Fp

(
p−1∑
s=1

(
p
s

)
p
µp−s(λ− µ)s

)[(
p [λ]
0 1

)
, xr0

]
+ F.

One checks that
∑p−1

s=1

(ps)
p
µp−s(λ − µ)s = −

∑p−1
s=1

(ps)
p

(−µ)p−sλs ∈ Fp, there-
fore we have:(

1 [µ]
0 1

)
F = F +

∑
λ∈Fp

(
p−1∑
s=1

(
p
s

)
p

(−µ)p−sλs

)[(
p [λ]
0 1

)
, xr0

]

= F +

p−1∑
s=1

(
p
s

)
p

(−µ)p−s

∑
λ∈Fp

λs
[(
p [λ]
0 1

)
, xr0

] .

Varying µ in Fp and using that the E-vector space generated by
∑p−1

s=0 µ
svs

for all µ ∈ Fp is the E-vector space generated by vs for 0 ≤ s ≤ p− 1 (as in
the proof of Lemma 2.16), we get that 〈K ·F 〉 contains F and all the vectors∑

λ∈Fp λ
s
[(

p [λ]
0 1

)
, xr0

]
for 1 ≤ s ≤ p−1. In particular, it contains the vector:

∑
λ∈Fp

λp−1

[(
p [λ]
0 1

)
, xr0

]
=

∑
λ∈F×p

[(
p [λ]
0 1

)
, xr0

]

=
∑
λ∈Fp

[(
p [λ]
0 1

)
, xr0

]
−
(

0 1
1 0

)
[Π, xr0 ] .

But by Lemma 7.3 together with Theorem 7.6, we know that the element∑
λ∈Fp

[(
p [λ]
0 1

)
, xr0

]
generates the K-socle of ind

GL2(Fp)

B(Fp) χs. Therefore the

image of 〈K · F 〉 ⊆ Rσ in the quotient ε contains the image of [Π, xr0 ] in the

quotient Symp−1−r0E2⊗detr0 of ind
GL2(Fp)

B(Fp) χs. Since [Π, xr0 ] is a generator of

ind
GL2(Fp)

B(Fp) χs, this image is non-zero and thus we get that the image of 〈K ·F 〉
in the quotient ε contains Symp−1−r0E2 ⊗ detr0 . This proves (ii). Now we
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finish the proof of the lemma. The characters of the diagonal matrices of
GL2(Fp) acting on the various eigenvectors of Symp−1−r0E2 ⊗ detr0 are:

ar0 , ar0+1dp−2, ar0+2dp−3, · · · , ap−3dr0+2, ap−2dr0+1, dr0

and are thus distinct from the character ar0−1d on the eigenvector F . We
can thus apply Lemma 11.7 to ε and the image of F in ε and deduce that ε
is non-split.

An analogous (although more involved) computation using ultimately the
addition law on Witt vectors W (Fq) provides a proof of Theorem 11.5 for an
arbitrary f .

I would like now to show that Lemma 11.8 collapses if, say, F = Fp((t)),
that is, the extension obtained by push-out from Example 11.3 actually splits
in that case. Indeed, set F =

∑
λ∈Fp [(

t λ
0 1 ) , xr0−1y] with r0 > 2 as in the above

proof and let ( a b
tc d ) ∈ I1. A computation analogous to the one in the proof

of Lemma 11.8 yields in the subextension Rσ (which is also defined in that
case and looks like Example 11.3):

( a b
tc d )F = F + α

∑
λ∈Fp

[( t λ0 1 ) , xr0 ] + β
∑
λ∈Fp

λ[( t λ0 1 ) , xr0 ] + γ
∑
λ∈Fp

λ2[( t λ0 1 ) , xr0 ]

where α, β, γ ∈ E. But one can check that the K-socle of ind
GL2(Fp)

B(Fp) χs is

actually generated as an E-vector space by the elements
∑

λ∈Fp λ
s[( t λ0 1 ) , xr0 ]

for 0 ≤ s ≤ r0−1 and [Π, xr0 ]+(−1)r0
∑

λ∈Fp λ
r0 [( t λ0 1 ) , xr0 ] where Π = ( 0 1

t 0 ).
We thus see that, for r0 > 2, the image of F in the quotient ε is I1-invariant as
the above 3 elements vanish in this quotient. Now assume that ε is non-split,
then from Proposition 10.4, we get that (Symr0−2E2⊗det)I1 can’t have a lift
in εI1 . This contradicts the computations we have just done since F is such
a lift. Therefore ε splits when F = Fp((t)). This phenomena will actually
extend to F being totally ramified over Qp with e sufficiently big.

12 Week 12

12.1 The split Galois case I

In the coming two lectures, I study the case where ρ is reducible split (with
F unramified over Qp). The reason is (i) it is quite similar to the irreducible
case and (ii) eventhough ρ is reducible, it turns out this case involves new
supercuspidal representations of GL2(F ) (when F 6= Qp) which don’t appear

81



in the irreducible case!

To start with, let us, as always, go back to the case F = Qp. I have
stated the correspondence in Definition 4.11. In the split case and assuming
0 < r0 < p − 3 (we will only work in the “generic” situation as for the
irreducible case), recall it gives the following:

(
ωr0+1

1 unr(λ) 0
0 unr(λ−1)

)
⊗ η ←→

( ind
GL2(Qp)

KQ×p
Symr0E2

(T − λ)

)
⊗ η⊕

( ind
GL2(Qp)

KQ×p
Symp−3−r0E2

(T − λ−1)
⊗ ωr0+1

1

)
⊗ η (15)

where η is a smooth character, λ ∈ E× and unr(x) is the character
Gal(Qp/Qp) � Gal(Fp/Fp)→ E× sending Fr−1 ∈ Gal(Fp/Fp) to x ∈ E×. As
in the irreducible case (see Theorem 8.6), let us work out the corresponding
basic diagram, that is the K1-invariants of the right hand side and the action
of Π on the I1-invariants.

Lemma 12.1. Let π := (ind
GL2(Qp)

KQ×p
Symr0E2)/(T − λ) with 0 < r0 < p − 1,

λ ∈ E× and let φ = [( 1 0
0 1 ) , 1] ∈ indKI 1 ⊗ d

r0
and f0 =

∑
λ0∈Fp

(
[λ0] 1

1 0

)
φ ∈

indKI 1⊗ dr0 as in §7.1. Then (πK1 , πI1 , can) ' (indKI 1⊗ dr0 , Eφ⊕ Ef0, can)
with Πφ = λ−1f0 and Πf0 = λφ.

Proof. We have already seen that π is an irreducible principal series (Theo-
rem 4.4) and that πK1 = indKI 1⊗dr0 (see proof of Proposition 4.6 or Example
5.7). We also know that πI1 = Eφ ⊕ Ef0 by Lemma 7.3. We are thus left
to check that Πφ = λ−1f0. As in the proof of Proposition 4.7 (the argu-
ment is exactly the same), we have a K-equivariant map indKI (1⊗ dr0)→ π,
[g, 1] 7→ g[Π, xr0 ] = [gΠ, xr0 ]. Moreover, this map here induces an isomor-
phism with πK1 ⊂ π. We compute:

Πφ = Π[( 1 0
0 1 ) , 1] 7→ Π[Π, xr0 ] = [( 1 0

0 1 ) , xr0 ].

But we have as in the proof of Proposition 4.7:

f0 =
∑
λ0∈Fp

[
(

[λ0] 1
1 0

)
, 1] 7→

∑
λ0∈Fp

[
(
p [λ0]
0 1

)
, xr0 ] = T ([( 1 0

0 1 ) , xr0 ]) = λ[( 1 0
0 1 ) , xr0 ]

therefore λ−1f0 − Πφ 7→ 0 in π and we have Πφ = λ−1f0.
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Applying Lemma 12.1 to the direct sum in (15) and using (9) (or Theo-
rem 7.6), we thus see that the basic diagram D(ρ) “corresponding” to ρ =(
ω
r0+1
1 unr(λ) 0

0 unr(λ−1)

)
when 0 < r0 < p− 3 is such that D0(ρ) = D0,σ1 ⊕D0,σ2

with (σ1, σ2) = (Symr0E2, Symp−3−r0E2 ⊗ detr0+1) and:

D0,σ1 = Symr0E2 Symp−1−r0E2 ⊗ detr0

D0,σ2 = Symp−3−r0E2 ⊗ detr0+1 Symr0+2E2 ⊗ det−1

(notations of Example 7.10). Now comparing with Example 7.10, we easily
see that D0(ρ) is the maximal subrepresentation of injGL2(Fp)(σ1 ⊕ σ2) such
that σ1 and σ2 appear only once, exactly as in §8.2 for the irreducible case.
Going further in the analogy with the irreducible case, we also see that:

(1⊕ ω(p−3−r0)+1
1 )⊗ ωr0+1

1 = ωr0+1
1 ⊕ ωp−2−r0+r0+1

1 =

ωr0+1
1 ⊕ ωp−1

1 = ωr0+1
1 ⊕ 1 = ρ|I(Qp/Qp)

and so, as in §8.1 again, we can somehow “see” the two weights Symr0E2

and Symp−3−r0E2 ⊗ detr0+1 from all possible “writings” of ρ|I(Qp/Qp).

We now generalize all this for f > 1 and:

ρ|I(Qp/F ) =

(
ω
∑f−1
i=0 (ri+1)pi

f 0

0 1

)
⊗ η

for some character η that extends to Gal(Qp/F ) and some integers ri with
0 ≤ ri ≤ p − 3 and (r0, · · · , rf−1) /∈ {(0, · · · , 0), (p − 3, · · · , p − 3)} (this
is our genericity condition here, analogous to the one of Definition 2.11).
As in §8.1, let us try to find other ways to write down ρ|I(Qp/F ). Choose

I ⊆ {0, · · · , f − 1}. Then can one find integers r′i such that there is, say, a

twist ρ′ of ρ satisfying ρ′|I(Qp/F ) = ω
∑
i/∈I(r′i+1)pi

f ⊕ω
∑
i∈I(r′i+1)pi

f ? The following

lemma (which extends (i) of Corollary 2.9) gives the answer:

Lemma 12.2. Let ρ : Gal(Qp/F )→ GL2(E) be a continuous reducible split
generic representation (in the above sense). Then for each I ⊆ {0, · · · , f−1}
ρ|I(Qp/F ) can be written:

ρ|I(Qp/F )
∼=

(
ω
∑
i/∈I(r′i+1)pi

f 0

0 ω
∑
i∈I(r′i+1)pi

f

)
⊗ η′

for some character η′ that extends to Gal(Qp/F ) and some integers r′i which
are such that:

83



if i ∈ I and i− 1 /∈ I or if i /∈ I and i− 1 ∈ I then 1 ≤ r′i ≤ p− 2

otherwise 0 ≤ r′i ≤ p− 3.

Proof. Write ρ|I(Qp/F ) as in (i) of Corollary 2.9 (which corresponds to I = ∅).
Let us explain how one can remove (ri + 1)pi in the power of the top left

entry and replace 1 by ω
(r′i+1)pi

f in the bottom right entry (which corresponds
to the case I = {i}). One has:

ω
∑
j∈{0,··· ,f−1}(rj+1)pj

f = ω

∑
j∈{0,··· ,f−1}
j /∈{i,i+1}

(rj+1)pj

f ω
(ri+1+2)pi+1

f ω
(ri+1)pi−pi+1

f

hence since ω
(ri+1)pi−pi+1

f = ω
−pi(p−1−ri)
f :

ω
∑
j∈{0,··· ,f−1}(rj+1)pj

f ⊕ 1 = (ω
∑
j∈{0,··· ,f−1}\{i}(r

′
j+1)pj

f ⊕ ω(r′i+1)pi

f )⊗ ω(ri+1)pi−pi+1

f

where r′j = rj if j /∈ {i, i+1}, r′i = p−2−ri and r′i+1 = ri+1 +1 (and as usual
i + 1 = 0 if i = f − 1). One can then twist by η on both sides. From the
genericity of ρ, we still have 0 ≤ r′j ≤ p−3 if j /∈ {i, i+1} and 1 ≤ r′j ≤ p−2
if j ∈ {i, i+ 1}. Iterating this process gives the proposition.

From what happens for F = Qp and from the irreducible case, one is
tempted to associate the weight (r′0, · · · , r′f−1)⊗ η′ to ρ|I(Qp/F ).

Definition 12.3. Let Gal(Qp/F )→ GL2(E) be a continuous reducible split
generic representation. The set of Diamond weights D(ρ) associated to ρ (in
fact to ρ|I(Qp/F )) is the set of weights {(r′0, · · · , r′f−1) ⊗ η′} for all possible
writings:

ρ|I(Qp/F )
∼=

(
ω
∑
i/∈I(r′i+1)pi

f 0

0 ω
∑
i∈I(r′i+1)pi

f

)
⊗ η′

as in Lemma 12.2 for all choices of I.

One should of course read (r′0, · · · , r′f−1)⊗(η′◦r−1
F ◦det). It turns out one

can describe explicitly the set D(ρ) in a very similar way (an even simpler
way) to what we did in §8.1 for ρ irreducible.

Let (x0, · · · , xf−1) be f variables. We define a set D′(x0, · · · , xf−1) of
f -tuples λ := (λ0(x0), · · · , λf−1(xf−1)) where λi(xi) ∈ Z ± xi as follows. If
f = 1, λ0(x0) ∈ {x0, p− 3− x0}. If f > 1, then:

(i) λi(xi) ∈ {xi, xi + 1, p− 2− xi, p− 3− xi}
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(ii) if λi(xi) ∈ {xi, xi + 1} then λi+1(xi+1) ∈ {xi+1, p− 2− xi+1}

(iii) if λi(xi) ∈ {p−2−xi, p−3−xi}, then λi+1(xi+1) ∈ {p−3−xi+1, xi+1+1}

with the conventions xf = x0 and λf (xf ) = λ0(x0). Concretely, we have that
(λ0(x0), · · · , λf−1(xf−1)) is a succession of sequences like p− 2− xj, p− 3−
xj+1, · · · , p− 3− xj+l, xj+l+1 + 1 among the xi.

For λ ∈ D′(x0, · · · , xf−1), define:

e(λ) :=
1

2

( f−1∑
i=0

pi(xi − λi(xi))
)

if λf−1(xf−1) ∈ {xf−1, xf−1 + 1}

e(λ) :=
1

2

(
pf − 1 +

f−1∑
i=0

pi(xi − λi(xi))
)

otherwise.

One has again e(λ) ∈ Z⊕
⊕f−1

i=0 Zxi. As in §8.1, we can prove the:

Proposition 12.4. Let ρ : Gal(Qp/F )→ GL2(E) be a continuous reducible
split generic representation, that is:

ρ|I(Qp/F ) =

(
ω
∑f−1
i=0 (ri+1)pi

f 0

0 1

)
⊗ η

with 0 ≤ ri ≤ p− 3 and (ri) /∈ {(0, · · · , 0), (p− 1, · · · , p− 1)}. Then D(ρ) is
the set of (all distinct) weights:

(λ0(r0), · · · , λf−1(rf−1))⊗ dete(λ)(r0,··· ,rf−1)η

for λ ∈ D′(x0, · · · , xf−1).

When F = Qp and ρ|I(Qp/Qp) = ωr0+1
1 ⊕ 1, we just recover D(ρ) =

{Symr0E2, Symp−3−r0E2 ⊗ detr0+1} (corresponding to I = ∅ and I = {0}).
When f = 2, we get the four weights D(ρ) = {(r0, r1), (r0 + 1, p − 2 −
r1) ⊗ detp−1+pr1 , (p − 2 − r0, r1 + 1) ⊗ detr0+p(p−1), (p − 3 − r0, p− 3 − r1) ⊗
detr0+1+p(r1+1)} corresponding to I = ∅, {1}, {0}, {0, 1}. Indeed, one has
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the following equalities:(
ω

(r0+1)+(r1+1)p
2 0

0 1

)
=(
ωr0+2

2 0

0 ω
(p−1−r1)p
2

)
⊗ ωp−1+pr1

2 =(
ω

(r1+2)p
2 0

0 ωp−1−r0
2

)
⊗ ωr0+p(p−1)

2 =(
1 0

0 ω
(p−2−r0)+(p−2−r1)p
2

)
⊗ ωr0+1+p(r1+1)

2 .

As in §8.1 note that one can replace (ri)0≤i≤f−1 by (p− 3− ri)0≤i≤f−1 in
the way we start writing ρ (see the comment after Corollary 2.9), hence D(ρ)
shouldn’t be affected by this “change of variables”. Indeed, one can check
that D′(x0, · · · , xf−1) is symmetrical with respect to xi 7→ p− 3− xi.

12.2 The split Galois case II

We finish the description of the reducible split case.

We fix ρ : Gal(Qp/F ) → GL2(E) a continuous reducible split generic
representation and we assume that $F = p acts trivially on det(ρ) via r−1

F .
We thus have:

ρ =

(
ω
∑f−1
i=0 (ri+1)pi

f unr(λ) 0

0 unr(λ−1)

)
⊗ η

where λ ∈ E×. From the case F = Qp (see §12.1), we define D0(ρ) to be
the representation D0 in Proposition 9.1 with D = D(ρ) where D(ρ) is as in
Definition 12.3. One can prove that Lemma 9.5 still holds in that case and
the same proof as in the irreducible case yields the following result:

Proposition 12.5. (i) Each irreducible factor of D0(ρ) = ⊕σ∈D(ρ)D0,σ(ρ)
only occurs once in D0(ρ).

(ii) As an I-representation, one has:

D0(ρ)I1 '
⊕

certain (χ,χs)
χ6=χs

χ⊕ χs

(in particular D0(ρ)I1 is stable under χ 7→ χs).
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Exactly as in §8.2, from (ii) of Proposition 12.5 we can manufacture
families of basic diagrams D(ρ, r) = (D0(ρ), D1(ρ), r). Note that this family
only depends on ρ|I(Qp/F ) as we have not used the unramified character unr(λ)

(this extra data doesn’t exist in the irreducible case). The reason is that for
f > 1, we don’t know how the parameter r in D(ρ, r) will depend on λ. In
the case f = 1, we know what to do because D0(ρ) is just the direct sum of
two representations of type indKI χ (see §12.1). However, when f > 1, we will
see below that D(ρ, r) has other pieces and we don’t know how these pieces
behave with respect to λ. Let us for instance give completely the case f = 2,
as we did for ρ irreducible in Example 8.8:

Example 12.6. Assume f = 2. Then we have seen that D(ρ) = {σi, 1 ≤
i ≤ 4} with:

σ1 := (r0, r1)

σ2 := (r0 + 1, p− 2− r1)⊗ detp−1+pr1

σ3 := (p− 2− r0, r1 + 1)⊗ detr0+p(p−1)

σ4 := (p− 3− r0, p− 3− r1)⊗ detr0+1+p(r1+1).

One can then check using Theorem 7.14 that D0(ρ) = D0,σ1⊕D0,σ2⊕D0,σ3⊕
D0,σ4 with the D0,σi as follows (forgetting the twists in the weights and for-
getting weights with negative entries):

D0,σ1 = (r0, r1) S1 (p− 1− r0, p− 1− r1)

D0,σ2 = (r0 + 1, p− 2− r1) S2 (p− 4− r0, r1 − 1)

D0,σ3 = (p− 2− r0, r1 + 1) S3 (r0 − 1, p− 4− r1)

D0,σ4 = (p− 3− r0, p− 3− r1) S4 (r0 + 2, r1 + 2)

where:

S1 = (p− 2− r0, r1 − 1)⊕ (r0 − 1, p− 2− r1)

S2 = (r0 + 2, r1)⊕ (p− 3− r0, p− 1− r1)

S3 = (r0, r1 + 2)⊕ (p− 1− r0, p− 3− r1)

S4 = (r0 + 1, p− 4− r1)⊕ (p− 4− r0, r1 + 1).

Studying Example 12.6, we see using Proposition 10.4 that the action of
Π necessarily preserves the 3 pieces D0,σ1 , D0,σ4 and D0,σ2 ⊕ D0,σ3 (draw-
ing). Actually, using Theorem 7.6, we see that we have D0,σ1 ' indKI χ

s
1 and

D0,σ4 ' indKI χ
s
4 where χ1 (resp. χ4) gives the action of I on σI11 (resp. σI14 ).

So the situation is different from what happened in the irreducible case where
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D(ρ) was “indecomposable” (Theorem 10.3).

All this generalizes as follows to f > 1. As in §8.1, if σ ∈ D(ρ) corresponds
to λ ∈ D′(x0, · · · , xf−1), we set `(σ) = `(λ) := |S(λ)| where i ∈ S(λ) if and
only if λi(xi) ∈ {p − 3 − xi, xi + 1}. Note that there is a unique weight
such that `(σ) = 0 (resp. `(σ) = f), namely σ0 := (r0, · · · , rf−1) (resp.

σf := (p− 3− r0, · · · , p− 3− rf−1)⊗ det
∑f−1
i=0 (ri+1)pi) and that 0 ≤ `(σ) ≤ f .

Theorem 12.7. (i) The basic diagrams D(ρ, r) can be written:

D(ρ, r) = ⊕f`=0D`(ρ, r`)

where D`(ρ, r`) are basic diagrams such that D0,`(ρ) = ⊕σ∈D(ρ)
`(σ)=`

D0,σ(ρ).

(ii) For each ` ∈ {0, · · · , f}, the basic diagrams D`(ρ, r`) are indecompos-
able (in the sense of Theorem 10.3).

(iii) If χ0 (resp. χf) denotes the action of I on σI10 (resp. σI1f ), then

D0,0(ρ) = D0,σ0(ρ) = indKI χ
s
0 (resp. D0,f (ρ) = D0,σf (ρ) = indKI χ

s
f).

This theorem is proved as in the irreducible case using Proposition 10.4
and a great deal of combinatorics. In particular, one has an analogue in this
split case of Lemma 10.6 that allows us to keep track of the “dynamics” of
τ 7→ τ s for weights τ such that τ I1 has a lift in D0(ρ)I1 (drawing for f = 3).
One can also prove (compare Proposition 10.7):

Proposition 12.8. With the previous notations, we have dimE D0(ρ)I1 =
3f + 1.

For f = 1, we recover 3 + 1 = 4 and for f = 2, 32 + 1 = 10.

Applying Theorem 5.10 to each basic diagram D`(ρ, r`) above yields the
following result, very much similar to Theorem 10.8:

Theorem 12.9. (i) Let ` ∈ {0, · · · , f} and D`(ρ, r`) be one of the basic
diagrams associated to ρ in Theorem 12.7. There exists a smooth ad-
missible representation π` of GL2(F ) over E such that:
(a) socK π` =

⊕
σ∈D(ρ)
`(σ)=`

σ

(b) (πK1
` , πI1` , can) contains D`(ρ, r`)

(c) π` is generated by D0,`(ρ)
where can is the canonical injection πI1` ⊂ πK1

` .
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(ii) If D`(ρ, r`) and D`(ρ, r
′
`) are non-isomorphic and π`, π

′
` satisfy (a),

(b), (c) for D`(ρ, r`) and D`(ρ, r
′
`) respectively, then π` and π′` are non-

isomorphic.

(iii) If ` ∈ {0, f}, then a representation π` satisfying (a), (b), (c) of (i) is
unique and is an irreducible principal series.

Proof. The proof of (i) and (ii) is exactly the same as in Theorem 10.8.
For (iii), we can proceed as follows (for ` = 0 say): by Frobenius reci-

procity we have a GL2(F )-equivariant map ind
GL2(F )

KF× σ0 → π0 inducing a

non-zero K-equivariant map indKI χ
s
0 → πK1

0 where indKI χ
s
0 maps to the K-

subrepresentation of ind
GL2(F )

KF× σ0 generated by [Π, σI10 ]. As socK π0 = σ0, The-
orem 7.6 implies this map must be injective and coincide with the embedding
D0,σ0(ρ) ↪→ πK1

0 (otherwise, another weight than σ0 would appear in socK π0).
The argument then is as in the proof of Lemma 12.1 although “backwards”.
With the notations of that proof, we have Πφ = µf0 in D0(ρ, r0) for a
µ ∈ E× which depends on r0. This implies [( 1 0

0 1 ) , xr] = µT ([( 1 0
0 1 ) , xr])

where r =
∑f−1

i=0 rip
i. Therefore the map ind

GL2(F )

KF× σ0 → π0 factors through

(ind
GL2(F )

KF× σ0)/(T − µ−1). As the latter is an irreducible principal series and
the map to π0 is surjective by assumption, it must be isomorphic to π0.

And as for ρ irreducible, we have by a very similar proof:

Theorem 12.10. Any smooth admissible π` satisfying (a), (b), (c) in Theo-
rem 10.8 for 1 ≤ ` ≤ f−1 is irreducible and is a supercuspidal representation.

We finally sum up what we have done in the split reducible case. To each
continuous reducible split generic representation ρ : Gal(Qp/F ) → GL2(E)

such that p acts trivially on det(ρ) (actually, to its restriction to I(Qp/F )),
we associate a non-empty family of smooth admissible semi-simple represen-
tations with K-socle made out of the weights of D(ρ): those representations
π = ⊕f−1

`=0π` for π` satisfying (a), (b), (c) above for some basic diagram as-
sociated to ρ. Each representation in this family has f irreducible direct
summands, 2 of which are principal series (π0 and π`) and the rest are super-
cuspidal representations. When F = Qp, this family is exactly parametrized
by the basic diagrams D(ρ, r) associated to ρ. Moreover, when F = Qp,
we also know how to take into account the unramified character unr(λ) in ρ
and associate to ρ (and not just ρ|I(Qp/F )) one single well-defined semi-simple

representation of GL2(Qp) which is a direct sum of 2 principal series.

Note that the supercuspidal representations π` of Theorem 12.9 when
` /∈ {0, f} are necessarily different from the supercuspidal representations π
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of Theorem 10.8 (for instance, they have different K-socles). Therefore, it
is possible that there exists a hierarchy among supercuspidal representations
of GL2(F ) when F is not Qp, some being “more supercuspidal” than others.
For instance, it is natural to expect that the π of Theorem 10.8 are more
supercuspidal than the π` of Theorem 12.9.
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