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1 Lecture 1 (April 18)

I first thank the organizers of the thematic program on Galois representations for
inviting me to give these lectures. Their material is based on joint recent work
with Florian Herzig.

In all the talks, p is a prime number.

As required by the Fields Institute, this first lecture is of “Colloquium style”,
and thus doesn’t concern experts (except may-be the very end).

1.1 Classical local Langlands correspondence (GLn)

Let Qp be the field of p-adic numbers, Qp an algebraic closure of Qp, Gal(Qp/Qp)
the corresponding Galois group (the group of automorphisms of Qp fixing the
elements of Qp) and W(Qp/Qp) the Weil group of Qp. Recall that W(Qp/Qp) is a
dense subgroup of Gal(Qp/Qp) defined as the inverse image of Z in Gal(Qp/Qp):

W(Qp/Qp) ↪→ Gal(Qp/Qp)
↓ ↓
Z ↪→ Gal(Fp/Fp)

where the horizontal bottom map sends n ∈ Z to [x 7→ xp
n
] ∈ Gal(Fp/Fp).

Theorem 1.1.1 (Harris-Taylor, Henniart). There is a “natural” bijection be-
tween the following two sets:

isomorphism classes of
irreducible smooth
representations π of

GLn(Qp) over C

 1−1←→


isomorphism classes of
n -diml semi-simple

smooth representations

ρ of W(Qp/Qp) over C
+ a nilpotent operator N

.

The nilpotent operator N on the underlying space of ρ (on the right hand
side) is subject to a certain commutation relation with ρ that we skip. We
need to explain what “smooth” means on both sides. A representation π of
GLn(Qp) over any vector space is smooth if every vector is fixed by a sufficiently
small open subgroup H of GLn(Zp). A finite dimensional representation (ρ,N) of
W(Qp/Qp) over any vector space is smooth if its restriction to the inertia subgroup
of W(Qp/Qp), that is the kernel of the above map W(Qp/Qp) → Z, becomes
trivial in restriction to an open subgroup of this inertia subgroup (equivalently
the inertia acts through a finite quotient).

Remark 1.1.2. In fact, all π as in the theorem are moreover admissible, that is,
the invariant subspaces πH are finite dimensional for every H as above.
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1.2 Rational local Langlands correspondence

The local langlands correspondence doesn’t use the transcendental topology of
C: we can thus replace C by any algebraically closed field of characteristic 0, e.g.
the algebraic closure Q` for ` a prime number distinct from p (and actually also
for ` = p, but for reasons which become clear in the sequel, we wish to avoid p
here).

One can also normalize this correspondence so that it is rational, that is, it
commutes with automorphisms of the coefficient field Q`. Using this normaliza-
tion, we then have for any finite extension E of Q`:

(ρ,N) defined over E =⇒ π = π(ρ,N) also defined over E.

Example 1.2.1. Here is what will be for us the most important example in these
lectures. Recall first that any character of W(Qp/Qp) can be seen as a character
of Q×p via the isomorphism Q×p

∼→ W(Qp/Qp)
ab given by local class field theory,

where W(Qp/Qp)
ab is the maximal abelian quotient of W(Qp/Qp) (through which

any character of W(Qp/Qp) factorizes).

We consider (ρ,N) = (ρ, 0) with ρ := diag(χ1, · · · , χn) where the χi are E-
valued smooth characters of W(Qp/Qp) that satisfy the genericity assumption
χiχ

−1
j /∈ {1, | · |, | · |−1} for i 6= j. Here | · | is the `-adic cyclotomic character given

on Q×p by |x| = p− val(x) where val(pix) := i if x ∈ Z×p . In that case we have:

π(ρ) = π(ρ, 0) = Ind
GLn(Qp)

B−(Qp)

(
χ1| · |1−n ⊗ χ2| · |2−n ⊗ · · · ⊗ χn

)
.

I explain this representation of GLn(Qp): B
−(Qp) ⊂ GLn(Qp) is the subgroup of

lower triangular matrices, χ1| · |1−n ⊗ χ2| · |2−n ⊗ · · · ⊗ χn is seen as an E valued
character of B−(Qp) via B−(Qp)� T (Qp) (T (Qp) = diagonal matrices) and:

(χ1| · |−(n−1) ⊗ · · · ⊗ χn)(diag(xi)) := χ1(x1)|x1|1−nχ2(x2)|x1|2−n · · ·χn(xn),

the underlying space of π(ρ) is the E-vector space of all locally constant functions
f : GLn(Qp)→ E such that for all b ∈ B−(Qp) and all g ∈ GLn(Qp):

f(bg) = (χ1| · |1−n ⊗ · · · ⊗ χn)(b)f(g),

and finally the action of GLn(Qp) is given for g ∈ GLn(Qp) by (g ·f)(g′) := f(g′g).

Such a representation is called a principal series. In the rest of this lecture,
we denote by θ the character which sends diag(xi) to xn−1

1 xn−2
2 · · · xn (it is an

algebraic character) and we can write the above representation as:

π(ρ) = Ind
GLn(Qp)

B−(Qp) χ1 ⊗ · · · ⊗ χn · (| · |−1 ◦ θ).
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Now comes the crucial fact: the order of the χi doesn’t matter in the definition
of π(ρ), that is, all the above principal series for all permutations of the χi are
isomorphic!

As we will see, this crucial fact will completely break down in the (continuous)
p-adic world and this will be an essential point in these lectures.

1.3 `-adic local Langlands correspondence, ` 6= p

First, recall that a smooth representation (ρ,N) defined over E is the same
thing as an `-adic representation ρ of W(Qp/Qp), that is, a continuous E-linear
representation of the topological group W(Qp/Qp) on a finite dimensional E-
vector space (endowed with the p-adic topology coming from any isomorphism
with En). This is a result of Deligne, based on a famous theorem of Grothendieck
called the `-adic monodromy theorem.

Let OE be the ring of integers in E, by an OE-lattice in an E-vector space
(of enumerable dimension), we mean a OE-module that generates the E-vector
space and doesn’t contain any E-line. We say that a (smooth) representation
(ρ,N) (resp. π) is integral if its underlying E-vector space contains an OE-lattice
which is invariant under W(Qp/Qp) and N (resp. under GLn(Qp)). A represen-
tation (ρ,N) is integral if and only if the corresponding `-adic representation ρ
(uniquely) extends from W(Qp/Qp) to Gal(Qp/Qp). A representation π is inte-
gral if and only if has an invariant (`-adic) norm ‖ · ‖ (i.e. ‖g · v‖ = ‖v‖ for all
g ∈ GLn(Qp) and all v in the underlying E-vector space).

Theorem 1.3.1 (Vignéras). (i) The rational local Langlands correspondence re-
spects integrality.

(ii) Up to equivalence there is only one invariant norm on an integral π.

One can then define an `-adic correspondence as follows starting from any
n-dimensional `-adic representation ρ of Gal(Qp/Qp) over E:

ρ (ρ,N) (ρss, N) π(ρss, N) Π(ρ)

where ss means semi-simplified and where Π(ρ) is the completion of π(ρ,N) with
respect to its unique equivalence class of invariant norms. In particular Π(ρ)
is a Banach representation of GLn(Qp) over E and we can choose a norm on
it so that the corresponding unit ball is stable under GLn(Qp): we say Π(ρ) is
unitary. Moreover, Π(ρ) is an absolutely topologically irreducible representation
and contains π(ρss, N) as a smooth (dense) subrepresentation.
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A further theorem of Vignéras states that the subspace of smooth vectors in
Π(ρ), i.e. the subspace of vectors on which a sufficiently small open subgroup H ⊂
GLn(Zp) acts trivially, is in fact exactly the smooth subrepresentation π(ρss, N)
(no new smooth vectors appear when completing).

All this shows that this `-adic correspondence doesn’t contain anything more
than the usual classical (rational) local langlands correspondence: we have just
managed to add some `-adic topology on both sides of the classical correspon-
dence. Although usually one would rather do the converse (!), these considera-
tions are important for the analogy with the p-adic world.

Example 1.3.2. Let us consider again the above example: (ρ,N) = (ρ, 0) with
ρ := diag(χ1, · · · , χn) and χiχ

−1
j /∈ {1, | · |, | · |−1} for i 6= j. One finds:

Π(ρ) =
(

Ind
GLn(Qp)

B−(Qp) χ1 ⊗ · · · ⊗ χn · (| · |−1 ◦ θ)
)C0

where the representation on the right hand side is defined exactly as in the previ-
ous example except that one takes continuous functions f : GLn(Qp)→ E instead
of locally constant functions. An invariant norm on (the underlying vector space
of) Π(ρ) is simply given by:

‖f‖ = Maxg∈GLn(Qp)|f(g)|`

where | · |` is the usual `-adic absolute value on E (defined by |x|` := `− val`(x)

where val` is normalized by val`(`) = 1).

Remark 1.3.3. Emerton has a refinement of this `-adic correspondence produc-
ing a Banach representation Π(ρ) which is not always topologically irreducible
(although it is most of the time and then coincides with the above Π(ρ), for
instance in the above example). The advantage of Emerton’s Π(ρ) is that it is re-
ally this representation which occurs in suitable `-adic completions of cohomology
spaces.

1.4 p-adic local Langlands correspondence for GL2(Qp)

For GL2(Qp), there is an analogue of the above `-adic correspondence ρ Π(ρ)
where now E is a finite extension of Qp, ρ is a continuous E-linear representation
of Gal(Qp/Qp) on a 2-dimensional E-vector space (i.e. a (2-dimensional) p-adic
representation of Gal(Qp/Qp)) and Π(ρ) is a unitary Banach representation of
GL2(Qp) which is topologically of finite length. This correspondence was estab-
lished over the past ten years by the work of many people (including Colmez,
Emerton, Kisin, Paskunas, myself, ...). We give below an explicit example, which
is all we need to know in these lectures.
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This p-adic Langlands correspondence has several serious complications with
respect to the `-adic correspondence. Let me just mention two of them:

(i) Even when Π(ρ) is topologically irreducible, it is not true that the smooth
vectors are always dense in Π(ρ) (as in the `-adic local Langlands correspon-
dence). In fact they are most of the time 0! One could refine this by looking
for locally algebraic vectors in Π(ρ), that is, vectors on which a sufficiently small
H acts through the restriction of a finite dimensional algebraic representation of
GLn(Zp), but in fact here again, this subspace can be zero. To have a nonzero
dense subspace, by a theorem of Schneider and Teitelbaum one has to consider
locally analytic vectors, which is much more complicated to define (and won’t be
used in these lectures).

(ii) One can’t only restrict to (absolutely) topologically irreducible Π(ρ) (as in
the `-adic local Langlands correspondence) for the following obvious reason. Let
us consider our favourite example: ρ = diag(χ1, χ2) where the χi : Gal(Qp/Qp)→
E× are p-adic characters such that χ1χ

−1
2 /∈ {1, ε, ε−1} with ε the p-adic cy-

clotomic character. Then one has two natural topologically irreducible Banach
representations of GL2(Qp) associated to ρ, namely:(

Ind
GL2(Qp)

B−(Qp) χ1 ⊗ χ2 · (ε−1 ◦ θ)
)C0

and
(

Ind
GL2(Qp)

B−(Qp) χ2 ⊗ χ1 · (ε−1 ◦ θ)
)C0

(where again C0 means continuous functions GL2(Qp) → E). These two repre-
sentations are not at all isomorphic. So what can be done? The simple idea is:
take both of them! Indeed, in that case, one has:

Π(ρ) =
(

Ind
GL2(Qp)

B−(Qp) χ1 ⊗ χ2 · (ε−1 ◦ θ)
)C0

⊕
(

Ind
GL2(Qp)

B−(Qp) χ2 ⊗ χ1 · (ε−1 ◦ θ)
)C0

.

But now, in this p-adic world, we can also have a ρ which is a non-split extension
of, say, χ2 by χ1 (such a non-split extension doesn’t occur in the `-adic world due
to our assumption on the χi):

ρ =

(
χ1 ∗
0 χ2

)
and moreover this non-split extension is unique under our hypothesis on the χi.
Correspondingly, in that case one has:

Theorem 1.4.1. There is a unique non-split extension of unitary Banach rep-
resentations:

0→
(

Ind
GL2(Qp)

B−(Qp) χ1 ⊗ χ2 · (ε−1 ◦ θ)
)C0

→ Π(ρ)→(
Ind

GL2(Qp)

B−(Qp) χ2 ⊗ χ1 · (ε−1 ◦ θ)
)C0

→ 0.

For ρ absolutely irreducible, Π(ρ) is also absolutely topologically irreducible.
In these talks, I will only consider reducible ρ’s.
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1.5 The functor of Colmez

I now describe a crucial ingredient which is used in the p-adic Langlands corre-
spondence for GL2(Qp). Although, strictly speaking, I won’t use it, it is quite
important for these lectures to have it in mind.

Now, in the above p-adic correspondence for (generic) reducible ρ’s, we see
that a length 2 split (resp. non-split) ρ goes to a length 2 split (resp. non-split)
Π(ρ). So something functorial seems to be going on. Indeed, Colmez could define
a covariant exact functor:

finite length admissible
unitary Banach

representations of
GL2(Qp) over E

 F−→


finite dimensional

p -adic representations

ρ of Gal(Qp/Qp) over E

.

I need to explain the word “admissible” for Banach representations. It was
defined by Schneider and Teitelbaum (from the work of Lazard). In our con-
text, the fastest definition is the following: a unitary Banach representation Π of
GLn(Qp) over E is admissible if Π0 ⊗OE OE/$E is a (smooth) admissible repre-
sentation of GLn(Qp) over the finite field OE/$E. Here $E is any uniformizer of
OE and Π0 is any invariant unit ball in the Banach Π. Note that the GLn(Qp)-
representation Π0⊗OE OE/$E is trivially checked to be smooth (see section 1.1)
and admissibility is thus meant in the sense of Remark 1.1.2.

Colmez proved that F (Π(ρ)) = ρ. In our reducible example, we have more
precisely:

F

((
Ind

GL2(Qp)

B−(Qp) χ1 ⊗ χ2 · (ε−1 ◦ θ)
)C0
)

= χ1

F

((
Ind

GL2(Qp)

B−(Qp) χ2 ⊗ χ1 · (ε−1 ◦ θ)
)C0
)

= χ2.

In fact, the functor F doesn’t directly produce a p-adic representation of
Gal(Qp/Qp) from a unitary Banach representation Π of GLn(Qp). Instead it
rather produces what is called an étale (ϕ,Γ)-module (a structure defined by
Fontaine) which is known by a theorem of Fontaine to be the same thing as a
p-adic representation of Gal(Qp/Qp).

1.6 Serre weights

The previous p-adic correspondence ρ 7→ Π(ρ) for GL2(Qp) also works in char-
acteristic p and gives a correspondence ρ 7→ Π(ρ) where ρ is a 2-dimensional
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representation of Gal(Qp/Qp) over kE := OE/$E and Π(ρ) is a finite length
smooth representation of GL2(Qp) over kE.

Example 1.6.1. If ρ = χ1 ⊕ χ2 with χ1χ
−1
2 /∈ {1, ω, ω−1} (where ω is the reduc-

tion mod p of ε), then:

Π(ρ) = Ind
GL2(Qp)

B−(Qp) χ1 ⊗ χ2 · (ω−1 ◦ θ)⊕ Ind
GL2(Qp)

B−(Qp) χ2 ⊗ χ1 · (ω−1 ◦ θ)

where the principal series are smooth, that is, defined with locally constant func-
tions f : GL2(Qp)→ kE.

But it turns out that in this char. p setting, one can attach to ρ a piece of
information which is much simpler than Π(ρ) and still significant: a finite set of
Serre weights.

Definition 1.6.2. A Serre weight for GLn(Fp) is an irreducible representation of
GLn(Fp) over kE.

Any Serre weight for GLn(Fp) is absolutely irreducible and defined over Fp.
Serre weights for GL2(Fp) are given by:(

Syma1−a2 k2
E

)
⊗kE deta2

where ai are integers such that 0 ≤ a1 − a2 ≤ p − 1 and where GL2(Fp) acts in
the obvious way on the canonical basis of k2

E. Note that, since Ker(GLn(Zp) �
GLn(Fp)) is a pro-p-group, the Serre weights for GLn(Fp) are also the irreducible
representations of GLn(Zp) over kE.

Definition 1.6.3. The Serre weights of ρ (2-diml over kE) is the set of Serre
weights (up to isomorphism) that appear in the socle of Π(ρ)|GL2(Zp).

Recall that the socle means the maximal semisimple subrepresentation. it
follows from the admissibility of Π(ρ) that the set of Serre weights of ρ is always
finite (in fact generically it has cardinality 1 or 2).

Example 1.6.4. If ρ = χ1⊕χ2 with χ1χ
−1
2 /∈ {1, ω, ω−1} we find 2 Serre weights

as the GL2(Zp)-socle of each principal series in Π(ρ) is irreducible. If ρ is a
non-split extension of χ2 by χ1, we find one Serre weight.

What is the point of looking at Serre weights when we have Π(ρ)? This is
the following: although we don’t know Π(ρ) when we deal with GLn(Qp) and
n > 2, we do know, at least conjecturally and for many ρ, what the Serre weights
of ρ should be (this follows from work of Buzzard-Diamond-Jarvis, Herzig, Gee,
Schein and others). And it turns out that knowing the set of Serre weights of ρ
already gives a strong input on what Π(ρ) should look like.
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1.7 GLn(Qp) and fundamental algebraic representations

Now, what we would like to do is extend the correspondences ρ 7→ Π(ρ) and
ρ 7→ Π(ρ) from GL2(Qp) to GLn(Qp) (and from there to more general reduc-
tive groups). In particular, in view of our previous examples, we would like to
understand what Π(ρ) and Π(ρ) look like in the case where ρ and ρ are upper
triangular:

ρ : Gal(Qp/Qp)→ B(E) ⊂ GLn(E), ρ : Gal(Qp/Qp)→ B(kE) ⊂ GLn(kE)

where B is the Borel subgroup of upper triangular matrices.

Let us assume for one moment that we have such representations Π(ρ) and
Π(ρ) of GLn(Qp) and also a covariant exact functor F analogous to the one of
section 1.5. In particular, we thus have Gal(Qp/Qp)-representations F (Π(ρ)) and
F (Π(ρ)) associated to ρ and ρ. The basic question we address now is:

Can we guess what F (Π(ρ)) and F (Π(ρ)) should be?

Hint 1: When n = 2, we know that F (Π(ρ)) = ρ and F (Π(ρ)) = ρ.

Hint 2: When n ≥ 2 is arbitrary and ρ = diag(χ1, · · · , χn) with χiχ
−1
j /∈

{1, ε, ε−1} for i 6= j, it is highly probable that, as in the n = 2 case, Π(ρ) will
contain as a direct summand the direct sum of n! principal series, namely all the
principal series:

I(ρ)w :=
(

Ind
GLn(Qp)

B−(Qp) w
−1(χ) · (ε−1 ◦ θ)

)C0

where χ := χ1 ⊗ · · · ⊗ χn, w is an element of the Weyl group of GLn, that is, a
permutation on {1, · · ·n}, and w−1(χ) := χw(1) ⊗ · · · ⊗ χw(n). All these principal
series can be proved to be non-isomorphic. Thus F (Π(ρ)) should contain as a
direct summand at least ⊕wF (I(ρ)w).

Hint 3: Schneider and Vignéras have defined a candidate for the functor F
in a quite general setting. Unfortunately, almost no explicit example is known
of the value of their functor applied to a representation of another group than
GL2(Qp). Nevertheless, from their work, it seems natural to expect that we
should have for F (I(ρ)w) a 1-dimensional representation of Gal(Qp/Qp), and even
more precisely F (I(ρ)w) = χn−1

w(1)χ
n−2
w(2) · · ·χw(n−1). So, from Hint 2, we should have

⊕wχn−1
w(1)χ

n−2
w(2) · · ·χw(n−1) appearing as a direct summand of F (Π(ρ)). In particular

we see that F (Π(ρ)) should be different from ρ when n > 2.

Hint 4: The same considerations hold of course in characteristic p, and this
is indeed compatible with the Serre weights of ρ: for a generic diagonal ρ, the
n! Serre weights corresponding to the GLn(Zp)-socles of the n! principal series
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I(ρ)w are all Serre weights of ρ. But, as soon as n > 2, it is expected that other
Serre weights should also be there. Going back to characteristic 0, this suggests
that ⊕wχn−1

w(1)χ
n−2
w(2) · · ·χw(n−1) should be a strict direct summand of F (Π(ρ)) if and

only if n > 2.

Hint 5: Although we don’t consider this case in this lecture, if L is a finite un-
ramified extension of Qp and if ρ is a continuous sufficiently generic 2-dimensional
semi-simple representation of Gal(Qp/L) over kE, considerations of Serre weights
again quite strongly suggest that we should have for F (Π(ρ)) the tensor induc-
tion from Gal(Qp/L) to Gal(Qp/Qp) of ρ, that is, the tensor product of all the
conjugates of ρ under Gal(L/Qp).

So the idea is to find for F (Π(ρ)) a representation of Gal(Qp/Qp) that is
functorial in ρ and interpolates all the above hints. And there is indeed (at least)
one, which is:

F (Π(ρ))
?' ∧1

Eρ⊗E ∧2
Eρ⊗E · · · ⊗E ∧n−1

E ρ.

It also has the nice advantage that it can be generalized to more general reductive
groups than GLn. Indeed, the algebraic representations ∧i are the so-called fun-
damental algebraic representations of the algebraic group GLn, and such funda-
mental representations exist (at least) for any split connected reductive algebraic
group such that its dual has a connected center.

In the next lecture, I will start by studying properties of the tensor product of
these fundamental algebraic representations. Then, I will show that the “ordinary
part” of this tensor product suggests the definition of a Banach representation
Π(ρ)ord (resp. a smooth representation Π(ρ)ord) of GLn(Qp) which hopefully
should be the maximal subrepresentation of the unknown Π(ρ) (resp. of the
unknown Π(ρ)ord) such that its irreducible constituents are all constituents of
principal series.
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2 Lecture 2 (April 19)

(This lecture is no more of “colloquium style”.)

In the two remaining lectures, I denote by G/Qp a split connected reductive

algebraic group such that both G and its dual Ĝ have a connected center (e.g.
G = GLn or G = GSp2n). I fix in G a maximal split torus T and a Borel
subgroup B containing T . The triple T ⊂ B ⊂ G gives rise to a based root
datum (X(T ), S,X∨(T ), S∨) where S is the simple positive roots associated to B
in X(T ) := Homgroups(T,Gm), S∨ the simple positive coroots, etc. The dual based

root datum (X∨(T ), S∨, X(T ), S) then corresponds to a dual triple T̂ ⊂ B̂ ⊂ Ĝ.
I let B− be the Borel in G corresponding to −S (thus opposite to B) and W the

Weyl group of G or Ĝ.

In this talk I will define a finite length admissible Banach representation
Π(ρ)ord of G(Qp) over E ([E : Qp] < +∞) associated to a generic continuous

ρ : Gal(Qp/Qp)→ B̂(E) ⊂ Ĝ(E) and state an important theorem concerning the
analogue Π(ρ)ord of Π(ρ)ord in characterictic p. This last theorem will be used in
the next lecture to prove that the representations Π(ρ)ord essentially occur (up
to multiplicities issues) in some cohomology spaces.

2.1 The algebraic representation L⊗ (Galois side)

Let (λα∨)α∈S be fundamental weights for Ĝ, that is elements of X(T̂ ) such that
for all β ∈ S:

〈β, λα∨〉 =

{
1 if α = β
0 if α 6= β.

The λα∨ are actually defined up to an element of X(Ĝ) = Homgroups(Ĝ,Gm)
but we will ignore this (as this plays no role in the sequel). They are obviously

dominant so that we have algebraic representations L(λα∨) of Ĝ of highest weight
λα∨ (we see them as defined over E). We set:

L⊗ := ⊗α∈SL(λα∨)

It is a reducible algebraic representation of Ĝ over E with highest weight λ :=∑
α∈S λα∨ . The weights w(λ) for w ∈ W all appear in L⊗|T̂ .

Definition 2.1.1. An ordinary weight of L⊗|T̂ is a weight w(λ) for w ∈ W .

There are plenty of weights in L⊗|T̂ which are not ordinary. One can prove:

Theorem 2.1.2. The only weights that occur with multiplicity 1 in L⊗|T̂ are the
ordinary weights.
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Let R+∨ ⊂ X(T̂ ) be the positive coroots and C ⊆ R+∨ a closed subset (recall
that a subset C ⊆ R+∨ is closed if α∨, β∨ ∈ C and α∨ + β∨ ∈ R+∨ imply
α∨+β∨ ∈ C). We let B̂C be the Zariski closed subgroup of B̂ such that the roots

of B̂C are exactly C. We denote by:

(L⊗|B̂C )ord ⊆ L⊗|B̂C

the maximal B̂C-subrepresentation of L⊗|B̂C such that all its weights are ordinary.

Example 2.1.3. For C = ∅, one has B̂C = T̂ and (L⊗|T̂ )ord = ⊕w∈Ww(λ).

One can completely work out the structure of L⊗|T̂ . Let:

WC := {w ∈ W,w−1(C) ⊆ R+∨} = {w ∈ W, ẇ−1B̂Cẇ ⊆ B̂}

(where ẇ is any representative in Normal(T ) of w ∈ W = Normal(T )/T ). Fix
w ∈ WC and let I ⊆ w(S∨) ∩ C be a subset of pairwise orthogonal coroots (that
is, if α∨, β∨ ∈ I then 〈β, α∨〉 = 0 or equivalently 〈α, β∨〉 = 0). We write I⊥ for

such a set of coroots. We denote by ĜI ⊂ Ĝ the Levi subgroup containing T̂
with roots exactly ±I (such a Levi subgroup exists). With our assumptions on

G and Ĝ, one can prove there is a decomposition:

ĜI ' T̂ ′I ×
∏
α∨∈I

GL2

for some subtorus T̂ ′I ⊂ T̂ . Moreover B̂ ∩ ĜI (resp. T̂ ∩ ĜI = T̂ ) also decomposes

as T̂ ′I times the product of the induced Borel B̂α∨ in each GL2 (resp. times the

product of the induced split torus T̂α∨ in each GL2).

With these data in mind we set:

LI := w(λ)|T̂ ′I ⊗E
(
⊗α∨∈I Lα∨

)
where Lα∨ is the B̂α∨-representation defined as the unique non-split extension
of w(λ)|T̂α∨ by (sαw)(λ)|T̂α∨ , or equivalently the restriction to B̂α∨ of the simple

GL2-module of highest weight w(λ)|T̂α∨ . Here sα ∈ W is the reflection associated

to α∨ (or α) and LI is seen as a B̂C-representation via the canonical surjection

B̂C � B̂ ∩ ĜI (recall I ⊆ C). If I ′ ⊆ I, one has LI′ ⊆ LI and we set:

Lord
w := lim

−→
I

LI

where the limit is over all I ⊆ w(S∨)∩C, I⊥. The B̂C-socle of Lord
w is the weight

w(λ).
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Theorem 2.1.4. We have (L⊗|B̂C )ord ∼= ⊕w∈WC
Lord
w .

All this becomes much more clear with examples:

Example 2.1.5. For G = Ĝ = GLn and B = B̂ = the upper triangular matrices,
write X(T̂ ) = Ze1 ⊕ · · · ⊕ Zen and recall that S∨ = {ei − ei+1, 1 ≤ i ≤ n− 1}.

(i) Assume n = 3 and:

B̂C :=

∗ ∗ 0
0 ∗ 0
0 0 ∗

 ⊂
∗ ∗ ∗0 ∗ ∗

0 0 ∗


(that is, C = {e1 − e2}). We find WC = {1, se2−e3 , se2−e3se1−e2} and the corre-

sponding conjugates of B̂C are respectively:∗ ∗ 0
0 ∗ 0
0 0 ∗

 ,

∗ 0 ∗
0 0 0
0 0 ∗

 and

∗ 0 0
0 ∗ ∗
0 0 ∗

 .

We have for (L⊗|B̂C )ord (we write a stroke between two weights if and only if the

unique non-split extension as B̂C-representations between these weights occurs
as subquotient in (L⊗|B̂C )ord):

λ se1−e2(λ) ⊕ se2−e3(λ) ⊕ se2−e3se1−e2(λ) se1−e2se2−e3se1−e2(λ) .

(ii) Assume n = 4 and B̂C = B̂ (so C = R+∨). We have for (L⊗|B̂C )ord:

λ

se3−e4(λ)

se1−e2(λ)

se2−e3(λ) se1−e2se3−e4(λ).

In general, one can describe the socle filtration FiljL
ord
w of the B̂C-repre-

sentation Lord
w as:

FiljL
ord
w /Filj−1L

ord
w
∼=

⊕
I⊆w(S∨)∩C
I⊥ |I|=j

E
( ∏
α∨∈I

sα

)
w(λ).

13



2.2 The G(Qp)-representation Π(ρ)ord

We let θ :=
∑

α∈S λα where λα are fundamental weights for G (not Ĝ here). We
fix a continuous homomorphism:

ρ : Gal(Qp/Qp)→ B̂(E) ⊂ Ĝ(E)

and we let χ̂(ρ) : Gal(Qp/Qp) → B̂(E) � T̂ (E). We define a continuous cha-
racter χ(ρ) : T (Qp)→ E× as in the classical Langlands correspondence for tori:

T (Qp) ∼= X(T̂ )⊗Z Q×p ↪→ X(T̂ )⊗Z Gal(Qp/Qp)
ab → X(T̂ )⊗Z T̂ (E)→ E×.

From now on we make the following assumption on ρ:

Genericity assumption: α∨ ◦ χ̂(ρ) /∈ {1, ε, ε−1} for all α ∈ R+.

Let C(ρ) ⊆ R+∨ be the minimal closed subset such that ρ factors through

B̂C(ρ)(E) ⊆ B̂(E). Replacing ρ by a conjugate in B̂(E), one can assume (at
least under the genericity assumption) that C(ρ) is minimal under conjugation

by B̂(E).

Remark 2.2.1. In fact, such a minimal C(ρ) is not an invariant of the conjugacy

class of ρ in Ĝ(E). However, our definition of Π(ρ)ord below won’t depend on

which equivalence class of ρ we start from (taking values in B̂(E) as above), so
we can work with this C(ρ) and ignore this problem in the sequel.

From the previous lecture, recall the principal series associated to ρ:

I(ρ)w :=
(

Ind
G(Qp)

B−(Qp) w
−1(χ(ρ)) · (ε−1 ◦ θ)

)C0

where w ∈ W . This is a finite length admissible unitary Banach representation
of G(Qp) over E which is conjecturally topologically irreducible. Following the
“philosophy” at the end of the previous lecture, the idea to construct Π(ρ)ord is
the following:

Basic idea: Π(ρ)ord is a successive extension of some of the I(ρ)w in such a
way that, if w(λ) appears in (L⊗|B̂C(ρ)

)ord, then I(ρ)w appears in Π(ρ)ord “at the

same place”.

We now define Π(ρ)ord via parabolic induction. As previously, fix w ∈ WC(ρ)

and I ⊆ w(S∨)∩C(ρ), I⊥. We set J := w−1(I)∨ ⊆ S and denote by GJ ⊂ G the

Levi subgroup containing T with roots ±J . As for ĜI , we have a decomposition
GJ ' T ′J ×

∏
β∈J GL2 and analogous decompositions for B− ∩ GJ and T . We
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mirror the definition of LI above and define the following Banach representation
of GJ(Qp) over E:

Π̃(ρ)I :=
(
w−1(χ(ρ)) · (ε−1 ◦ θ)

)
|T ′J ⊗E

(
⊗̂β∈JEβ

)
where Eβ is the unique admissible unitary Banach representation over E of the
copy of GL2(Qp) associated to β which is a non-split extension of(

Ind
GL2(Qp)

B−β (Qp)
(w−1(χ(ρ)) ·(ε−1 ◦θ))|Tβ(Qp)

)C0

by
(

Ind
GL2(Qp)

B−β (Qp)
sw(β)(w

−1(χ(ρ)) ·(ε−1 ◦

θ))|Tβ(Qp)

)C0

(see Theorem 1.4.1, here B−β := B− ∩GL2 and Tβ := T ∩GL2) and

⊗̂ is the completed tensor product.

We then set Π(ρ)I :=
(

Ind
G(Qp)

B−(Qp)GJ (Qp) Π̃(ρ)I
)C0

(a continuous parabolic in-

duction). If I ′ ⊆ I, then Π(ρ)I′ ⊆ Π(ρ)I and we define:

Π(ρ)ord
w := lim

−→
I

Π(ρ)I

where the limit is over all I ⊆ w(S∨) ∩ C(ρ), I⊥. Finally, we set:

Π(ρ)ord := ⊕w∈WC(ρ)
Π(ρ)ord

w .

By construction, Π(ρ)ord satisfies the above basic idea. Note that, when n = 2,
we have Π(ρ)ord = Π(ρ).

Example 2.2.2. We go back to the two examples of (L⊗|B̂C )ord given above.

(i) If n = 3 and ρ =
( χ1 ∗ 0

0 χ2 0
0 0 χ3

)
(and ρ doesn’t take values in any smaller

subgroup up to conjugation by the upper Borel), then χ(ρ) = χ1 ⊗ χ2 ⊗ χ3 and
Π(ρ)ord is:

I(ρ)1 I(ρ)se1−e2 ⊕ I(ρ)se2−e3

⊕ I(ρ)se2−e3se1−e2 I(ρ)se1−e2se2−e3se1−e2

where again a stroke between two representations means that a non-split exten-
sion between these representations occurs as subquotient in Π(ρ)ord.

(ii) If n = 4 and ρ =

( χ1 ∗ ∗ ∗
0 χ2 ∗ ∗
0 0 χ3 ∗
0 0 0 χ4

)
(and ρ doesn’t take values in any smaller

subgroup up to conjugation by the upper Borel), then χ(ρ) = χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4
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and Π(ρ)ord is:

I(ρ)1

I(ρ)se3−e4

I(ρ)se1−e2

I(ρ)se2−e3 I(ρ)se1−e2se3−e4 .

2.3 The G(Qp)-representation Π(ρ)ord and Serre weights

We now slightly modify the setting so as to deal with characteristic p. We take
T ⊂ B ⊂ G all over Zp and T̂ ⊂ B̂ ⊂ Ĝ all over OE (with G and Ĝ having a
connected center). We fix a continuous homomorphism:

ρ : Gal(Qp/Qp)→ B̂C(ρ)(kE) ⊆ B̂(kE) ⊂ Ĝ(kE)

and define χ̂(ρ) and χ(ρ) as in characteristic 0. We make the following assump-
tions:

(i) α∨ ◦ χ̂(ρ) /∈ {1, ω, ω−1} for all α ∈ R+

(ii) C(ρ) is minimal under conjugation by B̂(kE).

The previous construction of Π(ρ)ord then extends essentially verbatim and
gives a finite length admissible smooth representation:

Π(ρ)ord = ⊕w∈WC(ρ)
Π(ρ)ord

w

of G(Qp) over kE which is a successive extension of absolutely irreducible smooth
principal series:

I(ρ)w := Ind
G(Qp)

B−(Qp) w
−1(χ(ρ)) · (ω−1 ◦ θ)

for some w ∈ W (their irreducibility follows from work of Ollivier and Abe). More
precisely Π(ρ)ord

w for w ∈ WC(ρ) has a socle filtration (for G(Qp)) FiljΠ(ρ)ord
w such

that:
FiljΠ(ρ)ord

w /Filj−1Π(ρ)ord
w
∼=

⊕
I⊆w(S∨)∩C(ρ)

I⊥ |I|=j

I(ρ)(
∏
α∨∈I sα)w.

In particular the G(Qp)-socle of Π(ρ)ord
w is I(ρ)w.

I now want to state a very important theorem involving the representations
Π(ρ)ord

w and which will be key to the local-global compatibility result of the next
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lecture (i.e. the link with the global theory of automorphic forms in characteristic
p).

I will assume a stronger hypothesis on ρ (which could in fact probably be
relaxed with some more work but which makes life much simpler):

Inertial genericity assumption: α∨ ◦ χ̂(ρ)|inertia /∈ {1, ω, ω−1} for all α ∈ R+.

This assumption implies that p is large enough. For instance, if G = GLn, it
implies p > 2n.

Under this assumption, each I(ρ)w for w ∈ W has an irreducible G(Zp)-socle
(a Serre weight) that we denote σ(ρ)w and each Π(ρ)ord

w for w ∈ WC(ρ) has also
σ(ρ)w as irreducible G(Zp)-socle.

If σ is any Serre weight for G(Zp) (or G(Fp)), recall that:

HG(σ) := EndG(Qp)

(
c-Ind

G(Qp)

G(Zp) σ
)

is a commutative kE-algebra of finite type (where c-Ind
G(Qp)

G(Zp) σ is the usual smooth

induction with compact support). This follows from work of Herzig. If π is a
smooth representation of G(Qp) over kE, then the kE-vector space:

HomG(Zp)(σ, π|G(Zp)) ∼= HomG(Qp)

(
c-Ind

G(Qp)

G(Zp) σ, π
)

(Frobenius reciprocity) is naturally an HG(σ)-module. If η : HG(σ) → kE is a
character, we denote by HomG(Zp)(σ, π|G(Zp))[η] ⊆ HomG(Zp)(σ, π|G(Zp)) the sub-
space whereHG(σ) acts by η. Finally, if U− is the unipotent radical of B−, Herzig
has defined a localization map (between commutative kE-algebras of finite type):

HG(σ) ↪→ HT (σU−(Zp))

where σU−(Zp) is the quotient of σ of coinvariants under U−(Zp).

Definition 2.3.1. We say that η : HG(σ) → kE is ordinary if it factors (neces-
sarily uniquely) through HT (σU−(Zp)).

The following theorem enables us to write the above principal series I(ρ)w as
quotients of compact inductions:

Theorem 2.3.2 (Herzig). For all w ∈ W there is a unique ordinary character
η(ρ)w : HG(σ(ρ)w)→ kE such that:(

c-Ind
G(Qp)

G(Zp) σ(ρ)w

)
⊗HG(σ(ρ)w),η(ρ)w kE

∼= I(ρ)w.
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We finally let HomG(Zp)(σ, π|G(Zp))
ord ⊆ HomG(Zp)(σ, π|G(Zp)) be the maximal

subspace on which the action of HG(σ) extends to HT (σU−(Zp)).

The following theorem will be crucial:

Theorem 2.3.3. Let Π be an admissible smooth representation of G(Qp)over kE
such that Π|G(Zp) is an injective object in the category of smooth representations
of G(Zp) over kE. Fix w ∈ WC(ρ) and assume that:

HomG(Zp)

(
σ(ρ)(

∏
α∨∈I sα)w,Π|G(Zp)

)ord
= 0

for all non-empty I ⊆ w(S∨) ∩ C(ρ), I⊥. Then restriction to the G(Zp)-socle
induces an isomorphism:

HomG(Qp)(Π(ρ)ord
w ,Π)

∼→ HomG(Zp)(σ(ρ)w,Π|G(Zp))[η(ρ)w].

Note that the statement implies that any map in HomG(Qp)(Π(ρ)ord
w ,Π) is

either injective or zero. We will sketch the proof of this theorem in the next
lecture as well as give a global application.
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3 Lecture 3 (April 20)

I quickly recall some of the notation of the previous lecture: (T ⊂ B ⊂ G)/Zp,
(T̂ ⊂ B̂ ⊂ Ĝ)/OE, G and Ĝ with a connected center, ρ : Gal(Qp/Qp) →
B̂C(ρ)(kE) ⊆ B̂(kE) ⊂ Ĝ(kE) inertially generic (with C(ρ) minimal), χ(ρ) :
T (Qp)→ k×E . For w ∈ W we have the irreducible smooth principal series:

I(ρ)w := Ind
G(Qp)

B−(Qp) w
−1(χ(ρ)) · (ω−1 ◦ θ)

with G(Zp)-socle a Serre weight σ(ρ)w and associated (ordinary) character of
HG(σ(ρ)w) denoted by η(ρ)w. For w ∈ WC(ρ) we have associated to ρ an indecom-
posable G(Qp)-representation Π(ρ)ord

w with G(Qp)-socle I(ρ)w and constituents
some I(ρ)w′ for w′ 6= w.

3.1 A local theorem

We now sketch the proof of the following theorem:

Theorem 3.1.1. Let w ∈ WC(ρ) and Π an admissible smooth representation of
G(Qp)over kE such that:

(i) Π|G(Zp) is a smooth injective representation of G(Zp) over kE

(ii) HomG(Zp)

(
σ(ρ)w′ ,Π|G(Zp)

)ord
= 0 for w′ 6= w as above.

Then restriction to σ(ρ)w induces an isomorphism:

HomG(Qp)(Π(ρ)ord
w ,Π)

∼→ HomG(Zp)(σ(ρ)w,Π|G(Zp))[η(ρ)w].

Note that one always has HomG(Qp)(I(ρ)w,Π)
∼→ HomG(Zp)(σ(ρ)w,Π|G(Zp))[η(ρ)w]

by Frobenius reciprocity combined with Herzig’s theorem writing I(ρ)w as a quo-

tient of the compact induction c-Ind
G(Qp)

G(Zp) σ(ρ)w (this doesn’t require any assump-

tion on Π). But I(ρ)w is only the G(Qp)-socle of Π(ρ)ord
w , so the whole point is

to show that any map I(ρ)w → Π automatically extends to Π(ρ)ord
w → Π under

assumptions (i) and (ii) on Π.

1) The injectivity in the isomorphism of the theorem is easy: if f 7→ 0, then
f is not injective and thus f |I(ρ)w = 0 which implies HomG(Qp)(I(ρ)w′ ,Π) 6= 0 for
some w′ 6= w. But this is impossible since:

HomG(Qp)(I(ρ)w′ ,Π) = HomG(Zp)

(
σ(ρ)w′ ,Π

)
[η(ρ)w′ ] ⊆ HomG(Zp)

(
σ(ρ)w′ ,Π

)ord

which is zero by assumption (ii). We are left to prove surjectivity, and, going
back to the definition of Π(ρ)ord

w , it is enough to prove it replacing Π(ρ)ord
w by

Π(ρ)I for any I ⊆ w(S∨) ∩ C(ρ), I⊥ (see the previous lecture for Π(ρ)I).
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2) Set J := w−1(I)∨ ⊆ S, GJ ⊂ G the Levi subgroup containing T with roots
±J (recall GJ ' T ′J ×

∏
β∈J GL2), PJ := BGJ and P−J := B−GJ (parabolic sub-

groups with Levi GJ) and U−J ⊂ P−J the unipotent radical of P−J . The character
η(ρ)w being ordinary factors through the localizations maps:

HG(σ(ρ)w) ↪→ HGJ

(
(σ(ρ)w)U−J (Zp)

)
↪→ HT

(
(σ(ρ)w)U−(Zp)

) η(ρ)w−→ kE.

We now consider the following commutative diagram:

HomG(Qp)

(
Π(ρ)I ,Π

) ∼−→ HomGJ (Qp)

(
Π̃(ρ)I ,OrdPJ (Π)

)
↓ ↓

HomG(Zp)

(
σ(ρ)w,Π

)
[η(ρ)w]

∼−→ HomGJ (Zp)

(
(σ(ρ)w)U−(Zp),OrdPJ (Π)

)
[η(ρ)w].

I explain this diagram.

First OrdPJ is Emerton’s functor of ordinary parts, which associates a smooth
representation of PJ(Qp) over kE to any admissible smooth representation ofG(Q)
over kE. Then the top isomorphism is Emerton’s adjunction formula (recall that

Π(ρ)I = Ind
G(Qp)

P−J (Qp)
Π̃(ρ)I). The two vertical isomorphisms are restrictions to re-

spectively the G(Qp)- and GJ(Qp)-socles (which are principal series) followed by
Herzig’s theorem (writing such a principal series as a quotient of a compact in-
duction) and Frobenius reciprocity. The bottom isomorphism is again Emerton’s
adjunction formula (together with Frobenius reciprocity). Isomorphisms like the
one at the bottom but replacing σ(ρ)w by σ(ρ)w′ also show that OrdPJ (Π) sat-
isfies assumption (ii) replacing σ(ρ)w′ by its U−J (Zp)-coinvariants. Moreover, one
can prove that Π|G(Zp) injective implies OrdPJ (Π)|GJ (Zp) injective.

All this shows that one can replace G(Qp) by GJ(Qp), Π(ρ)I by Π̃(ρ)I and Π
by OrdPJ (Π) in the original statement. The advantage is that, now, we essentially
have to deal with a product of GL2(Qp) (up to a harmless torus part) which is
much easier.

3) The exists a GJ(Zp)-representation σ̃(ρ)I ⊂ Π̃(ρ)I such that its constituents

are exactly the GJ(Zp)-socles of all the GJ(Qp)-constituents of Π̃(ρ)I (in particu-

lar its socle is (σ(ρ)w)U−(Zp)). This follows from the fact that Π̃(ρ)I is an exterior
tensor product of non-split extensions for groups GL2(Qp) (see previous lecture)
and known properties of these non-split GL2(Qp)-extensions. We then set:

X̃(ρ)I :=
(

c-Ind
GJ (Qp)

GJ (Zp) σ̃(ρ)I
)
⊕

c-Ind
GJ(Qp)

GJ (Zp)
(σ(ρ)w)U−(Zp)

Ĩ(ρ)w

where Ĩ(ρ)w is the GJ(Qp)-socle of Π̃(ρ)I (an irreducible principal series with
GJ(Zp)-socle (σ(ρ)w)U−(Zp)). We then have the following:
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(i) The map c-Ind
GJ (Qp)

GJ (Zp) σ̃(ρ)I → Π̃(ρ)I (Frobenius reciprocity) factors through

X̃(ρ)I and gives rise to a short exact sequence of GJ(Qp)-representations:

0→ Ker→ X̃(ρ)I → Π̃(ρ)I → 0.

(ii) The injectivity of OrdPJ (Π)|GJ (Zp) and Frobenius reciprocity imply that re-

striction to c-Ind
GJ (Qp)

GJ (Zp) (σ(ρ)w)U−(Zp) is surjective:

HomGJ (Qp)

(
c-Ind

GJ (Qp)

GJ (Zp) σ̃(ρ)I ,OrdPJ (Π)
)
� HomGJ (Zp)

(
(σ(ρ)w)U−(Zp),OrdPJ (Π)

)
.

Taking the pull-back under the injection:

HomGJ (Zp)

(
(σ(ρ)w)U−(Zp),OrdPJ (Π)

)
↑

HomGJ (Zp)

(
(σ(ρ)w)U−(Zp),OrdPJ (Π)

)
[η(ρ)w]

thus yields a surjection:

HomGJ (Qp)

(
X̃(ρ)I ,OrdPJ (Π)

)
� HomGJ (Zp)

(
(σ(ρ)w)U−(Zp),OrdPJ (Π)

)
[η(ρ)w].

Now let f ∈ HomGJ (Zp)

(
(σ(ρ)w)U−(Zp),OrdPJ (Π)

)
[η(ρ)w] and f lifting f . Con-

sider the pushout:

(∗) 0→ f(Ker)→ X̃(ρ)I ⊕Ker f(Ker)→ Π(ρ)I → 0

and assume that the following hold:

(H) (∗) splits and HomGJ (Qp)

(
Π̃(ρ)I , f(Ker)

)
= 0

then the map:

Π̃(ρ)I
section
↪→ X̃(ρ)I ⊕Ker f(Ker)

f→ OrdPJ (Π)

lifts f and we are done.

4) It thus remains to prove (H) above. First, it follows from a result of
Paskunas for GL2(Qp) that, if η : HGJ

(
(σ(ρ)w′)U−J (Zp)

)
→ kE is not ordinary,

then any of the GJ(Qp)-representations:

(∗∗)
(

c-Ind
GJ(Qp)

GJ (Zp) (σ(ρ)w′)U−(Zp)

)
⊗HGJ ((σ(ρ)w′ )U−

J
(Zp)

) η

(for w′ ∈ W ) has only split extensions with analogous representations but with
ordinary η′s (the result of Paskunas is that any supersingular representation of
GL2(Qp) has only split extensions with principal series of GL2(Qp)). Then one
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shows that f(Ker) ⊆ OrdPJ (Π) can be filtered by GJ(Qp)-representations with
graded pieces as in (∗∗) for w′ 6= w as in the statement of the theorem and various
η. Hypothesis (ii) for OrdPJ (Π), the above result and a staightforward induction
then imply that all the characters η appearing there have to be non-ordinary. But
then, since only ordinary η’s appear in Π̃(ρ)I by construction, the same argument
(together with an obvious dévissage) gives that any extension (∗) has to split.

Likewise, there can’t be any nonzero morphism Π̃(ρ)I → f(Ker).

3.2 Global application

I start with the global setting: F+ is a totally real number field and F/F+ is
a quadratic totally imaginary extension where p splits completely. For technical
reasons (due to the temporary status of base change in the classical Langlands
program), we have to assume that F/F+ is moreover everywhere unramified
(which rules out F+ = Q for instance). However, it should just be a matter of
time for this hypothesis to disappear. We set OF+,p := OF+ ⊗Z Zp ∼=

∏
v|p Zp.

We fix G/OF+ [1/N ] (where N is an integer prime to p) a connected reductive
algebraic group such that G×OF+ [1/N ] OF [1/N ] ∼= GLn and G×OF+ [1/N ] F

+ is an
outer form of GLn. We moreover assume that G is quasi-split at all finite places
of F+ and isomorphic to Un(R) at all infinite places.

For M a kE-vector space endowed with a linear action of the compact group
G(OF+,p) '

∏
v|p GLn(Zp) and for U ⊂ G(A∞,pF+ ) × G(OF+,p) we define the usual

space of algebraic mod p automorphic forms of level U and weight M :

S(U,M) := {f : G(F )\G(A∞F+)→M, f(gu) = u−1
p (f(g)), u ∈ U,

up := Image(u) in G(OF+,p)}.

If U is sufficiently small, then S(U,M) ∼= M⊕d(U) for some integer d(U) which
doesn’t depend on M .

For Up ⊂ G(A∞,pF+ ) a compact open subgroup we set:

S(Up, kE) := lim
−→
Up

S(UpUp, kE)

where Up runs among compact open subgroups of G(OF+,p). Then G(F+ ⊗Q
Qp) naturally acts on S(Up, kE) and the resulting representation is smooth and
admissible. If Up is sufficiently small, it follows from S(UpG(OF+,p),M) ∼=
M⊕d(UpG(OF+,p)) that S(Up, kE)|G(OF+,p) is an injective representation.

If Σ is a finite set of finite places of F+ containing the places that split in F and
either divide pN or at which Up is not maximal, then a natural Hecke algebra TΣ
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(a formal polynomial algebra) acts on S(Up, kE) by usual double cosets at finite
places v /∈ Σ. This action commutes with that of G(F+ ⊗Q Qp).

Now we let r : Gal(F/F ) → GLn(kE) continuous absolutely irreducible. If
Σ moreover contains the finite places of F+ that split in F and at which r is
ramified, then one can associate to r a maximal ideal mΣ(r) of TΣ with residue
field kE (using the characteristic polynomials of Frobenius elements).

Definition 3.2.1 (Gee-Geraghty). The representation r is modular-ordinary if
there exist (Up,Σ) as above and a Serre weight σ for G(OF+,p) such that:

HomG(OF+,p)

(
σ, S(Up, kE)mΣ(r)

)ord 6= 0

where S(Up, kE)mΣ(r) is the localization of the TΣ-module S(Up, kE) at mΣ(r).

In fact, in the above definition one has to assume that Uv is hyperspecial
maximal at places v of F+ that are inert in F , but we ignore this technical point
in the sequel.

For each v|p in F+ we choose one of the two places above v in F , call it ṽ, and
set rṽ := r|Gal(Qp/Fṽ) (this choice won’t matter). If r is modular-ordinary, then all
rṽ are upper triangular (this is due to Gee and Geraghty). We assume moreover
that rṽ is generic for all ṽ. We have then defined C(rṽ), WC(rṽ), Π(rṽ)

ord
wṽ

and
σ(rṽ)wṽ for wṽ ∈ WC(rṽ), etc.

Before stating the main theorem, I need one more definition. If Π is an admis-
sible smooth representation of G(F+ ⊗Q Qp) over kE, I denote Πord the maximal
subrepresentation of Π such that its irreducible constituents are subquotients of
principal series for G(F+⊗Q Qp). Recall also that an injection π ↪→ Π of smooth
representations of G(F+⊗QQp) is said to be essential if, for any 0 6= π′ ⊆ Π, one
has π ∩ π′ 6= 0.

Theorem 3.2.2. Assume that r is absolutely irreducible, modular-ordinary (+
some small technical assumptions to make all modularity lifting theorems work in
that context) and that rṽ is inertially generic for all ṽ. Then there exist (Up,Σ)
as above and, for each w = (wṽ)v|p ∈

∏
v|pWC(rṽ), an integer dw ∈ Z > 0

such that we have an essential injection of admissible smooth representations of
G(F+ ⊗Q Qp) over kE:

⊕
w∈

∏
v|pWC(rṽ)

(⊗
v|p

(
Π(rṽ)

ord
wσṽ
⊗ (ωn−1 ◦ det)

))⊕dw
↪→ S(Up, kE)[mΣ(r)]ord

where S(Up, kE)[mΣ(r)] ⊂ S(Up, kE) denotes the mΣ(r)-eigenspace.

23



Before sketching the proof, let me make some comments. (i) TheG(F+⊗QQp)-
representation S(Up, kE)[mΣ(r)] is the one we really would like to understand
(and next S(Up, kE)mΣ(r)...), but we don’t even know if it only depends on the
rṽ for v|p (apart from multiplicities issues coming from the size of Up). The
above theorem at least gives a (purely local) piece of it. (ii) One can prove that
the G(F+ ⊗Q Qp)-representation on the left hand side doesn’t actually depend
on the choice of the ṽ. (ii) When all rṽ are as generic as possible, then W is
reduced to the identity element and this representation is exactly a power of⊗

v|p

(
Π(rṽ)

ord ⊗ (ωn−1 ◦ det)
)

. In general, it doesn’t seem to be known that all

dw are equal (but we conjecture it below).

By results of Gee and Geraghty, there is (Up,Σ) as above and a unique ordi-
nary character η(r)w such that:

HomG(OF+,p)

(
(⊗v|pσ(rṽ)wṽ ⊗ (ωn−1 ◦ det)), S(Up, kE)[mΣ(r)]

)
[η(r)w] 6= 0

(it could be nonzero for other characters but none being ordinary). We define dw
to be the (finite positive) dimension of the above kE-vector space. We then apply
the local theorem in section 3.1 to resOF+,p/Zp(G×OF+ [1/N ] OF+,p) ∼=

∏
v|p GLn/Zp ,

ρ :=
∏

v|p(rṽ ⊗ ωn−1), Π := S(Up, kE)mΣ(r) (this localized space is still injective

as it is a direct summand in S(Up, kE)) and then we take mΣ(r)-eigenspaces on
both sides of the isomorphism given by the local theorem (which is of course TΣ-
equivariant). Note that assumption (ii) in this local theorem is satisfied for our
Π because of the results of Gee and Geraghty again. We get a nonzero map as
in the statement which is injective in restriction to the G(OF+,p)-socle and thus
which is injective. Its image lies in S(Up, kE)[mΣ(r)]ord by definition and it is
easily checked to be essential otherwise we would find that dw is strictly smaller
than the above dimension (i.e. we would find another copy of an ordinary Serre
weight in the socle).

We conjecture that the following should be true:

Conjecture 3.2.3. Assume that r is absolutely irreducible, modular-ordinary
and that rṽ is generic for all ṽ (= weaker than inertially generic). Then there
exist (Up,Σ) as above and an integer d > 0 such that we have an isomorphism of
smooth representations of G(F+ ⊗Q Qp) over kE:(⊗

v|p

(
Π(rṽ)

ord ⊗ (ωn−1 ◦ det)
))⊕d

∼−→ S(Up, kE)[mΣ(r)]ord.

We also conjecture an analogous isomorphism in characteristic 0 (for all p)
replacing Π(rṽ)

ord by Π(rṽ)
ord and S(Up, kE)[mΣ(r)]ord by a p-adic completion

(S(Up,OE)∧ ⊗OE E)[pΣ(r)]ord.
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