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Abstract. — Following our two courses at the Centre Emile Borel of the I.H.P.
during the Semestre p-adique of 1997, we present a survey of the Fontaine-Laffaille
and Fontaine-Messing theories and (with more details) of their extension by one of
us to the semi-stable setting. We also very quickly discuss some `-adic analogue of
Nakayama. We take advantage to include a few proofs which are not in the literature
and raise several remaining open questions.

Résumé (Cohomologies étale et cristalline de torsion). — Ce texte suit
le contenu de nos deux cours au Centre Emile Borel de l’I.H.P. durant le semestre
p-adique de 1997. Il présente un survol des théories de Fontaine-Laffaille et Fontaine-
Messing et (de manière plus détaillée) de leur généralisation par l’un d’entre nous au
cas de réduction semi-stable. Il décrit aussi très brièvement un analogue `-adique dû
à Nakayama. Nous en profitons pour inclure quelques preuves qui ne se trouvent pas
dans la littérature et pour soulever plusieurs questions ouvertes.
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1. Introduction

This article is both a resume of our two courses at the Centre Emile Borel of the
I.H.P. during the Semestre p-adique and a survey of the papers [31],[32],[9],[10].
These courses were, from the outset, coordinated. Indeed, the course of the second
author was largely foundational and was viewed as preparatory for the course of the
first author, a Cours Peccot, devoted to his generalization to the semi-stable situ-
ation, via log-syntomic methods, of some of the results of [32]. We concentrate here
primarily on [9],[10], adopting a strictly utilitarian point of view and, hopefully,
making then the article more useful to number theorists or algebraic geometers who
are not specialists in p-adic theories. Nevertheless, to keep the text to a reason-
able length, we have found it necessary to assume the reader has some awareness
of crystalline and semi-stable p-adic Galois representations and the corresponding
comparison theorems. Certainly, an acquaintance with log-schemes would also be
helpful, although we recall their definition.

We do not intend to review, even in the most cursory fashion, the history of
what has become a somewhat intricate and still evolving complex of theories and
techniques all ultimately intended to clarify the relationships between the diverse
p-adic objects which are cohomologically associated to appropriate algebraic variet-
ies. These objects are either the cohomology groups or are the “coefficients” which
serve as input for or arise as the output from such cohomology groups. We refer the
reader to [30], [25] for discussion of the comparison conjectures and to [41], [71] for
surveys of the comparison theorems in the Qp-coefficient context. The proofs, with
varying degree of detail, are given in [18], [19], [22], [32], [44], [46], [59], [70].

The case of torsion coefficients has had itself a long gestation. The dictionary
relating unramified representations and “unit root F-crystals” goes back to Artin,
Hasse and (especially) Witt during the thirties. The extension of classical Dieudonné
theory from the case of smooth (commutative) formal groups to finite connected or
unipotent group schemes over a perfect field k is due to Gabriel ([67]). The ana-
logous results over W (k) are due to Fontaine ([29]). Grothendieck stressed both in
[34] and in [35] the geometric importance of understanding p-torsion phenomena in
the Picard scheme and also in higher cohomological contexts. Important examples
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and results were given by Mumford and Raynaud ([55], [56], [62]). To the best
of our knowledge it was Grothendieck who, in his Algerian letter to Deligne ([36]),
first explicitly raised the question of understanding the relation between the torsion
invariants in the p-adic étale cohomology (or equivalently the Betti cohomology)
of the geometric generic fiber and in the “p-adic cohomology” of the special fiber.
Shortly after with the creation of crystalline cohomology ([35], [3]), it was pos-
sible to attach precise meaning to this last term. In fact, the situation is subtle
as examples, due to Ekedahl ([17]), show that for V a complete discrete valuation
ring of unequal characteristic and residue field k and X/V proper and smooth, the
π-torsion invariants for H∗

dR(X/V ) are not necessarily those of H∗
cris(Xk/W )⊗W V

(where W = W (k)). Even today there remains much to understand concerning
torsion in the (very) ramified case.

The approach we discuss in the text for studying torsion phenomena is via the
use of log-syntomic methods (section 6). Although he made no application of it,
it was Mazur who first discussed the syntomic topology ([51]). Fontaine and the
second author showed in 1982 that Ocris

n is a sheaf for the syntomic topology and
subsequently made systematic use of syntomic methods to establish the crystalline
conjecture for e = 1 and in degree < p. Using Kato’s K-theoretic calculations of
the nearby cycles they established the equality of the torsion invariants in the same
context (see section 3). It is the extension of these results to the semi-stable situ-
ation and the log-syntomic generalization of these methods which is the subject of
this survey.

In the semi-stable situation, even when working over K0 = Frac(W ) it is useful

to introduce the larger ring SK0 = S ⊗W K0 where S = Ŵ <u> is the p-adic
completion of the divided power polynomial ring in the variable u. The (φ, N)-
filtered modules D of the semi-stable theory do not satisfy Griffiths’ transversality,
but it is shown in [8] that D 7→ D⊗K0 SK0 establishes an equivalence with a category
of SK0-modules (equipped with additional structure) whose objects now do satisfy
Griffiths’ transversality (see section 4). It is the torsion analogue of this last category
which generalizes in the semi-stable context the filtered module category of Fontaine
and Laffaille ([31]). This is discussed in detail in the text. Suffice it here to say that
for each r with 0 ≤ r ≤ p− 2, we define such a category, Mr (see section 5).

The categories Mr are interesting for two reasons. The first reason is that they
allow one to get a handle on new and interesting phenomena in the semi-stable
situation which don’t arise in the analogous crystalline situation. For instance,
irreducible 2-dimensional crystalline representations of Gal(Qp/Qp) with distinct
Hodge-Tate weights in {0, . . . , p − 2} are all irreducible modulo p whereas this is
far from being the case with irreducible 2-dimensional semi-stable representations
of Gal(Qp/Qp) with distinct Hodge-Tate weights in {0, . . . , p − 2} (and here the
reduction modulo p is very interesting to study, see [9] and the last section). The
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second reason is that these categories are related to geometry. Let X/W be proper
and semi-stable. Endow it with its canonical log-structure (c.f. section 2), denote
by Xn its reduction modulo pn and consider the log-crystalline cohomology of Xn

relative to the base En = Spec(S/pnS). This is also the log-syntomic cohomology
of X with coefficients in the sheaf Ost

n (which plays here the role of the classical
Ocris

n ). Then one proves that, for 0 ≤ i ≤ r ≤ p−2, the corresponding H i (equipped
with its Filr, φr, N) is an object of the category Mr (see section 7) and, using
Hyodo-Kato-Tsuji’s K-theoretic calculations of the nearby cycles in the semi-stable
situation, that the torsion Galois representation associated to it by the generalized
Fontaine-Laffaille theory is the étale cohomology of the geometric generic fiber XK

with coefficients in Z/pnZ (see section 8).

We discuss applications of these results and related open questions in the last
section. In particular we explain how to recover in the above situation the torsion
invariants of the étale cohomology of the geometric generic fiber.

The reader will note that we frequently refer to the literature for the proofs. How-
ever we give proofs, or at least sketches of proofs, when a result does not have an
otherwise published proof (as for instance in section 6) or when we think that the
proof gives insight into the result discussed or into the techniques we use.

2. The `-torsion case

We set up the notations which we will keep throughout: p is a prime, k a perfect
field of characteristic p, W the Witt vectors W (k), K0 = Frac(W ), K a finite
totally ramified extension of K0, OK its ring of integers, K an algebraic closure of
K, OK its ring of integers, k the corresponding algebraic closure of k, and GK ⊂
GK0 the Galois groups Gal(K/K) ⊂ Gal(K/K0). For any prime `, recall that
an `-adic representation of GK or GK0 is a continuous linear representation in a
finite dimensional Q`-vector space and that a (finite) `-torsion representation is a
continuous (and hence finite) representation of GK or GK0 in a finite length Z`-
module.

2.1. Good reduction. — Let ` 6= p be another prime. As is well known, an `-adic
or `-torsion representation of GK that has “good reduction” is just an unramified
continuous representation. One of the first and most important results of étale
cohomology is certainly:

Theorem 2.1.1 (SGA4 IX.2.2 + XVI.2.2). — Let X be a proper smooth sche-
me over OK. For n ∈ N and i ∈ N, the specialization map induces isomorphisms
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compatible with the action of GK:

H i((X ×OK
k)ét,Z/`nZ)

∼→ H i((X ×OK
K)ét,Z/`nZ).

Notice that we compare something living on the geometric special fiber of X to
something living on the geometric generic fiber. In particular, the étale cohomo-
logy of the geometric generic fiber is unramified (as a GK-module). Till the end
of this paper, we will keep this philosophy of comparing in various situations (tor-
sion) Galois representations coming from the geometric special fiber to (torsion)
Galois representations coming from the geometric generic fiber. In each case, the
comparison will yield deep properties of the latter.

2.2. Semi-stable reduction. — We want to consider now the more general situ-
ation of a smooth proper K-scheme admitting a proper semi-stable model X over
OK , that is X is regular and its special fiber is a reduced divisor with normal cross-
ings in X. Equivalently, this means there exists an étale covering (Ui) of X such that
each Ui is étale over an affine scheme of the form OK [X1, . . . , Xs]/(X1X2 . . . Xr−πK)
(1 ≤ r ≤ s) where πK is an uniformizer of OK . We want an analogue of theorem
2.1.1 and consequently have to find a candidate to replace H i((X ×OK

k)ét,Z/`nZ)
that is still related to X×OK

k and that contains enough information to recover the
étale cohomology of the generic fiber X ×OK

K. There is little hope the singular
scheme X ×OK

k alone will now be sufficient. What we need is some extra inform-
ation related to the generic fiber, together with X ×OK

k, that is rich enough to
give back the cohomology of the geometric generic fiber. It turns out that this extra
information will be the log-structure (defined by Fontaine and Illusie) canonically
attached to the model X (see 2.2.1.2 below). The idea is then to replace the étale
cohomology of the scheme X ×OK

k by the log-étale cohomology of the log-scheme

X ×OK
k.

2.2.1. We rapidly recall some facts concerning log-schemes. The main reference is
[43]. The monoids that are considered are all commutative with a unit element and
will be usually written additively (this turns out to be more convenient in many
situations). If M is a monoid, we denote by M∗ its group of invertible elements and
M gp the group that it generates ([43],1).

Definition 2.2.1.1 (Fontaine-Illusie). — A pre-log-structure on a scheme X
is a sheaf of monoids MX on Xét together with a morphism of sheaves of monoids
on Xét, αX : MX → OX , where OX is viewed as a sheaf of multiplicative monoids.
A pre-log-structure is a log-structure if α−1

X (O∗
X)

∼→ O∗
X . A scheme endowed with a

log-structure is called a log-scheme.

To a pre-log-structure MX , one can associate in a canonical way a log-structure
by taking the push-out of O∗

X ← α−1
X (O∗

X) → MX in the category of sheaves of
monoids on Xét. A monoid M is called integral if a + b = a + c ⇒ b = c in M . A
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log-structure is called integral if it is a sheaf of integral monoids, and fine if locally
on Xét it is associated to a pre-log-structure α : M → OX where M is an integral
monoid of finite type viewed as a constant sheaf. All the log-schemes of this paper
are integral and most of them are fine. A morphism of log-schemes is a morphism
of schemes together with a morphism of sheaves of monoids such that the obvious
diagram is commutative ([43],1.1). If f : X → Y is a morphism of schemes and
if MY is a log-structure on Y , by definition the induced log-structure on X is the
log-structure associated to f−1(MY )→ OX . Any scheme has a trivial log-structure
(with MX = O∗

X) and hence the category of schemes is a full subcategory of the
category of log-schemes. If (X, MX) is a log-scheme, we will refer to X itself as the
underlying scheme. If we consider a log-scheme associated to a pre-log-structure
α : M → A where A is a commutative ring and M an integral monoid (that is,
the underlying scheme is Spec(A)), we will just write (A, M) and call this pair a
log-ring. With additive notations on M , recall then that 0 ∈M maps to 1 ∈ A.

Example 2.2.1.2. — Let X be a scheme flat over Spec(OK), then:

MX = {f ∈ OX such that f |X×
OK

K ∈ O∗
X×

OK

K}

is easily checked to be an integral log-structure on X. It is called the canonical
log-struture associated to X. If X = OK , one finds OK \ {0} → OK which is also
the log-scheme associated to (N → OK , 1 7→ πK) where πK is any uniformizer of
OK . If X is semi-stable over OK (c.f. above), one finds an étale covering (Ui) of X
with induced log-structures such that each Ui is étale (with induced log-structure)
over a log-scheme associated to:

Nr → OK [X1,...,Xs]
(X1X2···Xr−πK)

↑ ↑
N → OK

where 1 ≤ r ≤ s, N → Nr is the diagonal embedding and (0, . . . , 1, . . . , 0) ∈ Nr

maps to Xi if 1 is in position i. This semi-stable example is the main reason why
one (usually) uses the étale site and not the Zariski site.

We stop here our brief review of log-schemes. In the sequel, we refer without
comment to [43] or to ([71],3) in this volume for the definition of log-étale and
log-smooth morphisms, exact morphisms, integral morphisms, closed immersions of
log-schemes,. . . .

2.2.2. The semi-stable `-adic or `-torsion representations of GK are the continuous
representations such that the inertia acts unipotently (and consequently through its
tame quotient). Let ΣK be the log-scheme OK \ {0} → OK and Σk the integral (not
fine) log-scheme OK \ {0} → k. If X is a fine log-scheme over ΣK , we denote by
X ×ΣK

Σk the fiber product in the category of integral log-schemes which is also,
in this case, the fiber product in the category of all log-schemes (in particular the
underlying scheme is just X ×OK

k).
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Theorem 2.2.1 ([58],4.2). — Let X be a proper semi-stable scheme over OK

and endow it with its canonical log-structure (2.2.1.2). For n ∈ N and i ∈ N, there
are isomorphisms compatible with the action of GK:

H i((X ×ΣK
Σk)log−ét,Z/`nZ)

∼→ H i((X ×OK
K)ét,Z/`nZ).

Here, the left hand side is the log-étale cohomology of the log-scheme X ×ΣK
Σk

defined by Nakayama ([57]) and the map is also induced by a specialization map (see
[58]). One can show this implies (g−Id)i+1 = 0 on H i((X×OK

K)ét,Z/`nZ) for g in

the inertia subgroup ([58],3.7), and so the representation H i((X ×OK
K)ét,Z/`nZ)

is semi-stable. This result was already known in this situation by work of Rapoport-
Zink ([63]), but the above theorem can be extended to a much more general situ-
ation. For details, see [58] and Illusie’s nice surveys [39], [40].

In the sequel, we will consider the case ` = p. The theory here becomes more
involved and it turns out that it’s not convenient to describe directly the action of
Galois on H i((X ×OK

K)ét,Z/pnZ). Fortunately, one has instead explicit objects,

living in the realm of linear algebra, that can (and will) be used to state comparison
theorems between this p-torsion étale cohomology and a cohomology theory related
to the special fiber, at least (so far) if one restricts to K = K0 and H i’s with p > i.
The case of arbitrary K is still under investigation for p-torsion ([21],[11]), although
there is probably a nice theory if p > i[K :K0] (see [11]). The case i ≥ p (or even
i[K : K0] ≥ p) is still largely open. For these reasons, we will now assume from §3
to §8 that K = K0 and consider only those cohomology groups H i for i not too big.

3. The p-torsion case: good reduction and Fontaine-Laffaille-Messing
theory

Recall that a p-adic representation V of GK0 that has “good reduction” is a crys-
talline representation i.e. such that dimK0(Bcris⊗Qp V )GK0 =dimQpV ([25],5). Here

Bcris is a K0-algebra that only depends on K/K0 and will be defined in (3.1.2). Our
aim is to recall briefly the Fontaine-Laffaille theory of [31], that basically describes
torsion subquotients of some crystalline representations, and the Fontaine-Messing
theory [32] that applies the work of Fontaine and Laffaille to the study of p-torsion
(and so p-adic) étale cohomology of varieties with good reduction over W .

3.1. Review of the Fontaine-Laffaille theory. —

3.1.1. To any crystalline representation, Fontaine associates in ([25],5) a weakly
admissible filtered φ-module. We explain briefly what this is. A filtered φ-module
D is a finite dimensional K0-vector space endowed with a decreasing filtration by
sub-K0-vector spaces FiliD such that FiliD = D if i� 0, FiliD = 0 if i� 0 and
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an injective K0-semi-linear map φ : D → D (the “Frobenius”). To such a D, we
associate:

tH(D) =
∑
i∈Z

(dimK0griD)i

tN(D) =
∑
α∈Q

(dimK0Dα)α

where α ∈ Q and Dα is the sub-K0-vector space of D of slope α for φ (see [2] and
[14],3.2). We say D is weakly admissible if tH(D) = tN(D) and tH(D′) ≤ tN(D′) for
any sub-K0-vector space D′ ⊂ D stable under φ with FiliD′ = FiliD ∩D′. By the
main result of [14], there is an equivalence of categories between weakly admissible
filtered φ-modules and crystalline representations of GK0 . Hence it’s natural, if one
wants integral or torsion crystalline representations, to look for integral structures
first on the filtered module side. The following definition was inspired by the work
of Mazur ([49],[50]) and Berthelot-Ogus ([4],8) on the Katz conjecture.

For r ∈ N, define MF f,r
tor to be the category of W -modules of finite length

M endowed with a decreasing filtration by sub-W-modules (FiliM)i∈Z such that
Fil0M = M and Filr+1M = 0, and semi-linear maps (with respect to the Frobenius
on W ) φi : FiliM → M such that φi|Fili+1M = pφi+1 and

∑r
i=0 φi(FiliM) = M (in

the notation, “f” stands for “finite”, since the modules are of finite length). Morph-
isms are the W -linear maps that send Fili to Fili and commute with φi. One thinks
of φi as “ φ

pi ”. Clearly MF f,r
tor is a full sub-category of MF f,r+1

tor . More importantly,

one has the surprising result:

Proposition 3.1.1.1. — Let f : M → N be a morphism in MF f,r
tor. Then:

1) f is strict with respect to the filtration, i.e. for all i, f(FiliM) = FiliN ∩ f(M)
2) if M ′ is the kernel of the underlying linear map, FiliM ′ = M ′ ∩ FiliM and φi :
FiliM ′ →M ′ the restriction of φi : FiliM →M , we have

∑r
i=0 φi(FiliM ′) = M ′.

See ([31],1.10,(b)) for the proof of 1) and ([31],1.10,(a)) for the proof of 2). Notice
also that each FiliM is a direct factor of Fili−1M : we say the M ’s are “filtered free”
(this terminology is due to Faltings).

Corollary 3.1.1.2. — The category MF f,r
tor is abelian. More precisely, if f is as

in (3.1.1.1), we have:

Ker(f) = (M ′, M ′ ∩ FiliM, φi)

Coker(f) = (N/f(M), F iliN/f(FiliM), φi).

Since the underlying W -modules have finite length, MF f,r
tor is also artinian. It is

also of interest to consider the “without p-torsion” counterpart:

Definition 3.1.1.3. — A strongly divisible module is a free W -module M of finite
type equipped with a decreasing filtration by sub-W-modules (FiliM)i∈Z such that



TORSION ÉTALE AND CRYSTALLINE COHOMOLOGIES 9

Fil0M = M , FiliM = 0 for i big enough, M/FiliM has no p-torsion, and a semi-
linear map φ : M →M such that φ(FiliM) ⊂ piM and

∑
i∈Z

φ
pi (FiliM) = M .

If M is a strongly divisible module, M/pnM is in an obvious way an object of

MF f,r
tor for r � 0 by defining φi = φ

pi |Fili mod pn.

3.1.2. Let us recall the cohomological definition of Acris (see also [32],I.1.3-1.5
or [75],2.1). The brutal formula is Acris = lim←−H0

cris((OK/pOK)/Wn). The right

hand side naturally appears as one of the components of a Künneth formula (see
[32],III.1.3). Either by a de Rham computation as in ([27],3.2) or by noticing that
the crystalline site (Spec(OK/pOK)/Wn)cris has a final object as in ([32],II.1.4), one
can prove:

H0
cris((OK/pOK)/Wn) ' Wn(OK/pOK)DP

where “DP” means that we take the divided power envelope compatible with the
divided powers on (p) ([4],3.19) with respect to the kernel of the surjection θn :

Wn(OK/p) → OK/pn defined by θn(a0, . . . , an−1) = âpn

0 + pâpn−1

1 + . . . + pn−1âp
n−1

(âi = any lifting of ai in OK/pn). So Acris ' lim←−Wn(OK/p)DP , the projective

system being taken with respect to the maps Wn(OK/p)DP → Wn−1(OK/p)DP in-
duced by (a0, . . . , an−1) 7→ (ap

0, . . . , a
p
n−2). Fontaine shows ([27],3.1) that Acris is

p-torsion free and that the projection on Wn(OK/p)DP induces an isomorphism
Acris/p

nAcris ' Wn(OK/p)DP . Because there is a Frobenius φ on the Witt vectors
and because φ(Ker(θn)) ⊂ Ker(θn)+p(OK/pn), the Frobenius extends to Acris. Let

J cris
n be the kernel of the surjection Wn(OK/p)DP → OK/pn induced by θn, J

cris,[i]
n

its ith divided power ([4],3.24) and FiliAcris = lim←−J
cris,[i]
n , then (FiliAcris)i∈N is a

decreasing filtration on Acris such that Fil0Acris = Acris and φ(FiliAcris) ⊂ piAcris if
0 ≤ i ≤ p−1 (look at the action of φ on J cris

n ). For i ≤ p−1 let φi = φ
pi |FiliAcris

. Since

Acris/F iliAcris has no p-torsion, FiliAcris/p
nFiliAcris injects into Acris/p

nAcris and
this defines a filtration on Acris/p

nAcris to which we can extend φi for 0 ≤ i ≤ p−1.
Finally there is by functoriality a continuous action of GK0 on Acris that preserves
the filtration and commutes with the Frobenius. For completeness, we recall that
Bcris = Acris[

1
log([ε])

] = Acris[
1
p
, 1

log([ε])
] where ε = (εn)n is a compatible system of

primitive pnth
-roots of unity in OK , [εn] ∈ Wn(OK/p) the Teichmüller representative

of the reduction modulo p of εn, and [ε] = ([εn])n the corresponding element of Acris.

3.1.3. Let r ∈ {0, . . . , p − 1} and M ∈ MF f,r
tor. Choose n ∈ N such that pnM = 0

and define:

T ∗
cris(M) = HomW,Fil·,φ.(M, Acris/p

nAcris)

where the subscript means we take the W -linear maps that send Fili to Fili and
commute with φi. The Zp-module T ∗

cris(M) is independent of the choice of n such
that pnM = 0 and is endowed with an action of GK0 given by g(f)(x) = g(f(x))

if x ∈ M, f ∈ T ∗
cris(M). We thus have a functor from MF f,r

tor to representations of
GK0 . The main result of the Fontaine-Laffaille theory is:
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Theorem 3.1.3.1. — For 0 ≤ r ≤ p − 1, the functor T ∗
cris is exact and faithful.

For 0 ≤ r ≤ p− 2, it is fully faithful.

The proof reduces by dévissage to the case pM = 0 (M in MF f,r
tor) and the fully

faithfulness uses the classification of the simple objects of MF f,r
tor. There is a nice

variant in ([75],2) that avoids this classification. Actually, the full faithfulness ex-

tends to r = p−1 if one restricts to appropriate subcategories of MF f,p−1
tor ([31],0.9).

As a corollary of (3.1.3.1), we get that for 0 ≤ r ≤ p − 1 the invariant factors of
M and T ∗

cris(M) coincide and in particular that T ∗
cris(M) is a finite representation.

The link to crystalline representations is provided by the following theorem, which
is proved by a limit argument:

Theorem 3.1.3.2 ([31],8.4). — Let M be a strongly divisible module of rank d
such that FilpM = 0, then HomW,Fil·,φ(M, Acris) is a Zp-lattice in a d-dimensionnal
crystalline representation of GK0 with Hodge-Tate weights between 0 and p− 1.

Using ([48],3.2) this even shows that we get like this all the crystalline repres-
entations of GK0 with Hodge-Tate weights between 0 and p − 1. Define a torsion
crystalline representation of weight ≤ r (r ∈ N) to be any finite representation of
GK0 that can be written T/T ′ where T ′ ⊂ T are Galois stable lattices in a crystal-
line representation of GK0 with Hodge-Tate weights ∈ {0, . . . , r}. Using (3.1.3.1),

(3.1.3.2) and ([48],3.2) together with the fact any object of MF f,r
tor can be lifted as

a strongly divisible module (easy), we finally get:

Theorem 3.1.3.3. — For 0 ≤ r ≤ p − 2, the functor T ∗
cris induces an anti-

equivalence of categories between MF f,r
tor and torsion crystalline representations of

GK0 of weight ≤ r.

Let us end this subsection with the description of the covariant version of T ∗
cris

which turns out to be more convenient for the application to geometry. Let M
be in MF f,r

tor and for simplicity assume 0 ≤ r ≤ p − 2 (we will only need that
case in the sequel). Define Filr(Acris ⊗W M) =

∑r
i=0 Filr−iAcris ⊗W FiliM and

φr =
∑r

i=0 φr−i ⊗ φi.

Lemma 3.1.3.4. — With the above hypothesis, there is a canonical isomorphism
of GK0-modules: Filr(Acris ⊗W M)φr=1 ∼−→ T ∗

cris(M)∧(r) where the exponent “φr =
1” on the left hand side means “kernel of φr − Id”, where “(r)” denotes twisting by
the rth power of the cyclotomic character of GK0 and where the exponent ∧ on the
right hand side means the Pontryagin dual with respect to Qp/Zp.

For a proof, see for instance ([10],3.2.1.7). In the sequel, we write:

Tcris(M) = T ∗
cris(M)∧ ' Filr(Acris ⊗W M)φr=1(−r).
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3.2. Review of the Fontaine-Messing results. — Let X be a proper smooth
scheme over Spec(W ). The Fontaine-Messing theory shows the functor Tcris above
sends the torsion crystalline, or de Rham, cohomology of X to the torsion étale
cohomology of X ×W K0. We just give here a brief overview of the results of [32],
since more details will be given in the sequel in the log-case.

Let Xn = X ×W Wn and σ≥jΩ
·
Xn

= 0 → · · · → 0 → Ωj
Xn
→ Ωj+1

Xn
→ · · · the

truncated classical de Rham complex. By Berthelot’s comparison theorem ([4],7.2),

H i(Xn, σ≥jΩ
·
Xn

) ' H i((Xn/Wn)cris, J
[j]
Xn/Wn

) where JXn/Wn = Ker(OXn/Wn → OXn)

(here OXn/Wn is the structure sheaf on (Xn/Wn)cris and OXn the classical structure
sheaf on Xn, see ([4],5.2) for details). In particular, there is a Frobenius φ (the
“crystalline Frobenius”) on H i(Xn, Ω

·
Xn

). Working with the syntomic interpretation

of the groups H i((Xn/Wn)cris, J
[j]
Xn/Wn

) ([32],II.2.2), it is also possible to define for

0 ≤ j ≤ p−1 semi-linear maps φj =“ φ
pj ”:H i(Xn, σ≥jΩ

·
Xn

)→ H i(Xn, Ω
·
Xn

) such that

φ0 = φ.

Theorem 3.2.1 ([32],II.2.7). — Let X be a proper smooth scheme over W . For
n ∈ N and 0 ≤ i ≤ r ≤ p− 1, the data:(

H i(Xn, Ω
·
Xn

), (H i(Xn, σ≥jΩ
·
Xn

))0≤j≤r, (φj)0≤j≤r

)
define an object of the category MF f,r

tor. That is to say the maps:

H i(Xn, σ≥jΩ
·
Xn

)→ H i(Xn, Ω
·
Xn

)

induced by the canonical injection of complexes are injective and
∑r

j=0 Im(φj) =

H i(Xn, Ω
·
Xn

).

The main ingredient of the proof is an isomorphism which is now called the
Deligne-Illusie isomorphism (because its construction was simplified and generalized
in [16]).

Remark 3.2.2. — One can also define the Frobenius maps by purely de Rham
considerations using local liftings of Frobenius (see ([45],1) or [16]).

Theorem 3.2.3 ([32],III.6.4). — Let X be a proper smooth scheme over W .
For n ∈ N and 0 ≤ i ≤ r ≤ p − 2, there are isomorphisms compatible with the
action of GK0:

Tcris

(
H i(Xn, Ω

·
Xn

), (H i(Xn, σ≥jΩ
·
Xn

))0≤j≤r, (φj)0≤j≤r

)
' H i((X ×W K0)ét,Z/pnZ).

It doesn’t seem to be known in general whether (3.2.3) extends to i = r = p− 1.
As in the `-torsion case, this theorem compares something living on the special
fiber of X with something living on the geometric generic fiber. The strategy to
prove (3.2.3) is first to define a third Galois representation called the “syntomic” co-
homology (this uses the syntomic sheaves Sr

n of ([32],III.3) and their cohomology),
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secondly to show this syntomic cohomology maps isomorphically and compatibly
with Galois to H i((X ×W K0)ét,Z/pnZ)(r) (this relies heavily on computations of
Bloch-Kato ([6]) and Kato ([45]) on the sheaves of nearby cycles), thirdly to show
this syntomic cohomology also maps isomorphically and compatibly with Galois
to Tcris(H

i(Xn, Ω
·
Xn

))(r) (this uses (3.2.1) and properties of Acris together with
Künneth formulas, see ([32],III.1-2)). The isomorphism (3.2.3) gives deep inform-
ation about the action of GK0 on H i((X ×W K0)ét,Z/pnZ) for p − 1 > i. For
example, one can give an upper bound for the valuation of the different of the finite
extension of K0 cut out by this finite representation, or a lower bound for the index
of the ramification subgroups of GK0 (in the upper numbering) that act trivially
on H i((X ×W K0)ét,Z/pnZ) (see 9.2.2). Also, one can deduce that the weights of
the action of the tame inertia (of GK0) on the semi-simplification of the reduction
modulo p of H i((X ×W K0)ét,Z/pnZ) are between 0 and i ([31],5.3).

Remark 3.2.4. — If one is only interested in the Qp-version of (3.2.3), there is a
way to obtain it without using Kato’s computations by first building a map from the
syntomic cohomology to H i((X ×W K0)ét,Z/pnZ)(r) using the so-called “syntomic-
étale” site of X ×W OK and then showing it is an isomorphism after taking the
inverse limit and tensoring by Qp using Poincaré duality. See ([32],III.4-III.6). In
[72], Tsuji has sketched an extension of this approach using a “log-syntomic-étale”
site.

4. Semi-stable reduction: why Wn <u> -modules ?

The p-adic semi-stable representations are defined similarly to the crystalline rep-
resentations by using Bst instead of Bcris (see [24],[25]; non canonical Bst may be
defined as Bcris[v], a polynomial algebra, on which the Galois action extends that
on Bcris and acts on v via g(v) = log[ε(g)] + v where ε : GK0 → lim←−µpn(K) is the

1-cocycle associated to a choice of a compatible system of pnth
-roots of a uniformizer

of K0; this ring is closely connected to the ring Âst of (5.2.1)). Our aim is to gener-
alize to this situation the previous integral theories. So there are two tasks: the first
is to find good categories of torsion objects of linear algebra that can be related to
semi-stable representations, the second is to apply this theory to the cohomology of
varieties with semi-stable reduction. We start with the first.

4.1. As in the crystalline case, one can associate to a semi-stable representation
a weakly admissible filtered (φ,N)-module, that is to say a filtered φ-module D as
in (3.1.1), but endowed with a K0-linear endomorphism N : D → D (the “mono-
dromy”) satisfying Nφ = pφN and such that the previous weakly admissibility
conditions hold, except that one considers only those D′ which are preserved both
by φ and N in the second condition (see [25],5). Thanks to [14], one also has
an equivalence of categories between weakly admissible filtered (φ,N)-modules and
semi-stable representations (some cases here were known by work of the first author,
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see for instance (9.1.1.1)). An important point is that there are no direct relations
between N and the filtration other than those coming from the weakly admissibility
conditions.

If one wants to mimic the definition of (3.1), one is naturally led to introduce

an operator N on the objects of MF f,r
tor (0 ≤ r ≤ p − 2). The problem is that the

only reasonnable translation of Nφ = pφN is Nφi = φi−1N (0 ≤ i ≤ r) since φi is
morally φ

pi . But such a relation would make sense only if N(Fili) ⊂ Fili−1 for all

i ∈ {0, . . . , r}: this is called the “Griffiths transversality condition” (because similar
conditions were found by Griffiths for the Gauss-Manin connection and the logarithm
of monodromy in the classical case). Nevertheless, one can add this transversality

condition and consider objects M of MF f,r
tor together with a W -linear endomorphism

N : M → M such that N(FiliM) ⊂ Fili−1M and Nφi = φi−1N for 0 ≤ i ≤ r.
One ends up again with an abelian category and it is essentially routine to extend
the previous Fontaine-Laffaille theory to this new context (see [54],I.3). The only
serious point is that one has to replace Acris by the integral version of Bst (with the
notation of (5.2.1) below, this is Ast = Acris[log(1+Xπ)]). These modules are called
“naive” in ([9],5) as they correspond to a naive extension of the Fontaine-Laffaille
theory (this terminology is due to Fontaine).
Of course, this approach only gives a small part of the picture of semi-stable rep-
resentations, since the condition N(Fili) ⊂ Fili−1 is not required in general on a
weakly admissible module. It is sufficient in some cases, for example Fil2 = 0. For
instance, using such naive modules, one can build (up to twist) the “très ramifiées”
local representations of Serre in ([65],2.4) (the “peu ramifiées” ones corresponding

to N = 0 i.e. classical objects of MF f,1
tor).

4.2. In ([44],3), Kato defines a W -algebra lim←−Pn, which is called Âst in [9], by

mimicing in the logarithmic context the crystalline construction of Bcris of [27]
and [32] (see 5.2.1). This algebra naturally lives over the p-adic completion S of

W <u> = {
∑n

i=0 wi
ui

i!
| wi ∈ W, n ∈ N} where u is an indeterminate whose image

in Âst depends on the choice of an uniformizer in W (other authors have used t or

T ). More importantly, Âst is endowed with a filtration, a Frobenius, a monodromy
operator and the above Griffiths transversality is satisfied, whereas it is certainly
not the case on Ast (viewed in Bst ⊂ BdR, c.f. ([8],7)). This suggests working with
S-modules instead of W -modules, and imposing on these the Griffiths transversality
condition.

Choose a uniformizer π of W and define on S a filtration by FiliS = p-adic

completion of the ideal generated by { (u−π)j

j!
, j ≥ i}, a (lifting of) Frobenius by

φ(
∑

wi
ui

i!
) =

∑
φ(wi)

upi

i!
(here φ(wi) is the classical Frobenius on the Witt vec-

tors) and a W -linear derivation N by N(
∑

wi
ui

i!
) =

∑
(−1)iiwi

ui

i!
(i.e. N(u) = −u:



14 C. BREUIL & W. MESSING

the reason for the minus sign is explained in (6.2.3.3)). Let SK0 = K0 ⊗W S and
extend in the obvious way these structures to SK0 . Let MF+

K0
(φ,N) be the cat-

egory of filtered (φ,N)-modules D of (4.1) such that Fil0D = D (morphisms being
the K0-linear maps that preserve the filtration and commute with the operators).
Let MF+

K0
(φ,N) be the category of finitely generated free SK0-modules D equipped

with:
(i) a decreasing filtration by sub-SK0-modules FiliD such that Fil0D = D,
FiljSK0FiliD ⊂ Filj+iD and FiliD = Fil1SK0Fili−1D + FiliSK0D if i� 0
(ii) an SK0-semi-linear map φ : D→ D such that det(φ) ∈ S∗K0

(in one, or equival-
ently any, basis of D over SK0)
(iii) a K0-linear map N : D→ D such that N(sx) = N(s)x + sN(x) (s ∈ SK0 , x ∈
D), Nφ = pφN and N(FiliD) ⊂ Fili−1D.
The morphisms in this category are the SK0-linear maps compatible with the struc-
tures. Let

fπ : SK0 → K0∑
wi

ui

i!
7→

∑
wi

πi

i!
.

We define a functor MF+
K0

(φ,N) → MF+
K0

(φ,N) as follows: to D, we associate
D = SK0⊗K0 D with φ = φ⊗φ, N = N⊗Id+Id⊗N and FiliD defined inductively
by Fil0D = D and FiliD = {x ∈ D | N(x) ∈ Fili−1D and fπ(x) ∈ FiliD}.

Theorem 4.2.1 ([8],6). — The above functor induces an equivalence of categor-
ies between MF+

K0
(φ,N) and MF+

K0
(φ,N).

The proof uses an argument of iteration of Frobenius which goes back to Berthelot-
Ogus ([5]) (and which was actually rediscovered independently). The last condition
in (i) above corresponds to the fact that the filtrations on objects in MF+

K0
(φ, N)

are separated. Because of this theorem, we can try to look for integral structures
inside the D’s instead of inside the D’s. The fact one could try to work with S-
modules instead of W -modules had also been noticed independently by Faltings
([20]), Tsuzuki ([73]), and Quiros (in a related context, see [60]).

4.3. First, notice that for 0 ≤ i ≤ p − 1, φ(FiliS) ⊂ piS, and define φi = φ
pi |FiliS.

Since FiliS ∩ pS = pF iliS, there is a filtration on S/pnS defined by Fili(S/pnS) =
FiliS/pnFiliS and we can extend φi to Fili(S/pnS) for 0 ≤ i ≤ p − 1. Also
φ1(u − π) = up−π

p
∈ S∗. Starting from a filtered (φ, N)-module D, we have now

another module where the Griffiths transversality is satisfied. Thinking about the
naive case of (4.1), it is then natural to look for torsion S-modules M which are
isomorphic to, say, ⊕i∈I(S/piS)di where I is a finite set of integers and di ∈ N, and
which are endowed with:
(i) a filtration FiliM such that Fil0M = M, FiljSFiliM ⊂ Filj+iM, FiliM =
Fil1SFili−1M + FiliSM if i ≥ r + 1 (for, say, an r ∈ {0, . . . , p− 2})
(ii) for 0 ≤ i ≤ r maps φi : FiliM → M such that φj+i(sx) = φj(s)φi(x)
(s ∈ FiljS, x ∈ FiliM), φi|Fili+1S = pφi+1 and

∑
i≥0 φi(FiliM) generates M over S

(iii) a W -linear map N : M→M such that N(sx) = N(s)x+sN(x) (s ∈ S, x ∈M),
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Nφi = φi−1N and N(FiliM) ⊂ Fili−1M.

Moreover, thinking about the objects of MF f,r
tor (3.1.1), it is tempting at first to

consider only those modules which are “filtered free” in the following sense: we as-
sume we can write M = ⊕d

j=1S/pnjSej and FiliM = ⊕d
j≥di

S/pnjSej+Fil1SFili−1M+

FiliSM for some integers 1 = d0 ≤ d1 ≤ . . . ≤ dr+1 = d + 1. Remember that our
aim is to define an abelian (or even artinian) category of such objects. As in the
Fontaine-Laffaille case, this is reasonnable only if the morphisms in this hypothetical
category are strict with respect to the filtration, i.e. if f(FiliM) = FiliN ∩ f(M)
for any morphism f : M→ N and any i. But consider the following example:

Example 4.3.1. — Consider the filtered free S/pS-modules M, M′ and M′′ defined
by:
M = S/pSe1 ⊕ S/pSe2 with Fil1M = S/pS(e1 + ue2) + Fil1(S/pS)M, Fil2M =
S/pS(e1 +ue2)+Fil1(S/pS)Fil1M+Fil2(S/pS)M, FiliM = Fil1(S/pS)Fili−1M+
Fili(S/pS)M if i ≥ 3, φ0(e2) = e1, φ2(e1 + ue2) = e2, N(e2) = −φ1(u)e1, N(e1) = 0
M′ = S/pSe1 with Fil1M′ = M′, FiliM′ = Fil1(S/pS)Fili−1M′ + Fili(S/pS)M′ if
i ≥ 2, φ1(e1) = −φ1(u)e1, N(e1) = 0
M′′ = S/pSe2 with Fil1M′′ = M′′, FiliM′′ = Fil1(S/pS)Fili−1M′′ + Fili(S/pS)M′′

if i ≥ 2, φ1(e2) = φ1(u)−1e2, N(e2) = 0.
One checks there are morphisms compatible with all the structures M′ →M, e1 7→ e1

and M → M′′, e1 7→ 0, e2 7→ e2 and that the sequences of S-modules 0 → M′ →
M → M′′ → 0 and 0 → FiliM′ → FiliM → FiliM′′ → 0 for i ≥ 2 are exact.
However, the sequence 0 → Fil1M′ → Fil1M → Fil1M′′ → 0 is not exact since
e2 ∈ Fil1M′′ cannot be lifted in Fil1M. In particular the morphism M→M′′ is not
strict.

The above example suggests one should give up the full data of a filtration and
keep only the “last step” FilrM (Fil2 above) in order to get (hopefully) strict morph-
isms. Moreover, using the fact φ1(u − π) is a unit, it is possible to give analogues
of all the above conditions on an object M in terms of FilrM only: for instance∑

i≥0 φi(FiliM) generates M over S if and only if φr(FilrM) does. Hence working
with “just” Filr and φr may not be a bad idea.

We explain in the next section that this idea indeed works, and yields nice artinian
categories of torsion S-modules.

5. A generalization of the Fontaine-Laffaille theory

Because the maps φi on S are only defined for 0 ≤ i ≤ p− 1, we have to make at
once a restriction on the length of the filtration, contrary to what we did in (3.1.1)
with the Fontaine-Laffaille objects. This is not very important since, anyway, these
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Fontaine-Laffaille objects could only be used in (3.1.3) under this restriction (and
are apparently not the right objects when the filtration goes further). Moreover, the
theory in [9] has only been worked out when this length is actually strictly smaller
than p − 1. So in the sequel, we only look at modules with a “filtration” between
0 and r for a fixed integer r between 0 and p − 2 (although the theory probably
extends to r = p − 1 if one restricts to appropriate subcategories, as in [31]). We
let c = φ1(u− π) ∈ S∗.

5.1. Definition of the categories. —

5.1.1. Recall we have fixed an uniformizer π of W . Define Mr
π to be the following

category. An object is the data of:
(i) an S-module M abstractly isomorphic to ⊕i∈I(S/piS)di where I is a finite set of
integers and di ∈ N
(ii) a sub-S-module FilrM containing FilrS ·M
(iii) a map φr : FilrM→M semi-linear with respect to the Frobenius on S and such
that crφr(sx) = φr(s)φr((u−π)rx) (s ∈ FilrS, x ∈M) and φr(FilrM) generates M

over S
(iv) a map N : M → M such that N(sx) = N(s)x + sN(x) (s ∈ S, x ∈ M),
(u− π)N(FilrM) ⊂ FilrM and cN ◦ φr = φr ◦ (u− π)N |FilrM
and morphisms are the S-linear maps that send Filr to Filr and commute with φr

and N . If r + 1 ≤ p− 2, there is a fully faithful functor Mr
π →Mr+1

π ([9],2.1.2.1).

Theorem 5.1.1.1. — Let f : M→ N be a morphism in Mr
π. Then:

1) f(FilrM) = FilrN ∩ f(M)
2) if M′ is the kernel of the underlying S-linear map, FilrM′ = FilrM ∩M′, φr :
FilrM′ → M′ the restriction of φr : FilrM → M and N : M′ → M′ the restriction
of N : M→M, we have M′ ' ⊕i∈I′(S/piS)d′i and φr(FilrM′) generates M′ over S
3) N/f(M) ' ⊕i∈I′′(S/piS)d′′i .

The proof is by a dévissage that reduces to the case where M, N are killed by p
and then uses (5.1.2.1) below. See ([9],2.1.2.2) for details.

Corollary 5.1.1.2. — The category Mr
π is abelian. More precisely, if f is as in

(5.1.1.1), we have:

Ker(f) = (M′, F ilrM′, φr, N)

Coker(f) = (N/f(M), F ilrN/f(FilrM), φr, N).

Since all the modules are of the form ⊕i∈I(S/piS)di , Mr
π is artinian. There is a

natural functor Fr
π : MF f,r

tor →Mr
π that associates to M the object Fr

π(M) = S⊗W M

with FilrFr(M) =
r∑

j=0

Filr−jS ⊗W FiljM , φr =
r∑

j=0

φr−j ⊗ φj and N = N ⊗ Id.
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Proposition 5.1.1.3 ([9],2.4). — The functor Fr
π is exact and fully faithful. Via

Fr
π, the categories MF f,r

tor and Mr
π have the same simple objects.

The same statement is true if one replaces MF f,r
tor by the “naive” corresponding

objects (i.e. adding a N on the objects of MF f,r
tor, see (4.1)). In fact, for r ≤ 1, there

is even an equivalence of categories between Mr
π and these naive objects ([10],4.4.1).

As in the classical case, we can define the “without p-torsion” version of Mr
π:

Definition 5.1.1.4. — A strongly divisible module of weight ≤ r is a free S-
module M of finite type equipped with a sub-S-module FilrM containing FilrS ·M
and such that M/F ilrM has no p-torsion, a semi-linear map φ : M→M such that
φ(FilrM) ⊂ prM and φ

pr (FilrM) generates M over S, and a map N : M→M such

that N(sx) = N(s)x + sN(x) (s ∈ S, x ∈M), Nφ = pφN and (u− π)N(FilrM) ⊂
FilrM.

If M is a strongly divisible module of weight ≤ r, M/pnM is in an obvious way
an object of Mr

π by defining φr = φ
pr |Filr mod pn and M is also of weight ≤ r + 1 (if

r + 1 < p− 1). Finally, we claim the categories Mr
π (and the categories of strongly

divisible modules) do not depend on the choice of π:

Proposition 5.1.1.5. — For each choice of w ∈ W ∗, there is a canonical equi-

valence of categories Mr
π

≈−→Mr
πw such that the composite MF f,r

tor

Fr
π−→Mr

π
≈−→Mr

πw

is Fr
πw.

Proof. — We give a proof, since it’s not in the literature. If r = 0, this is trivially
true since in that case F0

π above is actually an equivalence of categories and MF f,0
tor

doesn’t depend on any choice. So assume 1 ≤ r ≤ p − 2 and let π′ = πw with
w ∈ W ∗. Assume first that w = [κ] for a κ in k∗ (Teichmüller representative).
Then the map [κ−1] : S → S, γi(u) 7→ γi(u[κ−1]) commutes with φ. To any object
Mπ ∈Mr

π we associate Mπ′ = Mπ[κ] = (S⊗[κ−1],S Mπ, S⊗[κ−1],S FilrMπ, φ⊗φr, N ⊗
Id + Id ⊗ N): this clearly defines an equivalence of categories Mr

π
∼→ Mr

π′ . In
general, write w = [κ]ω with ω ∈ 1 + pW and define ν : Mπ[κ] → Mπ[κ], x 7→
exp(N(log(ω−1)))(x) =

∑
i≥0

(− log ω)i

i!
N i(x) which makes sense since p ≥ 3. To Mπ[κ]

we associate Mπ′ = (Mπ[κ], ν(FilrMπ[κ]), exp(N( log(φ(ω−1))
p

))◦φr ◦ν−1, N) which also

makes sense since N i◦φr(x) ∈ pi−rMπ[κ] if i ≥ r. One checks the functor Mπ 7→Mπ′

satisfies the required properties.

5.1.2. We describe here in more detail the case when M is killed by p which turns
out to be simpler. Denote by Mr

k,π the full subcategory of Mr
π of objects killed by

p. For M ∈Mr
k,π, let Filr+1M = uFilrM + Filp(S/pS)M.
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Lemma 5.1.2.1. — Let M in Mr
k,π.

1) Id⊗ φr induces an isomorphism S/pS ⊗(φ),k FilrM/F ilr+1M
∼→M

2) the natural map S/pS ⊗k φr(FilrM)→M is an isomorphism.

See ([9],2.2.2.2) for the proof of this easy lemma. The isomorphism 1) above is
called the Faltings Isomorphism Condition in [9] because a variant was already con-
sidered in [20] (but with different categories). Using 1), it is not difficult to show
the category Mr

k,π is abelian. Another advantage of Mr
k,π is that it can be described

without divided powers:

Let S1 = S/pS, S̃1 = k[u]/up and s : S1 → S̃1 the surjection that sends ui to ui

and γi(u) to 0 if i ≥ p. Define FiliS̃1 = s(FiliS1) = uiS̃1 and φ̃i, Ñ to be the image

of φi, N . Let M̃
r

k,π the category of finitely generated free S̃1-modules M̃ endowed

with a sub-S̃1-module FilrM̃ containing urM̃, a semi-linear map φ̃r : FilrM̃ → M̃

such that φ̃r(FilrM̃) generates M̃ and an additive map Ñ : M̃ → M̃ such that

Ñ(sx) = Ñ(s)x + sÑ(x), uÑ(FilrM̃) ⊂ FilrM̃ and s(c)Ñ ◦ φ̃r = φ̃r ◦ uÑ |Filr . To

M in Mr
k,π we associate M̃ = (S̃1 ⊗s,S1 M, S̃1 ⊗s,S1 FilrM, φ̃⊗ φr, Ñ ⊗ Id + Id⊗N)

(it is easily checked that everything is well defined). This construction is functorial
and we have:

Proposition 5.1.2.2 ([9],2.2.2). — The functor Mr
k,π → M̃

r

k,π that sends M to

M̃ is an equivalence of categories.

5.2. Definition of T ∗
st and Tst. —

5.2.1. We now introduce Kato’s ring Âst,π which was first defined in ([44],3) (see
also ([8],2), ([9],3.1.1), ([70],1.6) for more details). Let (OK/pOK)log (resp. (OL/pOL)log

for any finite extension L of K0) the log-version of OK/pOK (resp. OL/pOL), that is
to say the log-scheme associated to OK\{0} → OK/pOK (resp. OL\{0} → OL/pOL),
and (S/pnS)log the log-scheme associated to (N → S/pnS, 1 7→ u) (it will be de-
noted En in (6.2.2), following Kato’s original notation). We define a morphism of
log-schemes (OK/pOK)log → (S/pnS)log by sending u to the image of π. Although
the log-structure of (OK/pOK)log is integral, but not fine, we can still define its

log-crystalline site relative to (S/pnS)log and a conceptual definition of Âst,π is:

Âst,π = lim←−H0
cris((OK/pOK)log/(S/pnS)log)

' lim←−
(

lim−→H0
cris((OL/pOL)log/(S/pnS)log)

)
where the inverse limit is over n, the direct limit over all the finite extensions L of
K0 in K, and where H0

cris is the global sections of log-crystalline cohomology (see
[38],2.14 and [44],2.4; a technical argument shows that the individual H0

cris terms in
the first line are canonically isomorphic to the lim−→H0

cris terms in the second). The

origin of this definition is essentially the Künneth formula (see for instance 8.2.1).
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The ring Âst,π is an S-algebra and from the above definition, it can be endowed with
a filtration, a Frobenius, a monodromy operator and a Galois action. We now make
them more explicit. Either by a de Rham computation (see for instance ([70],1.6.5))
or by noticing the log-crystalline site of (OK/p)log over the base (S/pn)log has a final
object (see ([44],prop.3.3) or ([7],5.1.1)), one can define a non canonical isomorphism
of S-algebras:

H0
cris((OK/pOK0

)log/(S/pnS)log) ' Wn(OK/pOK)DP <Xπ >

=

{
n∑

i=0

wi
X i

π

i!
| wi ∈ Wn(OK0

/p)DP , n ∈ N

}

where Wn(OK/pOK)DP is as in (3.1.2), Xπ is an indeterminate related to the choice

of a pnth
-root πn of π in OK and u = [πn](1 + Xπ)−1 (compare with (6.2.2.3,2)).

Choosing a compatible system of such πn (i.e. πp
n = πn−1) and denoting by [π]

the corresponding “Teichmüller” element in Acris (see 3.1.2), one can thus identify

Âst,π with the p-adic completion of Acris < Xπ > and u with [π](1 + Xπ)−1. The

Frobenius φ on Âst,π extends that on Acris, is continuous, commutes with divided

powers and is such that φ(Xπ) = (1 + Xπ)p − 1. The filtration is FiliÂst,π =

{
∑∞

j=0 aj
Xj

π

j!
| aj ∈ Fili−jAcris, aj → 0}. The monodromy operator is the continuous

Acris-derivation N determined by N(Xπ) = 1+Xπ. The Galois action is continuous,
extends the action on Acris, commutes with divided powers and is such that g(Xπ) =
[ε(g)]Xπ + [ε(g)] − 1, where ε : GK0 → lim←−µpn(K) is the (continuous) 1-cocycle

determined by our choice of a compatible system of pnth
roots of π. Note the divided

powers on Acris < Xπ > are automatically compatible with those on Fil1Acris and
[ε(g)] − 1 belongs to this ideal. This action preserves the filtration and commutes

with φ and N . As for Acris, one has φ(FiliÂst,π) ⊂ piÂst,π if 0 ≤ i ≤ p− 1 and one

defines φi = φ
pi |Fili for such i. All these structures extend obviously to Âst,π/pnÂst,π

endowed with the filtration FiliÂst,π/pnFiliÂst,π ↪→ Âst,π/pnÂst,π.

5.2.2. Let M ∈Mr
π. Choose n ∈ N such that pnM = 0 and define:

T ∗
st,π(M) = HomS,F ilr,φr,N(M, Âst,π/pnÂst,π)

where the subscript means we take the S-linear maps that send Filr to Filr and
commute with φr and N . The Zp-module T ∗

st,π(M) is independent of the choice of
n such that pnM = 0 and of the choice of r such that M ∈ Mr

π (see 5.1.1). It is
endowed with a action of GK0 given by g(f)(x) = g(f(x)) if x ∈ M, f ∈ T ∗

st,π(M).
We thus have a functor from Mr

π to representations of GK0 .

Theorem 5.2.2.1 ([9],3.2-3.3). — For 0 ≤ r ≤ p− 2, the functor T ∗
st,π is exact

and fully faithful.
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By dévissage, one is reduced to checking this for Mr
k,π (5.1.2). The exactness and

faithfulness are proved by the same techniques as for (3.1.3.1) using (5.1.1.3). The
full faithfulness is more subtle (its proof is inspired by the proof of ([20],5)).

Corollary 5.2.2.2. — If M ' ⊕i∈I(S/piS)di as an S-module, then T ∗
st,π(M) '

⊕i∈I(Z/piZ)di as a Zp-module.

As in (3.1.1), the link to semi-stable representations is:

Theorem 5.2.2.3 ([9],4.1.2.1). — Let M be a strongly divisible module of weight

≤ r and rank d, then HomS,F ilr,φr,N(M, Âst,π) is a Zp-lattice in a d-dimensionnal
semi-stable representation of GK0 with Hodge-Tate weights between 0 and r.

The proof uses (4.2.1). As in the crystalline case, one obtains in this manner all
the semi-stable representations of GK0 with Hodge-Tate weights between 0 and p−2
(see 9.1.1).

Let us now give the covariant version of T ∗
st,π. For M in Mr

π, let FiliM = {x ∈
M | (u− π)r−ix ∈ FilrM} (0 ≤ i ≤ r) and:

Filr(Âst,π ⊗S M) =
r∑

i=0

Filr−iÂst,π ⊗S FiliM ⊂ Âst,π ⊗S M.

One can prove that the maps φi on FiliÂst,π and φr on FilrM give rise to a map

φr : Filr(Âst,π ⊗S M)→ Âst,π ⊗S M (see [10],3.2.1). The operators N on Âst,π and

M give an operator N = N ⊗ Id + Id⊗N on Âst,π ⊗S M. Let:

Filr(Âst,π ⊗S M)φr=1
N=0 = {x ∈ Filr(Âst,π ⊗S M) | N(x) = 0, φr(x) = x}.

Proposition 5.2.2.4 ([10],3.2.1.7). — There is a canonical isomorphism of GK0-

modules: Filr(Âst,π ⊗S M)φr=1
N=0

∼→ T ∗
st,π(M)∧(r) where the exponent ∧ means the

Pontryagin dual with respect to Qp/Zp.

In the sequel, we write:

Tst,π(M) = T ∗
st,π(M)∧ ' Filr(Âst,π ⊗S M)φr=1

N=0 (−r).

One can check the equivalence Mr
π

∼→Mr
π′ of (5.1.1.5) commutes with the functors

Tst,π and Tst,π′ (or their dual version), that is to say Tst,π(Mπ) ' Tst,π′(Mπ′) if Mπ′

is associated to Mπ. So ultimately nothing depends on π; we choose in the sequel
π = p for simplicity and drop the subscript π. We also choose a compatible system

of pnth
-roots of p in OK which enables us to write Âst as the p-adic completion of

Acris <X >where X = Xp and u = [p](1 + X)−1 (see 5.2.1).
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We end this section with an open question. Define a torsion semi-stable repres-
entation of weight ≤ r (r ∈ N) to be any finite representation of GK0 that can be
written T/T ′ where T ′ ⊂ T are Galois stable lattices in a semi-stable representation
of GK0 with Hodge-Tate weights ∈ {0, . . . , r}. Using (9.1.1.1), one can prove that
the functor T ∗

st establishes an anti-equivalence between a full subcategory of Mr and
the category of torsion semi-stable representations of GK0 of weight ≤ r, so it’s
natural to ask:

Question 5.2.2.5. — For 0 ≤ r ≤ p− 2, does the functor T ∗
st actually induce an

anti-equivalence of categories between Mr and torsion semi-stable representations
of GK0 of weight ≤ r ?

To answer positively this question, it would be enough to prove that any object
of Mr can be written M/M′ where M′ ⊂ M are two strongly divisible modules as
in (5.1.1.4) of the same rank (this implies M′ ⊗W K0 ' M ⊗W K0 using (4.2.1))
or equivalently can be written Ker(M′ ⊗ (Qp/Zp) → M ⊗ (Qp/Zp)) (T ∗

st being
contravariant).

6. Log-syntomic morphisms and topology: a review

Following [32], we want to apply the previous theory to the case of a proper
smooth K0-scheme admitting a proper semi-stable model X on W . As in the `-
torsion case, one has to find a candidate to replace H i

dR(Xn) = H i
cris(Xn/Wn) that

is still related to Xn and that contains enough information to recover the étale co-
homology of the geometric generic fiber X×W K. Once again, the extra information
will be the log-structure canonically attached to X in (2.2.1.2). As we also look for
S/pnS-modules, the idea is then to replace the crystalline cohomology of the scheme
Xn with respect to the base Wn by the log-crystalline cohomology of the log-scheme

Xn with respect to the log-base (S/pnS)log (as for Âst: see (5.2.1)). To do this,
following the Fontaine-Messing method, we first define log-syntomic morphisms and
log-syntomic sites.

6.1. Log-syntomic morphisms. —

6.1.1. Classical syntomic morphisms were introduced by Grothendieck in (EGA
IV,19.3.6) where they were called flat relative complete intersection morphisms. The
terminology “syntomic” itself is due to Mazur ([51]), who also noted the syntomic
topology had interesting properties. A morphism X → Σ between classical schemes
is syntomic if it is flat, locally of finite presentation and if locally on X (for the

Zariski or equivalently étale topology), there is a factorization X
i

↪→ Y
h→ Σ where

h is smooth and i is a regular closed immersion (in the sense of (SGA6,VII.1.4);
since X/Σ is flat this is, by (EGA IV,11.3.8), equivalent to requiring that the ideal
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defining i is locally generated by a regular sequence). This definition was generalized
by Kato to the log-setting:

Definition 6.1.1.1 ([44],2.5). — Let f : X → Σ be a morphism of fine log-
schemes. One says f is log-syntomic if it satisfies the following conditions:
(i) it is integral,
(ii) the underlying morphism of schemes is flat and locally of finite presentation,

(iii) étale locally on X, there is a factorization X
i

↪→ Y
h→ Σ where h is log-smooth

and i is an exact closed immersion which is regular on the underlying schemes (as
in the classical case).

We give now the four main properties of log-syntomic morphisms with brief proofs.

Proposition 6.1.1.2. — If there is another factorization of f : X
i′

↪→ Y ′ h′→ Σ
with h′ log-smooth and i′ an exact closed immersion, then i′ is also regular.

Proof. — Consider the fiber product Y ×Σ Y ′ (in the category of fine log-schemes).

The closed immersion X
i×i′

↪→ Y ×Σ Y ′ is no longer necessarily exact but can be

factored, étale locally on X, as X
i′′

↪→ Y ′′ g→ Y ×Σ Y ′ where i′′ is an exact closed
immersion and g is log-étale ([43],4.10). Let x ∈ X, replacing Y ′′ by an étale

neighbourhood around i′′(x), one can assume MY ′′
∼→ π∗MY and MY ′′

∼→ π′∗MY ′

where π, π′ are the maps Y ′′ π→ Y and Y ′′ π′→ Y ′ obtained by composing g with
the two projections from Y ×Σ Y ′. Then π and π′ are classically smooth ([43],3.8).
One finishes by applying to Z = Y and Z = Y ′ the following classical fact (c.f.
SGA6,VII.1.3): if we have a commutative diagram of (classical) schemes:

X
i′′

↪→ Y ′′

‖ ↓ πZ

X
iZ
↪→ Z

with πZ smooth and i′′, iZ closed immersions, i′′ is regular if and only if iZ is regular.

Proposition 6.1.1.3. — Log-syntomic morphisms are stable by base change.

Proof. — Let X/Σ be log-syntomic and Σ′ → Σ be the base change morphism.

After étale localization on X and Σ, we may assume we have X
i

↪→ Y an exact,
regular closed immersion where Y/Σ is log-smooth and integral. Denote with a
prime the result of base change to Σ′ in the category of all log-schemes. As X → Σ,

Y → Σ are integral, X ′, Y ′ are automatically fine, X ′ i′

↪→ Y ′ is an exact closed
immersion and Y ′/Σ′ is log-smooth. It follows from (EGA IV,19.2.7 (ii)) that i′ is
regular.

Proposition 6.1.1.4. — Log-syntomic morphisms are stable by composition.
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Proof. — If Y/Σ is log-smooth, integral and Σ ↪→ Z is an exact closed immersion,
one can always find, étale locally on Z and Y , a log-smooth integral morphism
W → Z such that Y = W ×Z Σ (by using the local description of log-smooth
morphisms ([43],3.5), one can always find such a W at least log-smooth over Z.
Since the closed immersions are all exact, by localizing on W around Y , one can
assume W → Z to be integral). Hence on the scheme level, W → Z is also flat
and if Σ ↪→ Z is a regular closed immersion, then so is Y ↪→ W by (EGA IV,19.1.5
(ii)). Now, let X → Σ and Σ → T be two log-syntomic morphisms and choose
factorizations X ↪→ Y → Σ, Σ ↪→ Z → T as in (6.1.1.1) but with Y → Σ integral

(see the previous proof). By taking W as above, one has X
i1
↪→ Y

i2
↪→ W

h1→ Z
h2→ T

with i1, i2 regular exact closed immersions and h1, h2 log-smooth. So X ↪→ W → T
is a factorization as in (6.1.1.1).

Proposition 6.1.1.5. — Let X ′/Σ′ log-syntomic and Σ′ ↪→ Σ an exact closed
immersion. Then étale locally on X ′, one can find a log-syntomic morphism X → Σ
such that X ′ = Σ′ ×Σ X.

Proof. — Choose a factorization X ′ ↪→ Y ′ → Σ′ as in (6.1.1.1) with Y ′/Σ′ integral
log-smooth and, as in the previous proof, choose Y/Σ integral log-smooth such that
Y ′ = Y ×Σ Σ′. By lifting to OY a transversally regular sequence in OY ′ , it is easy
to find an exact closed immersion X ↪→ Y such that X ′ = X ×Σ Σ′. Moreover,
standard arguments (see for instance EGA 0IV,15.1.16) show that X/Σ is flat and
X ↪→ Y transversally regular (with respect to Σ) at each point of X coming from
X ′. By (EGA IV,19.2.4), X ↪→ Y is regular in a (Zariski) neighbourhood of such a
point. Thus, we get the desired X by localizing for the Zariski topology and taking
the induced log-structure.

6.1.2. In the classical case, a syntomic morphism is described locally as a flat
morphism A → A[X1, . . . , Xs]/(f1, . . . , ft) where f1, . . . , ft is a regular sequence.
In the log-case, there are several (equivalent) local descriptions due to the fact that
there are several ways of writing the charts. We give here a description which turns
out to be quite convenient for local computations on the log-syntomic site (see for
instance 6.2.2.3). Consider an integral and locally of finite type morphism X/Σ of
fine log-schemes. It is easy to see one can find (locally) a chart:

M → N
↓ ↓
A → B

where M → N is an integral morphism of fine monoids. Since N is of finite type,
there is an r ∈ N and a surjection M ⊕ Nr → N . Denoting by G the kernel
of the induced map M gp ⊕ Zr → N gp and by (M ⊕ Nr) + G the submonoid of
M gp ⊕ Zr generated by M ⊕ Nr and G, one gets an exact morphism of monoids
(M⊕Nr)+G→ N by sending G to 0. Notice that M → (M⊕Nr)+G is still integral.
One can also find s ∈ N and a surjection A⊗Z[M ] Z[(M⊕Nr)+G][X1, . . . , Xs]→ B



24 C. BREUIL & W. MESSING

where (M ⊕Nr) + G→ B factorizes through N . Hence, we have a factorization:

M −→ (M ⊕Nr) + G −→ N
↓ ↓ ↓
A → A⊗Z[M ] Z[(M ⊕Nr) + G][X1, . . . , Xs] → B

where the first morphism of (the corresponding) log-schemes is clearly log-smooth
and the second is an exact closed immersion. Now, if we start with X/Σ log-
syntomic, (6.1.1.2) tells us that, up to further Zariski localization, the ideal of the
closed immersion on the right is generated by a regular sequence. Hence, any log-
syntomic morphism can be locally written as:

M −→ (M ⊕Nr)/G = N
↓ ↓
A → A⊗Z[M ]Z[(M⊕Nr)+G][X1,...,Xs]

(f1,...,ft)
= B

where G is a subgroup of M gp ⊕ Zr, (M ⊕Nr)/G the image of M ⊕Nr in (M gp ⊕
Zr)/G, f1, . . . , ft a transversally regular sequence with respect to A such that
(f1, . . . , ft) contains [g] − 1 for g ∈ G and where M → (M ⊕ Nr) + G is inject-
ive and integral.

Example 6.1.2.1. — Very important among log-syntomic morphisms are those
which correspond to extracting pnth

-roots both on the sheaf of monoids and the

scheme (classical case = A → A[X1,...,Xs]

(Xpn

1 −a1,...,Xpn
s −as)

). Let r, s, n ∈ N, m1, . . . ,mr ∈
M and a1, . . . , as ∈ A. These morphisms are obtained by taking as G above the
subgroup Gn of M gp ⊕ Zr generated by gi = −mi ⊕ (0, . . . , pn, . . . 0), 1 ≤ i ≤ r

(pn in position i) and (f1, . . . , ft) = ([g1] − 1, . . . , [gr] − 1, Xpn

1 − a1, . . . , X
pn

s − as).
In particular, if (A, M) itself is log-syntomic over, let’s say, (N → W, 1 7→ p)
(a situation we’ll have to deal with very soon) then, locally, we can write M =

(N⊕Nr′)/G (= image of N⊕Nr′ in (Z⊕Zr′)/G) and A =
W⊗Z[N]Z[(N⊕Nr′ )+G][X1,...,Xs]

(f1,...,ft)
,

and we can take r = 1 + r′, mi = image of (0, . . . , 1, . . . , 0) ∈ N ⊕Nr′ in M (1 in
position i, 1 ≤ i ≤ r) and aj = Xj (1 ≤ j ≤ s). We get:

Mn = (M ⊕Nr)/Gn '
(
N

1

pn
⊕ (N

1

pn
)r′

)
/G

An =
A⊗Z[M ] Z[(M ⊕Nr) + Gn][Y1, . . . , Ys]

([gi]− 1, Y pn

j −Xj)

'
W ⊗Z[N] Z[(N 1

pn ⊕ (N 1
pn )r′) + G][Xp−n

1 , . . . , Xp−n

s ]

(f1, . . . , ft)

There are obvious injective morphisms of log-rings (An, Mn) → (An+1, Mn+1) in-

duced by Xp−n

j 7→ (Xp−(n+1)

j )p, (0, . . . , 1
pn , . . . , 0) 7→ p(0, . . . , 1

pn+1 , . . . , 0) and we de-

note in the sequel M∞ = lim−→Mn ' (N 1
p∞
⊕ (N 1

p∞
)r′)/G and A∞ = lim−→An. The

log-ring (A∞, M∞) is still integral (but not fine!). Note that the Frobenius on M∞,
i.e. the multiplication by p map, and the Frobenius on A∞/pA∞ are both surjective.
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6.2. The log-syntomic topology. —

6.2.1. Let Σ be a fine log-scheme. One defines Σsyn to be the category of all
fine log-schemes which are log-syntomic over Σ. This category is endowed with the
Grothendieck topology generated by log-syntomic morphisms which are surjective on
the underlying schemes and sheaves are defined in the obvious way. It is frequently
useful to consider also the big log-syntomic site ΣSY N . Its underlying category
consists of all fine log-schemes over Σ, its topology is defined as for Σsyn. A sheaf F

on ΣSY N has a restriction Fsyn on Σsyn and, if abelian, the cohomology of F coincides
with that of Fsyn. An advantage of the big site is that it is functorial in Σ while the
small site is not. An important property of the small site is that various sheaves
of rings or modules defined on the big site have, when restricted to the small site,
good flatness properties (see 6.2.2.4). Technically, this is a key point. An indication
that this log-syntomic topology is reasonable is due to:

Lemma 6.2.1.1. — Let X → Σ be a morphism of fine log-schemes, then the
functor Y 7→ HomΣ(Y,X) (Y ∈ ΣSY N) is a sheaf for the log-syntomic topology.

Proof. — (Sketch) Let π : Y ′ → Y be a log-syntomic covering and Y ′′ = Y ′ ×Y Y ′

with π1, π2 the two projections onto Y ′. One has to prove:
1) If f1, f2 ∈ HomΣ(Y, X) and f1 ◦ π = f2 ◦ π, then f1 = f2,
2) If f ′ : Y ′ → X is such that f ′ ◦ π1 = f ′ ◦ π2, then there is an unique f : Y → X
such that f ′ = f ◦ π.
Everything is clear if one forgets the log-structures since the covering is flat on the
underlying schemes. Using the fact that Y ′ → Y is integral, flat and surjective, one
can show there exist local charts of π:

M → M ′

↓ ↓
A → A′

where M →M ′ is an injective, integral and exact morphism of monoids. If M ′⊕MM ′

denotes the inductive limit of the diagram M ′ ← M → M ′, one has an exact
sequence M ↪→ M ′ ⇒ M ′ ⊕M M ′ and it is not difficult to deduce 1) and 2) from
this.

6.2.2. Now let Σ be the log-base (N → W, 1 7→ p). This base is very important
since it’s the one that naturally arises in geometry (see 2.2.1.2). We will simply write
Spec(W ) when considering this scheme as equipped with its trivial log-structure (i.e.
M = W ∗) and E the log-scheme associated to (N→ S, 1 7→ u) where S is the ring
of (4.2) and (5). One has a commutative diagram:

Σ ↪→ E
↓ ↓

Spec(W ) = Spec(W )
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where Σ ↪→ E is the DP -thickening obtained by sending u to p and the two vertical
maps are the two obvious log-syntomic coverings. Notice that Σsyn is a sub-site of
Spec(W )syn. The following proposition is useful and straightforward:

Proposition 6.2.2.1. — Let F′ → F → F′′ be a sequence of abelian sheaves on
Spec(W )syn or Σsyn. If, for all (A, M) in Σsyn and (A∞, M∞) as in (6.1.2.1), one
has exact sequences of abelian groups:

0→ F′(A∞, M∞)→ F(A∞, M∞)→ F′′(A∞, M∞)→ 0

where we set G(A∞, M∞) = lim−→G(An, Mn) if G is a sheaf, then 0 → F′ → F →
F′′ → 0 is an exact sequence of sheaves on Spec(W )syn or Σsyn.

Proof. — The morphisms of log-schemes associated to (An, Mn)→ (An+1, Mn+1) in
(6.1.2.1) are obvious log-syntomic coverings.

Log-crystalline cohomology was first defined in [43] by mimicing the classical
theory of Berthelot ([3], [4]) and we refer to ([43],5) or to ([71],4) in this volume for
its definition and properties. If X is any fine log-scheme over W , we write Xn for the
log-scheme X ×W Wn with the induced log-structure from X. For X a log-scheme
in Σsyn and r ∈ N, define:

Ost
n (X) = H0((Xn/En)cris, OXn/En)

Jst,[r]
n (X) = H0((Xn/En)cris, J

[r]
Xn/En

)

where OXn/En is the structure sheaf and JXn/En = Ker(OXn/En → OXn). Notice
that Ost

n (X) is an S-algebra. For X a log-scheme in Spec(W )syn and r ∈ N, define
in the same way:

Ocris
n (X) = H0((Xn/Spec(Wn))cris, OXn/Spec(Wn))

Jcris,[r]
n (X) = H0((Xn/Spec(Wn))cris, J

[r]
Xn/Spec(Wn))

Set J
st,[r]
n = Ost

n if r ≤ 0 (resp. with “cris”). For X an object of Σsyn, there are

morphisms J
cris,[r]
n (X) → J

st,[r]
n (X) by the functoriality of the log-crystalline topos

([43],5.9). Using property (6.1.1.5) and the key log-syntomic morphisms (6.1.2.1)
together with the de Rham computation of log-crystalline cohomology ([43],6), it is
a standard matter to generalize the results of ([32],II.1.3) and prove (c.f. [7],3.2.3
and 3.3 for the case r = 0):

Proposition 6.2.2.2. — 1) For r ∈ Z, the presheaves J
st,[r]
n (resp. J

cris,[r]
n ) are

sheaves on Σsyn (resp. Spec(W )syn).
2) For r ∈ Z and i ∈ N, there are canonical and functorial isomorphisms:

H i(Xsyn, J
st,[r]
n ) ' H i((Xn/En)cris, J

[r]
Xn/En

) if X ∈ Σsyn

H i(Xsyn, J
cris,[r]
n ) ' H i((Xn/Spec(Wn))cris, J

[r]
Xn/Spec(Wn)) if X ∈ Spec(W )syn.
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For a general X in Σsyn, one doesn’t know explicitly J
st,[r]
n (X) or J

cris,[r]
n (X).

However, using (6.2.2.1), one can usually restrict to J
st,[r]
n (A∞, M∞) (resp. with

“cris”) which can be described explicitly:

Lemma 6.2.2.3. — Let (A, M) and (A∞, M∞) be as in (6.1.2.1) and M∞+ 1
pn G

be the sub-monoid of M gp
∞ generated by M∞ and the image of 1

pn G = {x ∈ Z ⊕

Zr′ | pnx ∈ G} (see 6.1.2.1), which maps to A∞ through the composite M∞+ 1
pn G

pn

→
M∞ → A∞.
1) There is a canonical isomorphism:(

Wn(A∞/pA∞)⊗Z[M∞] Z
[
M∞ +

1

pn
G

])DP ∼→ Ocris
n (A∞, M∞)

where we take the divided power envelope (compatible with the divided powers on
(p)) with respect to the kernel of the map to A∞/pnA∞ that maps M∞ + 1

pn G as

above and (a0, . . . , an−1) ∈ Wn(A∞/p) to âpn

0 + pâpn−1

1 + . . . + pn−1âp
n−1 (âi lifting ai

in A∞). It induces isomorphisms between J
cris,[r]
n (A∞, M∞) on the right and the rth

divided power of the tautological DP ideal on the left.
2) To each choice of an h ∈M∞ + 1

pn G such that pnh = (1, 0, . . . , 0) ∈M∞, there is

an element Xh ∈ Ost
n (A∞, M∞) and an isomorphism:

Ocris
n (A∞, M∞)<Xh >

∼→ Ost
n (A∞, M∞)

such that [h](1 + Xh)
−1 7→ u which induces isomorphisms:

∞∑
s=0

Jcris,[r−s]
n (A∞, M∞)

Xs
h

s!

∼→ Jst,[r]
n (A∞, M∞).

For more details, see ([10],appendix D). Using this description, one can prove for
instance ([10],2.1.2):

Proposition 6.2.2.4. — 1) The sheaf of Sn-algebras Ost
n is flat over Sn.

2) For r ∈ Z, the sheaves J
st,[r]
n and J

cris,[r]
n are flat over Wn.

3) For r ∈ Z and ∗ =“st” or “cris”, there are short exact sequences:

0→ J∗,[r]m

pn

→ J
∗,[r]
n+m → J∗,[r]n → 0.

6.2.3. We defined in (4.2) operators φr on FilrS (0 ≤ r ≤ p − 1) and N on S.
We want to extend them to the above sheaves and their cohomology. Because one
has a Frobenius on En = Spec(Sn) and Spec(Wn), one gets the usual crystalline
Frobenius on H i((Xn/En)cris, OXn/En) and H i((Xn/Spec(Wn))cris, OXn/Spec(Wn)), so
in particular on Ost

n , Ocris
n and their cohomology groups. It is formal, if one uses the

big log-crystalline and log-syntomic sites instead of the small ones, to check that
the isomorphisms in (6.2.2.2) for r = 0 are then compatible with the Frobeniuses.
Moreover:

Lemma 6.2.3.1. — For 0 ≤ r ≤ p−1, φ(J
st,[r]
n ) ⊂ prOst

n and φ(J
cris,[r]
n ) ⊂ prOcris

n .
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Proof. — One easily reduces to the case r = 1. Then, the result is just due to the
fact that the sheaves of ideals Jst

n and Jcris
n are endowed with divided powers.

If x is a section of J
st,[r]
n with 0 ≤ r ≤ p − 1 and x̂ a local lifting in J

st,[r]
n+r (using

(6.2.2.4,3)), then φ(x̂) ∈ prOst
n+r (locally) and because prOst

n+r ' Ost
n (still 6.2.2.4),

the image of φ(x̂)
pr in Ost

n doesn’t depend on the lifting. This gives a global map

φr : J
st,[r]
n → Ost

n . The same thing applies to J
cris,[r]
n , giving a commutative diagram:

J
cris,[r]
n

φr−→ Ocris
n

↓ ↓
J

st,[r]
n

φr−→ Ost
n .

Using the local description (6.2.2.3,2), one can check that φr(X
r
h) =

(
(1+Xh)p−1

p

)r

.

Using the de Rham computation of log-crystalline cohomology, Hyodo and Kato
define in ([38],3.6) a W -linear derivation NHK on Ost

n (X) = H0((Xn/En)cris, OXn/En)
called the (p-adic) monodromy operator (actually they assume X log-smooth but it
is not used in the definition ([38],3.6)). We define N = −NHK : Ost

n → Ost
n . One thus

gets an operator N on H i(Xsyn, O
st
n ). In terms of the local description (6.2.2.3,2),

N is the unique Ocris
n (A∞, M∞)-linear map such that N(

Xs
h

s!
) = (1 + Xh)

Xs−1
h

(s−1)!
.

Proposition 6.2.3.2. — 1) For 0 ≤ r ≤ p− 1, one has Nφr = φr−1N .
2) For r ∈ Z, there are exact sequences of sheaves on Σsyn:

0→ Jcris,[r]
n → Jst,[r]

n
N→ Jst,[r−1]

n → 0.

Proof. — Straightforward from (6.2.2.1) and (6.2.2.3) with the above expressions of
φr and N .

Remark 6.2.3.3. — The reason we take −NHK and not NHK is because there is
another, purely syntomic, way to define a monodromy operator on Ost

n (see [7],6.1)
and one can show this operator is precisely −NHK .

Remark 6.2.3.4. — Hyodo-Kato’s definition of NHK also extends to higher co-
homology groups H i((Xn/En)cris, OXn/En) for i ≥ 1. The authors do not know if
the isomorphisms in (6.2.2.2) are compatible with the operators N and −NHK for
i ≥ 1, although this is probable. This won’t be very important in the sequel where
we use N only.

7. A generalization of the Deligne-Illusie-Fontaine-Messing isomorphism

7.1. Preliminaries. — From now on, we fix X/Σ log-smooth, proper and such
that X1/Σ1 is a morphism of Cartier type. This last and somewhat technical con-
dition is explained in ([43],4.8) and turns out to be necessary for computations.
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Let us just say it is automatically satisfied in the semi-stable case, although the
above situation is much more general than the semi-stable one (for instance, the
log-structure on XK0 need not be trivial). The aim of this section is to prove that
in this general situation and for 0 ≤ i ≤ r ≤ p− 2 and n ∈ N:(

H i((Xn/En)cris, OXn/En), H i((Xn/En)cris, J
[r]
Xn/En

), φr, N
)

is an object of the category Mr of (5.1.1) (described as (M, F ilrM, φr, N)). It is
easy to see that the only non formal facts to prove are:

1) H i((Xn/En)cris, OXn/En) ' ⊕i∈I(S/piS)di as an S-module (I finite)

2) the map H i((Xn/En)cris, J
[r]
Xn/En

)→ H i((Xn/En)cris, OXn/En) induced by the in-

jection J
[r]
Xn/En

↪→ OXn/En is injective

3) the image of φr generates H i((Xn/En)cris, OXn/En) over S.

As we mentioned in (3.2), the main tool to prove the analogous statements in the
good reduction case over Spec(W ) was the Deligne-Illusie isomorphism (compare
[32],II.2.5 and [16],2.1). So the first task is to find an analogous isomorphism,
but involving the two bases Σ and E. We then explain briefly how this result is
used to prove the above statements 1)-3) for n = 1. The general case is finally
deduced by dévissage. We, of course, work over the site Σsyn with the log-syntomic
interpretation (6.2.2.2) of the above cohomology groups and for brevity, we write
H i(F) instead of H i(Xsyn, F) whenever F is a sheaf on Σsyn.

7.2. Generalization of the DIFM isomorphism. — We saw in (5.1.2.1) that
any object M of Mr (0 ≤ r ≤ p− 2) that is killed by p is such that the map Id⊗φr

induces an isomorphism:

S1 ⊗(φ),k
FilrM

Filr+1M

∼−→M.

where Filr+1M = FilpS1 ·M+Fil1S1 ·FilrM. Thus, if (H i(Ost
1 ), H i(J

st,[r]
1 ), φr, N) is

in Mr, we should hopefully have some cohomology group H i(?), probably related to

the sheaf J
st,[r]
1 /J

st,[r+1]
1 , with a map φr : H i(?)→ H i(Ost

1 ) such that S1⊗(φ),kH i(?)
∼→

H i(Ost
1 ). Indeed, on Σsyn, φr(J

st,[r+1]
1 ) = 0 (since r ≤ p − 2) so there is a map of

sheaves:

Id⊗ φr : S1 ⊗(φ),k
J

st,[r]
1

J
st,[r+1]
1

−→ Ost
1

but, unfortunately, it is not an isomorphism in general.

Recall that the Frobenius on a log-scheme in characteristic p is just the usual
Frobenius on the underlying scheme and the multiplication by p map on the sheaf
of monoids (with additive notations). For any (fine) log-scheme Y over Σ1(↪→ E1),
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denote by Y ′ the pullback of Y by FE1 where FE1 is the Frobenius on E1. Then

the relative Frobenius FY/E1 : Y → Y ′ can be factored in a unique way as: Y
F ′′
→

Y ′′ F ′
→ Y ′ where F ′ is log-étale and F ′′ is exact (see ([43],4.9) for all this). One

defines a presheaf Ocar
1 on Σsyn (“car” for Cartier) by Ocar

1 (U) = Γ(U ′′
1 , OU ′′

1
) (recall

U1 = U ×W k). It turns out Ocar
1 is in fact a sheaf on Σsyn ([10],2.2.1.1) and that

one has a canonical injection Ocar
1 ↪→ Ost

1 . Notice that if there are no log-structures
(only classical schemes), Ocar

1 is just S1 ⊗(φ),k O1 where O1(U) = Γ(U1, OU1).

Let r ∈ N and x a local section of Ost
r+1. Following ([32],II.2.3), whenever φ(x) ∈

prOst
r+1 (locally), define fr(x) ∈ Ost

1 such that φ(x) = prf̂r(x), where f̂r(x) is a (local)
lifting of fr(x). Then fr is a homomorphism and we denote by FrO

st
1 its image in

Ost
1 . Finally, let F car

r Ost
1 be the image of Ocar

1 ⊗k FrO
st
1 in Ost

1 .

Theorem 7.2.1. — For 0 ≤ r ≤ p − 2, the map Id ⊗ φr induces isomorphisms
of sheaves on Σsyn:

Ocar
1 ⊗(φ),k

J
st,[r]
1

J
st,[r+1]
1

∼−→ F car
r Ost

1 .

Remark 7.2.2. — The previous map Id⊗φr : S1⊗(φ),k
J

st,[r]
1

J
st,[r+1]
1

→Ost
1 is injective,

but not surjective (in general).

As usual, the proof is reduced to the case (A∞, M∞) where everything is made
explicit: see ([10],2.2.2) for details. Now, what we would like (see the above discus-

sion) are isomorphisms H i(F car
r Ost

1 )
∼→ H i(Ost

1 ) and S1 ⊗(φ),k H i(J
st,[r]
1 /J

st,[r+1]
1 )

∼→
H i(Ocar

1 ⊗(φ),k J
st,[r]
1 /J

st,[r+1]
1 ). This is certainly false for general X, but if X is log-

smooth over Σ with X1/Σ1 of Cartier type as we assumed (the properness is not
even necessary here) and if α denotes the projection: (sheaves on Xsyn)−→ (sheaves
on Xét) (= small classical étale site with induced log-structures), then:

Theorem 7.2.3 ([10],2.2.3). — For 0 ≤ r ≤ p − 2, there are isomorphisms in
the derived category of complexes of sheaves on Xét:

1) S1 ⊗(φ),k Rα∗
J

st,[r]
1

J
st,[r+1]
1

∼−→ Rα∗

(
Ocar

1 ⊗(φ),k
J

st,[r]
1

J
st,[r+1]
1

)
2) τ≤rRα∗(F

car
r Ost

1 )
∼−→ τ≤rRα∗O

st
1 .

Remark 7.2.4. — Of course, all the above sheaves on Xét in fact have support
contained in the special fiber.

Remark 7.2.5. — The assertion 2) is false in general if one replaces F car
r Ost

1 by
FrO

st
1 (compare with [32],II.2.5). This is one of the reasons why one has to deal

with the sheaf Ocar
1 .
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Note that by a de Rham computation, Riα∗

( J
st,[r]
1

J
st,[r+1]
1

)
= 0 if i ≥ r + 1. From

(7.2.1) and (7.2.3), we get:

Corollary 7.2.6. — 1) (Generalization of “Deligne-Illusie”) For 0 ≤ r ≤ p− 2,
the map Id⊗φr induces isomorphisms in the derived category of complexes of sheaves
on Xét:

S1 ⊗(φ),k Rα∗
J

st,[r]
1

J
st,[r+1]
1

∼−→ τ≤rRα∗O
st
1 .

2) For 0 ≤ i ≤ r ≤ p− 2, the map Id⊗ φr induces isomorphisms:

S1 ⊗(φ),k H i
( J

st,[r]
1

J
st,[r+1]
1

)
∼−→ H i(Ost

1 ).

This already implies statement 1) of (7.1) in the case n = 1.

Remark 7.2.7. — In a different log-context, Kato gave another generalization of
the DIFM-isomorphism (see [43],4.12).

7.3. Application. —

7.3.1. Thanks to (7.2.6), the statement 3) in (7.1) is now equivalent to the sur-

jectivity of the map H i(J
st,[r]
1 )→ H i(J

st,[r]
1 /J

st,[r+1]
1 ) for 0 ≤ i ≤ r ≤ p−2. In (5.1.2),

we saw that we could easily get rid of the divided powers of S1 when dealing with
objects killed by p. Here is the cohomological counterpart: let S̃1 = k[u]/up as in
(5.1.2) and define a log-scheme Ẽ1 = (N→ S̃1, 1 7→ u). There are “stupid” divided

powers on S̃1 given by γi(u) = ui

i!
if 0 ≤ i ≤ p−1 and γi(u) = 0 otherwise. The map

Σ1 ↪→ E1 factors through DP-thickenings Σ1 ↪→ Ẽ1 ↪→ E1 and we define presheaves

Õst
1 and J̃

st,[r]
1 on Σsyn as before by Õst

1 (U) = H0((U1/Ẽ1)cris, OU1/Ẽ1
) and J̃

st,[r]
1 (U) =

H0((U1/Ẽ1)cris, J
[r]

U1/Ẽ1
). We write J̃

st,[r]
1 = Õst

1 if r ≤ 0. As in (6.2.2.2), all these are

sheaves and we have functorial isomorphisms H i(J̃
st,[r]
1 ) ' H i((X1/Ẽ1)cris, J

[r]

X1/Ẽ1
).

The advantage of Ẽ1 is that the k-vector spaces H i(J̃
st,[r]
1 ) are now finite dimen-

sional ([10],2.2.6.1). The functoriality of the crystalline topos gives natural maps of

sheaves for r ∈ Z: J
st,[r]
1 → J̃

st,[r]
1 which are surjective and induce isomorphisms for

0 ≤ r + s ≤ p: J
st,[r]
1 /J

st,[r+s]
1

∼→ J̃
st,[r]
1 /J̃

st,[r+s]
1 ([10],2.2.4.1).

Lemma 7.3.1. — Assume 0 ≤ i ≤ r ≤ p− 2.

1) The map H i(J
st,[r]
1 ) → H i(Ost

1 ) is injective if and only if H i(J̃
st,[r]
1 ) → H i(Õst

1 ) is
injective.

2) The map H i(J
st,[r]
1 )→ H i(J

st,[r]
1 /J

st,[r+1]
1 ) is surjective if and only if H i(J̃

st,[r]
1 )→

H i(J̃
st,[r]
1 /J̃

st,[r+1]
1 ) is surjective.
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Proof. — 1) Diagram chase using the long exact sequences associated to:

0 → J
[r]
1 → Ost

1 → Ost
1 /J

st,[r]
1 → 0

↓ ↓ ‖
0 → J̃

[r]
1 → Õst

1 → Õst
1 /J̃

st,[r]
1 → 0 .

2) Diagram chase using the long exact sequences associated to:

0 → J
[r+1]
1 → J

st,[r]
1 → J

st,[r]
1 /J

st,[r+1]
1 → 0

↓ ↓ ‖
0 → J̃

st,[r+1]
1 → J̃

st,[r]
1 → J̃

st,[r]
1 /J̃

st,[r+1]
1 → 0 .

So to prove 1) and 3) in (7.1) for n = 1, it remains to prove the above two
assertions in the “tilda” case. We won’t give details here: the ingredients are a
careful study of the long exact sequences associated to the short exact sequences:

0→ ukJ̃
st,[r]
1 → ulJ̃

st,[s]
1 → ulJ̃

st,[s]
1 /ukJ̃

st,[r]
1 → 0

where 0 ≤ l ≤ k ≤ p−1 and l+s ≤ k+r, together with dimension arguments (which
make sense now), the de Rham computation of log-crystalline cohomology and suit-
able variants of (7.2.6). The proofs are a bit technical and not very illuminating;
for the details, we refer the reader to ([10],2.2.5-2.2.6).

Remark 7.3.2. — One can in fact define an object M̃ = (H i(Õst
1 ), H i(J̃

st,[r]
1 ), φ̃r, Ñ)

of the category M̃
r

k of (5.1.2) and show it corresponds to M = (H i(Ost
1 ), H i(J

st,[r]
1 ),

φr, N) under the equivalence (5.1.2.2).

7.3.2. Finally, we deduce the result for any n from the result for n = 1. Using the
flatness and the exact sequences of (6.2.2.4), we have long sequences for i, r ∈ N:

· · · → H i−1(J
st,[r]
n−1 )→ H i(J

st,[r]
1 )→ H i(Jst,[r]

n )→ H i(J
st,[r]
n−1 )→ H i+1(J

st,[r]
1 )→ · · ·

Assume 0 ≤ i ≤ r ≤ p− 2. By induction on n, we can assume that the data

(H i(Ost
n−1), H

i(J
st,[r]
n−1 ), φr, N) is in Mr (i.e. satisfies 1), 2) and 3) of (7.1)). As Mr is

abelian (5.1.1.2), we end up (using the case n = 1) with a commutative diagram:

0 → FilrM′ → H i(J
st,[r]
n ) → FilrM′′ → 0

↓ ↓ ↓
0 → M′ → H i(Ost

n ) → M′′ → 0

where M′, M′′ are in Mr and pM′ = 0, and where the two vertical maps on the
right and on the left are injective (caution: one has to be a bit careful for i = r

since this case involves Hr+1(J
st,[r]
1 ), see ([10],2.3.2)). Thus one has an injection

H i(J
st,[r]
n ) ↪→ H i(Ost

n ).

Lemma 7.3.3. — Let M be an S-module satisfying all the conditions of (5.1.1)
EXCEPT maybe the two conditions “M ' ⊕i∈I(S/piS)di” and “φr(FilrM) generates
M”. Assume we have an exact sequence of S-modules: 0 → M′ → M → M′′ → 0,
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with M′, M′′ ∈Mr, inducing an exact sequence on the Filr and commuting with φr

and N . Then M is in Mr, i.e. the two above conditions are automatically satisfied.

The first condition is the hardest, see ([10],2.3.1.2). Applying this lemma to

M = (H i(Ost
n ), H i(J

st,[r]
n ), φr, N)) and M′, M′′ as previously, we finally obtain as a

conclusion:

Theorem 7.3.4. — Let X be a fine and proper log-scheme which is log-smooth
over Σ and such that X1/Σ1 is of Cartier type. For n ∈ N and 0 ≤ i ≤ r ≤ p− 2,
the data: (

H i(Xsyn, O
st
n ), H i(Xsyn, J

st,[r]
n ), φr, N

)
define an object of the category Mr.

8. The log-syntomic cohomology

We keep the same notations as in (7) but we now assume X/Σ is semi-stable (and
proper) as in (2.2.1.2). In that case, the geometric generic fiber X×W K0 has a trivial
log-structure and is (classically) smooth over Spec(K0). We also fix two integers i, r

such that 0 ≤ i ≤ r ≤ p−2. Now that we know (H i(Xsyn, O
st
n ), H i(Xsyn, J

st,[r]
n ), φr, N)

is in Mr, we can compute its associated representation of GK0 as in (5.2.2) using T ∗
st,

or rather its dual version Tst. Our aim is to prove this representation is isomorphic
to H i((X ×W K)ét,Z/pnZ) as in the smooth case. The main tool for this is an
intermediate cohomology called the “log-syntomic” cohomology (a log-analogue of
the cohomology mentioned in (3.2)) that we introduce now.

8.1. For n ∈ N, define Sr
n = Ker(φr− Id : J

cris,[r]
n → Ocris

n ) where Id is the natural

injection J
cris,[r]
n ↪→ Ocris

n .

Proposition 8.1.1. — There are exact sequences of sheaves on Spec(W )syn:

0 −→ Sr
n −→ Jcris,[r]

n

φr−Id−→ Ocris
n −→ 0.

One has to prove the surjectivity. By flatness (6.2.2.4), one is easily reduced to
the case n = 1, but it should be noticed that here the proof can’t be reduced to

the case (A∞, M∞) of (6.1.2.1), i.e. the map J
cris,[r]
1 (A∞, M∞)

φr−Id−→ Ocris
1 (A∞, M∞)

is not surjective in general. One has to use other log-syntomic coverings than just
those of (6.1.2.1), namely coverings of the form A → A[X]/(Xp − aX − b) with
induced log-structure (a, b ∈ A). See ([10],3.1.4).

For L a finite extension of K0 in K, denote by ΣL the log-scheme OL \ {0} → OL

and XΣL
= X ×Σ ΣL (fiber product in the category of fine log-schemes or all log-

schemes), one checks XΣL
→ X is log-syntomic, so XΣL

is in Σsyn.
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Definition 8.1.2. — We define the torsion log-syntomic cohomology of X (resp.
the absolute torsion log-syntomic cohomology of X) to be the groups lim−→H i((XΣL

)syn, S
r
n)

(resp. H i(Xsyn, S
r
n)) where the direct limit is taken over the finite extensions L of

K0 in K.

For shortness, we write H i(Xsyn, S
r
n) instead of lim−→H i((XΣL

)syn, S
r
n). These last

groups are endowed with a natural action of GK0 and all the groups of (8.1.2) can
be computed on the étale site of the special fiber just because H i((XΣL

)syn, S
r
n) =

H i((XΣL
)ét, Rα∗S

r
n) where α∗ is as in (7.2). One wants to relate these groups to

the étale cohomology of the geometric generic fiber. In the smooth case, this was
done in two steps. First, in [6], Bloch-Kato(-Gabber) computed the sheaves of
nearby cycles i∗Rqj∗Z/pnZ(q) for 0 ≤ q ≤ p − 2 where i : X ×W k ↪→ X and
j : X ×W K0 ↪→ X. Second, in [45] and [47], Kato and Kurihara related these
computations to the sheaves Sr

n of [32]. The computations of [6] have been extended
by Hyodo to the semi-stable case ([37]) and in [69], Tsuji finally used Hyodo’s
computations to generalize Kato’s results to the above Sr

n. All these computations
work in fact over any finite extension L of K0. As a consequence:

Theorem 8.1.3 ([44],5.5, [69]). — Let X be a proper semi-stable scheme over
W and endow it with its canonical log-structure (2.2.1.2). For n ∈ N and 0 ≤ i ≤
r ≤ p− 2, there are canonical isomorphisms:

H i(Xsyn, S
r
n)

∼→ H i((X ×W K0)ét,Z/pnZ(r))

H i(Xsyn, S
r
n)

∼→ H i((X ×W K)ét,Z/pnZ(r)).

The second isomorphism is compatible with the actions of GK0.

Remark 8.1.4. — Although we won’t need the isomorphism for the H i(Xsyn, S
r
n)

in the sequel, it should be noticed that if the log-structure on X is induced from the
one on Σ (i.e. X is proper smooth over W ), the groups H i(Xsyn, S

r
n) are not always

equal to the syntomic cohomology groups defined by Fontaine-Messing forgetting
the log-structures: compare (8.1.3) with the main theorem of [47]. This difference,
however, disappears when one looks at H i(Xsyn, S

r
n).

8.2. As in (3.2), we have now to relate H i(Xsyn, S
r
n) to Tst(H

i(Ost
n ), H i(J

st,[r]
n ), φr, N)

(recall our notation H i(F) = H i(Xsyn, F)). As for Sr
n, define for any sheaf F on Σsyn:

H i(Xsyn, F) = lim−→H i((XΣL
)syn, F). Recall from (5.2.2) that we have chosen an iso-

morphism between Âst and the p-adic completion of Acris <X > (do not confuse this

X with the log-scheme X!). We first relate H i(Xsyn, J
st,[r]
n ) to the groups H i(J

st,[∗]
n )

by the following Künneth formula (see [10],3.2.2):
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Lemma 8.2.1. — For s ∈ N let FilsXÂst = {
∑m

i=s aiγi(X), ai ∈ Acris, m ∈ N} ⊂
FilsÂst. There are short exact sequences:

0→
r⊕

s=1

FilsXÂst ⊗S H i(Jst,[r+1−s]
n )→

r⊕
s=0

FilsXÂst ⊗S H i(Jst,[r−s]
n )→H i(Xsyn, J

st,[r]
n )→ 0.

The reason we use FilsXÂst is because it is a flat S-module (which is not the case

of FilsÂst). One should notice that this lemma is exactly the place where the ring

Âst appears.
Define:

FilrX(Âst⊗SH i(Ost
n )) =

r∑
s=0

FilsXÂst⊗SIm
(
H i(Jst,[r−s]

n )→ H i(Ost
n )

)
⊂ Âst⊗SH i(Ost

n ).

The operators N on Âst and H i(Ost
n ) give an operator N = N ⊗ Id + Id ⊗ N on

Âst ⊗S H i(Ost
n ).

Proposition 8.2.2. — The short sequences of (8.2.1) induce isomorphisms:

(Âst ⊗S H i(Ost
n ))N=0

∼→ H i(Xsyn, O
st
n )N=0

FilrX(Âst ⊗S H i(Ost
n ))N=0

∼→ H i(Xsyn, J
st,[r]
n )N=0

where “N = 0” means “kernel of N” (in particular we have that

H i(Xsyn, J
st,[r]
n )N=0 ↪→ H i(Xsyn, O

st
n )N=0).

The first isomorphism is a consequence of (8.2.1) with r = 0. The second is
derived from a careful study of the action of N on the exact sequences in (8.2.1)

together with the fact that the maps H i(J
st,[s]
n )→ H i(Ost

n ) coming from the natural
injections of sheaves are injective for s = 0 (trivial) and for s = r (7.3.4). For proofs,
see ([10],3.2.3.2-3.2.3.4).

Recall that in (5.2.2), we have defined Filr(Âst⊗SM) for any object M of Mr (and

so using only FilrM). Let Filr(Âst ⊗S M)N=0 = {x ∈ Filr(Âst ⊗S M) | N(x) = 0}.
Fortunately, we have ([10],3.2.1.4 and 3.2.1.2):

Lemma 8.2.3. — There are isomorphisms FilrX(Âst⊗SH i(Ost
n ))N=0

∼→ Filr(Âst⊗S

H i(Ost
n ))N=0 where the right hand side is defined by viewing H i(Ost

n ) as an object of
Mr (7.3.4).

Now we want to make more explicit the groups H i(Xsyn, O
st
n )N=0 and

H i(Xsyn, J
st,[r]
n )N=0. Recall there is an exact sequence 0 → J

cris,[r]
n → J

st,[r]
n

N→
J

st,[r−1]
n → 0 (6.2.3.2). Combining its assiocated long exact sequences with (8.2.1),

(7.3.4) and a dévissage in the category Mr, we obtain:
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Lemma 8.2.4 ([10],3.2.3.1). — The long cohomology sequences associated to
the short exact sequence of (6.2.3.2) yield isomorphisms:

H i(Xsyn, O
cris
n )

∼→ H i(Xsyn, O
st
n )N=0

H i(Xsyn, J
cris,[r]
n )

∼→ H i(Xsyn, J
st,[r]
n )N=0.

Taking the kernel of φr − Id on both sides of the second isomorphism of (8.2.2)
and using (8.2.4) and (8.2.3), we see that what remains to prove, in order to relate

H i(Xsyn, S
cris,[r]
n ) to Tst(H

i(Ost
n )), is:

Proposition 8.2.5. — The long cohomology sequences associated to the short ex-

act sequence of (8.1.1) yield isomorphisms: H i(Xsyn, S
r
n)

∼→ H i(Xsyn, J
cris,[r]
n )φr=1

where the exponent on the right hand side means “kernel of φr − Id”.

Proof. — Take the direct limit over L on the long exact sequences associated to
(8.1.1) and use (8.2.4), (8.2.3) and (8.2.2) together with the surjectivity of φr− Id :

Filr(Âst⊗S M)N=0 → (Âst⊗S M)N=0 for any object M of Mr. See ([10],3.2.4.4) for
more details.

To sum up, the theory of section 5 together with (7.3.4) and the above results
finally furnish Galois equivariant isomorphisms:

H i(Xsyn, S
r
n)

∼→ Filr(Âst ⊗S H i(Ost
n ))φr=1

N=0 = Tst(H
i(Ost

n ))(r).

Hyodo-Kato-Tsuji’s theory of nearby cycles in the semi-stable reduction case also
furnishes Galois equivariant isomorphisms (8.1.3):

H i(Xsyn, S
r
n)

∼→ H i((X ×W K)ét,Z/pnZ)(r).

In conclusion:

Theorem 8.2.6. — Let X be a proper semi-stable scheme over W and endow it
with its canonical log-structure (2.2.1.2). For n ∈ N and 0 ≤ i ≤ r ≤ p − 2, there
are isomorphisms compatible with the action of GK0:

Tst(H
i(Xsyn, O

st
n ), H i(Xsyn, J

st,[r]
n ), φr, N) ' H i((X ×W K)ét,Z/pnZ).

9. Applications and open problems

We give four applications and suggest four open questions.

9.1. Applications. —
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9.1.1. If V is a p-adic semi-stable representation of GK0 with negative Hodge-Tate

weights, one can show (Âst ⊗Zp V )GK0 is in a natural way an object of the category

MF+
SK0

(φ, N) of (4.2) and that its associated D given by the equivalence (4.2.1)

is a weakly admissible filtered module (4.1). In fact, this D is nothing else than
(B+

st ⊗Zp V )GK0 by ([8],8.2) (here B+
st = B+

cris[v], c.f. introduction of section 4).
Fontaine conjectured in ([25],5.4.4) that the above functor V 7→ D is an equivalence
of categories between semi-stable representations of GK0 with negative Hodge-Tate
weights (or positive if one dualizes) and weakly admissible filtered (φ,N)-modules D
such that Fil0D = D. This conjecture has recently been proven by him and Colmez
in [14]. However, their results don’t give anything on the lattices. If D is an object
of MF+

K0
(φ,N) such that Filp−1D = 0 and D = SK0 ⊗K0 D the corresponding

object of MF+
SK0

(φ,N) by (4.2.1), define a strongly divisible lattice in D to be any

finitely generated free sub-S-module M of D stable by φ, N such that M[1/p] = D

and φ(M∩Filp−2D) generates pp−2M over S. The theory of section 5 gives a small
piece of the Colmez-Fontaine theorem, but describes the lattices:

Theorem 9.1.1.1. — 1) There is an anti-equivalence of categories between weakly
admissible filtered (φ, N)-modules D such that Fil0D = D and Filp−1D = 0 and
semi-stable representations V of GK0 with Hodge-Tate weights between 0 and p− 2.
2) There is an anti-equivalence of categories between strongly divisible lattices in
SK0 ⊗K0 D for a given D as in 1) and Galois stable lattices in the corresponding V .

See [11] for a proof of 1) and [12] for a proof of 2).

9.1.2. The second application is of course the recovery, in the situation we consider,
of the “usual” comparison theorem with Qp-coefficients as conjectured by Fontaine-
Jannsen ([44],1.1). We won’t insist on this topic because our main interest here is
not Qp-coefficients and because there are now different proofs of this Qp-comparison
theorem in its full generality ([70], [71], [22]). So let us just describe the main steps.
1) Fix X/Σ proper semi-stable and i ∈ {0, . . . , p−2}. Let D = Qp⊗lim←−H i(Xsyn, O

st
n )

and FiljD = Qp ⊗ lim←−H i(Xsyn, J
st,[j]
n ) for j ∈ Z. Then (D, (FiljD)j, φ, N) is an

object of MF+
SK0

(φ,N) and its associated filtered D given by (4.2.1) can be iden-

tified with H i
dR(X ×W K0) endowed with the Hodge filtration (c.f. ([10],4.3.2), an

important argument here is due to Kato ([44],6.4.2)).
2) There are canonical Galois equivariant isomorphisms (with obvious notations):

Fili(Âst ⊗S D)φ=pi

N=0 ' Qp ⊗ lim←−Tst(H
i(Xsyn, O

st
n )) ([10],4.3.2.2 with r = i)

Fili(Âst ⊗S D)φ=pi

N=0 ' Fili(Bst ⊗K0 H i
dR(X ×W K0))

φ=pi

N=0 ([8],8.1.2).
3) By (8.2.6), we thus obtain a Galois equivariant isomorphism:

Fili(Bst ⊗K0 H i
dR(X ×W K0))

φ=pi

N=0(−i) ' Qp ⊗ lim←−H i((X ×W K)ét,Z/pnZ)

which we can rewrite Bst ⊗K0 H i
dR(X ×W K0) ' Bst ⊗Qp H i

ét(X ×W K,Qp).
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9.1.3. The third application concerns the invariant factors in the torsion of the étale
cohomology. Fix X/Σ proper semi-stable and i ∈ {0, . . . , p − 2}. Let H i

st(X) =
lim←−H i(Xsyn, O

st
n ) and H i

ét(X ×W K,Zp) = lim←−H i((X ×W K)ét,Z/pnZ). Using the

previous results, one has H i
st(X) ' Sd ⊕ ⊕i∈I(S/piS)di and H i

ét(X ×W K,Zp) '
Zd

p ⊕ ⊕i∈I(Z/piZ)di (same d and di, see [10],4.1-4.2). Let ΣHK be the log-scheme

associated to (N 7→ W, 1 7→ 0). Notice that Σ1 = ΣHK
1 so one has morphisms

X1 → ΣHK
1 ↪→ ΣHK

n (recall our notation Un = U ×W Wn with the induced log-
structure). Let H i

HK(X) = lim←−H i((X1/Σ
HK
n )cris, OX1/ΣHK

n
) (HK for Hyodo-Kato:

this cohomology is of high importance in [38]) and H i
dR−log(X) the de Rham co-

homology of X with logarithmic poles at the singular locus (([37],1.5), ([38],2.5), it
coincides with the classical de Rham cohomology when X/W is smooth), one can
show:

H i
dR−log(X) ' lim←−H i

dR−log(Xn) ' lim←−H i((Xn/Σn)cris, OXn/Σn)

(the first isomorphism is a consequence of (EGA III.3.2.3+4.1.7) and the fact the E1-
terms in the spectral sequence Hodge-de Rham (log version) satisfy in that case the
Mittag-Leffler conditions, the second isomorphism is an application of ([43],6.4)).

Using (7.3.4), one proves ([10],4.3.1.3): H i
st(X)⊗S,f0W

∼→ H i
HK(X) and H i

st(X)⊗S,fp

W
∼→ H i

dR−log(X) where f0 : S → W,
∑

wi
ui

i!
7→ w0 (i.e. u 7→ 0) and fp is as in (4.2)

(i.e. u 7→ p). We sum up:

Theorem 9.1.3.1 ([10],4.3.1.5). — Let X be a proper semi-stable scheme over
W . For i ∈ {0, . . . , p− 2}, the invariant factors of H i

ét(X ×W K,Zp), H i
HK(X) and

H i
dR−log(X) coincide.

9.1.4. Let h ∈ N\{0}, π ∈ OK such that πph−1 = p and θh : IK0 → µph−1(OK), g 7→
g(π)

π
where IK0 is the inertia subgroup of GK0 (θh is Serre’s fundamental character

of level h, see ([64],1.7)). As a last application, we get:

Theorem 9.1.4.1 ([10],3.2.5.1). — Let X be a proper semi-stable scheme over
W and fix n ∈ N, i ∈ N. Let T be either H i((X ×W K)ét,Z/pnZ) or a GK0-stable
lattice in H i

ét(X ×W K,Qp) and T̃ the semi-simplification of the GK0-module T/pT .

Then the action of IK0 (through its tame quotient) on T̃ is given by characters of

the form θ
−(i0+pi1+...+ph−1ih−1)
h with 0 ≤ ij ≤ i.

This is essentially derived from ([31],5.3), (5.1.1.3) and (8.2.6)+(5.2.2.4) (and is
of course automatic if i ≥ p− 1). This theorem answers part of a question of Serre
([64],1.13) and still holds if T is replaced by any Galois stable lattice in any semi-
stable representation of GK0 with Hodge-Tate weights between −i and 0 ([11],1.2).

9.2. Open problems. — As we mentioned at the end of (2.2.2), the first open
problem is of course to remove the restrictions K = K0 and i < p − 1 (and we
have already mentioned that there should be a good theory for i[K : K0] < p − 1,
see appendix of [11]). As this doesn’t seem to be an easy task in the general case,
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we only suggest in the sequel questions that we view as interesting even under the
assumptions K = K0 and i ≤ p− 2.

9.2.1. In [19], Faltings extended the Fontaine-Laffaille-Messing theory to a much
more general situation: he allowed non constant coefficients and treated the case
of open varieties over W with smooth normal crossings compactifications (he also
treated the relative case). The generalized torsion comparison theorems he obtained
could be applied for instance in [42] and [23] to the study of Galois representations
modulo p arising from eigenforms of weight k on Γ1(N) with (N, p) = 1 and p > k.
Following Faltings, is it possible to extend the previous theory to deal with non
constant coefficients and open varieties over W with “good” compactifications ?
This could be useful for the study of Galois representations modulo p arising from
eigenforms of weight k on Γ1(pN) with (N, p) = 1, p > k and Dirichlet character of
conductor dividing N . Of course, if one wants to follow the “syntomic” method, this
would also mean extending to these situations the computations of [69] (actually,
in loc.cit., some categories of non constant coefficients are already considered).

9.2.2. The finite representations of GK0 built in (3.1.3) and (5.2.2) via the categor-

ies MF f,r
tor and Mr are in general wildly ramified. There are several (related) ways

to measure this wild ramification. One is to compute the maximal power of p that
divides the different DF/K0 where F is the finite Galois extension of K0 cut out by
the corresponding finite representation. Another is to determine which higher rami-
fication subgroups of the inertia IK0 = G0

K0
have non trivial image in Gal(F/K0).

For the objects of MF f,r
tor, this was done by Abrashkin and Fontaine:

Theorem 9.2.2.1 ([26], [28], [1]). — Let n ∈ N, r ∈ {0, . . . , p−2}, M an object

of MF f,r
tor such that pnM = 0 and F the finite Galois extension of K0 cut out by the

finite representation T ∗
cris(M). Then:

1) valp(DF/K0) < n + r
p−1

2) if ν > n− 1 + r
p−1

, then Gal(F/K0)
ν = {1}.

Here valp is the p-adic valuation normalized by valp(p) = 1 and Gal(F/K0)
ν is the

upper numbering as in ([66],IV.3). Using the Fontaine-Messing results of (3.2), this
implies Gν

K0
acts trivially on H i((X ×W K)ét,Z/pnZ) (and any subquotient killed

by pn of H i
ét(X×W K,Qp)) whenever ν > n−1+ i

p−1
if X is proper smooth over W

and i ∈ {0, . . . , p−2}. What is this lower bound if X is only proper semi-stable over
W ? More generally, what is the bound for the representations coming from Mr ?
In [33], Gross suggests an upper bound for valp(DF/K0) in a special case of some
modulo p ordinary representations of Gal(F/Qp). One can show using (9.2.2.1) that
Gross’ bound is actually valid for naive objects (see 4.1) killed by p (which do not
necessarily correspond to ordinary representations):

Proposition 9.2.2.2 ([13]). — Let r ∈ {0, . . . , p−2} and M an object of MF f,r
tor

killed by p and endowed with a linear endomorphism N such that N(FiliM) ⊂
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Fili−1M and Nφi = φi−1N for any i. Let F be the finite Galois extension of K0 cut
out by the finite representation T ∗

st(S1 ⊗k M) where S1 ⊗k M is viewed as an object
of Mr in the obvious way. Then:
1) valp(DF/K0) < 2 + r

p(p−1)

2) if ν > 1 + 1
p−1

, then Gal(F/K0)
ν = {1}.

Of course, the bounds here are not as good as in (9.2.2.1) with n = 1 (which
corresponds to the case N = 0). However, the bound in 2) is optimal as can be
easily seen by looking at F = K0(µp, p

1/p). What are the bounds that work for any
object M of Mr such that pM = 0, or more generally such that pnM = 0 ?

9.2.3. We assume here K0 = Qp. Fix a finite extension of Qp with ring of integers
O and residue field F, and a continuous (hence finite) representation:

ρ : GQp → GL2(F)

such that EndF[GQp ](ρ) = F. It is known that the continuous deformations ρ :

GQp → GL2(A) of ρ in the sense of Mazur ([52],1.1) where A is a local noeth-
erian complete O-algebra are parametrized by a local noetherian complete O-algebra
R

ρ, O of residue field F ([52], [68]). Suppose that ρ, viewed as a Fp-representation

of GQp , is in the essential image of MF f,r
tor via the functor T ∗

cris of (3.1.3) for an
r ∈ {0, . . . , p − 2} and consider only those deformations ρ such that, for each n,

ρn : GQp → GL2(A) → GL2(A/mn
A) comes from MF f,r

tor (via T ∗
cris) when viewed

as a Z/pnZ-representation. These deformations are parametrized by a quotient

R
ρ,O(MF f,r

tor) of R
ρ,O which turns out to be isomorphic to a power series ring

O[[T1, T2]] ([61],5.1). Since any representation of GQp coming from MF f,r
tor can be

lifted as a (Galois stable) lattice of a crystalline representation of GQp with Hodge-
Tate weights in {0, . . . , r} (3.1.3.2), and since any such lattice comes from a strongly
divisible module (this is an easy consequence of the Fontaine-Laffaille theory, see

([12],2.1)), R
ρ,O(MF f,r

tor) is also isomorphic to R
ρ,O/(∩p), the intersection being

over all prime ideals p of R
ρ,O such that GQp → GL2(Rρ,O)→ GL2(Rρ,O/p) is the

representation corresponding to a lattice in a crystalline representation of GQp with
Hodge-Tate weights ∈ {0, . . . , r}.

The question is: what happens if we replace MF f,r
tor by Mr and the word crystalline

by the word semi-stable ? Of course, in that case, the two analogous quotients of
R

ρ,O are not isomorphic in general since an object of Mr cannot always be lifted as a

strongly divisible module of weight ≤ r. However, since any Galois stable lattice in
a semi-stable representation of GQp with Hodge-Tate weights between 0 and r comes
from such a strongly divisible module (see 9.1.1.1), one has a canonical surjection
R

ρ,O(Mr)→ R
ρ,O/(∩p) where R

ρ,O(Mr) is the quotient parametrizing all liftings in

Mr and p is such that GQp → GL2(Rρ,O/p) is a representation corresponding to a

lattice in a semi-stable representation of GQp with Hodge-Tate weights in {0, . . . , r}.
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Can one describe these two rings and the kernel of the surjection (which contains
the torsion part of R

ρ,O(Mr)) in terms of generators and relations ? For instance,

the minimal number of generators of R
ρ,O(Mr) should be obtained by computing

extension groups (Ext1) in the abelian category Mr and a possible description of
R

ρ,O/(∩p) (when non zero) could be obtained by looking for suitable families of

strongly divisible lattices. This is related to the computations of ([9],6) and to the
next, and last, question.

9.2.4. Let V be a Hodge-Tate representation of GK0 with Hodge-Tate weights
between 0 and p−2. By definition, the tame inertia weights on the semi-simplification
of the reduction modulo p of V are also between 0 and p − 2 (see 9.1.4.1). If V is

crystalline, by using ([31],5.3) together with the fact that the morphisms in MF f,p−2
tor

are strict with respect to the filtration (3.1.1.1), one gets these two lists of figures
are the same. If V is semi-stable, this is not always true any-more, as was first
shown by Ribet using an example coming from modular forms (see the correction
to [20]). In ([9],6.1.1.2), using the categories Mr, the difference between the two
lists is computed for all 2-dimensional (over Qp) semi-stable representations of GK0

with the above restriction on the Hodge-Tate weights and involve a number L(V )
which only exists when V is semi-stable non crystalline. Let us mention that the
analogous computations have not been carried out in the 2-dimensional case when
the coefficient field is stricly larger than Qp. Is there a general statement which
would allow the comparison of the two lists in any dimension ? Can one build some
kind of polygon out of the tame inertia weights, and compare it with the usual
Newton and Hodge polygons (so, in the crystalline case, that polygon would just
be the Hodge polygon) ? It was noticed by many people (Ulmer, Mazur, Conrad,
Diamond, Taylor,. . . ) that similar phenomena also happen when one deals with
(2-dimensional) potentially crystalline (non crystalline) representations of GQp (see
([74],1.10) and ([15],1.2.1-1.2.3)) and one wonders with Mazur ([53]) what is the
general rule behind this.

References

[1] Abrashkin V., Ramification in étale cohomology, Inv. Math. 101, 1990, 631-640.
[2] Berthelot P., Slopes of Frobenius in crystalline cohomology, Proc. of Symposia in

Pure Maths. 29, Americ. Math. Soc., 1975, 315-328.
[3] Berthelot P., Cohomologie cristalline des schémas de caractéristique p > 0, Lecture
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cohomologie des schémas, North Holland, 1968, 306-358.
[36] Grothendieck A., Letter to Deligne, October 10, 1965.
[37] Hyodo O., A note on p-adic étale cohomology in the semi-stable reduction case, Inv.

Math. 91, 1988, 543-557.
[38] Hyodo O., Kato K., Semi-stable reduction and crystalline cohomology with logar-
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