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Abstract

Let p, be a 3-dimensional p-adic semi-stable representation of Gal(Q,/Q,) with Hodge-Tate
weights (0,1,2) (up to shift) and such that N? # 0 on Dg(p,). When p, comes from an
automorphic representation m of G(Ap+) (for a unitary group G over a totally real field F'*
which is compact at infinite places and GLg3 at p-adic places), we show under mild genericity
assumptions that the associated Hecke-isotypic subspaces of the Banach spaces of p-adic
automorphic forms on G(A¥,) of arbitrary fixed tame level contain (copies of) a unique
admissible finite length locally analytic representation of GL3(Q,) of the form considered in
[4] which only depends on and completely determines p,,.
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1. Introduction and notation

Let p be a prime number, n > 2 an integer, F'* a totally real number field and F' a totally
imaginary quadratic extension of F'* such that all places of F'* dividing p split in F. We fix
a unitary algebraic group G over F't which becomes GL,, over F and such that G(F* ®gR)
is compact and G is split at all places above p. We also fix a place p of F'* above p. Then to
each Q,-algebraic irreducible (finite dimensional) representation W¥ of [, ., G(F,") over
a finite extension E of Q, and to each prime-to-p level U in G(A}}¥), one can associate

the Banach space of p-adic automorphic forms S(U?, W¥) (see e.g. § 6.1).

If p: Gal(F/F) — GL,(E) is a continuous irreducible representation and ¢ is a place of
F above p, one can consider the associated Hecke isotypic subspace S(U®, W¥)[m,], which



is a continuous admissible representation of G(F) = GL,(Fp) over E, or its locally Q,-

analytic vectors S(U¥, W#®)[m,]**, which is an admissible locally Q,-analytic representation
of GL,(F5). When nonzero, these representations of GL, (F) are so far only understood
when n = 2 and Fp = Q, ([24], [42], [53], [20], [25], [59], [35], [18], ...). Indeed, though
these representations are expected to be very rich, many results from GLy(Q,) collapse (see
e.g. [65], [79]) and it presently seems an almost impossible task to find a way to completely
describe them in general. However, it is (quite reasonably) hoped that they determine the
local Galois representation pg 1= /)|Ga1(F5 JF5) and (may-be less reasonably) hoped that they
also only depend on ps. Note that the special case where p is automorphic is of particular
interest, since then the subspace S(U#®, W#) [m,]"™¢ of locally Q,-algebraic vectors is nonzero,
given by the classical local Langlands correspondence for GL,,(F) tensored by Q,-algebraic
representations of GL,,(Fjp).

The aim of this work is to consolidate the above hopes in the case of GL3(Q,). Let St5°

be the usual smooth Steinberg representation of GL3(Q,) and vy = (Ind%ig%”) 1)*°/1 for
[ 1\p
1 = 1,2 the two smooth generalized Steinberg representations where ?1(@1,) = (% g) and

Py(Q,) = (z g g) Our main result is the following.

Theorem 1.1 (Corollary 7.54). Assume p >5,n=3, Fg=Q, and U® =[], U, with U,
mazximal if v|p, v # ©. Assume moreover that:

e 1 is absolutely irreducible
o S(U2, W) [m,["5 # 0
e pg is semi-stable with consecutive Hodge-Tate weights and N* # 0 on Dy (pg)

e any dimension 2 subquotient of pg = ﬁ|Ga1(E;/F§) is nonsplit.

Then S(U®, W#)[m,] contains (copies of) a unique locally analytic representation 11 ® yodet
of GL3(Qy) with x a locally algebraic character of Q) and I of the form:

01,2\ Cia
Y
Cra Ci3 Cis
N SN S
/ Up, U,
I = St (1.1)
N 7
NN
C’2,1 ,02,3 ,02,5
N TN S
02,2 Caa



where the C; j, 5’” are certain explicit irreducible subquotients of locally analytic principal
series of GL3(Q,) (see § 8.3 or [4, § 4.1]), where St3° = socqr,,) Il and where — (resp.
the dashed line) means a nonsplit (resp. a possibly split) extension as subquotient. Moreover
the representation 11 @ xodet completely determines and only depends on pg. In particular

the locally analytic representation §(Up, W) [m, > of GL3(Qy), hence also the continuous
representation S(U?, W¥®)[m,]|, determine pg.

In fact one proves the stronger result that the restriction morphism:
Homgr(g,) (L@ xodet, S(U?, W*)[m,]"™") — Homar,(g,) (63 @xodet, S(U?, W¥)[m, ") (1.2)

is bijective. The third assumption in Theorem 1.1 implies that pz is up to twist isomor-

2 k k . . J— . . . .
phic to (68 ; ik) where ¢ is the cyclotomic character. Hence pg is up to twist isomorphic to

g2 % . . . .
<€8 H %), and the fourth assumption means that we require the two * above the diagonal in

P to be nonzero, a kind of assumption which already appears in the GL2(Q,) case (see e.g.
[42, Thm. 1.2.1]).

Without assuming p absolutely irreducible, consecutive Hodge-Tate weights and the above
condition on pg, but assuming F* = Q, p absolutely irreducible and a slightly unpleasant
condition on S(U¥, We)[m, )" (see [4, Rem. 6.2.2(ii)]), it was proven in [4, Thm. 6.2.1] that
S (U?, W#)[m,]* contains (copies of) a unique locally analytic representation which has the
same form as (1.1). However, nothing more was known of its possible link to pz. So the
main novelty in Theorem 1.1 is that the GL3(Q))-representation II ® yodet contains ezactly
the same information as the Gal(Q,/Q,)-representation pz. Note however that II ® yodet
is presumably only a small part of the representation S(U¥, W#)[m,]**. For instance one
could push a little bit further the methods of this paper to prove that S (U?, W#)[m,]* as
in Theorem 1.1 in fact contains (copies of) a representation of the form II ® yodet with:

an GL (Qp) _
Uﬁl (Ind (Sp) 1 Re® 1) B — UﬁQ
I =~ s (1.3)
QL3 (Qp) _
o — (e 15 5 o) — o

which still determines and only depends on pg. In (1.3), we denote by St3", resp. vi“ the

locally analytic Steinberg, resp. generalized Steinberg, and by (IndgL& ?p) ) the locally

analytic principal series from lower triangular matrices. In fact the subrepresentation of
IT ® x o det without the constituents 5’@4, Cis (1 =1,2) in Theorem 1.1 can be seen as the
“edge” of the representation e xodet. But even adding those constituents to e xodet (or
more precisely (Il ® yodet)®? where d := dimp, Homgr,,(g,)(St3” ®xodet, S(U*, W) [m,]*)),

we are presumably still far from the full representation S(U¥, W) [m, ]



Theorem 1.1 (in its stronger form as above) is in fact a special case of a conjecture in arbitrary
(distinct) Hodge-Tate weights. In § 3.3, we show that one can associate to pg, assumed semi-
stable with N? 2 0 on Dy (pg) and sufficiently generic (we explain this below, any pg as in
Theorem 1.1 is sufficiently generic), a locally analytic representation II(pz) = II ® x o det
of GL3(Q,) containing the same information as pz where II has the same form as (1.1)
but replacing St5°, vF by St3°(A) =: St3°@pL(A), U%(A) = vy @p L(A). Here L(\)
is the algebraic representation of GL3(Q,) of highest weight A = ky > ko > k3 where
ki > ko —1 > kg — 2 are the Hodge-Tate weights of ps;. We conjecture the following

statement.
Conjecture 1.2 (Conjecture 6.2). Assume n =3, Fz = Q, and:
e p absolutely irreducible
o S(U?,W¥)[m, ] £ 0
e pg semi-stable with N* # 0 on Dy (pg) and sufficiently generic.

Then the following restriction morphism is bijective:
Homap(a,) (I1(pg), S(UL, W) [m,]*) < Homar,(g,) (StE@eL(A) @ xodet, S(U, W)[m,)).

We now sketch the proof of Theorem 1.1.

The preliminary step, which is purely local and holds for arbitrary distinct Hodge-Tate
weights, is the definition of II(pg). Since N? # 0, the (¢, I')-module D := D, (pg) over the
Robba ring with E-coefficients R can be uniquely written as Rg(61) — Re(d2) — Re(d3)
for some locally algebraic characters ¢; : Q) — E* (where, as usual, Rg(d;) is a submodule,
REg(d3) a quotient and — means a nonsplit extension). We assume that the triangulation
(Re(61), Re(62), REe(3)) is noncritical, equivalently the Hodge-Tate weight of §; is k;—(i—1).
Twisting Diyig(pg) if necessary (and twisting II(ps) accordingly), we can assume &; = z**,
0y = 2%2¢71 and d3 = 2¥e72 (note that D is not étale anymore if k; # 0, but this won’t be
a problem). By the recipe for GLy(Q,), one can associate to D? := Rg(d;) — Rg(d2) and
D3 := Rg(d2) — Ri(d3) locally analytic representations 7y o and a3 of GLa(Q,). Then the
representations:

6’1,2\ 62,2\
0o ~ o~ 0o ~ o~
St57(A) — Cha C13, St3”(A) — C21 Ca3,
~ ~ ~ —
v (A) v (A)
can be defined as subquotients of the locally analytic parabolic inductions (Ind%?(?’(g@; ) T2 ®

63e?)™ and (Ind%“ééQ)P) 01 @ (2,3 ®eodetqr,))™™ respectively, see § 3.3.3. Note that these two
D

representations (together) contain what we call the two “simple” L-invariants of pg (given by
the Hodge filtration on the 2-dimensional filtered (¢, N)-modules associated to D? and D3).
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We consider the two following representations (see § 3.3.4 where they are denoted IT'(\, ¢)) "
and TT2(\, ) ™):

Cia.
Cha Ch3 Cia
~ N pd /
M = St(\) v (A) 1 = St(\) vz (M)
N N
02,1 02,1

We say that D is sufficiently generic if there are canonical isomorphisms (induced by Colmez’s
functor [24]):

Extér, (g, (T2, m1,2) — Ext(, r) (D1, D) and Extéy, ) (12,3, m23) — Ext(, ) (D3, D3) (1.4)

satisfying the properties of Hypothesis 3.26 in the text. We prove in Lemma 3.29, Proposition
3.30 and Proposition 3.32 that such isomorphisms are true under mild genericity assumptions
on the (p,T')-modules D? and D3. Note that we couldn’t find these isomorphisms in the
literature (though we suspect they might be known), so we provided our own proofs, see
e.g. the proof of Proposition 3.32 in the appendix, where we go through the Galois side and
use deformation theory, which forces the aforementioned mild genericity assumptions. Using
these isomorphisms, we then prove that there are canonical perfect pairings of 3-dimensional
E-vector spaces (see Theorem 3.45):

EXt(%F) (DS7RE(51)) X EXtGLg( ( )\ ;H2) (1.6)
For instance (1.5) comes from a perfect pairing Ext ry(REe(03), D ?) Ext(w r) (D}, RE(d2)) —

X

E and an isomorphism ExtGL3(Q (V3 (A), ) = Ext( )(D, RE(d2)) induced by (the first
isomorphism in) (1.4) and locally analytic parabolic 1nduct10n (see (3.91)). The (p,I')-
module D gives an E-line in the left hand side of both (1.5), (1.6), hence its orthogonal
space gives a 2-dimensional subspace of ExtéLg(Qp)(v%'; (A),IT') and a 2-dimensional sub-

space of ExtéL?j(Qp)(v%i (\),I1%). Choosing a basis of each subspace and amalgamating as
much as possible the four corresponding extensions produces a well-defined locally analytic



representation of the form (see (3.111)):

7 (A

which turns out to determine and only depend on D. Then results of [4] show that there

is a unique way to add constituents 01 4, 02 4, C15, Cy5 on the right so that the resulting
representation II(D) = II(pg) contains II(D)~ and has the same form as (1.1) (see (3.112)).

We now assume k; = ko = k3 and recall that ps is then upper triangular. The strategy
of the proof of Theorem 1.1 is the same as that of [32], [33] when n = 2 and Fj is ar-
bitrary, and is entirely based on infinitesimal deformations. Very roughly, we replace the
diagonal torus GL; x GL; in the arguments of [32] by the two Levi L3 = GLg x GL; and
Lg, = GL; x GLy, and we deal with the GL,-factors using the p-adic local Langlands corre-
spondence for GLy(Q,).

Following Emerton’s local-global compatibility work for GLy(Q,) ([42]), we first study the
localized modules Ordpi(g(Up, W#®)5), i = 1,2 where Ordp, is Emerton’s ordinary functor
([40], [41]) with respect to the parabolic subgroup P;(Q,) of GL3(Q,) opposite to P;(Q,).
We show that Ordp,(S(U*, W#®)5) is a faithful module over a certain p-adic localized Hecke
algebra T(U W)P'_Ord (see Lemma 6.7) and using the p-adic local Langlands correspondence
for GL2(Q,) over deformation rings (as in [53] or [67], see also the appendix), we define a
continuous admissible representation 7 (U¥) of Lp,(Q,) over T(U K’)P o (see (7.42)) and
a canonical “evaluation” morphism:

Xp,(U®) @y pimos 15, (U¥) — Ordp, (S(U2, W*)5)

OFwe

where Xp, (U?) is the ']I'(UW)P ~or_module HomCt(SUp)p o g )](W%i(U@),Ordpi(g(Up,Wp)ﬁ)),

W¢ being an invariant Og-lattice in the algebraic representation W¥ (see (7.43)).

Twisting if necessary, we can assume k1 = ko = k3 = 0. We want to prove that the restriction
morphism (1.2) (with xy = 1 now) is bijective. Injectivity is not difficult, the hard part is
surjectivity. Let w be a nonzero vector in the subspace D of Extgy, 5(Qy) (v%‘; R IT%) orthogonal

to D under the pairings (1.5), (1.6) and denote by IT* the corresponding extension IT° —Up -
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It is enough to prove that the following restriction morphism is surjective for + = 1,2 and
any such w:

Homgy,(g,) (1%, S(U?, W¥)[m,]*) — Homgy, (g, (St5°, S(UL, W¥)[m,]™). (1.7)

We now assume ¢ = 1, the case ¢+ = 2 being symmetric. Taking ordinary parts induces an
isomorphism (see the first isomorphism in (7.76)):

Homar,(g,) (S5, S(U, W¥)5m,]*") 5 Homy,. (q,) ( Sts° K1, (Ordp, (S(U, W¥)5[m,])™)  (1.8)

where X is the exterior tensor product (GL2(Q,) acting on the left and Q) on the right). By a
variation/generalization of the arguments in the GL2(Q,)-case, we prove that the restriction
induces an isomorphism (see Corollary 7.47):

HomLP1 (Qp) (WLQ X1, (OrdPl(g\(U@a Wp)ﬁ[mp]))an)
— Homy,, (q,) (St®1, (Ordp, (S(U?, W¥)5[m,]))™). (1.9)

Note that the isomorphism (1.9) involves the “simple” L-invariant contained in D? and is
thus already nontrivial.

Denote by V,, the tangent space of Spec(T(U K’)?*‘”d[l /p]) at the closed point associated to
the Galois representation p. Going through Galois deformation rings, one can prove that
there is a canonical morphism of E-vector spaces dwy, : V, — Ext(, (D}, D}) such that
the image of the composition dw, : V, = Ext, (D7, D}) = Ext(, 1 (D}, Rp(d2)) is exactly
D+ (see Proposition 7.51). The proof of this statement is based on two main ingredients.
The first one (see Theorem 2.7) says that any extension D? — D? which is contained as a
(¢, )-submodule in an extension D — D is sent (after a suitable twist) to an element of D+
via Ext, (D}, D) — Ext(, (D}, Rp(6,)) (the analogue of this statement in dimension
2 was first observed by Greenberg and Stevens [46, Thm. 3.14], see also [23]). This shows
that the image is contained in D+. The second ingredient is a lower bound on dimp V, (see
Proposition 7.30) which implies that the image must be all of D*.

The vector w is thus the image of a vector v € V,, via the above surjection dwi o Vo D+,
and by definition of V,, v is an Ele]/e*-valued point of Spec(T(U p)?_Ord). Denote by Z,
the corresponding ideal of 'ﬁ‘(U p)gl_ord, by a generalization of arguments due to Chenevier
([19]), one can prove that the El[e]/e*-module Xp, (U*)[Z,][1/p] of vectors in Xp (U?)[1/p]
killed by Z, is free of finite rank (see (7.80)). This implies that any Lp, (Q,)-equivariant
morphism 7 5 X1 — (Ordp, (S(U®, W¥)5m,]))™ extends to an E[e]/e*-linear and Lp, (Q,)-
equivariant morphism 7 5 Mpq /e 1 — (Ordp, (S(U®, W®)5[Z,]))*" where 715 Mgq/e 1=
75 (U®) ®T(Um§rmd (ﬁ‘(U“)glford/Iv)[l/p]. Note that 7y, (resp. 1) is an extension of 7
(resp. 1) by itself. By the adjunction formula for Ordp,, we obtain a GL3(Q),)-equivariant
morphism:

(a7, Ry T)™ — S, W)L, (1.10)

8



L3(Qp)
1(Qp)
one can prove that (1.10) induces a GL3(Q),)-equivariant morphism:

The representation II* is a multiplicity free subquotient of (Ind% 1,2 Mg/ T)an, and

" — S(U?, W9)5[m, ™ € S(UY, W) [L,)™

which restricts to the unique morphism St5° — Swe, W#)5[m,]* corresponding to m oX1 —

(Ordp, (S(U®, W#)5im,]))™ via (1.8) and (1.9) (see the proof of Theorem 7.52). This proves
the surjectivity of (1.7) (for ¢ = 1) and finishes the proof of Theorem 1.1.

The results of this work are used in [9], where a more precise relation is proven between
the two “branches” in (1.1) and the filtered (p, N)-module of p, (along the lines of [4,
Conj. 6.1.2]). But important questions remain. For instance one can ask for a more explicit
(local) construction of the GL3(Q,)-representation II(p,,). Though there is so far no con-
struction of (analogues of) II(p,,) for n > 4, one can also still try to push further the results
and methods of this paper in arbitrary dimension. Note that many of the intermediate re-
sults used in the proof of Theorem 1.1 are already proven here in a more general setting
than just GL3. For instance we allow an arbitrary parabolic subgroup of GL,, in §§ 4, 5, 6,
7.1.1 and we work in arbitrary dimension n in all sections except §§ 3, 7.2.3 and the appendix.

We finally mention that some of our results in arbitrary dimension have an interest in their
own. For instance Corollary 7.34 gives new cases of classicality for certain p-adic automor-
phic forms with associated Galois representation which is de Rham at p and Theorem 7.38
gives a complete description (under certain assumptions) of the P-ordinary part of completed
cohomology for a parabolic subgroup P of GL, with only GLy or GL; factors in its Levi
subgroup, analogous to Emerton’s description in the GLy(Q),)-case ([42]).

At the beginning of each section, the reader will find a sentence explaining its contents. We
now give the main notation of the paper.

Notation
In the whole text we denote by E a finite extension of Q,, Op its ring of integers, wg a

uniformizer of O and kg its residue field. Given an FE-bilinear map V x W =N E, for
W' C W we denote:
WHt={weV, vUw=0vweW}.

For L a finite extension of Q,, we let X, be the set of embeddings of L into E (equiv-
alently into Q, by taking E sufficiently large), q; := |kz| with k; the residue field of
L, Galy := Gal(L/L) the Galois group of L, W C Galy the Weil group of L, and
I'y := Gal(L({p,n > 1)/L) where ((yn)n>1 is a compatible system of primitive p”-th roots
of 1in L. When L = Q, we write I' instead of I'g,. We denote by ¢ : Gal, — I'p, — E*
the cyclotomic character with the convention HT,(¢) = 1 for all ¢ € ¥ where HT,, is the
Hodge-Tate weight relative to the embedding o : L — FE, and by € its reduction modulo p.
We normalize local class field theory by sending a uniformizer to a (lift of the) geometric



Frobenius. In this way, we view characters of Galy as characters of L* without further
mention. We let unr(a) be the unramified character of Galy, sending a uniformizer of L* to
a € EX and |- | ;= unr(g;"'). We denote by val, the valuation normalized by val,(p) = 1.

If A is a finite dimensional Q,-algebra, for instance A = F or E[e]/€* (the dual numbers),
we write R for the Robba ring associated to L with A-coefficients (see for example [51,
Def. 2.2.2]). When L is fixed, we only write R4. We denote by Ext{,r (-,-) the extensions

groups in the category of (¢, I'r)-modules over Ry and by H{ () == Extl('%FL)(RE,L, )
(1, § 2.2.5], [57], [22]). If § : L — A is a continuous character, we denote by R4 () the

associated rank one (¢, I';)-module (see [51, Cons. 6.2.4]). We have:
Ext(,r,)(Re, Re) = Extg,, (E, E) = Hom(Galr, E) = Hom(L*, E),

where the last isomorphism follows from local class field theory, and Hom(Galyr, E) (resp.
Hom(L*, E)) is the E-vector space of continuous characters of Galy, (resp. L*) to the additive
group F. We fix the isomorphism given by the above composition. For any continuous
6 : L* — E*, the twist by 6~" induces a canonical isomorphism Ext(, (Rg(8), Re(d)) =
Ex‘c%@,F )(REe,RE), and we deduce isomorphisms (uniformly in §):

Ext(,r,)(Re(6), Re(d)) — Hom(L*, E). (1.11)
By [33, Lem. 1.15], the isomorphism (1.11) induces an isomorphism:
Ext,(Rp(0), Re(6)) — Homy (L™, E) (1.12)

where Ext; denotes the subspace of extensions which are de Rham up to twist by characters,
and Hom.,(L*, E) denotes the subspace of smooth characters. Finally, if L = Q,, we denote
by wt(d) := lim,_,o % € E the Sen weight of 4, for instance wt(z* unr(a)) = k for
k€ Z and a € E*.

Let G be the L-points of a reductive algebraic group over QQ,, we refer without comment
to [74], resp. [75], for the background on general, resp. admissible, locally Q,-analytic rep-
resentations of G over locally convex E-vector spaces, and to [73] for the background on
continuous (admissible) representations of G over E. If V is a continuous representation
of G over E, we denote by V" its locally Q,-analytic vectors ({75, § 7]). If V is a locally
Q,-analytic representation of G over F, we denote by V™ resp. V'#& the subrepresentation
of its smooth vectors, resp. of its locally Q,-algebraic vectors ([43, Def. 4.2.6]). If X and YV
are topological spaces, we denote by C(X,Y) the set of continuous functions from X to Y.
If P is the L-points of a parabolic subgroup of G and 7p is a continuous representation of
P over E i.e. on a Banach vector space over E, we denote by:

(Indg 7p)®" := {f : G — mp continuous, f(pg) = p(f(9))}

the continuous parabolic induction endowed with the left action of G by right translation on
functions: (gf)(¢') := f(gg’). It is again a continuous representation of G over E. Likewise,
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if 7p is a locally analytic representation of P on a locally convex E-vector space of compact
type, we denote by:

(Ind% 7p)™ := {f : G — 7p locally Q,—analytic, f(pg) = p(f(g))}

the locally analytic parabolic induction endowed with the same left action of G. It is again
a locally analytic representation of GG on a locally convex FE-vector space of compact type
(see e.g. [54, Rem. 5.4]). If mp is a smooth representation of P over E, we finally denote by
(Ind% 7p)> the smooth parabolic induction (taking locally constant functions f : G — 7p)
endowed with the same G-action. We denote by dp the usual (smooth unramified) modulus
character of P.

If V, W are two locally Q,-analytic representations of G' over £, we define the extension
groups Ext%,(V, W) as in [78, Déf. 3.1], that is, as the extension groups ExtiD(G,E)(WV, V)
of their strong duals V'V, WV as algebraic D(G, E)-modules where D(G, E) is the algebra of
locally analytic E-valued distributions. If the center Z of G (or a subgroup Z of the center of
G3) acts by the same locally analytic character on V' and W, we define the extension groups
with that central character ExtiG7Z(V, W) as in [78, (3.11)], and there are then functorial
morphisms Extf, ,(V, W) — Extg(V, W). If V, W are smooth representations of G over E,
we denote by Ext"G’OO(V, W) the usual extension groups in the category of smooth represen-
tations of G over E (see e.g. [28, § 2.1.3] or [62, § 3]). Finally, if (V;);=1.... , are admissible
locally analytic representations of GG, the notation V; — Vo — V3 — -+« — V. means an admis-
sible locally analytic representation of G such that V; is a subobject, V5 is a subobject of
the quotient by V; etc. where each subquotient V; —V,; is a nonsplit extensions of V; 1 by V;.

If Ais a commutative ring, M an A module and I an ideal of A, we denote by M[I| C M
the A-submodule of elements killed by I and by M{I} := U,>  M[I"].

Acknowledgements: The authors are very grateful to Y. Hu for many helpful discussions.
For their answers to their questions, they also want to thank F. Herzig, Y. Hu, R. Liu,
A. Minguez, C. Moeglin, Z. Qian, B. Schraen and D. Xu. The authors thank F. Herzig
for his remarks and an anonymous referee for helpful suggestions. C. B. was supported by
the C.N.R.S. and by Université Paris-Saclay. Y. D. was supported by E.P.S.R.C. Grant
EP/L025485/1 and by Grant No. 8102600240 from B.I.C.M.R.

2. Higher L-invariants and deformations of (¢, I')-modules

In this section we define and study certain subspaces Lpy(D @ DY) and fpy(D @ DY)
of some Ext! groups in the category of (p, ' )-modules that will be used in the next sections.

We fix a finite extension L of Q, (and recall we write R for R ). Let D be a trianguline
(¢, I'r)-module over Ry of arbitrary rank n > 1. We denote an arbitrary parameter of D by
(01, ,0,) where the 9; : L* — E* are continuous characters (see e.g. [11, § 2.1]). Recall
that D can have several parameters, see loc. cit.
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Definition 2.1. We call a parameter (61,--- ,0,) of D special if we have:

s =11 [ o* Vie{l, - ,n—-1}
UGEL
for some k,; € 7.
We say that (d1,---,d,) as in Definition 2.1 is noncritical if k,; € Z~ for all o, i. It follows

from the proof of [1, Prop. 2.3.4] that a trianguline D with a special noncritical parameter
is de Rham up to twist. It then easily follows from Berger’s equivalence of categories [2,
Thm. A] that such a D has only one special noncritical parameter. In the sequel when we say
that (D, (01, ,0,)) is special noncritical, it means that (d1,--- ,d,) is the unique special
noncritical parameter of D.

We now fix a special noncritical (D, (6,---,6,)) and for 1 < i < i’ < n we denote by D?
the unique (¢, I';)-module subquotient of D of trianguline parameter (J;,- -, dy). It is then
clear that (D?, (d;,--- ,dy)) is also a special noncritical (¢, T'z)-module.

We first assume that for ¢ € {1,--- ,n — 2} the extension of Rg(d;1+1) by Rg(d;) appearing
as a subquotient of D7~! is nonsplit. We consider the following cup-product:

n— n— n— U n—
Ext(,p,)(Re(6n), DY) x Ext{,p (Dy~', D) — Bxt(, ) (Re(d,), DY), (2.1)
Lemma 2.2. We have dimp Ext(,r \(Rg(6,), DY ™) = (n—=1)[L : Q,]+1, and the surjection
Dyt — Rp(8,-1) induces an isomorphism.:
Ext%%FL)(RE(én), Dt = Ext%%FL)(RE(én),RE(én_l)) = FE.
Proof. The lemma follows easily from [61, § 2.2] (see also [57]). O
By functoriality, we have the following commutative diagram of pairings:
Ext(,r,)(Re(6,), D7 ") x  Bxt{,p, ) (DP~",Di?) -, Ext{, p,)(Re(6,), D7)
Ext(,r,)(Re(6,), D7) x  BExt(,p, (D', Di) -, Ext(,p,)(Re(6,), D7) (2.2)
Ext(, r,)(Re(6,), D7) x  Ext{,p, (D} Re(6n-1)) -, Ext{, r,)(Re(6n), RE(6n-1))
with the bottom right map being an isomorphism by Lemma 2.2.

Proposition 2.3. Keep the above assumption and notation.

(1) The map K is surjective.

(2) The bottom cup-product in (2.2) is a perfect pairing and we have:
Ker(k) = Ext} ) (RE(6,), D1t

(‘pvr‘L

with respect to the middle cup-product in (2.2).
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Proof. (1) It is enough to show Ext?%FL)(D?_l, D7~?) = 0. By dévissage it is enough to show

that EXt%%FL)(D?_I, Rg(d;)) =0forallie {1,--- ,n—2}. We have a natural isomorphism:

Ext(, p, ) (DF Y Re(6:) = Hi,p,y ((DF )Y @rp Re(d))).

Together with [57, § 5.2] (see also [33, Prop. 1.7(4)]), we are thus reduced to show
H, ) (DY™! ®r, RE(0;'e)) = 0 which follows easily from our assumption on D}~

(2) Using the natural isomorphisms:

Exti,r, (D L Re(0n1)) = Hipy(DF1)Y @ Re(0n-1)),
Ext,r,)(Re(0.), DI™) = Hi,r, (D™ ©ry Re(5,1)),
Ext,r,)(Re(0n), Re(0n-1)) = HZ,p,)(Re(6n-16,")),

we are reduced to show for the first statement in (2) that the cup-product:

Hpryy(DF)Y ®py Ri(60-1)) X Hipp, (D ©ry Re(8,1) = Hi,p,y (Re(0n-10,")
is a perfect pairing. We have a commutative diagram:

Hl, 1 (DY) @y Re(0n1)) ¥ Hl, o (DV ! @r, Re(6;") ——— HZ, 1) (Re(001571))

H ! l 23

HY, oy (DY ©r, Re@a-r)) x HE o (DF ! @r, Re(0,140) —2— HZ 1) (Ri())

where the two vertical maps on the right are induced by the injection Rz (5;') < Ry(5,* )
(see for example [51, Cor. 6.2.9], and recall from Definition 2.1 that we have
6,0 = 0, e[ ex, o1 with kgpog — 1 > 0). Moreover, using the same argument
as in the proof of [33, Lem. 1.13] (or by [11, Lem. 4.8(i)] together with an easy dévissage
argument), the vertical maps are isomorphisms. By Tate duality (see [57, § 5.2] or [33, Prop.
1.7(4)]), the bottom cup-product in (2.3) is a perfect pairing, hence so is the top cup-product.
The first part of (2) follows.

By similar (and easier) arguments as in the proof of (1), we have Ext?%FL) (Ri(6,), DP™%) = 0.
By (2.2), we deduce:

Ker(k) C Ext%%FL)(’RE(én), DrH+,

However, since the bottom cup- product of (2.2) is a perfect pairing and the bottom right map
an isomorphism, we easily get Ext r,y(Re(6,), DY)+ C Ker(x), hence an equality. O

The (p,I'r)-module D gives rise to a nonzero element in Ext r,)(RE(dn), Dy 1) that we
denote by [D]. In particular the E-vector subspace E[D] it generates is well defined and we
define (with respect to the two bottom pairings in (2.2)):

Leym(D: DY = (E[D])* gExt@IL)(D?f—l,D;L—I)
ten(D: D7) = (B[D))* € Extl,p,) (Df ™ Ru(6,-1)).
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By Proposition 2.3 (and the bottom right isomorphism in (2.2)), we deduce a short exact
sequence of E-vector spaces:

0 — Ker(k) — Lpm(D : DY) - bpy(D - DY) — 0. (2.4)
The following corollary also follows easily from Proposition 2.3 and (2.4).

Corollary 2.4. (1) The (p,I'r)-module D (seen in Ext%%FL)(RE((Sn), DY) ) is determined
up to isomorphism by Dyt 8, and Leyv(D : DYY) (resp. and fen (D : DY),

(2) If D (seen in Ext (oT'1) (RE(5 ), DY) is nonsplit, then Ley(D @ DY) (resp. fpn(D -
D' 1) is of codimension 1 in Ext(% L)(D?_l, DY) (resp. in EX‘C%QD’FL)(D?_I,RE(én_l))).

By functoriality we have a commutative diagram for ¢ < n — 1:

Ext(,r,)(Re(6.), DY 71 /DY) % Extl,r,) (DY /Di, Re(6a-1)) —— Ext{,r,)(Re(6n), RE(5u-1))

3 | |

Ext(,p,)(Re(6,), D7) x  Ext{,p (D} Rp(6n-1)) —~ 5 Ext torn) (RE(), RE(én,z)).)
2.5
It is easy to deduce for i < n — 1 from [57, § 5.2] (see also [33, Prop. 1.7]):
Ext?, p,\(Re(6,), Di) = Ext{, (D}, Rp(0,-1)) = 0

and it is clear that Hom,r,)(Dj, RE(6,-1)) = Hom(,r,)(REe(6,), D”’l/Di) = 0. By
dévissage, we deduce that w; is surjective, j; is injective and Ker(u;) = Ext(@ r,)(Re(6n), D7).
Also the two cup-products in (2.5) are perfect pairings by Proposition 2.3. In particular we
obtain the following lemma.

Lemma 2.5. We have in Ex‘cao’F (DY~ Y RE(0n1)) fori<n—1 (via j;):
Ceni(D - DY) N Ext(, p, (DY /DY, Re(6n-1)) = tema(D/ D5 : DY~/ DY) (2.6)
and with respect to the bottom pairing in (2.5):
Ext(, (D7~ /Di, Re(6,-1)) = Ext(, r,y(Re(8,), D)
Remark 2.6. In particular, for : = n — 2, we have a perfect pairing:
Ext(,p,\(Re(6), Re(6n-1)) X BExt{,p, (Re(0n-1), RE(6n-1)) — E. (2.7)

Thanks to (1.11) we can thus view:

gFM(D : D?71> N EXt%%FL)(RE(5n,1), RE(5n,1)) = £FM<D/D?72 : D?il/D?72)
= Lem(D/Dy™2: DY /DY 7?)
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as an E-vector subspace of Hom(L*, F) of codimension < 1. By [33, Prop. 1.9], the pairing
(2.7) induces an equality of subspaces of Ext%%FL)(RE(én_l), Re(0n-1)):

Exty(Rp(0n-1), Re(0n-1)) = Exte(Rp(0n), Re(dn-1)) "

where Ext, denotes the subspace of extensions which are crystalline up to twist by characters.
In particular via (1.12) we have an inclusion in Ext, p,(Re(6n-1), Re(0n-1)):

Hom,, (L, E) C lp(D/Dy2 . D1/ Dp=2)
if and only if D/D?™? is crystalline up to twist by characters.

We now assume that for i € {2,--- ,n — 1} the extension of Rg(d;1+1) by Rg(d;) appearing
as a subquotient of D¥ is nonsplit. Similarly to the two bottom lines of (2.2) we have a
commutative diagram of pairings:

Ext{,p,,(Dy, Dy)  x Extl, . (D8 Re(h)) —— Ext?,; (D5 Re())

/ | | o

Extl, ) (Re(02), D8) x Ext{, (D}, Rp(01)) —— Ext?, 1 (Re(d2), Re(51))

(pT'r)

where the right vertical map is an isomorphism of 1-dimensional E-vector spaces, the bottom
cup-product is a perfect pairing, ' is surjective, and:

dimp Ext!, ) (Re(82), Dy) = dimg Extl, -, (D5, Re(81)) = (n — D[L: Q] + 1.

We define as previously the orthogonal spaces Lgy (D : DY) C EXt%%FL ) (D3, Dy) and ley (D
Dy) C Ext (o) (RE(d2), D7) of E[D] C Ext%%FL)(DS, REe(01)). We again have a short exact
sequence:

0 — Ker(r') — Lpn(D : D2) = fpn(D : DY) — 0.

We have as in (2.5) a commutative diagram for 2 < i

EXt(l%FL)(RE(52>,Dg) X EXt(l(pIL)(Dg,RE((Sl)) —) EXt(@FL (RE 52) RE((Sl))

q y |

Ext%%FL)(RE(@),Dg) X Ext%%FL)(Dg,RE(él)) Y, Ext%%FL)(RE((&),RE(él))

where the cup-products are perfect pairings, j; is injective and wu; is surjective. Moreover as
in Lemma 2.5, we have in EXt%@7FL)(RE(52), Dy) for 2 < i (via j;):

lpn(D : D3) NExt, 1,y (Re(d2), Dy) = lem(D] : D).

Theorem 2.7. Let D' (resp. D) be a deformation of D7™" (resp. D}) over R e of
rank n — 1 (thus with D' = D! (mod ¢), resp. D} = D% (mod €)). Then there erist
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a deformation D of D over Rgqse and a deformation on (resp. 51) of 0, (resp. 1) over
Ele]/€® such that D sits in an exact sequence of (p,T'r)-modules over Ry e:

0— 5?‘1 5D Rpl)e (Sn) —0

(resp. 0 — Rpjqye (0;) — D — D} — 0)
if and only if (with notation as for [D]):

Dy @r,, 2 Riye (5,6,)] € Lana(D : D)

Elel/e?

(T@Sp. [D ®RE[ s ,R'E[e}/e? (5;1(51” S ﬁFM(D : Dg))
Proof We prove the case D!, the proof for D} being symmetric. Replacing D and D" !
by D R . RE[E /€2 (5 16,) and D” ! R g2 REjq/e (5 16,) respectively, we can assume

bn = 6. By twisting by Rg(d, 1), without loss of generality we can assume §, = 1. Now
consider the exact sequence 0 — D}t — D}t — D! — 0. Taking cohomology, we
get a long exact sequence:

(D7)

0— Hi,p (D} — H| ([);H) 2 HYp ) (D7) = HY

(o, T'L) (¢, Tr)

with the map c equal (up to nonzero scalars) to ([D*1,-) where (, ) is the cup product in
(2.1) with 6,, = 1 (and [D}'] is seen in Ext%%FL)(D?’l, D 1)). So we have ([D}'],[D]) =0
if and only if [D] € H (1 SDIL)(D?_I) lies in the image of pr if and only if a deformation D of
D as in the statement exists. But by definition we also have ([D*1,[D]) = 0 if and only if
(D7) € Ley(D : DY), This concludes the proof. O

Remark 2.8. One can view Theorem 2.7 as a parabolic version of [46, Thm. 3.14] or [23,
Thm. 0.5].

When n = 2, the two cases in Theorem 2.7 obviously coincide, which in particular implies
the following corollary.

Corollary 2.9. Assume n = 2, then we have Lyy(D : Rp(61)) = Len(D @ Re(d2)) when
these two vector spaces are viewed as subspaces of Hom(L* | E) via (1.11).

Remark 2.10. For any ¢ € ¥, denote by Hom, (L*, E) the subspace of Hom(L*, E') con-
sisting of locally o-analytic characters on L*. We have Hom,,(L*, F) C Hom,(L*, E') and
dimp Homy(L*, E) = 2. Let log, : L* — L be the unique character which restricts to
the p-adic logarithm on OF and such that log,(p) = 0. We see that (val,, o o log,) form
a basis of Hom, (L*, E/). Assume n = 2, D special noncritical and noncrystalline (equiva-
lently semi-stable noncrystalline with distinct Hodge-Tate weights) and denote by Lyy (D) C
Hom(L*, E') the subspace of Corollary 2.9. Then we have Lpy(D) N Homy (L*, E) = 0 and
Levy(D)y := Lpm(D) N Hom, (L*, E) 1-dimensional (inside Hom(L*, E)). Thus for any
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o € ¥y, there exists £, € E such that Lry (D), is generated by the vector o olog, —L, val,,.
By comparing Theorem 2.7 with [81, Thm. 1.1} (which generalizes a formula due to Colmez),
it follows that this L, is equal to Fontaine-Mazur’s L-invariant obtained from the Hodge
line in the o-direct summand of the (¢, N)-filtered module associated to D (with the nor-
malization of [23, § 3.1]).

We end this section by a quick speculation. We can call Lpy(D : DY) (vesp. Lenm(D : D))
the (Fontaine-Mazur) L-invariants of D relative to D' (resp. to DJ). A natural question
in the p-adic Langlands program is to understand their counterpart on the automorphic
side, e.g. in the setting of locally Q,-analytic representations of GL, (L). The above results
suggest that such invariants might be found in deformations of certain representations of
(lower rank) Levi subgroups of GL,(L). In the following section, we indeed succeed in
finding such L-invariants in the locally analytic representations of GL3(Q),) constructed in
[4] by means of the p-adic Langlands correspondence for GLy(Q,).

3. L-invariants for GL3(Q))

In this section we use the subspaces Lpy(D : DY) and fpy(D : D7) defined in § 2 to
associate to a given 3-dimensional semi-stable noncrystalline representation of Galg, with dis-
tinct Hodge-Tate weights one of the finite length locally analytic representations of GL3(Q))
constructed in [4].

3.1. Preliminaries on locally analytic representations
We recall some useful notation and statements on locally analytic representations.

We fix the Q,-points G of a reductive algebraic group over Q, (we will only use its Q,-points).

Lemma 3.1. Let Vi, Vo, V be locally Q,-analytic representations of G over E such that
V' is a strict extension of Vo by Vi in the category of locally analytic representations of
G. Suppose Homg(Va, V') = 0, where Homg(Va, V) is the E-vector space of continuous G-
equivariant morphisms, and that Vi, Vo have the same central character x. Then V has
central character x.

Proof. For z in the center of G consider the G-equivariant map V' — V| v — zv — x(2)v. It
is easy to see this map induces a continuous G-equivariant morphism V5, — V| which has to
be zero. The lemma follows. m

Let V; < V5 < V be closed embeddings of locally Q,-analytic representations of G' over I/
with central character y. Let U be a strict extension of V; by V and W := U/V, (where
Vo = V — U). We can then view U as a representation of G over Fle]/e? on which e
acts via € : U —» V) —— U. Thus the closed subrepresentation V of U is exactly the
subspace annihilated by e. We also see W as a representation over El[e]/e* by making e
act trivially, so that U — W is a surjection of FEle]/e*-modules. Let v : Q, — E be a
continuous additive character and define the character 1+ e : Q) — 1+ Ee C (E[e]/e*)*.
Set U’ := U ®pjqye (1 4 e) odet and W' := U’/V;, (where we still denote by V5 the image
of ‘/2 ®E[e]/52 (1 + 1/16) o det).
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Lemma 3.2. We have W =2 W' as G-representations.

Proof. Let e be a basis of the underlying El[e]/e>-module of the representation (1 + ¢) o det,
we have a natural E-linear bijection f: U — U’, v+ v ® e. For v € V, we have:

g(f(v)) =glv®e) = g(v) ® ((1+ve) odet(g))e = g(v) ®e = f(g(v))

where the last equality follows from the fact that g(v) € V < U is annihilated by e.
Thus f|y induces a G-equivariant automorphism of V' if we still denote by V' the image of
V ®@gjq/e (14 ve) odet in U'. We now consider the induced map (still denoted by f):

[UVy = U )Vs.
The same argument using the fact that W is killed by € shows that f is G-equivariant. []

The following lemma will often be tacitly used in the sequel.

Lemma 3.3. Let Z := (@;)’” for some integer r and x, X' be locally analytic characters of
Z over E. Assume x # X', then we have Exty,(x',x) =0 fori > 0.

Proof. This follows from [54, Cor. 8.8] together with [54, Thm. 4.8] and [54, Thm. 6.5]. O

Notation 3.4. Let Vi, Vo be admissible locally Q,-analytic representations of G over E,
W C Extg(Vy, Vi) be a finite dimensional E-vector subspace and d := dimg W. Then we
denote by &(V, V;Bd, W) the extension of Vz@d by Vi naturally associated to W'

Explicitly, let e1,--- ,eq be a basis of W over E and denote by &(V, Vs, e;) € Extg(Va, Vi)
the extension corresponding to e;, then we have:

i=1,,d

EVLVELW) = P Vi, Va,e)

Vi

where the subscript V; means the amalgamate sum over V;. This is an admissible locally
Qp-analytic representation of G' over £/ which only depends on W.

3.2. p-adic Langlands correspondence for GL2(Q),) and deformations

We study Ext! groups of rank 2 special (¢, ')-modules over R and relate them to Ext!
groups of their associated locally analytic GLy(Q,)-representations. We prove several results
on these Ext! groups that are used in the next sections. Some statements in this section
might already be known or hidden in the literature, but we provide complete proofs.
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3.2.1. Deformations of rank 2 special (¢, I')-modules
We define and study certain subspaces of Ext! groups of (¢, T')-module over R and relate
them to infinitesimal deformations of rank 2 special (¢, I')-modules.

We now assume L = Q, and let (D, (d1,d2)) be a special, noncritical and nonsplit (¢, I")-
module over R (see the beginning of § 2).
Lemma 3.5. We have dimg Ext%%r)(D, D) =5 and a short exact sequence:

0 — Ext, (D, Rp(61)) — Ext(, (D, D) — Ext, (D, Re(d2)) — 0 (3.1)
where dimpg Ext%%F)(D, REe(41)) =2 and dimg Ext%¢7r)(D, REe(02)) =3
Proof. By the hypothesis on D we have a long exact sequence:
0— Hom(%p)(D, RE(51)) — Hom(%p)(D, D)

— Hom, 1y (D, RE(d2)) — Exti, (D, Re(61))
— Ext(, (D, D) — Ext(, (D, Rg(d)) — -+ (3.2)

By Proposition 2.3(1),  is surjective, and ¢ is injective since the third arrow is obviously
an isomorphism (using the fact that D is non-split and noting that both source and target
are 1-dimensional E-vector spaces). By (1.11) we have dimpg Ext n(Re(d), Re(d)) = 2.
Using [57, Thm. 5.3, Thm. 5.7], we get:

dlmE EXt%@’F)(RE((sl),RE((Sg)) = 1, Ext?%r)(RE(ég),RE(&)) =0

which implies dimg Ext%%F)(D,RE(ég)) = 3 by an obvious dévissage. By [57, Thm. 5.3]
together with [57, § 5.2] we obtain (where DV is the dual of D):

dimp Ext{, (D, Rp(61)) = dimg H}, 1y (DY @, Rp(01)) =
The lemma follows. O
We have dimg Hom(, 1y (Rg(d1), Re(d1)) = dimg Ext2 r)(REe(02), Re(01)) = 1 (see Lemma
2.2 for the latter). From [57, § 5.2] and the proof of Lemma 3.5 we have:
dlmE EXt%%F)(RE(dQ), RE(51)) = dlmE EXt%%F) (D RE((Sl))
= dlmE EXt (RE((51> RE((Sl)) =2

Moreover we also have Ext?, (D, Rp(61)) = H{

oy (DY @Ry RE(61)) = 0. We deduce a long
exact sequence:

0 — Hom,r)(REe(61), Re(01)) — Ext, (Re(d2), Re(61))
— Ext{, (D, Rg(61)) — Ext(,r(Re(61), Re(01))
— Ext2 n(Re(d2), Re(d)) — 0 (3.3)
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where dimg Im(s;) = dimg Im(k;) = 1. Since Extipﬁr)(RE(%),RE((Sg)) = H(O%F)(RE(s)) =
0, we also have a short exact sequence:
0 — Ext{, 1 (REe(62), RE(d2)) == Ext(, (D, Rp(5))
2 Ext n(Re(01),Re(d2)) — 0 (3.4)

with dimp Ext(, r(Re(82), Re(d2)) = 2 and dimg Ext(, r(Re(01), Re(d:)) = 1 (see the
proof of Lemma 3.5). We denote by kg the following composition:

ko« Bxti, (D, D) = Ext(, (D, Rp(6:)) == Ext(, r)(Re(d1), Re(5)). (3.5)

In the sequel we loosely identify Ext%@’F)(D,D) with deformations D of D over RE/e,
dropping the [] (this won’t cause any ambiguity). We define:

Ext!

tri

(D, D) := Ker(ro) C Ext{, (D, D).

It is then easy to check that those Din Ext{;(D, D) can be written as a 1 (nonsplit) extension
of Rpjqe (52) by Rgi/e (51) as a (¢,I')-module over Rz where 5; for i € {1,2} is
deformation of the character d; over Ele]/e

Lemma 3.6. We have dimg Ext/ (D, D) = 4.

Proof. 1t follows from the surjectivity of £ (Lemma 3.5) that Ker(ko) is the inverse image
(under the map k) of Ker(ks) in Ext%%F)(D, D). The lemma follows then from (3.4) and a
dimension count using the first equality in Lemma 3.5. [

By (3.4), (3.1) and the proof of Lemma 3.6, we get a short exact sequence:

0 — Ext(,ry(D, Rp(61)) — Exti;(D, D) = Ext(, ) (Rg(82), Re(d:)) — 0. (3.6)

The map & in (3.6) is given by sending (D, (d1,43)) € Extl.(D, D) (with the above notation)

to by € Ext%%r) (RE(d2), Re(d2)). In particular we deduce from (3.6) the following lemma.

(D, D) and (51, 82) be the above trianguline parameter of D over
Ele]/¢%. Then D € Ker (k) if and only if 0 = 8.

Lemma 3.7. Let D € Ext?

Let Dy := D} = Rg(d;) C D (notation of § 2), identifying Ext%%F)(Dl, Dy) with Hom(Q)', E)
by (1.11) we view Lpy(D : Dy) C Ext ry(D1, D1) (see § 2) as an E-vector subspace of
Hom(Q,, E). Since D is assumed to be nonspht Ly (D = Dy) is one dimensional by Corol-
lary 2.4(2). The following formula (sometimes called a Colmez-Greenberg-Stevens formula)
is a special case of Theorem 2.7 (via the identification (1.11)).

Corollary 3.8. Let D € Extm(D,D) and (51,52) its above trianguline parameter. Let
Y € Hom(Q), E) such that 02071 = 85071 (1 + we), then 1 € Ly (D : Dy).
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Likewise one checks that the composition:
Ker(k) ~— Ext{, (D, Rp(61)) = Ext(, r(Re(01), Re (1)) (3.7)

(see (3.1) for v and (3.3) for k1) is given by sending (D, (81,0,)) € Ker(k) (cf. Lemma 3.7)
to 6;. Hence, by Corollary 3.8 and dimg Im(k,) = 1, (3.7) has image equal to Lepnm(D : Dy).
Denote by ¢g the following composition:

(D, D)

tri

Lo : EXt%%F) (RE(52), RE((Sl)) —L1—> EXt%%F)(D, RE(51)) ——> Eth

(see (3.3) for ¢1). By Lemma 3.5 and dimg Im(¢;) = 1 we see that Im(zg) is a one dimensional
subspace of Ker(x). From (3.3) and (the discussion after) (3.7), we deduce a short exact
sequence:

0 — Im(1) — Ker(k) = Lpm(D : Dy) — 0. (3.8)

In particular, Im(z0) is generated by (D, d1,05) € Extl (D, D) with 0; = 6; and 0y = d5.

tri

We denote by Extw r),z(D, D) the E-vector subspace of Ext »1)(D, D) consisting of (¢, T')-
modules D over R /e such that /\RE e D RE/e ((51(52) (1 e. with “constant” determi-
nant), and by Ext;(D7 D) the E-vector subspace of Ext(%F)(D, D) consisting of D such that
D ®r, Re(671) is de Rham.

Lemma 3.9. We have dimpg EXt%w7F)7Z(D, D) =3.

Proof. We have a natural exact sequence:
0 — Ext, ) z(D, D) — Ext(, (D, D) — Hom(Q), E) (3.9)

where the last map sends De Ext%%r)(D, D) to ¢’ with v/’ satisfying:

/\% 25 = RE[€]/62 (5152(1 + ¢,€)).

Ele]/e

On the other hand, we have an injection j : Hom(Qy, F) — Ext%%r)(D,D), v = D®g
R/ (1+ (¥/2)e) and it is clear that Im(j) gives a section of the last map of (3.9). Hence
the latter is surjective and the lemma follows from the first equality in Lemma 3.5. O

Lemma 3.10. We have dimpg (Ext%% r,z(D; D) N Ext}

tri

(D,D)) =2.

Proof. From Lemma 3.5, Lemma 3.6 and Lemma 3.9 it is sufficient to show
that Ext% r),z(D, D) is not contained in Exti (D, D). However with the notation of the

proof of Lemma 3.9, we have Im(j) N Ext( F)Z(D D) = 0 inside Ext({, (D, D) and it
is clear that Im(j) C Ext! (D, D). If Ext ),2(D, D) C Ext.,(D, D), this would imply
dimg Ext (D, D) > dimp Im(j) + dimg Ext (D D) =2+ 3 =5, contradicting Lemma
3.6. [l
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Lemma 3.11. (1) We have Ext}(D, D) C Exty;(D, D).
(2) For D € Extm(D D) of trianguline pammeter gl = 01(1 + ¥1€), 0y = 0o(1 + thoe), we
have D € Ext! o(D, D) if and only if 1; € Hom(Q), E) fori=1,2.

(3) We have:

3 if Lpm(D : Dy) = Hom(Q), E). (3.10)

dimg Exty (D, D) = {

Proof. (1) Twisting by a character, we can (and do) assume that the §; for i = 1,2 are
locally algebraic (see Definition 2.1). Since wt(020; ') € Z<o we have Exty(Rg(61), Re(02)) =
H}(Rp(026, ")) = 0 and we deduce from (3.5) (since being de Rham is preserved by taking
subquotients) Exty (D, D) C Ker(rg) = Exty,;(D, D).

(2) We know Rpjq/e(6:i(1 + 9i€)) is de Rham if and only if ¢; € Hom,(Q,, E) (see e.g.
(33, Rem. 2.2(2)]). The “only if” part follows. For i € {1,2} let ¢; € HomOO(Q )
8; == 0;(1+s€) and D € Ext{, 1 (Rpigse (92), Rippe2(01)) C Extly(D, D). Since Ry ez (02)
is de Rham, we are reduced to show that:

D ®r RE[E]/€2 (5 ) € H ('R,E [e] /€2 ((515 ))

Ele]/€e2
is de Rham. However, since wt(6,0; ") € Z>o and Rp; /e (515 ') is de Rham, we know (e.g.

by [33, Lem. 1.11]) that any element in H (RE[G]/e (0105 ") is de Rham. The “if” part
follows.
(3) The exact sequence (3.9) induces a short exact sequence:

0 — Ext(,p z(D, D) NExt, (D, D) — Exty(D, D) — Hom(Q,, E) — 0 (3.11)

D

where the last map is surJectlve since the map j in the proof of Lemma 3.9 induces an injection

Hom,(Qy, E) — Ext! o(D, D). We have D € Ext F)Z(D D) N Ext} o(D, D) if and only if
V1,2 € Homo(Q, F) and 91 +1p = 0 (for ¢); as in (2)) Moreover, for any D € Extl,(D, D)
we have 1 — 1y € Lpy(D : Dy) by Corollary 3.8. If Lpy(D @ Dy) # Home (Q), E), we see
this implies ¢; = 0, hence Ext(¢7r)7Z(D, D)n Extg(D, D) = Im(¢p) is one dimensional by the
sentences before and after (3.8). If Lpy(D @ D) = Hom(Q, E), we have Ext%¢7r)7Z(D, D)n
Ext,(D,D) = Ext(,p 4(D,D) N Exty,(D, D) by (2) since ¥y + 19 = 0 and ¥ — 9y €

Hom(Qy, E) is equivalent to 11,y € Homu(Q,, F), hence Ext( nz(D,D)N Ext! (D, D)
is 2-dimensional by Lemma 3.10. The result then follows from (3.11). O

Now fix k € Zs1, set 3 := dyx | - |71 and consider the special case of the pairing (2.1):
@]
Ext(,r, (Re(d3), D) x Ext(, (D, D) — Ext?, . \(Rg(ds), D) ~ E. (3.12)

Recall the map Ext r)(Re(ds), Re(01)) — Ext%%rL)(RE(ég),D) is injective from our as-
sumptions on the 51, i 6 {1,2,3}.
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Lemma 3.12. We have Ext.,(D, D) = Ext 1) (Re(ds), Re(01))*" in (3.12) and a commu-
tative diagram:

Ext{,r(Re(d3), Re(d2)) x Extl,r(Rp(d2), Rp(d2)) —— E

H d H

Ext{,r (Re(0s), Rp(d:)) x  Extly (D, D) Y E (3.13)

tri

T l |

EXt%cp,F) (RE(53), D) X Exté%r) (D, D) Y. R

Proof. The top squares of (3.13) are induced from the bottom squares of (2.2). Recall
Exty,; (D, D) = k- "(Ext(, ) (Re(d2), Re(0))) C Ext%%r) (D, D) (see the proof of Lem-
ma 3.6). Replacing the mlddle objects in (2.5) (for 6, = d3, 6.1 = 0y, DY 1/Dt =
D/D;, = Rg(d;) and D}~ = D) by their preimage under the map & : Ext%%F)(D,D) —
Ext%%F)(D, RE(d2)), we obtain the bottom squares of (3.13). This gives the commutativity.
Together with the second part of Lemma 2.5, the first statement also follows. O

3.2.2. Deformations of GLy(Q,)-representations in special cases

By the p-adic local Langlands correspondence for GL2(Q,), we can associate a locally an-
alytic representation m(D) of GL2(Q,) to the (¢, I')-module D of § 3.2.1. Moreover, under
mild hypothesis, we may identify Ext%%F)(D,D) to ExtéLQ(Qp)(W(D),W(D)) (see Hypothe-
sis 3.26(1) and Proposition 3.30). In this section, we recall the explicit structure of 7(D)
(twisting by characters, 7(D) will be isomophic to m(A, ) in (3.27) below). We then study
Ext groups of certain subquotients of (D) and we construct analogues of the groups Ext;,
Ext; for 7(D) (such that Hypothesis 3.26 (2) and Lemma 3.28 hold, see Proposition 3.22,
Proposition 3.25). Many of the results in this section may not be really new, but we include
the proofs for completeness.

For an integral weight p1 of GL2(Q,), we denote by §,, the algebraic character of the diagonal
torus T(Q,) of weight u. We fix A = (ki, k) € Z? a dominant weight of GL,(Q,) with
respect to the Borel subgroup B(Q,) of upper triangular matrices (i.e. k; > k»), and denote
by L()) the associated algebraic representation of GLy(Q,) over E. If s is the nontrivial
element of the Weyl group of GLsy, we have s- A = (ko — 1,k + 1) (dot action with respect to
B(Q,)). We denote by St3° be the usual smooth Steinberg representation of GLy(Q,) over
E and set:

1) = (Indg 2 80)™, I1(s-A) i= (Ind5 20 6,0)™

~

where B(Q,) is the subgroup of lower triangular matrices. Then I(\) has the form I(\ )
L(X\) —St53°(A\) — I(s- A) (recall — denotes a nonsplit extension), St3°(A) := St3° ®EL( ) an
I dGLQ(Qp) ) L(

B(Qp) )

where the subrepresentation L(\) —St5°(\) is isomorphic to () := (
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We denote by St3"(A) := I(\)/L(A) = St3°(A) — I(s - A) and set:

I0) = (a2 sy )”
I(s-A) = (Ind%?éfp) Soa(l- [Tt |- ))™

Then I(A) has the form St5°(\) — L(A) — I(s-\) where the subrepresentation St5°(\) — L(A) is

isomorphic to () := (Ind%%&i?p) |- @] [)®°®@gL(A). If V is a locally analytic representation

of GLy(Q,), we define the locally analytic homology groups H;(N(Q,), V) as in [54, Def. 2.7]
where N (Q,) is the unipotent radical of B(Q,). The homology groups in the following lemma
(combined with Schraen’s spectral sequence [78, (4.37), (4.38)]) will be frequently used in
our study of the extension groups of locally analytic representations.

Lemma 3.13. We have the following isomorphisms:

(0, =0
HZ(N<@P>7L(/\)) = 0sn =1 (3-14)
0 i>2
B (6\(- 7' @]-]) i=0
Hi(N(Qp), St°(A) = Qdan(l-[TT@|-]) i=1 (3.15)
L0 i>2
8o i=0
Hi(N(Qp). I(s-N) = (o[l ]) i=1 (3.16)
L0 i>2
. (6l - @ 1) i=0
H{(N(Q,),I(s-))) = <4y i=1 (3.17)
0 i>2.

\

Proof. The isomorphisms (3.14) and (3.15) follow from results on classical Jacquet module
together with [78, (4.41) & Thm. 4.10]. The isomorphisms (3.16) and (3.17) follow from [54,
Thm. 8.13] and [78, Thm. 3.15]. O

The following statement is not new, we include a proof for the reader’s convenience.
Theorem 3.14. We have natural isomorphisms:
Hom(Q;, B) = Extgyp,(qg,) (L), St3"(A)) +— ExtéLZ(Qp)(f(/\)/Stgo()\),Stgn()\)). (3.18)

Proof. The first isomorphism follows from [5, § 2.1], but we include a proof. By [78, (4.38)],
we have a spectral sequence (where Z(Q,) = Q) is the center of GLy(Q,), that we often
shorten into Z):

Ext”T(Qp)’Z(HS(N(Qp), LN), I(N) = Ethﬂi(Qp),Z<L0‘>> I(N)).
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Together with (3.14), we have isomorphisms:

Hom(T(Q,)/Z(Qy), E) — Extyg,) 2(0x, 0x) — Extap,g,) z(L(A), I(N).

By [78, Cor. 4.8], we have Exter, ) 2(L(N), L(A) = Extdr,q,)2(L(A), L(A)) = 0. By
dévissage, Lemma 3.1 and [4, Lem. 2. 1. 1], we have then:

Exter, (g,).2 (LN, 1) = Extar, g,z (L), 865" (V) = Extay, g, (L(A), St (V). (3.19)

The first isomorphism follows. By [4, Prop. 3.1.6] we have ExtéLQ(@p)(f(s-)\), St5°(A)) = 0 for
i=1,2. By [78, (4.37)] and (3.17), we have Ext{y, g, (I(s-A),I(s+ \)) = 0 for i € Zso. By

dévissage, we deduce ExtELQ(Qp)(T (s-A),St5"(N\)) = 0 for i = 1,2. The second isomorphism
then follows by dévissage again. O]

By [78, (4.37) & (4.38)], we have a commutative diagram (with the notation of the last
proof):

Hom(T(Qy)/Z(Q,), E) —— Extyg,) z(0x,08) —— Extey,g,) z(L(V), I(V)

l l l (3.20)

Hom(T(Q,), E)  —— Extypq,(0x,0)) —— Extép, g, (LA), I(X)).

Consider the short exact sequence:

0 — Extr, g, (L(A), L(N) — Extér, g, (LA), I(A) — Extér, g,y (L(V), St (A) — 0 (3.21)

where the last map is surjective by (3.19). Contrary to ExtéLQ(Qp)’Z(L()\),L()\)) =0, we
have Extg,, @,)(L(A), L(A)) # 0. More precisely, we have a commutative diagram:

Hom(Z(Q,), E) —— Exthy, g, (L(N), L(V))

| l

Hom(T(Q,), E) —= Extly,q,) (L), I(N)

where the bottom horizontal map is the composition of the bottom line in (3.20) and where
the left vertical map is given by ¢ — 1) o det. In particular, the natural surjective map:

Hom(T(Q,), E) —» Bxthy o, (L(V), SE(V) (3.22)
is zero on Hom(Z(Q,), E).
We can make this map more explicit (e.g. by unwinding the spectral sequence [78, (4.37)]).

Let ¢ € Hom(Q,', ') and choose 9; € Hom(Q), E) for i = 1,2 such that 1; — ¢y = 9. Let
o(11,19) be the following two dimensional representation of 7'(Q,):

o (r, ) (3 2) = (3 ¥r(a) T%(d))
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and consider the natural exact sequence:

0 — I(\) — (Ind5 2 6y @p 0t 1)) =5 1(A) — 0.

Then the locally analytic representation:
T(A, 1) = pr (L(A))/L(A) = St3*(A) — L(A) (3.23)

only depends on ¢ and not on the choice of 11 and 1, and the map (3.22) is given by
sending ¥ to w(\,¥)~ (seen as an element of ExtéL2(Qp)(L()\), St5"(A))). Moreover:

T(A 1, 02) ™ = pr ' (i(A))/L(N) (3.24)

actually depends on (and is determined by) both ¢ and ¥,. By [78, (4.37)] and (3.14), (3.15),
we have Hom(T'(Q,), E) — Ext%p((@p)((i\, 0y) — ExtéLQ(Qp)(i()\), I()\)) and the composition
is given by mapping (¢1, ) to pr—'(i(\)). By [62, Prop. 15] and the same argument as in
the proof of [62, Cor. 2] (see also [28]), we have:

Extir, @,),00(0(0), 1) = 0, i € Zxo. (3.25)

By a version without central character of the spectral sequence [78, (4.27)] (which follows
exactly by the same argument), we deduce from (3.25) Extgy, q,)(i(A), L(A)) = 0 for i € Zx,.
Hence the natural push-forward map:

Extar,,) (((V), I(V)) — Extgr, g, (1(A), St (1))
is a bijection. Putting the above maps together, we obtain:
Hom(T'(Q,), E) — EXté;LQ(Qp)(i()\),Stgn()‘))a (1, 92) = T(A, 1, 1b2) "
Let 0 # ¢ € Hom(Q, E) and define:
T(\ ) € Extly, @, (I(N)/St3°(N), St3*(N)) (3.26)

to be the preimage of m(A, %)~ in (3.23) via the second isomorphism of (3.18) (we should
write [m()\, )] to denote some element of the above Ext! associated to the representation
m(A, ), but as in § 3.2.1 we drop the [-], which won’t cause any ambiguity). So one has:

(A 0) ~ St3"(\) — (L) — I(s- \)) (3.27)

and we recall the irreducible constituents of St3"(\) are St3°(A) and I(s - ).

We now study the extension groups:

EXtéLg(Qp)(W(/\W)aW(/\7¢)) and EXtéLg(Qp),Z(W()V'(p)?ﬂ-(/\7¢))'

Note first that by [4, Lem. 2.1.1] one can identify ExtéLQ(Qp)(ﬂ()\,w),ﬂ()\,w)) with
deformations 7 of w(\, 1)) over Ele]/€®. Let x» := dx|z(q,), which is the central character of

(A 9).

26



Lemma 3.15. For any 7 € EXtéLz(Qp)(W<)\,77/)),71'()\,77/))), there ezists a unique lifting X :
Z(Q,) — (Ele]/é*)* of x» such that Z(Q,) acts on T via X.

Proof. Forv € 7, we have (2—xx(2))v € m(\, ¥) and thus (z—xx(2))?*v = 0 for all z € Z(Q,).
The map v — (z — xa(z))v induces a morphism from 7(A, ) (as quotient of T) to (A, 1))
(as subobject of 7) which is GL2(Q,)-equivariant since z is in the center. But any such
endomorphism of 7(\, 1) is a scalar by [36, § 3.4] since all (absolutely) irreducible constituents
of (A, v) are distinct. So for any v € 7 and z € Z(Q,), we have (z — xa(2))v € E(ev),
and hence there exists X : Z(Q,) — (E[e]/€*)* (which a priori depends on v) such that
zv = Xx(z)v for all z € Z(Q,). We fix a v which is not in 7(\,¢) = er and define:

T(Xn) ={wen (z-X\(z))w=0Vze Z(Q,)}

which is a GLy(Q,)-subrepresentation of 7 strictly containing 7(\,v¢) = er. Thus we have
St3°(A) € m(Xx)/m(A,9) since socar,(g,) T(A,¥) = St3°(A) and 7(xx)/7 (A, ¢) is a nonzero
subrepresentation of 7/er ~ w(\,1). We need to prove 7(xy) = 7. If (X)) # 7, then
there exists another lifting X} # X such that m(X)) strictly contains 7(X,), and hence
St5°(A) C ( ")/m (A, ¢). This implies Z(Q,) acts on the subextension V; C 7 of St5°(\) by
(A, ¢) = em via x,. However, by Lemma 3.1, this then implies Z(Q,) acts on the whole 7
by the character y,, a contradiction. Hence (X)) = 7. ]

Lemma 3.16. We have a short exact sequence:
0— EXtéLg(@p),Z(ﬂ-(Au 77D)7 7T(>\7 W) — EXté}Lz(Qp) (7'('()\, 1/})7 W()U 1/})) & HOIIl( ;7 E) —0

where pr sends T to (Xaxy' — 1)/€ where Xy is the central character of T given by Lemma
3.15.

Proof. Tt is sufficient to prove pr is surjective. However, it is easy to check that ¢’ +—
T(A, 1) ®p (1 + S€) o det gives a section of the map pr. The lemma follows. O

The following lemma consists of some Ext calculations (using Schraen’s spectral sequences
(78, (4.37), (4.38)], Lemma 3.13 and dévissage). We suggest to skip the proof on first reading.

Lemma 3.17. (1) We have ExtELZ(Qp)(I(s “A), (AN Y)) = ExtGLQ(@p)(f(s “A), (A ) =0
for alli € Z.
(2) We have:

dimp EXtGL (St2 ( )7 ( dJ) =2, dimg EXtGLz (StQ ( )
dimpg EXtGLQ(@ )Z(L< ), (X, 9)) = dimp Extgy, (Qp )(L(A) (A, )
dimBxthy, g1 7 (0 1) SEE(N), T, 1) —dimgExthy g, (0, v

(8) The following natural sequences are exact:

0— EXt%}Lg(Qp),Z(T(()" w)/ St;O(A), W()‘a ,lvb)) — EXt%}Lg(Qp),Z(Tr()‘a w)v ﬂ-()‘a 7/)))
— EXt%;LQ(Qp),Z(StSO()\% (A ) (3.28)
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0 — Extey, g, (T(A, 1)/ St27(\), 7(A, 1)) = Extgp, g, (1(A ), 7(A, ¥))
=5 Extp, g, (St37(\), 7(A,¥))  (3.29)

with dimpg EXtéLg(Qp),z(Wo\a V), m(\ 1)) <3 and dimpg EXtéLQ(Qp)(ﬂ'(/\, V), (A1) < 5.
(4) The following natural sequences are exact (see (3.23) for w(\,¢)~):

0 — Extgr, g, (St5°(A), m(A, 1) 7) = Extar,g,) (St5°(A), 7(A, 9))
— Extp,g,) (St5°(A), I(s - X)) — 0 (3.30)

0— EXtéLQ(@p)(Stgo()\% St3°(A)) — EXtGLQ ) (St37(A), m(A ) 7)
— EXtGLQ(Qp)(StQ (A), (A, 0) 7/ St2(A)) — 0 (3.31)

with  dimg ExtéLQ(Qp)(StSO(/\),St;o()\)) =2, dimg ExtGL2 ) (St3°(A), I(s-\) = and
dimp Extgy, (g, (St5°(A), L(V) = dimp Extay,q,) (St3°(A), m(A, )7/ St3°(A)) = L.

Proof. In this proof, we write Ext’ (resp. Ext’,) for EXté}m(Qp) (resp. ExtiGLQ(Qp), 7)-

(1) We prove the case of I(s - A), the proof for I(s - )\) being parallel. By [78, (4.37)], (3.16)
and Lemma 3.3, we have Ext'(I(s- \),I(\)) =0 for all i € Z>,. By [78, Cor. 4.3], we have:

Ext!(I(s - \), L(\) = Ext'™" (L(A)", (Indjy 23 5,55)™)

where p is the weight such that L(A)Y = L(u). However, by [78, (4.37)], (3.14) (with A

replaced by 1) and Lemma 3.3, we have Ext'(L(\)Y, IndS2@®) 5 §.)20) = 0 for i € Z>y,
B(Qp) H =

hence Ext’(I(s- ), L()\)) = 0 for all i € Zs. By dévissage, we deduce:
Ext’(I(s-\),St5"(\)) =0, Vi > 0. (3.32)
By [78, (4.37)] and (3.16) (4 Lemma 3.3), we also have:
Ext'(I(s-A),I(s-\) =0, Vi>0 (3.33)

and by dévissage we deduce Ext'(I(s “A), L(A) — I(s-))) = 0 for i > 0. Together with (3.32)
this implies (again by dévissage) Ext'(I(s-\),m(\, 1)) = 0 for all ¢ > 0. This concludes the
proof of (1).

(2) By [78, Cor. 4.8], we have Ext’,(St5°()\), St5°(\)) = 0 for i = 1,2. Consider the following
map:

Hom(QX, E) — Ext'(St3°(\), St*(N)), ¢’ — St5°(\) ®@g (1 + 'e) o det . (3.34)

P

It is straightforward to see this map is injective. We claim it is also surjective. For any
nonsplit extension 7 € Ext'(St5°(\), St5°(A)) (which we view as a representation of GLa(Q,)
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over Ele]/€?), let ¢/ € Hom(Q), E) be such that the central character of 7 is given by
Xa(1+ ¢'e) (argue as in Lemma 3.15 for the latter, though this is simpler here). Then the
representation 7 ®@ g e (1 — (1)'/2)€) o det has central character x, and hence is isomorphic
to St3°(A)9? = St5°()\) ®p Ele]/e? since Exty(St5°()), St5°(\)) = 0 ([78, Cor. 4.8]). So we
have:

T 2 (T®pee (1— (/2)e) odet) @ppe (14 (¢'/2)€) o det
(8t3°(\) ®p Elel/€*) @piaye (1+ (1/2)€) o det
=~ St3°(\) @ (14 (¢'/2)€) o det .

Thus dimg Ext!(St3°(\), St5°(\)) = 2. By [78, (4.38)] and (3.15), we have:

Exty(St5°(\), I(V) 2 Extig, 20 (|- 17" @ |- ).ax(| - [ ®]-])
Ext(St°(A),I(s-A)) = 0 Vi€ Zso.

1%

Putting these together we deduce by dévissage:

Ext' (St5°(A), (A, 1)/ St5°(N)) = Extz (St3°(A), m(, 9)/ St5°(N))
>~ Fxth (St5°(A), L(A) — I(s - A)) 2 Bxth(St°(\), I(N)) = Hom(QX, E)  (3.35)

4 )
where, for the second last isomorphism, we use the exact sequence:
0 — St(N) — T(A) — (L(\) — I(s-\)) — 0
together with Ext’, (St5°(\), St3°(A)) = 0, i = 1,2. Likewise we have:

0 = Ext,(St5°(\), St*(N)) — Ext(Sts°(N), w(\, 1))
— BExty, (St (N), m(A, ¥)/ St5°(N)) — Ext%(St3(A), St (M) =0 (3.36)

from which together with (3.35) we deduce dimp Ext}, (St3°(A), 7(A, 1)) = 2. Similarly:

0 — Ext'(St3*(A), St5°(A)) — Ext (St (N), m(A, )

— BExt!(St5°(\), 7(\, )/ St (A)) — 0
where the last map is surjective by (3.36) and the first isomorphism of (3.35). By the
above dimension computations we deduce dimp Ext'(St5°()\),7()\,¢)) = 4. To prove the
remaining equalities in (2), we only need to prove dimg Exty(L()),7()\,¢)) = 1 since the
other equalities follow easily from (1) and Lemma 3.1. By [78, (4.38)] and (3.14), we have
Exty(L(A), I(s- X)) = 0 for i > 0 and by [78, Cor. 4.8], we have Exty(L()), L(A)) = 0. By
dévissage, we deduce then Ext}(L()), I(A\)/St3°(A)) = 0. By the exact sequence:

0 — Hom(L(\), I(A)/St(\)) — ExtL (L(X), Sta"(A)) — ExtL (LN, 7(\, ¥))
— BExtL (LX), I(\)/ StP(N\) =0, (3.37)
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Theorem 3.14 and an easy dimension count, we get dimpg Exty,(L(\), 7(\,v)) = 1.
(3) This follows easily from (1), (2) and Lemma 3.16.

(4) To get the exact sequences, it is sufficient to prove that the maps:

Ext!(St°(\), 7(\,¥)) — Ext'(StF(\), I(s- \))
Ext'(Sts°(A), 7\, ¢)7)  — Ext'(St3°(A), m(A, %)~/ St5°(N))

are surjective and it is sufficient to prove they are surjective with Ext' replaced by Ext},
(since the vector spaces on the right hand side do not change). The second one fol-
lows easily from Ext%(St3°(\),St5°(A\)) = 0 (see the proof of (2) above). By [78, (4.38)]
and (3.15), we have dimgExtl(StP(N),I(s - A) = 1 and ExtL(St(\),I(s - A) = 0.
And by [78, Cor. 4.8] we have dimp Ext}(St3°(A), L(A)) = 1. The last two equalities
imply by dévissage dimp Exty,(St3°(A\), 7(A\,%)~/St5°(\)) < 1. The first, together with
dimp Ext, (St3°(A), 7(A, %)) = 2 in (2), imply the surjectivity of Exty,(St5°(\), m(\,v)) —
Ext)(St(A), I(s - A)), and then dimpg Extk (St(A), m(A, 1)~/ StP(A)) = 1. We have seen
dimp Ext!(St5°()), St3°(\)) = 2 in the proof of (2), and the rest of (4) follows from lemma
3.1 [

Remark 3.18. It follows from (3.37) and (2) that, if ' ¢ Ev C Hom(Q,', E), the image
of m(\, '), seen as an element of Ext'(L()), St3"()\)), in Ext'(L(\), 7(\, %)) is the unique
nonsplit extension V' of L(A) by m(A,v). Moreover V' contains the unique extension Vg of
L(XN)®% by St3"(A) = St3°(A) — I(s - A) with socle St5°(A) and we have (Vp)?ls = Ve =
Sto°(A) — L(A) = ¢(\). By Lemma 3.17(1) and (3.29), we have:

EXtéLQ(Qp) (L()‘)a 7‘-()" 7vb)) = EXt%}Lg(Qp)(ﬂ'(Aa 7v/})/ Stgo()‘)v 7T(>‘7 W)
— Exter, g, (T 9), (A, )

and we let 7 be the image of V' € ExtéLQ(@p)(L()\), (A, 1)) via the above injection. It is not
difficult then to deduce:

- (3.38)

alg ) STET(A)2 1) not smooth
i =
St3°(A) @ i(A) ¢ smooth.

Thus if ¢ is smooth, the map 728 — 7(\, 1))"le = Z(A) induced by ™ — m(\, 1) is nonzero
but not surjective.

We next construct Extl(m(\, ), m(A, 1)) C EX’CIGLQ(QP)(W(A, ), m(\, 1)) using the Jacquet-
Emerton functor. We first make the following hypotheses, which will be proved (under some
mild technical assumption) in Proposition 3.30 below.

Hypothesis 3.19. (1) Any representation in Ext%;Lz(Qp)(ﬁ()\,w),w()\,w)) is very strongly
admissible in the sense of [37, Def. 0.12] (which implies w(\, ) itself is very strongly ad-
missible).
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(2) We have dimg ExtéLz(Qp)ﬁz(w()\,@b), (A1) =3 and dimEExtéM(Qp)(ﬂ(/\, V), (N )=
5. In particular (by Lemma 3.17(2)), the last maps in (3.28) and (3.29) are surjective.

Denote by Hom(7'(Q,), E)y the subspace of Hom(7'(Q,), E) generated by those (¢1,12) €
Hom(Q), E)* such that ¢y — ¢, € Ei. For a locally analytic character ¢ : T(Q,) —
E~ denote by ExtT (0,0)y C ExtlT(Qp)((S, 9) the E-vector subspace corresponding to
Hom( (Qp), E)y via the natural bijection ExtlT(Qp)(é, J) = Hom(T(Q,), £). Denoting by
Jp the Jacquet-Emerton functor relative to the Borel subgroup B (where the T'(Q,)-action
is normalized as in [38]), we have since ¢ # 0:

J(StP(N\) 2 6(|- @] 7Y ¥ not smooth

Ta(St ) @ J5(LN) 2 6x(|- |®]- |71 @6y smooth. (3.39)

JB(W<>‘a 77Z))) = {

It is clear that the right hand side is contained in the left hand side. Since (A, ) is very
strongly admissible, it is not difficult to prove they are equal using [7, Thm. 4.3] together
with the left exactness of Jp and [37, Ex. 5.1.9].

Lemma 3.20. (1) Let V € Extgy, g, (St (M), 7(A\, ), then Jp(V) # Jp(x(\ ) if and
only if V' lies in the image of ExtéL2(Qp)(St§O()\),7r()\,w)’).
(2) The functor Jg induces a bijection:

Extar,g,) (S62°(\), m(A\, 1)) — Bxtyg,) (Oa(I-[@ |- [7),0( - [®]171),.  (3.40)
Proof. In this proof we write x :=0)(] - | ® | - |7!) for simplicity.

(1) We first prove the “only if” part, and for that we can assume that V' is nonsplit. If
Jp(V) # Jp(w(\ 1)), then by (3.39) we see that Jg(V') is isomorphic to an extension of x
by Jg(m(A, 1)) and that there exists an extension Y of x by x such that j; : X — Jg(V)
(recall ExtlT(Qp)(X, 8y) = 0). Denote by 6y := X ®g (| - |7 ®| - |), which is thus isomorphic
to an extension of dy by dy. One can check (e.g. by the proof of [31, Lem. 4.11]) that the
morphism 7; is balanced in the sense of [38, Def. 0.8]. From Hypothesis 3.19 (both (1) and

(2) are needed), we deduce that V' is very strongly admissible. Let ]g(L(S @)5, denote the

closed subrepresentation of (Indg(Lé(?p) g)\)an generated by Y via the natural embedding (see
[37, Lem. 0.3] for details):

X Jp((Ind5 207 5,)™) — (Indj 257 6,)""

By [37, Thm. 0.13], the map j; then induces a GL3(Q,)-equivariant map:

. GL2(Qp) T
J2 I(Qp) oy —V

such that the morphism j; can be recovered from j, by applying the functor Jgz(-). We
have socar,(g,) Im(j2) = socgr,,) V' = St3°(A) (as V is nonsplit). This implies St3°(X)
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has multiplicity 2 in the irreducible constituents of Im(js), since otherwise we would have
Im(j2) C 7(A,¢) and thus X = Jp(Im(j2)) € Jp(w(A,¢)) which is a contradiction. By the
exact sequence (3.30) together with the fact that I(s- A) is not an irreducible constituent of

[E2 @) (since it is not an irreducible constituent of (IndELZ(QP ) g,\)a“), we obtain that V
B(Qp) B(Qp)

comes from an element in Ext'(St5°(\), 7(\, 1)7).
We prove the “if” part. For ¢/" € Hom(Q), E), let U(%)") := St3°(A) ®p (1 +1'€) o det, hence
Jp(UW") = x ®p (1 +¢€) o det. In particular, taking Jp induces a bijection by (3.34):

EXtGLz (Stoo()‘)7 Stgo()‘)) — H0m<Z(@P)7 E)( — Hom(T(@P>7 E))

Denote by W (y') € ExtGL2 ) (St°(A), m(A,¢)7) the image of U(y') via the injection in
(3.31) (so U(¢") C W(¢")). By left exactness of Jp we have:

X @5 (1 +v€) odet — Jg(W (). (3.41)

Now let W = (1,19) € Hom(T'(Q,), E)y \ Hom(Z(Q,), E) (i.e. 11 # ¢ and ¢y — ¢y € E)
and consider the representation (A, ¥y, 1,)” in (3.24). We know w(\, 1)~ C w(A, ¢y, ¢9)~
and thus m(\, 11, 19)” gives a nonsplit extension of St3°(\) by 7(A,¥)~ (since the quotient
i(A) is nonsplit). Note that by construction m(\,1,19)” is a subquotient of W (W) :=
(Ind%L2 (1 + We))* and that we have a natural injection x ®g (1 + Ve) — Jg(W(¥))
(cf. [37, Lem. 0.3]). Moreover m(\, 11,19)" — W(¥)/L()\) and neither Jg(L(\)) nor
Jp(W(W)/L(N)/m(A¢1,¢2)7) = Jp(I(s- \)) contains x as a subquotient (the latter by
(37, Ex. 5.1.9]). By left exactness of Jp we deduce:

X ®p (1+We) — Jp(m(\,¥1,12)7). (3.42)

From Lemma 3.17(2)&(4) we deduce dimg EX’CGL2 y(St3°(A), (A, ¥)7) = 3 and we let II
be the unique extension of St5°(A\)®3 by (A, 1)~ Wlth s0CaL,(Q,) 11 =2 St5°(A). The above
discussion implies Jp(IT) contains the unique extension of xy®3 by x with socle y attached to
the 3-dimensional space ExtlT(Qp)(X, X)y- Indeed, let {¢] o det, ¢, o det, W3 := WU} be a basis

of the 3-dimensional space Hom(7'(Q,), E),, = ExtlT(Qp)(X, X)w where {¢],14} is a basis of
Hom(Qy, E) and ¥ = (¢1,1)9) is as after (3.41), then we have by (3.31) again:

IT= W () @rpng)y- W(H5) Brpng)- TN, 1, 902) 7.

By (3.41), (3.42), left exactness of Jp and (3.39), we deduce that applying Jp to II —
St5°(A)®? induces a surjective map:

Jp(IT) — Jp(St5P(N)P?) = 2, (3.43)

This, together with (3.39) and left exactness of .Jg, imply that any U € Ext(St3°(A), 7(A, 1))
satisfies Jp(U) # Jp(m(A, ).
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(2) By the proof of (1) (see (3.41), (3.42), (3.43)) together with (3.39) and ExtlT(Qp)(X, ) =0
we see that taking Jp induces a map:

EXt%}LQ(Qp)(Stgo(/\)7 T(\Y)7) — Eth}r(Qp) (X7 JB(W(/\ﬂﬁ)_)) = EthT(Qp)(Xa X)

which induces an isomorphism ExtéL2(@p)(St§O()\), T(\Y)7) = Ext%(@p)(x, X)y- This finishes
the proof. O

Remark 3.21. From the proof of Lemma 3.20, we can explicitly describe the inverse of
(3.40) as follows. Let ¥ € Hom(7'(Q,), £),, define:

T=0- 1@ )1 +We) € Exthg, (a1 ® |- 7)1 ® - ),
and consider the short exact sequence:
GL2(Qp an pr
()——»](A)——»(Indg@;Q)5A0.+iDQ) 2L I() — 0.

If ¥ = (¢,¢), iie. ¥ € Hom(Z(Q,), E), then pr'(i(\))/L()\) has a subrepresentation
isomorphic to St3°(A) ®g (1 4 1'¢) o det. The inverse image of X in (3.40) is then given by
the push-forward of this representation via St3°(A) < w(A,¢)~. If ¥ ¢ Hom(Z(Q,), E), the
inverse image of W is then isomorphic to pr=*(i(\))/L(\).

We now denote by Extl;(m(\, ), 7(\, 1)) the kernel of the composition:

Ko+ Extar, g (T 1), (A ) = Extgr, q,) (St5°(A), m(\, ¥)) —
EXtGLz(Q (Stgo(/\)a I(S ’ A)) (344)
with #; as in (3.29). In particular, by (3.29) we have Im(o) C Exti(m(\, ), m(A,2)).

Proposition 3.22. (1) We have dimg Ext.,(7(\, 1), m(\,¥)) = 4.

(2) Form € ExtGL2(Qp)( T\ ), 7(\, ), we have T € Extl(m(\, ), m(\, %)) if and only if
Wl |®|-17Y) appears with multiplicity 2 in Jp (7).
(3) We have a natural short exact sequence:

0 — Extgp, g, (X, )/ St5° (), (A, ¢)) == Extiy(m(A, ¢), w(A,¢))
— Extrg,) (OA(l- @] -] Da(l-1el-1™), — 0. (345)

Proof. By Hypothesis 3.19(2) and Lemma 3.17(4) (see in particular (3.30)), there is a natural
exact sequence:

0 — Ext (x(\, 1)/ St (N), (A, 1)) = Extl(r(\, v), 7\ 1)) — Im(sy) — 0. (3.46)

(1) follows by Lemma 3.17(2), (3.30) and a dimension count. Together with (the proof of)
Lemma 3.20(1), left exactness of Jg and (3.39), we easily deduce (2) and (3), where the third
map of (3.45) is given by:

Extl, (m(A 1), (A1) — Im(12) “ Extly, g, (St (), 7(\ 1))

B, Exthg,) (B3 1@ 170 - (@] [),. (347)
]
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Remark 3.23. By Lemma 3.20(2) and its proof, for any 7 € Extm( (A ), (A, ¢)), the
composition (3.47) sends 7 to the (unique) deformation Y € ExtT(@p) (G- 1], 0x( -
| ® - |*1))¢ such that x — Jp(7).

We denote by & the following composition:

(3 47)

ko Exty (m(A, 9), 1(A, ) — Extyg,) (- [@ - [7),0(-[@]-17),

~ Hom(T(Q,), E)y —2 Hom(Q), E) (3.48)

where the last map sends U = (¢1,19) to 1y (and hence is surjective). From the exact
sequence:
0 — EY — Hom(T(Q,), E),, — Hom(Q}, E) — 0

(where the injection is ¢ — ¥ = (¢/,0)), we obtain with (3.45) an exact sequence (compare
with (3.8)):

0— ExtéLQ(Qp)(ﬂ()\,w)/ St (A), T(A, 1)) == Ker(k) — Evp — 0. (3.49)
Lemma 3.24. (1) We have dimgKer(k) = 2, and 7 € Ker(k) if and only if k(7)) €
Eu(m(X1,0)7) where ky is as in (3.29) and vy as in (3.30).

(2) We have EXtéLQ(Qp)’Z(ﬂ'(/\,w),ﬂ'(/\,w)) N Ker(k) = Im(t) (where the intersection is in
EXtéLQ(Qp)(ﬂ'(/\,w), w(A,0))), and it is a 1-dimensional E-vector space.

Proof. (1) The first statement follows from (3.49) and Lemma 3.17(2). By (3.42) applied
to ¥ = (¢,0) and Remark 3.23, the “if” part follows. However, it is straightforward from
(3.29) and Lemma 3.17(2) that #x; (B ([7(A,1,0)7])) is also 2-dimensional. The “only if”
part follows.

(2) The direction D is clear from the definitions and Lemma 3.17(3). By (1), it is sufficient
to show that if ky([7]) # 0, i.e. r1([7]) € E*ut1([m(N, 1,0)7]), then T does not have central
character x, (which is the central character of m(\,1)). It is then enough to show that
(A, 1,0)~ does not have central character y,. By the construction following Theorem 3.14
and by Lemma 3.1 (applied first to the extension W of V; = 7(A,%,0)” by V5 = L(A) inside

V= (In d%%é(@p)é ®@g o(1,0))*, then to Vi = W, Vo = St§"()\)), if (A, ¢,0) has central

character xy, so does (IndfL2 @) 5, @5 a(1,0))*, a contradiction. O

We denote by Extg(w(A,¢),w(A,¢)) the E-vector subspace of ExtéLQ(Qp)(ﬂ()\,w),ﬂ()\,w))
generated by those 7 such that 728 £ (), )k,
Proposition 3.25. (1) We have (19 as in (3.29)):
Im(zo) € Exty(m(A, 1), m(A, ) € Bxtig(m(A,9), (X, ).
(2) The exact sequence (3.45) induces an exact sequence:

0 — Extey, g, (m(A, )/ St5°(N), (A, ) == Exty(m (A, ), w(\, )
— Hom(7'(Q,), E)y — 0 (3.50)
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where we have identified Extr}(@p) (G- 1@]- 171, 6x(] - | ®]- |*1))w with Hom(T'(Q,,), E),, and
Hom(T(Qy), E)y is the subspace of smooth characters in Hom(T'(Q,), E)y. In particular:

dimy Bxty (1O ), 70 = 45 ot

{2 1 non smooth

Proof. (1) It is easy to see Im(iy) C Ext;(ﬂ()\,@b),ﬂ()\,w)). Since socar,(,) T(A,¥) =
St5°(N), for any w € EXt;(W()\,w),W()\,@D)), its image k1 (7) in ExtéLz(Qp)(Stgo()\),ﬂ()\,w )
(see (3.29)) in fact lies in the image of:

EXté;Lg(Qp) (St° (), (A, 1)'€) — EXtéLQ(@p)@tgo()\)a (A, v)).

This easily implies xo(7) = 0 (ko as in (3.44)), and (1) follows.

(2) Let @ € Bxty(w(A,¢),7(X\,¢)). By (1) and Remark 3.23, we know that there exists
U € Hom(T'(Q,), E)y such that:

(-] ™) @ (14 Ve) — Jg(7). (3.51)

Moreover, the natural surjection 7 — m(\,¢) induces a nonzero map 78 /7(\, )l —
m(A, ), and hence we have St3°(A) < 748 /7w(A, 1) (since socqr,(g,) T(A, ¥)"8 =
St5°(A)). Thus St3°()\) is not an irreducible constituent of 7/7'%, from which we see (to-
gether with the left exactness of Jz and [37, Ex. 5.1.9]) that the map (3.51) must have image
in the subspace Jp(7'®). However, Jp(728) is locally algebraic since so is 7%, which im-
plies ¥ € Hom(7(Q,), £) N Hom(7T(Q,), E)y = Hom(T(Q,), E) -

By (1), the sequence (3.45) hence induces (3.50), except for the surjectivity on the right.
By Lemma 3.17(2) and an easy dimension count, it is enough to prove this surjectiv-
ity. However, by the construction in Remark 3.21, if ¥ in Remark 3.21 is smooth, then
we see that the inverse image 7 of ¥ in (3.40) has extra locally algebraic vectors than
(r(A\, ) 7)ale = (X, )8, Let 7 € EXtéLQ(Qp)(ﬂ'<)\, W), (A, ¢)) such that ki (7) = ¢1(m), it
is easy to see that we have an injection T, C 7. Hence 7 € Extgy(m(X,¢), w(A, )), and T is
sent (up to nonzero scalars) to ¥ via (3.47) (use Remark 3.23 and that 7 is sent to ¥ via
(3.40)). This concludes the proof. O

Finally, for any locally algebraic character 6 : Q; — E*, it is obvious that all the above
results hold if we twist all the representations of GL2(Q,) by d o det.

3.2.3. p-adic correspondence for GLy(Q,) and deformations

We relate the Ext! groups of § 3.2.1 to those of § 3.2.2 via the local p-adic correspondence
for GLy(Q,). Part of the argument (the proof of Proposition 3.32), which is essentially in-
dependent from the rest of the paper, is given in the appendix.
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We keep all the previous notation. For k € Zs¢ and 0 # ¢ € Hom(Q,', E), we denote by
D(k,v) € Ext o) (R, Re(] - |7%)) the unique (nonsplit) extension up to isomorphism such

that:
(1.11)

(ED(k,v))" = Ev € Exti,ry(Re(] - [2%), Re(] - |2¥)) = Hom(Q, E)
for the perfect pairing given by the cup-product:

Exti, ) (Re, Re(| - [2%)) x Bxt(, ) (Re(| - [2°), Re(] - [2%)) — E.

For A = (ki, ky) € Z* with ky > ky, we denote by D(\,v) := D(ky — k, %) ®@r, Re(z*?) and
N = (ky, ky +1). For a € EX, we set:

D(a, N\, ) := DA\, ¢) ®r, Re(unr(a)). (3.52)
We also make the following hypotheses.

Hypothesis 3.26. (1) There exists an isomorphism of E-vector spaces:

pLL : Ext(, 1) (D(p, A ¥), D(p, A, 9)) = Extey, g, (T(N, ¢), 7(X,¢)) (3.53)

and any representation in ExtéLz(Qp)(W(A, ), (N 1)) is very strongly admissible.
(2) The isomorphism (3.53) induces an isomorphism:

Ex ttrl( (pa/\ ¢) (pa )‘7¢)) —_> EXt‘grl( (/\b7¢)77r(/\b7¢))' (354)

(3) Let D € Ext..(D(p, A\, ¢), D(p, \,¥)) and (11, 1) € Hom( X, E)? such that:
(™ (14 ghre), [ - |7 (1 + thae))

is a trianguline parameter of D (see § 3.2.1). If T € Extl, (7 ( ()\b,w),w()\b,w)) is the image
ofD via the isomorphism (3.54), we have an embedding:

Ou(l-1® [T+ Ye) — Jp(7)

where U := (¢Yr,12) € Hom(T(Q,), E).

Remark 3.27. (1) By Lemma 3.5 and Lemma 3.17(3), Hypothesis 3.26(1) implies Hypoth-
esis 3.19.

(2) In Proposition 3.30 and Proposition 3.32 below, under mild hypothesis and using some
deformation theory, we will show that Colmez’s functor induces an isomorphism (3.53) such
that Hypothesis 3.26 holds. The resulting isomorphism (3.53) should also induce a bijection:

Ext(, 1y 2(D(p, A1), D(p, A\, 1)) = Extéy, o, 2(T (X, 0), w(V, 1)), (3.55)

but we won’t need this property in the paper.
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Lemma 3.28. Assuming Hypothesis 3.26, then (3.53) induces isomorphisms:

Ext, (D(p, A\, %), D(p, A\, %)) — Ext} (x(X,¢), 7(X,¢)) (3.56)
Ker(k#8) = Ker(k™") (3.57)

where we denote by 8 the morphism k in (3.2) and by k™ the morphism r in (3.48).

Proof. For D € Ext%%F)(D(A,w),D()\,w)) it follows from Lemma 3.11 that we have D €
Ext,(D(X,¢), D(A,4)) if and only if D is trianguline and the trianguline parameter of

D is locally algebraic. Together with Remark 3.23, Proposition 3.25(2) and Hypothesis
3.26(2)&(3), the first isomorphism follows. The second follows from Lemma 3.7 together
with Remark 3.23, (3.48) and Hypothesis 3.26(2)&(3). O

The following lemma is a trivial consequence of the Colmez-Fontaine theorem ([27, Thm.
A}) and of the main result of [2].

Lemma 3.29. Let a € E* such that val,(a) = M, then D(a, A\, %) is étale, i.e.
D(a, X\, ) = Dyig(p) for a 2-dimensional continuous representation p of Galg, over E.

If o/ € E* is such that D(a/,\,¢)) = Dyg(p) is also étale, then a™'a’ € Op and p' =
p ®@punr(a’a™!), hence p as in Lemma 3.29 is unique up to twist by characters. Let p be as
in Lemma 3.29 (for a choice of o) and denote by 7(p) the continuous Banach representation
of GL2(Q)) over E attached to p via the local p-adic Langlands correspondence for GL2(Q))
([24]). Then we have using Remark 2.10 together with [59]:

T(p)™ =2 w(p o, N, ¥) i= (N, ¢) @ unr(p~'a) o det .

Proposition 3.30. Assume p admits an invariant lattice such that its mod wg reduction p
satisfies (A.2) (in the appendiz), then Hypothesis 3.26(1) (hence Hypothesis 3.19 by Remark
3.27(1)) is true.

Proof. Let ae € E* such that D(o, A\,¢) = Dyie(p). By Corollary A.2, Colmez’s functor V -1
(see § A.1) induces a surjection:

EXtéLg(Qp) (%(p)a %(p)) - EXt%Lp,F) (D(Qa )‘7 w>> D(Oé, >\7 1/1)) (358>

where the Ext! on the left is in the category of admissible unitary Banach representations of
GL3(Q,) (recall unitary means that there exists a unit ball preserved by GL2(Q,)). By the
exactness of locally (Q,-)analytic vectors ([75, Thm. 7.1]), we have a morphism:

Exthy, (o, (F(0):7(p)) — Extly, ) (F(0)™ 7 (p)™) (3.59)

which we claim is injective. Indeed, assume there is a continuous GL2(Q),)-equivariant sec-
tion w(p)* — 7" C 7 for ™ € Ext%;LQ(Qp)(%(p),/ﬁ(p)). By [26], the universal unitary
completion of T(p)*™ = 7w(p~la, N°,1)) is isomorphic to 7(p). By the universal property
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of this universal completion and the exactness in [75, Thm. 7.1], we easily deduce that
the above continuous injection 7(p)** < 7 canonically factors through a continuous in-
jection 7(p) < 7 which provides a section to @ — 7(p). However, by Lemma 3.5 we
have dimpg Ext%%r)(D(a,)\,w),D(a, A1) = 5, and by Lemma 3.17(3) (and twisting by
unr(p~ta) o det) we have dimpg ExtéLQ(Qp)(’ﬁ(p)an,%(p)an) < 5. Thus both (3.59) and (3.58)
are bijective. The composition of (3.58) with the inverse of (3.59) gives an isomorphism:

EXt%Lp,F) (D(O'/7 /\7 1/})’ D(aa )‘7 ¢)) —N_> EXt%}Lg(Qp) (%(p)anv %\(p>an) . (360)

Twisting by Rg(unr(pa~')) on the left hand side and by unr(pa™') o det on the right hand
side, we deduce an isomorphism:

pLL : EXt%@p,F) (D(p7 >\a ¢)7 D(p7 )\7 1/1)) _N_> EXtéLg(Qp) (W(Aba ¢)a ﬂ—()\ba QZ})) (361)

The first part of Hypothesis 3.26(1) follows.

From the bijectivity of (3.59), we see any element in Extey, g, (m(p e, A, ), m(p~ ar, X, )
is isomorphic to the locally analytic vectors of an extension of 7(p) by 7(p) (in the category of
admissible unitary Banach representations of GL2(Q,)) and in particular is very strongly ad-
missible. Twisting by unr(pa~!)odet, we deduce any element in Extéh((@p) (TN, 1), m(\°, )
is also very strongly admissible, which is the second part of Hypothesis 3.26(1). O]

Remark 3.31. (1) Keeping the assumptions of Proposition 3.30, by the same argument
together with a version with fixed central character of (A.3) (see (A.9)), we can show that
(3.61) induces an isomorphism as in (3.55).

(2) Assume Endgay, (p) = kg, any element ¢ in the left hand side set of (3.60) gives rise to
an ideal Z; C R; with R;/Z; = Ogle]/€* (R; is the universal deformation ring of p, see § 5.1).
With the notation of § A.2, the map (3.60) then sends ¢ to ((7""V(p) ®r, Rs/T:) ®o, E)™.

The following proposition is presumably not new, but we couldn’t find the precise statement
in the existing literature. We provide a complete proof in § A.4.

Proposition 3.32. Keep the assumptions of Proposition 3.30 and assume moreover
Endgalg, (p) = kg, and p > 5 if p is nongeneric (see just before Proposition A.4 for this
terminology). Then Hypothesis 3.26 is true. Consequently, the statements in Lemma 3.28
also hold.

Remark 3.33. Assume 1) smooth, let 7 € EXt;(ﬂ'(}\b, ¥), m(N°,1))) as in Remark 3.18 (with

A replaced by A°), and let D e Ext;(D(p, A1), D(p, A\, 1)) the inverse image of 7 via the

isomorphism (3.56). By Remark 3.18 (see in particular (3.38)), the existence of D confirms
the discussion in [34, Rem. 1.6(a)].

3.3. L-invariants for GL3(Q,)

We use the previous results for GLy(Q,) and the results of § 2 to associate to a 3-dimensional
semi-stable representation of Galg, with N? # 0 and distinct Hodge-Tate weights one of the
finite length locally analytic representations of GL3(Q)) constructed in [4].
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3.3.1. Notation and preliminaries
We introduce some notation and define some locally analytic representations of GL3(Q))
that will be used to describe L-invariants for GL3(Q),).

We now switch to GL3(Q,) and we let B(Q,) (resp. B(Q,)) be the Borel subgroup of upper
(resp. lower) triangular matrices, 7'(Q,) the diagonal torus and N(Q,) (resp. N(Q,)) the
unipotent radical of B(Q,) (resp. B(Q,)). We set:

Pl(@p) = ) P2(Qp) =

S * %
O ¥ ¥
* % %
O O *
* ¥ %
* % %

For i € {1,2} we denote by L;(Q,) the Levi subgroup of P;(Q,) containing T'(Q,), N;(Q,) the
unipotent radical of (Q,), Pi(Q,) the parabolic subgroup opposite to F;(Q,) and N;(Q,)
the unipotent radical of P;. Finally we let g, b, t, n, p;, [;, n;, 0; the respective QQ,-Lie algebras.

We fix A = (kq, ko, k3) a dominant integral weight of t with respect to the Borel subgroup B,
i.e. ki > ko > k3. We let L(\) (resp. L;(\) for i € {1,2}) be the algebraic representation of
GL3(Q,) (resp. of L;(Q,)) of highest weight A and J) be the algebraic character of T'(Q,) of
weight A. To lighten notation we set:

IS5 (\) (IndGL3 @) 5)™
ISR\ = (IndgL(f@@P)L ()™
ig (V) = (Indgg 1) @5 LY
G = (Indg 2% 1)~ @p L.

We also set:

S = 150 3 I

St(A) = 9 (A /ZZGLS
vE(N) = TP )L
vE () = iRt/

We have Stg°(\) = St3"(\)lale] vg \) = v%‘i()\)lalg and long exact sequences (cf. [78, Prop.
5.4]):

0 — L(A) — IFH(N) @ Ig(A) — I3 (A) — St3*(A) — 0 (3.62)

0 — L(A) — ip*(A) @ ip 2 (N) — 5 (A) — St3°(A) — 0.
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For an integral weight ., we denote by L(x) the unique simple quotient of the Verma module
M(p) :== U(g) ®y) - Note that L(—)\) is isomorphic to the dual L()\)" of L()\). We use
without comment the theory of [63], see e.g. [8, § 2] for a summary. We often write GL3,
P;, Z (= the center of GL3) instead of GL3(Q,), P;(Q,), Z(Q,) etc.

We now give several useful short exact sequences of admissible locally analytic representations
of GL3(Q,) over E. For i = 1,2, we have a nonsplit exact sequence:

00— X (\) — v\ — ]-'%L?’(f(—sj A),1) — 0 (3.63)

where j # i and s; denotes the simple reflection corresponding to the simple root of L;(Q,).
Indeed, by [4, Lem. 5.3.1], the theory of [63] and [8, Cor. 2.5], we have a nonsplit exact
sequence: B
0—s z’%LS(A) — I%L?’()\) — fgiLg’(L(—sj M), 1) — 0,

which together with the fact EX‘GELS(QP)(.7-'%L3 (L(=s; - A),1),L(A\)) = 0 (cf. [78, Cor. 4.3])
implies that (3.63) is nonsplit by a straightforward dévissage. We let A; 5 := (k1, k2) (which
is thus a dominant weight for GLo(Q,) as in § 3.2.2), it is easy to see that we have a
commutative diagram (where we write GL3 for GL3(Q,) etc.):

(IndZ (Indg, 1™ ®p Li(V))™ —— (Indgh St5°(h ) @ ™)™

l |

(Indz ((ndg, ™))™ — (Ind3 St5" (A1 2) @ a*2)™

where all the vertical maps are injective and all the horizontal maps are surjective. Using
the exactness and transitivity of parabolic induction, the bottom surjection induces an iso-
morphism I§L3 ()\)/1'%’33()\) — (Ind%lL3 St3™(A12) ® z¥#)a. Together with (3.62), we deduce
an exact sequence:

0 — v (\) — (Ind%L3 St3" (A1) ® 2™)™ — St3"(A) — 0. (3.64)
By the theory of [63] and [8, Cor. 2.5], we have a nonsplit exact sequence:
0 — (IndZ St5° ©1)™ @p L(A) — (Ind3 St3° (A1 2) @ ™)™
— Fp(L(=s2 - A), St @1) — 0. (3.65)
We also have another exact sequence (see e.g. [4, (53)]):
0 — 0¥ (A) — (Ind3? St5° @1)™ @p L(A) — St°(A) — 0. (3.66)

From (3.64), (3.65), (3.63) and (3.66) and by comparing irreducible constituents, we easily
deduce that in (Ind%L?’ St3™(A12) @ x*3)™ we have:
(TndZ" St5° (A 2) @ 2%)™ N (A) = v, (V). (3.67)

Py
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Let Cy; := Fg}S(z(—SQ - A), St3° ®1) and:
Si0 = (Ind3 St3° (A1 2) @ )™ /v (A)

which is a subrepresentation of St3"(\) by (3.64) and (3.67) and sits in an exact sequence by
(3.65) and (3.66):
0 — St3°(A) — S10 — C21 — 0. (3.68)

We claim the latter is nonsplit. Indeed, as in the proof of [4, Prop. 4.6.1], we have
EXtéLS(Qp)(CQJ, vz (A)) = 0. Together with the fact that (3.65) is nonsplit, the claim follows
by a straightforward dévissage. By replacing P, by P, and s; by s;, we define in the same
way C11 as Cy 1 and Sy as Si, and we have similar results for C}; and S . In particular,
we have socgr,(q,) Sio = Sts (A).

In the sequel, we define several locally analytic representations C;; and S;; of GL3(Q,)
for i € {1,2} and j € {0,1,2,3}, these representations being such that C; o = St5°(\) for
i € {1,2} and C; j < socqr,(q,) Si,; for all 4, j.

3.3.2. Simple L-invariants
We recall some facts on simple L-invariants.

We keep all the previous notation.

Lemma 3.34. Let i,j € {1,2}, i # j.
(1) We have ExtéLS(@p)(v%‘?()\), St53"(N)/Sj0) = 0 and an isomorphism:

EXtéLg,(@p)(U%i()\)a Sjo) — EXt%}Lg(@p)(U%i()\)a St5"(A)).
(2) We have ExtéLg(Qp)(L()\), St3"(N\)) = 0 and an isomorphism:

Extly ) (15 (), St7(0) > Bty g, (157 (1) S5 (V).
Proof. In each case, the isomorphism follows from the first equality by an obvious dévissage.
(1) It is enough to prove ExtéL3(@p)(vg(A), C') = 0 for all the irreducible constituents C' of
St3"(\)/S;0. By the theory [63], we know that C is of the form .7:%53 (L(—w-\), ) were w is
a nontrivial element of the Weyl group distinct from s; (since we mod out by S; ), P, C GL3
is the maximal parabolic subgroup containing B such that w- A is dominant for Lp, (with re-
spect to BNLp, ) and 7 is a smooth irreducible representation of Lp, (Q,) over E. If w # s;,

i.e. w has length > 1, by [31, Lem. 2.6 (2)], we have ExtéLS(@p)(v%‘?()\),C’) =0. If w=s,

then we have 7° = St ®1 if i =1 or 7 = 1 ® St5° if ¢ = 2, and ExtéLS(Qp)(vg(A), C)=0
(via Lemma 3.1) is then one of the cases of [78, (4.45)] (or its symmetric).
(2) The first equality follows directly from [78, Prop. 5.6] and Lemma 3.1, and the isomor-

phism follows by an obvious dévissage. O]
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Let ¥ = (¢1,%9,7¢3) € Hom(T'(Q,), E) (with obvious notation) and consider the exact
sequence:
GL3(Qp an pr
0— ISH(\) — (IndE(gi? Vo1 + We))™ 5 18 (0) — 0. (3.69)

For i = 1,2, we see that pr—!(i GL“( ))/23:1,2 I%L3()\) is by construction an extension of
%LS(/\) by St3"(A). By Lemma 3.34, it comes from a unique extension IT'(\, @), of v (A)
by Sio. If U is smooth (i.e. all ¢; are smooth, j € {1,2,3}), by considering the following
exact sequence (which is then “contained” in (3.69)):

0 — iS5 (\) — (IndGL3 ‘?P (1+We))™ @p L) 25 S (0) — 0,

we see that II'(\, ¥)y then comes via the embedding St3°(\) < S; from a (unique) locally
algebraic extension of v () by St3°()).

Proposition 3.35. Fori € {1,2} the extension ITI'(\, ¥), € ExtéL3(@p) (v (N), Sip) is split
if and only if ¥; = iy, i.e. ¥ € Hom(Z;,(Q,), E) where Z1,,(Qy,) is the center of L;(Q,).
Moreover, we have a commutative diagram:

Hom, ( ;,E) —— ExtéLS(Qp)( l()\) St3°(A))

P,
l l (3.70)
Hom(Q), B) ——  Extgr g, (vF (V) Sj0)

where the vertical maps are the natural injections, the bottom horizontal map is given by the
composition of Hom(Q, E) = Hom(T(Q,), E)/ Hom(Z.,(Qy), E) with ¥ — II'(X, ¥)o, and
the top horizontal map is induced by the bottom map.

Proof. See [31, Thm. 2.17 & Rem. 2.18(ii)]. O

We now let 51 =k, 6y o= | [Tkl by = || 72272 and identify Ext(, ry(Rp(6:), Re(d:))
with Hom(Q), E) by (1.11).

Corollary 3.36. Fori,j € {1,2}, i # j, we have a natural perfect pairing:
o0 Ui
Exter, g, (03 (A); Sj0) X Exti, r(Re(it1), Re(6:) — E,

and the same holds with S; o replaced by St3"(\) (for i € {1,2}). Moreover, the one dimen-
sional subspace Ext!(Rp(8i41), Re(8:)) of crystalline extensions is evactly annihilated by the
subspace ExtéLs(Qp) (0% (A), St37(N)).

Proof. By Proposition 3.35 (together with the above identification) and Proposition 2.3(2)
(applied to Rg(6,) = Re(8iy1), D}t = Re(d;) for i = 1,2), we obtain the perfect pairing
of the statement. By Lemma 3.34(1), we have a similar perfect pairing with S; replaced by
St3"(A). The last part follows then from (3.70) and the discussion in Remark 2.6. O
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3.53.3. Parabolic inductions

We study the locally analytic representation (Ind%LgéQ)p ) mT(A12,0) @ )2 (cf. § 3.2.2) and

some of its subquotients, that we will use to describe L-invariants for GL3(Q,).

We keep the previous notation and fix 0 # ¢ € Hom(Q,, E). For a locally analytic repre-
sentation V' of GLy(Q,) over £ we use the notation:

GL ._ GL3(Qp) ks an
Iﬁl3(v, k’g) = (Ind?l(g(@p) Ve 3) .

We have studied the subrepresentation [g}3<st§O<A172), ks3) in § 3.3.1. Exactness of parabolic

induction gives the isomorphism (recalling that s is the unique nontrivial element in the
Weyl group of GLs):

IS (I(s - M o), k) 2 To* (St5™ (M 2), k) /T (S65° (M), Ka)-

From (3.67) and (3.63) (for i = 2) we deduce an injection ]—'%L‘"’ (L(=s1-A),1) < I%I” (I(s-
A12), k3) and together with (3.64) an isomorphism:

51’1 = Igleg (I(S . )\12), kg)/]:g;:* (Z(—Sl . )\), 1) ;> Stgn()\>/5170.

Since Cy; = ]-"%“3 (L(=s1 - A),St°®@1) < St3"(A\)/Sts°()\) and C); is not an irreducible
constituent of Sy by (3.68), we have a commutative diagram:

SQ’O — Stgn<>\)

l !

Cii ——  Sia

where the vertical maps are the natural surjections and the horizontal maps are injections.
From the theory of [63], one moreover easily deduces that the irreducible constituents of

51,1/0171 are:
{FgQL:’)(E(_SlSQ ) /\)7 1)7 fng(z(_SLSQ : )\)7 1® St;o), Fg}g(i(—szsl . )\)’ 1)’
.FglLi*(Z(_Sle - A), St3° ®1), fgLs(Z(—slszsl ), 1)}, (3.71)

all of them occurring with multiplicity one. Since m(A12,%)” = St5"(A12) — L(A12) (see
(3.23)), we have an exact sequence:

0 — I (St (M), ks) — T (w(Ai2,90) 7, ks) == L5 (L(Aig), ks) — 0 (3.72)
where I%LS (L(A12),ks) = ]%LL*(/\). Denote by:
SLQ = Uin (/\), CLQ = Ugo ()\) & SOCGLg(Qp) SLQ.

Py Py
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Since ]%3(8@“()\1,2), kg)/v%r;(/\) = St3"(A) (see (3.64)) and L(\) — I%LS (N), it follows from
(3.72) together with Lemma 3.34(2) that we have an injection:

L(A) = I (r (M2, 00) ", ks) 03 ().

We let II'(A,¢)~ be the cokernel, which is thus isomorphic to an extension of
IGL3( )/L(A) = v (A) by St5"(A). Finally we denote by T3, resp. By, the diagonal torus,
resp the lower trlangular matrices, of GLs.

Lemma 3.37. We have a commutative diagram:

0 —— S —— AP —— vF(\) —— 0

| | |

0 — St5"(N) —— M\ ¢)~ — v () — 0
where TIY(\, 1)) denotes the image of 1 via the bottom isomorphism of (3.70).

Proof. Let Wy = (¢1,19) € Hom(73(Q,), F) and ¥ := (¢1,12,0) € Hom(7T(Q,), E) with
0 # 11 — 1y € E. We have (by the transitivity of parabolic inductions):

[y (7, )7 bs) > I (Indg 88 0, (14 026))™ /LM 2), bs)

= (Indg 3T 6 (1 + We)™ /15 (N)

which induces an injection by (3.62) together with Lemma 3.34(2):

07— W = (025 50+ 96 3 1500 100,

1=1,2

By Proposition 3.35 and the discussion above it, W contains IT' (), %), as subrepresentation,
and it is easy to see that the injection IT'(\, )y < W factors through IT'(\, )~ (e.g. by
comparing the irreducible constituents). The lemma follows. O]

We set 61,2 = fglL?’ (L(—s251-A),1). By [4, Prop. 4.2.1 (ii)] and the proof of [4, Lem. 4.4.1],
we know that there exits a unique (up to isomorphism) non-split extension C}; — (71,2, and
it is a subrepresentation of S; ;. Using the formula in [4, § 5.2] and [78, (4.37)], it is not
difficult to show:

Ext{ry () (Cro Fa® (M(—s5 - ), St3° @1)) =0,

and hence (by dévissage) ExtGL 5(Q (C’l 5,Co1) = 0. We deduce that St5*(\) (which is of the

form S; ¢ — S11) has a unique subrepresentatlon of the form St3°(\) —Cy 1 — 5’172, containing
Sa0. Denote by IT' (A, ¢)~ the push-forward of II'(\,¢)y via Sz < St5°(\) — C11 — Ch o,

which, by Lemma 3.37, is a subrepresentation of ﬁl()\, ).

44



Remark 3.38. If 1 is not smooth then IT'(), )~ has the form:

6’1,2
St3°(A) — Cha
Cio2
whereas if 1 is smooth it has the form:
C(1,1 I 5172

7~
St3°(A) — Ci 2.

In all cases ﬁl()\,w)_ has the form S; o — S11 — S12 = St§"(\) — S10.
We now set:

Sia = Ip(I(s - Ma),ks) = (Indg 3 (| - | @ | )™
= Fl (M(=s1-2), |- [ @] |@1)

0173 = .Fng’ (Z(—Sl . )\), | * |_1 ® | * | ® 1)
= FE (L(=s1- M), | [ @ (Indg 20| - | @ 1)) 2 socqry(q,) S

where the last isomorphism follows from [8, Cor. 2.5]. The irreducible constituents of
S13/Ch 3 are (from [63]):

{ngg(z(_slsz.)\),|.|—l (In dELE’Q@P [ [@ 1)), Foro(L(—s2s1 - V), St5° @1),
FE (D=5 - M), 1), FE (L-sosasa ). || @ |- [@ 1)}, (3.73)

all of them occurring with multiplicity one.

Lemma 3.39. The natural map:

Extgr, (g, (Crs A, ¥)7) — Extgr, g, (Crs, 1T (A, ¥)") (3.74)
1s an isomorphism of 1-dimensional vector spaces.

Proof. (a) By [4, Prop. 4.6.1], we have:
Extgr,0,)(Crs, A, ©)7) == Extgr, o, (Cus, A, 1)~/ StE(N)).
By [4, Prop. 4.4.2 & Prop. 4.2.1(i)] (resp. by [4, Lem. 4.4.1 & Prop. 4.2.1(i)]), we deduce:

ity Extly, g,)(Cha, IO\ )~/ SEE(N) = 1
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in the case where v is not smooth (resp. in the case where v is smooth).
(b) Since Homgr,y(g,)(Ch 3, IT' (X, 1)~ /I (A, ) 7) = 0, we see (3.74) is injective, and it is suffi-
cient to prove ExtGL3 )(C13,C) = 0 for any irreducible constituent of TIH(\, )~ /TN, )~

By Step 3 of [4, Prop. 4 4.2], it is left to show ExtGLd( )(C13,C2,1) = 0. However, using [4,
Cor. 5.3.2(ii) & Lem. 5.3.3] and ([78, (4.37)]), one can show

Ext% (C’lg,fGL3( (—55-A),St¥®1)) =0

and hence EXtGL3 (Cl 3,Cq1) = 0. The lemma follows. O

Now consider the exact sequence (see (3.26)):
0 — 15 (m(Ai2, )7, @) — I (m (Ao, 0), ™) == Sig — 0. (3.75)

The push-forward of pr*(C}3) via ]%Li” (t( Ay, 0) ™, 2%%) — TI'(X,¢)~ gives an extension

of Cy3 by II*(\, )™, which by Lemma 3.39 comes from an extension of Cy 5 by TI*(\, )~
denoted by TTL(\, ).

Lemma 3.40. The extension ITI'(\, ) € ExtGL3 )(Ch3, TTH(A, 90) ™) is monsplit.
Proof. The lemma follows from Step 2 of the proof of [4, Prop. 4.4.2]. O

Remark 3.41. (1) If 4 is not smooth then IT'(), ) has the form:

/51,2\
St37(A) — Cix Ci3,
~ ~
Ci2 (3.76)
whereas if 1 is smooth it has the form:
Cl,l - 6’172

e
St57(A) — Cr2—Ci 3.

(2) One can actually show that the subquotient Cy 5 — C1 5 in (3.76) is also non-split (see [4,
Rk. 4.4.3(ii)]). But we don’t need this fact in the paper.

Denote by IT'(A, ) the push-forward of (3.75) along 15" (m (A2, ¢)7 k) — TI'(A,¢)7,
which thus has the following form by Lemma 3.37:

' (N, ¢) = Sy — S1q — Sio — Sis 2 St3(A) — S1p — Shs (3.77)

and contains IT' (), ¢) by Lemma 3.39.
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We define Cy;, So; for i € {1,2,3}, Cha, TT2(\,0)o, T2(A,90)~, TI2(\,4)", TI(A\, %) and
I12(\, ) in a similar way be replacing P; by P, (and modifying everything accordingly, e.g.
I(s - M2) ® 2* is replaced by %' ® I(s - Ag3) with Ay3 := (Ko, k3) etc.). In particular all
these representations are subquotients of:
GL3(Qp) K an
(Indg fg,) 2™ ®7(Aa3,0))

and all the above results have their symmetric version with P; replaced by Ps.

3.8.4. L-invariants

We associate a finite length locally analytic representation of GL3(Q,) to a 3-dimensional
semi-stable representation of Galg, with N? # 0 and distinct Hodge-Tate weights. Roughly
speaking, the results in § 2 and § 3.2.3 allow us to associate to such a Galg,-representation
certain deformations (i.e. extensions) of locally analytic representations of GL2(Q,). We
then use Schraen’s spectral sequences [78, (4.37), (4.38)] combined with parabolic induction
to go from extensions of locally analytic representations of GL2(Q,) to extensions of locally
analytic representations of GL3(Q,).

We keep the notation of the previous sections (in particular we have fixed A = (kq, ko, k3)

and 0 # ¢ € Hom(Q}, E)). From the constructions of II'(X, %) and ' (X, ) (and from
Lemma 3.39), it is not difficult to see that one has an injection:

I\, )T =TINA, ¥) Bsizen) S1o = (A, ).

From Remark 3.41, we see that II'()\, )" has the following form (i not smooth on the left,
1 smooth on the right):

61’2\
/01,1/ T Cu—0iy
St°(\) \01,2/ St2°(\) — Cha— Cis
e e

We will show that the extension group ExtéLs(Qp) (v%‘; (A),I*(X\,¥)™) can encode the infor-
mation on (higher) L-invariants. We start with some lemmas.

Lemma 3.42. (1) The natural map:

EXtéLg(Qp) (U%.; (A)a Hl ()‘7 ¢)+) — EXt%}Lg(Qp) (U%Z (>‘>7 ﬁl()‘a 7/1)) (378)

s an isomorphism.
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(2) We have an exact sequence:

0 — Exthy g, (435 (N), SE°N) — Exty o) (63 (A, (A, 0)")
— Extly, o, (055 (), TT (A, 9)/ SE°(V)) EBExtGL3(Q)( (X)), Ca) — 0 (3.79)

where:
dimpg ExtGL (v%';()\) St5°(N)) =
dimpg EXtGL3 (v%';()\) YO )T ) =
dlmE EX‘CGL3 (v%';()\) ")/ St (V) =1

Proof. (1) It is easy to see Homgr,(g,) (v, (1), YA, ) /IIE (N, ¢) 1) = 0, and thus (3.78)

is injective. It is sufficient to show ExtGL3(Qp)(vﬁ2(A),ﬁ1(/\,w)/Hl(A,¢)+) = 0. From [78,
(4.37) & (4.41)] and [78, Prop. 4.10], we easily deduce that for any irreducible representation
W in the union (3.71) U (3.73) we have ExtéL3(Q y (v (A), W) = 0. As in Step 4 of the

proof of [4, Prop. 4.3.1], we also have ExtGLS(Qp)( (), ]-"GLS(L( s3+A), 1)) = 0. Since the

irreducible constituents of TI'(\, ¥)/II1(\, )T are exactly given by the representations in
the set (3.71) U (3.73) U {}"%L?’ (L(—s5 - )\), 1)}, the result follows by dévissage.

(2) First note that by Lemma 3.1 the extension groups in (3.79) do not change if Extgy, 5(Qp)
is replaced by EX’GELB(QP)’Z. By [78, Cor. 4.8], we have EthGLS(@p)’Z(v%‘;()\),Stgo(/\)) = 0,
from which we easily deduce (3.79). By loc. cit. we also have:

dimp Extgp, g,).2(v5, (A), St°(N)) = dimg Extéy, g, (05 (V), St5(N)) = 1.
It follows from (3.70) and Extéy,q,) 2 (v% (A), St5°(A)) = 0 that we have:

dimp Extgr, q,) (V5 (A), Ca1) = dimp Extér, q,) (V5 (V), S1o/ St5°(N)) = 1.
From Remark 3.41 and [4, Prop. 4.2.2 (ii) & Prop. 4.2.3 (ii)] we easily deduce:

Exter, g, (05, (), TN, 9)/ St(N) == Extar,q,) (05, V), Cra — Cis).

By [4, Prop. 4.3.1 & Prop. 4.2.1 (i)] the latter is one dimensional. This concludes the
proof. O
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By [78, (4.38)], we have a spectral sequence:!

ExtiLl(Qp),Z (Hj(N1(Qp), vp (A), (A2, ¥) ® ")
= Exta g,z (05, (), Ip (72, ), ks)). - (3.80)
From [78, (4.41) & (4.42)] and the discussion after [4, (52)] we have (with obvious notation):
EM@) = @ Lw-n)e(@Eene (- Tedtel ).
lgw=1i

w-Ais BN Li-dominant

For all w with w - A dominant with respect to B(Q,) N L1(Q,) we have by considering the
action of the center of L;(Q,):

Homy, (g, (Li(w-X) ®g (|- | ' odet @] - [*), m(A12,0) @ 2*) =0
Ext}, g, (Li(w - 3) @ (| - [ o det @] - [2), w(h2,9) @ 2*) = 0.

It is then easy to see from the above formula:

Homyp, (g,) (Hl(ﬁl(Qp)a U%.; (A)s (12, 9) @ xkg) =0.

Thus we deduce from (3.80) an isomorphism:

EXt}Ll(Qp),z ( St2°(A12) ® 2, m(A12,¢) @ xks)
> Exter, g,z (05, (N 15 (1(Aa, 1), ks)). - (3.81)

Denote by W be the kernel of I%LS(W()\LZ,QM, ks) — II'(\, ), which (by the definition of
TI'(\, ) and II*(X,¢)7) is an extension of L(\) by v (A). By [31, Cor. 2.13], we have
EXtiGLS(Qp)’Z(U%;()\), I%LS()\)) =0 for all { > 0 and:

E iti=1

EXtZéLs(@p),Z (UQPZ(A)’ L(A)) - {0 otherwise.

By dévissage (recall 1%“3()\) = L(A) — v5 (), see § 3.3.1), we get:

i 0o an E ifi=0
Extary ).z (V5 (V) vEL (V) = { (3.82)

0 otherwise.

! Actually, to apply [78, (4.38)], one needs to show that the (dual of the) P;-representation m(\; 2, 1)) ®@x*3
satisfies the condition (FIN) of [76, § 6]. However, any irreducible constituent of (A1 2,%) ® z*3 is either
locally algebraic or isomorphic to a locally analytic principal series, and hence satisfies the condition (FIN)
(see the discussion in the beginning of [78, § 4.4] for the locally algebraic case, and the discussion before
Step 1 in the proof of [4, Prop. 4.3.1] for the case of principal series). One deduces then that the dual of
7(A1.2,%) ® ¥ also satisfies (FIN).
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Again by dévissage, we deduce Extgy, @,).2(V%. (A), W) = 0 and an isomorphism:

2

Exter, g,z (05, (M), W) == Extgr, o,z (v5,(A); L(Y)

of 1-dimensional E-vector spaces (with [78, Cor. 4.8] for the dimension). From the former
equality we obtain an exact sequence:

0 — Extéy, g, 2 (V3 (A), W) — Ext, g,z (05 (A, In 2 (T( A1, 1), ks))

Py =
— Extgr,g,).2 (V5 V), (A, ¢)) — 0. (3.83)

Together with Lemma 3.42, (3.81) and a dimension count we obtain:

dlmE EXtL1 (St2 ()\1 2) X l’ (/\1’2,770) ®$k3)
— dlmE Exter, g,z (05, (), [gfs(w(Am, V), ks)) =4. (3.84)

By (3.81) and (3.83), we have a natural surjection:

EXtLl( (Stg ()\1 2) ® ‘T ()‘1727 ¢> ® xk‘;) - EXt%}Lg,(Qp),Z (U%.; ()‘)7 ﬁl()‘a ¢)) . (385)

Similarly, we have natural maps (without fixing the central character of GL3(Q,) and using
(3.65) and (3.66)):

Extr, g, (St5°(A2) © 2, m(A1 g, ) @ 2™) — Exter, q,) (V5 (M), IQLS( (A2, ), k3))
— Extgr,o,) (05, V), (A, ) (3.86)

whose composition is surjective by (3.85) and the isomorphism (Lemma 3.1):

Extér g,z (035 (A I ) = Extly, g, (0% (V), (A, 9)).

Remark 3.43. We can describe (3.86) (and similarly for (3.81) and (3.85)) in the following
explicit way. For any 7 € ExtL1 ) (St5° (A1 2) @™, (A1 2,40) ® 2%9), the parabolic induction

(IndS"s(@) %

an 1
1€S 1n an exact sequence.
Q) ) !

GL GL3(Qp) ~\an pr GL3(Qyp) o\ A1
0 — L5 (m(A2, ), k3) — (Indg %y 7) (Indf(:” St (M) @ )" — 0. (3.87)

Then the first map of (3.86) is given by sending 7 to pr— (vf (A)) and the second map is given
by quotienting by the subspace . In particular the composition sends 7 to pr—! (U— (A)/W.

Consider the following composition:

EXt%}LQ(Qp) (Stgo()\lg), 7T(/\172, @ZJ)) — EXt1L1(Q ) (St;o(/\l 2) X lL‘k3, 7T()\1 2, ’QD) X l‘k?’)
(3 86) o0 ~
EXtGLg,(Q ) ( (/\)7 H1<)‘a 77Z))) (388)

where the first map sends 7 to 7 ® z*?
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Lemma 3.44. (1) The composition (3.88) is surjective.
(2) The kernel of the composition (3.88) is 1-dimensional and is generated by t1(m(X,1,0)7)
(see (3.30) and (3.24)).

Proof. (1) For any 7 € ExtL1 ) 2(St57(A\12) @ 2™, (A 2,9) ® 2*3), we can view T as a
representation of L;(Q,) over E [e] /€ by making € act as the composition (unique up to
nonzero scalars):

T — Stgo()\l,z) X $k3 — 71'()\172, ’17/)) & $k3 — 7.

Let Zy == Q) — L1(Q,) = GLy(Q,) x @), a = (1,a), which acts on 7 by a charac-
ter X of QY over Ele|/e* (by the same argument as in the proof of Lemma 3.15). Con-
sider @ = T ®ppse (X' o det), on which Z acts thus by z*5. So there exists 7 €
ExtéLZ(Qp) (St3°(M1,2), T(A1,2,)) such that 7 = 7 @ ¥3 (“external” tensor product). How-
ever, by Lemma 3.2, Remark 3.43 and the fact that:
(IndZ o 7)™ & (IndZ 200 7)™ @pig /e X' o det,

we see that the image of 7 via (3.85) is isomorphic to the image of 7, via (3.88). Since (3.85)
is surjective, so is (3.88).

(2) Since (3.88) is surjective, by counting dimensions using Lemma 3.42 and (3.84) we see
that the kernel of (3.88) is one dimensional. It is thus sufficient to prove ¢1(mw(X,1,0)7) is
sent to zero. Let Wy := (1,0) and ¥ := (¢,0,0). By construction (cf. (3.24)), w(X,%,0)”

is a subquotient of (Ind%i“ég@)” )5, L (14 Wy 9€))*, and thus (Ind%LE’QQP (A, 1, 0)” ® )™ is
P

a subquotient of (Ind%{g(?? ) dr(1 4 We))*. However, from the first part of Proposition 3.35
D

and Lemma 3.34(1), we deduce (see Proposition 3.35 for TI*(\, ¥),):

v () > TP\, W) — (IndG 2% 6,1+ We)) / - 18 ())
i=1,2

In particular the image of ¢1(m(A,1,0)7) via (3.88) contains v () as a subrepresentation,
hence the associated extension is split. This concludes the proof. O

We now can prove the main result of the section. We let \* := (ky, ko — 1, k3 — 2), )\1172 =
(k1 ks — 1), Moy := (k2 — 1, k3 — 2) and D? := D(p, N} ,,) (see (3.52), the notation D? is for
(future) compatibility with the notation at the beginning of § 2).

Theorem 3.45. Assume Hypothesis 3.26 for D?. The cup product (2.1) together with the
1somorphisms:

Ext(,r (D7, D7) & Ext{, (D(p, A} 5, 1), D(p, X 5, ¢))
(3.53)
— Ex tGL2 ( (A1, 2,1/1)77T(/\1,2,"¢))
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induce a perfect pairing of 3-dimensional E-vector spaces:
Bxtl, ) (Re(@™ 2| -|72),D}) x Bxtgy, g, (v5 (M), 1) — E (3.89)

with T1 = TIY (A, ) or TIY(A, ).

Proof. The dimension 3 comes from Lemma 3.42(2). We have morphisms (see (3.29) for x1):

EthGLQ(Qp) (7T(/\1 2, ¢), 7T(/\172, ﬂ))) ——> EXtGL ( Stoo(/\l 2) ()\1727 ¢))
O, Exthro, (V3 (A),ﬁl(A,w)) Exthy, g, (03 (N, I (A, ¢)*")  (3.90)

where the first morphism is the surjection in (3.29) (it is surjective by Remark 3.27(1)) and
the last isomorphism is Lemma 3.42(1). By Lemma 3.44(2) and Lemma 3.24(1), we obtain
that the kernel of the composition in (3.90) is equal to Ker(x*"*) where we use the notation of
Lemma 3.28. Note that this composition is surjective by Lemma 3.44(1) (and the surjectivity
of k1). Now consider:

EXt%cp,F) (va D%) — EXt%cp,F) (D(p, )\ggﬂﬂ)a (p, )\g 27@@)

5, Bxthryay (T ) T2, 1)) o Exthy, g, (05 (), I, 9)7). (3.91)

By (3.57), the kernel of the composition in (3.91) is thus isomorphic to Ker(x%). Since this
composition is moreover surjective, the theorem then follows from Proposition 2.3 (where &
there is denoted x5 here). O

We let &) := a*, 0y := 2F271| . |71 and d3 := 2¥72| . |72, The following proposition shows
that the pairing (3.89) is compatible with the one in Corollary 3.36 for simple L-invariants.

Proposition 3.46. Assume Hypothesis 3.26 for D. We have a commutative diagram:

Extéiy g, (V5 (1), S (V) % Ext{, ) (Re(%), Re(d:)) —— E

J . | o

EXtragy) (05,0 '\ ¥)) X Extl,r) (Re(d%),D})  —— E

where the left vertical map is the natural injection, the middle vertical map is the natural
surjection, the bottom (perfect) pairing is the one in Theorem 3.45 and the top (perfect)
pairing is the one in Corollary 3.36. The same holds with (Stgn(A),ﬁl(A,¢)) replaced by
(S1,0, ITH (A, 90) ).

Proof. (a) We first show that the composition:

Exti (m(AL2, 9), (A2, ¥0)) = Extér, g, (A2, 90), m(Ar2,9))

1 0 (3.89) 1
—» Extép, g, (St°(Ma2), m(Ai2,¥)) — Bxtlyq,) (03N, T (A, ¥))  (3.93)
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factors through:

v (A), I (N, 0)). (3.94)

2

Bxtl; (m(A2, %), 7(A2, %)) — Bxtr, g, (43 (1), S157(V)) — Extgr, g, (

By (3.46), the composition of the first two maps in (3.93) has image equal to Im(s;) (cf.
(3.30)). It is thus sufficient to show that the composition:

Extar, g, (St (A2), (A2, ¥)7) = Extar, g, (St5°(Ar2), m(A12, 1))
JEEON ~
EXtGLg,(Q ) ( (/\)7 H1<)‘a 77Z))) (395)

factors through:

EXtlir, (g, (S8 (M2), m(A 2, 8) ) — Bxtlip, g, (03, (0, S (V) < Bxtr, o, (03,0, TN )).

(3.96)
By the construction in Remark 3.43, it is easy to see that any element in the image of (3.95)
comes by push-forward from a certain extension of v3 (A) by ' (A\,v)~. By the proof of
Lemma 3.42(1), one has:

ExtGLS(Q ) (v (A, St3*(N)) — ExtéLB(Qp) (v%‘?(A),H%A,zU)‘).

We deduce that the map (3.95) factors through ExtéLS(Qp)(v%‘; (A), St3"(N)).

(b) We prove the map Extl(m(A2,%), 7(A12,v)) — ExtéLg(Qp)(vﬁp‘; (N), St3"(X)) is surjec-
tive.

The composition of the last two maps in (3.93) is equal to (3.90) and has kernel equal
to Ker(/-fa“t) by the proof of Theorem 3.45. From (3.48) we have Ker(xk™") C
Extly(m(A12,9), m(A12,%)), so the kernel of the composition in (3.93) is Ker(x**). From
Lemma 3.24(1), we get that the kernel of the composition in (3.94) is (also) Ker(k*")
and is 2-dimensional. ~ From Lemma 3.34(1) and Proposition 3.35 we deduce
dimpg ExtGLS(Qp)( > (A),5t5"(A)) = 2. Together with Proposition 3.22(1) and a dimension
count, we obtain that the first map in (3.94) is surjective. From the proof of (a), it follows
that the first map in (3.96) is also surjective. In summary, we have a natural commutative
diagram:

Extis (m(Ar2,¥), 1( M2, ¥)) —— Extery g, (v@;(A),Stgn(A))

| | (3.97)

Extar,g,) (T(A12, %), (A2, ¥)) —— Extgrg,) (U%.;()‘)aﬁl()‘aw))

where the horizontal maps are surjective and the vertical maps are injective.
(c) By the discussion in (a), the morphism (3.96) can be constructed in a similar way
as in Remark 3.43. In particular, for 7 € ExtéLQ(Q (St3°(A12), m(A12,9)7), its image in

ExtGL3(Qp)( ()\) St3"(N)) is a subquotient of (IndGLB(éQ)p 7 ® xk3)an - By the transitivity of
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parabolic inductions, one can check the following diagram commutes:

Hom(T2(@p)a E)w &) HOHI( ;7 E)

l |

Extly, g, (St () m(h2 ) ™) 2% Extly, o, (035 (V). St"()

where the left vertical map is given by the inverse of (3.40) (see Remark 3.21 for its construc-
tion), and the right vertical map is given as in Proposition 3.35 (see the discussion above
Proposition 3.35 for its construction). We deduce that the following diagram commutes (see
(3.48) for k™" = k and recall (3.94) comes from (3.96) by the proof of (a)):

Extly (m(A2.9), m(Ai2,9)) o Extly, q,) (63 (), StE°(N)

”l 2l (3.98)

~

Hom(Qy, E) — Hom(Q), E)

where the right vertical map is the inverse of the bottom horizontal map in (3.70) (via
Lemma 3.34(1)).
(d) By Hypothesis 3.26(2)&(3), the bottom squares of (3.13) induce a commutative diagram:

Ext trl( ()\1 2,@[)),7’(’(}\172,’4&)) X EXt%%F) (RE(53),RE<52)) L) FE

1 w | o

Extar,,) (T(A12,9), m(A2, ) % Exti,p (Re(ds), DY) Y. E

And the top squares of (3.13) induce another commutative diagram:

Exty (A2, ¥), m(Ai2, 1)) % BExtl,p) (Re(03), Rp(d2)) —— E
“l H H (3.100)
Ext{,(Re(02), Re(d2)) % Extl,p (Re(5:),Re(5)) —— E

where we identify Hom(Q), E') with Ext%%r) (Re(d2), Re(d2)) (see (1.11)).

(e) We finally prove the proposition. By (3.97), (3.99) and Theorem 3.45, we deduce a
commutative diagram as in (3.92) but with the top pairing U; replaced by the pairing
induced by the top pairing of (3.99) via the surjection (see (b)):

Extyy; (T(A12,9), (A2, ) —> ExtGLd(Q ) (v (A, St5* ().

However, by (3.100) and (3.98), we see these two pairings actually coincide. This concludes
the proof. n
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We fix a nonsplit extension D € Ext%%m (RE(53), D%) and we let (assuming Hypothesis 3.26
for D?):

Lot (D : DY) C Extr, g, (05, (N, (A, ¢)) = Extgr,,) (Vs V), A ¢)7)  (3.101)
be the 2-dimensional E-vector subspace annihilated by D via (3.89).
Remark 3.47. By Theorem 3.45 and its proof, the composition (3.91) actually induces an
isomorphism Ext%wyp)(D%, REe(d)) — ExtéLg(@p)(v%’;()\), IT) with IT = TI*(\, ¢) or ITH (A, ).

Moreover, for a nonsplit D in Exté%r) (Rg(d3), D?) as above and from the definitions of
leni(D 2 D?) and L, (D : D?), this isomorphism induces an isomorphism:

~

lpni(D 2 D) — Lo (D : D7) (3.102)
since both are annihilated by D via the corresponding pairing.

We define (cf. Notation 3.4):

= &I\ ), 03 (N, Law(D : DY) (3.103)

I1'(D) A
1! )T oE (NP2, Law(D = DY)). (3.104)

(D)~ = &Y

It follows from the perfect pairing (3.89) and Lemma 3.42(1) that D is determined by the
subspace L,y (D : D?), hence by II'(D)~ and IT'(D)~. Let:

Lot (D = D?)o := Extey, g,y (03, (A), S8 (X)) N Law(D : DY)

which we also view as a subspace of ExtéL?)(Qp) (v%‘; (A), S20) by Lemma 3.34(1). By Propo-
sition 3.46, we have via the pairing U; (u; as in Proposition 3.46 and identifying D with its
corresponding extension):

Lowt(D : D)o = (Buy(D))*. (3.105)

We assume now that the extension u;(D) of Rg(d3) by Re(d2) inside D is nonsplit. As U,
is perfect (cf. (3.92)) this implies dimg Lo (D : D?)g = 1. We define (cf. Notation 3.4):

D)y = &(St5"(N), v, (A), Law(D : DY)o)
YD)y = &(S20,03,(A), Lans(D : Di)o).

We have injections II*(D); — II}(D)~ and II*(D); — II}(D)".

Remark 3.48. Identifying EXt%@,F)(RE(dg),RE(ég)) with Hom(Q,', E), the vector space
(Euy(D))* via the top perfect pairing U; of (3.13) is thus a one dimensional subspace of
Hom(Q), E). We let ¢’ be a basis. By Corollary 3.36, we have IT'(D); = IT*(A, 1)) where
we denote by T1?(), ')y the image of ¥’ via the bottom bijection of (3.70).
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Proposition 3.49. Assume Hypothesis 3.26 for D? and N? # 0 on the filtered (o, N)-
module associated to D ([2, Thm. A], and note that the latter implies that u, (D) is nonsplit
and v is non smooth). Then there exists a unique subrepresentation:

(D)7 € Bxta,g, (v5,(N), (A, %)) \ Extar,q,) (v5,(0), St5°(V))

of IN(D)~ such that TI'(D)~ = IIY(D)] ®sieny (D)5 . In particular, I1'(D)~ has the
following form.:

Proof. Considering the surjection in (3.79):

pr: ExtéL3(Qp) (v%‘;(/\), I (), @Z))+)
(pry,pra) 00 00
SIS Extlr o, (05 (), (A 9)/St5°(N)) ® Extéy, g, (03, (A), Ca).

We see with Lemma 3.42(2), Remark 3.41 and the form of TI'(\, )" at the beginning of
§ 3.3.4 that we have:

Ker(pr) = EXtéLS(Q ) ( %O (N, Stgo()\))
Ker(pr;) = ExtGLS(Q ) (v L(A), 5 0)
Ker(pr2) = EXtGLg,(Qp) ( %.;()‘)7 Hl()‘v ¢)) :

And it follows from Lemma 3.42(2) that the first kernel has dimension 1 and the two others
dimension 2. We first show:

Ker(pr) N Law (D : D?) = Ker(pr) N Lo (D : D)y = 0. (3.106)

The first equality is clear since by definition and Lemma 3.34(1) we have L,(D : D?)y =
Ker(pry) N Low(D : D?). As N? # 0, the quotient u;(D) (as an extension of Rg(ds3) by
Rg(d2)) is not crystalline, hence by the second part of Corollary 3.36, u, (D) is not annihilated
by ExtéLB(Qp)(v%‘; (A), St5°(A)). Since the latter vector space has dimension 1, one deduces
from (3.105):

Extip, g, (035 (A), St (M) N Lawt (D 1 D)o =0 (3.107)

and the second equality in (3.106) follows. As L,(D : D?) has dimension
2 and ExtGLg(Qp)( ()\) (A, 4)") dimension 3, we easily deduce from (3.106)

and dimg Ker(pr;) = 2 that dimg Ker(pr;) N dimg Loy (D @ D3) = 1 for i = 1,2. Let
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Low(D : D?)y = Ker(pry) N Low(D : DI) C ExtéLg’(Qp) (v%‘;(A))Hl()\,@/))) and set (with
Notation 3.4):
(D)} = &A1), v% (A), Law(D : DY)1).

? P2

Since we have Loy (D : D?); @ Lawi(D : D3)g = Law(D : D?) (as follows from (3.106)) and
Ker(pr) N Lau(D : D?); = 0 (ibid.), one easily checks the statements in the proposition. [J

Replacing Py by Ps, we define TI*(X, 1) := TI?(, ¢) ®seze(x) S2.0 < T12(\, ) as for ITY(A, ) F
at the beginning of § 3.3.4. All the above results have their analogue (or symmetric) version.
Let D3 := D(p?, )\ﬁm, 1) (see the beginning of § 3.2.3). The following theorem is the analogue
of Theorem 3.45 and Proposition 3.46.

Theorem 3.50. Assume Hypothesis 3.26 for D3. The isomorphism (3.53) and (2.8) induce
a perfect pairing:

Exti, g, (03 (A), 1) x Ext{, (D3, Rp(6)) — E
such that the following diagram commutes:

Extar,o,) (v%j (A),117) x Ext,p (Re(0:), Re(61)) L F

| “] H

00 ]
Extaryo,) (vﬁl()\),H) X Ext(,py (D3, Re(6)) —— F

with (II7,11) = (Sq0, 12\, %) ™) or (Stgn()\),ﬁ2()\,@/1)) and where the top perfect pairing is
giwen as in Corollary 3.36 (via Lemma 3.34(1)).

For D € EXt%go,r) (D3, RE(61)), we define (using the symmetric version of Lemma 3.42(1)):
Lot (D : D3) = (ED)* C Ext{yp, g, (v3 (V), T2\, ) T) = Extiyp, o, (v (A, I2(\, %)) (3.108)

and likewise using Lemma 3.34(1):

Lowt(D : D3)g := Loni(D : D3) N EXtéLS(Qp) (1}%‘1()\)7 Sa0)
g EXté[@(Qp) (U%i (A)7 5270) = EXtérLs(Qp) (/U%i (A), Stgn(/\))

We have L, (D : D3)y = (Eu;(D))* via the pairing U; in Theorem 3.50. We also define:

(D)~ = &(*(\, vy (NP2, Law(D : D3)) (3.109)
(D))" = &I\ ¥), v (A2, Law(D : D3)) (3.110)
1(D); = g’(sw, v (A), Laue(D : D3)o)

D)y = E(St5"(N), 03, (N, Lawt (D : Do)
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and we have I12(D)] < I12(D)~ and [12(D); < [2(D)~. Similarly as in Proposition 3.49,
assuming Hypothesis 3.26 there exists a unique representation if N2 # 0:

*(D); € EXtéL;;(@p) (U%i()\)» I1%(\, 1)) \EXt%}Lg,(Qp) (U%i()\% St3°(N))
such that IT?(D)~ = I1*(D)] @se(n) I1*(D)s; -

Now we fix (D, (41, d2,d3)) a special noncritical (¢, ')-module of rank 3 over Rg (see the
beginning of § 2) with §; = 2%, §, = 2¥271|-|71 and d3 = 2*372|-| 2. We assume the extension
of Rg(d2) (resp. of Re(d3)) by Re(d1) (resp. by Rg(d2)) is nonsplit and we let ¢y be a basis
of Lpm(D7 : Re(d1)) € Hom(Q), E) and ¢, a basis of Lpy(D3 : Re(d2)) € Hom(Q), E)
(see § 2), i.e. we have D} = D(p, A}, 1) and D3 = D(p?, ), 5,4) (see the beginning of
§ 3.2.3 and (3.52)). We assume N? # 0, which is equivalent to 1; not smooth for i = 1,2
and we also assume that Hypothesis 3.26 holds for D? and D3 (recall that under quite mild
genericity assumptions this is automatic by Lemma 3.29, Proposition 3.30 and Proposition

3.32). We can then associate to D the above representations:
(D)~ = T(D); &g (D), — (D)
II’(D)” = II*(D);] s I2(D); — II*(D)".

By the symmetric version of Lemma 3.37, the subrepresentation Si,0 — v (A) of I12(\, b2) C

[1%(D), C II*(D)~ is isomorphic to the image IT2(\, )g of 1y via the bottom map of (3.70).
By Lemma 2.5, we deduce:

= By C Hom(Q,, E™).
Thus by Remark 3.48, TI'(D); is also isomorphic to IT>(\,19)o. In particular, we have an
injection IT' (D), < I1?(D),. Similarly, we have an injection IT1?(D); < IT'(D);. Denote
by T1°(D)~ the following subrepresentation of IT'(D)~ and I1?(D)~:
Cii—Ciz
7
(D)~ = St°(A)
N
Co1—Cop

and put II(D)~ := YD)~ @®no(py- 11*(D)~, which is thus of the following form (where
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0174 = (/\) = 02’2 and 0274 = ()\) = 0172)2

P2 Pl
Cia.
Cy Ci3—Cig
N

)

/ 01,2/

(D)~ = St()) (3.111)

N2

Caq Co3—Chy
Cao

It follows from the previous results that the (¢, I')-module D and the GL3(Q,)-representation
II(D)~ determine each other. From the results of [4, § 4] (see in particular [4, Rem. 4.6.3]),
there is a unique locally analytic representation II(D) containing II(D)~ of the form:

Cia.
C C Cis

1,1 1,3
~N SN 7
/ 01,2 C1,4

Ca.

(D) = StF()) (3.112)

\ Cao Coa
RN AN

e
Co1 ,02,3 ,02,5,
D N N

Coo Cou
where the irreducible constituents C 5, Cs 5, 6174, (7274 are defined in [4, § 4.1].

For x : Qf — E* and D' := D ®r, Re(x), we finally set II(D')™ := II(D)~ ® x o det,
(D) := II(D) ® x o det, and if D" = Dy(p) for a certain p: Galg, — GL3(E), we set
II(p) := II(D’). In particular, we have thus associated to any sufficiently generic semi-
stable p: Galg, — GL3(E) with distinct Hodge-Tate weights and with N? % 0 on Dg(p) =
(Bgt ®q, p)“™2 alocally analytic representation II(p) of GL3(Q,) over E which has the form
(3.112) and which only depends on and completely determines p.

4. Ordinary part functor

In this section we give several properties of the ordinary part functor of [40] and review the
ordinary part of a locally algebraic representation that has an invariant lattice ([42, § 5.6]).
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4.1. Notation and preliminaries

We start with some preliminary notation.

We fix finite extensions L and E of Q, as in § 1 and denote by w;, a uniformizer of L. We let
G be a connected reductive algebraic group over L (G will be split from § 4.3 on), B a Borel
subgroup of G, P a parabolic subgroup of G containing B with Np the unipotent radical of
P and Lp a Levi subgroup of P. We let P be the parabolic subgroup of G opposite to P,
N5 its unipotent radical and Zy,,, the center of Lp = L.

Let K be a compact open subgroup of_G(L), as in [40, § 3.3] we say K admits an [wahori
decomposition (with respect to P and P) if the following natural map:

(K N Np(L)) x (KN Zy, (L)) x (KN Np(L)) — K

is an isomorphism. We let Iy D I; D I, D --- D I; D I;;1 D --- be a cofinal family of
compact open subgroups of G(L) such that:

e [; is normal in I
e [, admits an Iwahori decomposition.

For i € Z>o, we put N; := Np(L)NI;, L == Lp(L)NI; and N; := N5(L)NI;. Fori > j >0,
we put /; ; :== N;L; Ny, which can be checked to be a compact open subgroup of I, such that:

Ni X Lj X N() ;> Ii,j-

Remark 4.1. For any ¢ € Z>, the subgroups N;, L;, and N; of I are normalized by Ly, and
hence I, ; is normalized by Lo for any ¢ > j > 0. We show this for N, (the other cases are
similar). Let z € Ly, we have 2N5(L)z~! = N5(L), which together with the fact zl;z"! = I
implies 2N;z27t = 2(Ns(L) N I;)2~t = N5(L) N I; = N,.

Now we set:
L; = {Z S LP(L), ZN()Z_l g N()}

and Z; = L} N Zg,(L). We will assume moreover the following hypothesis.
Hypothesis 4.2. For any z € ZELP and i € Z>o, we have N, C zN,;z7 1.

Example 4.3. (1) Let G = GL,,, P a parabolic subgroup containing the Borel subgroup B
of upper triangular matrices, and let Lp = GLy, X -+ X GLy, be the Levi subgroup of P
containing the diagonal subgroup T'. Let I; := {g € GL,(Op), g =1 (mod wt™)}, we have:

ZZFP ={(a1, - ,ar) € Zr, (L), val,(ay) > --- > val,(ar)}

where a; € L* is seen in (the center of) GL,, (L) by the diagonal map. It is straightforward
to check that Hypothesis 4.2 is satisfied for {/;}icz.,-
(2) Let G = GSp,, P the Siegel (resp. Klingen) parabolic subgroup and I; := {g €
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GSp,(O1), g = 1 (mod wit)}. The Iwahori decomposition of I; in both cases follows
from [70, (2.6) & (2.7)], one has:

Zi, = {diag(as,a1,as,az) € Zp, (L), valy(a1) > val,(az)} in the Siegel case

zf, = {diag(ai,az,a2,a3/a1) € Zy,,(L), val,(a1) > val,(as)} in the Klingen case,

and Hypothesis 4.2 is again satisfied for {/;}icz. -

4.2. The functor Ordp
We review and/or prove useful results on the functor Ordp of [40], [41].

Let A be a complete noetherian local Og-algebra with finite residue field, and my4 be the
maximal ideal of A. Let V be a smooth representation of G(L) over A in the sense of [40,
Def. 2.2.5]. Recall we have in particular V' = lim V[m%]. The A-submodule VN of elements

fixed by Ny is equipped with a natural Hecke action of L} given by (cf. [40, Def. 3.1.3]):
Z-vi= Z z(zv) (4.1)
€Ny /2zNoz~1

where z € L}, v € VN0 and 7 is an arbitrary lift of z in Ny. Note that the A-module Vo
is a smooth representation of Lg over A. Following [40, Def. 3.1.9], we define:

Ordp(V) = HomA[ng] (A[Z1,,.(L)], V™) (4.2)

Z1, p (L)—finite’
which is called the P-ordinary part of V. Here the A-module Hom ,,+ (AlZr, (L), Vo)
P
is naturally equipped with an A-linear action of Z (L) given by (z - f)(z) := f(zz), and
(+) 71, (L)—finite denotes the A-submodule of locally Z p(L)-finite elements (cf. [40, Def. 2.3.1
(2)])- By [40, Lem. 3.1.7], Hom -+ [(A[ZL,(L)], V) and Ordp(V) are smooth represen-
P

tations of Lp(L) over A. By [40, Thm. 3.3.3], if V' is moreover admissible (cf. [40, Def.
2.2.9]), then Ordp (V) is a smooth admissible representation of Lp(L) over A. As in [40, Def.
3.1.10], we have the canonical lifting map:

Lean : Ordp(V) — VO fis f(1) (4.3)
which is L}-linear, and injective if V' is admissible (cf. [40, Thm. 3.3.3]). We put:
NOrdp(V) := {v € V™ such that there exists z € Z} with z-v =0}

which is an A-submodule of V™ stable by L}. The following theorem is a consequence of
the results in [40, § 3], but we include a proof.

Theorem 4.4. Assume V' is an admissible representation of G(L), then we have:
Ordp(V) @ NOrdp(V) = V1o

as smooth representations of Ly, where Ordp(V) is sent to VN by tean.
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Proof. We easily reduce to the case where V' is annihilated by m’; for a certain n € Z-,.

(a) Set V; := V%ii since V is smooth we have Vo = hﬂz Vi. By Hypothesis 4.2 and [40,
Lem. 3.3.2] (applied to Iy = I = I;;), we see that V; is stable by the action of Z; . Since V
is admissible, V; is a finitely generated A-module. Let B; be the A-subalgebra of End (V)
generated by erp, then B; is a finite commutative A-algebra. Note that B; is actually a
finite A/m’%-algebra since V; is annihilated by m’, so in particular it is Artinian. For a
maximal ideal m of B;, we call m ordinary (resp. nonordinary) if Image(Z; ) Nm = () (resp.
Image(Z; ) Nm # () where Image(Z} ) is the image of Z] in End4(V;) (or in B;). Since
B; is artinian we have a natural decomposition:

B; = H (Bi)m X H (Bi)m =t DBiord X Binord

m ordinary m non ordinary

and another decomposition:

Vi 2 (Vord® Vidoora == [ Ve x [ (Vi) (4.4)

m ordinary m non ordinary

Note that, for v € V;, we have v € (V;)nora if and only if there exists z € ZZFP such that
z-v = 0. In particular (V;)nora = NOrdp(V) N'V;. Note also that V; is stable by Lg since
I; ; is normalized by L. Since the action of Ly and ZZ“P commute, (4.4) is equivariant under
the action of L.

(b) For j > 14, the natural injection V; < Vj is equivariant under the action of ZZFP and
Ly. Therefore the restriction to the subspace V; induces a surjection «;; : B; — B; of finite
A/m’i-algebras (it is surjective because both A-algebras are generated by the image of Z7 ).
For a maximal ideal n of B;, it is clear that n is ordinary (resp. nonordinary) if and only
if lfj_; (n) is ordinary (resp. nonordinary). Thus the inclusion V; < V; induces injections
(Vi)ora = (Vj)ora and (Vi)nord = (Vj)nora which are equivariant under the action of Ly and
Zj,. From (Vi)yora = NOrdp(V) N'V; in (a), we also see NOrdp (V) = ligi(vi)nord.

(c) By [40, Thm. 3.3.3], we have Ordp(V) = lim, Ordp (V)L and teay is injective. Moreover,
we have:

Ol“dp(V)Li = HomA[erP] (A[ZLP (L)], VLiNo) = HomA[Zz.P} (A[ZLP (L)], Vli,i) (4.5)

Zy, p (L)—finite

where the first equality follows by definition (recall Ly, and hence L;, normalize Ny and

commute with ZZFP), and the second follows by the proof of loc.cit as we now explain. Since

Vi is a finitely generated A-module, any element in Hom 5+ (AlZr, (L)), Vi) is locally
P

71, (L)-finite, hence we have an inclusion:

Hom, (. | (A[Zy,(L)], V") C Hom Az, (A[Zy, (L)), VFMNo) (4.6)

Zp,p(L)—finite’
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However, by the proof of [40, Thm. 3.3.3], we have ¢, (Ordp(V)%) C V% in other words,
any element in the right hand side set of (4.6) has image in V% and thus is contained in
the left hand side (note that by Hypothesis 4.2, the A-module U in the proof of [40, Thm.
3.3.3] is actually equal to V% with the notation of loc. cit.).

(d) Combining (4.5) with the isomorphism at the end of the proof of [40, Lem. 3.1.5] (applied
to U = Vi = V), the map tean induces an isomorphism Ordp (V)L — (V;)oq which is
equivariant under the action of Ly and ZZ“P. Thus we deduce Ordp(V) = ligi(vi)ord and
together with (4.4) and (b):

VNO = hgl‘/z = hﬂ ((‘/i)ord S (‘/i)nord) = OrdP(V) S NOI‘dP(V)

which concludes the proof. O

Corollary 4.5. Assume A := Og/w}, for some n > 0, V is an admissible representation
of G(L) over A and V' is an injective object in the category of smooth representations of Iy
over A. Then Ordp(V) is an injective object in the category of smooth representations of Ly
over A.

Proof. By the same argument as in the proof of [42, Cor. 5.3.19], there exists r > 0 such that
V' is a direct factor of C(Iy, A)®" as a representation of Iy where C(Iy, A) (= the A-module of
continuous, hence locally constant, functions from Iy to A with the discrete topology on the
latter) is endowed with the left action of Iy by right translation. Since Iy admits an Iwahori
decomposition, we deduce from this that V™0 is a direct factor of:

W = (C(Io, A)M)® = (C(No, A) @0y jwp C(Lo, A)) " (4.7)

where L acts on the latter by I(f ® h) := f ® I(h). By [41, Prop. 2.1.3], W is an injective
object in the category of smooth representations of Ly over A. It follows from Theorem 4.4
that Ordp(V) is a direct factor of W, and hence also an injective object. O

Let now V be a wg-adically continuous representation of G over A in the sense of [40,
Def. 2.4.1]. Then V/w} is a smooth representation of G over A/w} for all n € Z-.
Following [40, Def. 3.4.1], we define:

Ordp(V) := I'&HOrdP(V/wEV) (4.8)

which is a wg-adically continuous representation of Lp(L) over A (cf. [40, Prop. 3.4.6]). We
have the canonical lifting map (cf. [40, (3.4.7)]):

Lean : Ordp (V) — Vo (4.9)

which is Lj-equivariant. By [40, Thm. 3.4.8], if V is moreover admissible ([40, Def. 2.4.7]),
Ordp(V) is also admissible and ¢,y is a closed embedding (where the target and the source
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are equipped with the wg-adic topology).

Let V be a unitary Banach space representation of G(L) over E and V? an open bounded
G(L)-invariant lattice of V' (i.e. a unit ball preserved by G(L), which exists by definition
as the representation is unitary). Then V? is a wg-adically continuous representation of G
over O and we put Ordp(V) := Ordp(V")[1/p], which is easily checked to be independent
of the choice of V?. For any compact group K we endow C(K,Og) and C(K, E) with the
left action of K by right translation on functions.

Corollary 4.6. Assume moreover that V°|y, is isomorphic to a direct factor of C(Iy, Og)®"
for some integer r > 0. Then Ordp(V°)|z, (resp. Ordp(V)|L,) is isomorphic to a direct
factor of C(Lo, Op)®" (resp. C(Lo, E)®") for some integer s > 0.

Proof. Let ny,ny € Z~y with ny > ny and consider the exact sequence:

ni
_ w
0— Vo/w;j? mo_E, VO/LTJ]%2 — Vo/w%1 — 0.

Since V?|;, is a direct factor of C(Iy, Or)®", arguing as in (4.7) we deduce an exact sequence
(which is equivariant for the action of Z;  and Lo):

wnl
0— (V0w )N — (VO/@iz)™ — (VO /i)™ — 0.

Together with Theorem 4.4, it follows that Ordp(V°/@}?) /@y = Ordp(V? /@ ). Moreover,
from Corollary 4.5 we deduce that the dual Home, (Ordp(V°/w?h), Og/wh) (= Og-linear
maps) is a finitely generated projective Og/w}|[Lo]]-module. By a projective limit argument,
it is then not difficult to deduce that Homp, (Ordp(V?),OF) is also a finitely generated
projective Og[[Lg]]-module. Dualizing back using [73, Lem. 2.1] the corollary follows. [

4.3. Ordinary parts of locally algebraic representations

We review and generalize the ordinary part of a locally algebraic representation of G(L) that
admits an invariant lattice (see [42, § 5.6]).

We keep the notation of §§ 4.1 & 4.2 and now assume that G is split. We fix a split
torus T" over L and a Borel subgroup containing 7" such that B C P (where P is the
parabolic subgroup of loc. cit.). We let V, be a smooth admissible representation of G(L)
over E, L(\) the irreducible Q,-algebraic representation of G(L) over E of highest weight
A € Hom(Resy, /0,1, G /Qp) where A is dominant with respect to Resy,q, B and we set:

V=V ®p L(N).

We denote by Lp(A) the irreducible Q,-algebraic representation of Lp over E of highest
weight A and by 47, » the central character of Lp(\). Note that we have Lp(A\) = L(\)No =
L(N)NP(E) and by [38, Prop. 4.3.6]:

Jp(V) = Jp(Vao) @ Lp(N) (4.10)
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where Jp(V') on the left is the Jacquet-Emerton functor of the locally algebraic representa-
tion V' relative to the parabolic subgroup P(L) and Jp(V,) is the usual Jacquet functor of
the smooth representation V..

For ¢ > 0 consider:
Vi:=V5ii®p Lp(\) CVN 2 VM gp Lp())

which is finite dimensional over E since V,, is admissible. We equip V2 and Vo with the
Hecke action of L}, given by (4.1). Note that we have z - (v®@u) = (2 -v) ® (zu) for 2z € L},
v € VY and u € Lp(A). In particular by Hypothesis 4.2, V; C V™ is invariant under this
Zj -action. Denote by B; the E-subalgebra of Endp(V;) generated by the operators in Z;
then B; is an Artinian E-algebra. Similarly to what we did in the proof of Theorem 4.4, a
maximal ideal m of B; is called of finite slope if Image(Z] ) Nm = () (inside Endp(V;)). Let
m be such a maximal ideal of finite slope and consider:

Zf, — Bi — Bij/m — Q,.

Note that the image of ZZFP lies in @X. We call m of slope zero if the above composition has

image contained in the units ZT,X (this is independent of the choice of the last embedding).
Denote by (V;). with « € {fs, null, 0, > 0} the direct sum of the localizations of V; at
maximal ideals which are respectively: of finite slope, not of finite slope, of slope zero, not
of slope zero. We have thus:

Vi (Vi) @ (Vi)nun = (Vi)o @ (Vi)so (4.11)

and note that v € (V;)n,y if and only if there exists z € ZZFP such that z-v = 0. Moreover, as
in the proof of Theorem 4.4, for j > ¢ the natural injection V; < Vj induces a erp—equivariant
map for x € {fs,null, 0, > 0}:

(Vi)e — (V)
For x € {fs, 0}, this action (uniquely) extends to Zp,(L) since the action of Z] on (V;), is
invertible. For * € {fs, 0, null, > 0}, we set:

(V). =l (V) (4.12)

which is an E-vector subspace of Vo stable by L} (indeed, each (V;). is a generalized
eigenspace of some sort for the action of Z; on V;, and the action of Lf on Vo = lim, V;

commutes with that of pr, so preserves generalized eigenspaces of ZZFP even though it may
send a vector of V; to V; for some j > i). Moreover, for * € {fs,0} this action of L} on
(VNo), uniquely extends to Lp(L) by [38, Prop. 3.3.6]. The decomposition (4.11) induces
Lj-equivariant decompositions:

Vo o (N0 (V) =2 (V) @ (VIV0) . (4.13)
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It follows from (4.10), V™o = VNo @5 Lp(\) and the proof of [38, Prop. 4.3.2] (we leave here
the details to the reader) that we have an isomorphism of locally algebraic representations
of Lp(L) (called the canonical lifting):

Jp(V) = (V) (6p) (4.14)
where (0p) means the twist by the modulus character dp.

If W is an E-vector space, recall an Og-lattice of W is by definition an Og-submodule which
generates W over E and doesn’t contain any nonzero E-line. If W is a E[Z,(L)]-module
such that the Zp,(L)-orbit of any element of W is of finite dimension, by the very same
construction as above we have a decomposition W = W, & W, analogous to (4.13).

Lemma 4.7. Let W be an E-vector space equipped with a erp—action and let f: W — Vo
be an E-linear erp-equwam'ant map.

(1) If W is moreover an E[Z,(L)]-module, then f factors through a Zp,,(L)-equivariant
map f: W — (V0.

(2) If W is an E[Zy,(L)]-module such that the Zy,(L)-orbit of any element of W is of finite
dimension, then f restricts to a Zy,(L)-equivariant map Wy — (VN0)o. In particular, if
W admits a Zy,(L)-invariant Og-lattice, then f factors through W — (Vo).

Proof. (1) For v € Vo, we have v € (V) if and only if there exists z € Z] such that
z-v = 0, which easily implies (1) using the first isomorphism in (4.13).

(2) From the assumption on W we can write W = lim (Ws) where the W, C W are finite
dimensional and preserved by Zr,(L). By (1) it is enough to prove f((W,)o) € (V0),, but
this is clear from the definition. If W is a Z,(L)-invariant Og-lattice of W, then W°N W,
is a Zp,(L)-invariant Og-lattice in W, which easily implies (W, )y = W, and (2) follows. [

Remark 4.8. It easily follows from the first statement in Lemma 4.7(2) and the fact the
Lp(L)-representations (V™°)s doesn’t depend on the choice of Ny up to isomorphism (see
(38, Prop. 3.4.11]) that the Lp(L)-representation (V0)y also doesn’t depend on the choice
of Ny up to isomorphism.

Assume from now on that V' is a unitary G(L)-representation, i.e. admits an Og-lattice
VY which is stable by G(L), and set V.° := V; N VY which is thus an Og-lattice of V;
stable by Z7, (note that (V)" = lim, V). Denote by A; the Op-subalgebra of Endo, (V;°)
generated by ZZFP. Then A; is an Og-algebra which is a free Og-module of finite type. We
have B; =2 A, ®p, E and A; = [],(A;). where the product runs over the maximal ideals
n of A;. As in the proof of Theorem 4.4, a maximal ideal n of A; is called ordinary if
Image(Z; ) Nn=0. And we put:

(‘/io)ord = Bn ordinary(‘/io)n (V;'O)nord = B nonordinary(‘/;())n-

We have V2 22 (V) 0rq @ (V) nora and we set (Vi)ord = (V2)ora @0, .

(2 (2
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Lemma 4.9. We have (V.")ora = V2N (V})o, and hence (V;)ora = (Vi)o-

)

Proof. Let m be a maximal ideal of B; and n the unique maximal ideal of A; containing

mNA; and j : B;/m < Q, an embedding as above. Then the restriction of j to A;/(mN A;)

induces j : A;/(mNA;) = Z, and we have n/(mnN4;) = jfl(mz) (where mz~ is the maximal

ideal of Z,). It is then easy to see that n is ordinary if and only if m is of slope zero. The

inclusions (V%), € (V;)n € (Vi)m thus imply (V%)o:a € V2 N (V;)o. On the other hand, we
Vi

( i
have V2 N (V;)m C (V¥), and thus V? N (V;)g C (Vi?)ora- The lemma follows. O

7

The action of Z} on (V,”)ora being invertible, it (uniquely) extends to an action of Z,, (L)

and the isomorphism (V,?),q ®0, F = (V;)o of Lemma 4.9 is equivariant under the action of

Zr,.(L). We set (using Lemma 4.9 for the second equality):
Ordp(V?) := (V) ora = VO N (V) > (VO™ = lim(V") (4.15)

and Ordp(V) := Ordp(V?) ®0, E < V™. The combined actions of Zr,, (L) and of L}, on
Ordp(V?) (the action of L} being induced by that on (V°)) imply with [38, Prop. 3.3.6]
that this Lj-action uniquely extends to Lp(L). We deduce that Ordp(V) is a unitary
representation of Lp(L) over E and we call it the P-ordinary part of V.

Lemma 4.10. We have an isomorphism Ordp(V) = (V™o)o, in particular the Lp(L)-
representation Ordp(V) is independent of the choice of VO and Ny, and (VN)g is a unitary
representation of Lp(L) over E.

Proof. The isomorphism follows from the second equality in (4.15). The lemma follows since
(Vo) doesn’t depend on any lattice. ]

Remark 4.11. If we drop the assumption that V' admits an invariant Og-lattice, then the
Lp(L)-representation (V0); might not be a unitary representation of Lp(L) over E.

Lemma 4.12. Let P’ O P be another parabolic subgroup of G and Lp: the Levi subgroup of
P’ (containing Lp). Then we have:

Ol"dp(V) = Ol"dmeP, (Ol"dp/(V))

Proof. Let Nj := NoN Npi(L) and Ny := NoN Npng,, (L). We have Ny = Nj x Ng and thus
an isomorphism Vo = (V)N By Lemma 4.10 and (the first statement in) Lemma 4.7(2),
we see that the embedding (((V0))No')g < V™ factors through (Vo). On the other hand,
we have an embedding (V) < (V™)y (using Zp,, (L) € Zr,(L)) which factors through
an embedding (V0)y — (((VN(/))O)N(/)/)O using Lpnz,, = Lp and (again the first statement
in) Lemma 4.7(2). We deduce an isomorphism (V) = (((V0)g)™0')y whence the result
by Lemma 4.10. O

Remark 4.13. If we drop the assumption that V' admits an invariant Og-lattice, the proof
of Lemma 4.12 still gives (V™) = (((VN0))No)y (with the notation in the proof of loc.

cit.). And if we use Lemma 4.7(1) instead of Lemma 4.7(2), the same proof gives (Vo) =
(((VNo)g)No')g, (which can also be deduced from (4.14)).
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Fix n € Z-¢ and consider V°/w? which is a smooth representation of G(L) over Og/w’.
We have (V)Mo /o = hgl(l/;o/w%) For i € Z>( the quotient A;/@% of A; is isomorphic to
the Op/wp-subalgebra of Endo, jon (V' /w}) generated by Z; . We have a natural bijection
between the maximal ideals m of A; and the maximal ideals m of A;/@?} (since any maximal
ideal of A; contains wg). And it is easy to see that m C A; is ordinary if and only if m is
ordinary (see the proof of Theorem 4.4). We deduce an isomorphism of A;/wf-modules (see

(4.4)): N
(Vio)ord/w% — (Wo/w%)ord (4.16)

Lemma 4.14. We have an Lp(L)-equivariant injection where Ordp(V° /@) is defined as

ling(V;" /@ )ora — Ordp(V°/wh). (4.17)
Moreover, the composition of (4.17) with the canonical lifting (4.3) gives the natural injection
lim (V23 Jora — (V) o,

Proof. For any i > 0, by the last isomorphism in the proof of [40, Lem. 3.1.5] we have:
(VP /@g)ora = HomOE/w Zf,) (OE/WE[ »(D)]; VO/WE)

= HomoE/w [Z+ ] (OE/wE[ »(L)]; Vo/wE> Z1, p (L)—finite

— HomoE/wg[ng] (OE/wE[ZLP(L)]v (VO/WE)NO)ZLP(L)_ﬁmte

where the second isomorphism follows from the fact V is of finite rank over Og. The first
part of the lemma follows. By unwinding the maps, the second part also easily follows. [J

Remark 4.15. (1) The embedding lig V;"/w} = (V°)™ /@y < (V°/w})™ is not sur-
jective in general. Consequently (e.g. by the proof of Lemma 4.14), (4.17) might not be
surjective in general.

(2) If the inclusion V?/w?% < (VO/w’)%i is an isomorphism for all i (which in particular
implies (V)Mo /5 (VO/wh)N and that the G(L)-representation V°/w? is admissible),
it follows from (4.5) and the proof of Lemma 4.14 that (4.17) is an isomorphism.

Lemma 4.16. We have a natural Lp(L)-equivariant injection:

Ordp(V?) — @OrdP(Vo/w%) = Ordp(vo) (see (4.8)) (4.18)

where VO := |j m VY /@, Moreover, the composition of (4.18) with the (projective limit over
n of the) canonical lifting (4.9) coincides with the composition of the natural injections:

Ordp (V) = (VO)No s (V0) 0
Proof. For any n € Z~, by (4.15) and (4.16) we have:

OrdP(Vo) = hﬂ(‘/;o)ord I hﬂ(vio/w%)ord'
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It is easy to see (wiVi,) NV = (wiV) NV = wiV,". Hence the above surjection induces
an isomorphism Ordp(V°)/@} = lim (V;?/@})ora. We also have N, @}, Ordp(V°) = 0 since
the same holds for VY. Thus we obtain an injection:

Ordp(V?) — lim (Ordp(V°) /@) = lim (Hny(V /5 )ora)-

By (4.17) and taking the projective limit over n, (4.18) follows. The second part of the
lemma follows from the second part of Lemma 4.14. O]

Remark 4.17. By (4.3) and Remark 4.15(2), if V. /@ = (V9/w’)% for all 4, then we see

~

that (4.18) has dense image where Ordp(V?) is endowed with the wg-adic topology.
The proof of the following lemma is straightforward, we omit it.

Lemma 4.18. Let W be a unitary Banach representation of G(L) over E, W° C W an
open bounded G(L)-invariant lattice and f: V°® — WO an Og-linear G(L)-equivariant mor-
phism, which induces a G(L)-equivariant morphism f:V — W. Then f induces an Lp(L)-
equivariant morphism:

Ordp(V?) — Ordp(W°) (resp. Ordp(V) — Ordp(W)) (4.19)
such that the following diagram commutes (resp. with V°, WO replaced by V., W ):
Ordp(V?) —— Ordp(W?)
l l (4.20)
(VoMo — s (WO)No,
Moreover, if f is injective and V° = WO NV, then the morphisms in (4.19) are injective.

4.4. An adjunction property
We study some adjunction property of the functor Ordp(-) of § 4.3 on locally algebraic rep-
resentations.

We keep the notation of §§ 4.1, 4.2 & 4.3. If U is any E-vector space, denote by C*(Np(L),U)
the E-vector space of U-valued locally constant functions with compact support in Np(L)
endowed with the left action of Np(L) by right translation on function. If Uy is a smooth
representation of Lp(L) over E, recall that there is a natural Np(L)-equivariant injection:

CZ(Np(L), Uss) — (Ind57) Use)™ (4.21)

sending f € C°(Np(L),Uyx) to F € (Ind%g Us ) such that:

rig) = {0l = €PN
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Lemma 4.19. Let Uy, be a smooth admissible representation of Lp(L) over E and assume
that U := Uy, ®p Lp(\) is unitary as representation of Lp(L) (Lp(\) as in the beginning of
§ 4.9).

(1) The locally algebraic representation (Indggg Uso)® ®p L(\) is unitary as representation

of G(L).

(2) There is a natural Lp(L)-equivariant injection:

U =Us ®p Lp(\) —> Ordp ((Indggg Us)™ @5 L(N)) (4.22)

such that the composition of (4.22) with the natural injection (see just after (4.15)):
Ordp ((Indpgg Us)® ®p L(\)) — ((Indﬁgg Us)® @5 L(N))

has image in C°(Np(L), U)No =2 (C*(Np(L),U*®)@pL(\))™ via (4.21) (tensored with L(\))
and maps u € U to the unique function f, € C°(Np(L),U)No with f,(n) = u for alln € Ny
and f.(n) = 0 otherwise.

Proof. For simplicity, we write V := (Indggg Uso)® @ L(N). Let U° be an Lp(L)-invariant
Op-lattice of U and U0 := m U 0/’ We have G(L)-equivariant embeddings:

G(L) yryan G(L) 170 co
Ve (Indg 1 U)" = (IndZ [ U° ®0, B) . (4.23)

Since the right hand side of (4.23) has an obvious invariant lattice given by (Indgg [/]\O)CO,

its intersection with the left hand side also gives an invariant lattice on V', hence V' is unitary.
We have:
U =5 Jp(CE(Np(L), U)) (57") — Jp(V)(655")

where the first isomorphism follows from [38, Lem. 3.5.2] (the above action of Np(L) on
C*(Np(L),U) being extended to P(L) as in [38, § 3.5]) and the second injection follows
from the left exactness of Jp(-). Since U is unitary, by Lemma 4.7(2) and Lemma 4.10 we
deduce an injection:

U — Ordp(V)(— Jp(V)(85") —> V)

(recall the second embedding follows from (4.14) and the third from (4.13)). Moreover the
composition is equal to the composition:

U =5 Jp(C®(Np(L), U))(6p") — C(Np(L), U)o —s VYo

sending u € U to f, € C°(Np(L),U)™ as in the statement of the lemma (see [38, § 3.5], in
particular the proof of [38, Lem. 3.5.2], see also the beginning of [37, § 2.8]). O
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Lemma 4.20. Keep the notation and assumptions of Lemma 4.19 and let U be an Lp(L)-

invariant Og-lattice of U and U= ﬁ U@ Qe, E. Assume that U is an admissible
Banach representation of G(L) over f)’é’ § 3/). We have a natural commutative diagram:

D

—

U
(4.22)l zl

Ordp ((Indfy ;) Us)® @5 L(N)) — Ordp ((Indg ) 0)¢)

where the bottom map is induced by (4.23) and Lemma 4.18, and where the isomorphism on

the right is [40, Cor. 4.3.5].

Proof. By (4.20) and the fact (4.9) (with V' = (IndP(L) U)¢") is an embedding (note that V
is admissible by assumption), it is sufficient to prove that the following diagram:

v @
l l (4.24)
((IndP(L Uso)® Qp L(/\))NO — ((Ind%g ﬁ)co)No

is commutative. By Lemma 4.19 the left map sends u € U° to f, € C>°(Np(L), U)o, By
40, § 4] the right map is induced by the maps (with obvious notation):

U’/ — C*(Np(L),U° o)™, w— f,
then taking the inverse limit over n and inverting p. We see (4.24) commutes. O

Proposition 4.21. Let Uy, be a smooth admissible representation of Lp(L) over E, U :=
Us @ Lp(X) and V' a unitary admissible Banach representation of G(L) over E. Let
f U < Ordp(V) be an Lp(L)-equivariant injection and denote by U the closure of U in
the Banach space Ordp(V). Then f induces G(L)-equivariant morphisms:

~ 0
(d3 ) Une)* @ L(N) — (Tnd5y ) 0" —v (4.25)

from which f can be recovered as the following composition:

U 22, Ordp (Id$7) Use)™ @5 L(N)) — Ordp(V) (4.26)

where the last map is induced from the composition (4.25) and Lemma 4.18.

Proof. Note that U is a unitary representation of Lp(L) and that Uis a unitary admissible
Banach representation of Lp(L) over E by [40, Thm. 3.4.8]. The second map in (4.25) is
then obtained by applying [40, Thm. 4.4.6], and the first map is obtained as in (4.23) (with
UY := Ordp(V°)NU where V? is an open bounded G(L)-invariant lattice in V). The second
part of the proposition follows from [40, Thm. 4.4.6] together with Lemma 4.20. n
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5. P-ordinary Galois representations and local Langlands correspondence

In this section, for P a parabolic subgroup of GL, we define P-ordinary Galois representa-
tions and prove some standard compatibility with classical local Langlands correspondence
which will be used later. We denote by L a finite extension of Q,,.

5.1. P-ordinary Galois deformations

We define P-ordinary Galois deformations and recall some useful standard statements.

We fix P a parabolic subgroup of GL, containing the Borel subgroup of upper triangular
matrices and with a Levi subgroup Lp given by (where Zle n; =n):

GL,, 0 0
0 GL,, 0 (5.1)
: : . 0 .
0 0 -+ GL,,

Definition 5.1. Let A be a topological commutative ring and (pa, Ta) a continuous A-linear
representation of Galy, on a free A-module T's of rankn (we often just write p4 for simplicity).
The representation pa is P-ordinary (over A) if there exists an increasing filtration of T by
invariant free A-submodules which are direct summands as A-modules such that the graded
pieces are of rank ny, ng, - -+, ng over A.

Choosing a basis of T4 over A, we see that a P-ordinary representation gives rise to a con-
tinuous group homomorphism Gal, — P(A). Fix a P-ordinary representation p = (p, T,,)
of Galy, over kg together with an invariant increasing filtration 0 = Ty, 0 € Tk,1 © -+ C
Typk = Tk, as in Definition 5.1. Denote by (p;, 81 Thpe := Thpi/Thpi-1), © € {1,--- ,k}, or
simply p,, for the representations of Galy, over kg given by the graded pieces (thus p, is of
dimension n;). We assume the following hypothesis on p and the p,.

Hypothesis 5.2. We have Endga, (p) = kg, Endga, (p;,) = kg fori = 1,--- k and
Homga, (ﬁi,ﬁj) =0 foralli#j.

Let Art(Og) be the category of local artinian Og-algebras with residue field kg. Let Def;
(resp. Def;) be the usual functor of deformations of p (resp. of p;), i.e. the functor from
Art(Og) to sets which sends A € Art(Og) to the set {((pa,Ta),i4)}/~ where (pa,T4) is a
representation of Galy, over A as above, i4 is a Galp-equivariant isomorphism Ty ® kg — Tj,,
(Ty, being the underlying vector space of p) and ~ means modulo the Galg-equivariant
isomorphisms T4 — T" such that the following induced diagram commutes:

Th @4 kp —— T) @4 kg

LAlI L;ll? (5-2)

TkE pr— TkE
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(resp. with p; instead of p). If A — B in Art(Opg) then Ty is sent to T4 ®4 B (and iy to
itself via Ty ®4 B ®p kg = Ta ®4 kg). By choosing basis, the functor Def;(A) can also be
described as the set:

{pa : Galp, — GL,(A) such that the composition with GL,(A) - GL,(kg) gives
p: GalL — GLn(kE)}/N

where ~ means modulo conjugation by matrices in GL,(A) which are congruent to 1 modulo
the maximal ideal m4 of A. Since Endga, (p) = kg (resp. Endga, (p;) = kg), it is a standard
result (first due to Mazur) that this functor is pro-representable. We denote by R; (resp.
Rj.) the universal deformation ring of p (resp. of p;), which is a complete local noetherian
Og-algebra of residue field kg.

We now switch to P-ordinary deformations. We define the functor Defg {_gr}d : Art(Op) —
{Sets} by sending A € Art(Og) to the set:

{((pa,Ta), Therin)} )/~

where ((pa,Ta),i4) is as above, Tae = (0 =T40 C Ta1 € -+ C Ty = T4) is an increasing
filtration of Ty by invariant free A-submodules which are direct summands as A-modules
such that i, induces a Galy-equivariant isomorphism T4 ; ® 4 kg — T}, ; for i € {1,--- , k},
and where ~ means modulo the Galy-equivariant isomorphisms T4 — 77, satisfying (5.2) and
which moreover respect the increasing filtration on both sides. Alternatively, by choosing
adapted basis one can describe Defg {%Oﬁd(A) as the set:

{p: Gal, — P(A) such that the composition with P(A) - P(kg) gives

where ~ means modulo conjugation by matrices in P(A) which are congruent to 1 modulo
the maximal ideal my of A. The following two propositions are standard, we provide short
proofs for the convenience of the reader.

Lemma 5.3. The functor Defg{_;r}d is a subfunctor of Def;.

Proof. Let A € Art(Op), starting from ((pa,Ta),i4) € Def;(A), it is enough to prove that
there is at most one filtration 7’4  on T4 such that 74 induces isomorphisms T4 ;@ skg 5 Thp.i
and that any isomorphism T4 — T satisfying (5.2) is automatically compatible with the
filtrations (when they exist). For the first statement, by dévissage it is enough to prove
T 1511% = Tf’i (where T 22, sz are two filtrations). But the equivariant map Tfﬂ — T4/ Tf’i
must be zero (and hence Tf(ﬂ =T fi) since the Galj-representation T4 /T fi is by definition
a successive extension of p;, ¢ # 1 and we have Homga,;, (Tf(ﬂ,ﬁi) = 0 for 7 # 1 by Hypothesis
5.2 (and an obvious dévissage). The same argument replacing T4 /Tfﬂ by T /T ; shows

that any equivariant isomorphism Ty — 77y must send Ty ; to T ;. O

73



Proposition 5.4. The functor Defg{_;gd

Og-algebra Rgg’_gd of residue field kg.

18 pro-representable by a complete local noetherian

Proof. By Schlessinger’s criterion ([72]), Lemma 5.3 and the fact that Def; is pro-representa-
ble, it is enough to check that, given morphisms f; : A — C, fo : B — C in Art(Og) with
f2 surjective and small, the induced map:

P—ord P—ord P—ord
Dets 5y (A X B) — Def; 55 (A) X pegp—ona o) Defy 57y (B)

is surjective. But this is immediate from the description (5.3). O

By Proposition 5.4, Lemma 5.3 and the fact that [?; is a complete local noetherian Opg-
algebra, we see (e.g. by [45, Lem. 2.1]) that the natural morphism R; — Rg{_ﬁﬁd is surjective.

b~ Defy
sending ((pa,Ta), Tae,i4) to gr;Tse with the induced iy. It corresponds to a canonical
morphism of Og-algebras R; — Rg {_ﬁ‘zr}d, and we deduce a morphism of local complete Og-
algebras (with obvious notation):

Moreover, for i € {1,--- , k}, we have a natural transformation of functors Def

—

P—ord
®i:1,---,kRﬁi — Rﬁ,{ﬁi} ’ (5.4)
Let us now consider equal characteristic 0 deformations. Fix a P-ordinary representation
p of Galy over E together with an invariant increasing filtration 0 = Tgo € Tg1 € -+ C

Tgx = Tk as in Definition 5.1 and denote by (p;, gr; Tge := Tri/Tgi-1), i € {1,--- ,k} th
graded pieces. As previously we assume the following hypothesis on p and the p;.

Hypothesis 5.5. We have Endga,(p) = E, Endga,(pi) = E for i =1,---,k and
Homga, (pi, pj) =0 fori # j.

Let Art(E) be the category of local artinian E-algebras with residue field £ and define Def,,
(resp. Def,,) as Def; (resp. Def; ) but replacing Art(£) by Art(Og) and p (resp. p;) by p
(resp. p;). Then from Hypothesis 5.5 the functor Def,, (resp. Def,,) is pro-representable by a
complete local noetherian E-algebra of residue field £ denoted by R, (resp. R,,). Likewise
we define the functor Defi {_pcgd of P-ordinary deformations of p on Art(E) in a similar way
as (5.3) and before by replacing p, T, ; and p; by p, Tg,; and p;. By the same proof as for
Lemma 5.3 and Proposition 5.4, we obtain the following proposition.

Proposition 5.6. The functor Deff{_p(zgd is a subfunctor of Def, and is pro-representable by
a complete local noetherian E-algebra Rf{_pigd of residue field E.

Let (p,{p;}) as before satisfying Hypothesis 5.2. Let ¢ : Rg {_ﬁi‘;d — Og be a homomorphism
of local Op-algebras and denote by p{ (resp. p¢;) the deformation of 5 (resp. of p;) over
Op associated to ¢ via Defg{_g’ir}d — Def5 (resp. Defg{_ﬁ‘f}d — Def;.). In particular, pg is a
representation of Galy, over a free Og-module Ty, endowed with an invariant filtration by
direct summands Tp, ; as Og-modules such that the graded pieces give the representations
P i=1,--- k. Let pe := p ®o, E and pe; := p{; @0, E.
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Proposition 5.7. (1) We have that (pe,{pe;i}) satisfies Hypothesis 5.5.
(2) The E-algebra R is isomorphic to the (Ker(¢) ®o, E)-adic completion of

[ pe{pei}t
Ry oy ®os B

Proof. (1) is straightforward from Hypothesis 5.2 and a dévissage.

(2) Denote by Defg {_ﬁ‘zg‘f(g) (resp. Def5 (¢)) the generic fiber of Defg E%d (resp. Def3) at € in the
sense of [52, § 2.3]. By [52, Lem. 2.3.3], it is sufficient to prove Defg{_gf(g) = Deflpz{fji}. By
[52, Prop. 2.3.5], the generic fiber Def; (¢ is isomorphic to Def,,. Moreover, by the argﬁment
in the proof of loc. cit. (together with Lemma 5.3 and Proposition 5.7), the isomorphism
Def5,¢) = Def,, induces an injection of functors:

P—ord P—ord
Defs Gy = Dety ey - (5.5)

For A € Art(F), let Ay be an Og-subalgebra of A such that A, is finitely generated as
Opg-module and Ay[1/p] = A. The canonical surjection of E-algebras A — FE induces a
surjection of Og-algebras Ay — Opg. Let ((pa,Ta),Tae,ia) € Deflif{‘;fi}(A). As in the
proof of [52, Prop. 2.3.5], the free A-module Ty admits a Galy-invariant Ap-lattice T "4, such
that Ty, ®4, Op = pg. We define an invariant filtration on T4, by T4, ; := Ta; N T4, (inside
T4). It is not difficult to check that T4, ; is a direct summand of T4, as Ap-module and
that T, ; ®4, Op = To,;. Hence ((pa,T4),Tae,94) € Defg{*ﬁirf@)(A) (see [52, § 2.3]) which
implies (5.5) is also surjective, and thus an isomorphism. O
Definition 5.8. Let p (resp. p) be a P-ordinary representation of Galy, over kg (resp. E) and
fix an invariant increasing filtration of the underlying space Ty, (resp. Tg) as in Definition
5.1 leading to representations p; (resp. p;) for i € {1,--- ,k} on the graded pieces. The

representation p (resp. p) is strictly P-ordinary if the following conditions are satisfied:

o (p,{p;}) satisfies Hypothesis 5.2 (resp. (p,{pi}) satisfies Hypothesis 5.5)

e if p (resp. p) is isomorphic to a successive extension of n;-dimensional representations
7. (resp. pl) fori=1,--- k, then p, = p, (resp. p; = p;) foralli=1,--- k.

In particular, if 5 (resp. p) is strictly P-ordinary, there is a unique invariant increasing
filtration on its underlying space as in Definition 5.1.

Lemma 5.9. Let p be a strictly P-ordinary representation of Galy over kg, § : Ry — Op a
surjection of local Og-algebras and pg the deformation of p over O associated to £. Assume
that pg, and thus pe = pg Ro, E, are P-ordinary.

(1) The morphism & factors through the quotient Rg{’p‘f}d of R5.

(2) The representation pe is strictly P-ordinary.

Proof. Any choice of filtration as in Definition 5.1 on the underlying space of pg satisfies that

its reduction modulo wg gives the above unique filtration on the underlying space of p, from
which (1) follows easily. The proof of (2) is by the same argument as for Lemma 5.3. O

When p (resp. p) is strictly P-ordinary, by Definition 5.8 the representations p; (resp. p;) are

defined without ambiguity and we then write Rg —ord . — Ri; {*;r}d (resp. RY " = R/fj {’p‘ﬁd).
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5.2. Classical local Langlands correspondence

We give a sufficient condition in terms of the (usual) local Langlands correspondence for a
p-adic Galois representation to be P-ordinary. The results of this section will be used in

66 6.3 & 7.1.

Let p: Gal, — GL,(F) be a potentially semi-stable representation of Galy, over E and L’
a finite Galois extension of L such that p|ga,, is semi-stable. Following Fontaine we can
associate to p a Deligne-Fontaine module:

DF(p) := ((Bx ®q, p)°*'¥', ¢, N,Gal(L'/L)),

where D/ := (By®q, p)“*'*' is a finite free L) ®@g, E-module of rank n, Lj being the maximal
unramified subextension of L' (over Q,), where the (¢, N)-action on Dy, is induced from the
(i, N)-action on By, and where the Gal(L’/L)-action on Dy, is the residual action of Galy.
As in [16, § 4], we associate to DF(p) an n-dimensional Weil-Deligne representation WD(p)
in the following way. By enlarging E, we assume E contains all the embeddings of L' (and
hence Lj) in Q,. We have thus Lj ®q, £ =[], 1,—r £ and therefore an isomorphism:

Dy = [] Du.

where Dy, := Dy DLy, Bool E. Each Dy, is stable by the N-action. Moreover, for
w € W, (the Weil group of L), we have that r(w) := ¢~ ") oW acts Lj ®q, E-linearly on
Dy, where a(w) € [Lg : Q,)Z is such that the image of w in Galg, is equal to Frob®™)_ Frob
being the absolute arithmetic Frobenius, and where w denotes the image of w in Gal(L'/L).
We still denote by r(w) the induced map Dy, — D/, for o : Ly — E, then we denote
by W(p) the representation (D ,,7) of Wy and by WD(p) := (W(p), N) the Weil-Deligne
representation obtained when taking N into account. Both W(p) and WD(p) are indepen-
dent of the choice of ¢: if we replace ¢ by ¢ o Frob™ for j € Z (Frob being the absolute
arithmetic Frobenius on L), then ¢’ : Dy, — Dy, induces an isomorphism of Weil-Deligne
representations Dy o — Dy jopop-i (cf. [15, Lem. 2.2.1.2]). In fact, we only make use of
W(p) in the sequel. We let W (p)* be the semi-simplification of W (p).

For a representation W of W, and an integer s, we set W(s) :=W ®|-|* = W ®@punr(q;*).
Let 7 be a smooth irreducible (hence admissible) representation of GL, (L) over E such
that rec(m™)(352) = W(p)*, where rec(r>) denotes the semi-simple representation of W,
associated to 7 normalized as in [47, Thm. A]. Asin § 4.3, let A = (Ao, -, Aon)oen, €
Hom(Resy g, T, G,,) be a dominant weight with respect to Resy g, B (s0 As; > Aoiqq for all
o). Put 7 := 1 ®g L(\). Assume that, for all 0 € ¥, the o-Hodge-Tate weights HT,,(p) of
p are given by HT,(p) :={ A\ +1—1n,--- , Xpi+1—14,--- , A\s1}. Let P C GL, as in (5.1)
and choose Ny a compact open subgroup of the unipotent radical Np(L) as in § 4.1. Recall
that we defined a canonical representation (7°)y of Lp(L) = [[F, GL,, (L) in (4.12) (see
Remark 4.8). For i € {1,--- ,k}, we denote by s; := Z;;E n; where we set ng := 0 (hence
S1 = O) .
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Proposition 5.10. Fori=1,--- ,k let m° be a smooth irreducible representation of GL,, (L)
over E. If there is an embedding (2F_;7°) @ Lp(\) — (7¥0)g of locally algebraic repre-
sentations of Lp(L) =[]ty GLy, (L), then there exist p;: Galy, — GL,,(E) fori=1,--- k
such that:

e p is isomorphic to a successive extension of the p; (thus p; is potentially semi-stable

for all i),

o rec(m)(F5 — i) = W(pi)*®,

[ HTJ(,Oz) = {)\g’j +1 _j}jzsi+1’...’si+1 fOT o€ ZL.
In particular, if (7™¥0)y # 0, then p is P-ordinary over E in the sense of Definition 5.1.

Proof. The very last assertion easily follows from the others and the finite length of the
Lp(L)-representation (7™0)y (which follows from (7™°)y C Jp(7)(05'), see (4.14), and the
finite length of Jp(m)). The general idea of the proof below is the following: by classical
local Langlands correspondence, we deduce first a “P-filtration” of the Weil representation
W (p)*, then we show that this filtration actually comes from a filtration of Galois represen-
tations.

(a) First we reduce to the case k = 2 (i.e. P maximal). Take P’ O P such that the
Levi subgroup Lp: of P’ satisfies Lp = <GL8_”’“ GI(j ) By the proof of Lemma 4.12
nk
(see Remark 4.13), we have with the notation as loc. cit. (77V0)y =2 (((7™0))N0)o. Thus
if (®F 7)) ®@p Lp(\) — (7™°)g, there exists a smooth irreducible representation 7% =
(7')>° @ 7 of Lp/(L) over E such that 7% ®@p Lp/(\) < (770) and (®F_,7°) @5 Lp(A) <
(7% ®p Lp/()\))Nél)O. Assume the statement holds for k = 2, we then obtain p’, pj corre-
sponding to ('), m° respectively as in the proposition. Applying the same argument with
Pl (1), N = (Nsi) oex, instead of p, 7, A and using an easy induction, we deduce

=1, ,n—nyg
the statement for arbitrary k.

GL,, 0

(b) Assume now Lp = < 0 GL,

) . The composition

(m° @ 75°) @ Lp(A) < (7)o = Jp(m)(0p") = Jp(7™)(05") ®p Lp(\)  (5.6)

corresponds to an injection 7° @ 7° < Jp(7®)(0p'). The latter injection induces (for
example see [38, (0.2)]) a nonzero, hence surjective, morphism (recall P is the opposite
parabolic):

(Ind%?].:’)(m T @) - . (5.7)

Let W; := rec(7{°)(+52), i € {1,2} be the semi-simple representation of W, associated to
720, we have (see for example [77, Thm. 1.2(b)], noting that our rec(—) is o(—) of loc. cit.):

W(p)* = Wi & Wa(—n)
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with W; |w,, being unramified. For i € {1,2} let DF; := (%;,¢,N = 0,Gal(L'/L)) be
the Deligne-Fontaine module associated to (W;, N = 0) ([16, Prop. 4.1]). Enlarging E if
needed, there exists a ¢-submodule D; of Dy, = (Bg ®q, p)GalL’ such that the go[%:@p]—
semi-simplification of D, is isomorphic to %) as ¢-modules over Lj ®q, E. Indeed, for
o : Ly — FE, by choosing appropriate generalized ool eigenvectors, we see there exists a
Lo @l_submodule D, of Dy, such that DP, = 9, , (since %, is a Lo @l_submodule
of D, and E is sufficiently large). We can then take D; to be the yp-submodule of Dy,
generated by D;,. We will show that D is stable by N and by Gal(L'/L) (hence is a
Deligne-Fontaine submodule of D) and that the induced filtration on D; is admissible.

(c) We first show that we have (where ty(-) := val,(dety, (ollo'@rl))):

[L’Q]

- ( 3 i(j —1- AUJ))[E - L. (5.8)

cexy j=1

From the discussion above [47, Thm. AJ, the central character wqe of 7{° coincides with
AF rec(m5°) =2 A (Wi (1)), On the other hand, since (75° ® 75°) @ Lp(X) < (), we
deduce

val, (wree () + val,y( ( Z Z/\J]> =0,

oedyr j=1
and hence (5.8). We equip Dy ®, L' with the Hodge filtration Fil*(D; ®r; L') induced by
Dy @py L' Since HT4(p) == { Ao +1 =1, Aoy + 1 —1d,--- , Ag1} for o € Xy, it is easy
to deduce (where t (- @y L) := 3,0y dimp, i Fil’(- ®r; L)/ Fil't(. ®r, L')):

ty(Dy @y L) (229—1 )[E L.

cexy j=1

(d) We show that D is stable by the monodromy operator N of Dy,. Let o : L — E, by
the relation N = poN and the fact that ¢/ induces an isomorphism Dy, — D, -5 for
J € Zsy, it is sufficient to prove that D, , is stable by N. Let f’ := [Lj : Q,] and denote by
D! the (¢!, N)-submodule of Dy, generated by D;,. Let D' be the (p, N)-submodule of
D generated by D), i.e. D' ;= @/(D)) for j € Zxo.

Claim. If D! # D1,g then there exists a (¢/', N)-submodule D” of D’ such that:

dimg D) = dimg D1, =n; and tn(D") < tn(Dy)

where D" is the (¢, N)-submodule of D" generated by DZ.

We first prove the claim in the case where there is « € E* and m € Z-( such that the
@l -eigenvalues on D! lie in {a,pa, -, p~7™a} (enlarging E if necessary) and « is an
eigenvalue of ¢/'. Since D’ is generated by D, ,, we see from Ny = ppN that a is also
a ¢/'-eigenvalue on D;,. Since N is nilpotent on D', there exists s € Zsq such that
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dimp Ker(N*) > n; and dimg Ker(N*~') < n; as (¢/', N)-submodule of D’ . Consider the
short exact sequence:

0 — Ker(N*1) — Ker(N®) 225 N*~(Ker(N®)) — 0.

Let M be a ¢f'-submodule of N*~!(Ker(N®)) of dimension n; — dimg Ker(N*~') and let D”
be the preimage of M in Ker(N®), which is thus a (¢!, N)-submodule of D’ of dimension
ny. Since D! # Di,, we have Ker(N* ') € Dy, or Dy, ¢ Ker(N*®) (indeed, otherwise
we have Ker(N*™!) C D;, C Ker(N¥) which implies N(D;,) C Ker(N* ') C D;, hence
D, , stable by N and D! = D;,). In both cases, by comparing the ¢f "_eigenvalues, it is
not difficult to see tx(D1) > ty(D"). The claim in this case follows. In general, we have a
decomposition D; , = ®je; D1, ; where the of /—eigenvalues on the Dy, ; lie in disjoint finite
sets of elements of £* of the form {a;,p~ /a],~ D /mQ'OzJ} with o an eigenvalue of ¢’
on D, ;. Since D! is generated by D, from Ny = ppN we have D = ®]€JDM where
D7 ; is generated by D;,; and the o -eigenvalues on Dy, ; lie in {ozj,p STRERIN fmfaj}
for m; > m’. We put Dy, := D, ; if D1, = D, ; and define Dy, C D(’Tj as above when
D1 # Dy ;. The claim then follows with D := @®;c;Dj ;
Assume now D! # D;, and let D” be as in the claim. The same argument as in (¢) with the
1ndueed Hodge filtration gives then ty (D" ®@r; L) > (ZUEZL Do —1- Aoj))[E : L] >
tn(D"), which contradicts the fact that Dy is admissible. So we have D! =D, Dy=D
and these spaces are stable by N. By (c) and the fact that Dy is admissible, we deduce:

tu(Dy @y L) = (223—1 o) )IE: L

oexy, j=1

and hence together with (5.8) that D; is a weakly admissible (¢, N)-submodule of Dy,.

(e) For a ¢/-module W over E and a € R, denote by W, (resp. W<,) the E-vector subspace
of W generated by the generalized ¢/ -eigenvectors of eigenvalues § satisfying val,(8) < a
(resp. val,(3) < a). If W is moreover a (¢, N)-module over Li®q, F, it is easy to see that W,
and W, are still (¢, N)-submodules (over Lj ®q, £) of W. Let u; := [%ELL,]} Yovex, G —1—
Aoj). We now show (D)<, =0 and Dy = (Dp)<y,, - Since tg(W) > (3,5, (—A01))[E
L] for any nonzero E-vector subspace W of Dy, (with the induced filtration) and since D,
is admissible, it follows that (Dr/)<,, = 0. We show (Di)<,, = Dp (and hence D; =
(D) <p,, » since otherwise one easily deduces ty((Dr/)<p,,) > tn((Drr)<p,, ). Assume not
and let n} < n; such that dimg(D;)<,,, = n)f" (note that dimp Dy = ny f" and that (D1)<,,,
is free over Lj ®q, I (as is easily checked)). Then we deduce:

tn (D)) < tn(D1) = (3 (0 = 1= Ag) ) (1 = ) [E : ]

oEX],

(223—1 DB 1) = (3 = 1= Ao) ) (= [ - L

ocexy, j=1 ceEX]
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But we also have (with the induced Hodge filtration and by the same argument as in (c)):

tu((D1)<pn,) > ( Z Zl(j —-1- )\m))[E L L

:(Zi(j—l—)\w)>[E:L]—(Z i (= 1= Ag))[E: L.

Since j —1—X,; <ny—1— A, forall j <ny and o € ¥, we deduce tH((D1>Sun1) >
tn((D1)<p,, ), contradicting the fact D, is weakly admissible (see the end of (d)).

(f) Since Gal(L'/L) commutes with ¢, we see that Dy = (D)<, _, is stable by Gal(L'/L).
Let p; be the continuous representation of Gal; over E associated to D; by the Colmez-
Fontaine theorem ([27, Thm. A]) and ps := p/p1. Thus W(p)*™ = W(p1)* ® W(ps)® and the
first and third properties in the statement are then clear. To finish the proof, we only need
to show that the Wp-representations W(p;)* and Wy (see (b)) are isomorphic. Let DF] :=
(D, o, N = 0,Gal(L’'/L)) be the Deligne-Fontaine module associated to (W(p;)®, N = 0)
([16, Prop. 4.1]) where D$* denotes the semi-simplification of D; for the ¢/ "-action, we are
reduced to show that DF} and DF; = (%1, ¢, N = 0,Gal(L'/L)) (see (b)) are isomorphic
(that is, one has to take care of the Gal(L’/L)-action). The natural inclusion W; < W(p)
induces an embedding of Deligne-Fontaine modules:

DF; —s DF := (D5, ¢, N = 0, Gal(L' /L))

where the latter is isomorphic to the Deligne-Fontaine module associated to (W(p)*®, N = 0)
and where D%, denotes the semi-simplification of Dy, for the ¢/-action. Similarly, the
inclusion W(p1)® — W(p)* induces an injection DF] — DF. By construction, we also
know %, = D7® as p-module. However, by (e) we have Di® = (D7)<,,, , thus we also have
D = (D¥)<p,, since (DF)<y,, is only defined in terms of the y-action. So both DF; and
DF} are isomorphic to the Deligne-Fontaine submodule ((D§)<.,,, ¢, N = 0,Gal(L'/L)) of
DF. This concludes the proof. O

6. Automorphic and P-ordinary automorphic representations

In this section we start the global theory: we give the global setup, state our local-global
compatibility conjecture for GL3(Q,), and prove several useful results on the P-ordinary
part of (localized) Banach spaces of p-adic automorphic forms on definite unitary groups.

6.1. Global setup and main conjecture

We introduce the global setup and state our main local-global compatibility conjecture for

GL3(QP)‘
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We fix field embeddings to : Q < C, Lp Q= @. We also fix F'* a totally real number
field, F' a quadratic totally imaginary extension of F© and G/F* a unitary group attached
to the quadratic extension F/F* asin [1, § 6.2.2] such that G xp+ F = GL, (n > 2) and
G(F* ®gR) is compact. For a finite place v of F which is totally split in ' and v a place
of F dividing v, we have thus isomorphisms igz : G(F;) — G(F;) — GL,(F;). We let
¥, denote the set of places of F'* dividing p and we assume that each place in ¥, is split in F.

We fix a place p of F'* above p, a place ¢ of F' dividing p and we set L := Fg = F;. We

have thus an isomorphism i g : G(F;7) = GLy(L). We also fix an irreducible Q,-algebraic
representation W#¢ of Hv‘m NE (F,}) over £ and a compact open subgroup U = [] U,

vlp,uFEp TV
of [ Tpuse G(F;"). We fix an open compact subgroup U? = [],, U, of G(A%T) and we put
Us:=UPUY. Set:

vip

~

S(Ue,W?) = {f :G(F)\ G(A%,)/UP — W¥, [ is continuous and
f(ggg) = (gg)*l(f(g)) for all g € G(A%}) and all g5 € U]f?}. (6.1)

Let W be an Op-lattice of W¥ stable by US, we define S(U#, %) by replacing W¥ by  in (6.1)
for x € {W¥® W¥ /w3, } (where s > 1). Since G(FT ®gR) is compact, G(F )\ G(AX,)/UP is
a profinite set. We see that S (U®,W¥®) is a Banach space over E with the norm defined by
the (complete) Opg-lattice §(Up, W#). Moreover, §(Up, W#) is equipped with a continuous
action of G(F) = GLn(L)Agiven by (9'f)(g) = f(gg') for f € S(U*,W?®), ¢ € G(F),
g € G(A%). The lattice S(U®,W¥) is obviously stable by this action, so the Banach
representation S(U®, W#) of GL, (L) is unitary. We also know (see e.g. the proof of Lemma
6.1) that S(U*, W¢) is admissible. Let S(UP) be the set of primes v of F* satisfying:

e vt pand v is totally split in F’
e U, is a maximal compact open subgroup of G(F").

Let T(U?) := Op [Tﬁ(j )] be the commutative polynomial Og-algebra generated by the formal
variables Tffj) where j € {1,--- ,n} and 0 is a finite place of F' above a finite place v in
S(UP). The Og-algebra T(UP) acts on S(U?, W*) and S(U¢, W®) by making Téj) act by the
double coset operator:

J

Wy

where w; is a uniformizer of Fj, and where g, € G(F)") is such that igs(g,'U,g,) =
GL,(Op,). This action commutes with that of GL,(L).

Recall that the automorphic representations of G(Ap+) are the irreducible constituents of
the C-vector space of functions f : G(FT)\G(Ap+) — C which are:
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e C™ when restricted to G(F™ ®¢g R)
e locally constant when restricted to G(A%,)
[ G([T+ ®@ R)—ﬁnite,

where G(Ap+) acts on this space via right translation. An automorphic representation
is isomorphic to m, ®c 7° where m,, = W, is an irreducible algebraic representation of
(Resp+)o G)(R) = G(F' ®g R) over C and 7™ = Homgpter) (We, ™) = @7, is an
irreducible smooth representation of G(A%, ). The algebraic representation We|(res,, NEE)
is defined over Q via o, and we denote by W, its base change to @ via t,, which is thus
an irreducible algebraic representation of (Resp+ /g G)(Q,) = G(F* ®q Q) over Q,. Via
the decomposition G(F* ®g Q,) — Hvezp G(F)), one has W, = ®yex, W, where W, is an
irreducible Q,-algebraic representation of G(F;") over Q,. One can also prove 7 is defined
over a number field via o (e.g. see [1, § 6.2.3]). Denote by 77 := ®;, m,, so that we have
T & TP Qg 7, (seen over Q via ts), and by m(m) € Zz1 the multiplicity of m in the
above space of functions f : G(F*)\G(Ap+) — C. Denote by §(Up, We)lals the subspace of
S(U?, W#) of locally algebraic vectors for the GL,(L)-action, which is stable by T(U?). We
have an isomorphism which is equivariant under the action of GL,,(L) x T(U?):

§(U@7 We)E @5 Q, @ ((Woo’p)Up ®g (®v\p,v¢@7rgv) ®q (Tp Og Wp))m(ﬂ) (6.3)

where m = 7., ®c 7> runs through the automorphic representations of G(Ap, ) such that the
algebraic representation W, associated to m., as above is of the form W, = W, ®g (W@X,
where (W)Y is the dual of W¥ and W,, is a Q,-algebraic representation of GL, (L) over Q,,

and where Tﬁ(j) € T(UP) acts on (7°P)U" by the double coset operator (6.2). Indeed, let
~ ~ ~ §

S(UP, E) be asin [7, § 5], then we have S(U?, W#) = (S(U?, E)®EWW)UP . The isomorphism
in (6.3) follows easily from [7, Prop. 5.1]. We also define for x € {W% W¥® W¥# /w3, }:

S(U?, %) := {f cG(FT)\ G(A%,)/UP — *, f is locally constant and
1(95) = (95) " (f(9)) for all g € G(AF) and all g € U }.

All these spaces are equipped with the action of GL, (L) x T(U?) by right translation on
functions for GL, (L) and by the double coset operators (6.2) for T(U?). We have moreover
GL, (L) x T(UP)-equivariant isomorphisms:

S(U?,W?/wy) = SU*, W wy) = SU”,WP)/w}, (6.4)

S(U°, W) = LmS(U®, W /w},)

~

S(U®, W) ®0, E
S(U?, W) @0, E = S5(U?, W)™, (6.6)

12

S(U?, W*)
S(U?, W*)

12
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Finally, for a compact open subgroup U,, of GL,,(L), we define for « € {W¢, W¢® W¢ /w5 }:

S(U U, #) i= { [+ GIFH) \ G(AT) [UPU, —
1(995) = (95)""(f(g)) for all g € G(AF:) and all gf € UF'}.

We thus have:
li_n;S(UpUp, x) = S(U?, *). (6.7)
Up

Following [21, § 3.3], we say that U? is sufficiently small if there is a place v { p such that 1
is the only element of finite order in U,. The following (standard) lemma will be useful.

Lemma 6.1. Assume U? sufficiently small, then for any U, W® as above and any compact

open subgroup U, of G(F[) there is an integer r > 1 such that :S’\(UW,VW)\Up is isomorphic
to C(Up, OE)®T.

Proof. Let S(UP,0p) = {f : G(F*)\ G(A®,)/U? — Og, [ is continuous}. The Op-
module S(UP, O) is equipped with a natural action of G(F* ®q Qp) x T(U?), and we have
an isomorphism S(U?, W®) = (S(U?, Og) @0, W)Ur .

(a) We first show that for any compact open subgroup U, of G(F* ®q Q,) there exist an
integer ' such that S(UP, Op)|y, & C(U,, Op)”. Since U? is sufficiently small, we have
UPU, N gG(EF*)g~' = {1} for all g € G(A%,) (the left hand side is a finite group as G(F™)
is discrete in G(A%, ), then U? being sufficiently small implies it has to be {1}). From which
we deduce a Uj,-invariant isomorphism:

O,sU, — G(F\G(AX)/UP, sh+— sh (6.8)

where h € U, and s runs through a representative set of G(F)\G(A%,)/UPU,. Indeed,
first (6.8) is clearly surjective. If s1hy = soho in G(FT)\G(A,)/U? (for hy, hy € U,), we
have s; = sy = s, and there exist ¢ € G(F'T), u € UP such that shy = gshou in G(AY,).
This implies g lies in s~ (UPU,)sNG(FT) = {1}, and the injectivity follows. From (6.8), we
deduce (a).

(b) From (a) we deduce using U, = U,U$"

S(U, W)y, = C(Uy, Op)Bo,[CUS, Op)" @0, WY

Since [C(UY, Op)" ®o, W#)U is easily checked to be a finite free Og-module, the lemma
follows with r the rank of this Og-module. O

Let Galp := Gal(F/F), p: Galp — GL,(E) a continuous representation and assume p is
unramified for v € £(U?). We associate to p the unique maximal ideal m, of residue field
E of T(UP)[1/p] such that for any v € X(UP) and ¢ a place of F' above v, the characteristic
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polynomial of p(Frob;), where Frob; is a geometric Frobenius at 0, is given by (compare [14,

§ 4.2]):

_n(n-1)

0T X" o+ (S (ND) T2 0,(T3) - (6.9)

X NI (_1)j(Ni})J(J2—1)
where N© is the cardinality of the residue field at © and 6, : T(U?)[1/p]/m, — E. Recall
that (see for example [21, Prop. 3.3.4]) if S(U?, W#)[m,]¥'s £ 0 then ps is in particular
de Rham with distinct Hodge-Tate weights. We end this section by our main local-global
compatibility conjecture when n = 3 and L = Q,. If p, : Galg, — GL3(E) is a semi-
stable representation such that N? # 0 on Dg(p,), there exists a unique triangulation
RE(61) — Re(d2) — Re(d3) on the (¢,I')-module Dyix(p,) (with Rg(d1) as unique subobject
and Rp(d3) as unique quotient). If (Duyig(pp), (01,02,03)) is (special) noncritical and if the
(p,I')-modules Rg(d1) — Re(d2) and Re(d2) — Re(ds) satisfy Hypothesis 3.26, we say that
Diig(pp) is sufficiently generic. We have then associated to such a p, a finite length locally
analytic representation II(p,) at the end of § 3.3.4 which determines and only depends on

Pp-

Conjecture 6.2. Assume n = 3 and F} = Fz = Q,. Let p: Galp — GL3(E) be a
continuous absolutely irreducible representation which is unramified at the places of % (UP)
and such that:

o S(U?, W#)[m,]5 £ 0
® 05 = plcal,. s semi-stable with N* # 0 on Dg(pg)
o Diis(pg) is sufficiently generic.

Let I1(pg) be the locally analytic representation of GL3(Q)) at the very end of § 3.5.4, then
the following restriction morphism is bijective (recall we have I1(pg)'™& = socar,(q,) (pg) ):

Homgr,(g,) (H(pp), S(UP, W#) [m,]) — Homer,(q,) (IL(pg)™, S, W#)[m,)).

6.2. Hecke operators

We give (or recall) the definition of some useful pro-p-Hecke algebras and of their localisa-
tions.

We keep the notation of § 6.1. For s € Z-( and a compact open subgroup U,, of GL, (L), we
let T(U*U,,, W® /w},) (vesp. T(UPU,, W¥®)) be the O /wj,-subalgebra (resp. Og-subalgebra)
of the endomorphism ring of S(U*U,,, W®/w$,) (resp. S(UU,,, W¥)) generated by the oper-
ators in T(UP). Since S(U?U,,, W® /w3,) (resp. S(UPU,,, W¥)) is a finite free Op/w}-module
(resp. Op-module), T(U*U,, W®/w},) is a finite Op/wj-algebra (resp. T(U*U,, W®) an
Og-algebra which is finitely free as OE—module). For s’ < s, since we have:

S(U U, WP [@}) ©0p ey, O/wyy = S(U Uy, WP [3), (6.10)
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it is easy to see:

T(U*U,, W?) — Y&HT(U@UW,WP/W%). (6.11)
For U, C U, an inclusion of compact open subgroups of GL, (L), the natural injections:
S(U U1, W¥ Jwoy) — S(UYU, 2, W /wy,) and S(UYU,, 1, W) — S(UU,, 2, W¥)
induce natural surjections:
T(U%Ug 2, W¥ /wy) —» T(UYU, 1, W? Jwy) and T(UYU,, 2, W?) —» T(UU,, 1, W¥)
giving rise to projective systems when U, gets smaller. From (6.11) we deduce isomorphisms:

T(U®) = lim lim T(U Uy, W /) = limn lim T(U U, W¥ /@) 2 Lim T(U U, WF).  (6.12)
U, U, U,

S © p S ©

Lemma 6.3. The Og-algebra T(U®) is reduced and acts faithfully on S(U?, W®).

Proof. By construction, the algebra ’f(U ) acts Op-linearly and faithfully on S(U%, W¥®) =
lim, | S(U*U,, W?). By (6.5) and (6.4), this action extends naturally to an Og-linear faithful
©

action of T(U®) on S(U?, W¢) and hence to an E-linear faithful action on (U, W¥). Since
the operators in T(U?) acting on S(U¥, W¥#) are semi-simple (which easily follows from (6.6)
and (6.3)), we deduce T(U?) is reduced. O

To a continuous representation p: Galp — GL,(kg) which is unramified for v € X(U?),
we associate a maximal ideal m; of residue field kg of T(U?) by the same formula as (6.9)
replacing 6, by 6, : T(U?)/m; — kg.

Definition 6.4. A mazimal ideal m of T(U?) is called (U?, W®)-automorphic if there ex-
ist an integer s and a compact open subgroup U, as above such that the image of m in
T(U*U,, W® /wy,) is still a mazimal ideal, or equivalently such that the localisation
S(UPU,, W® /w3, ) is nonzero. A continuous representation p: Galp — GL,(kg) is called
(U?, W#)-automorphic if mz is (U, W®)-automorphic.

Lemma 6.5. There are finitely many (US, W¥®)-automorphic mazimal ideals of T(UP).

Proof. By (6.10) and (6.7), the maximal ideal m is (U?, W®)-automorphic if and only if
the GL,(L)-representation S(U®, W®/wg)y is nonzero. Let U, be a pro-p compact open
subgroup of GL,(L). Suppose S(U®, W¥®/wg), # 0, then we have (using exactness of
localization):

S(U Uy, W [wg)m = (S(U?, W* Jw)m) ™™ # 0.

Hence the image of m C T(U?) in T(U®U,, kg) is still a maximal ideal in T(U*U,, kg).
Since T(U®U,, kg) is Artinian, it only has a finite number of maximal ideals, and the lemma
follows. O
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If m is (U?, W®)-automorphic, by (6.12), Lemma 6.5 and the proof, we can associate to m a
maximal ideal (still denoted) m of T(U¥) of residue field kg. We have T(U °U,, W® /w?,) =
IL. T(U?U,, W® /w},)w for any pro-p compact open subgroup of GL,,(L), where the product
is over the (U®, W#)-automorphic maximal ideals m of T(U?). We then deduce by (6.12)
T(U®) = Hmﬁ‘(Uﬁ)m and isomorphisms:
T(U?)w = lim lim T(UU,,, W* /) = lim T(UPU, W),y (6.13)
U@ U@

s

Note that T(U*U,,, W®/w?},)m (resp. T(UPU,, W¥),,) is isomorphic to the Og-subalgebra of
the endomorphism ring of S(U?U,, W®/w},), (resp. of the endomorphism ring of
S(UPU,, W), = Hm S(U®PU,, W® /w},)wm) generated by the operators in T(UP). It is also
easy to see that:

S(U?, W) 2 lim ling S(UPU,,, W /5 ) (6.14)

s U,
is a direct summand of S(U?, W) (where the localisation S(U?, W#),, is with respect to
the T(U*)-module structure on S (U, W#), which might be different from the localisation
at m with respect to the T(U?)-module structure). When m = m; comes from a continuous
p: Galp — GL,(kg) as at the beginning of § 6.2, we simply denote by M5 the localisation
of a T(U®)-module (resp. of a T(UP)-module) M at m;. We easily check §(UW,WK’)5 &

~

S(U?, W#)5 ®0, E. The following result is then a consequence of Lemma 6.3 and its proof.

Lemma 6.6. Let p be (UY, W¥®)-automorphic, then the local Og-algebra 'f(Up)ﬁ is reduced
and acts faithfully on S(U®, W¥)

N

6.3. P-ordinary automorphic representations
We relate the space Ordp(S(U®, W¥)5) to P-ordinary Galois representations (§ 5.1).

We keep the previous notation. We let 5: Galp — GL,(kg) be (U?, W¥)-automorphic and
absolutely irreducible. We fix P a parabolic subgroup of GL, as in § 5.1. Recall we have
from (4.15):

Ordp(S(U®, W¥)p) = limg (S(U°, W¥);")

ord

where (I;;); is as in § 4.1 with (I;); as in Example 4.3. For any i > 0, (S(U@,W@)g’i)ord =
(S(U®I,,;, W®)5)ora is stable by T(U¥) (since the action of T(U¥®) on S(U¥, Wp)é commutes
with that of L}), and we denote by T(U®I;;, W'@)%D ~ord the Op-subalgebra of the endomor-
phism ring of (S(U?, Wp)g’i)ord generated by the operators in T(U?). Since:

(S(UP,WP)) | S(UP, WP)I = S(UCL ;, WP,
we have a natural surjection of local Og-algebras (finite free over Op):
T(U® L5, W?); —> T(UL;;, W9)T—ord,
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We set: ~

which is thus easily checked to be a quotient of ﬁ‘(U )5 and is also a complete local Op-
algebra of residue field kg. Moreover, as in the proof of Lemma 6.3, the operators in T(U?)
acting on (S(Up,Wp)éi’i)ord ®o, E are semi-simple (since they are so on S(U, W#)). We
have as in loc. cit. the following consequence.

Lemma 6.7. The Og-algebra 'f‘(Up)];_ord is reduced and the natural action of ﬁ‘(U@)g_ord
on Ord,(S(U?, W¥)5) and Ordp(S(U®, W¥)5) is faithful.

From now on we assume that the compact open subgroup UP is sufficiently small (see the

end of § 6.1).

Lemma 6.8. (1) The Og-module Ordp(S(U?, W¥);) is dense for the p-adic topology in
Ordp(S(U®, W¥®)5) (see (4.8) for the latter). Consequently, the action of T(U")g‘ord on

~

Ordp(S(U®, W¥®)5) extends to a faithful action on Ordp(S(U?, W®)5).

~

(2) The representation Ordp(S(U®, W¥®)5)|L.0,) is isomorphic to a direct summand
of C(Lp(OyL),0p)®" for somer > 1.

Proof. (1) From Lemma 6.1 we deduce that there exist » > 1 and a GL,, (O}, )-representation
() such that: R

SU?, W)slav.0,) ® Q = C(GLn(OL), Op)™" (6.15)
which implies using (6.6) that S(U*,W¥);|cL, (0, is a direct summand of C°(GL,(OL),0x)*".
It is easy to see that the condition in Remark 4.15(2) is satisfied with V9 =
C>(GL,(OL), OF), which then implies it is also satisfied with V? = S(U®, W#);. Thus the

natural injection from (4.17):

Ordp(S(U?, W¥),) /o, = (113 (S(U@,Wp)g’i)ord) @y — Ordp (S(UY, W®)5/ws)  (6.16)

is actually an isomorphism for all s > 1 by the proof of Lemma 4.16. Then (1) follows (see
also Remark 4.17).
(2) The statement follows from (6.15) and Corollary 4.6. O

We now make the following further hypothesis on G and F' till the end of the paper.

Hypothesis 6.9. We have either (p > 2, n < 3) or (p > 2, F/F" is unramified and G is
quasi-split at all finite places of F).

When n < 3, Rogawski’s well-known results ([71]) imply that strong base change holds from
G/F* to GL,, /F. When F/F* is moreover unramified, it also holds by well-known results
of Labesse ([55]).

Remark 6.10. It is possible that for n > 3 the recent results ([60], [50]) now allow to relax
(for this paper) some of the assumptions in Hypothesis 6.9. Note that the main result of the
paper will be anyway for n = 3.
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We now also assume that U, is maximal in GL, (L) = GL, (F3;) for all v|p, v # p. Let S(U?)
be the union of 3, and of the places v ¢ X, such that U, is not hyperspecial. Since p is
(U®, W#)-automorphic, recall we have in particular that p is unramified outside S(UP) and
pYoc ™ p®e" ! where p” is the dual of p and c is the nontrivial element in Gal(F/FT).
The functor A — p4 of (isomorphism classes of) deformations of p on the category of local
artinian Opg-algebras A of residue field kg satisfying that p, is unramified outside S(U?)
and that p% o c 2 py ® "1 is pro-representable by a complete local noetherian algebra of
residue field kg denoted by R swr). By [80, Prop. 6.7] (which holds under Hypothesis 6.9,
this is the place where p > 2 is required), for any compact open subgroup U, of GL, (L),
we have a natural surjection of local Og-algebras Rj g»y — T(UU,,, W¥)5, from which we
easily deduce using (6.13) a surjection of local complete Og-algebras:

R@S(Up) — qT(Up)p (6].7)

In particular, 'ﬁ‘(U ©); and 'f‘(U W)g ~ord are noetherian (local complete) Opg-algebras.

~

Lemma 6.11. The representation Ordp(S(U®, W¥®)5) is a wg-adically admissible represen-
tation of Lp(L) over T(U@)g_ord in the sense of [42, Def. 3.1.1].

Proof. The lemma follows by the same argument as in the proof of [42, Lem. 5.3.5] with
(5.3.3) of loc. cit. replaced by the isomorphism (6.16). O

Assume now that ps := plaal,_ is strictly P-ordinary (cf. Definition 5.8) and is isomorphic
©

to a successive extension of p; for ¢ = 1,--- , k with p; : Gal, — GL,,(kg) (recall L = Fp).

The restriction to Galg, gives a natural morphism:

Rﬁgj — Rp’S(Up). (618)
We fix p: Galp — GL,(E) a continuous representation such that p is unramified outside
S(UP) and p¥oc = p@et~™ We set p,:= m, N T(U?), which is a prime ideal of T(U?)
(see (6.9) for m,), and ps = p|GalF§. We assume S(U®, W¥®)5p,] # 0, then p, can also
be seen as a prime ideal of 'ﬁ‘(U@)ﬁ (using (6.12)). Note that this implies that the mod p

semi-simplification of p is isomorphic to p (and is thus irreducible).

Theorem 6.12. (1) The action of Ry, on Ordp(g(U@,W@)ﬁ) via (6.18) and (6.17) factors
through Rgﬁ_ord (see the very end of § 5.1).

~

(2) If Ordp(S(U®, W¥®)5p,]) # 0 then ps is P-ordinary.

Proof. (1) Assume first S(U®, W#);[p,] # 0. By (6.6) and (6.3), there is an automorphic
representation 7 of G(Ap, ) (with W, trivial in (6.3)) which contributes to:

S(Uﬁv Wp)ﬁ[mp] = S(Upa Wp)ﬁ[pp] ®OE E.

By the local-global compatibility for classical local Langlands correspondence (see e.g. [80,
Thm. 6.5(v)] and [17] taking into account our various normalisations and note that this
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uses Hypothesis 6.9 via strong base change), pgs is potentially semi-stable with HT,(pg) =

{1-n,---,0}forallo: L < E and rec(m,)(152) = W(pz)™ where 7, is the p-th component

of 7 and is viewed as a representation of GL,(L) via i¢ s (see § 5.2 for the notation). If
Ordp(S(U®, W#)5/m,]) # 0, then there exists m as above such that moreover Ordp(m,,) # 0
(since we actually have S(U®, W¥)5lm,| = 7" as GL,(L)-representations for some r > 1).
It follows from Lemma 4.10 and Proposition 5.10 that pg is P-ordinary. Denote by I7~°rd

the kernel of the natural surjection R, — R%—‘)rd, which we also view as an ideal of T(U )5

via:
Ry ™ Ry sy & T(U9);. (6.19)

Then Lemma 5.9 easily implies /7704 C p . in particular S(U®, W®);[p,] is killed by ¥~°ord,
With (6.6) and (6.3) we deduce that Ordp(S(U?, W¥);) is also killed by IP=ord By Lemma

6.8(1), Ordp(S(U®, W¥#);) is dense in Ordp(S(Up,Wp)p) for the wg-adic topology. We
deduce then:

"= Ordp (S(U?, W¥);) C Nz, @iy Ordp (S(U?, W¥);) =0
and (1) follows.
(2) Let pp; be the prime ideal of R}j attached to pg, which is just the preimage of p, via
(6.19), and m,,_ = p,_[1/p], which is a maximal ideal of I;_[1/p]. If Ordp(S(U?, We)5lp,]) #
0 then we have I"7°[1/p] C m,_, since otherwise 1 € m, + I" °[1/p] annihilates

Ordp(S(U?, W9)sm,]) = Ordp(S(U?, W¥)[p,]) ®o, E by the first part. From the dis-
cussion above Proposition 5.7, we obtain that pg is P-ordinary. [

By Theorem 6.12(1) and the last part in Lemma 6.8(1), the surjection ']T(UP) —»']I‘(U@)P ord
factors through: R )
T(U*)5 ®Rﬁ5 R%;*Ord . ']I‘(Up)g—ord_

In particular, we have natural morphisms of local complete noetherian Og-algebras of residue
field kg:

. > 7 (5.4) P—ord ©\P— ord
W ®i21,...,kRﬂz == R — T(U®)) (6.20)
We end this section by the following proposmon.

Proposition 6.13. Let 7y, be a smooth admissible representation of Lp(L), A be a dominant
weight as in the beginning of § 4.3 (for G = GL,, and P as above), x be a closed point of
Spec(T (UW)P °rd[1/p]), and m, be the associated mazwimal ideal. Then any Lp(L)-equivariant
morphism:

Too @ Lp(A) — Ordp (S(U?, W9)) {m,}
has image in Ordp (§(U@, We)kle) m,].

Proof. Replacing 7o, ®p Lp(\) by its image, we can assume the morphism is injective.
From Proposition 4.21 we deduce that the image is in Ordp(§ (U, W#)kle) hence also in
Ordp(S(U?, W#)=i8){m,}. From (6.3) it is easy to check that Ordp(S(U?, W#)18)[m,] =
Ordp(S(U?, W#)i8) {m,}, whence the result. O
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7. L-invariants, GL(Q,)-ordinary families and local-global compatibility

-~

We now assume that the field L = F,J = F;in § 6.1 is Q, and study Ordp(S(U*, W¥);) when
the factors in the Levi Lp of the parabolic subgroup P are either GL; or GL,. We derive
several local-global compatibility results in this case. In particular we prove Conjecture 6.2
when HT (pg) = {k1, k1 — 1, k1 — 2} for some integer k; (under mild genericity assumptions).

7.1. GL2(Qy)-ordinary families and local-global compatibility
When the factors of the Lp are either GL; or GLy we prove local-global compatibility results

~

for the Lp(Qy)-representation Ordp(S(U®, W®);) by generalizing Emerton’s method ([42]).

7.1.1. Dominant algebraic vectors
In this section, which is purely local, we prove density results of subspaces of algebraic func-
tions.

We fix H a connected reductive algebraic group over Z, and denote by A the finitely gener-
ated Zj,-algebra which represents H. For any f € A, the natural map Homy, _.,(A,Z,) =
H(Zy) = Zyp, z = 2(f) lies in C(H(Zy), Zy,) and induces an E-linear morphism A ®z, £ —
C(H(Z,), E). We denote by C*¢(H(Z,), E) its image, which is called the vector space of alge-
braic functions on the compact group H(Z,). By [66, Lem. 6.A.15], C*8(H(Z,), F) is dense
in the Banach space C(H(Z,), E). For f € C(H(Z,), E), we set v(f) := inf,cp(z,) val,(f(2))
and note that the associated norm gives the Banach topology on C(H(Z,), E). Now we let
H = GL,, r > 1. By [66, Prop. 6.A.17] we have a GL,(Z,)-equivariant isomorphism:

C"5(GL,(Z,), E) = @) Homa, (z,) (0, C(GLA(Z,), E)) ©p 0 (7.1)

where ¢ runs through the irreducible algebraic representations of GL, over E and where
Homgr, (z,)(0,C(GL,(Zy), E)) denotes the E-linear GL,(Z,)-equivariant morphisms with
GL,(Z,) acting on C(GL,(Z,), E) by the usual right translation on functions. Recall there
exists a one-to-one correspondence between the integral dominant weights A = (A, -+, \,)
for GL, with respect to the Borel subgroup of upper triangular matrices, i.e. such that
A1 > Ay > -+ > A\, and the irreducible algebraic representations L(\) of GL,. For a € Z,
we put:

CX(GL.(Z,),E) = € Homar,(z,) (L(A),C(GL(Z,), E)) @5 L(\). (7.2)
A=(A1,,An)
A1<a

Lemma 7.1. For any a € Z, the vector space C;lf(GLT(Zp), E) is dense in C(GL,(Z,), E).

Proof. We first prove the lemma for » = 1, in which case we have by (7.1) (with obvious
notation) C*8(Z), E) = @jczEx’/. Let W be the closure of @;<,F2/, we have to prove
2/ € W for any j € Z. It is enough to prove that, for any j € Z and M > 0, there exists

90



§' < a such that v(2? —27) > M. If we consider j' := j— (p—1)p™" with M’ > M sufficiently
large so that j’ < a, then we indeed have val,(2? — 27) = valp(x(p_l)pM/ — 1) > M for any
z € Z, . The case r =1 follows.

For general r, denote by 1, : Z) < GL.(Z,), u — diag(u, 1,--- , 1) and consider the induced
map SL,(Z,) X Z; — GL.(Z,), (u,v) + ut11(v). This map is a homeomorphism and thus
induces an isomorphism:

h:C(GL.(Z,), E) = C(SL,(Z,) x Z), E) = C(SL,(Z,), E)®£C(Z}, E).

For a dominant weight A = (Ay,--- ,A,) as above, let L(\)o := L(A)|sL,(z,)- We claim that
hleas(GL, (z,),p) induces an isomorphism via (7.1):

Homgr,, (z,) (L(A),C(GL.(Z,), E)) @5 L(\)
— (Homgy, (z,) (L(X)o, C(SL,(Z,), E)) ®5 L(A)o) ®p Ex™. (7.3)

Indeed, we have a natural commutative diagram (induced by the restriction map):

Homg, (z,) (L(N),C(GL,(Z,), E)) ®g L(A) —— C(GL,(Z,), E)

| l

Homst, (z,) (L(No,C(SLy(Z,). E)) ®5 L(X)g —— C(SL,(Z,), E)

where the horizontal maps are the evaluation maps and are injective by (7.1). The mor-
phism C(GL,(Z,), E) — C(Z;,E) induced by ¢1; is easily checked to send (via (7.1))
Homgr, (z,)(L(A), C(GL,(Z,), E)) ®g L(A) (on)to Ez*. We thus obtain the morphism in
(7.3), which is moreover injective since h is. Since we have from the proof of [66, Prop.
6.A.17):

dlmE HomGLT(Zp) (L()\), C(GLT (Zp), E))
= dlmE HomSLT(Zp) (L()\)Q,C(SLT(ZP), E)) = dlmE L()\), (74)

we deduce that (7.3) is an isomorphism. The isomorphism h then induces a bijection:
C2E(GL(Zy), E) = CY5(SL,(Zy), E) @5 CZ4(Z), E).

Since C%%(Z;,E) is dense in C(Z), E) and C*8(SL,(Z,), E) is dense in C(SL,(Z,), E), we
deduce that C*&(SL,(Z,), E) ®g C%lf(Z;, E) is dense in C(SL,(Z,), E)®pC(Z), E), that is
C¥¢(GL,(Z,), E) is dense in C(GL,(Z,), E). O

We fix P a parabolic subgroup of GL,, as in § 5.1 (or § 6.3) with Lp as in (5.1). We have in
particular:

—_

C(Lp(Zy), B) = Q)  C(GLy,(Z,), E) and C*¥(Lp(Z,), B) = (X) C"*(GLy,(Z,), E).

B i=1, .k
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Fori e {1,---,k} we define s; := Z; 0 (with ng := 0) as in § 5.2 and set:

CY(Lp(Z,).E) = €D ( ® CA8(GL,,.(Z,), )) (7.5)
(A1, An)€EZ™ =1,
)\1>)\2> >

where \; := (Ag,41,+, As,,,) and:

Sit1

Céi*alg<GLm (Zp), E) = HomGLni(Zp) (L(AJ, C(Gan (Zp), E)) XRE L(Al)

We define the subspace C1% (Lp(Z,), E) of C¥(Lp(Z,), E) in the same way but taking in
(7.5) the direct sum only over those (dominant) A such that A;, > A, 41 fori =2,--- k. We
call vectors in C28(Lp(Z,), E) dominant Lp(Z,)-algebraic vectors.

Proposition 7.2. The wvector spaces C2%(Lp(Z,),E) and C*(Lp(Z,),E) are dense
in C(Lp(Zy), E).

Proof. Tt is enough to prove the result for the first one. Using an easy induction argument,
we can reduce to the case where k = 2. In this case, we have (see (7.2)):

ClE(Lp(2,). E)2 @ (C(GLL(Z,), B) 95 C2X, 1 (GLuw(Z,), ).
A1:()‘17“'7>"rb1)
A1 >An
From (7.4) we have that dimgC*~*%(GL,,(Z,), E) < +oo, which implies that Fy :=
C}~28(GL,, (Z,), F) ® C(GL,,(Z,), E) is a Banach space. From Lemma 7.1 we have that
CA—8(GL,,(Z,), FE) ®g Cglf \(GLy,(Zy,), E) is dense in Fy . We deduce that the closure
of C*(Lp(Z,), E) in C(LP(Z) E) contains @), Fy, = C*¢(GL,,(Z,), E) ®5C(GLy, (Z,), E).
But C*8(GL,,(Z,), E) is dense in C(GL,, (Z,), E) hence 3, F), is dense in C(Lp(Zy), E)
and the lemma follows. ]

Let V' be an admissible continuous Banach representation of Lp(Q,) over E and put:

v Lp(Zp)-alg . @HomLp(Zp)(a7 V) ®p o = @(V 25 V)@ @4 o (7.6)

[

where o runs through the irreducible algebraic representations of Lp and ¢ is the dual of
o. By [43, Prop. 4.2.4], the evaluation map induces a natural injection V2r(Ze)=3le < 1/ We
denote by V*E) 78 (regp v PP =8) the subspace of VEr(Z)=als defined as in (7.6) but
taking the d1rect sum over those irreducible algebraic representations of Lp of highest weight
(A1,-+-,Ap) such that \y > --- > A, (resp. such that \y > --- > A\, and \;, > A, 41 for

i=2,---,k). If W is a closed subrepresentatlon of V, one easily checks that WLP Zp)=alg o
wn V;LP(Z” ¢ with « € {0, +, ++]}.

Corollary 7.3. Assume that V|1, (z,) is isomorphic to a direct summand of C(Lp(Z,), E)®"
for some r > 1. Then V") ™8 s dense in V for * € {0, +,++}.
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Proof. 1f V|, V4 are two locally convex E-vector spaces and X; C V;, 1 = 1,2 two E-vector
subspaces, then X; @ X5 is dense in V] @ V5 (with the direct sum topology) if and only if
X, is dense in V; for ¢ = 1,2. The result follows then from Proposition 7.2 together with

(Vi @ Vy)LrBl=ele _ (y Er)=ale oy () Er@=ls g0 o () 4 +4). -

7.1.2. Benign points N
We define benign points of Spec T(U p)g —ord[1 /p] and prove several results on them.

We keep the previous notation. We also keep all the notation and assumption of § 6.3 with
L = Q, (in particular U? is sufficiently small, U, is maximal for v|p, v # p, and we assume
Hypothesis 6.9). We denote by B the subgroup of upper triangular matrices in GL,, and by T
the torus of diagonal matrices. We assume moreover n; < 2 for alli = 1,--- , k (though many
results in this section hold more generally). For z a closed point of Spec T(U p)g —ord[1/p),
we denote by m, the associated maximal ideal, k(x) the residue field (a finite extension
of E) and by p, := m, N ’f]f(U@)gford (a prime ideal). We also denote by m, (resp. p,) the
corresponding maximal ideal of T(U ?)5[1/p] (resp. the corresponding prime ideal of T(U ©)5).
We easily deduce from the left exactness of Ordp ([40, Prop. 3.2.4]) an Lp(Q,)-equivariant
isomorphism:

Ordp (S(U?, W)[p,]) = Ordp (S(U?, W?)5)[pa].

and we recall that Ordp(S (U ® W#)5p,]) is an invariant lattice in the admissible unitary
L,(Q,)-representation OrdP(S(UP W¥)5[m,]). We denote by:

pe : Galp — GL,(Rp 5wr)) — GL(T(U?)E") — GL, (k(x))

the continuous representation attached to = and set p, 5 := pa:|GalF We also denote by x; for

i€ {1,---,k} the associated point of Spec Rj,[1/p] via (6.20) and pa; - Galg, — GL, (k( )
the attached representation. Thus p, s is a successive extension of the p,, for i = 1,--- &k
and is strictly P-ordinary by Lemma 5.9 (applied with F = k(x)). In particular each p,, is
indecomposable by Hypothesis 5.5.

Definition 7.4. A closed point x € Spec ﬁ(U@)g_ord[l/p} is benign if:

Lp(Zp)—alg

Ordp (S(U?,W¥)_[m,]); £0.

We recall that a closed point = € Spec ’ﬁ‘(U@)ﬁ[l/p] is classical if S(U?, We)slm,|'"le £ 0. If «
classical, then it follows [43, Prop. 4.2.4] that there is an integral dominant A = (Ay, -+, A\,)
as in § 7.1.1 such that:

(SU?, Wo)p)m,] @5 LN)Y)™ @ L) <= SU?, W)s[m, )™ — (S(U, W),)[m,].

One then easily deduces from (6.3) and, e.g. [80, Thm. 6.5(v)] (taking into account the
normalisations) and [14, Rem. 4.2.4], that HT(p,5) = {AM, A2 —1,--- , A, — (n —1)}. In
particular, A is uniquely determined by .
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Proposition 7.5. (1) A benign point is classical.
(2) The set of benign points is Zariski-dense in Spec T(Up)gford[l/p].

Proof. (1) Let = be a benign point. The admissibility of the Lp(Q),)-continuous represen-
tation Ordp(g(U‘@,Wp)p[mx] together with [75, Thm. 7.1] and [43, Prop. 6.3.6] imply that
there exist a smooth admissible representation 7%° of Lp(Q,) over k(x) with (72°)LrZe) £ (
and A integral dominant such that:

T =12 @p Lp(\) < Ordp (S(U?, W¥),[m,]). (7.7)

Denote by 7, the closure of 7, in Ordp (g(Up,Wp)p[mx]), by Proposition 4.21 we have
continuous Lp(Q,)-equivariant morphisms:

GLn(Qp) _ocoyoo GL,(Qp an GLn(Qp) ~ \CO
(Indﬁ((@f)ﬂx) ®p L(\) — (Ind Qp?m) — (In dP(Q;@)m)C
— S(U?, W¥)5[m,],

the composition of which is nonzero. (1) follows (and A is the unique dominant weight as
discussed just before Proposition 7.5).

(2) Let Z := [, ma where Z; is the set of benign points of Spec ﬁ‘(U“)P’OTd[l/p] we have
to prove Z = 0. By Lemma 6.8(2) and Corollary 7.3, Ordp(S(U?, W)5 )LP ()12 i5 dense in
Ordp<§(Up, W#)5). Since by Lemma 6.8(1) the action of ']I‘(UP)P ord on Ordp(S(Up, We)5)
is faithful, it is thus sufficient to prove that Ordp(S(U¥, We); )LP (Zr)=21 s annihilated by
Z. Let A be an integral dominant weight, by (7.6) we are reduced to prove that any v €
(Ordp(S(U?, W#)5) @p Lp(A\)Y)Er@) @4 g Lp(A) is annihilated by Z. It is enough to consider
the case v = Vo ® u With v, € (Ordp(S(U#, W¥®)5) ®p Lp(MN)V)Er@) and u € Lp()). Let
Voo be the smooth Lp(Q,)-subrepresentation of (Ordp(S(U" W¥)5)®@p Lp(\)Y)™™ generated
by vs. Consider the Lp(Q,)-equivariant injection (see [43, Prop. 4.2.4]):

Voo @5 Lp(X) — Ordp(S(U?, W#)5). (7.8)
By Proposition 4.21 again, this injection induces:
GL,(Qp 00 g a
(Indg g 7 Vae)® @5 L(A) — S(U7, W)
P Swe,we)m,]™E — SO, W), (7.9)
z classical

where the middle isomorphism follows from (6.3). Since we can recover the injection (7.8)
from (7.9) by applying the functor Ordp(-) (cf. Proposition 4.21), we see (7.8) factors
through:

ordp (@ S W )m,]) = @ Ordp (SU7,W)sfm,])

x classical x classical

Ordp (S(U?, W¥)5[m,]).
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Since Vo, is generated by v, and each Ordp(g(Up, W¥)5[m,]) is preserved by Lp(Q,), there
is a finite set C' of classical points such that (7.8) has image in ®,ec Ordp(S(U?, W¥)4[m,]).
In particular v € Ordp(S(U?, W#),) 78 is contained in:

P Ordp (S, W) [m,)) @™ = ) Ordp (S, W¥),[m,]) 7

zeC zeCNZo
and hence is annihilated by Z. (2) follows. O

Let x be a closed point of Spec 'i‘(Up)g_ord[l/p]. For i =1,---,k we denote by 7(p,,) the
continuous finite length representation of GL,,(Q,) over k(z) associated to p,, via the p-adic
local Langlands correspondence for GL2(Q),) ([24]) normalized as in [6, § 3.1] when n; = 2,
via local class field theory for GL1(Q,) = Q' normalized as in § 1 when n; = 1. Recall that

B, denotes the lower triangular matrices of GLs.

Proposition 7.6. (1) If x is a benign point then p, s is semi-stable.

(2) If x is benign (hence classical by Proposition 7.5(1)) and X = (A1, Mg, -+, \,) is the
unique integral dominant weight associated to x before Proposition 7.5, then fori=1,--- |k,
pa; 15 semi-stable with HT (p,,) = {Xs;11 — i, )\5 n; — (si+n; — 1)} (note these two integers
are the same when n; =1 and recall s; = Z] 0nj).

Proof. We fix a benign point = and use the notation of the proof of Proposition 7.5(1).
(1) Let 0 # v € (7°)ErZ0) be an eigenvector for the spherical Hecke algebra of Lp(Q,) with
respect to Lp(Z,) and let 7 be the Lp(Q,)-subrepresentation of m5° generated by v. Then

it is easy to check that we have:
I ® e
i=1, .k
where if n;, = 1, ¢,,41 1= 7° is an unramified character of QX and if n; = 2, either there

exist unramified characters .41, V5,42 of Q) such that 79° = (IndGLQ(Q” Vs, 41 @ Vg, 42)

with 1,11 # s, 42 or T° is isomorphic to the composition of an unramlﬁed character of Q
with the determinant Character (note that we can assume ), 11 7# 15,12 in the first case since
otherwise we would in fact be in the second). As in (7.7), we have an Lp(Q,)-equivariant
embedding:

oo

( 0% w;”) @5 Lp(\) — Ordp (S(UF, W9),[m,]) (7.10)

=1,k
which, by Proposition 4.21, induces a nonzero morphism:

(Ind5 5 @i, 7)™ @5 L(A) — S(U2, WO)5lm, . (7.11)

By (6.3) and the local-global compatibility at ¢ = p in the classical local Langlands cor-

respondence (cf. [17]), there exists an automorphic representation 7 of G associated to p;
such that the factor of 7 at the place g is of the form 7, @) Q, where 7, is an irreducible

GLn(Qp) ®i=1,.. x7°)> (note that the action of GL, (Q,) on 7, actually also

constituent of (Ind 0)
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depends on ). Since the representation 7° is unramified for all 4, it easily follows from [17]
and properties of the local Langlands correspondence that the potentially semi-stable p, 5
must be semi-stable. This proves (1). Moreover, since p is irreducible so is p,. Thus 7, is a
generic representation of GL,(Q,) by genericity of local components of cuspidal automorphic
representations of GL,, using base change to GL,, ([71], [55]). This implies that 7$° is infinite

dimensional when n; = 2 since otherwise it is easy to check that (Indgig(;@p) ®z:1,...,k7ri )
P

has no generic irreducible constituent.

(2) The fact that p,, is semi-stable follows from (1). By [17], there exists m(z) € Z>; such

that:

S(U®, W#),[m, )™ = (7, @ L(A)®™@, (7.12)
In fact, we have (the second equality following from the fact that U, is maximal for v|p,
v # Q)

Zm ) dimg (7 Zm ) dimg( TooP)U” (7.13)

where 7 runs through the automorphlc representations of G(Ap, ) such that T(UP)[1/p] acts
on (7°P)V" via T(UP)[1/p]/m, = k() (hence the factor of 7 at the place of g is of the form
Tp Qk(x) E). Since each 7% for i = 1,--- ,k, and thus ®i=1,... kT, has an irreducible socle,
the injection (7.10) factors through an Lp(Q,)-equivariant injection:

( Q) ) ®p Lp(A) — Ordp (r, @5 L(N)). (7.14)

=1,k

Applying Proposition 5.10, we see p,, is isomophic to a successive extension of p} with
HT(p},,) = {Asi+1 — Sis Asjan; — (8i +n; — 1)}, Since p,, is strictly P-ordinary, we have
P, = ps, for all 4, which finishes the proof of (2). O

Remark 7.7. If n; = 1, set a1 = p s, 11(p); if n; = 2, set ag41 = Y, 11(p)D"
Qgipa 1= Vs 2(P)p* T (50 i q100; Ly # p~!, by the proof of Proposition 7.6 (1)). It follows
from [17] and [77, Thm. 1.2(b)] that we have:

)

(rec := semi-simplified local Langlands correspondence, see § 5.2). Since (®i:1,---,k Wfo) RF
Lp(A) is unitary by (7.10), we have if n; = 1:

1—n
2

1

rec(mg)( W (pa,p)™ = @) unr(a;) (7.15)

Valp(ozs#l) = _)\SH‘l +8; (716)
and if n; = 2:
valy (s 1) + valy (s, 42) = —As1 = Asisz + 55+ (s + 1). (7.17)

If n; = 2, we have W (p,,)*® = unr(ag,+1) G unr(as,42) (by Proposition 5.10). Hence by weak
admissibility, we see:

_)\SiJrl + 8; S Valp(ozsiH) S _>\Si+2 +s; + 1, Vi= 1, 2. (718)
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Together with (7.16), we see c; # oy if j, j' donot lie in {s;+1, s;4n;} foranyi € {1,---  k}.
If A is moreover strictly dominant, i.e. A; > A;4; for all j, we deduce Ozjaj_,l ¢ {1,p,p '} if
J, j' donot lie in {s; + 1,s; + n;} for any i € {1,--- | k}.

Lemma 7.8. The injection (7.14) is bijective.

Proof. Denote by Ip :={i=1,---,k, n; = 2}. Let S,,, be the Weyl group of GL,,, identified
with the permutations on the set {1,n;}. For w € S,,, we set By 5,41 1= p a1 if n; = 1;
and By s41 = p‘si_lasﬁwi(l), Bu,si42 7= P T sy, (2) if 1y = 2. We have:

Ipnrp (®imt, 17m°) @ Lp(X)™ =0, ® ( D (ws)eslP! (@)= unr(By,5))) (7.19)

where 0, is the algebraic character of T(Q,) of weight A, ss denotes the semi-simplification
as T'(Qy,)-representations. On the other hand, we deduce from Remark 4.13:

Iperp (Ordp(m, ®p L(N))) — Jp(m, @5 L(A)(35").

Q)

Comparing [69, Thm. 5.4] with (7.19) (recall 7, is a constituent of (Ind;(Lé()

and using Remark 7.7, one can check that any character:

®i:1,... 7/1671'?0)00)

X' Jp(me @5 L)'/ TanLe (Qiz1, 475°) @5 Lp(N))™ (7.20)

does not appear on the right hand-side of (7.19). Let 7% be the smooth admissible repre-
sentation of Lp(Q,) over k(z) such that Ordp(7, @ L(N\)) = 7 @g Lp(A). Let X’ be as in
(7.20). If ¥’ injects into Jpnr, (7% @& Lp(A)) (which is equivalent to X6y < Jpnr, (7%)),
by [37, (0.1)] we deduce a nonzero morphism:

Lp(Qp) / oo o)
(Indﬁ(@pfmﬂ@p) X'0\0pon,) " — 7P

and hence a nonzero morphism:

(Ind%’(’é%gh X 0I80,)~ @ Lp(A) — Ordp(my @5 L(V)). (7.21)
However, Ordp (7, ® L())) is unitary, while, by (7.16), (7.17) and (7.18), one can check that
the left hand-side of (7.21) does not have any unitary subquotient (e.g. by considering the
central characters, the key point being that, for w in the Weyl group of GL,, which does not
lie in the Weyl group of Lp, if we replace the a; by the o’ := a-1(;) for j =1,---,n, then
at least one of (7.16), (7.17) or (7.18) cannot hold). Consequently, any x’ as in (7.20) cannot
inject into Jpng, (Ordp(m, ® L(A))), and hence cannot appear in the semi-simplification of
the latter (using that there does not exist nontrivial extension between different characters
of T(Q,)). It follows that the natural injection induced by (7.14):

JBOLP((®1':1’...’]{;7T;>O) RE Lp()\)) — JBmLP(OI‘dP(ﬂ'p XRE L()\)))

is bijective. Since Jp(7,) does not have cuspidal constituents and Jpnz, is an exact functor,
we deduce that the injection (7.14) must be bijective. O
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Proposition 7.9. With the notation of Proposition 7.6 and its proof, we have an Lp(Q,)-
equivariant isomorphism:

~ ®m(z)
Ordp (S(U?, W¥)5[m,]148) = (( ® ) ®F Lp(A)) : (7.22)
=1,k
Proof. This is an immediate consequence of (7.12) and Lemma 7.8. [

Corollary 7.10. (1) If x is benign, the representations p,, are crystalline fori=1,--- k.
(2) If x is benign, there exists an Lp(Q,)-equivariant injection:

Q) (F(ps)™ @ &% o det ) — Ordp (S(U?, W¥)5[m,]). (7.23)

=1,k

Proof. (1) We use the notation of Proposition 7.6 and its proof. The first statement is clear
when n; = 1 by Proposition 7.6(2). By loc. cit. and its proof, it is enough to prove that for
n; = 2 we have ocsiﬂoz;ﬂrz # p*!. From the proof of Proposition 7.6, we have already seen
Q100 Ly # p~'. Assume there exists i such that n; = 2 and a,,410, ), = p, then 75° is
reducible and has a 1-dimensional quotient. Let 7 be the (unique) irreducible quotient of
m¢ for j =1,---  k, we have ®§:17r;?° e ®§:17r§. where 7 is 1-dimensional. By Lemma 7.8
and the fact that Ordp(m, @ L())) is a direct summand of Jp(m, ®p L(X))(6p") (which
follows from (4.13)), we deduce an Lp(Q,)-equivariant surjection Jp(m,) — (@4, 77)(0p).

By [69, Thm. 5.3(3)] this induces a nonzero morphism m, — (Ind%(Lé(;@p)(®§:17T;-)(5p))°°,

which is an injection since 7, is irreducible. However (Ind%?&?p)(®§”:17T§»)(5p))°° does not

have any generic irreducible constituent since dimy,) 7; = 1. This gives a contradiction and
finishes the proof of (1). Note that we also obtain that 7 is irreducible for ¢ = 1,--- | k.
(2) By well-known properties of the p-adic local Langlands correspondence for GLy(Q,,) we
have:

IO (- C R ni=1
™ Ty = n — oo
(Indg;(égp) unr(ag,+1) ® unr(ag, op 1)) Qg Li(N —si) n;=2

where )\, — s; is by definition the weight (A, ;1 — Si, As,42 — 8;). Using € = zunr(p™'), we
easily deduce:

® (7(pe) ™ @ % 0 det ) = < ® ﬂf‘”) ®@p Lp(N), (7.24)
i=1, =1,k

whence (2) by (7.10). O

7.1.3. P-ordinary eigenvarieties

We define and study P-ordinary Hecke eigenvarieties and use them to prove geometric prop-
erties of Spec T(U@)g’ord[l/p].

98



We keep the notation and assumptions of the previous sections. We now consider the locally
analytic representation of 7'(Q,):

Ter, (Ordp(S(UP, W#),)m)

where Jpng, is Emerton’s locally analytic Jacquet functor ([38, § 3.4]). This is an essen-
tially admissible representation of T'(Q,) over E ([43, Def. 6.4.9]) which is equipped with

an action of T(U K’)g —ord commuting with 7(Q,). Let T be the rigid analytic space over F
parametrizing the locally analytic characters of T(Q,) and (Spf T(U @)]g —ordyrig the generic
rigid fiber (2 la Raynaud-Berthelot) of the formal scheme Spf T(U W)g —ord associated to the
complete noetherian local ring ﬁ‘(U”)g_ord (in particular the points of (Spfﬁf‘(Uﬁo)g_ord)rig
are the closed points of Spec T(U W)g ~ord[1/p]). Then, following [39, § 2.3] the continuous

~

dual Jpnr, (Ordp(S(U, W#)5)*)" is the global sections of a coherent sheaf on the rigid ana-

lytic space (Spf T(U p)g —ordyrig 5 o T, the schematic support of which defines a Zariski-closed
immersion of rigid spaces:

gh—ord (Spfr]Af(Up)I;—ord)rig <5 T.
In particular y = (x, x) € EF7°4 if and only if there is a T(Q,)-equivariant embedding:
X = Jpar, (Ordp(S(U?, W¥),)™) [m,].

By the same proof (in fact simpler) as for [12, Cor. 3.12] using Lemma 6.8(2) to ensure
that the analogous results of the ones in [12, §§ 3.3 & 5.2] hold in our setting, we have the
following proposition.

Proposition 7.11. The rigid analytic space EX=° is equidimensional of dimension n.
Definition 7.12. A point y = (z,x) € EX7°4 is P-ordinary classical if:
e x is of the form x*°d\ where x*° is smooth and X\ = (A1, -+, \,) is integral dominant
o Jpnr, (Ordp(S(UP, W9),)2%) [m,,, T(Q,) = x] # 0.
Lemma 7.13. Let y = (z,x) € EF7°" be P-ordinary classical, then the point x is classical.

Proof. This follows by the same argument as in the proof of Proposition 7.5(1) (except that
we don’t necessarily have (7°)17(Z») =£ (0 anymore), using the adjunction property of the
functor Jpnr,(+) on locally algebraic representations and then applying Proposition 4.21. [

Lemma 7.14. Let A = (A1, -+, \y) be an integral dominant weight, x*° = x7°® - Q@ x> be
an unramified character of T(Q,), and y = (z,x) € EV™ with x = HX* =1 @ -+ ® Xa-
If we have for all i =1,--- ,k such that n; = 2:

Valp(XS¢+1(p)) < Aot — Asig2 (eqmvalently Valp(X??Jrl(p)) < _>‘8¢+2)7 (725)

then y 1s P-ordinary classical.
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Proof. As in § 3.3.1 we use without comment in this proof the theory of [63] (see [8, § 2] for
a summary). For i € {1,---  k} let my g := Mt x 2, if n; = 1 and:

T = ]'%}2142 (Mi(_Ai)v | : |_1X§f+1 ® | : |X§f+2)

if n; = 2 where —), is the algebraic weight (—\,, 11, —As,12) and M;(—),) := U(gly) RU(6s)
(=);) (by being the Lie algebra of By). It follows from [7, Thm. 4.3] that the injection

X = Jpnrp (Ordp(S(U?, W#)5)*)[m,] induces a nonzero continuous Lp(Q,)-equivariant
morphism:

—

&), m — Ordp(SUY, W)5)* [m,] (7.26)

=1,...,

where the completed tensor product on the left hand side is with respect to the projective
limit topology, or equivalently by [43, Prop. 1.1.31], the inductive limit topology, on 71 @)
o @) TR I valy(pxSy1(p)) < 1 — Ag12, by [8, Cor. 3.6] the representation:

fgjg (Zi(_s PONE |71X§?+1 ®]- |X;O+2>

~ GLy(Q _ o )
= (IndEQ(Q(ép)p) | . | 1X:io+1x)‘ it2 1 ® ’ . |X;O+2x)\ 1+1+1)an

does not have a GLy(Qj)-invariant lattice, where Li(—s - ),) is the unique simple subobject
of M;(—);). We then easily deduce that the map in (7.26) factors through a (nonzero)
morphism:

( 0% w;w) @5 Lp(\) — Ordp(S(U?, W¥),)™[m,] (7.27)
i=1, k
[o SR 3 — [o ST GL2(Qp) —1,,00 00 oo 3 —
where 70° := unr(f;) if n; = 1 and 77° := (Indgg(Q ) | TS @ ] [Xy)® if ny = 2. By
Proposition 4.21, the lemma follows. O

The proof of the following lemma is standard and we omit it (see e.g. the proof of [12, Thm.
3.19]).

Lemma 7.15. The set of points satisfying the conditions in Lemma 7.14 is Zariski-dense in
(c;P—ord‘

Proposition 7.16. The set of P-ordinary classical points is Zariski-dense in X1,

Proof. This follows from Lemma 7.14 and Lemma 7.15. O]

~

Replacing the locally analytic T'(Q,)-representation Jpnz,(Ordp(S(U,W¥)5)*") by
Jp(S(U®, W¥®)a%), we obtain in the same way a rigid analytic variety £ over E together with
a Zariski-closed immersion:

£ < (SptT(U®)5)" xp T
such that (z,x) € €& if and only if there is a 7T(Q,)-equivariant embedding

~

X = Jp(S(U?, W¥)s")[m,]. Moreover £ is also equidimensional of dimension n. Consider
now the following closed immersion:

Lo (Spf T(UR)E=ord)rie x p T s (SpET(U®),)" x5 T, (2,X) — (2, x0p").
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Let y € £P~°d be P-ordinary classical. By Lemma 7.13 and Jpnp, o Ordp < Jp(dp"') (see
§ 4.3), we see (F'7°"(y) is a classical point in £. Together with Proposition 7.16, we deduce
that 7~ induces a closed immersion of reduced rigid analytic spaces:

Jfrodghrode g (7.28)

where “red” means the reduced closed rigid subspace.

Corollary 7.17. The rigid space €£g°rd 15 isomorphic to a union of irreducible components

Of gred .

Proof. This follows from (7.28) and the fact both £ and &,.q are equidimensional of
dimension n. 0

Recall that, for any (z,x) € &, the associated Galg,-representation p, s is trianguline (see
[51] and also [58]) and that (,) is called noncritical if x65' (1 ® ! @ --- ® £!™") gives
a parameter of the trianguline (¢,I")-module D, (p,,5) associated to p, s (with the usual
identification of the T'(Q,)-character ¢ ® --- ® d,, and the parameter (d1,---,6,)). We
call a point y = (x,%) of EX~°4 noncritical if £~ (y) is noncritical, or equivalently if
XO0phr,(1®e '@ ®e!'™) is a trianguline parameter of Diig(pa,5)-

Lemma 7.18. Let y = (z,x) be a P-ordinary classical point with x benign, then y is non-
critical.

Proof. We use the notation of Definition 7.12 and of Lemma 7.8 and its proof. By Lemma
7.8 and (7.19), there exists w € S|21P| such that x* = unr(f,1) ® - - @ unr(fy). It follows
from Proposition 7.6(2) and its proof together with Corollary 7.10(1) that:

(oo | - [ Thate e ™ X2 | - [aivze™ )

is a trianguline parameter of Dyig(ps,) if n; = 2 and x° at1e™ = p, if n; = 1 (where
i€ {l,---,k}). Together with the fact p, s is isomorphic to a successive extension of the
Px;, we deduce that X&E}WLP(I ®et®---®e'™™") is a trianguline parameter of p, 5. O

We say that an r-dimensional crystalline representation V' of Galg, is generic if the eigen-
values (;)i=1... » of ¢ on Dg;s(V) are such that goigoj_l ¢ {1,p,p~t} for i # j.

Lemma 7.19. Let y = (x,x) € EF7° be as in Lemma 7.14 and assume moreover for all

i=1,---,k such that n; = 2 (with the notation of loc. cit.):
Asi41 — As;
valy(Xs1(p) < S - L (7.29)
Then x is a benign point and p,, is crystalline generic fori=1,--- k.
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Proof. We use the notation of Lemma 7.14. Since xs,+1(p) + Xs,+2(p) = 0 (as follows from
(7.27)), we easily deduce from (7.29) that:

XS (P)XSap) ¢ {p 2 p 1) (7.30)

which implies that 7{° in the proof of Lemma 7.14 is irreducible. It then follows from
(7.27) that « is benign. Hence the p,, are crystalline by Corollary 7.10(1). Moreover, by
the proof of Proposition 7.6(2), the crystalline eigenvalues of ¢ on Deis(pz,) are given by
{P X2 (), PP X a(p) } if iy = 2 and p*ix%,, if n; = 1. We deduce then from (7.30) that
Pz, 18 generic. O

Denote by w! the following composition:
w' : EP7or e (Spf T(U®)E =) sy T 224 (Spt T(UP)E5—o)rie,
Denote by Z} the set of P-ordinary classical points y = (z,%) € £ such that:

e y satisfies all the conditions in Lemma 7.14 and Lemma 7.19 (in particular z is benign)

o x = x>0, is such that A = (Ay,- -+, \,) is strictly dominant, i.e. A; > A;j4 for all j.
We let 7, := w'(Z]) C (Spf'f(U@)g_Ord)rig, which we can also view as a subset of (closed)
points of the scheme Spec ’f(U@)g_ord[l/p].

Proposition 7.20. (1) The set Z; is Zariski-dense in EP™°" and accumulates (see [12,
Déf. 2.2]) at any point (x,x) with x locally algebraic such that x> is unramified.

(2) The set Zy is Zariski-dense in the scheme Spec 'ﬁ'(Up)g’ord[l/p].

Proof. (1) The proof is standard and we omit it.

(2) Let Xy be the Zariski closure of Z; in the scheme Spec 'ﬁ(Up)g_ord[l/p] and X be the
associated closed subspace of (Spf T(U P)g —ordyrig Note that X contains the Zariski closure
of Z; in the rigid space (Spf’f(U“)g_ord)rig. By Proposition 7.5(2) it is enough to show
any benign point of Spec 'f(U@)g_ord[l/p] belongs to X, or equivalently to X when seen in
(Spf'INF(UW)g_OYd)“g. Let x be a benign point and y = (z,x) a P-ordinary classical point
of £F~°d lying above x. The existence of y follows easily from Corollary 7.10(2) and its
proof. By (1), Z; accumulates at y, in particular y lies in the Zariski closure of (w!)™!(Z;)
in £F~ord from which we easily deduce that w'(y) = x lies in the Zariski closure of Z; in the
rigid space (Spf 'ﬁ'(Up)g_ord)rig. As the latter is contained in X, (2) follows. O

Remark 7.21. We do not know if Z; is also Zariski-dense in the rigid analytic space
(Spr(Up)g—ord)rig_

Lemma 7.22. Let y = (z,x) € EP7° such that Z| accumulates at y. Leti € {1,---  k}
and assume Xsﬁlx;iz # a™| - |? for any m € Z if n; = 2. Then p,, is trianguline and there
exists an injection of (¢, I')-modules over Ry):

{Rk(x)(xsz'-i-lgsi) — Drig(pzi) n; =1

o (7.31)
Rk(w)<XSi+1€ HE ‘ 1) — Drig(pxi) n; = 2.
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Proof. Let i € {1,--- ,k}, by Lemma 7.18 we have (7.31) for any point in Z;. The result
then follows from the global triangulation theory ([51], [58]), and we leave the (standard)
details to the reader. ]

Proposition 7.23. Let y = (z,x) € Y7 be a P-ordinary classical point with x benign.
Then any injection as in (7.23) extends to an injection of locally analytic representations of
Lp(Q,) over k(x):

Lp(Qp — an =S5
(Indzr 2 x0phe,)"™ = Ordp (S(UY, W¥)5[m,))

an

(7.32)

Proof. We use the notation in the proofs of Proposition 7.6 and Lemma 7.14. Let V be

: : : Lp(Qp) -1 an o :
an irreducible constituent of (IndeL:(@p) XOpnr,)™ By a dévissage using [13, Cor. 2.2,

Lem. 2.8 & Lem. 2.10] together with [63, Thm. 5.8], we deduce that V = ®i-1... Vi where
Vi =2 ®pLi();) ifn, =1and V; 2 7 @pg L;i();) or Fg;Z)(Li(_S'Ai)a I @] IXh)
if n; = 2. Assume that we have an injection:

V s Ordp (S(U?, W®),[m,))

o (7.33)
for a constituent V' such that there exists i € {1,---,k} with V; not locally algebraic (so
n; =2and V;, = fgf(Li(—s ) [ T @ |- IX24,))- Applying the functor Jpng,(-)
to (7.33) gives a point ¥ = (z,x’) € EF74 with (x/)*® = x*° (which is unramified) and
X/si—l-l — XSZ__H‘,E)\si-s-2f/\si+1717 X/si+2 — X5i+2x)\si+1f)\si+2+l' If X5i+1X,s_7;}i-2 7é $Asi+1*)\si+2| . |2
(thus Xs+1X5 4e # 2™ - |* for any m € Z, and hence also X, (X} 40)"" # ™| - |* for
any m € Z), applying Lemma 7.22 to the point ¢’ (via Proposition 7.20(1)), we easily
deduce a contradiction with the fact the 2-dimensional crystalline Galg,-representation p,,
is nonsplit. Hence such a point ¢ doesn’t exist on £F7° (and we can’t have (7.33)). If
Xsi+1Xs 4o = Tt 7202 ] |2 we have val,(Xs,41(p)) = w —1 < As41 — Ag;42- Asin
the proof of Lemma 7.14, we then see by [8, Cor. 3.6] that V; does not admit a GLy(Q,)-
invariant lattice, a contradiction with (7.33). Using [7, Cor. 4.5] we deduce that 3’ again
doesn’t exist on £F'7°". The proposition then follows by the same arguments as in [4, § 6.4
Cas i = 1] (or as in [10, § 5.6] when k = 1) using Lemma 6.8(2) as a replacement for [4,
Lem. 6.3.1] and the above discussion as a replacement for [4, Prop. 6.3.4]. ]

Corollary 7.24. Let x be a benign point, then any injection as in (7.23) extends to a closed
injection of Banach representations of Lp(Q,) over k(x):

—_

®z‘:1,~-.,k (T(ps;) ® €% 0 det ) — Ordp (§(UK’, W9)5m,]). (7.34)

Proof. (a) We use the notation in the proofs of Proposition 7.6 or Corollary 7.10. When
n; = 2, by exchanging «a,, 11 and a9 if necessary, we can assume val, (s, +1) > val, (o, 1+2).
Let x := 0\x™ with x2°,, == unr(p % ay,41) if n; = L and x°; = unr(p™* o 41), X240 =
unr(p~ g, ) if n; = 2. We have (z,x) € EF7"4. From Proposition 7.23, we deduce a
continuous Lp(Q,)-equivariant injection:

an ~v Lp(Qp — an a9
®i:1,...,k”i :(Indgggngp)X(SB;LP) — Ordp (S(U®, W¥),[m,)) (7.35)
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where 7" := x,41 if n; = 1 and " = (IndGLQ(Qf) Xsit1l - 17" @ Xopp2l - )™ if n; = 2. By

the above condition on ag, 11, g, 19, We know that 7(p,,) ® €% o det is isomorphic to the
universal unitary completion of 72" (see [3] for the case where ag, 11 # as,42 and [64] for the
case where ag, 11 = ag,42). It then follows from [13, Lem. 3.4] that the universal unitary
completion of ®i=l,~- T is isomorphic to ®i=l,~-- k(T(ps;) @e® odet). We deduce that (7.35)
induces a continuous Lp(Q),)-equivariant morphism:

—

®i:1’___’k (%(Px) Rk(z) €7 0O det) — Ordp (:S'\(Up, Wp)ﬁ[mx]) (7.36)

which restricts to (7.35) on the left hand side. Since (7.35) is injective and the two Banach
representations in (7.36) are admissible (for the left hand side, this follows by induction e.g.
from [13, Lem. 2.14]), it follows from [75, § 7] that (7.36) is also injective, and from [73, § 3]
that it is automatically closed. O

We now give a lower bound on the Krull dimension of Spec T(U p)P ~ord[1/p]. We denote by
W the rigid analytic space over E parametrizing the locally analytlc characters of T'(Z,), by
2 the composition:

gr}Zd ord (Spr(Up)P 0rd>r1g X g ,7— pro 7—
and by w2 the composition of w? with the natural surjection T — W.

We fix x € Z; and use the notation in the proof of Lemma 7.8. For J C Ip, we let
wy = (Wy;)ierp € S|2[P‘ with wy; # 1 if and only if < € J, and put x; := 5,\(®?:1 unt(fBy, )
with the notation of (7.19). By definition, A is strictly dominant. By (7.19) and the proof
of Lemma 7.18, we have that y; := (z,xy) € EF7°4 and y; is noncritical. By Proposition
7.6, the second part of Remark 7.7 and Lemma 7.19, we easily deduce that p, 5 is crystalline
generic. Recall we have assumed Hypothesis 6.9. We now assume one more condition #ill
the end of the paper.

Hypothesis 7.25. If n > 3, we have U, maximal hyperspecial at all inert places v.

It then follows from [19, Thm. 4.8 & 4.10] and the smoothness of W that the rigid variety & eq
is smooth at the point t7=°"4(y ;) (see (7.28)), which therefore belongs to only one irreducible
component of E.q. Combining [19, Thm. 4.8 & 4.10] with Corollary 7.17, we deduce the
following result.

Proposition 7.26. The morphism w? is étale at the point y.

Fori e {1,--- ,k}, we denote by w; : R;. — 'TF(U@)g’OTd the i-th factor of w in (6.20) and we
still denote by w; the induced morphism on the respective (Spf-)e. We fix i € {1,--- ,k}
and denote by w} the following composition:

poghrod 2y (Spf']I‘(U“’)P ordyrie. 245 (Spf Ry, ). (7.37)
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Recall we have @(Spmﬁ)rig,xi = Ry, ([52, § 2.3] and see § 5.1 for R, ), hence the tangent
space:

~

‘/(Spf Rz, )8 z; = Homk(mi)falg(O(Spf Rz, )82, 5 k(xz) [6]/62)
of the rigid analytic variety (Spf R; )" at z; is naturally isomorphic to Extg, o (Pays Pa;)-

Extending scalars if necessary, we can see everything over the finite extension k(x) of
k(x;). Assume first n;, = 1, then we have dimy, ExtéalQ (Pz;» Pz;) = 2 and we denote
P

by Ext;(pxi, pz;) the 1-dimensional k(z)-vector subspace of de Rham (or equivalently crys-
talline) deformations. Assume n; = 2, since p,, is crystalline, generic and nonsplit, we have
dimy () Extéal% (Pa;s pz;) = 5 (e.g. by similar arguments as in Lemma 3.5). For each re-
finement (ovs,4w,(1), Qs;+uws(2)) On the Frobenius eigenvalues {ov, 41, s, 42} 0f Dais(pe,) with
w; € Sy, one can proceed as in (3.5) and Lemma 3.6 and define a k(x)-vector subspace
Exty, (pz;, pa;) Of Extéal(@p (Pass Pr;) = Ext%%F)(Drig(pxi), Diig(ps;)), analogous to the subspace

tri

over k(x)[e]/€* with respect to the triangulation on Diyig(p,,) associated to the refinement
(Qs;4w;(1)> Qsitwi(2))- We denote by Ext;(pxi, pz;) C Extéah@p (ps;y Pr;) the k(z)-vector sub-

Extl;(D, D) of Ext(lwvr)(D, D) in Lemma 3.6, consisting of trianguline deformations of p,,

space of de Rham deformations, or equivalently of crystalline deformations (since p,, is
crystalline generic).

Lemma 7.27. Leti € {1,--- ,k} such that n; = 2.

(1) For any w; € S, we have dimy, Extqlui(pxi,pxi) = 4, dimy(, Ext;(pzi,pwi) = 2 and
Excty(pais pai) © Exty, (i, pa)-

(2) We have 32, cs, Bxty, (po;: pu;) = Extiag (Pars par)-

Proof. (1) follows by arguments similar to the ones in the proofs of Lemma 3.6 and Lemma
3.11. (2) easily follows from dimy,) Ext), (pu,, pxz;) = 4 and dimy, Extéah@ (P;s Pz;) = 5. O

[

For a morphism f : X — Y of rigid analytic varieties and a point € X, we denote by
dfy : Vx .z = Vy,f(z) the k(z)-linear map induced by f on the respective tangent spaces of X
and Y at z and f(z).

We fix J C Ip and denote by V; = Vgp—oa  ~ the tangent space of Sf;; ord at the point 7.

_ ed
We let dw;, . be the composition:

Y

_ dw!
dwil,yJ : VJ — EXtéal@p (pmwpfﬂz) - EXt%}al@p (priv prz)/ Ethly(pzw prz)

where we recall that Vigy g, yris o, & Extg,, o, (Pzis pa;). We set:
i P

ey, = (dwly izt Vi — @D Extlag (Pens pa) | Exty(pas, p2)-

i=1,k

105



Proposition 7.28. (1) Let i € {1,---,k}, we have Im(dw;,,
EXt'llUJ,z‘ (Pis Pa;) = EXté;alQp (Pis pa;) if mi = 1.
(2) The morphism aw;u induces a bijection (using Ext;(pxi, pz;) C Extiu,i (Pass Pz:)):

) C Exty,, (pa,, pa;) where

dw;J Vy— @ EXt%uM (pzi’pfi)/EXt;(pzi’pxi)‘
i=1 k

Proof. (1) Let v € Vj, set p,, := dw/, (v), which we view as a deformation of p,, over
k(z)[e]/€*, and let X; = dw; (v), which we view as a deformation of x; over k(z)[e]/€.

From the global triangulation theory (see for instance [58, Prop. 5.13]) and Lemma 7.22, we
derive:

(7.38)

R/ (Xasit18 ") — Drig(px,) n; =
Rk(m)[e]/GQ (%J,Si+1€_si| : |_1> — Drig(ﬁxi) n;, = 2.

Then (1) follows by definition of Exty, (ps,, px,)-
(2) By Proposition 7.26, we have dimg,) V; = n. By Lemma 7.27(1) and the discussion
before it we have:

. 1 1
{dlmkm Exty,, (o, pa,) ) Exty(po,, po) =1 ni =1 (7.39)

dlmk(x) Ethle,i(pww pwz)/ EXt;(/OLEw pwl) =2 n; = 2.

Hence it is enough to prove that Ew;J is injective. If 0 # v € V; then we have dwj, (v) # 0
by Proposition 7.26, and hence there exists j € {1,---,n} such that the character x,; is
not locally algebraic (i.e. doesn’t come from an extension of x;; by x.; given by Eval,). It
then follows from (7.38) and (1.12) that p,, & Exty(pa,, pa,) if j € {s; + 1,5 + n;}, whence
dw) (v) #0. O

We denote by V, the tangent space of the rigid variety (Spf ’ﬁ’(U W)g —ordyrig at the point x.

Corollary 7.29. We have dimy) Vy > n + (n — k).

Proof. For any J C Ip the morphism 3@;] factors as:

- dw, Didw;,

dwglu : VJ # ‘/90 — @ EXtéalQp (:0961'7)0931) - @ EXté}alQP (p$i7pxi>/EXt;(pwi7pxi>‘
i=1, )k =1,k

This implies an inclusion of k(z)-vector spaces:

Z Im(dw, ) C Im (Vz — EB Extéal@P (pgci,pwi)/Ext;(p$i,p$i)>. (7.40)

JCIp =1,k
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But, by Proposition 7.28 we have:

P 1m(dsy,) P (D Bxth, (oo )/ Extilpn. p2))

JCIp JCIp =1,

. (@ (Exty,. (pes p2,)/ Exti(pxi,pxi)»

i=1,-,k JCIp

- @ EXt%}al@p (pﬂﬂi? Px:)/ EXt; (pxu Pr;)
=1,k

12

I

where the last morphism is surjective by Lemma 7.27(2). Together with (7.40) it follows that
the morphism V, — @;—1 ... x Extéal% (Pay» P2s) ] Exty(pa,, pa,) is in fact surjective. Since the
right hand side has dimension n + |Ip| = n + (n — k) by Lemma 7.27(1) and the discussion
before it, the corollary follows. O

Proposition 7.30. Each irreducible component of Spec @(U@)gford[l/p] has (Krull) dimen-
sion >n+ (n—k).

Proof. By Lemma 6.7 Spec 'ﬁ"(U”)g"’rd[l/p] is a reduced scheme and by Proposition 7.20(2)
the set of closed points Z; is Zariski-dense in Spec T(U P)g ~ord[1/p]. Thus for each irreducible
component X of Spec T(U K’)g —rd[1 /p], there exists a closed point of X which is in Z; and such
that X is smooth at z. Since the completed local rings of the scheme Spec ﬁ‘(U@)g_ord[l/p]
and of the rigid space (Spf’f(U”)g_ord)“g at « are isomorphic (see e.g. [29, Lem. 7.1.9]), the

tangent space of Spec ﬁ‘(U@)g_ord[l/p] at the point x is isomorphic to V,. The result then
follows from Corollary 7.29. O

7.1.4. Local-global compatibility
We prove local-global compatibility results for the Lp(Q,)-representation Ordp(S(U*, W#)5)
by generalizing Emerton’s method ([42]).

We keep the notation and assumptions of §§ 6.3, 7.1.1, 7.1.2, 7.1.3 (in particular we assume
Hypothesis 6.9 & 7.25) and we assume moreover that the GLy(Q,)-representations p; satisfy
the assumption (A.2) in the appendix when n; = 2. We denote by 7; the representation of
GL,,(Q,) over kg associated to p; by the modulo p Langlands correspondence for GL3(Q,)
normalized as in [6, § 3.1] when n; = 2 and by local class field theory for GL;(Q,) normalized
as in § 1 when n; = 1. We denote by /™" the universal deformation of 7; over R; (see for
example § A.2) where we consider deformations in the sense of [42, Def. 3.3.7]). We set:

m(U®) = @, T(U®)L o (7.41)
where ® means the mg-adic completion of the tensor product (still denoting by m; the

maximal ideal of T(U ©)£~°"). One can check that this is an orthonormalizable admissible
representation of GL,,(Q,) over ’f(U@)g’ord in the sense of [42, Def. 3.1.11]. We set:

i

T (U®) := ®i:1,---,k (mi(U®) @ €% o det ) (7.42)
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P—ord
ﬁor)

(the ms-completed tensor product being over 'Tf(U ©) which is an orthonormalizable

admissible representation of Lp(Q,) over T(U p)g —ord We have:

TEU?) Srpron (FOPE ) = @) (7™ @, k) @7 o det)
=1,k

~ Q) (T @ odet).

=1,k
As in [42, Def. 6.3.4], we define the Op-module:
Xp(U®) := Hom%(sw)g,mdmp ©)] (75 (U®),Ordp(S(U?, W?)y)) (7.43)

where “cts” denotes the continuous maps for the mz-adic topology on the source and the
wp-adic topology on the target. Note that Xp(U%) is equipped with a natural action of

P]T(Up)gford'

We fix a point = of (Spf ﬁ‘(U")g_ord)“g and let z; for i € {1,---,k} the associated closed
points of Spec Ry [1/p] as in § 7.1.2. For i € {1,--- ,k} we let T(p,,)? be the open bounded
GL,,(Q,)-invariant Oj,y-lattice of T(p,,) given by 7(p,,)? = ™ ®@r,, Ok where the
morphism R; — Oy, is given by x;. We can deduce then (note that the mz-adic topology
on T(U ©)L =" /p, coincides with the p-adic topology):

—

TS(U?) @fyv)-ord T(U®)E=o /p,, = ®i:1,-~,k (T(psy;)” @ % 0 det ), (7.44)
from which we easily get:
Xp(U?)[pa]
= Homo,, e (), (Flpn)’ @ 2% 0 det), 0rdp(S(U7, WO))fp.] ) (7.45)

(where ® means the p-adic completion of the tensor product). We refer to [42, Def. C.1] for

the definition of a cofinitely generated T(U @)]; ~r_module.

Lemma 7.31. The 'fﬁ‘(U@)gford—module Xp(U?®) is cofinitely generated.
Proof. We verify the conditions in [42, Def. C.1]. The first three conditions are easy to check
from the definition (7.43). We have an injection of kg-vector spaces:
Xp(U®)/wp — HOmT(Up)g—ord[LP(Qp)] < ® (7; ® &% o det), Ordp(g(U@7W@)ﬁ)/wE>
i=1, k

from which we deduce an injection of kg-vector spaces:

(Xp(U®)/wE)[myg]
<—>HomkE[LP(Qp)]( 0% (ﬁi@)g‘”odet),(Ordp(:S'\(U",WK’)ﬁ)/wE)[mﬂ). (7.46)

=1,k
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By Lemma 6.8(1) and its proof (see the isomorphism (6.16)), we have an isomorphism:
(Ordp(S(U?, W?)5) /w) [m5] = Ordp(S(U®, W* /wp)5) [my] (7.47)

which is a smooth admissible representation of Lp(Q,) over kg. Together with the fact
that ®;—1... x(T; ® €% odet) can be generated over Lp(Q,) by a finite dimensional kg-vector
subspace, we easily deduce that the right hand side of (7.46) is finite dimensional over kg.
The lemma follows. O

Theorem 7.32. (1) The ﬁ(U@)g_ord—module Xp(U®) is faithful.

(2) For any point x € (Spfﬁ(U@)g_ord)rig, we have Xp(U®)[p.] # 0, equivalently by (7.45)
there exists a nonzero morphism of admissible Banach representations of Lp(Q,) over k(x):

—_

®i:17._.,k (%(Pz) Q) €7 © det) — Ordp (§(U@, W@)ﬁ) [m,]. (7.48)

Proof. By [42, Prop. C.36], (1) and (2) are equivalent, hence it is enough to prove (1). By
Corollary 7.24, if x is a benign point we have Xp(U¥)[p,] # 0. By Proposition 7.5(2) the
benign points are Zariski-dense in Spec T(U p)g_ord[l /p]. The theorem then follows by the
same argument as in the proof of [42, Prop. C.36] (see also [6, Prop. 4.7]). O

Corollary 7.33. Let x € (Spf "]T‘(U")g_ord)rig, there exists a nonzero morphism of admissible
Banach representations of GL,(Q,) over k(z):

GLa(2) <y - © .3
(S @, (Rl @emodet)) — SO Wplm,].  (7.49)
Proof. This follows from (7.48) and [40, Thm. 4.4.6]. O

Corollary 7.34. Let x € (Spfﬁ‘(U@)g")rd)rig and assume:

o foranyi € {1, -, k}, the Galg,-representation p,, is irreducible de Rham with distinct
HOdge- Tate weights {_:usi+17 _/Jlsﬂrm}

& —fy > —fg > > .
Then the point x is classical.
Proof. Let \; := —pu; + (j — 1), thus A := (Ay,---,\,) is a dominant weight. It follows
from [24, Thm. VI.5.7 & VI.6.18] that there exists a nonzero smooth representation m°
of GL,,(Q,) over k(z) such that 7(p;,)™8 = 72 Q) Li(};) where N, = (Ag15 Asins)-
Moreover, since p,, is irreducible, we know that 7(p,,) is also irreducible as a continuous
representation of GL,,(Q,). We claim that the morphism (7.48) restricts to a non-zero

i

Lp(Q,)-equivariant morphism:

( (09 W?O) ®rk(z) Lp(A)

i=1,-k

~ ® (%\(pmi)lalg ® &% o det) — Ordp (:S’\(Up’ W@)ﬁ[mx]) (750)

i=1, .k
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Indeed, let 0 v =11 @+ - QU € Rjz1,... (%(pxi)lalg(}@ssi odet) C @izl,...vk (%(pxl) Qp(z) €% 0
det ), if (7.50) is zero, we see the morphism (7.48) sends v to zero. However, since 7(p,,) is
irreducible for all 4, it is not difficult to see that @;; ... (7 (p.,)@e*odet) can be topologically
generated by v under the Lp(Q,)-action. We deduce hence (7.48) is zero, a contradiction.
By Proposition 4.21, the morphism (7.50) induces a nonzero GL,,(Q,)-equivariant morphism:

GLn(Qp o)™ g
(Indﬁ(@g:)@ ) ® ; ) Qk(z) L(A) —> S(U, W¥);[m,]
i=1, k

which implies S(U®, W#)5[m, "8 £ 0, whence the result. O

Remark 7.35. For = € (Spf'ﬁ‘(Up)g_ord)rig, by passing to a smaller parabolic subgroup, it
should be possible to prove that Corollary 7.34 still holds when p,, is reducible for some 7.

We set (where Homp,, = Og-linear homomorphisms):
MP(UP) = HomoE(Xp(Up),OE> (751)

which, by [42, Prop. C.5], is a finitely generated ﬁ‘(U @)g ~ord_module which is O g-torsion free.

Moreover by [42, Lem. C.14], for any = € (Spfﬁ‘(U@)gﬂrd)rig, the Oy ()-modules Mp(U?)/p,
and Xp(U®)[p,| are finitely generated free of the same rank, that we denote by mp(x).

Lemma 7.36. Let x be a benign point, then mp(x) = m(x) (see (7.13) for m(x)).

Proof. Consider the following composition:

—

Homy,,q,) <®i:1 k(ﬁ(pxz) ® % odet), Ordp(g(Up, W*®)5) [mx])

—

— Homy,(q,) <®i:1 k(ﬂ?n ® £% o det), Ordp(S(U?, W*®)5) [mx})

— Hompy, (@) (7o) @ e o det), Ordp(S(U7, W)5)[m, ] )

=1,k

where 7" is as in the proof of Corollary 7.24. The first map is injective since @izly.., ET s
dense in ®;—; ... x7(ps,;) (see the proof of Corollary 7.24). By Corollary 7.24, the composition
is surjective. By the proof of Proposition 7.23, the second map is injective. We deduce then
that all these maps are bijective. From Proposition 4.21, we deduce an isomorphism:

Homp,(q,) ( ® (%(pwi)lalg ®e%o det), Ordp (S\(UP’ W@)ﬁ[mx]lalg)>

i=1,- .k

%HomLP(Qp)< 0% (ﬁ(pxi)lalge@eﬂodet),ordp(§(U@,W@)ﬁ)[mx]>.

i=1,k

The lemma follows from these isomorphisms together with (7.45), (7.24), Proposition 7.9. [
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Let SP Ord(pp) be the set of (isomorphism classes of) irreducible Lp(Z,)-representations
o= ®"“:10'1 over kg such that:

HOHILP(Zp) (O’, OI‘dP (S(UP,WW/WE)ﬁ[mﬁ])) 7é 0.

For i € {1,---,k} let Su(p;) be the set of (isomorphism classes of) irreducible GL,,(Z,)-
representations ¢; such that there exist irreducible GL,,(Z,)-representations o; over kg for
j # i such that ®%_, (0; ®&% odet) € SP 4(Dg)- Fmally let S(p;) be the set of Serre weights
attached to p;, that is the set of irredu(:lble summands in soc(;| gL, (z,)), and let S~ be
the set of (isomorphism classes of) irreducible Lp(Z,)-representations o & ®@F_| (0;®@z% odet)
with o; € S(p;).

Proposition 7.37. We have SP *4(pg) € SP="(p;), hence Su(p;) C S(p;) for any i €
1, k).

Proof. The proposition follows by similar arguments as in the proof of [42, Thm. 5.7.7(1)].
For 0 = ®F | (0; ® 8% o det) € SP 4(pg), we lift o to an algebraic representation © =
®i=1,.. kO; of Lp(Z,) over O of (dommant) weight A such that A;, > As, 11 and 0 < A4, —
Asp1 < p—1fori=1,--- k. Since Ordp(g(Up,W@)p) is isomorphic to a direct factor of
C(Lp(Zy,), Op)®" (ct. Lemma 6.8(2)), we have an isomorphism (e.g. by [68, Lem. 2.14]):

Homy .z, (O, Ordp(S(Up W¥)5)) /wr — Homyp,z,) (o, Ordp(S(U?, W /wg);)).
We deduce, using that A is dominant:
0 # Homy,(z,) (8, Ordp(S(U?, W¥)5) = Homy,(z,) (O, Ordp(S(U2, We),) k) =218) (7,52

By (6.3) and the same argument as in the proof of Proposition 7.5(2), it follows that there
exists a nonempty finite set C' of benign points such that the Og-module (7.52) is isomorphic
to:

P Homy . (z,) (O, Ordp(S(U?, W¥);)[p.])

zcC
with each factor in the direct sum being nonzero. Let x € C' and consider (recall © is an
Op-lattice in Lp(\) stable by Lp(Z,)):

= (Ordp (S(U®, W#)5m,]) @0, Lp(N)Y)™
> (Ordp (S(U2, Wo),[p.]"5) @0, ©¥)" ) (7.53)
By assumption we have (7°)L7(Z») £ 0, so that (picking up 0 # v € (7°)F*%)) we can
define smooth irreducible GL,,(Q,)-representations 7° as in the proofs of Proposition 7.6
and Corollary 7.10(1). In particular we have ®;—; .. x7° < 7° and (79°)%kn (%) £ 0, and
from (7.24) we also have 7° @ L;();) = 7(p,,)™® ® % o det where \; = (A, 11, As,4n,). But

the latter isomorphism together with (7§ )GL" (Zp) £ ( easily imply, using that ©; is up to
scaling the only Og-lattice in L;();) Wthh is stable by GL,,,(Z,):

0;=0; ®F “odet € S(p;).
The proposition follows. O
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Theorem 7.38. If there exists i such that n; = 2 and p; is peu ramifié (up to twist), assume
that any subrepresentation m = ®;=1,... xm; of Ordp(S(U?, W¥ /wg)5) is such that ; is infinite
dimensional. Then the evaluation map:

ev : Xp(U?)@g oy r-eamip(UF) — Ordp(S(UY, WP),;) (7.54)

is an isomorphism where & denotes the wg-adic completion of the usual tensor product.

Proof. (a) By [42, Lem. C.46], the map ev is injective with saturated image (see [42, Def. C.6])
if and only if the induced morphism:

(Xp(U?) /o) [my)] @kE( 0% (mmﬂodet)) — Ordp(S(U?, W? /o)) [my]  (7.55)

i=1, .k

is injective. By (7.46), it is enough to prove that the evaluation map:

HomkE[LP(Qp)] ( ® (%i Rk g% o det)? (OrdP(é\(Up’ Wp)ﬁ)/wE) [mﬁ]> Okp

i=1,,k

( R @ @, ESiOdet)> — Ordp(S(U?, W* Jwg),)[my]  (7.56)

=1,k

is injective. By [42, Lem. 6.4.15], it is enough to show that any nonzero homomorphism in:

Hom, zp0p ( Q) (7 @1 % 0 det ), (Ordn(S(UP, W)5) /) mg]

i=1,k

is injective. But this follows from the same argument as in the proof of [42, Thm. 6.4.16]
(using Proposition 7.37 and the assumption to deal with those 7; which are reducible).

(b) We show that the map ev is surjective. Since its image is saturated, it is enough to
prove the surjection after inverting p. By [42, Lem. 3.1.16] and the proof of [42, Prop. 3.1.3],
Im(ev®FE) is a closed Lp(Q,)-subrepresentation of Ordp(S(U © W#®)5) which is preserved
by 'TF(U P)g —ord " By Lemma 6.8, Corollary 7.3 and the same argument as in the proof of
Proposition 7.5(2), it is enough to prove that for any benign point x, we have:

Ordp (S(U?, W¥),[m,]) ="  Im(ev 0 E). (7.57)

Using the adjunction formula of Proposition 4.21, we can deduce (see the proof of Proposition
7.5(2)):
Ordp (S(U?, W¥),[m,]) 2" “ ™ C Ordp (S(U, W¥),[m,] ). (7.58)

Then (7.57) easily follows from Proposition 7.9, (7.24), Corollary 7.24 and (7.45). O

Remark 7.39. The assumption in Theorem 7.38 when p, is peu ramifié is in the style of
“Thara’s lemma” (see e.g. the proof of [42, Thm. 5.7.7(3)]) and one can conjecture that it is
always satisfied.
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Corollary 7.40. Keep the assumption of Theorem 7.38. There exists s > 1 such that we
have an isomorphism of smooth admissible Lp(Q,)-representations over kp:

(® meweo det))@s = Ordp (S(U®, WP ) [m)).

=1,k
Consequently, Sg_ord(ﬁﬁ) = SPord(ps).

Proof. By Theorem 7.38, (7.47) and (7.44), (7.55) is actually an isomorphism. The corollary
follows since (Xp(U¥®)/wg)[my] is a finite dimensional kg-vector space. O

Corollary 7.41. Keep the assumption of Theorem 7.38. Let x € (Spfﬁ“(Up)g_ord)rig, then:

Ordp (S(U?, W9);) [ma] = (Bicr.. »(F(pa,) @iy € © det)) 7"

Proof. The corollary follows from Theorem 7.38, [42, Lem. 3.1.17] (applied with
A=T(U®)E and M = T(U)5~""/p,), (7.44) and the definition of mp(z). O

7.2. L-invariants

We prove Conjecture 6.2 when pg has consecutive Hodge-Tate weights assuming weak gener-
icity conditions.

7.2.1. Preliminaries
We start with easy preliminaries.

Throughout § 7.2 we keep the notation and assumptions of § 6.3 and of all the subsections
of § 7.1, in particular we assume Hypothesis 6.9 and that the open compact subgroup U¥
is such that UP is sufficiently small, U, is maximal for v|p, v # g, and U, is maximal
hyperspecial at all inert places v if n > 3 (Hypothesis 7.25). We assume moreover that p is
such that pg is a successive extension of characters x; for ¢ = 1,---,n with X, X, +11 =2 (so
in particular all the n; are 1 and k = n) and that p; is strictly B-ordinary (Definition 5.8).
This implies X; = ", fori = 1,--- ,n and p > n. We fix p: Galp — GL,(E) a continuous
representation such that p is unramified outside S(U?) and such that:

o S(UP,Wo)5lm, ] £ 0

® pg is semi-stable noncrystalline and is isomorphic to a successive extension of characters
Xi : Galg, — E™ such that XiX;-i}l = €.

The first assumption implies that p is absolutely irreducible (since p is), is automorphic (by
(6.3)) and satisfies p¥ o ¢ = p ® €™, and then the second implies that the monodromy
operator on Dy (pg) satisfies N*~1 =£ 0 (use [17] together with the fact that the automorphic
representation associated to p has a generic local component at ¢ by base change to GL,
and the irreducibility of p, see the proof of Proposition 7.6(1)). In particular (x1,---, Xxn)
is the unique parameter of the (¢, I')-module D := Dy, (pg) and it is moreover special (see
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Definition 2.1 and use [2, Thm. A]) and such that y; = e'~"x; for i = 1,--- ,n. We also
easily deduce that pg is strictly P-ordinary for any parabolic subgroup P of GL,, containing
B.

Using [17], we see that there exists m(p) such that:
S(U, W)5m, 8 2 (St2° @; o det)®™) (7.59)

where St;° denotes the standard smooth Steinberg representation of GL, (Q,) over E. As in
(7.13), we have by (6.3) and our assumptions on U, for v|p, v # p:

Zm ) dimg (7 Zm ) dimg (7 (moP)U” (7.60)

where 7 runs through the automorphic representations of G(Ap, ) which contribute to the
locally algebraic representation S(U?, W#);[m,]'"?8. We easily check that:

Ordp(St° ®@x1 o det) = Jp(St2° @y, o det)(d5") =2 x1 o det . (7.61)
Lemma 7.42. We have an isomorphism of T(Q,)-representations:
socr(g,) Jp(S(U, W)am,]) = ((x1 o det) ® 65)°").

Proof. From the global triangulation theory ([51], [58]) applied to the eigenvariety & (see
§ 7.1.3), exactly the same proof as the one of [4, Prop. 6.3.4] gives:

Homy(qg,) (0, J5 (S(Up, W¥)5m,])) # 0= 665" = x1 o det. (7.62)

There exists thus an integer m’ > 1 such that the isomorphism in the statement holds with
m(p) replaced by m’. By (7.59) and (7.61), we have m’ > m(p). Using [7, Thm. 4.3] together
with (7.62), we see that an “extra” copy of (x; odet) ® dp in the socle would yield an extra
copy of St2° @y, o det in S(U¥, Wo)5[m, '8 hence m' = m(p). O

We denote by x the point of (Spf’f(U")ﬁ)rig associated to p (thus m, = m,). By (7.61) and
Lemma 4.12, we obtain that x € (Spf"]I“(U“))g_ord)rig for all P DO B.

For 1 < i < i’ < n, we denote by p! the (unique) subquotient of pz which is isomorphic to
a successive extension of the characters y; for i < j <4i'. We have Drig(pf) = D! = the
(unique) subquotient of D isomorphic to a successive extension of the Ry (y;) for i < j <7
(see the beginning of § 2 for this notation).

7.2.2. Simple L-invariants
For Lp with only one factor being GLg, we show that one can recover the corresponding sim-
ple L-invariant in Ordp(S(U?, W¥#)5)[m,] (Corollary 7.47). We work in arbitrary dimension.
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We keep the notation and assumptions of § 7.2.1. By Theorem 7.38, we have an isomorphism
(note that the assumption in loc. cit. is here automatic since n; = 1 for all 4):

Xp(U?) &g oy p-eaniy(UF) = Ordp(S(U, We)5). (7.63)

Recall we defined the integer mpg(x) just before Lemma 7.36.
Lemma 7.43. We have mg(x) = m(p).

Proof. By Corollary 7.41 combined with (4.18), (7.59) and (7.61), we have mp(z) > m(p).
By [40, Thm. 4.4.6], we have:

Homar,,(a,) (IS 1 @ x1 o det, SU°, W9)5[m,))
5 Homyg,) (xi1 o det, Ord(S(U?, W¥),[m,])). (7.64)

We have an obvious injection:

Homar,, (g, ((Indjg " D @ x1 0 det, SUY, W¥)5[m,])

< Homgy,, (0,) ((Ind%(L& ;Q“ 1) @ ;1 o det, S(U?, W¥),[m,]™). (7.65)

From the description of irreducible constituents of (IndG?(g ()@” 1)** for B C P (see [63, § 6]),
Lemma 7.42 and [8, Cor. 3.4], we obtain if P 2 B:

Homg, (g,) ((Ind%(;ﬁj?") 1)™ ® 1 o det, S(U?, W¥)5[m,]*™") =0,
from which we deduce:
Homar,, 0,) ((IndB o 1) @ yy o det, S(U?, W¥)5[m, ™)
<~ Homar, (g, (St ®x; o det, S(U®, W¥),[m,|*)

— Homyp(g,) (St @y o det, :S'\(Up, W#)5[m, ")

an GL” QP an GL” QP an 3
where Sti" := (Indj ] 1) /ZP;)B(Indﬁ(QIE) ) 1)2. Together with (7.59), (7.65), (7.64)

and Corollary 7.41, we deduce then mp(z) < m(p). The lemma follows. O

Lemma 7.44. The T(U@)g_ord[l/p]—module Mg (U®)[1/p] is locally free at the point x.

Proof. (a) Let X := Spec A := Spec(T (U@)B °rd[1 /p]/p) be any irreducible component con-
taining the closed point . We show that the A-module Mg(U®)[1/p]/p (see (7.51)) is locally
free at z, from which the lemma follows by [48, Ex. I1.5.8(c)] (recall that T(U ")B °rd hence

ﬁ‘(U@)g_ord[l/p] and X, are reduced by Lemma 6.7). We define:

Z := {Dbenign points in X} U {z}.
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By Proposition 7.5(2), we know that Z is Zariski-dense in X. By Lemma 7.36 (resp. by
Lemma 7.43), we know mpg(z') = m(z’) for 2’ € Z \ {z} (resp. mp(x) = m(p)).

(b) For any finite place [ { p of F', we deduce from (6.17) a continuous representation p4 :
Galp, — GL,(A). By [44, Prop. 4.1.6], we can associate to pa; a Weil-Deligne representation
over A. Then the statement of [1, Prop. 7.8.19] (with “open affinoid” replaced by “open
affine”) still holds where the rigid space X of loc. cit. is replaced by the scheme X in (a)
and the Weil-Deligne representation in [1, Prop. 7.8.14] is replaced by the one above (the
argument of the proof of [1, Prop. 7.8.19] is then analogous, and even easier since we are
in the setting of affine schemes). An examination of their proofs then shows that [19, Lem.
4.5] (for any n) and [19, Lem. 4.6] (for n < 3) both hold verbatim with (p, O(X)) of loc. cit.
replaced by (palwy,A). From (7.13), (7.60) together with m(m) = 1 (which follows from
[71] and [55]), we then deduce m(z") = m(p) for all 2/ € Z, and hence mp(z') = m(p) by
(a) for all 2’ € Z.

(c) Denote by M the coherent sheaf on X attached to the A-module Mg(U¥®)[1/p]/p. For
any prime ideal p’ of A, set:

mp(p') = dimprac(azyy (Mp(U®)[1/p]/p") @/ Frac(A/p))
which is upper semi-continuous on Spec A by [48, Ex. I1.5.8(a)|. In particular, the sets:
U = {p" € Spec A, mp(p’) <m} ={p’ € Spec A, mp(p’) <m+ 1}

are Zariski-open for m € Zx. It follows from (b) that we have Z C U,,(,) and ZNUy, (-1 = 0.
Since Z is Zariski-dense in X, this implies U,,(,—1 = 0, and thus the function p’ |—> m(p’)
is constant of value m(p) on the open set Um(p) which contains the point z. By [48, Ex.
I1.5.8(c)], we deduce that M is locally free on Uy, which finishes the proof. O

Denote by V, the tangent space of (Spf 'ﬁ'(U p)%3_0“i)rig at z. Recall that we have a natural
morphism (see (7.37)):

n

W = (@i)im e+ (SPET(U2)F )™ — T (Spf R )™

=1

where p;, = ;. Recall also that we uniformly (in ¢ = 1,--- ,n) identify the tangent space of
(Spf R5,)"8 at w;(x) with Hom(Qy, E) via:

(1.11)
Extgag, (Pais Po:) = Extea, (Yis xi) = Exti,r (Re(xi), Re(xi)) = Hom(Q), E).

Lemma 7.45. The morphism dw, : V, — @;=1... , Hom(
tangent spaces is injective. Moreover, the induced morphzsm

o B) induced by w on the

LV, — @ (Hom(Q}, E)/ Hom(Q}, E)) (7.66)
15 bijective.
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Proof. By Proposition 7.30, we have dimg V, > n. Since this is also the dimension of the
right hand side of (7.66), it is enough to prove that dw, is injective. Let 0 # v € V, such
that dw,(v) = 0 and denote by Z, := Ker(ﬁ‘(U@)gﬂrd — Ele]/€®) the ideal attached to v
(so 'TF(U@)ﬁBford/L, >~ Ogle]/€*). From [42, Prop. C.11] applied with M = WT(U@)gford/Iv we
obtain:

(Mp(U)/Z.)[1/p] = Homo, (Homgs-wa(T(U)F /T, X5(UY)), Op)[1/p]
= Homo, (X(U®)[Z.],0p)[1/p]. (7.67)

From (7.67) and Lemma 7.44 it easily follows that (Xg(U¥)[Z,])[1/p] is free of rank mp(z)
over ('ﬁ‘(Uf’)g_ord/Iv)[l/p] >~ Fle]/e*. For i = 1,--- ,n denote by X; the extension of x;
by x; associated to dw;,(v) € Hom(Qy, E). From (7.41) we get (m(U*)/Z,)[1/p] = X;
(since n; = 1). Let x := @ ,(x; ® €%) and X := @} ,(X; ® %) where the tensor product
®1_, on the latter is over Ele]/e?. By (7.63) together with [42, Lem. 3.1.17] applied with
M = ’ﬁ'(U“)ﬁB_OTd/L}, we obtain a commutative diagram:

XOme@ 2y Ordg(S(US, W),)[m,)

l l (7.68)

%@mB(I) SN OrdB(S\(UP, Wp)ﬁ)[zv}'

Since dw,(v) = 0, the character X is locally algebraic by (1.12). It then follows from
m? C Z,[1/p] and Proposition 6.13 that the bottom horizontal map in (7.68) factors through

~

Ordp(S(U*, W#)5)[m,], which contradicts (7.68). The lemma follows. O

Recall that for i = 1,- -+ ,n—1 the (¢, I')-module Di*! was defined at the end of § 7.2.1, and
that Lenv(DI : Re(x:)) is the line in EXt%¢,FL)<RE<Xi>7RE(Xi)) = Hom(Qy;, E) defined as
the orthogonal of ED!™ C Ext%%FL)(RE(XZ-H), REe(x:)) via the pairing as in (2.1), see § 2.

Proposition 7.46. For i = 1,--- ,n — 1, the morphism dw;, — dw;y1, factors through a
surjection:
dw; y — dwitq 4 Vy —» EFM(Df’Ll : Re(xi)) S Hom( ;, E).

Proof. Recall we have a morphism of rigid spaces (see (6.20)):
W (Spr]NT(Up)ﬁBford)rig N (Spf Rlii;ord)rig.

For any nonzero v in V;, let p (resp. X;) be the Galg,-representation over E[e]/e? attached
to dw’,(v) (resp. dw; ,(v)). We know that p (resp. X;) is a deformation of pg (resp. x;) over
Ele]/e*. Tt follows from Proposition 5.7(2) that v can be seen as an Ele]/e*-valued point
of Spec Rfﬁ_’f;f}, hence that p is isomorphic to a successive extension of the Y; as Galg,-
representation over Ee]/e*. Then from Theorem 2.7 we easily deduce (dw; , — dwit1.)(v) €
EFM(Derl :Re(x;)) foralli =1,--- ,n—1. If dw; ;, — dw;1, = 0 for some ¢ (equivalently
dw;  — dw;t1,, 1s not surjective), then the morphism in Lemma 7.45 cannot be surjective, a
contradiction. O
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For r € {1,--- ,n — 1}, we denote by P, the parabolic subgroup as in (5.1) with k =n — 1,
n; =1forie {l,--- ,n—1}\{r} and n; = 2 for i = r (note that this implies n > 3). We
have isomorphisms of smooth representations of Lp, (Q,) over E:

Ordp, (St;° @x1 o det) 2 Jp, (Sty° @x1 o det)(dp) = (( R 1w St‘2’°> ® (x1 0det) (7.69)
i=1,--,n—1

T

where the first isomorphism follows from the second (see § 4.3 for Ordp,.) and where the
second easily follows from Jpnr,, (Jp,(St;’)) = Jp(St;°) = dp and the usual adjunction for
IBnLp, (1)

Corollary 7.47. Forr =1,--- ,n — 1, the restriction morphism:

Homy,, (o) ((' 0% Xl)®(57\(,0:“)®5’"’1odet),Ordpr(g(Up,W@)ﬁ)[mp])

i=1,....n—1
i#£r
— Homg,, @ ((( @ 1) @85 ) @ (v o det), Ordp, (SWUF, WF)y)m,]) (7.70)
i=1,,n—1

i#£r

is an isomorphism. In particular, we have (see (7.59) for m(p)):

dimp Homg,, (g,) (( | Q) x1) @ F(pt) @ o det), Ordp (S(U, W¥),) [mp]) = m(p).

Proof. Note first that y; ® e% = y; fori =1,--- ;n. Let 0 # ¢ € Lpm(DI™ : Re(x,)), then
we have the following restriction maps:

Homi,, @) (@ %) © (Flp™) @& o det), Ordy (S(U7, W¥))m.] )

7,:1;;.;2;“71—1
— Homy,, (g, (( Q) x1) @Gt e o det),Ordp,,(g(U@,W@))[mm]"’m>
i:l;’;;an—l
—s Homy, @) () 1) @ (7(0,4)” © (1 o det), Ordp, (S, %) [m,])
z:l;_;;an—l
— Homyg, (q,) ((( ® 1) ® St§°> ® (x1 o det), Ordpr(g(UQW@))[mx]an)
=1, ,n—1
iF#r

where the first isomorphism follows from the fact that the universal completion of 7w(pr1)an =
7(0,1) ® x1 o det is T(pi™) ([26] and see § 3.2.2 for 7(0,¢) and 7(0,%)”). Using [8, Cor.
3.4], (7.28) and Lemma 7.42, we deduce that the second and third morphisms are injective
by the same type of argument as in the proof of Proposition 7.23. By the same arguments
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as in [4, § 6.4 Cas i = 1] using Lemma 6.8(2) and Lemma 7.42, one can prove that the
second morphism is moreover surjective (see also the end of the proof of Proposition 7.23
for analogous considerations). By Proposition 7.46 and an easier variation of step (c) in the
proof of Theorem 7.52 below, it follows that the third morphism is also surjective (see also
the proof of [32, Prop. 12] for similar arguments). The last assertion follows from (7.59),
(7.69) and Proposition 4.21. O

Remark 7.48. (1) Corollary 7.47 would actually be an easy consequence of Theorem 7.38,
but we prove it here without the assumption in Theorem 7.38. This is important as it is used
in the proof of the main result.

(2) Applying [40, Thm. 4.4.6] to (7.70), one can in fact (re)prove [31, Thm. 1.2] in the case
where L = Q, and pg is ordinary.

7.2.8. Higher L-invariants
The main result of this section is Proposition 7.51, which can be seen as a version of Propo-
sition 7.46 for higher L-invariants. We still work in arbitrary dimension.

We keep the notation and assumptions of §§ 7.2.1 & 7.2.2. We fix r € {1,--- ,n — 1} and
set P:= P, (sop>n > 3). Since ps is strictly B-ordinary, one can check that py is strictly
P-ordinary. With the notation of § 5.1 we have k =n — 1 and:

Xi ief{l,,r—1}
p; = 4 nonsplit extension of X, by X, =71
Xit1 ie{r+1,---,n—1}

with p, satisfying (A.2).
Lemma 7.49. The ﬁ'(U@)g_ord[l/p]-module Mp(U®)[1/p| is locally free at the point x.

Proof. By (7.45) and the last statement in Corollary 7.47 we have mp(z) = m(p). Together
with Lemma 7.36, the lemma then follows by the same argument as in the proof of Lemma
7.44. O

We denote by V, the tangent space of (Spfﬁ(U”)g_ord)rig at . Let dw, be the induced
morphism:

dog: Ve — B (Extayg, (e o)/ Exty(p,, p2,) (7.71)
=1 n—1

where w = (W;)i=1, n1 : (Spf’ﬁ(U“)g_ord)rig — [z n1(Spf R5,)"® (there will be no
confusion with the tangent space V, and the map w in § 7.2.2 and note that p,, = x; if i <,
Pz, = Xit1 if 1 > 1 and p,, = pit1). The following lemma is analogous to Lemma 7.45.

Lemma 7.50. The morphism dw, is bijective.

119



Proof. By Proposition 7.30, dimgV, > n + 1. By Lemma 3.5 and Lemma 3.11(3), we see
the right hand side of (7.71) has dimension (n —2) + (5 — 2) = n + 1. It is thus enough to
prove that dw, is injective. B

(a) Let v eV, Z,:= Ker(T(U@)gford — Ele]/€*) be the ideal attached to v (so
ﬁ‘(U@)gwrd/Iv% Ogle]/€?) and p; for i = 1,--- ,n — 1 the extension of p,, by p,, associated
to dw; .(v). Denote by 7; := (m;(U?) By —ord ’f(U@)g’ord/Iv)[l/p] (cf. (7.41)), which is
isomorphic to the unitary Banach representation of GL,,(Q,) over Ele]/€e? attached to p;
via (3.53), Proposition 3.30 and Remark 3.31(2). Note that for i # r we have m; = p; as
characters of Q) over Ele]/e*. We set (cf. (7.42)):

S (W%(U@) ®ﬁ(U@)§,0rd pﬁ?(Ug))gford/px) [1/p] ~ ( ® pxl ® €5i> ®E‘ (%\(p:zr) ® 5’”71 o det>
i=1,-,n—1
i#r
= (W%(U@) ®ﬁ(Usv)§_°rd ﬁ‘(Up)]ﬁD_ord/I”) [1/p] = (

i=1,,
i

where the tensor product of the p; in the last term is over E[e|/€?. Since 7; is free of rank
one over Ele]/e* for i # r, we see that T is isomorphic to an extension of 7 by m. Since
Mp(U®)[1/p] is locally free at x by Lemma 7.49, by (7.67) and the discussion that follows
we see that the evaluation map (7.54) induces a commutative diagram:

amr@ —y Ordp(S(U9, W),)[m,)

l l (7.72)
ame@) s Ordp(S(U?, W#)5)[T,]

where the vertical maps are the natural injections (coming from 7 C 7[¢] for the first) and
where the top horizontal map is also injective by Corollary 7.47 (and its proof).

(b) We prove that the injection 7 -+ 7 has image exactly e7. It is enough to prove that ¢
induces ™ — 7[e] (since then we have a short exact sequence 0 — 7™ — T — exr — 0 and we
use that 7 is an extension of 7 by 7). From [43, Lem. 3.1.17] we deduce isomorphisms:

((Xp(UP) 5oy r-oanB U L)) [1/p] = (Xp(U)TNL/P] @piajer 7 270

((XpU°)Breyr-oram BT ] ) [1/B] = (Xp(U)lpa])[1/p] ©ppajee 7 2 7

using that (Xp(U®)[Z,])[1/p] is free of rank mp(z) over E[e]/e* by the same argument as in
the proof of Lemma 7.45 (and using Lemma 7.49). The result follows using (-)[Z,][e] = (-)[pz]-
(c) Suppose now that we have dw,(v) = 0. Then it follows that 78 = %, = p; is locally
algebraic when i # r (use (1.12)) and that 728 is an extension of 7(p,, )& by 7(p,, )"

when ¢ = r (use (3.56)). In particular we have a commutative diagram:

pi ® €Si> R Ble]/e2 (%T ®eto det)
n—1

0 N 7.(_1alg L %lalg \ Wlalg s 0
l l l (7.73)
0 yoom —~ T —— 7 — 0




where the vertical maps are the natural inclusions. By (b), the multiplication by € on 7
factors as @ — m — ex < 7. It follows from (7.73) that the multiplication by e on 72
also factors as 7als — glale 5 exlale <y Flals iy particular we have ((7'%8) = ex'®!8 inside
78, From m? C Z,[1/p] and Proposition 6.13, any morphism 7*& — Ordp(S(U, W#),)[Z,]
factors through 728 — Ord p(§ (U®, I/V@);l %)[m,]. It then follows that the bottom horizontal
morphism in (7.72), which is E[e]/e?*linear, sends (ex'®8)mr@) = ,(glale)mr(@) to 0, which
contradicts the injections in (7.72). The lemma follows. O

We consider the E-linear injection ¢ : Hom(Q), ) — Extéah@ (ot pith), o pi @
(1+e) and set dw;f, = dw,, — 0 dw, i1, (if r <n—1) and dw;, := dw,, — € o dw, 1, (if
r > 1). The following result is somewhat analogous to Proposition 7.46 (see § 2 for Lgy(+)

and KFM())

Proposition 7.51. (1) Inside Ext(, r)(D; ™, D; ) = Extg Galg, (P i) we have Im(dw;t,) €
Len(DIP? DI (if r < n—1) and Im(dw,,) € Lem(D[H 2 DI (if r > 1).
(2) If r <m—1 (resp. if r > 1) the composition:

Im(dw;,) — Ext (Dr+1 DIty —s Ext (DTJr Re(Xr+1))

(resp. Im(dw,,) — Ext{, (D, Dj*') — Ext(, r(Re(x.), Dy ™))

induces a surjective map Tn(dw,) = Ce(DFY? 5 DI™) € Extly (D7 Ri(xn)) (resp.
t(der,) — lesi( D} DY) € Bxtl py (Re (), D)

Proof. (1) From (6.20) we have ' : (Spf Rgﬁ_ord)rig — (Spfﬁ‘(Up)g_ord)rig. Let 0 £ v eV,
and p (resp. p;) the Galg,-representation over E|e]/e? attached to dw,(v) (resp. dw;(v)). We
know that p (resp. p) is a deformation of pg (resp. p,;) over Ele]/€, and using Proposition
5.7(2) we see as in the proof of Proposition 7.46 that p is isomorphic to a successive extension
of p; as representations over Ele]/e*. (1) follows then from Theorem 2.7.

(2) We prove the statement for Im(dw;,) (and 7 < n — 1), the other case being simi-
lar. By Corollary 2.4(2) and Lemma 3.5 (and the assumptions on pg in § 7.2.1), we have
dimp lpy (D52 2 DIHY) = 2. Recall that we have by Lemma 3.5 and Lemma 3.11(3):

dimp Ext{, - (D; ™", D; ™)/ Ext) (DM, DY) =5 -2 =3.

By Lemma 7.50, it is then not difficult to deduce dimp Im(dw;",) > 3. By (1) and (2.4), we
have an exact sequence (see (2.2) for the morphism k):

0 — Im(dw;!,) N Ker(k) — Im(dw;!,) — Cpm (D[ - DI,

We have dimg Ker(x) = 2 by (2.4), Corollary 2.4(2) and dimg (D72 2 DIt = 2. If
dimp Im(dw,”,) > 4, the result is thus clear. Assume dimgIm(dw;,) = 3, it is enough to
prove dimg Im(dw,”,) N Ker(x) < 1. From Lemma 3.7 and Lemma 3.11(1)&(2), we deduce
dimg Ker(x) N Exty (Drt, Ditt) = 1. Tt easily follows from Lemma 7.50 that the morphism
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Ewﬁf L= c_lwr +—& oEwHLx is surjective (note that it is well-defined since £ sends Hom, (
to Ext, (o, pit1)). This implies that the composition:

XE)

D

m(de,) > Bxtd, o (Dr, D) - Bxtl, o (D, D)/ Bxth(DpH, D) (7.74)

is also surjective, hence bijective as source and target have dimension 3. If dimg Im(dw:f )N
Ker(x) = 2, we have Ker(x) C Im(dw;,) since dimg Ker(x) = 2, and thus Im(dw;,) N
Ext} (D, Dit) # 0 as Ker(k) N Exty (DI, D) # 0, which contradicts the fact (7.74)
is bijective. This concludes the proof. O]

7.2.4. Local-global compatibility for GL3(Q,)
In dimension 3, we finally use most of the previous material to prove our main local-global
compatibility result (Corollary 7.54).

We keep all the notation of §§ 7.2.1, 7.2.2, 7.2.3 and now assume n = 3 (and thus p > 3).
For r =1,2, we let £, € E such that:

Vg, =log, —L,val, € Lpm(DI*' : Re(xr)) € Hom(Q), E).

P

We set A := (wt(x1), wt(x1), wt(x1)) € Z* and let @ € E* such that x; = unr(a)zvt0a),
We define v¥ (A) for 7 = 1,2 as in § 3.3.1, II'(\, ¢,) as in (3.77) and set v (a, ) =
v (A) @ unr(a) o det I a, A, tpg,) == IIH(\, tpz,) ® unr(a) o det and Eaut(D . D?) C
ExtGLS(Qp)( (o, ), 11 Ya, \,7)) as in (3.101) (tensoring by unr(a) o det). The assump-
tions on pg 1mp1y in partlcular that D is sufficiently generic in the sense of (the end of)
§ 6.1. We set IIN(D)™ = &I (a, \, bz, ), v 2 (@, \)®2, Lot (D : DY)) as in Notation 3.4 (see
(3.103) when o = 1). Likewise we define H2(Oé,/\,¢£gv) = II2(\, ¢p,) ® unr(a) o det (see
before § 3.3.4), L..(D : D3) C ExtéLB(Qp)(v%(a,)\),H2(a,/\,1/1)) (see (3.108)) and we set
(see (3.110) when av = 1):

(D)~ = & (I, \, U, ), v (0, NP2, Lot (D 2 D).
Theorem 7.52. Forr € {1,2}, the following restriction morphism is bijective:
HomGLg(Qp) (ﬁT(D)i, S'\(U@, Wp)ﬁ[mp]) —N—>HOIHGL3(QP) (Stgo ®EX1 o det, §(U@, Wp)ﬁ[mp]) . (775)

Proof. We only prove the case r = 1, the case r = 2 being symmetric.

(a) It follows from (7.62) that (7.75) is injective (by the usual argument: if (7.75) is not in-
jective, there exists an irreducible constituent V of IT'(D)~ such that V < §(UW, W)5[m,],
hence Jp(V) < Jp(S(U*, W#)5[m,]), which contradicts (7.62) using [8, Cor. 3.4]).
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(b) We have natural morphisms:

Homap,(g,) (St @(x; o det), S(U?, W¥),[m,))
5 Homy,, (g,) (St ®1) ® (x1 o det), Ordp, (S(UY, W¥)5[m,]))
(p}) ® x1, Ordp, (S(U?, W¥),[m,)))
)~
)
)~

((
L) I‘IOIHLP1 (Qp)

((IndGL3 Q
) ((

— Homgr, i & (o) @ x1), S (U, WP)5[m, )
—— Homgy, IndgLfQ@; F(PD)™ @ x1)™, S(U?, W)5[m, o)

AN HomGL3(@p)( Yo, A\ vz,), S(U2, W9)5m o) (7.76)

(@)
(@)

where the first map is given by Lemma 4.18 together with (7.69) and is bijective by Propo-
sition 4.21 together with (7.59), the second isomorphism follows from Corollary 7.47, the
third from [40, Thm. 4.4.6], the fourth map is injective since the locally analytic vec-
tors are dense in the corresponding Banach representation, and where the last bijection
follows from the fact that any irreducible constituent of the kernel W of the surjection

(In dEL3 %)A(pl)an ® x1)™ — II* (e, A, ¢z, ) does not occur in SOCGL4(Q,) Se, W) 5[m, ]

(see the discussion below (3.81) and argue as in (a)). One can check by using the functor
Jp(+) that the composition in (7.76) gives a section of the restriction morphism:

Homar,(g,) (I (a, A, vz, ), S(U?, W)5m,])

— Homgr,(g,) (St5° @(x1 o det), S(U?, W¥)5[m,]), (7.77)
which is therefore surjective. Since (7.77) is injective by (again) the same argument as in
(a), it follows that (7.77) is bijective. Consequently, the fourth injection in (7.76) is also
bijective.

(c)~By (a) and (b), it is enough to prove that, for any line Ew C L, (D : D?), setting IT :=
EMHa, X\, Ug,), vip‘;(a, A), Ew) (see Notation 3.4, in fact this is just here the representation
associated to the extension w), the following restriction morphism is surjective:

Homgr, (g, (IL S(UY, W¥)5[m,]) — Homgr,(g,) (St @(x1 o det), S(UP, W¥)5m,]). (7.78)

As in (7.76), we have:

I’IOHIG,L3 (Qp) (St3 ( X1 © det) S(U@ Wp)ﬁ[ ])
5 Homy,, (g,) (F(p}) ® x1, Ordp, (S(U?, W¥)5m,])) 2 Xp(U)[p.] ®0, E (7.79)

where we use the notation in § 7.2.3. Let 0 # w € Loy (D : D?) = lpy(D : D?) (cf. (3.102)),
by Proposition 7.51(2) there exists v € V, such that dw/,(v) = w € Exté%r)(Df,RE(XQ)).

Denote by Z, the ideal of ']T(Up)?_ord attached to v (see e.g. the beginning of the proof of
Lemma 7.50). Recall we have (see e.g. (b) in the proof of Lemma 7.50):

(Xp(U)[Z,])[1/p] is free over Ele]/e>. (7.80)
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Let fo be a nonzero element in the right hand side of (7.78), and let f : T(p?) ® x1 —
Ordp, (§(Up, W#®)5m,]) and e € (Xp(U?)[p,])[1/p] be the corresponding elements via (7.79).
By (7.80) and Xp(U?)[p.] = Xp(U?)[Z,][€], there exists ¢ € (Xp(U¥?)[Z,])[1/p] such that
€€ = e. As in the proof of Lemma 7.50 (see (7.72)), letting 7 (resp. x1) be the deformation
of m(p?) (resp. x1) over Ele]/e? attached to dwy . (v) (resp. dws.(v)), we have a commutative
diagram:

™= R(p) g xi —— Ordp(S(U,W¥);)[m,)

] | (7.81)

7 1= Mpge X1 —— Ordp(S(U2, W#),)[L,]

where f is the morphism corresponding to € and where we write X instead of ® to emphasize
that it is an exterior tensor product of representations (GLy(Q,) acting on the left and Q,
on the right). Using Proposition 7.51(1), let wy := dwi,(v) € Lem(D : D}) and 7, the
associated deformation of 7(p7) over Ele]/€? via (3.53). From the definition of dw, we have:

T2 ((x7'X1) © detar, @pg/eTu) Begre X1 = (X7 'X1) o detr, ®pg/e (Tu, Mo x1)- (7.82)

By [40, Thm. 4.4.6], taking (Indng’QQ)” )¢* and then locally analytic vectors, the maps ¢ and

f in (7.81) induce morphisms of locally analytic representations of GL3(Q,) over E:

GL3(Qp) __an)an GL3(Qp) ~an)an an
(In ndg (o T )" — (In ndg o) 7 )" — S(U, W)L (7.83)
Let 7y := 7w, Mg X1, from (7.82) we deduce:
(Indft®) 7)™ = (47 '%) o detar, @iy (Tndp o 7)™ (7.84)

As in (b), (7.83) factors as (see (a) for W):

' (e, A, oz, ) = (Ind3 3“3; MW — S(UT, W9),[T,] (7.85)

Since wy € Lpy(D : D?) — w € lpy(D : D?), it follows from (3.90) and Remark 3.47 that
I = &I\, Yy, ), v%og()\), Fw)®unr(a)odet is a subrepresentation of (IndgL(s(éQ)”) ) W
By Lemma 3.2 and (7.84), we deduce that II is also a subrepresentation of
(Ind%L(‘Q’(éQf ) 7)2 /W . Hence (7.85) induces GL3(Q,)-equivariant morphisms:

I (a0, A, g, ) — T =5 (U, W)L, (7.86)

As the composition in (7.86) restricts to fy via (7.77), we see it has image in S(U¥, W)5[m,)]
(using that the analogue of (7.77) with §(Up, W¥®)5[Z,] instead of S(Ue, W#®)5[m,] is still
an injection). If m,Im(f) # 0, we deduce that m,Im(f) = vF (A) ® unr(a) o det is a
subrepresentation of S(U¥, W#),[Z,]*", a contradiction. Thus we have m,Im(f) = 0, i.e.
f also has image in §(U@,W@)ﬁ[mp]an. The map f — f gives a section to (7.78), which
concludes the proof. O
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We refer to § 3.3.3, § 3.3.4 for the definition of the subrepresentations II"(A, ¢z, )o, II"(A, ¢z, ),
" (N, vz, )T of TI" (N, 4g, ). Weset TT" (v, A\, g, )o:= TI" (A, ¢, Jo@unr(«)odet, TT" (o, A, ¢)z,) ==
" (A, ¢z, ) @ unr(a) o det, and II" (o, A\, ¢z, )T :=TI"(\, ¢, )T ® unr(a) o det.

Corollary 7.53. Let r € {1,2}.
(1) Let ¢ € Hom(Qy, E), an injection f : St3° ®(x1 o det) — S(U®, W®)m,] extends to

fi I (o, A ) = S(U9, We)[m,] if and only if ¥ € Etpy, .
(2) Let s € {1,2}, s # r, and let v € ExtéLg(Qp)(v%o (a, A), II" (v, \, ¥z, )T). An ingection

1" (o, A, g, )T — S(U#, W®)5[m,]| extends to:

& (I (o, A, e, ) *, 0% (o, N), Bo) —s S(U, W)5[m,]

if and only if v € Loy (D : D).

Proof. For i € {1,2}, denote by 7*(a, A) := St3° ®(x1 o det) — vX (a, A) the unique nonsplit
locally algebraic extension of v («, A) by St3° ®@(x1 o det).

(1) By Theorem 7.52, f extends to fo : IT"(a, A\, ¢z, )" < §(UK’,WP)§[mp], the “if” part
follows. If ¢ ¢ Etr,, we have Ev + B¢y, = Hom(Q,', ') and an injection induced by fo,
fi (where Sy is defined as in § 3.3.3 with A = 0):

I (0, A, )o ®s, gmixrodeny T (0 A ) — S(UY, W)g[m, ).
By Proposition 3.35, we deduce that the left hand side is isomorphic to:

é"(Ss,o, (U%i)@27 EXt%}L:a(Qp)(U%i’ 5'570)) ®p (x1 o det)

and hence contains 7" (a, A) C &(Ss0, V7 , Eval,) @ (x10det) as a subrepresentation. How-

ever 7" (cr, \) is not a subrepresentation of §(U@, W#)5[m,] by (7.59), a contradiction.

(2) follows by the same argument. Indeed, if v & L,(D : D), then Ev + La.(D :
Dty = ExtéLg(Qp)(v%‘;(a, A), " (a, A\, 1z, )T). One deduces from Lemma 3.42 that 7%(a, \)
is a subrepresentation of:

&M (e, A, e, )T, v3 (o, A), Bv) @1 (o, )+ (D)™

(where II" (D)~ C II" (D)~ is defined in (3.104) and (3.109) modulo the twist by unr(a)odet),
a contradiction. ]

We can now state our main result. We fix plp, plp, U¥ =[], U, and W¥ asin § 6.1.

Corollary 7.54. Assume n = 3, I} = Fz = Q,, p > 5 and U, mazimal if v|p, v # ¢.
Let p: Galp — GL3(E) be a continuous representation which is unramified at the places of
Y(UP) and such that:

e 1 is absolutely irreducible
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o S(U?, W#)[m,]5 £ 0
e o5 is semi-stable with consecutive Hodge-Tate weights and N? # 0 on Dg(pg)
e any dimension 2 subquotient of ps = ﬁ!Gang~ 15 nonsplit.

Then we have the following results.
(1) The statement in Conjecture 6.2 is true, i.e. the restriction morphism is bijective:

Homar,(q,) ((pg), S(U?, W) [m,]) = Homar,(q,) (I(p)™, S(U, W¥)[m,]).

(2) The representation pg of Galg, is determined by the locally analytic representation
S(U?, W#)[m,|*™ of GL3(Q,) (hence also by the continuous representation S(U®, W#)[m,]).

Proof. (1) By the same argument as in [4, § 6.2 Etape 1], we can assume that U? is sufficiently
small. Define II(D)~ as at the end of § 3.3.4, then it follows from Theorem 7.52 and (a) in
its proof (and arguing e.g. as in [4, § 6.2 Etape 2]) that the statement holds with II(D)~
instead of II(pg) = II(D). By [4, § 6.4 Cas i > 3], we have:

Homap,o,) (II(D), S(U?, W) [m,]) = Homey,q,) (I(D)~, S(U?, W)[m,))

and (1) follows. (2) is a direct consequence of Corollary 7.53 (which a fortiori still holds
when U? is not sufficiently small). O

A. Appendix

The aim of this appendix is to give a complete proof of Proposition 3.32, for which we
couldn’t find precise references in the existing literature.

A.1. Notation and preliminaries

We recall some notation and results of Emerton and Colmez.

As in [40], we denote by Comp(QOpg) the category of complete noetherian local Og-algebras
with finite residue field. For G a topological group which is locally pro-p and A € Comp(Opg),
we denote by Modg'(A) the category of smooth representations of G over A in the sense
of [40, § 2.2], Mod®*(A) the full subcategory of smooth representations of finite length
and Modg“(A) the full subcategory of smooth representations locally of finite length (i.e.
the subrepresentation generated by v is of finite length for any vector v). We denote by
(1)V := Homp, (-, E/Og) = Pontryagin duality.

We let Modg°*"#(A) be the category of profinite augmented representations of G over A in
the sense of [40, Def. 2.1.6]. By [40, (2.2.8)], the functor 7 — 7" induces an anti-equivalence

of categories:
Mod@*(A) — Mod%**8(A). (A.1)
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As in [40, § 2.1], we denote by ModE**(A) the full subcategory of Mod%°*"¢(A) consisting of
augmented G-representations that are finitely generated over A[[H]| for some (equivalently
any) compact open subgroup H of G. We denote by ModOGrtho(A) the category of orthonor-
malizable admissible representations of G over A in the sense of [42, Def. 3.1.11]. By [42,
Prop. 3.1.12], the functor m — Homy (7, A) induces an anti-equivalence of categories between
Mod&™(A) and the full subcategory of ModE**(A) consisting of G-representations which
are moreover pro-free A-modules.

€ aenote cep E € category OI continuous representations o a on mnnite
We denote by Repgly, (Or) the category of conti tati f Galg, on finit
p

length (hence torsion) Og-modules equipped with the discrete topology. Recall that Colmez
defined a covariant exact functor (called Colmez’s functor, see [24]):

\E MOdf(i;Iiz )(Op) — RepGalQ (Op).

For a continuous character ¢ : Q — Op (which we view as a continuous character of Galg, ),
we denote by V. the functor 7 — V(1) ® (. Asin [42, § 3.2], for A € Comp(Og), V (resp.
V) extends to a covariant and exact functor, still denoted by V (resp. by V), from the

full subcategory of Modg&%@ (A) consisting of A-representations 7 such that m ®4 A/my €

ModgL2 y(kp) to the category of continuous Galg,-representations on finite rank free A-
modules

A.2. Deformations I
The main results of this section are Corollary A.2 and Corollary A.7 below.

We keep the notation of § A.1. We fix p: Galg, — GLa(kg) a continuous representation
and let 7(p) be the smooth representation of GL3(Q,) over kg associated to p by the mod p
Langlands correspondence normalized so that V.1 (7w (p)) = p (this is the normalization of
6, § 3.1]). We assume:

pE ((1) ;) up to twist by a character (with * zero or not). (A.2)

Note that the assumption implies that 7(p) has length < 3.

We denote by Def; the groupoid over Comp(Op) of deformations of p (see [42, Def. 3.3.6]) and
by Def ) ortho the groupoid over Comp(Op) of orthonormalizable admissible deformations of
m(p) (see [42, Def. 3.3.7]). Following [42, Def. 3.3.9] we denote by Def] ) ;1tno € Defr(z) ortho
the subgroupoid of deformations 7w such that the center of G acts on 7T by the character
det(V.-1(m))e. The following theorem follows from work of Kisin and Pagkunas (see [42,
Thm. 3.3.13 & Rem. 3.3.14]).

Theorem A.1. The functor V.-1 induces an isomorphism of groupoids:

Def* % Def,. (A.3)

m(p),ortho
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Let & = (p2,te) € Def(p)(Op) and pe 1= p{ R0, E (recall i is a Galg,-equivariant isomor-
phism ¢¢ : pf ®o, kg — p). We still denote by & := (n¢, ;) € Def*(n(p))(Op) the inverse
image of ¢ via the isomorphism (A.3) and set 7(p¢) := 7 ®o, E. The map pe — T(pg) is
the p-adic local Langlands correspondence for GL3(Q,) (normalized as in [6, § 3.1]).

Corollary A.2. The functor V.-1 induces a natural surjection:

Extar,o,) (F(pe) 7 (pe)) — Extgay, (e pe) (A.4)

where the extension group on the left is in the category of (admissible) unitary Banach
representations of GLa(Q,).

Proof. Let 7 € ExtéLz(Qp)(%(pg), 7(pe)) and Ty a GL2(Q))-invariant open lattice. Using that
two open lattices in the Banach space 7 are commensurable and the exactness V. -1, one easily
checks that V_-1(m)[1/p] is in Extéal(@p (pe, pe) and doesn’t depend on the choice of 7. This
defines the morphism (A.4). We prove (A.4) is surjective. Let p¢ be a deformation of pg over
Ele]/e*. By the proof of [52, Prop. 2.3.5], one can find a finite Og-subalgebra A C Ele|/¢?
such that A[1/p] = Ele]/€* and a deformation p, ¢ of p over A such that pae®40p = pf (via
the natural surjection A — Op induced by Ele]/e* - E) and ps¢®4 Ele]/e* = pe. By (A.3),
there exists a deformation 74 of 7(p) over A such that V.-1(74) = pae. It is straightforward
to check that w4[1/p| € ExtéLQ(@p)(ﬁ(pg), 7(pe)) (using (A.3) again) and that T4[1/p] is sent
to pe via (A.4). O

From now on, we assume moreover Endga, (p) = kp. By [53, Lem. 2.1.2], we also have
Endcr,,)(7(p)) = kg. We now still denote by Def; (vesp. Def? ) oiihor Defr(p)ortho) the
(usual) deformation functor (e.g. as in § 5.1) attached to the groupoid Deff (resp.
Def? ) orthos Defr(p).ortho). We know that Def; is representable, hence so is Def7 by
Theorem Al

),ortho

Let ¢ := A _p be the determinant of 5. Recall that any element in Extéah@ (p,p) (resp.

D
EXtéLQ(Qp)(W(ﬁ>,7T<,5))) can be viewed as a deformation p (resp. 7) of p (resp. m(p)) over
kgle]/e2. In particular we have a kg-linear morphism:

EXt%;alQp (p,p) — Hom(Galg,, kp) = Hom(Q;, kk) (A.5)

( group homomorphisms to the additive group kg) sending p to (Z/Z_l — 1) /e where =
kE[E /2P~ We define EX‘cGal ¢(p,p) as the kernel of (A.5). By the assumptions on p, each

irreducible constituent 7 of 7T( ) has multiplicity one in (7). Us1ng the same arguments as
in the proof of Lemma 3.15, we can then show that there exists ( Q) — (kgle]/€*)* such

that the center Z(Q,) = Q) acts on 7 by Z,E. We thus deduce another kg-linear morphism:

Extly, (o, (7(2), 7(p)) — Hom(Q, kp), 7 — ((C ' —1)/e (A.6)

and we define ExtGL ()% =(m(p),7(p)) as the kernel of (A.6), which is the kg-vector subspace

of extensions with central character (z.
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Lemma A.3. We have short exact sequences of kg-vector spaces:

— — _ _\ (A5)
0— EXtéalsz(,O, 10) — EXtéal@p (p7 p) — HOHl( ;7 E) — 0

N o\ (A6)
0 — Bxtly o, (7(0),7(7) — Extly, g, (7(0), 7(7) ~= Hom(Q}, k) — 0.

Proof. 1t is enough to prove that (A.5) (resp. (A.6)) is surjective. The map ¢ — pR(1+1/2¢)
(resp. ¥ — m(p) ® (1 4 1 /2¢) o det) gives a section of (A.5) (resp. of (A.6)). O

As in [67], we call p generic if either p is irreducible or p = (51 ) for 5,6, ¢ {£,1} and

0 o
0Z y .
for some § : Galg, — kj (recall we have x # 0 since

we call p nongeneric if p = (O 5

Endcaly, (p) = kg).

Proposition A.4. We have:
dimg,, Exté (p, p) = dimy,, Extg, (Qp)zg(w(ﬁ), 7(p)) = 3,

dimy,), EXtéalQp (7,p) = dimy,, Extgy, g, (7(P), 7(P)) = 5.

Proof. By Lemma A.3, it is enough to prove the result for Extla - and ExtéLQ(

Galg, Q) G5

By our assumptions on p, we easily check that dimyg, ExtéalQ Z(ﬁ, p) = 3. The result for
p’

ExtéL (@,)cz follows from [67, Prop. 6.1] (in the supersingular case), [67, Cor. 8.5] (in the

generic nonsupersingular case) and [68, Thm. 6.10] together with dimy,, ExtéalQ Z(ﬁ’ p) =3

(in the nongeneric case). O

Since Endgr,(q,)(7(p)) = kg and dimy, ExtéLQ(@p)(w(ﬁ),ﬂ(ﬁ)) < o0 by the last equality
in Proposition A.4, it follows from Schlessinger’s criterion that the functor Def ) ortho 1S
representable. Using Theorem A.1, the third equality in Proposition A.4 and [45, Lem. 2.1]
(and the representability of Defy, Def7 ;) o ihor Defr(p)ortho), We easily deduce that we have
in fact isomorphisms:

Def’, ) ortho — Defr(z) ortho — Def. (A7)

Recall Art(Op) is the category of local artinian Og-algebras with residue field kr and let
C(Og) be the subcategory of Modproaug )(OF) dual to 1\/[od1é1E2 @,)(Or) via (A.1). Denote by
Defr(5)v c(o0y) the functor from Art(OE) to (isomorphism classes of) deformations of 7(p)"
in the Category C(Opg) in the sense of [67, Def. 3.21] (since we only deal with commutative
rings here, we drop the subscript “ab” of [67, § 3.1]). As Home(o,)(7(p)",7(p)") = kg and
dimy,, Exté(oE)(ﬂ(ﬁ)V, m(p)") < oo, Schlessinger’s criterion again implies that Def v c(oy)
is pro-representable by a complete local noetherian Og-algebra R, p)v of residue field kg.

When considering a deformation, we now do not write anymore the reduction morphism ¢
(which is understated).
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Lemma A.5. (1) Let A in Art(Og) and Ma € Defr5)v c(0,)(A), then My € Modfésu(g(@ ,(4)
and My is a pro-free A-module.
(2) Let A in Art(Op) and 74 € Defr(5) ortho(A), then Homy(ma, A) € Defrz)v c(0n)(A).

Proof. (1) Since A is in C(Og), it is profinite. By definition (see [67, Def. 3.21]), My
is a flat A-module and by [30, Exp. VIIp(0.3.8)], the second part of (1) follows. It is

straightforward to see My is in Mod%rﬁjg&)(A). Let H be a pro-p compact open subgroup of

GL2(Q,), the algebra A[[H]] is (noncommutative) local. Since 7(p) is admissible, we know
My @aqmy) ke = 7(p)Y ®Qup(#)) ke 1s a finite dimensional kg-vector space. By Nakayama’s
lemma (see e.g. [56, Lem. 4.22]), we deduce My is finitely generated over A[[H]].

(2) By [42, Prop. 3.1.12] and its proof, we have that M, := Homa (74, A) is flat over A and
Ms ®4 kp = 7w(p)Y. Since w4 is admissible and A is artinian, 74 is locally finite by [40,
Thm. 2.3.8]. The lemma follows by definition of C(Op). O

Proposition A.6. We have an isomorphism of deformation functors:

Def (5 ortho = Defrz)v.con), A= {ma}/] — [A—= {M4 = Homa(ma, A)} /-]
Proof. This follows from [42, Prop. 3.1.12] and Lemma A.5. O
Proposition A.6 together with (A.3) and (A.7) imply an isomorphism of deformation functors:

Def v c(0g) — Defy (A.8)

and hence Ryv = Ry Let p™Y be the universal deformation of p over R; (for Def;),
N € C(Og) the umversal deformation of m(p)¥ over Ry (for Def v c(op)) and Y (p) €
Mo d?}rﬁgo )(Rp) the universal deformation of m(p) (for Defy ), Ortho).

Corollary A.7. We have N = Homp,_ (7" (), R;).
Proof. This easily follows from Proposition A.6. O]
Corollary A.8. Let L be an ideal of R;, then we have:
N ®g, R;/I = Hompg, /7 (7" (p) ®r, R;/T, R;/T).
Proof. This follows from the isomorphism in Corollary A.7 and [42, Lem. B.7]. O

Remark A.9. Recall the isomorphism in Corollary A.7 and the isomorphism in Corol-
lary A.8 are topological isomorphisms where the left hand side is equipped with the profi-
nite topology and the right hand side with the topology of pointwise convergence (see [42,
Prop. B.11(2))]).

For any ¢ : Q) — OF we denote by 1\/[0d1(1;iﬁ2 @,).c(OF) the full subcategory of ModGL2 y(Og)
of representations on which Z(Q,) acts by ¢, and by C¢(Og) the full subcategory of C (Og)
dual to 1\/Iodléiﬂ2 )¢c(Op) via (A.1). For any ¢ : QF — Of such that ¢ = ¢ mod wg,

we denote by Deff) the subfunctor of Def; of deformations with fixed determinant ¢ and
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by RC the universal deformation ring for DefC We denote by Defrp)yvc.(op) the deforma-
tion functor on Art(Opg) defined in the same way as Defr5)v c(0,) replacing C(Og) by the
subcategory C¢.(Op). By the second equality in Proposmon A.4 and Schlessinger’s crite-
rion, Def )V c..(0p) 18 pro-representable by a complete local noetherian Op-algebra R PV

of residue ﬁeld kg. It is not difficult to see that the isomorphism in (A.8) induces a natural
isomorphism (so that RC Rf&p ):

Defﬂ—(p)VL'CE(OE) ;> Def% (A9)

We denote by N¢ the universal deformation of 7(p)" over Rff(ﬁ)v &~ R% for Defrz)v c..(0p)

(note that A/ is denoted by N in [49]) and by p™":¢ the universal deformation of p over R%.
Let A be the universal deformation ring of the trivial 1-dimensional representation of Galg,
over kp and 1"V the corresponding universal deformation (which is thus a free A-module of
rank 1). We have R; & R%@JOEA and p™iV 2 puivieE, 1Y where ® denotes the wp-adic
completion of the usual tensor product. We equip 1"™" with a natural action of GLy(Q,) via
det : GL2(Q,) — Q). One easily sees 1" € C(Op).

Proposition A.10. We have N' = N¢@q, 1",

Proof. We have that N ®p,1"™" is a deformation of 7(p)Y over R%@)OEA in C(Og), from

which we deduce a morphism of local Og-algebras R; — R%@)@EA. One can easily check
this is an isomorphism (e.g. by proving the tangent map is bijective). The proposition
follows. O]

A.3. Deformations I1
We prove here a key projectivity property of N.

We keep the previous notation and assumption (in particular p satisfies (A.2) and is such
that Endgal@p (p) = kg). We assume moreover p > 5 if p is nongeneric.

Proposition A.11. There exist x, y € Ry such that S := Ogl[z,y]] is a subring of R; and
N s a finitely generated projective S[[GLa(Z,)]]-module.

Proof. We fix K a pro-p compact open subgroup of GLy(Z,) such that K = K/Z, x Z; with
Zy == KNZ(Q,) isomorphic to Z,. If R is a (noncommutative) ring, we denote by Modfg the
category of finitely generated R-modules. It is enough to prove the statement with GLo(Z,)
replaced by K.

(a) By [49, Thm. 3.3] (in the generic case) and [49, Thm. 3.5] and its proof (in the nongeneric
case), there exists z in the maximal ideal of R% such that N ® ¢ RE/ x is a finitely generated
Og[[K]]-module and is projective in the category Modfg (x].ce = the full subcategory of
Mod%EHK” on which Z, acts by Ce. In particular N is a finitely generated S, [[K]]-module

for S; := Ogl[z]]. We first want to prove that N is moreover projective in Mod (K]].Ce
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(with obvious notation, as N is a R%—module note this will also imply S; — R%). Let
X : Zo — OF such that x* = ¢ (enlarging F if necessary and using Zy = Z,), we deduce an
isomorphism of Og[[K/Zy|]-modules (using that Og[[K/Z)]] is a local ring):

(N¥% @ x o det) @ ¢ R/ = Oxl[K/Z0)] "

and it is enough to prove that A; := N ® x~! o det is projective in MOd.ngl[[K/ZO]]'

s at the beginning o , .0|, 1t 1s enough to prove Tor 1, kg) = 0 where
(b) As at the beginning of [68, § 2.5, it i gh Tor{ /20 (A7 kp) = 0 wh
Torfl[[K/ZOH(—, kg) denotes the i-th derived functor of (-)®sg,(x/z,) ke in MOdggl[[K/Zo}] (recall
S1[[K/Zo]] is a local ring of residue field kg). Indeed, let P be a projective envelope of N
in Modfggl[[ K2y (Whose existence follows from [56, § 23 & Prop. 24.12]), and consider a short

exact sequence 0 — M; — P — N; — 0 in Mod' - I TorleK/ZO“(./\/‘l, kg) = 0, we

S1[[K/ 2o
get:
0 — M ®g,(k/201kE — PQs,(k/z0)kE — N1®s,(1x/20)kE — 0.

Since P is the projective envelope of N, we have P&si (k201 FE = M®Sl[[K/Zo]]kEa whence
Mi®g, 1k /zo0ke = 0, and M, = 0 by Nakayama’s lemma ([56, Lem. 4.22]). Now, the exact

sequence 0 — Nj == N} — N /2 — 0 (recall N is flat over R%) induces:

TorS 20 ko) 25 TorP 20 (A, k) — TorP /20, e o)
— Ni®s, iz ke — Mi®s,(ik/z0 ke — (N1/2)®s, (1K) 20k — 0. (A.10)

Let r := dimy, M ®sg,(x/zo ke = dimg, (N1/2)®s, (k2 ke. By the argument as at end of
the proof of [68, Prop. 2.34], TorleK/ZO” (N1, kg) is a finitely generated Sj-module (even a
finite dimensional kg-vector space). Using the exact sequence:

0 — Si[[K/Zo]|*" — Si[[K/Z]]*" — Opl[K/Z]]*" (2 Ni/x) — 0,

we easily deduce Torfl[[K/ Zol (Mi/z,kg) — k%", which implies with (A.10) that the mor-
phism TorleK/ZOH(/\/'l,kE) s TorleK/ZOH(/\/'l,kE) is surjective. But since z — 0 € kg,

5
we deduce Tor]

SI[K/Zo]]"".

(c) We now finish the proof. Let I' := 1 + pZ,, the pro-p completion of Q is isomorphic
to I' x Z,, from which we deduce A = Og|[I' x Z,]]. There exists thus y € A such that
A = Sy[[I']] with Sy := Og|[[y]]. Since Zj is a subgroup of finite index of I', we deduce A is
finite étale over Sy[[Zy]], and hence 1™V is a finite projective Sy[[Zy]]-module. Together with
(b), Proposition A.10 and K = K/Zy x Zy, we obtain that N' 2 N®e, 1™V is a finitely
generated projective S[[K]]-module with S := Og[[z, y]]. This concludes the proof. O

1[[K/Zo]] (NM1,kg) = 0 and hence N is projective, and even isomorphic to

A.4. Proof of Proposition 3.32
We finally prove Proposition 3.32.
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We keep the previous notation. We assume p > 5 and fix p: Galg, — GLy(E) as in Proposi-
tion 3.30, so that we have Dyiz(p) = D(a, A, ) with D(a, A, ¢) as in Lemma 3.29. It is enough
to prove the proposition with D(p, A, ), m(A\°, %) replaced by D(a, A, %), 7(p~'a, \°,¢)) re-
spectively (as in the proof of Proposition 3.30). We fix a mod p reduction p of p satisfying
(A.2) and Endgal,, (p) = kg, and we define using Corollary A.7 and Remark A.9:

I1 := Hom@® (N, Ok) ®o, E = Homy® (Homp (1™ (p), R;), O) ®o, E

where “cts” means the continuous morphisms. It follows from [73, Thm. 1.2] and Proposition
A.11 that the Banach space II (equipped with the supremum norm) is an Rz-admissible
continuous representation of GLy(Q,) in the sense of [12, Déf. 3.1].

Lemma A.12. We have an isomorphism of Banach spaces:
I1 = Homg; (R, Op) @, (5)[1/]

where R; (in Homg® * (Rp, OF)) is equipped with its mp_-adic topology and ® is the wg-adic
completion of the usual tensor product.

Proof. Note that Hom{® (R;, Op) is a cofinitely generated Ry-module by [42, Prop. C.5]. B
[73, Thm. 1.2], it is enough to prove Home,, (Homg® (R, Op)®@p,7"" (p), Op) = N. But.

Homgp, (HomCts (Rp,OE) umV( ), OE)

=~ Homo,, (Hom@: (R;, Op) @r, T ™(p), OF)
Homp, (7" (p), Homo, (Hom@: (R;, OF), OF))
=~ Hompg, (7" (), R;) =N

1%

where the first two isomorphisms are easy, the third one comes from [42, Prop. C.5] and the
last one from Corollary A.7. O

Any p € Extéal@p (p, p) gives rise to an Ele]/e*-valued point of Ry, hence to an ideal Z; C R;
with R;/Z5 = Ople] /€.

Lemma A.13. Let ©(p)* be the image of p via (3.60), then we have an isomorphism
m(p)* = [Z;* of locally analytic representations of GL2(Q,) over E.

Proof. By the same proof as for Lemma A.12 using II[Z;] = Homg® (N/Z;, Op) ®o, E and
Corollary A.8, we deduce II[Z;] = Homg’® (R5/Z; OE)@U%/Iﬁ( “m"( ) /Zﬁ)[l /p]. The result
follows then from Remark 3.31(2) and the fact HomCtb * (Rp/T5,OF) is free of rank one over

R;/T5 = Ogle] /€. O

As in [12, Déf. 3.2], we denote by II%»~2" the subspace of locally Rj-analytic vectors of
IT and consider the locally analytic T/(Q,)-representation Jg(IIf%»~=") (T, B as in § 3.2.2).
As in [12, § 3.2], the strong dual Jg(II%~2")" corresponds to a coherent sheaf M over
(Spf R;)"8 x T (T as in § 7.1.3) and we let X denote the schematic support of M. A
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point * = (p.,d,) € (Spf R5)" x T lies in X if and only if there is a T(Q,)-embedding
op = Jp(Ilfo=[p, 1) = Jp(7(p.)™) where p,, C R; is the prime ideal attached to p, and
the isomorphism 7(p, )™ = [I%~0[p, | = II[p,,]*" is proven as for the one in Lemma A.13.

Consider the Zariski-closed trianguline variety Xy:(p) of (Spf R;)"® x T defined exactly as
in [12, § 2.2] (for K = Q, and n = 2) but without the framing, i.e. replacing RS by Rz. As
in [12, Thm. 2.6] the rigid variety Xi,;(p) is equidimensional of dimension 4 and contains a
Zariski-open Zariski-dense subspace Uy,;(p)"® which we define in the same way but removing
the framing. Arguing inside (Spf R;)"8 x T, it easily follows from [25], [59] (and the above
characterization of points of X) that there is an embedding U™ (p)™ < X (be careful that
there is a shift on the 7T-part between the two sides analogous to (the inverse of) [11, (3.2)]),
and hence we deduce a closed embedding (note that Xi,;(p) is reduced) j : Xii(p) — X.
The pull-back M; := j*M is thus a coherent sheaf on Xi,;(p).

It follows from Proposition A.11 that A is finitely generated and projective as S[[GL2(Z,)]]-
module where S = Ogl[z,y]] — R; In this case, by the same argument as in [12,
§8 3.3, 3.4 & 3.5] (see especially [12, Thm. 3.19]), one can prove that the set Z of points
(p,0) € X such that p is crystalline generic (see before Lemma 7.19) and ¢ is noncritical
(see before Lemma 7.18) is Zariski-dense and accumulation in X. Since such points are
in Uyi(p)™® (modulo the aforementioned shift) we deduce that j induces an isomorphism
Xui(p) — Xieq. In particular, the noncritical point z := (p,dx(] - | ® 1) unr(a) o det) is
in Xi,i(p) (indeed, as j is an isomorphism, all the trianguline representations with mod p
reduction isomorphic to p appear on Xy,;(p) since they do on X using [25], [59]).

Using the isomorphism X,;(p) = X,eq and the above characterization of points of X together
with [25], [59] and [37, Ex. 5.1.9], it easily follows that there exists a sufficiently small affinoid
neighborhood U C X,;(p) of x such that the special fiber of the coherent sheaf M; at each
point 2’ € U is one dimensional over the residue field of z’. Since U is reduced, we deduce
M, is locally free of rank 1 over U by [48, Ex. I1.5.8(c)] (which is there in the scheme setting,
but the rigid setting is analogous). We denote by V, the tangent space of Xi,(p) at = and
we identify the tangent space of T at ¢, := d,(|-|® 1) unr(«) o det with Hom(7'(Q,), E'). By
the global triangulation theory ([51], [58]) and using similar arguments as in [11, §4.1], we
have the following facts:

e the morphism X,;(p) — (Spf R5)"8 induces an isomorphism:
Ju + Vo — Extis(p, p) (A.11)
o for v € V,, denote by U, = (1, %02) € Hom(T'(Q,), E) the image of v in the tangent

space of T at d, induced by Xii(p) — 7T, then the Galg, -representation j,(v) is
trianguline of parameter (z*'] - |(1 + 1, 1€) unr(a), 2% (1 + 1, 9¢) unr(a)).

Now let 0 # v : Spec E[¢]/e* — U be a nonzero element in V,. Since M is locally free
at x, we have that W, := v*M; is a free Ele]/e*-module of rank 1. The action of R; on
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W, is induced by v : Spec E[e]/e? — U — (Spf R;)"¢ and we denote as usual by Z, the
corresponding ideal of R;. Moreover T(Q,) acts on the E-dual of W, by 6x(] - | ® 1)(1 +
U,€e) unr(a) o det. Note that it is possible that ¥, = 0, but we always have 7, # m, by
(A.11). Since the rigid space (Spf R;)"¢ x T is nested ([1, Def. 7.2.10]), so are its closed
subspaces X and Xy(p). It follows that the composition:

v : Spec Ele] /€ — U — Xii(p) — X

induces a surjection I'(X, M) — v*M = W, (using that the image of the composition
NX,M)— I'(U, M)— v*M = W, is dense as a composition of continuous maps with dense
images, hence is surjective since W, is finite dimensional). Taking duals and keeping track of
the shift, we obtain an R; x T'(Q,)-equivariant injection dy (|- | @ |+ |71)(1+ ¥ye) unr(p~ta) o
det — Jp(IT% "), Since the E-dual of W, is killed by Z,, we see that this map factors
through an F[e]/e*linear embedding of locally analytic representations of T'(Q,):

Sv(l- @] ™)+ Wue)unr(p ) — Jp(IIF[T,]) (A.12)
(note that the left hand side of (A.12) always has dimension 2 over E even if ¥, = 0).

We can now finally prove Proposition 3.32. By Proposition 3.30, Lemma 3.6 and Proposition
3.22(1), it is enough to prove that (3.60) maps Ext{,; to Ext.. in such a way that Hypothesis
3.26(3) holds (up to twist by unr(p~'«) on both sides). Fix an extension in Ext'.(p, p), i.e.
a trianguline deformation p of p over E[e]/€?, by (A.11) and what is below (A.11), we have
that (2% |- |(1 + ¢y1€) unr(a), 272(1 + 1, 9€) unr(«)) is a parameter for Dyie(p) where v € V,
is the associated vector. Let m(p)*" be the image of p via (3.60), by Lemma A.13 we have
m(p)™ = T[Z,]*™ = %~ [Z,] and by (A.12) together with Proposition 3.22(2), we finally

deduce the result.
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