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ABSTRACT. We describe the completed local rings of the trianguline variety at certain
points of integral weights in terms of completed local rings of algebraic varieties related to
Grothendieck’s simultaneous resolution of singularities. We derive several local consequences
at these points for the trianguline variety: local irreducibility, description of all local com-
panion points in the crystalline case, combinatorial description of the completed local rings
of the fiber over the weight map, etc. Combined with the patched Hecke eigenvariety (under
the usual Taylor-Wiles assumptions), these results in turn have several global consequences:
classicality of crystalline strictly dominant points on global Hecke eigenvarieties, existence of
all expected companion constituents in the completed cohomology, existence of singularities
on global Hecke eigenvarieties.
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1. INTRODUCTION

Let p be a prime number and n > 2 an integer. The aim of this paper is to prove several
new results in the theory of p-adic overconvergent automorphic forms on unitary groups and
in the locally analytic p-adic Langlands programme for GL,. To a definite unitary group
over a totally real number field, one can associate several rigid analytic Hecke eigenvarieties.
A p-adic overconvergent eigensystem of finite slope is a point on such an eigenvariety and
we say that it is crystalline if its associated p-adic Galois representation is crystalline at
p-adic places. Under standard Taylor-Wiles hypothesis and mild genericity hypothesis, we
prove, among other results, that any crystalline overconvergent eigensystem of finite slope
and dominant weight comes from a classical automorphic form. Moreover, we show that such
an overconvergent eigenform is a singular point on its Hecke eigenvariety once its associated
refinement is critical enough (in a specific sense).

Finally we address the problem of companion forms. 1t is a well known phenomenon in
the theory of p-adic automorphic forms that there can exist several eigenforms of distinct
weight with the same associated Galois representation, i.e. with the same system of Hecke
eigenvalues for the Hecke action away from p. Under the same assumptions as above we ex-
plicitly describe all such companion forms of a fixed classical form (and in fact we determine
the locally analytic representations generated by these companion forms) in terms of combi-
natorial data (elements of the Weyl group) attached to the associated Galois representation.
This description was conjectured by one of us (C.B.) in [16].

The key insight is, that the properties of p-adic automorphic forms we are interested in, are
encoded in the geometry of a rigid analytic space that parametrizes certain representations
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of a local Galois group. We show that the local geometry of this so called trianguline variety
can be studied in terms of varieties that are familiar from geometric representation theory.

We now describe our main results and methods in more detail.

Let F'* be a totally real number field, F' an imaginary quadratic extension of F'* and
G a unitary group in n variables over F'" which splits over F' and over all p-adic places
of F*, and which is compact at all infinite places of F'*. Denote by S, the set of places
of F* dividing p and fix L a finite extension of Q, which is assumed to be “big enough”.
Let S (UP, L)* be the space of overconvergent p-adic automorphic forms on G of tame level
UP, a compact open subgroup of G(AP), i.e. the space of locally analytic functions from
G(Q)\G(A>)/UP? to L. This is an admissible locally Q,-analytic representation of G(F* ®q
Qp) ~ I, GLn(F;"). Let S be a finite set of finite places of F'* containing S, and the
v{p such that U, is not hyperspecial. Let m® be a maximal ideal of the Hecke algebra such
that the localization S(UP,L);‘}; is non zero. Let p : Gal(F/F) — GL,(F,) be the mod
p irreducible representation associated to m® that we suppose to be irreducible. There is a
rigid analytic variety Y (UP,p) over L (called the Hecke eigenvariety) that parametrizes the
systems of Hecke eigenvalues of finite slope in the representation S (UP, L)>%.

A point x € Y (UP,p) can be uniquely characterized by a pair (p,d) where p is a Galois
deformation of 5 on a finite extension of L and 6 = (9,)up = (6v,i)(v,i)es, x{1,...n} i a locally
Q,-analytic character of ((F'*®qQ,)*)", the diagonal torus of G(F*®¢Q,) = [1,), GL.(F;).
We are interested in points z = (p,d) that are crystalline generic, by which we mean that
p satisfies the following three conditions for all v|p: first, the local representation p, is
crystalline, secondly the eigenvalues (¢u;)ic(1,....n} Of ¢% (the linearization of the crystalline
Frobenius on Deis(p,)) satisty o0, ; ¢ {1,q,} for i # j, where g, is the cardinality of
the residue field of F.f, thirdly the Hodge-Tate weights of p, are regular (i.e. the Sen
endomorphism of p, is separable). Under these assumptions (and in fact under much weaker
assumptions on p), one can associate to x = (p,d), for each v|p, two permutations w,,, w, , €

ST[LFJ:QP]: the first one measuring the relative positions of the weights of the d,;, i € {1,...,n}
(suitably normalized) with the antidominant order (see before Lemma 3.7.4) and the second
one measuring the relative positions of two flags (see before Proposition 3.6.4 and Proposition
3.7.1) coming from the p-adic Hodge Theory of p,. We set:

w = (Wy)ves, and wy := (Way)ves, €S 1= HST[LFJ:QP].
vlp

When w is the longest element wg in S, or equivalently when the algebraic weight of §
is dominant, we say that x is crystalline generic strictly dominant. Finally, we say that
2" = (p,d') € Y(UP,p) is a companion point of z = (p,d) if /0" is a Q,-algebraic character.
It is conjectured in [16, Conj.6.5] that the companion points of x are parametrized by w’ € S
such that w, < w’ where =< is the Bruhat order (note that w’ is w'wy with the convention
in loc.cit.). We write x,, for the conjectural companion point associated to w’ (we have
T = Ty )-

Consider the following assumptions, called “standard Taylor-Wiles hypothesis” above:

(i) p>2;
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(ii) the field F is unramified over F*, F' does not contain a non trivial root ¢/1 of 1 and
G is quasi-split at all finite places of F'*;

(iii) U, is hyperspecial when the finite place v of F'* is inert in F;

(iv) p(Gal(F/F (/1)) is adequate ([66, Def.2.20]).

Remark 1.1. We thank the referee for pointing out that we forgot the assumption /1 ¢ F
in a first version of this paper. Actually this assumption is also missing in the global results
of [19] and [20]. More precisely the assumption ¢/1 ¢ F should be added in [19, Th.1.5 &
Th.3.5] and all subsequent results, as well as in [20, Th.1.1] and in the results of [20, §3 &
§5]. Moreover all the results of [19] and [20] remain true under the slightly more general
notion of adequate subgroup of [66, Def.2.20] instead of [65, Def.2.3]. We refer to [66] and
especially to section 7 of loc.cit. for explanations about this assumption.

Theorem 1.2 (Theorem 5.1.3). Assume (i) to (). If x = (p,d) € Y(UP,p) is generic
crystalline strictly dominant, then x comes from a classical automorphic form of G(Ap+).
In particular p is automorphic.

We point out that the assumption that x is strictly dominant is a necessary assumption.
However, if x = (p,d) € Y (U?,p) is generic crystalline (but not necessarily strictly dominant)
there exists a generic crystalline strictly dominant point 2/ = (p,d’) € Y/(U?,p) (see Remark
5.1.4) and hence our result still implies that p is automorphic (though the point x itself does
not necessarily come from a classical automorphic form).

Theorem 1.3 (Theorem 5.4.2). Assume (i) to (iv) and UP small enough. If x € Y (UP,p)
is generic crystalline strictly dominant such that w,wqg is not a product of pairwise distinct
simple reflections, then x is a singular point on Y (UP,p).

Theorem 1.4 (Theorem 5.3.3). Assume (i) to (iv) and UP small enough. If the Galois
representation p : Gal(F /F) — GL, (L) comes from a generic crystalline strictly dominant
point x = (p,d) € Y(UP,p), then all companion constituents associated to p in [15, §6],
[16, Conj.6.1] occur (up to twist) as G(FT ®q Q,)-subrepresentations of §(U7’,L)ﬁlns m,]. In
particular all companion points x,, of x for w, = w' exist in Y (UP,p).

Several cases or variants of Theorem 1.2 and Theorem 1.3 were already known. In the
setting of Coleman-Mazur’s eigencurve Theorem 1.2 was proven by Kisin ([51]). When
w, = wy Theorem 1.2 was proven by Chenevier ([24, Prop.4.2]), and when w,wy is a product
of distinct simple reflections Theorem 1.2 was proven in [20, Th.1.1] under slightly more
restrictive conditions on the ¢, ;. In the setting of the completed H' of usual modular
curves Theorem 1.4 was proven in [17] (see also [4]). When n = 2 Theorem 1.4 was proven
by Ding ([30], see also [28]), and when n > 2 a few companion constituents were known to
exist ([16], [29]).

We now explain the main steps in the proofs of the above three theorems, and in doing so
we also describe our local results.

The first step is that one can replace in all statements the representation S (UP, L)% by
the patched locally Q,-analytic representation I122 of G(F'" ®¢ Q,) constructed in [23] and
the eigenvariety Y (U?,p) by the patched eigenvariety X,(p) constructed in [19, §3.2] (these
objects only exist under hypothesis (i) to (iv)). Recall that X,(p) is obtained from II% in
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the same way as Y (U?,7) is obtained from S(U?, L)% (see loc.cit.). It was shown in [19,
§3.6] that X,(p) is a union of irreducible components of Xz X [],, Xui(p,) X U? where Xz
is the rigid analytic generic fiber of the framed deformation space of 7 at the places of S\S,,
U9 is an open polydisc and X,i(p,) is the so-called trianguline variety at v|p, i.e. the closure
of points (r,0) where r is a trianguline deformation of p, and J a triangulation on Dye(7)

seen as a locally Q,-analytic character of the diagonal torus of G(F,f) ~ GL,(F}).

We say that a character § of ((F,7)*)" is generic if §;0; " and §;0;'| |, are not Q,-algebraic
characters of (F,7)* for i # j, where | |, is the norm character of F,”. Our main local result
is the following theorem.

Theorem 1.5 (Corollary 3.7.10). Let x = (r,0) € Xui(p,) such that & is generic locally
algebraic with distinct weights, then the rigid variety Xi.i(p,) is normal (hence irreducible)
and Cohen-Macaulay in an affinoid neighbourhood of x.

The proof of Theorem 1.5 follows from the key discovery that the formal completion
)A(m(ﬁv)x of Xui(p,) at the point x can be recovered, up to formally smooth morphisms,
from varieties studied in geometric representation theory. It follows from our assumption
on the Sen weights of r that this representation is almost de Rham in the sense of Fontaine
([37]). As an extension of almost de Rham representations is still almost de Rham, every
deformation of 7 on a nilpotent thickening of L is almost de Rham. Let iy := Biz ®q, r
and rqr := Bar ®q, r be the Bj{R and Bggr-representations associated to r. A result of
Fontaine tells us that there exists an equivalence of categories W +— (Dpar (W), v ) between
the category of almost de Rham Bggr-representations and the category of pairs (D, N) where
D is a finite dimensional Q,-vector space and N a nilpotent endomorphism of D. The set
of Galois stable Bi-lattices in W is then in natural bijection with the set of separated
exhaustive filtrations of Dpgqr (W) stable under vy. Moreover, when the Sen weights of
the Bjz-lattice are multiplicity free, the corresponding filtration of Dyqr(W) is a complete
flag. Let Sp A C X4i(p,) be a nilpotent thickening of the point z. Then the representation
r4 is almost de Rham, and we can use a key result of Kedlaya-Pottharst-Xiao ([49]) and
Liu ([55]) on global triangulations to construct a complete flag of Dyar(74.4r) stable under
Vryar- Lhese constructions give us two natural flags in Dyar(74.4r) that are stable under the
same endomorphism v, . of Dyar(raqr). It is therefore natural to consider the following
construction.

[Fu+ :QP}
n

Denote by g ~ gl (resp. b) the L-Lie algebra of G := (RGSFJ/QP GLn/Fj)L (resp. of
the Borel subgroup of upper triangular matrices) and let:

g:={(yB,¢) e G/Bxg|Ad(g ')y eb} CG/Bxg.

Then g is a smooth irreducible algebraic variety over Spec L of dimension dim G' and the
projection g — g is called Grothendieck’s simultaneous resolution of singularities. The fiber
product X := g x, g is equidimensional of dimension dim G and its irreducible components

X, are parametrized by w’ € SIF’ V Q) (the Weyl group of ). Under our hypothesis on z, the
L ®q, F,F-module Dyqg(rar) is free of rank n and equipped with a nilpotent endomorphism
N and with two flags: the first one D, comes from the triangulation on D,(r), the second
one Fil, being the Hodge filtration associated to rqr. These two flags are preserved by the

endomorphism N, so that we can define a point zpqr := (D, Fils, N) of X(L) (modulo a
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choice of basis on Dpqr(7)). In fact, we obtain a map:

Eri(ﬁv)x — X\

TpdR

and we can show that it factors through )/(\w,zp . (and that z,qr € X,,(L)) where w € SIF Q)
measures the relative positions of the weights of the d;, i € {1,...,n} with the antidominant
order. It remains to prove that this map is formally smooth to deduce the first of the
following two statements, which themselves imply Theorem 1.5.

Theorem 1.6 (see (3.33)). Let x as in Theorem 1.5, up to formally smooth morphisms the
formal schemes Xui(p,)e and Xy a4 are isomorphic.

Theorem 1.7 (see §2.3). The algebraic varieties X,y are normal and Cohen-Macaulay for
any w' € S @],

The Cohen-Macaulay property in Theorem 1.7 was already known and due to Bezrukavni-
kov-Riche ([12]) but the normality (see Theorem 2.3.6) is a new result (to the knowledge
of the authors). Theorem 1.2 then follows almost immediately from Theorem 1.5 using [20,
Th.3.9] (we refer to the introduction of loc.cit. for some details on this implication).

Theorem 1.6 has many other consequences on the local geometry of Xi,;(p,). For instance
we can deduce that the weight map is flat in a neighbourhood of x and, when r is de Rham,
one can give an explicit bound for the dimension of the tangent space of Xi;(p,) at x,
generalizing [20, Th.1.3], see §4.1. When x is moreover crystalline and strictly dominant,
one can also completely describe the local companion points of  on Xy(p,), i.e. those
7' = (r,0') € Xui(p,) such that 8’6" is Q,-algebraic. We obtain the following result, which
is a purely local analogue of Theorem 1.4.

Theorem 1.8 (Theorem 4.2.3). Let x = (r,0) € Xui(p,) as in Theorem 1.5 and w, €
SIF o Q) measuring the relative positions of Dy and Fil,. Assume x crystalline strictly dom-
inant, then the local companion points of x are parametrized by w' € S,[TFJ:QP] with w, < w'.

The existence of companion points on X;(p,) for w, < w’ is proven by a Zariski-density
argument which doesn’t involve Theorem 1.6. But the fact that there can’t be others (for
other values of w’), i.e. that these points exhaust all companion points of = on X;(p,),
relies on the geometry of X, via Theorem 1.6 (see Lemma 2.2.4).

The description of the local geometry in Theorem 1.6 allows us to derive another result
about the geometry of Xi,;(p,). Denote by R, the complete local ring parametrizing (equal
characteristic) framed deformations of r over local artinian L-algebras of residue field L and
by Z(Spec R,.) the free abelian group generated by irreducible closed subschemes of Spec R,..
If A is quotient of R, define:

(1.1) [Spec Al := > m(p, A)[Spec A/p| € Z(Spec R,.)

p minimal
where the sum is over the minimal prime ideals p of A and m(p, A) € Z>¢ is the length of
A, as Ap-module. For any rigid variety Y, denote by Oy, its completed local ring at y € Y.
When ¢ is generic, the projection (17, ¢") — r’ induces a closed immersion Spec Ox, (5, ),(r6)
Spec R,.. The projection (r',d") — ¢ induces a morphism from X(p,) to the rigid space of
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locally Q,-analytic characters of the diagonal torus of G(F,") and we let X,i(p,)s be the fiber
above 9. We obtain a closed immersion Spec @Xm(m) 5,(ro) = Spec R,. The quite striking
result is that, though Xi,i(p,) is reduced, the fiber X,;(5,)s can be highly nonreduced, even
“contain” Kazhdan-Lusztig multiplicities! The following result was inspired by Emerton-
Gee’s geometric “Breuil-Mézard” conjecture ([35, Conj.4.2.1]). Its proof uses Theorem 1.8
and relies (again) on the geometry of X,, via Theorem 1.6 (see §2.4).

Theorem 1.9 (Theorem 4.3.8). For any crystalline generic deformation r of p, with distinct
Hodge-Tate weights and any absolutely irreducible constituent II of a locally Q,-analytic
principal series of GLy(F.), there exists a unique codimension [F; : Q)™ ™) _cycle C,yy in

2
Z(Spec R,.) such that, for all locally Qy-analytic characters 0, we have:
[Spec @Xtﬂ(ﬁv)é,(r@] => msnCrn in Z(SpecR,)
I

where [Spec @Xtri(ﬁv)g,(r,é)] =0 if (r,0) ¢ Xui(p,) and mgn is the multiplicity (possibly 0) of
IT in the locally Q,-analytic principal series representation obtained by inducing the character
d (suitably normalized).

Ezamples: (i) For instance consider n = 2, F.f = Q, and r = x; @ x2 where y; := z"unr(g;)

and hy < hy (= the Hodge-Tate weights of ). Let §; := 2"2unr(y;) and §y := 2"unr(epy),
then Xi,(p,) is smooth at the point (7, (d1,02)) but Spec @Xm(ﬁv)(sl,52»(1",(51,52)) is reduced
with two irreducible components of dimension 3. Forgetting the 2 framing variables, one
irreducible component corresponds to those crystalline deformations of r» = x; @ x2 coming
from the unique nonsplit (crystalline) extension of x; by x2, the other corresponds to those
trianguline noncrystalline deformations of r coming from the unique nonsplit extension of
X2 by x1. The locally analytic principal series obtained by inducing §; ® doe (see (4.10)) also
has two irreducible constituents II;, Il where II; is locally algebraic and Il5 is isomorphic
to the locally analytic principal series obtained by inducing x; ® x2¢. Then C,p, is the
cycle associated to the crystalline irreducible component and C, 1, the cycle associated to
the noncrystalline component. The locally analytic principal series obtained by inducing
X2 ® x1€ has irreducible constituents I1; and the locally analytic principal series I, obtained
by inducing d; ® 1€, and this time we have C,y; = 0. Let us point out that the fact that

Spec O Xuri(Bo)(5,.5),(r(81,82)) 18 not irreducible in this case implies that the canonical projections

Xui(p,) = T" and X4i(p,) — W™ are not smooth at = = (r, (01, 02)) (here T resp. W denotes
the space of continuous characters of K* resp. of Of).

(ii) There is a global counterpart to this observation as follows. Let f be a modular form of
level prime to p and weight k£ > 2 that has complex multiplication by a CM field E in which
p is split (so that the restriction of the associated Galois representation to a decomposition
group at p is the direct sum of two characters). In [3, Th.4] Bellaiche shows that the
eigencurve of Coleman-Mazur is smooth at the point associated to the critical p-stabilization
of f, but that the weight map ramifies at this point. As in this paper we work in the
context of a unitary group, we can not directly recover this result. But we note that the
method explained in §5.4 proves that the eigenvariety is singular at a given point if its local
avatar Xii(py) is singular, and similar arguments imply that the weight map of the global
eigenvariety is ramified at a given point if the projection X;(p,) — W™ is not smooth at
(the image of) that point. However, the converse is not true: not all phenomena in the local
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geometry of global eigenvarieties can be explained by the corresponding phenomenon for
Xiri(p,). For example there exists a singular point on an eigenvariety such that its image in
the trianguline variety lies in the smooth locus, see [20, Rem.5.19].

We now sketch the proof of Theorem 1.4 (see §5.3). The key idea is to define another set
of cycles [L£(w')] on the patched eigenvariety X, (p) that satisfy the same multiplicity formula
as in Theorem 1.9 and such that:

[E(UJ,)] # 0= HomG(F+®QQp) (Hw’7 Hig[mp]) 7& 07
where the II,, are the locally analytic principal series representations that conjecturally occur
in S(U7, L)% m,)].

Roughly, the uniqueness assertion in Theorem 1.9 then should force these cycles to agree
with the cycles C, 7 , which then will imply Theorem 1.4. Unfortunately we can not directly
conclude like this, as the cycles [£(w’)] are defined on a space X,(p) that is only known to
be a union of irreducible components of Xi;(p) (or rather of Xz X [1,, Xui(p,) x UY). As
this problem causes the proof of Theorem 1.4 to be a bit involved, we sketch here some of
the main inputs in more detail for the convenience of the reader.

Fix p as in Theorem 1.4. For each = = (p,d) € Y(U?,p) — X,(p) (generic crystalline)
strictly dominant and each w’ > w, write z,, = (p, J,,) and let I, be the (irreducible) socle
of the locally Q,-analytic principal series obtained by inducing d,, (suitably normalized).

Fixing z, we hence need to prove that Homg(p+ggq,) (I, 2 [m,]) # 0 for w, < w'. Since
T = Ty, is known to be classical by Theorem 1.2, we already have:

HomG(F+®QQp)(Hw07 Hig[mp]) 7é 0
(note that II,, is the unique locally Q,-algebraic constituent among the II,).

Denote by X, (7)wi(s) the fiber of X,() over the weight wt(J) of § seen as an element of the
Lie algebra of the torus of G(F* ®qQ,) and let X := Xz x X5, x U? where X5 is the rigid
analytic generic fiber of the framed deformation space of p at the places of S, then we have
a closed iAmmersion Spec O Xp @i Spec Ox_ , similar to the one aboi/e with X1.i(p,)s-
For any Ox, ), .«-module M of finite type, we define [M] € Z(Spec Ox,,,) as in (1.1)
but summing over the minimal prime ideals p of @Xp(ﬁ)wt( 5.« and replacing m(p, A) by the
length of the (O Xy (P)ung)wJp-module M. Recall that there is a coherent Cohen-Macaulay
sheaf M, on X,(p) (|20, Lem.3.8]). Taking its pull-back /Qoo,wt@@ on Spec @X,,(p)
first prove that we have a formula in Z(Spec Ox_ ,):

(1.2) Moowi@al = 2 Prugur(DIL(w)]

we W’

wi(@),1 WE

where Py, for z,y € [1,, SIF @l are the Kazhdan-Lusztig polynomials and £(w’) are certain
) ~modules such that:

E(w’) 7é 0 <— Homg(p+®QQp) (Hw/, Hzg[mp]) §£ 0.

finite type Ox, ()

wt(8)

Formula (1.2) essentially comes from representation theory (in particular the structure of
Verma modules) and doesn’t use Theorem 1.6. By an argument analogous to the one for
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n(n+1)

Theorem 1.9 (using Theorem 1.6), we have nonzero codimension [F* : Q]** = -cycles €(uw')

in Z(Spec Oz ,) such that:

(13) [@Xp(p)wt@)’x] == Z Pl,wow’(l)e:(w/>'

We =W’

Moreover we know that the cycle €(wy) is irreducible and that [£L(wy)] € Z>o€(wp) (roughly
because the support of the locally Q,-algebraic vectors lies in the locus of crystalline defor-
mations). Consequently we can deduce Theorem 1.4 from the fact that Py . (1) # 0, if we
know that €(w’) is contained in the support of L(w’) for w, < w'.

We prove this last assertion by a descending induction on the length of the Weyl group
element w,. Assume first that lg(w,) = lg(wp) — 1. In that case z is smooth on X,(p) and

then M, is locally free at x. Hence My wi(s)» =~ @;(p(ﬁ)wt(é)vz for some r > 0 and we can
combine (1.3) (multiplied by the integer ) with (1.2). Using €(wq) # 0, €(w,) # 0 and
[L(wo)] € Z>o€(wp), it is then not difficult to deduce [L(w,)] # 0, hence L(w,) # 0 and
then Homg(p+gy0,)(w,, 25 [m,]) # 0 and z,, € Y (U?,p).

By a Zariski-density argument analogous to the one in the proof of Theorem 1.8, we can
then deduce [£(w')] # 0 for any w’ > w, such that lg(w’) > lg(wy) — 1 and any w, such
that lg(w,) < lg(wy) — 1. In particular we have the companion points z,, on Y (U?,p) for
w' = w, and lg(w') = lg(wy) — 1 and formulas analogous to (1.2) and (1.3) localizing and
completing at x,, instead of z = x,,.

Assume now lg(w, ) = lg(wy)—2, we can repeat the argument of the case lg(w,) = lg(wg)—1
but using the analogues of (1.2), (1.3) at z,v = (p, d,) for v’ = w, and lg(w’) = lg(wy) —1 =
lg(w,) + 1. The results on the local geometry of the trianguline variety imply that X,(p) is
smooth at the points z,, with lg(w’) > lg(wy) — 1 and hence:

Moo wt(3,)., = Ogcp(p)wt@w,>,xw,
with r in fact being the same integer for all the w’ (including z = x,,,). Combining equations
(1.2), (1.3) for the points x,s with lg(w’) > lg(wy) — 1 we can deduce that [L(w,)] # 0.
Moreover, by a Zariski-density argument [£(w')] # 0 for w’ = w, such that lg(w’) > lg(wg)—2
and w, such that lg(w,) < lg(wg) —2. By a decreasing induction on lg(w,), we finally obtain
(using a very similar argument) all predicted companion constituents.

Finally, once we have Theorem 1.4, in particular once we have the companion point z,,, of
x in Y(UP, p), the argument of the proof of [20, Cor.5.18] can go through mutatis mutandis
and yields that the tangent space of X,(p) at « has dimension strictly larger than dim X, (p)
under the assumption on w, in Theorem 1.3 (in loc. cit. we assumed the crystalline modularity
conjectures essentially because they guaranteed the existence of z,, on Y (UP p) by [19,
Prop.3.27]).

notation: We finish this introduction with the main notation.

If K and L are two finite extensions of Q,, we say that L splits K when Hom(K, L)
(= homomorphisms of Q,-algebras K — L) has cardinality [K : Q,] and we then set
¥ := Hom(K,L) = {r : K — L}. If L is any finite extension of Q, we denote by O
its ring of integers, by kj, its residue field and by C;, the category of local artinian L-algebra
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with residue field isomorphic to L. If A is a (commutative) local ring, we let my be its
maximal ideal.

For K a finite extension of Q,, we write Ky C K for the maximal unramified extension
in K, K for an algebraic closure of K and we set |z|x := ¢ @ for x € K where ¢ := p/,
f:=[Ko:Q,l, e :=[K : Ky| and val is normalized by val(p) = 1. We set K,, :== K(pn) C K
for n > 1, Ky := U, K, C the completion of K for |- |k, Gx = Gal(F/K) and Ik =
Gal(K/K). We denote by € : Gxg — 'y — Z) the p-adic cyclotomic character. We let
reck : K* — G2 be the reciprocity map normalized so that a uniformizer of K is sent to
a geometric Frobenius and we still write ¢ for € o reckx (a character of K*). Recall that
¢ = Nkjq,|Nk/g,lo, where Nk g, is the norm. If @ € L* (where L is any extension of K)
we denote by unr( ) the unramified Character of K* sending a uniformizer of K to a (so
|| = unr(g™)). When unr(a) extends to G& via recy, we still write unr(a) for the induced
character of G and g

If A is an affinoid L-algebra, for example an object of Cr, and § : K* — A* a continuous
- or equivalently locally Q,-analytic - character, the weight of ¢ is by definition the Q,-linear
morphism wt(6) : K — A, z — £5(exp(tx))|—0. Since Homg, (K, A) ~ Homg, (K, Q,) ®q,
A ~ K ®q, A where the isomorphism Homg, (K,Q,) ~ K comes from the perfect pairing
given by the trace map K — Q,, we can also see wt(§) as an element of A®q, K. If L splits
K, we can write A®q, K = A®[(L®q, K) = ®;cxA and see wt(0) as (Wt (0))rex € Brexd.

If A is an affinoid algebra, we write R4 i for the Robba ring associated to K with A-
coefficients (see [49, Def.6.2.1] though our notation is slightly different) and Rx when A =
Q,. Given a continuous character § : K* — A* we write R4 k() for the rank one (p, 'k)-
module on Sp A defined by 9, see [49, Cons.6.2.4].

If X is a scheme locally of finite type over a field L or a rigid analytic space over L, we
denote by X™4 the associated reduced Zariski-closed subspace (with the same underlying
set) If x is a point of X, we let k( ) be the residue field of z, Ox . the local ring at z,
O X,z 1ts Mo, ,-adic completlon and X, the affine formal scheme Spt O x. (80 the underlying
topological space of X, is just a point). We will often (tacitly) use the following: assume
L is of characteristic 0 and x is a closed point of X, then seeing = as a closed point of

Xz = X xp, k(x) one has OXm 5 OXk( ,,0» In particular (’)Xx is a noetherian complete
local k(x)-algebra of residue field k(z).

If A is an excellent local ring (e.g. A = Ox, where X is a scheme locally of finite type
over a field or a rigid analytic variety) and A its m4-adic completion, we will (sometimes
tacitly) use the following equivalences: A is reduced if and only if Ais ([41, Sch.7.8.3(v)]), A
is equidimensional if and only if A is ([41, Sch.7.8.3(x)]), A is Cohen-Macaulay if and only if
Ais ([40, Prop.16.5.2]), A is normal if and only if A is ([41, Sch.7.8.3(v)]). Moreover the map
Spec A —3 Spec A sends surjectively minimal prime ideals of A to minimal prime ideals of
A (as it is a faithfully flat morphism).

If g is a Lie algebra over a field k, we still denote by g the k-scheme defined by A —
9(A) = A®y g for A a k-algebra. We denote by k[e] := k[Y]/(Y?) the dual numbers. If G is
a group scheme and A is a ring, we denote by Rep 4(G) the full subcategory of the category
of Ga-modules ([46, §1.2.7]) whose objects are finite free A-modules. If V' is an A-module
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and I C A an ideal, we denote by V[I] C V the A-submodule of elements of V' cancelled by
all the elements of 1.

2. THE GEOMETRY OF SOME SCHEMES RELATED TO THE SPRINGER RESOLUTION

We recall, and sometimes improve, several results of geometric representation theory con-
cerning varieties related to Grothendieck’s and Springer’s resolution of singularities, in par-
ticular we prove a new normality result (Theorem 2.3.6). All these results will be crucially
used in §3 to describe the local rings of the trianguline variety at certain points.

2.1. Preliminaries. We recall the definition of a certain scheme X associated to a split
connected reductive group G and related to Grothendieck’s simultaneous resolution of sin-
gularities.

We fix GG a split connected reductive group over a field k. We assume that the characteristic
of k is good for G, i.e. char(k) = 0 or char(k) > h where h is the Coxeter number of G' (though,
for applications, we will only need the case char(k) = 0). We fix B C G a Borel subgroup
and denote by T' C B a maximal torus and by U C B the unipotent radical of B. We write
W = Ng(T)/T for the Weyl group of (G, T) and wy € W for the longest element. We denote
by lg(—) the length function on W and by =< the Bruhat order. We write g, b, t and u for
the Lie algebra (over k) of respectively G, B, T' and U and we denote by Ad : G — Aut(g)
the adjoint representation. Finally we write w - A := w(A+ p) — p for the usual dot action of
W on X*(T), where p denotes half the sum of the positive roots with respect to B.

We equip the product G/B x G/B = G/B x; G/B with an action of G by diagonal left
multiplication. Let w € W and w € Ng(T') C G(k) some lift of w. Write:

U, = G(1,)BxB C G/Bx G/B

Then G/B x G/B = ,ewU,. It is well known that U,, (a G-equivariant Schubert cell) is
a locally closed subscheme, smooth of dimension dim G — dim B + lg(w).

Let g be the closed k-subscheme defined by:

(2.1) g:={(gB.v) €G/Bxg|Adlg~" ) €b} CG/Bxg.
It has dimension dim G = dim g and we have a canonical isomorphism of k-schemes:
(2.2) Gx"b 4§, (9.¢)— (9B,Ad(9)v)

where G xP b is the quotient of G' x b for the right action of B defined by (g,v¢)b :=
(gb, Ad(b~')y)). We deduce from (2.2) that the morphism § — G/B, (¢B,v) — ¢B

makes g a vector bundle over G/B. In particular the k-scheme g is smooth and irreducible.

Given a vector bundle over a scheme and its corresponding locally free module of finite
type, recall that a subvector bundle corresponds to a locally free submodule which is locally
a direct factor, or equivalently such that the quotient by this submodule is still locally free.
Using the isomorphism G x? g = G/B x g, (9,v) — (¢B, Ad(g)v)), we easily see from
(2.2) that g is a subvector bundle of the trivial vector bundle G/B x g over G/B.

Now recall Grothendieck’s simultaneous resolution of singularities:

q:9—9, (gB,Y)r—1
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or equivalently G xB b — g, (9,v) — Ad(g)®. Recall that ¢ € g is called regular if
its orbit under the adjoint representation of G has the maximal possible dimension. Let us
write g'® (resp. g'°¢~*) for the open k-subscheme of g consisting of the regular (resp. the
regular semi-simple) elements. Similarly, we will write t*°¢ C t for the open k-subscheme of
regular elements in the Lie algebra of the torus 7'

Proposition 2.1.1. (i) The morphism q is proper and surjective.
(ii) The restriction of q to ¢~ (g™®) is quasi-finite.
(iii) The restriction of q to ¢~'(g"&™%) is étale of degree |W]|.

Proof. For (i) and (ii) see for example [50, Th.VI1.8.3(3) & Th.VI.8.3(4)] and its proof. For
(iii) see [50, Th.VL9.1]. See also [61, §IL.4.7]. O

In the following we will sometimes use the notation §™® and g~ instead of ¢~'(g"#)
and ¢ (g"&™). We finally define the most important k-scheme for us:

(23) X:=gxy8={(01B,9:B,%) € G/BxG/Bxg|Ad(g;")¢ € b,Ad(g,")¥ € b}

where the fiber product is with the map ¢. If we want to specify the base field k, we
sometimes write X}, instead of X.

2.2. Analysis of the global geometry. We describe the global geometry of the scheme
X. Most results in this section are fairly well known, but we include proofs in order to fix
notation and for the convenience of the reader.

Let us write:

(2.4) 7: X —>G/BxG/Bxg—»G/BxG/B
for the projection to G/B x G/B. We write r; : X — t, i € {1,2}, for the morphism:
(2:5) (918, 9:B, ) — Ad(g; )¢ € bju =1t

where 1 denotes the image of 1) € b under the canonical projection b — t. For w € W let
Vy:=m1U,) C X.

Proposition 2.2.1. The projection V,, — U,, induced by 7 is a geometric vector bundle of
relative dimension dim B — lg(w).

Proof. We consider the trivial vector bundle:
G/BxG/Bxg— G/BxG/B.
This vector bundle contains the two subvector bundles:
Yi = {(9:1B,92B,¢) € G/B x G/B x g | Ad(g; )¢ € b}
Yy = {(91B,9:B,v) € G/B x G/B x g | Ad(g,")¢ € b}

(Y; are subvector bundles of G/B x G/B x g for the same reason that g is a subvector
bundle of G/B X g, see §2.1). By definition X = g X, g is the scheme theoretic intersection
of the two subvector bundles Y; and Y5 inside G/B x G/B x g. By Lemma 2.2.2 below,
it is enough to show that for a given point y = (¢B,gwB) € U, C G/B x G/B the
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dimension of 77!(y) only depends on w € W. We prove this last fact. The two conditions
Ad(g7 ')y € b, Ad(rv"'g ')t € b translate into:

(2.6) Ad(g ") € bN Ad(1)b ~ t ® (uN Ad(w)u),

or in other words:

(2.7) ™ (y) =y x Ad(g) (t® (uN Ad(ib)u)) C U, x g

which is an affine space of dimension dim B — Ig(w). O

Lemma 2.2.2. Let V — Y be a geometric vector bundle over a reduced scheme 'Y which
is locally of finite type over a field, and W1, Wy C 'V subvector bundles. Assume that
for all closed points y € Y the intersection of the fibers W1, N Wy, in V, (where x, :=
x Xy Speck(y)) is an affine space of constant dimension v over k(y). Then the scheme
theoretic intersection W1 N Wy C 'V is a geometric vector bundle of rank r.

Proof. Let us write V, W; and W, for the corresponding locally free sheaves on Y and recall
that V /W, is also locally free. We consider the morphism given by the composition:

OélWl—>V—»V/W2.

The coherent sheaf coker(«) is again locally free on Y: indeed by assumption for all closed
points y € Y the dimension of coker(w), is given by rkV — rkW; — tk W, + r, and the
assumptions on Y imply that a coherent sheaf of fiberwise constant rank is locally free. This
last fact follows from the following classical statement: let A be a reduced noetherian Jacob-
son ring and M a finite type A-module such that dim 4 /m M/mM is constant for all maximal
ideals m of A, then M is a locally free A-module (which is a consequence of Nakayama’s
Lemma and of the fact that the intersection of the maximal ideals of a reduced Jacobson
ring is 0).

Now consider the sheaf W; := ker a. Then the sequence:
0— W3 — W, — V/Wy — cokera — 0

is exact and all sheaves but W5 are known to be locally free. It follows that Wj is locally
free as well. It is easily checked that the geometric vector bundle associated with W5 equals
the intersection W; N W, O

Definition 2.2.3. Forw € W, let X, be the closed subset of X defined as the Zariski-closure
of Vi in X.

If we want to specify the base field k, we sometimes write X,, ;; C X}, instead of X,, C X.
Lemma 2.2.4. Let w,w' € W, then X, NV, # 0 implies w' < w.

Proof. We first claim that 7(X,,) is the Zariski-closure U, of the Schubert cell U,, in G/B x
G/B. Indeed V,, = 7~ (U,) € 7~ *(Uy) implies X, = Vi, € 771 (U,,) and hence n(X,,) C U,

Conversely we have U, x {0} C V,, € G/B x G/B x g and hence U, x {0} C V,, - X
which implies U,, C 7(X,,). Since 7(V,/) = U,s we then have:

XNV 0= 71(X)Na(Vy) #0=U,NUy #0=w 2w

the last implication being the well known closure relations for Schubert varieties. 0

g
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Proposition 2.2.5. The scheme X is locally a complete intersection and its irreducible
components are given by the X, for w € W. In particular X is Cohen-Macaulay and
dim X = dim X, = dimg = dim G.

Proof. 1t is obvious that the X, cover X (set-theoretically). By Lemma 2.2.1 and the
irreducibility of the U,, the V,, are irreducible. Moreover, the dimension of X,, equals the
dimension of V,, which is equal to dim U,, + dim B — Ig(w) = dim G = dim X. As the V,, are
pairwise disjoint is also follows that none of the X, is contained in another one for dimension
reasons. We deduce that the X, are the irreducible components of X.

The scheme X C G/B x G/B x g is hence equidimensional (of dimension dim G) and cut
out by 2dimu equations in the smooth scheme G/B x G/B x g. As 2dimu = dim(G/B X
G/B x g) — dim X, it is a local complete intersection. 0

Let us write:
Vo =X,\ U X=X\ | Xuw CV,.
w!Z£w w! #w
Then V,, is an open subset of X and hence it has a canonical structure of an open subscheme.
Moreover X, is still the Zariski-closure of Vw in X. We define a scheme structure on X, by
defining X,, to be the scheme theoretic image of V,, in X.

For i € {1,2} we define pr; : X = § xo 8 — 8, (918, 9:8.) — (9:B,).

Theorem 2.2.6. (i) The scheme X is reduced. In particular the irreducible components X,
(with their scheme structure) are reduced.

(ii) For i € {1,2} the projection pr; : X — § induces a proper and birational morphism
Pr; .y ¢ Xow —> @ which is an isomorphism above g'*® = g (g™e) C g.

Proof. (i) The scheme X is Cohen-Macaulay and hence it is reduced if it is generically re-
duced, see [41, Prop.5.8.5]. We prove that X is generically smooth, i.e. that each irreducible
component X, contains a point at which X is smooth. Indeed, by (iii) of Proposition 2.1.1
the morphism pr, : X — g is étale of degree |W/| over g™ as it is the base change of
the morphism gre#™° = g'e™ x g — g**®~ (along itself). It is hence enough to show that
there exists a point = € g™~ such that each of the |W| components X, of X contains a
pre-image of z. However, by (2.6), any point z = (¢B, ) € g with Ad(g~')y € ¢ has the
property that V,, contains a preimage of x for any w € W. Moreover, we have the following
consequence: let x,, € V,, be such a preimage of x (which is in fact unique), then pr, is étale
of degree 1 at x,,. Finally the open subscheme f/w C X is reduced as X is. Hence the same
is true for the scheme theoretic image X, of V,, in X. Note that since V,, is reduced by
Proposition 2.2.1, X, is also the scheme theoretic image of V,, in X.

(ii) The morphism pr, ,, is certainly proper since it is the composition of a closed immersion
and the proper morphism pr; (the latter following by base change from (i) of Proposition
2.1.1). Moreover, we have seen in (i) that X, contains a point z,, such that pr, , is étale of
degree 1 at z,,. Since both schemes X,, and g are irreducible, it follows that pr, ,, is birational.
On the other hand base change from (ii) of Proposition 2.1.1 implies that pr;, and hence
also pry ,,, is quasi-finite above g**¢. By [42, Th.8.11.1] it follows that the morphism:

DTy © DI, (%) — g™
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is then finite, being both quasi-finite and proper. Since it is also birational and g is normal,
then it is an isomorphism by [42, Lem.8.12.10.1]. The claim for pr, is proven along the same
lines. 0

2.3. Analysis of the local geometry. We give an analysis of the local geometry of the
irreducible components X, of the scheme X. In particular we prove the new result that they
are normal.

We denote by k;,, the restriction to X,, C X of the morphisms x; : X — t defined in
(2.5).

Lemma 2.3.1. Fori € {1,2} the fibers of the morphisms k; and k;., are equidimensional
of dimension dimG — dim T'.

Proof. We prove the claim for x1, the proof for the other cases being strictly analogous. Note
first that the scalar multiplication:

(2.8) A (1B,92B,v0) = (1B, 92 B, A\) and At =\t

defines an action of the multiplicative group G,, on X C G/B x G/B x g and on t such that
the morphism k; is G,,-equivariant. Moreover, it is important to observe that if ¢ is a point
of g, the orbit map G,, — g deduced from this action extends uniquely to a map Al — g.
As X is a closed subscheme of G/B x G/B x g, it is the same for an orbit map G,, — X
and it is clear that such a map sends the point 0 € A' in x7(0).

As the restriction of k; to each irreducible component of X is dominant (even surjective
as follows e.g. from (2.7)), we deduce that for ¢ € t each irreducible component of x; ()
has dimension at least dim G —dimt = dim G —dim 7', see e.g. [42, Lem.13.1.1]. Let £ C X
denote the set of points z € X such that there is a component of xi'(k;(z)) containing
x and of dimension strictly larger than dim G — dim 7. By [42, Th.13.1.3] the subset F is
closed and we claim that £ = (). Assume this is not the case and choose a point z € FE.
The set E is invariant under the action (2.8) of G,, as k; is G ,-equivariant. Let A! — X
be the unique extension of the orbit map associated to x. As E is G,,-invariant and closed,
this map factors through E. From (2.8), we deduce that E contains a point 2’ such that
7' € k71(0). As 2’ € E it is enough to show that x;*(k1(2")) = k1 (0) is equidimensional of
dimension dim G' — dim 7', which will then be a contradiction.

We are thus reduced to prove that (the reduced subscheme underlying):
k1 '(0) = {(91B, 9:B,v) € G/B x G/B x g | Ad(g; )¢ € u, Ad(gy ") € b}

is equidimensional of dimension dim G — dim 7. However, the same argument as in Propo-
sition 2.2.1 (see (2.6)) yields that:

7 (Uw) N 7H0) = (771 (Uw) xx £71(0)"! — U,

is a geometric vector bundle with characteristic fiber u N Ad(w)u. And hence x;'(0) is a
finite union of locally closed subsets of dimension dim(G) — dim(7") (see also the beginning
of §2.4 below). O

We recall a criterion for flatness often referred to as miracle flatness.
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Lemma 2.3.2. Let f :' Y — Z be a morphism of noetherian schemes and assume that Z
is reqular and Y is Cohen-Macaulay. Assume that the fibers of f are equidimensional of
dimension dimY — dim Z. Then f is flat.

Proof. Let y € Y map to z € Z and let R (resp. S) denote the local rings of Z at z (resp. of Y’
at y), so S is an R-algebra. By assumption the ring R is regular of dimension, say, d and the
ring S is Cohen-Macaulay. Let fi,..., f4 € R be a system of generators of the maximal ideal
of R (which exists since R is regular). The assumptions on the fiber dimension implies that
dim S/(f1,..., fa)S = dim S — d. As S is Cohen-Macaulay it follows from [40, Cor.16.5.6]
that the sequence fi,..., f; is an S-regular sequence. But as R/(fi,..., fq) is a field, the
R/(f1,..., fa)-algebra S/(f1,..., fa)S is flat over R/(f1,..., fa). Hence S is flat over R by
[40, Prop.15.1.21] (applied with A = R and B = M = S). O

Proposition 2.3.3. The schemes X,, are Cohen-Macaulay and the morphisms k; and k;
are flat for i € {1,2}.

Proof. Assume that char(k) > 0. Then the claim that X, is Cohen-Macaulay is a result of
Bezrukavnikov and Riche, see [12, Th.2.2.1] (where the scheme X, is called Z,, and note
that char(k) > h is needed in loc.cit.). It is already mentioned in [12, Rem.2.2.2(2)] that it
is possible to lift this result to char(k) = 0, nevertheless we include some details here. It is
enough to prove the claim over any field of characteristic 0.

Let p > h be a prime number and and let A := Z,). Then A is a discrete valuation ring
with residue field F,, of characteristic p > h (recall that h is the Coxeter number of G) and
fraction field £ = Q. As G is a Chevalley group there exists a reductive group G4 over A
and a Borel subgroup B4 over A which are models respectively for G and B. We denote by
ga (resp. by) the Lie algebra of G4 (resp. B4) considered as A-scheme. We define a model
X4 of X}, over A as the closed subscheme (see also [12, §2.1]):

{(91Ba, g2Ba, ) € Ga/Ba x Ga/Ba x ga | Ad(g; ") € ba,Ad(g; )1 € ba}

of Go/Ba x G4/Ba x ga and we let w4 : X4 — Ga/Ba x G4/B4 be the canonical
projection. Finally we denote by U, C Ga/Ba x Ga/By the Schubert cell defined by the
G 4-orbit of (1,11)) S GA/BA X GA/BA for w e W.

The same argument as in Proposition 2.2.1 shows that WZI(U Aw) — Uiy is a vector
bundle. We write X 4, for the scheme theoretic image of 74" (Ua,,) in X4, which is also
the scheme theoretic image of 7" (Uy,,) in X4. It is easy to deduce that X4, is flat over
Spec A and that the generic fiber of X, ,, is identified with X ,,. Moreover [12, Rem.2.11.1]
asserts that (recall our schemes X, are denoted Z,, in loc.cit.):

XA,w X Spec A Spec IFp = XFp,uw

By [40, Prop.16.5.5] it follows that the A-flat scheme X4, is Cohen-Macaulay as its special
fiber Xp, ,, is. It then follows e.g. from [31, Prop.18.8] that the generic fiber X, is Cohen-
Macaulay as well.

Finally, we deduce from Lemma 2.3.2 that &, ,, is flat for ¢ € {1, 2} using the fact that X,
is Cohen-Macaulay and that x;,, has equidimensional fibers by Lemma 2.3.1. The proof for
k; is the same using Proposition 2.2.5. O



A LOCAL MODEL FOR THE TRIANGULINE VARIETY AND APPLICATIONS 17

We now state two lemmas which will be used in the main result, Theorem 2.3.6 below.
For simplicity we now write w instead of w.

We first compare the maps x; and ko using the decomposition of G/B x G/B into Bruhat
cells. Recall that t/WW := Spec(R}") where Ry is the affine ring of t.

Lemma 2.3.4. Let w € W, then Ky, = Ad(w™!) o Ky, where Ad(w) : t —> t is the
morphism induced by the adjoint action of W on t. In particular the diagram:

K1,w
Xy —t

(2.9) @,ﬁ t/lW

where the two morphisms t — t/W are both the canonical projection, commutes.

Proof. Tt is enough to show that the equality g, = Ad(w™') o k1, holds on V,, = 7= 1(U,,)
as V,, is dense in X, and t is affine hence separated. Let x € 7= *(U,)(S) be an S-valued
point. After replacing S by some fppf cover, we may assume that there exists some g € G(.5)

such that © = (¢B, gwB,¢) with ¢ € g(5). Then we have in g(5):
Ad((gw) )¢ = Ad(w™") Ad(g ™).

The claim follows from the remark that the image of the left hand side in ¢(5) is by definition
ko(z) while the image of the right hand side equals Ad(w™!)ky(z). O

Given w € W we denote by t* C t the closed subscheme defined as the fixed point scheme
of Ad(w) : t — t. It is clear that t* is smooth and irreducible (and in fact isomorphic to an
affine space over k).

Lemma 2.3.5. Consider the morphism fori € {1,2} (see (2.4) and (2.5)):
(m,ki): X — G/B x G/B x t.
Then the restriction of (m, k;) to Vi, induces a smooth map:
fi Vi — U, x t.

with irreducible fibers. In particular Vi, N k7 (8) = (Vi xx &7 H(t2))* is irreducible for
i€ {1,2} and all w,w'" € W.

Proof. It is enough to prove the statement for ¢ = 1. We deduce from (2.7) that for z =
(9B, gwB,t) € U, x t the fiber f;'(z) is isomorphic to the affine space ¢ + (uN Ad(w)u) C b,
hence in particular is smooth and irreducible of dimension only depending on w. It now
follows from Lemma 2.3.2 that f; is a flat morphism (note that both U, X t and V,, are
smooth using Proposition 2.2.1 for the latter). On the other hand a flat morphism of algebraic
varieties over a field is smooth if it has smooth fibers, see e.g. [43, §III Th.10.2]. It follows that
f1 is smooth and has irreducible fibers. It remains to show that Vi, Nkt (£%') = f7 1 (U, x )
is irreducible. Consider two disjoint open subsets A, B C f; (U, x t*') in f7 (U, x ). As
fi is smooth, it is flat, hence open and f;(A) and f,(B) are two open subsets of U, x t*.
If their intersection is nonempty, there is x € U, x t such that f;!(z) is not irreducible.
Hence fi(A) and fi(B) are disjoint. But the irreducibility of U,, x t*" implies that either
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fi(A) or fi(B), and hence either A or B, is empty, which proves that fi (U, x t*') is
irreducible. 0

We now prove the main result of this section. We recall that we have defined various
maps: 7|x, : Xo — G/B x G/B (surjective onto U,), pr;,, = prilx, : Xw — § (proper
birational surjective) and k; ., = Ki|x, : Xow — t (flat equidimensional surjective) where &;
is the composition of pr; with x : § — t, (9B, ) — Ad(g~1)%.

Theorem 2.3.6. The schemes X,, are normal.

Proof. As X, is Cohen-Macaulay it remains to show by Serre’s criterion ([41, Th.5.8.6]) that
X, 18 smooth in codimension 1. Both V,, and pr;;(greg) are smooth open subsets of X,,: the
first one by Proposition 2.2.1, the second one by (ii) of Theorem 2.2.6 and the smoothness of
g (which is an open subset of the smooth scheme g). Hence it is enough to show that the
complement of the smooth open subscheme V,, U prl_ﬂlu(ﬁreg) in X, is of codimension strictly
larger than 1.

Let C be an irreducible component of the closed subset X, \V,, of X, such that C' has
codimension 1 in X,,. It is enough to show that C' can’t be contained in the (smaller) closed
subset X, \ (V4 U prii(@reg)). As C' is covered by the finitely many locally closed subsets
C NV, for w' # w, we easily deduce that there exists some w’ such that C' := C' NV, is
Zariski-open dense in C'. It is enough to show that C’ contains points of pr;;(gfeg), i.e. that
C’ contains points (g1 B, g2 B, 1) with ¢ € g*8. Note that since C' is irreducible so is its open
subset C’.

Let x = (¢1B, g2 B, ) € C' C X, N Xy, by Lemma 2.3.4 we have:
(2.10) ko(x) = Ad(w™ ki (@) = Ad(w' ™)k ().

It follows that #;(C’) C t¥ where @ := ww'~! € W, hence C" C V,y Nk (7). As w # w' we
find that t% # t and hence t® C t is a closed subset of codimension at least 1. By Lemma
2.3.5 the map Ky : Vi —> t is smooth, hence the preimage V,, N k71 (t7) of 7 C tin Vi
has codimension in V,, equal to the codimension of t? in t. As C has codimension 1 in X,
we have:

dimC’' =dimCNVy =dimC =dimX, —1=dimV, —1=dimV,, — 1

and it follows from C’ C Vi N k7 (t7) that Vi N k7 (%) has codimension < 1 in V. We
thus see that 7 C t must have codimension exactly 1 in t, and that V,, N s (t?) must also
have codimension 1 in V.

We claim that C' = Vi, Nk (7). Indeed, Vi, Nky(17) is Zariski-closed of codimension 1
in V,,» and is irreducible by the last assertion in Lemma 2.3.5. On the other hand it contains
the closed subset C' = C NV, of V,, which is also of codimension 1 in V,,,. Hence these two
closed subsets of V,, are the same.

As t% C t has codimension 1, it follows that w = s, where s, is the reflection associated
to a positive root a. But () # C’ C X,, NV, implies w’ < w = s,w’ by Lemma 2.2.4, hence
lg(w') < lg(sqw’) and [45, §0.3(4)] implies that w'~'a is a positive root. Equivalently the
root « is positive with respect to the Borel subgroup w’Bw'™", i.e. we have g, € bNAd(w')b
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where g, C g is the T-eigenspace of g for the adjoint action corresponding to the root a.
Applying (2.7) with g = 1 yields:
7 ((B,w'B)) = (B,w'B)x (t&(unAd(w')u)) = (B,w'B)xbNAd(w')b D (B,w'B)x (t9g.,),
hence we deduce:
C' =V NryHE) D 7Y ((B,w'B)) Nk () D (B,w'B) x (£ @ ga).

The claim then follows as one easily checks that t*» & g, contains elements in g"¢. 0

We end this section by formulating a general conjecture about the set-theoretic intersec-
tions X, NV, for w,w" € W.

Conjecture 2.3.7. Let w,w' € W with w' < w and % = ww'™, then we have:

X NV = Vi N ETHED).
Obviously Lemma 2.3.4 implies that the left hand side is contained in the right hand side.

2.4. Characteristic cycles. We show that the fibers r;,,(0) C X, are related to Springer’s
resolution and have a rich combinatorial geometric structure that will be used in §4.3.

We now assume char(k) = 0. Let g/G := Spec(R{') where g = Spec Ry and note that the
natural map t/W — g/G is an isomorphism of smooth affine spaces (see e.g. [44, (10.1.8)]).
We have a canonical morphism & : X — g/G given by the composition of the canonical
map X >~ g Xy, § — g with the projection g — g/G. Again for w € W we write k,, for the
restriction of k¥ to X,, C X and point out that s, is the diagonal map in the commutative
diagram (2.9). Note that &, is surjective as all maps in (2.9) are. We define the following
reduced scheme over k:

(2.11) Z = (X Xgc {0OD) = (51(0))*! C X.
The scheme Z is known as the Steinberg variety (see [62]) and we easily check that we have:
Y/ ./\7 XN ./\7

where V' C g is the nilpotent cone, N := {(¢9B,v) € G/B x N'| Ad(¢g~")¢ € u} (a smooth
scheme over k) and where ¢ : N' — N, (¢B,¢) — @ is the Springer resolution of the
(singular) scheme N. We also have as in (2.2):

(2.12) GxPu"o N, (g,9) — (9B, Ad(g)y)).
We analyze the irreducible components of Z as we did for X in §2.2. For w € W let us

write V! := 77 1(U,) N Z (set-theoretic intersection in X) and Z,, for the Zariski-closure of
Vi in Z with its reduced scheme structure.

Proposition 2.4.1. The scheme Z is equidimensional of dimension dim G — dim T and its
irreducible components are given by the Z,, forw € W.

Proof. The proof is the same as the proof of the corresponding statements in Proposition
2.2.1 and Proposition 2.2.5. U
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Remark 2.4.2. Contrary to the case of the X, (see Proposition 2.3.3), it doesn’t seem
to be known whether the irreducible components Z,, are Cohen-Macaulay. Moreover, even
assuming this, the proof of Theorem 2.3.6 doesn’t extend, and we do not know either if the
Z,, are normal.

We write Z°(Z) for the free abelian group generated by the irreducible closed subvarieties
of codimension 0 in Z, i.e. for the free abelian group on the irreducible components of Z.
For w € W we denote by [Z,] the component Z,, viewed in Z°(Z). By Proposition 2.4.1 the
[Z,,] form a basis of Z°(Z) (which is thus isomorphic to Z[W]). Given a scheme Y whose
underlying topological space is a union of irreducible components of Z we can define an
associated class:

(2.13) Y] := Zwm(zw,y)[zw] € 72°(7)

where m(Z,,Y") is the multiplicity of Z,, in Y, i.e. is the length as an Oy, -module of the
local ring Oy,,, of Y at the generic point 7,, of Z,.

We set for w € W:
X =ri,0) CX,CX

(note that we do not take the reduced associated schemes). We obviously have Y:d cZz
(using Lemma 2.3.4). Moreover, each irreducible component of X, has dimension at least
dim Z = dim X, — dimg/G = dim X, — dimt by an application of [43, §IT Exer.3.22] to
the surjective morphism k1, : X,, — t. Hence each irreducible component of X, has
dimension dim Z and is thus some Z,, for w’ € W. We are interested in computing the class
[X,] € Z°(Z), but for this we need some preliminaries.

Let us denote by O the usual BGG-category of U(g)-modules associated to g D b D t, see
e.g. [45,§1.1]. Given a weight p, i.e. a k-linear morphism t — &, let M (p1) := U(9)®u @) k(1)
denote the Verma module of (highest) weight @ where U(—) is the enveloping algebra and
k(p) = k with action of U(b) given by U(b) — U(t) %+ k (where the right hand side is the
k-algebra morphism induced by p). We know that M (u) has a unique irreducible quotient
L(p) (see e.g. [45, §1.2]). Let w € W, then the irreducible constituents of M (wwy - 0) =
M(—w(p) — p) = M(w - (—2p)) are of the form L(w'wy - 0) for w" € W and the constituent
L(w'wy - 0) occurs in M (wwy - 0) with multiplicity Pugwwew (1), see e.g. [45, §8.4]. Here
P,,(T) € Z>o[T] is the Kazhdan-Lusztig polynomial associated to z,y € W. Recall that
P,, # 0 if and only if x < y and that P, ,(1) = 1. In particular L(w'wy - 0) occurs in
M (wwy - 0) if and only if wow = wew’ if and only if w’ < w (the last equivalence following
from the definition of the Bruhat order, see e.g. [45, §0.4], and from lg(wow) = lg(wp) —1g(w),
see e.g. [45, §0.3]).

We write O(0) for the full subcategory of O consisting of objects of trivial infinitesimal
character ([45, §1.12]), for instance M (wwy - 0) and L(wwy - 0) are in O(0) for w € W. The
Beilinson-Bernstein correspondence ([1], [21]) defines an exact functor which is an equivalence
of artinian categories:

(2.14) BBg : O(0) = D—Modg) ./
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to the category D—Modgl/ pxayp of regular holonomic G-equivariant D-modules on G/B x
G/B (see e.g. [21, Th. 4.1], [44, §6] and [44, §11]). We write DM (wwy - 0) := BBg(M (wwy - 0))
and £(wwyg - 0) := BBg(L(wuwy - 0)) for w € W.

Remark 2.4.3. In fact, in [44, §11] (and in most references on the subject), it is rather
constructed an equivalence BBg : O(0) — D—Modgf/ 5 to the category of B-equivariant
regular holonomic D-modules on G/B. However, if one embeds G/B into G/B x G/B via
gB +— (B, gB), then one can use the left diagonal action of G to extend a regular holonomic
B-equivariant D-module on G/ B to a regular holonomic G-equivariant D-module on G/B X
G/B. This yields an equivalence of categories between D—Modgl/ g and D—Modg‘/ BxG/B:
see [63, Lem.1.4(ii)]. The composition of BBg with this equivalence gives the functor BB¢.

By [27, Prop.3.3.4], the Steinberg variety Z is identified with the union in the cotangent
bundle of G/B x G/B of the conormal bundles of the diagonal G-orbits of G/B x G/B.
Recall these diagonal G-orbits are the U, for w € W (see §2.1), so in particular we have:

Ty (G/B x G/B) C Z C T*(G/B x G/B)

where T, (G/B x G/ B) is the conormal bundle of U,, in G/B x G /B and T*(G /B x G/B) is
the cotangent bundle of G/B x G/B. In fact, by [27, Cor.3.3.5(ii)] the irreducible component
Zy, of Z is identified with the Zariski-closure of T; (G/B x G/B) in Z.

To any coherent D-module M on G/ B x G/ B one can associate a coherent Op«(q/pxc/B)-
module gr(9M) on T*(G/B x G/B) (which depends on the choice of a good filtration on ).
The schematic support of gr(9) defines a closed subscheme Ch(9M) of T*(G/B x G/B) such
that each irreducible component of Ch(90) is of dimension greater or equal than dim Z =

dim(G/B x G/B) ([44, Cor.2.3.2]). The closed subscheme Ch(91) still depends on the choice
of good filtration on Y however the associated cycle in the group Z(7T*(G/BxG/B)) depends
only on 9 (see e.g. [44, p.60]). The following result is well-known (see e.g. [63, §1.4]).

Proposition 2.4.4. If M is in D—Modgl/BxG/B then Ch(9M) C Z C T*(G/B x G/B).

Proof. We only give a sketch. First, we have an isomorphism of k-schemes:

(2.15) Z =5 G xB g W)™, ((g1,91), (92, ¥2)) — (91, (97 92, ¢2))

where we have used (2.12) for A and its subscheme ¢~'(u)™d, and where B acts on G x
¢ (W)™ by (hy, (hy,¥))b := (hib, (b~ he, ). Secondly, the k-scheme N can be identified
with T*G/B (see e.g. [44, §10.3]) and if 9 is in D—Modrclf/B, then we have Ch(9V)red C
¢ '(w)™d and not just Ch(9')*d C N = T*G/B (see e.g. [63, §1.3]). Thirdly, if 91 is in
D—Modrch/ pxcyp and if M is the associated D-module in D—Modgl/ g by the equivalence of

Remark 2.4.3, then one can check that Ch(9) ~ G xBZ Ch(97). In particular Ch(9t)™? is
in Z by (2.15). O

Let 9 be in D—Moerh/BXa/B, then from Proposition 2.4.4 and what is before we deduce

that Ch(91)™d is a closed subspace of Z whose underlying topological space is a union of
irreducible components of Z. We set (see (2.13)):

[201] := [Ch(M)] € 2°(Z)
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(the so-called characteristic cycle of 9) and recall that the map 9t — [9] is additive by
[44, Th.2.2.3].

Remark 2.4.5. It was conjectured by Kazhdan and Lusztig in the case G = SL, (and
k = C) that [L(wwy - 0)] = Z,, equivalently that the characteristic cycles [£(w - 0)] for
w € W are irreducible. It turned out that this is wrong for n > 8 (but true for n < 7), see
47].

Proposition 2.4.6. For w € W we have [X,,] = [M(wwy - 0)] in Z°(Z).
Proof. This is [12, Prop.2.14.2], see also [12, Rem.2.14.3]. O

The following theorem is well known.

Theorem 2.4.7. (i) The three classes:
(1Zu])wew, (DR (wwq - 0)]) _ and ([(£(wuw - 0)])

weW
are a basis of the finite free Z-module Z°(Z).
(i1) For w € W we have:
(9 (wwg - Z Puw.awge (1) [E(w'wy - 0)] € Z°(Z).

(iii) There are integers ay u € ZL>g only depending on w,w’ € W such that:

[£(wwy - Zaww 1€ 72°2).

Moreover, ay. =1 and ay, ziunless w' X w. Finally if w' < w and U, is contained in
the smooth locus of the closure U,, of U, in G/B x G/B, then @y = 0.

Proof. Using Proposition 2.4.6 we have [9M(wwy - 0)] = [Xu] = Y bww[Zuw] for some
by € L. If by # 0 for some w' € W, then Z,,, C Yf which implies (X, NV, )N Z # ()
since V,yNZ C Z,y, which implies w’ < w by Lemma 2.2.4. Moreover one easily gets by, ., = 1
using that the restriction of k1, : X, — t to V,, is smooth by Lemma 2.3.5. It follows that
the matrix (bw,w)(w,w)ewxw is upper triangular with entries 1 on the diagonal and hence
invertible. This implies that ([9(wwg-0)])wew is a basis of Z°(Z). (ii) is a direct consequence
of the fact L(w'wy - 0) occurs in M (wwy - 0) with multiplicity Pugwwow (1). As Py (1) =0
unless w’ < w and Pyjuwwew(1) = 1, it follows that the matrix (Pugw,wew (1)) w,w)ewxw is
also invertible, and hence that ([£(wwq - 0)])wew is also a basis of Z°(Z), which finishes
(i). The first two statements in (iii) follow from the fact the matrix (G, )(w,w)ewxw is the

product of two upper triangular matrices with 1 on the diagonal. The last statement is [63,
Lem.1.3(iii)]. O

By Proposition 2.4.6, (ii) of Theorem 2.4.7 and the fact Pyguw,wpu (1) # 0 if and only if
w’ < w, we see that X, is in general far from being irreducible as it contains all the Z,, for
w’ < w, possibly even with some higher multiplicities than the Pygu wouw (1)

We end this section with a last result on the cycles [£(wwy - 0)] for w € W that will be
used in §4.3.
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Fix w € W. As in the proof of [58, Lem.3.2], the left action of b on L(wwy -0) induced by
that of g comes from an algebraic action of B. Let us write P, C G for the largest parabolic
subgroup containing B with Levi subgroup M, such that wwy - 0 is dominant with respect
to the Borel subgroup M,, N B of M,,. Note that P, = G if and only if w = wy. Then the
argument of [58, Lem.3.2] shows that the action of B on L(wwy - 0) extends to P,,.

Let P, act on G/B x G/B x g by the left multiplication on the first factor and the trivial
action on the two other factors. We identify Z°(Z) with a subgroup of the free abelian
group Z49Y(G /B x G/B x g) generated by the irreducible subschemes of G/B x G/B x g
of codimension dim GG, equivalently of dimension dim Z. Any element of P, (k) induces an
automorphism of Z4m%(G'/B x G/B x g) by the above action of P, on G/B x G/B x g.

Lemma 2.4.8. For w € W the characteristic cycle:
[L(wwy - 0)] € 2°(Z) € Z9™C(G/B x G/B x g)

is invariant under the action of any element of Py (k).

Proof. Denote by £ (wwy - 0) the D-module on G/B associated to the object L(wwy - 0) of
O(0) by the equivalence BBg of Remark 2.4.3. As the action of B on L(wwy - 0) extends to
P, we get that £ (wwy - 0) is in fact P,-equivariant (and not just B-equivariant). Hence if
we pass from B-equivariant D-modules on G/ B to G-equivariant D-modules on G/B x G/B
as in Remark 2.4.3, we get that the D-module £(wwy - 0) on G/B x G/B is equivariant
for the action of P, by left multiplication on the second factor G/B, in addition to being
equivariant for the action of G by diagonal left multiplication on the two factors.

This action of P, on G/B x GG/B induces an action on:
T*(G/BxG/B)~gxg—G/BxgxG/Bxg

which is itself induced by the action of P, on the right hand side given by the left multipli-
cation on the third factor G/B and the adjoint action on the fourth factor g (and the trivial
action on the first two factors). The projection:

G/B X g X G/B Xg_»G/B ><G/B X g, (ng7¢lngB,¢2) — (ngaQQB7¢2)

is obviously P,-equivariant for the action of P, on G/B x G/B x g given by the left multi-
plication on the second factor G/B and the adjoint action on the third factor g. Since the
composition:

Z—T(G/BxG/B)—G/BxgxG/Bxg—G/BxG/Bxg

is still injective, all this implies that [£(wwy - 0)] € Z°(Z) is invariant under the action of
P,(k) on Z4mCG (G /B x G/B x g) induced by this last action on G/B x G/B x g.

But as [£(wwy - 0)] is also invariant under the action of G on G/B x G/B x g given by the
diagonal left multiplication on the first two factors and the adjoint action on the third, it
follows that it is also invariant under the action of P, (k) induced on Z49™%(G/B x G/B x g)
by the left translation on the first factor of G/B x G/B x g (and the trivial action on the
second and third factors). This is exactly the assertion of the lemma. U

Remark 2.4.9. Let h € P,(k), since h(Z,) C G/B x G/B x g is isomorphic to Z,~ inside
G/B x G/B x g if and only if w’ = w” (look at the respective projections in G/B x G/B),
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it follows from Lemma 2.4.8 and (iii) of Theorem 2.4.7 that whenever a, ., # 0 we have
W Z.) = Zy for any h € P,(k) (in particular h(Z,) = Z,).

2.5. Completions and tangent spaces. We prove some useful results related to comple-
tions and tangent spaces on the varieties X and Z. These results will be used at several
places in the rest of the paper.

It follows from (2.9) that the induced map (K1, ka) : X — t x t factors through the fiber
product t X t. We denote by 1" := t Xy t this fiber product (though both have the same
dimension, there should be no confusion with the torus 7" of G which won’t directly appear).

Lemma 2.5.1. The irreducible components of T' =t X t are the (Tw)wew where:
Ty = {(z,Ad(w™)2), z € t}
and X,, is the unique irreducible component of X such that (K1, k2)(Xy) = To.

Proof. The first half of the statement is clear since the T,, are irreducible closed subschemes
of T"with the same dimension. The second half follows from Lemma 2.3.4 and the surjectivity
of K, (Lemma 2.3.1). O

For w € W denote by nx, € X (resp. nr, € T) the generic point corresponding to
the irreducible component X,, (resp. T,,), then it follows from Lemma 2.5.1 that the map
(K1, k2) : X —> T is such that (kq, k2)(nx,,) = nr, for all w e W.

Let x be a closed point of X, w € W such that x € X,, C X and recall that f(,ﬂm)(x)
(resp. T (k1 ,k0)(x)) is the completion of T' (resp. T,,) at the point (k1,k2)(z). We have a
commutative diagram of formal schemes over k:

Xw,m(—> Xz

| |

~

Lo, (1 82) (2) = T o) () -

In §3.5 we will use the following lemma.

Lemma 2.5.2. Let x, w be as above and let w' € W. The composition of the morphisms
Xw z X — T(,$1 xo)(x) Jactors through T (k1 m2) (@) < T(,.€1 wo)(@) if and only if w' = w.

Proof. Let A be a local excellent reduced ring such that A/p is normal for each minimal
prime ideal p of A and let A be the completion of A with respect to my. Then the morphism
Specﬁ — Spec A induces a bijection between the sets of minimal prime ideals on both
sides. Indeed, let B be the integral closure of A, i.e. the product over the minimal prime
ideals p of A of the integral closures of A/p. Then by [41, Sch.7.8.3(vii)] there is a canonical
bijection between the set of minimal prime ideals of A and the set of maximal ideals of B.
But since A/p is normal by assumption we have B = [], A/p, and the set of maximal ideals
of B is in bijection with the set of minimal prime ideals of A.

Now the local ring Ox . of X at x satisfies all the above assumptions by [41, Prop.7.8.6(i)],
[41, Sch.7.8.3(ii)], (i) of Theorem 2.2.6 and Theorem 2.3.6. Likewise with the local ring
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O7,(11,50)() Since the irreducible components T, are smooth (being isomorphic to t). In
particular the nonempty Spec @ X, @ (resp Spec @T  (k1.2)(x)) for w' € W are the irreducible
components of Spec (’)Xx (resp. Spec OT(m ko)(z))- Denote by 7y, € Spec Oxm (resp. fir, €

Spec OXJ;) the generlc point of Spec OXw . (resp Spec OTw (k1,52)(z)), it is enough to prove

that the map Spec OXx — Spec OT (k1,59) () Sends fx, to Ay, . But this follows from what
precedes together with the commutative diagram:

Spec Ox , Spec Ox 4

| |

Spec O (k1 ,r2)(x) — OPEC OT () 12) ()

and the fact both 7x, and 7z, are sent to nr, in Spec O, x)(2)- O

Denote by Tk, . the tangent space of X,, at x, which is just the same thing as the k(x)-
vector space Xy, .(k(z)[e]).

Proposition 2.5.3. Assume that a closed point x € X,, C G/B x G/B x g is such that its
image in g is 0 and let w' € W such that x € X, N V.
(i) We have:

. . . wwlil
dimy(z) Tx,0 < dimye)) Ty ne) + dimpe) 7 (k(2)) + 1g(w'w).

(ii) If € has codimension 1g(w) — lg(w') in t and U, is smooth at m(x), then X, is
smooth at x.

Proof. (i) Replacing k by its finite extension k(z) if necessary and base changing, we can
assume x € X, (k) and k(z) = k(m(z)) = k. Since X, and U, are G-equivariant, we can
assume 7(z) = (B,w'B) € G/B x G/B. Recall that m(X,) = U, (see the proof of Lemma
2.2.4), hence we have a closed immersion X,, < U,, x g, and thus also a closed immersion

X\w,x — (ﬁw)w(z) x g where g is the completion of g at 0. Hence any vector v € Tk, , is

of the form v = (g B(k[e]), goB(k[e ]), 1Y) where (§1,92) € G(kle]) x G(kle]) is such that

(91B(kle]), G2B(k[e])) € Ty Uw))(k[e]) and where ¢ € g(k). Working out the
(9

= Tures
condition (2.3) for (§1B(k[e]), g2B(k[e]),ev) to be in X,(k[e]) we find (w(z),) € X (k),
hence (7(z),v) € Vw/(k‘) since (:E) € Uy (k). This implies in particulAar /ig((ﬂ(x),w)A) =
Ad(w' ™Yk ((7(z), ). 7 € Xuo(kle]), Lemma 2.3.4 implies in €(k[e]) (where  :=
completion of t at 0):

Ad(g; ey = Ad(w ) Ad(g; New

and thus ko ((m(x),v)) = Ad(w 1)k ((7(2),1)). Hence we have x1((7(z),)) € t°(k) where
w = ww'"! and from (2.7) (with ¢ = 1) we obtain ¥ € t*(k) & (u(k) N Ad(w')u(k)). We
deduce an injection of k-vector spaces:

Tx\o = Tog pa) @ (k) @ (u(k) N Ad(w")u(k))

and the upper bound in the statement is precisely the dimension of the right hand side.
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(ii) Under the assumptions we have dimy(x(x)) T »(n) = dim U, = dim G/B + lg(w). So
we find using lg(w'wy) = dim G/ B —lg(w’) and dimyy twwlfl(k(x)) = dim t— (Ig(w) —lg(w")):
dimgyTx, . < dimG/B +lg(w)+dimt — lg(w) + lg(w’) + dim G/B — Ig(w’)

= 2dimG/B+dimt = dimG.
Since dim G = dim X, < dimy,) T'x,, », we deduce dimy(,) T, » = dim G = dim X,, whence

the smoothness at x. O

Remark 2.5.4. One can prove that, at least for w = wy, Conjecture 2.3.7 (for w = wy)
implies that the inequality in (i) of Proposition 2.5.3 is an equality.

Let X := x7'(0) C X (here also we do not take the reduced associated scheme), if M is a
coherent Ox-module, we define its class [M] € Z°(Z) as in (2.13) replacing m(Z,,Y") by the
length m(Z,,, M) of the Of,nzw -module M,, . Let  be a closed point in X (or equivalently
in Z), then it follows from [41, Sch.7.8.3(vii)] and [41, Sch.7.8.3(x)] that the completed
local rings @Z,x, @Zw,x are reduced equidimensional (of dimension dim Z when nonzero).
Moreover the set of irreducible components of Spec @Z,x is the union for all w € W of the
sets of irreducible components of Spec O Z.z (nOte that we don’t know whether Spec @Zw,x is
irreducible, see Remark 2.4.2 and [41, Sch.7.8.3(vii)]). We define M, := M Qo @Y,x which

also has a class [M,] in Z°(Spec Oy,). Likewise we define [Spec Oy, .| € Z°(Spec O.,).
Lemma 2.5.5. We have:
M,] = 3" m(Zy, M)[Spec Oy, ] € Z°(Spec O.,).

weWw

Proof. Let W(x) := {w € W, x € Z,}, using that the irreducible components of Spec Oy,
are the Spec Oy, . for w € W(z), from the definition of m(Z,, M) it is obvious that:

(M, = > m(Z,, M)[Spec Oz, ] € Z°(Spec Oz)

weW
where M, := M ®o_Ox . Denote by p,, for w € W(x) the minimal prime ideal of O , (or
equivalently Oz,) corresponding to Oy, ., and by qu1, ..., quwsr, the minimal prime ideals

of Spec @Y,x (or equivalently Spec @Z;v) above p,, (recall that the morphism of local rings
Ox, — @ij is faithfully flat). Then by definition (and since O, , = 0 if w ¢ W (x)):

[M\x] = Z z:(lg(@Y Vau, (M\w)qw,i>[Spec(@Zw,x/qw,i)] in ZO<SpeC@Z,x)~
weW (z) i=1 et

~ ~

easily follows that:

—~

lg(é\iz)qw’i(Mw)qw,i = <1g(0§,z) (Mz>pw)(lg(5f ’_(OY,z)qw,i/p’w)
= m<ZwaM)lg(6§z (@Xx ®ox., O 2 )

Jaw,i

which gives the result since @y’m ®or Oz,a = Oy, » (recall the map Ox, = Oz,2 is
surjective). O
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Define for w € W (see (iii) of Theorem 2.4.7):

(2.16) [E(wwo -0),] = Z Qo [SPEC @Zwur] € 7°(Spec @Zx)
w' eW

(note that [&(wwq - 0),] # 0 when w € W (z) since @y, = 1).
Corollary 2.5.6. For w € W we have:

wa, Z Pwow 'wow [E(w,w() : O)Jj:l c ZO(SpeC @Z,JJ)-
w' eW

Proof. This follows from Proposition 2.4.6, (ii) of Theorem 2.4.7 and Lemma 2.5.5. O

3. A LOCAL MODEL FOR THE TRIANGULINE VARIETY

We show that the completed local rings of the trianguline variety Xi,;(7) at certain suffi-
ciently generic points of integral weights can be described (up to formally smooth morphisms)
by completed local rings on the variety X of §2 for a suitable GG. This result will have many
local and global consequences in §4 and §5.

3.1. Almost de Rham Bgr-representations. We define and study some groupoids of
equal characteristic deformations of an almost de Rham Bgr-representation of Gx and of a
filtered almost de Rham Bggr-representation of Gy .

We fix K a finite extension of Q, and first recall some statements on almost de Rham
representations of Gx. In what follows the rings Blz and Bgr are topological rings for
the so-called natural topology ([37, §3.2]) and all finite type modules over these rings are
endowed with the natural topology. As usual we use the notation ¢ for “Fontaine’s 2in”
element depending on the choice of a compatible system of primitive p”-th roots of 1 in K.
Recall also that a Bgr-representation of the group G is a finite dimensional B4g-vector space
with a continuous semilinear action of Gx (37, §3]). We denote by Repg,. (Gx) the abelian
category of Bgr-representations of Gx. If W is an object of Repg, . (Gx), it follows from
the compactness of Gx and the fact that BJ; is a discrete valuation ring that W contains a
Blg-lattice stable under Gx. We say that W is almost de Rham ([37, §3.7]) if it contains a
Gx-stable Blg-lattice W™ such that the Sen weights of the C-representation W /tW™ are
all in Z.

Let B/ g be the algebra Bji[log(t)] defined in [37, §4.3] and Byar := Bar Rt Bl4r- The

group G acts on deR via ring homomorphisms extending its usual action on Blz and such
that g(log(t)) = log(t)+log(e(g)). This action naturally extends to Bpar. Moreover there is a
unique Byg-derivation vg ,, of Bpar such that vg . (log(t)) = —1, and it obviously preserves
Bl4r and commutes with Ggx. If W is a Bgg-representation of Gg, we set Dpar(W) :=
(Bpar ®Bp W)gK , which is a finite dimensional K-vector space of dimension < dimg,, W
(see [37, §4.3]). It follows from [37, Th.4.1(2)] that a Bggr-representation W is almost de
Rham if and only if dimg Dyar(W) = dimp,, W. We say that a Bgr-representation is
de Rham if dimg W9 = dimp_, W, hence any de Rham Bggr-representation is almost de
Rham. The almost de Rham representations form a tannakian subcategory Rep 4gr(Gx) of
Repg, . (Gx) which is stable under kernel, cokernel, extensions (see [37, §3.7]).
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If F is a field of characteristic 0, recall that the action of the additive algebraic group G, on
some finite dimensional E-vector space V' is equivalent to the data of some E-linear nilpotent
endomorphism vy of V, an element A € E' = G,(F) acting via exp(Avy ). Consequently the
category Repg(G,) is equivalent to the category of pairs (V, vy ) with V' a finite dimensional
E-vector space and vy a nilpotent E-linear endomorphism of V' (morphisms being the FE-
linear maps commuting with the vy).

If W is a Bgr-representation, we let G, act on Dyqr(W) via the K-linear endomorphism
induced by vp_,, ®1 on Byar ®B,z W. Then Dpqgr is a functor from the category Repg, (Gx)
to the category Repy (G,).

Proposition 3.1.1. The functor Dpqr induces an equivalence of categories between

Rep,qr(9x) and Repy(Ga).

Proof. By [37, Th.3.19(iii)] any object W' of Rep 4r(Gk) is isomorphic to a direct sum of
Bar[0; d] where Byr[0;d] C Bpar is the subspace of Bgg-polynomials of degree < d in log(t)
as defined in [37, Th.3.19]. It follows that Ko ®x Dpar (W) and Dag oo(W) are isomorphic
as objects of Repy_ (Ga) where Dgr oo (W) is defined in [37, §3.6].

Let Wy and W5 be two objects of Rep,qg(Gx). It then follows from [37, Th.3.17] that the
natural map:

(3.1) HomRepde(gK)(Wl, Wg) — HomRepK(Ga)(Dde(Wl), Dde(Wg))
induces an isomorphism:
Ko ®K HomRepde(gK)<Wh Wy) ~ Hompgep, ) (Koo @ Dpar(Wh), Koo @k Dpar(W2)).

As the natural map:

Koo ®x Homgep, (G,) (Dpar(W1), Dpar(W2))
— I—IOInRepKoo (Ga)(Koo KK Dde(Wl)a Koo QK Dde(WQ))

is an isomorphism ([46, §1.2.10(7)]), the map (3.1) is also an isomorphism and the restriction
of Dyar to Rep,gr(Gx) is fully faithful.

Let V be a finite dimensional K-representation of G,. We can write V as a direct sum
of indecomposable objects of dimensions dy, ..., d, and we see that V is isomorphic to the
vector space Dpar (Bi_; Bar[0; d;]). The functor Dygr is thus essentially surjective. O

Corollary 3.1.2. Let (V,vy) be an object of Repyi(G,) and set:
W(V,vy) := (Bpar @k V)VdeR®1+1®VV:O-

Then W (V,wvy) is an almost de Rham Bgr-representation of dimension dimg V' and the
functor (V,vy) — W(V,vy) is a quasi-inverse of Dypar in Proposition 3.1.1. Moreover the
functors Dyar (restricted to the category Rep,qr(Gx)) and W are ezact.

Proof. Let W be an object of Rep,4r(Fx), then the natural B,qr-linear map:
(3.2) Ppdr © Bpar @k Dpar(W) — Bpar @pyy W

is an isomorphism by [37, Th.3.13] and identifies W with W(Dyar(W ), vp, 4z (w)). The other
assertions are direct consequences of these statements together with Proposition 3.1.1 and
the fact that an additive equivalence between abelian categories is exact. O
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Let A be a finite dimensional Q,-algebra. We define an A®q, Bar-representation of Gx as a
Bgr-representation W of G together with a morphism of Q,-algebras A — EndRedeR(gK) (W)
which makes W a finite free A®q, Bqr-module. We denote by Rep 4, o, B (G ) the category
of A®q, Bar-representation of Gi. We say that an A ®q, Bqr-representation of G is almost
de Rham if the underlying Bqyr-representation is, and define Rep 4r 4(Gk) as the category
of almost de Rham A ®q, Bar-representation of Gx (with obvious morphisms).

Remark 3.1.3. An A ®q, Bar-representation of Gi always contains a Bjg-lattice which is
preserved by the action of A. In fact, it is possible that it always contains such a lattice
which is moreover free over A ®g, By, but we won’t need that statement. This is at least
true for almost de Rham A ®q, Bqr-representations as a consequence of Lemma 3.2.2 below.

Lemma 3.1.4. The functor Dpqr induces an equivalence of categories between Repqg 4(Gr)
and RepA®@pK(Ga).

Proof. Let W be an almost de Rham Bggr-representation of Gx with a morphism of Q,-
algebras A — EndRedeR(gK)(W). It follows from Proposition 3.1.1 that it is enough to check
that W is a finite free A ®g, Bar-module if and only if Dyqr (W) is a finite free A ®q, K-
module. As the functor D,qr commutes with direct sums, we can moreover assume that A
is a local artinian (finite dimensional) Q,-algebra.

Let us first prove that Dygr(W) is a flat A-module if and only if W is a flat A-module.
Let M be an A-module of finite type. As A is noetherian, the A-module M is isomorphic to
the cokernel of some A-linear map between finite free A-modules. Using the fact that Dyar
is an exact functor commuting with direct sums, the canonical map M ®4 Dpar(W) —
Dpar (M ®4 W) is an isomorphism. Using the exactness of D,qr again, we conclude that

Dyar(W) is A-flat if and only if W is a A-flat.

If H is any field extension of Q,, we can check that an A ®q, H-module M which is A-flat
is a finite free A ®g, H-module if and only if M /m4M is a finite free (A/m4) ®q, H-module.
Applying this result with H € {K,Bgr} together with the isomorphisms Dy (W/msW) ~
(A/my) @4 Dpar(W) and W(V/maV) = (A/my) ®4 W (V) (the latter following from the
exactness of the functor W), we are reduced to the case where A is replaced by A/m4, that
is A is a finite field extension of Q,,.

For K’ a finite extension of K, we easily check that there is a canonical isomorphism
K' @5 Dpar(W) =~ (Bpar @, W)9%’ so that Wlg,., is almost de Rham. Moreover Dyqr (W)
is a finite free A®q, K-module if and only if K’ ®x Dpar (W) is a finite free A®q, K'-module.

We can thus replace K by an arbitrary finite K’ and hence assume A ®q, K ~ @Eﬁ@”] Ke;

with 612 = €;. ertlng A®Qp BdR = (A®Qp K)®KBdR ~ @Eil(@p] BdRei, we have W = @z(elw)

and:
Dyar(P(eiW)) = (e Dpar(W)).

] %

As W is almost de Rham, so is ;W and thus:
dimK 6Z‘Dde(W) = dln’lK Dde(eiW) = dil’anR eiW

We conclude that Dyqr (W) is a finite free A ®g, K-module if and only if W is a finite free
A ®q, Bqr-module. ]
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Let L be a finite extension of QQ, that splits K and set:
G := Spec L Xgspecq, Resk/q,(GLn k) = GLy/p X -+ x GLy .

[K:Qp] times
We let B = UT C G the Borel subgroup of upper triangular matrices where 7' is the diagonal
torus and U the upper unipotent matrices and define g, b, t, u, g, X, etc. as in §2.1 (with
k = L). We refer the reader to the appendix of [53] for a summary of the basic definitions,
notation and properties of categories cofibered in groupoids, that we use without comment
below and in the next sections.

We fix W an almost de Rham L ®q, Bar-representation of Gx of rank n > 1 and define
Xw a groupoid over Cy, (or a category cofibered in groupoids over Cp) as follows.

e The objects of Xy are triples (A, Wy, 14) where A is an object of Cr,, W4 is an object
of Rep,ar 4(Gk) and 14 : Wy @4 L — W.

e A morphism (A, Wa,t4) — (A, War,14) is a map A — A’ in C;, and an isomor-
phism W4 ®4 A — Wy compatible (in an obvious sense) with the morphisms ¢4
and ¢ 4.

Remark 3.1.5. Since the category of almost de Rham Bgg-representations is stable under
extensions, any A ®q, Bqr-representation of Gx which deforms W is in fact automatically
almost de Rham, by using a dévissage on the finite dimensional L-algebra A.

Let a : (L ®q, K)" — Dpar(WW) be a fixed isomorphism, we define another groupoid

Xy over Cy, as follows.

e The objects of Xjj, are (A, Wa, 14, aa) with (Wa,14) an object of Xy (A) and a4 :
(A®q, K)* = Dpar(Wa) such that the following diagram commutes:

1®a
(L ®q, K)" 2 ®4 Dpar(Wy)
(L ®q, K)" Dypar(W).

e A morphism (A, Wa,ta,a4) — (A, W), tar,aa) is a morphism (A, Wy, 14) —
(A", War,ta) in Xy such that the following diagram commutes:

n 1®a

A ®a (A Rq, K)" —= A" ®4 Dpar(Wa)

-

(A ©g, K)" — > Dpar(War).

Forgetting a4 gives an obvious functor X}}, — Xy which is a morphism of groupoids
over Cr, in the sense of [53, §A.4].

Recall that a morphism X — Y of groupoids over Cp is formally smooth if, for any
surjection A — B in Cy, any object xp in X (B) and any object y4 in Y (A) such that the
image of xp under the functor X (B) — Y (B) is isomorphic to the image of y4 under the
functor Y(A) — Y (B), then there exists an object x4 in X(A) such that x4 maps to an
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object isomorphic to zp under X(A) — X (B) and x4 maps to an object isomorphic to ya
under X (A) — Y(A). For instance it is easy to check that X3 — Xy is formally smooth.

If X is a groupoid over C;, such that, for each object A of Cy, the isomorphism classes
of the category X (A) form a set, we denote by |X|(A) this set so that we obtain a functor
| X| from Cy, to Sets as in [53, §A.5]. Note that we can also see any functor F' : C, — Sets
as a groupoid over Cy, by defining its objects to be (A, z) with x € F(A) and morphisms
(A,x) — (A, 2') to be those morphisms A — A’ sending « € F(A) to 2’ € F(A’). Then
we have an obvious morphism X — | X| of groupoids over Cy. For instance we have functors
(or groupoids over Cr) | Xw| and | Xi| and a commutative diagram:

X —— Xy

N

| X | — [ Xw]

where the horizontal morphisms are formally smooth. Moreover the morphism X}, — | X} |
is actually an equivalence since any automorphism of an object (A, W4, 14, a4) of X3, (A) is
the identity on Dyar(Wa4) because of the framing, hence is also the identity on W4 because
of Lemma 3.1.4.

If (Wa,ta) is an object of Xy (A), we denote by vw, = vp . (w,) the nilpotent endo-
morphism of Dpqr(Wa) giving the action of G,. If (Wa, 4, a4) is an object of Xi.(A), we
define Ny, € M,(A ®q, K) = g(A) as the matrix of a;' o vy, o a4 in the canonical basis
of (A®g, K)" (in the case A = L, we simply write Ny). We denote by g the completion of
g at the point Ny, € g(L), that we can see as a functor C, — Sets (hence also as a groupoid
over Cp,).

Corollary 3.1.6. The groupoid X5, over Cp, is pro-representable. The functor:
(WA7 LA, C(A) — NWA

induces an isomorphism of functors between |X5,| and §. In particular the functor | Xy| is
pro-represented by a ring Ry, which is isomorphic to L[X,, ... , Xn2 (k0,1

Proof. This easily follows from Lemma 3.1.4. U

Remark 3.1.7. The functor | Xy | is not pro-representable, though it has a hull in the sense
of [59, Def.2.7]. The dimension of this hull depends on the Jordan form of vy . For example,
if vy = 0, one can check that the dimension of the tangent space |Xw|(L[e]) of | Xw]| is
n?[K : Q,] so that Ry, is a hull for | Xy/| (we won’t use that result).

Definition 3.1.8. A filtered A®@p Bar-representation (W, F,) is an A®Qp Bgr-representation
A ®q, Bar-subrepresentations of Gk such that the A ®Qp Bar-modules Fy and F;/F;—1 for
2 <1< n are free of rank 1.

If A— Bis amap in Cy and (W, F,) is a filtered A ®q, Bar-representation of Gg, we
define BRyF, := (B®aF;); and (B W, BR4F,) is then a filtered B®q, Bar-representation
of gK.
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Let (W, F,) be a filtered L ®q, Bqr-representation of Gx with W almost de Rham of
rank n > 1. Then each quotient F;/F;_; is almost de Rham and finite free of rank one
over L ®g, Bqr and thus (e.g. using Lemma 3.1.4) isomorphic to the trivial representation
L ®q, Bar. We define the groupoid Xy, r, over Cy, of deformations of (W, F,) as follows.

e The objects of Xy 7, are (A, W4, Fae,ta) where (Wy,t4) is an object of Xy (A) and
Fae is a filtration of W4 as in Definition 3.1.8 such that ¢4 induces isomorphisms
Fai®a L — F; for all i.

e The morphisms are the morphisms in Xy, compatible with the filtrations, i.e. which
induce isomorphisms Fu; ®4 A — Far,; for all 7.

Forgetting the filtration yields a morphism Xy r, — Xy of groupoids over Cy..

Now we define the groupoid Xy, 7, over Cy, as the fiber product Xy, 7, Xx,, Xy (see [53,
§A.4]). More explicitly the objects of XVDVJ. are (A, Wa, Fae,ta,q) with (W4, Fae,ta) in
Xwr.(A) and (Wa,ta,a4) in Xij(A) (morphisms are left to the reader). As for Xjj, the
morphism Xy, z, — | Xjy, 7, | is also an equivalence.

X",]Vf., we set Dy o = (DAl)l with Dy, := Dpar(Fa,i). These are complete flags of Dyqr (W)
and Dpar(Wa) (respectively) and stable under vy, resp. vy,,. We denote by g (resp. ) the
completion of g (resp. t) at the point (a™'(D,), Nw) € g(L) (resp. at the point 0 € t(L)).
From Lemma 3.1.4 (and what precedes) and the smoothness of the L-scheme g, we deduce
as for Corollary 3.1.6 the following result.

Corollary 3.1.9. The groupoid X%f. over Cy, is pro-representable. The functor:
(WA7 FA,O; LA, OZA) — (aZI(DA,.)7 NWA)

induces an isomorphism of functors between | Xy, x| and g. In particular the functor | X%, 7|
is pro-represented by a formally smooth noetherian complete local ring of residue field L and
dimension n*K : Q,] = dimg.

Let k: g = t, (¢B,v) — Ad(g~')% be the weight map defined in §2.3, it maps the point
(a™'(D,), Nw) € (L) to 0 € t(L) (since Ny is nilpotent) and induces a morphism & : g — t.
We write sy 7, for the composition of the morphisms of groupoids over Cy:

Xir — | Xir] 5 -1

where the second map is the isomorphism of Corollary 3.1.9. One checks that k£, actually

factors through a map still denoted kw7, : Xw r, — t (as changing the fixed basis replaces
(9B,v) € g(A) by (¢'¢gB,Ad(¢')y) for some ¢ € G(A) with the notation of §2.1 which

doesn’t change the image by ). We thus have a commutative diagram:

(3.3) Xy — Xwr,

RW,Fe
KW,Fe

t.
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The map kwr, : Xwr — t has the following functorial interpretation. Let x4 =
(Wa, Fae, ta) be an object of Xy r (A). The endomorphism vy, induces an endomor-
phism v4; of each Dy;/Da;1 ~ Dyar(Fa,i/Fai-1) which is an A ®g, K-module of rank
1. Since there is a canonical isomorphism Endgep, asq, (@) (Dai/Dai1) ~ A®q, K, we can
identify v4; with a well-defined element of A ®q, K. Then sy, 7, is given by the explicit
formula:

(3.4) kwr (1) = Wat,. .. van) € (A®g, K)" ~1(A).

3.2. Almost de Rham BJ;-representations. We define and study some groupoids of
equal characteristic deformations of an almost de Rham Bji-representation of G-

We define a BJ-representation of Gy as a finite free Bjz-module with a continuous semi-
linear action of the group Gx and denote by RepBIR (Gk) the category of Bjg-representation
of Gx. If W+ is a Bjg-representation of Gy, then W+ is a Gg-stable Bjg-lattice in the
Bar-representation W := W+ Rps Bar = W*[%] We say that W is almost de Rham if
the Sen weights of the C-representation W /tW* are all in Z. It follows from [37, Th.3.13]
that this notion only depends on W and not on the chosen invariant Bji-lattice inside W.

We just write V' instead of (V,vy) from now on for an object of Repy(G,). If V is in
Repy (G,), a filtration Fil*(V) = (Fil'(V))sez of V is by definition a decreasing, exhaustive
and separated filtration by subobjects in the category Repy(G,). If W is an object of
Reppqr(Gk) and WT C W a Gg-stable Big-lattice, we define a filtration Filjy . (Dpar(WW))
of Dpar (W) by the formula:

(3.5) Filyy (Dpar(W)) := (t'Bigr @gr W) C Dypar(W) (i € Z).

It follows from [37, Th.4.1(3)] that the  such that Filj+ (Dpar(W))/ Filifi (Dpar(W)) # 0
are the opposite of the Sen weights of W /tW™ (counted with multiplicity).

Proposition 3.2.1. Let W be an object of Rep,qr (Gx ). The map W +—— Filj+ (Dpar(W))

is a bijection between the set of Gr-stable Big-lattices of W and the set of filtrations of
Doar (W) as a G,-representation.

Proof. Let W be a Gg-stable B jg-lattice of W. We define a decreasing filtration on the left
hand side of (3.2) by:

(3.6) Filiy+ (Bpar @x Dpar(W)) := > #"Blag @k Filij, (Dar(W)) (i € Z)
i1+1i0=1

and recall from the proof of Corollary 3.1.2 that W ~ W(Dpar (W), vp,snw)) = (Bpar @k

Dpar(W))y=o where v := vp_,, ® 1 +1® vp_,,w). From the proof of [37, Th.3.13] we see

that (see (3.2) for ppar):

(3.7) poar (Filyy+ (Bpar @k Dpar(W))) € t'Biyg @t W (i € Z).

Moreover the bottom horizontal arrow in the commutative diagram on page 62 of [37] is
actually in our case an isomorphism (see [37, §2.6]) which implies that (3.7) is in fact an
equality for all i € Z. Consequently we see that for W+ C W a Gx-stable Bis-lattice, we
have:

W+ =W N ppar (Filly+ (Bpar @k Dpar(W))) C Bpar @By W
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which proves that the map W — Filj+ (Dpar(W)) is injective.

Conversely let Fil*(Dpqr(W)) be a filtration of Dyar (W), set Fil’(Bpar ®x Dpar(W)) :=
Yient ' Byar @k Fil'(Dpar(W)) and define:

Wike :== W N ppar (Fil’ (Bpar @k Dpar(W))) = ppar (Fil’(Bpar ®x Dpar(W))u—0) C W.

The Bjgz-module W is clearly Gr-stable. Moreover a BJz-submodule H of W is a Bji-
lattice if and only if U, t™"H = W and N, t"H = 0. Together with W =~ p qr((Bpar @k
Dpar(W))y—o) this implies that ppar ((t"Bjgr @k Dpar(W))y=o) is a Big-lattice of W for each
n € Z. Let ig:=max{i, Fil'( Dpqr(W)) = Dpar(W)} and i, := min{i, Fil'(Dyqr(W)) = 0},
then we have:
ppar (1Bl @k Dpar(W))v=0) € Wik € ppar((t™"Blir ®k Dpar(W))v=o)
which implies that Wii. is a Blz-lattice of W. One easily checks that p,qr induces an
isomorphism Fil’(Bpar @ x Dpar (W)) — B;“dR®Bd+RFﬂO(deR® &k Dpar(W)),—o which implies
Fil’(Bpar @k Dpar (W)) = Fill,+  (Bpar®x Dpar(W)) by the first part of the proof (apply the
Fil®
equality (3.7) for ¢ = 0 with W), from which one gets Fil*(Dyqr (W)) = Filf,+  (Dpar(W)).
Fil®

This gives the surjectivity. 0

From now on, if V' is an object of Repy (G,) and Fil* = Fil*(V) a filtration of V', we denote
by WT(V,Fil*) the Gx-stable Blz-lattice of (Boar @k V) ®1+1am,—0 associated to Fil®
via Proposition 3.2.1.

VBpar

Let A be a finite dimensional Q,-algebra. We define an A®gq, Bjy-representation as a By-
representation W+ of G together with a morphism of Q,-algebras A — EndRepB = @) (WH)
dR

which makes W a finite free A ®q, Bjz-module. We say that an A ®q, Bjx-representation
of Gk is almost de Rham if the underlying Bji-representation is. We define the category
of filtered A ®q, K-representations of G, as the category of (V,Fil®) where V is an object
of Repyg, «(G,) and Fil* = Fil*(V) = (Fil'(V));ez a decreasing, exhaustive and separated
filtration of V by subobjects Fil (V) of Rep 4 o «(G,) such that the graded pieces gri . (V) :=
Fil'(V)/Fil'*' (V) are free of rank 1 over A ®g, K for i € Z (the obvious definition of
morphisms being left to the reader).

Lemma 3.2.2. The functor defined by W+ +—— (Dpar(WT[4]),Filyy 1), where one sets
Filj, . = Filjy+ (Dpar (WT[3])) as defined in (5.5), induces an equivalence between the cate-
gory of almost de Rham A®q, Blg -representations of G and the category of filtered A®q, K -
representations of G,. Moreover, if W+ is an almost de Rham A ®q, Blg -representation of
Gx and M is an A-module of finite type (note that M @ 4 W is then a Bl -representation),
then for each i € Z there is a natural A-linear isomorphism of Bl -representations:

M @4 grens  (Dpar(W[F)) = grpas  (Dpar(M @4 WT[3])).

AWt

Proof. Let Bypr = C[t,t7*,log(t)] as in [37, §2.7] and, for i € Z, set:
FIIZ(BPHT) = tZO[t, 10g(t>] C BpHT-
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Note that Bpopr = ®jez gr'(Bpnr) where:
(3.8) gr'(Byur) = Fil'(Bygr)/ Fil'™ (Byur) = t'Cllog(t)] & t'Blar/t" ' Blg

For a C-representation U of G, set :

 Dyr(U) == (Bpur ®c U)9%
Fil' Dpur(U)) = (Fil'Byur ®@c U)9% |
gr'(Dpur(U)) = Fil'(Dyur(U))/ FI (Dpur(U)) = (gr'(Bpur) ®c U)9%.

Let W be a BJg-representation of G and set W := W*[1] and W+ := W /tW*, which is

a C’—representatlon of Gr. Left exactness of G- 1nvarlant3ﬂd the last isomorphism in (3.8)

give a natural injection gri.. , (Dpar(W)) = gr'(Dppr(WT)). If W is almost de Rham,
w

we have:

dimyc Dypar (W) = >~ dim grige | (Dpar(W)) < 3 dimge gr' (Dpur (W)

S dlmK DpHT (W) = dln’lo W = dideR(W> = dlmK Dde(W)

where the first equality on the second line follows from the fact that the Sen weights

of Wt are in Z (i.e. WT is almost Hodge-Tate in the sense of [37, §2.7]). We thus

see that gri. +(Dde(W)) = gr'(Dpar(WT)), and consequently that there is a functorial
w

isomorphism gr%ilﬁw (Dpar(W)) := Piez gr%ﬂ"ﬁ (Dpar(W)) =~ Dppr(W+) on the category
of almost de Rham Bji-representations. As the functor Dygr is exact on the category

of C-representations with Sen weights in Z (see for example [37, Th.4.2]), we conclude
that the functor W+ — griy. +(Dde(I/V)) from the category of almost de Rham BJy-
w

representations of Gi to the category of finite dimensional K-vector spaces is exact. Equiv-
alently if 0 — W — W55 — W3" — 0 is a short exact sequence of almost de Rham
Big-representations of Gk and if W; := W;[3] for ¢ € {1,2,3}, we have a strict exact
sequence of filtered K-representations of G-

0— (Dde<W1>, Fll;vfr) — (Dde(Wz), Fﬂ;/[/;) — (Dde(Wg), Fll%,;) — 0.

Using that a BJz-submodule of a free Biz-module of finite type is also free of finite type
(as Biy is a discrete valuation ring), we get in particular that an exact sequence W;"
W5H — Wit — 0 of almost de Rham BJ-representations yields an exact sequence:

grine , (Dpar(W1)) — grie  (Dpar(W2)) — gripe | (Dpar(Ws)) — 0.
Wi Wy W3
We can then argue exactly as in the proof of Lemma 3.1.4 and obtain both the last statement
of the lemma (writing M as the cokernel of a linear map between free A-modules of finite

type) and the fact that if W7 is an almost de Rham A ®q, Bg-representation of Gk then
rhye (Dpar(W)) is a flat A-module.
w

Conversely if 0 — (V4,Fil}) — (Vo,Fily) — (V5,Fil}) — 0 is a strict exact sequence of
filtered K-representations of G,, then it follows from the definition of (V, Fil®) — W*(V, Fil®)
that there is an exact sequence of almost de Rham B, -representations of G:

0 — WH(V,Fil}) — W (V,, Fil3) — WH(V3, Fil3).
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Considering the image of W (V,, Fil3) in W (V3, Fily) (which is still a Bj-representation as

BJy is a discrete valuation ring) and applying the exact functor W — gri.. . (Dpar(W)),
w

we deduce that we have a short exact sequence:

0 — W14, Fil) — WH(Va, Fil}) — W (V, Fil}) — 0.

We can then argue again as in the proof of Lemma 3.1.4 and check that for each A-
module M of finite type and each filtered A ®g, K-representation V' of G,, there is a natural
isomorphism M @, WH(V,Fil*) ~ WH(M @, V, M @4 Fil*). If (V, Fil*) is a filtered A®q, K-
representations of G,, then the A-module W (V,Fil*) is A-flat if we can prove that M —
(M ®4V,M ®4 Fil*) sends short exact sequences of finite type A-modules to strict exact
sequences of filtered K-representations of G,. But this is a direct consequence of the above
flatness of gry e (V) (together with Proposition 3.2.1).

Thus we have proven that W is A-flat if and only if gr%“;w (Dpar(W*[1])) is A-flat. The
rest of the proof is then essentially similar to the second half of the proof of Lemma 3.1.4
(using that one can embed Bj, into Baqg) and yields that W™ is finite free over A ®q, Big
if and only if grﬁﬂ;‘ﬂr (Dpar (WT[3])) is finite free over A ®q, K. O

Let L be a finite extension of Q, splitting K and recall that if A is an object of Cr,, we
have A ®g, K ~ @,exA. Let W} be an almost de Rham A ®q, Bj-representation of Gx
and set Wy := W{[1]. If T € ¥ and i € Z, set:

4 Dypar - (Wy) = quR(WA) ® g, K107 A
Fil;v (Dpar,-(Wa)) = Fﬂi/vz (Dpar(Wa)) ®A®q, K 197 A
gripn;v (Dpar-(Wa)) = Filiy+ (Dpar+(Wa))/ Fili7s (Dpar - (Wa)).

A

It follows from Lemma 3.2.2 that they are all free A-modules of finite type.

Now let W be an almost de Rham L®g, BJ-representation of Gy of rank n, W := W*[1]
and, for each 7 € X, denote by —h,; > --- > —h,,, the integers ¢ such that:

griFil;V+ (Dpar,-(W)) = Fﬂ%/lﬁ (Dpar,-(W))/ FﬂZH (Dpar,~(W)) #0

(counted with multiplicity). Let A bein Cr, W3 an almost de Rham A®q, Bj-representation
of Gk and 14 : Wi ®4 L — W an isomorphism of L ®gq, Big-representations of Gx. The
following result is a direct consequence of the last statement of Lemma 3.2.2.

Corollary 3.2.3. For each T € ¥ and v € Z we have:
gt (Dpar,r(Wa)) ®4 L = grpge  (Dpar,(W)).
w w

A

In particular grie N (Dpar.-(Wa)) # 0 if and only if there exists j such that i = —h, ;.
w

A

We can define groupoids Xy+ and X, over Cp, of respectively deformations and framed
deformations of W exactly as we defined Xy and X5, in §3.1 by replacing W, Wy in
Xw by W, W with W} an almost de Rham A ®q, Big-representation of Gx. Note that
Xt = X+ Xx, Xiy and Xipw — | X7+ ] is an equivalence. We have X, — X+ and
inverting ¢ induces morphisms Xy+ — Xy, X+ — Xj;, of groupoids over Cy, together
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with an obvious commutative diagram. We will make X7;,, more explicit under one more
assumption on W™,

Definition 3.2.4. Let W™ be an almost de Rham L ®q, By -representation of rank n. We
say that W is regular if for each 7 € ¥ the h,; are pairwise distinct, i.e. hyy < -+ < hrp.

Assume that W is moreover regular. Let A be an object of C;, and (W, 14, a) an object
of Xip+(A). We define a complete flag:

Fily 1 o = Fily+ ((Dpar(Wa)) := (Fily+ ;(Dpar (Wa)))ieqr,...n)
of the free A ®g, K-module Dyqr(W4) by the formula:
(3.9) Fily+ (Dpar(Wa)) := €D Fil 1"1” (Dpar.+(Wa)) i€{l,...,n}

TEX

and it follows from Corollary 3.2.3 that each FﬂW:J(Dde(WA)) / FilW;{’Fl(Dde(WA)) is a
free A ®q, K-module of rank 1. Since FilW;. is stable under the endomorphism vy, of
Dyoar(Wy), the pair (a;ll(FﬂWX’.), Nyw,) defines an element of g(A) where Ny, € g(A) is as
in §3.1. Denote by g the completion of § at the point (Fily+ o, Nw) € g(L) (note that the
formal scheme g g here is in general different from the formal scheme also denoted g g in §3.1
since we complete at different points of g(L), see §3.5 for the mix of the two!).

Like for Corollary 3.1.9, we deduce the following result from Lemma 3.2.2.
Theorem 3.2.5. The groupoid Xy is pro-representable. The functor:

(Wj, LA, OéA) — (a;ll(FﬂW;{,o)v NWA)

induces an isomorphism of functors between |X};..| and a. In particular the functor | X+ |
is pro-represented by a formally smooth noetherian complete local ring of residue field L and
dimension n*[K : Q,] = dim g.
As in §3.1 we write K+ for the composition of the morphisms of groupoids over Cy.:
XGs — [ X | =55 251
where the second map is the isomorphism of Corollary 3.2.5 and & is induced by x: g — t
(where t is the completion of t at 0). By the same argument as in §3.1 the morphism sy -+
again factors through a map still denoted xy+ : X+ — t so that we have a commutative
diagram:
XI%]/-" —_— XW+

K
w+
"R l

t.

3.3. Trianguline (¢, T'x)-modules over Rk[;]. We define and study some groupoids of
equal characteristic deformations of a (¢, 'k )-module over Ry k(1] and of a triangulated
(¢, Ik )-module over Ry, k[1].

We define a (i, I'x)-module over R[] as a finite free R [}]-module M with a semilinear
endomorphism ¢ and a semilinear action of the group I'x commuting with ¢ and such that
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there exists an Rg-lattice D of M stable under ¢ and I'x which is a (¢, ' )-module over
Rk in the usual sense (see e.g. [49]). Let A be a finite dimensional Q,-algebra, we define a
(¢, Tk )-module over R4 k(1] as a finite free R4 x[1]-module with an additional structure of
(¢, Pk )-module over Ry [4] such that the actions of ¢ and 'k are A-linear. We denote by
®T'L the category of (¢, 'k)-modules over Ry, ®T'x the category of (¢, 'k )-modules over
Rilf) and ®T 4 i the category of (¢, T'kx)-modules over R4 k1] (with obvious morphisms).

Remark 3.3.1. Here again (compare Remark 3.1.3), it is possible that a (¢, 'x)-module
in ®I'4 x always contains an R4 g-lattice stable under ¢ and I'x, but we don’t need this
result (note that it always contains an R k-lattice stable under ¢, I'x and A). This is true
at least for those objects in ®I'4 x giving rise to almost de Rham Bgg-representations of Gy,
see Remark 3.5.2.

Definition 3.3.2. Let A be a finite dimensional Q,-algebra and M an object of ®I'y . We
say that M is of character type if there exists a continuous character § : K* — A* such
that M ~ Rk (6)[7].

From now on we assume moreover that L splits K, that L C A and that A is local of
residue field L. For 7 € ¥ we also fix a Lubin-Tate element ¢, € Ry x as in [49, Not.6.2.7]
(recall that the ideal ¢, Ry x only depends on 7).

We say that a continuous character § : K* — A* is Q,-algebraic, or more simply algebraic,
if it has the following form: for each 7 € ¥, there exists an integer k. such that §(z) =
[Les 7(2)f for 2 € K*. If k := (k,.), € ZE®] we write 2X this character. A continuous
character K* — A* is said to be constant if it factors through K* — L* C A* (i.e. is a
constant family viewed as a family of characters over Sp A). Note that with this terminology
any algebraic character is constant.

Let § : K* — L* be continuous. It follows from [49, Cor.6.2.9] that every non zero
(¢, [k )-submodule (over Ry k) of Ry x(6)[7] is of the form t*R, x(8) for some k = (k,), €
ZIEQl where t* = IL, tff € Rrk-

Let Ak be the torsion subgroup of ' and fix v, € 'k a topological generator of I'y /A
If M is an object of ®I'x, we define H fMK (M) as the cohomology of the complex:

(310) MAK (@71)7('”{71) MAK @ MAK (177K74P71) MAK.

If M is an object of ®T'y s then the groups H{, (M) are A-modules. Moreover if D C M
is a (¢, 'x)-submodule such that M = D[1], then we have the formula:

(3.11) H,,, (M) =lim H, | (t7"D)

where H),_ (t7"D) is the cohomology of the (¢, 'x)-module "D over R (which is also

)

given by (3.10), see [54]). In particular one has:
(312)  Hy, (M)=lmH, (t7"D)= @Exﬁm (Ri,t " D) ~ Extgr, (Rx[3], M)

PYK

where the second isomorphism is the usual explicit computation of extensions in terms of
1-cocycles (see [25, Lem.2.2]) and where the last isomorphism is easy to check. If M is in
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PT' 4 ¢, the embedding RK[%] C RA,K[%] yields by pull-back a K-linear map:
(3.13) Exter, . (Raxli], M) — Exter, (Ri[i], M)

which is easily checked to be injective. By (3.12) any extension in Extyp, (Ri[1], M) is given
by a 1-cocycle in H&, ,YK(M), which in turn can be used to construct an explicit extension
in Extyr,  (Rax[i], M) (arguing as in [25, Lem.2.2]). It follows that (3.13) is surjective,

hence is an isomorphism of L-vector spaces.

The functor M — HJ (M) is left exact and we check using (3.11) that H)  (Rax(3]) =
A. For any continous § : KX — A*, by a dévissage on R4 (0)[7] or R4 x(0) and the left
exactness of H)_ , (3.11) together with [49, Prop.6.2.8(1)] (see also [57, §2.3]) imply the

following inequalities:

(314) dlm(@p H(p i (RA K(é)) S dlm(@p H(p i (RA K((S)[%]) S dlm(@p A.

The following Lemma follows by induction from [5, Prop.2.14].

Lemma 3.3.3. Let k = (k;),;ex € Z[KQ”}, 0« K* — L* a continuous character and
j€40,1}.

(i) If wt(0) ¢ {1 — k-,...,0} for each T € ¥ we have HY, ., (R x(0)/t*Rr,x(0)) = 0.
(ii) If wt.(9) € {1 ...,0} for each T € ¥ we have dimy, H), (R k(6)/t*Rpk(0)) =
(K : Q).

Lemma 3.3.4. Let 0; : K* — A* fori = 1,2 be two continuous characters. If there is
an isomorphism RA7K(51)[%] ~ RAJ{(dQ)[%], then the character 5,07 is a constant algebraic
character K* — L*.

Proof. We can twist by d; ' and assume that §; is trivial, so that we have an isomorphism
Raxli] — Rax(2)[7]. The induced embedding Rax < Ra K(ég)[ | factors through
t™"R Ak (d9) for some integer k > 0. Consequently, replacing d, by da N /Qp we can assume

that there exists an embedding R4 x < Ra x(d2) such that RA,K[%] = RA,K(éz)[%].

We deduce A ~ H)_ (Rax) = HJ .. (Rak(d)), and hence we obtain an isomorphism

H) . (Rax) = H). (Rax(02)) by (3.14). As A is a finite Q,-algebra, we have Ry =
Rk ®q, A. Consequently R4 x and R4 x(d2) are free A-modules, R4k is a direct factor of
R k(d2) as an A-module and hence A/my ®4 Rax — A/my @4 R4 x(d2) which implies
that d, modulo m, is an algebraic character n = [[, 7% : KX — L* for some k = (kr): €

ZUY Let D = Rax(ds) C Rax(ds). We have HO (D) C HY. (Rax(d)). As
wt-(d2 modulo my) = —k,, by (i) of Lemma 3.3.3 and a dévissage on A using the left

exactness of H) we obtain H) (R x(d2)/D) =0, so that:

Hg'm(D> _H‘P’YK(RAK(52)) W/K(RAK)

As Hg . (Ra.x) contains a generator of R4 x, we obtain R4 x C D as R4 x-submodules of

Rak(d2). But Rax and D are two isocline (¢, 'x)-modules over Ry with the same rank
and the same slope, hence they are equal (see for example [48, Th.1.6.10]) and thus d, = 7

by [49, Lem.6.2.13]. O
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Recall from [9, Prop.2.2.6(2)] that there exists a covariant functor Wi from the category
of (¢, I'kx)-modules over Ry to the category of Blz-representations of G (see the proof of
Lemma 3.3.5 below for details on its definition). Let M be a (p,'x)-module over R[]
and D C M a (p,I'k)-submodule such that M = D[}]. Then it is casily checked that
War(M) := Bar Rpt Wi (D) does not depend on the choice of D and defines a functor

War from the category of (¢, 'k )-modules over RK[%] to the category of Byr-representations
of Gx. Moreover the functoriality of the construction in loc.cit. implies that if D (resp. M)
is a (p, P)-module over R i (resp. Ra i ([3]), then Wik (D) (resp. War(M)) has a natural

structure of an A ®g, Biz-module (resp. A ®g, Bqr-module).

Lemma 3.3.5. (i) Let D be a (¢, 'x)-module of rank n over Ra x. Then Wi (D) is a finite
free A ®q, Big-module of rank n. In particular Wi (D) is an A ®q, Biy-representation of
Ok.

(i) Let M be a (@, Tg)-module of rank n over Rak[:]. Then War(M) is a finite free
A ®q, Bar-module of rank n. In particular Wag (M) is an A ®q, Bar-representation of G

Proof. We only prove (i), the proof of (ii) being totally analogous (note however that we can-
not directly deduce (ii) from (i) in general, see Remark 3.1.3). It follows from [9, Prop.2.2.6]
that the rank of Wi (D) over Bl is the same as the rank of D over Rg. Hence it is
enough to prove that Wi (D) is a free A ®qg, Biz-module. By the same kind of argu-
ment as in the proof of Lemma 3.1.4 or Lemma 3.2.2, we see that it is sufficient to prove
that Wi (D) is a flat A-module. This is shown in two steps. First we show that for ev-
ery A-module M of finite type, there is an A-linear isomorphism of BJi-representations
M @4 Wik(D) =~ Wik(M ®4 D), secondly we show that the functor W sends short exact
sequences of (i, 'k )-modules over Ry to short exact sequences of Blz-representations. The
first point is a direct consequence of the fact that Wi commutes with finite direct sums
and sends right exact sequences to right exact sequences (this last fact following from the
very definition of Wi in [9, Prop.2.2.6(2)]). The second is contained in [56, Th.1.36], but
we briefly recall the argument. Let 0 — Dy — Dy — D3 — 0 be a short exact sequence
of (¢, T'k)-modules over Ry and let r > max{r(D;),1 < i < 3} where r(D;) is defined in
8, Th.I.3.3]. For 1 < i < 3, let D! be the Rj-submodule of D; defined in [8, Th.1.3.3]
where R is the ring BL’;K of loc.cit. (recall that Ry is denoted there BL&K). Then
Wik (D;) = Big ®@r;. Dj by [9, Prop.2.2.6(2)]. It easily follows from the properties defining
these D] in loc.cit. and the fact that R, is a Bezout ring that we have a short exact sequence
of free R'-modules of finite type:

0 — D} — Dy — D3 — 0.
In particular we have Tor?%(BarR, D%) = 0 and thus the short sequence:
0 — Wik(D1) — Wik(Dsy) — Wik(Ds) — 0
is still exact. O

By [56, Th.1.36] (or the proof of Lemma 3.3.5) the functors D +— Wi (D), resp. M
War(M) send short exact sequences in ®I'), resp. @[k to short exact sequences in

RepBIR (Gk), resp. Repg (Gk).
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If 0 : K* — A* is a continuous character, we say that J is smooth if wt(5) = 0 and locally
Qp-algebraic, or more simply locally algebraic, if it is the product of a smooth character and
an algebraic character. Equivalently ¢ is locally algebraic if and only if wt,(d) € Z C A for
all T € X.

Lemma 3.3.6. Let 6 : K* — A* be continuous and M := R x(6)[§].

(i) Assume that § := § modulo my : K* — L* is smooth. Then the Bag-representation
War(M) is almost de Rham and we have:

Wt<5) = UWyr(M) cA ®Qp K ~ EndRepA@)QpK(Ga)(Dde(WdR(M)))'

(ii) More generally assume that d is locally algebraic, then War (M) is almost de Rham and

we have wt(0) = wt(0) + v M) € A ®q, K.

Proof. We can write 0 = 0109 where 61,0, : K* — A* are two continuous characters such
that &; o rec;’ can be extended to a character of Gx and (52|le< = 1. As W;i(D) doesn’t
depend on the Frobenius ¢ on the (¢, 'k )-module D := R4 () (see [9, Prop.2.2.6(2)]),
it follows from the construction of D (see [49, §6.2.4]) that War (M) =~ War(Ra,x(61)[}])
(i.e. War(M) doesn’t depend on dy). Since wt(d;) = wt(d), we can replace § by d;. The
Bgr-representation Wyg (M) is isomorphic to (A ®q, Bar)(d), i.e. we twist by ¢ the action
of G on A ®q, Bar. If §o rec}l is a de Rham character of G, the Bgr-representation
(L ®q, Bar)(0) is de Rham, hence almost de Rham, and thus (A ®g, Bar)(d) is almost de
Rham as an extension of almost de Rham representations (use a dévissage on A).

(i) Since the C-representation (A ®g, Bi)(0)/t(A ®qg, B{z)(d) has all its Sen weights 0, we
have isomorphisms:

Dyar((A®q,Bar)(6)) & (Bfg[log(t)|@p;, (A®g,Bir)(8))7* = (Cllog(t)]@c(A®q, C)(4))"

in Rep g o «(G,) (the nilpotent operator being defined everywhere analogously to the one

on Dyqr and the second isomorphism following from an examination of the proof of [37,
Lem.3.14]). Sen’s theory shows that we also have an isomorphism in Rep 4 0y Koo (Ga,):

Koo @ (Cllog(t)] ®@c (A ®q, C)(8))9% — Agen((A ®q, C)(9))

where the nilpotent operator on the right hand side is given by the Sen endomorphism (see
e.g. [37, §2.2] together with [37, Prop.2.8]). But we know that the Sen endomorphism on
Agen((A ®q, C)(6)) is just the multiplication by wt(d) € A ®q, K.

(i) We can write § = ;0,03 where d; is smooth and §; o recy’ can be extended to Gy,
0y : K* — L* C A* is constant such that 05 o 1"6(:1_(1 can be extended to a de Rham
character of Gx and 53\0;( = 1. We thus have Wyr(M) ~ WdR(RAyK((Sl(SQ)[%]) = (A ®q,
Bar)(0102) = (A ®q, Bar)(1) which is almost de Rham by (i). By (i) again, we also deduce

PWar (M) = WH(01) = wt(6) — wt(d2) = wt(d) — wt(0). O

Lemma 3.3.7. The Bqg-representation War(Ra,x (0)[7]) is trivial if and only if 6 is locally
algebraic.

Proof. As in the proof of Lemma 3.3.6, we can write any d as ;0o where §; o recl}1 can
be extended to Gx and (52|le< = 1 and we have War(Ra x(6)[3]) = War(Raxk(01)[7]) =
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(A ®q, Bar)(d1). We have (A ®q, Bar)(61) = A ®q, Bar if and only if §; is de Rham if and

only if §; is the product of a smooth character with an algebraic character (namely (5151_1)51
and using (ii) of Lemma 3.3.6). Since s is smooth, this proves the statement. O

Definition 3.3.8. Let M be an object of PL'y x and n > 1 its rank. We say that M is
such that My and M;/M,;_; fori € {2,...,n} are of chamcte?:.gype. Such a filtration M,
is called a triangulation of M and, if M;/M;_1 = Rar(0;)[3] where §; : K* — A*, then

t

.....

.....

algebraic if each ¢; is. If a triangulation M, admits a locally algebraic parameter, then by
Lemma 3.3.4 all parameters of M, are locally algebraic.

Fix M a trianguline (¢, 'x)-module over RL,K[%] together with a triangulation M, of
M. We define the groupoid X, over Cp, as follows.

e The objects of X m, are quadruples (A, My, M., ja) where A is in Cp, My is
a trianguline (¢, 'k )-module over R4 k[7], M. a triangulation of M, and j, an
isomorphism My ®4 L — M which induces isomorphisms M4 ,; ®4 L — M, for
all 1.

e A morphism (A, Ma, Mae,ja) — (A, Ma, My e,jar) isamap A — A in Cp,
and an isomorphism M, ®4 A" — My compatible (in an obvious sense) with
the morphisms j4, ja and with the triangulations, i.e. which induces isomorphisms

Mau; @4 A= My, for all i

Denote by T the rigid analytic space over Q, parametrizing continuous characters of K*
and 7y, its base change from Q, to L. Fix a triple (M, M,,d) where M is a trianguline
(¢, Tk )-module of rank n > 1 over Ry k[7], M, a triangulation of M and § = (6y,...,4,)
with §; : K* — L* a parameter of M,. Note that we can see ) as a continuous character
(K*)* — L*, ie. as an element of 7;*(L). The functor of deformations of 9, i.e. the
functor:

A — {continuous characters d4 = (da1,...,04,) : (K*)" — A*, 64, modulo my = ¢; Vi}
is pro-represented by the completion 7';” of T/* at the point § € T/(L). If Ais in C;, and

(Ma, Maa,ja) is an object of X am, (A), it follows from Lemma 3.3.4 that there exists a
unique character d, € ﬁ(A) which is a parameter for M4, and satisfies 6, = 0 modulo
my4. The map:

(A, Ma, Mae, ja) — (A, d4)
gives rise to a morphism ws : Xy m, — ﬁ of groupoids over Cr. Note that, if §’ is another

parameter of M,, then ¢'d s (constant) algebraic by Lemma 3.3.4 and we have an obvious
commutative diagram:

X MM,

(3.15) - M/Xé,él\wi N
s

.
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We also define the groupoid X, over Cp by forgetting everywhere the triangulations in
Xmm. (that is, we only consider deformations of the (p,'x)-module M). We have a
“forget the triangulation” morphism X s, — X of groupoids over Cr..

Fix M and M, as above, then by (ii) of Lemma 3.3.5 (with A = L) F; := War(M;)

.....

Definition 3.1.8. Assume moreover that M, possesses a locally algebraic parameter. It
then follows from Lemma 3.3.6 that each Bggr-representation F;/F; ; is almost de Rham
and hence that W is also almost de Rham (as it is an extension of almost de Rham Bgg-
representations). It moreover follows from (ii) of Lemma 3.3.5 that the functor Wyg defines
a commutative diagram of morphisms of groupoids over Cy:

Xmme — Xw 7,

o

Xy —— X

Now we fix an isomorphism « : (L ®g, K)" — Dpqr(W) as in §3.1, so that we have the

groupoids Xy, and Xy, 7, over Cp, (see §3.1). We define the fiber products of groupoids over
Cr, (see [53, §A.4] and §3.1):

oo, 0 0 . 0 O
XM = XM X Xy XW and XM,M. = XM,M. XXW,]—'. XW,]-'. gXM,M. X X XW

-----

(3.16) 04 = (Oai)ieft,ny = (Wt(da:) = Wt(%i)icqr,...ny) € (A ®q, K)" = H(A)

..........

induces a morphism of formal schemes wt — wt(d) : 7’; —t.

Corollary 3.3.9. The diagram of groupoids over Cy,:

Xmme — Xw 7,

ws J{ Iiwy]:.

s commutative.
Proof. This is a consequence of (3.4) and of (ii) of Lemma 3.3.6. O

From Corollary 3.3.9 we obtain a morphism of groupoids over Cy:
(3.17) Xpme — T3 %7 Xw, .-

Writing 7~ ~ GF& x W where W is the rigid analytic space over Q, parametrizing continuous

characters of O, we see that the right hand side of (3.17) is isomorphic to @1 x Xw.r,
(with obvious notation).
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3.4. A formally smooth morphism. We prove that under certain genericity assumptions
the morphism (3.17) is formally smooth.

We keep all the previous notation (in particular we assume from now on that L splits
K). Let A be in C;, and M be an object of ®I'y k. Recall from §3.3 that we have
ExtCIDFA’K(RA,K[%],M) ~ H,_ (M). Moreover, if W is an almost de Rham A ®q, Bar-
representation of Gg, there are natural isomorphisms:

(3.18) Extll%epA’de(gK)(A ®q, Bar, W) ~ ExtlgepA%deR(gK)(A ®q, Bar, W) ~ H' (G, W)

where the last A ®q, K-module is usual continuous group cohomology, the first isomorphism
comes from the fact that Rep, ,qr(9x) is stable under extension in Rep Agg,B w(Gk) and
the second is the usual explicit description by 1-cocycles. In particular it follows that the
exact functor M +— Wyg(M) from @'y x to RePA@QdeR(gK) (see §3.3) gives a functorial
A ®q, K-linear map:

(3.19) H,. (M) ~Exter,  (Raklil, M)
SN Ext%{epA%’ BdR(gK)(A ®q, Bar, W) ~ HY(Gy, War(M)).

Moreover the equivalence of categories Dpqr of Proposition 3.1.1 between Rep, g (9Gx) and
Repg (G,) induces functorial isomorphisms by an explicit computation:

H(Gg, W) ~ Homgep, . (6x) (Bar, W) = ker(vw)
HY (G, W) =~ Extll{epde(gK)(BdR, W) =~ coker(vy)

where vy is the K-linear nilpotent endomorphism of D,qr (W). In particular we see the func-
tor W +—— H'(Gx, W) is right exact on Rep g (Gk). Since the functor W —— HO(Gg, W)
is exact on the category of de Rham Bggr-representations W of Gy, it follows that W +——
H'(Gg, W) is also exact on the category of de Rham Bgr-representations of G.

Lemma 3.4.1. Let § : K* — L* be a continuous character such that § and €5~ are not
algebraic. Letk = (k,), € Z5%),

(’L) We have Hgﬁ}((t_kRL’K((S)) = H;WK(RLJ(((S)) = 0.
(it) If wt-(8) & {1,...,k} for each T € X, then H)  (Rpx(8)) — H, . (t"*Rpx(9)) is
an isomorphism.

(iii) If wt,(0) € {1,...,k,} for each T € &, then H.. (Rpx(0)) — HL. (t7*Rpx(0)) is

PVK PVK
the zero map.

Proof. From [57, Prop.2.10] (together with and [57, §5]), our general hypothesis on ¢ implies
(i) and also dimy, H.  (Rpx(8)) = dimy H. . (t ¥Ry x(8)) = [K : Q] for any k € ZI®],

PVYK PVK
Then the result comes from the long exact cohomology sequence associated to:

0— RLyK((S) — t_kRLK((S) — t_kRLJ{((;)/RLJ{((S) — 0.
together with Lemma 3.3.3 (replacing § by 27%§). O

Lemma 3.4.2. Let 6 : K* — L* be a locally algebraic character such that § and €6~ are
not algebraic. Then the map in (3.19):

Hp o R (O)[4]) — H (G, War (Ruic(8)[3])) = H' (G, L €, Bar)

s an isomorphism.
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Proof. Replacing 6 by z7%§ for some k € Z[ﬁ)@”] we can assume wt,(6) < 0 for all 7.
Then (ii) of Lemma 3.4.1 and (3.11) imply that the inclusion Ry x(d) C R,k (6)[3] induces
an isomorphism  H}_ (Rpx(6)) — H}. (Rrx(6)[}]). In particular we have
dimy H . (Rrx(6)[3]) = [K : Qp] (see the proof of Lemma 3.4.1). Lemma 3.3.7 implies
War(Rr,x(6)[}]) =~ L ®q, Bar and it easily follows from [64, Th.1] and [64, Th.2] that

dimy, H'(Gk, L ®q, Bar) = [K : Q,]. Thus it is enough to prove that the map:
(320) [{1 (RLJ(((S)) — H1<gK,WdR(RL7K(6)))

PYK

is an isomorphism. Since these two L-vector spaces are both of dimension [K : Q,], it is
enough to prove that the kernel of (3.20) is zero.

Let W(8) := (We(Rrx(0)), Wik (R (0))) be the L-B-pair associated to Ry, x(8) follow-
ing [56, §1.4] (which generalizes [9]) and H'(Gx, W (9)) the L ®q, K-module defined in [56,
Def.2.1]. We have an isomorphism:

(3.21) H (Rpx(8)~H (Gk,W(5))

PYK

by [56, Prop.2.2(2)] together with [56, Th.1.36] (and the interpretation of H (D) as exten-
sions of Ry x by D). The kernel of H'(Gr, W(8)) = H'(Gr, War (R x(8))) is denoted by
H}(Gk, W () in [56, Def.2.4]. Tt follows from [56, Prop.2.11] that its vanishing is equiv-

alent to an isomorphism H!(Gx, W (6 'e)) — H (Gx, W (6 'e)) where H! (G, W (6 '¢))
is defined in [56, Def.2.4], or equivalently to the vanishing of the map (see [56, Def.2.1]):
(322) H1 (QK, W(5_1€)) — Hl (gK, WE(RLK((S_lE))).

However it follows from the definition of W, (R k(6 '€)) (see [9, Prop.2.2.6(1)]) that it only
depends on Ry, x(8)[1], hence we have for any k € Z[ZI%QP]:

WQ(RL,K((S_l&)) = We(t_thK((g_l&)) = WQ(RLK(Z_k(S_l&))
and the map (3.22) factors as:

HY (G, W(07"e)) — H' (G, W(2 7567 "e)) — H'(Gi, We(Ri k(27507 "¢)))
=~ H Gk, We(Rp k(67 '2))).
As for the first isomorphism in (3.21), the first map is also:
H;NK(RL,K@_I@) — H;WK(RL,K(z_ké_la)) = H;WK(t_kRLK((s_l&))

which is zero by (iii) of Lemma 3.4.1 since we can choose k = (k;), € Zﬁf;@p] such that

k. > —wt,(6) + 1 for all 7 (and recall wt,(6) < 0 hence —wt,(5) +1 > 1). Thus (3.22) is a
fortiori zero. 0

Lemma 3.4.3. Let A be an object of Cp and let § : K* — A* be a continuous character
such that & and €5 are not algebraic where 6 := § modulo m.

(i) We have HS. (Rax(6)[]) = H2. (Rax(5)[]) = 0.

VK 4 t ©TK
(ii) Assume moreover § locally algebraic, then the map:

H,. (Rax(®)[3]) — H' (G, War(Rax(8)[}]))
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18 surjective.
(7ii) Assume moreover § locally algebraic, then the map:

H,  (Rax(6)[3]) — H'(Grc, War(Rax(6)[3]))

is an isomorphism.

Proof. (i) Let M be a (¢, T'k)-module over R, x[1] which is a successive extension of (o, I')-
modules isomorphic to Ry x (8)[F] (for instance M = R4 x(0)[1]), then it follows from (i) of
Lemma 3.4.1 and the long exact cohomology sequence that H) (M) = HZ_ (M) =0.
(ii) Let M as in (i). Since the functor Wyg is exact and since Wygr (M) is almost de Rham
(as it is an extension of almost de Rham Bggr-representations), then it follows from (the
surjectivity in) Lemma 3.4.2, from the right exactness of the functor W —— H' (G, W) on
Repar (Gk) and from (i) that the map H)_ (M) — H'(Gx, War(M)) is surjective.

(iii) The last statement follows from the dévissage in (ii) together with Lemma 3.4.2 and the

fact W —— H'(Gx, W) is exact on the category of de Rham Bgg-representations of Gr. [

Denote by Ty C T, the subset which is the complement of the L-valued points 2¥, e(z)z*
with k = (k,), € Z@l and by 7 the characters § = (6y,...,d,) such that 9;/0; € Ty
for i # j. Equivalently 7;* C T/ is the complement of the characters (d1,...,d,) such that
0;0; ! and €0;0; ! are algebraic for i # j. Note that if a triangulation M, (on a trianguline
(¢, 'k )-module of rank n > 1 over Ry, k[+]) admits a parameter in 7;*(L), then by Lemma
3.3.4 all parameters of M, are in 7"(L).

We can now prove the main result of this section.

Theorem 3.4.4. Let M be a trianguline (¢, I'k)-module of rank n > 1 over RL,K[%], M, a

-----

and that § € Ty"(L). Let W := Wyr(M) and Fy := War(M,). Then the morphism:
Xmm, — ’/@ X7 Xw, 7,

of groupoids over Cr, in (3.17) is formally smooth.

Proof. Let A — B a surjective map in Cr, xp = (Mp, Mp.,jg) an object of X m, (B),
yp = (05, Wg, Fpae,ip) its image in ﬁ X7 Xw,r, (B). Let ya = (64, Wa, Fae,ta) be an
object of T;" X7 Xw,r, (A) such that 04 = 05 modulo ker(A — B) and B®a (Wa, Fae,ta) >
(Wg, Fi.e,tp). We will prove that there exists some object 24 = (M4, M4, ja) in Xp . (A)
whose image in X, (B) is isomorphic to 25 and whose image in 7" X7 Xw,r, (A) is iso-
morphic to y4. Write 4 = (041,...,04,) and dp = (dp1,...,0p,). By induction on ¢ we
will construct (¢, 'k )-modules M 4 ; over RAK[%] such that My ;1 C M4, and isomor-
phisms RAK((SAJ)[%] ~ Ma;/Ma,i—1 with compatible isomorphisms B ®4 Ma; ~ Mp,,
War(Ma,;) >~ Fa,; (compatible meaning with B ® 4 Fa,; ~ Fp;). For i = 1 one can take
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Muy =Rax(041)[] (using (ii) of Lemma 3.3.6). For i € {2,...,n} set:

1 ._
EXtRep g @)1 = EXtRepA®Q 5y (G) (WdR(RA x(0a)]), Fai- 1)
1 ._
EXtRePB®QdeR(gK)7i T EXtRePB®Qp (9K) (WdR(RBK((;BZ)[ ]) ‘FBZ 1)
EXt}DI‘B,K,z‘ = EXt}pFB,K(RB7K(5B,i)[f]aMB,i—l)'

Assuming that M4 ,;_; is known for a fixed ¢ > 2, the existence of M4 ; is then obviously a
consequence of the surjectivity of the map:

Exter, o (Rax(0a:)[3], Mai1)

WarxXB®al
dR

1

(QK)J' Ext}, EXt‘PFB,K,i

1
Ext
RepA®Q RepB®@ BdR(gK) i

B
pBdR

which itself follows by (3.12), (3.13) and (3.18) from the surjectivity of:

(323) va(MAl 1(5Az))
Hl(gK’WdR(MA7i_1(6Z7li))) XHl(gKywdR(MB,i—l(5};}i))) GDVK(MBZ 1< 1))

For ¢ # j, the characters 5A,j52,1i satisfy the hypotheses of Lemma 3.4.3, consequently
Lemma 3.4.3 (both (i) and (ii) are needed) together with right exactness of the functor
W — H'(Gg, W) on the category Rep,qr(Gx) imply the surjectivity of the map:

Hy oo (Maia(033) — HY(Gr, War(Masi1(843)))-

For Wy in Rep,qr 4(Gxk) we have an isomorphism Dpar(Wa) ®4 B =~ Dpar(Wa ®4 B) in
RepB®@pK(Ga) (see the proof of Lemma 3.1.4) from which it follows that coker(vy,) ®4 B =
coker(vw,¢,5) where vy, (resp. vw,e,p) is the nilpotent endomorphism on Dpar(Wa)
(resp. Dpar(Wa ®4 B)). Since we have functorial isomorphisms H*(Gx, W) ~ coker(vyw, )
of A®q, K-modules, it follows that HY (G, WA)®@4B ~ H (Gx, Ws®4 B), and in particular
that H' (G, War(Mai-1(643))) @4 B ~ H'(Gx, War(Mp,i-1(35%)))-

o — My - M — My — 0 is an exact sequence in ®I'4 i such that HY  (M;) =

PK
ngK(M ) ng(Mz@AB) H‘?”YK(M’®AB) —OandHévK(M )®AB—>H;’W<(M@®A
B) for i € {1,2}, then the long exact cohomology sequence for HS . and an easy diagram
chase yield an isomorphism H (M) ®s B = H_ (M ®s B). By (i) of Lemma 3.4.3,

HY_ . and H? cancel Rax(84;0,;)[1] and Rp K((SBJ(SBZ)[ ] for 7 # j, and more generally

any M which is a successive extension of Ry x(0;0; *)[1] for i # j. By the same argument
as in the first part of the proof of Lemma 3.1.4 using that the functor H 910 - 1s then exact on
the subcategory of such objects M and commutes with direct sums, we obtain isomorphisms
H. (Mai1(63}) ®a B = H._ (Mp;1(055)) (note that My ;_1(65}) is a successive
extension of R4 k(04,704 5)[4] for j <i—1).

The surjectivity of the map (3.23) is then a consequence of Lemma 3.4.5 below applied
with M = H! (MA,i—1(5Z71i)) and N = H! (QK, WdR(MA,i—l((;Z’lZ’)))- [l

PVK
Lemma 3.4.5. Let A be a ring, I C A some ideal and B :== AJI. Let f : M — N be a
surjective A-linear map between two A-modules. Then the map M — (M ®4 B) Xy, N
sending m € M to (m ® 1, f(m)) is surjective.
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Proof. Let P := ker(f), tensoring with B we obtain a short exact sequence P ® 4 B —
M®sB— N®yB —0. Let (z,y) € (M ®4 B) Xng 5 N. There exists § € M such that
f(g) =y. Letu:=2—g®1 & M ®4 B. The image of u in N ®4 B is zero, hence there
exists v € P ®4 B whose image in M ®4 B is equal to u. Let w € P C M lifting v, then
u®1l=uin M ®4 B. We have f(g+a)=f(§)=yand (§+0)®1=(r—u)+u=uzxin
M ®4 B: this proves that § +a € M maps to (z,y) € (M @4 B) Xyg,5 N. d

We say that a morphism X — Y of groupoids over Cj, is a closed immersion if it is
relatively representable ([53, Def.A.5.2]) and if, for any object y € Y(A,), the object x €
X (A,) representing the fiber product § xy X (see [53, §A.5] for the notation) is such that
the map A, — A, is a surjection in Cy.

Proposition 3.4.6. Let M be a trianguline (,T'x)-module of rank n > 1 over Ry k3],

-----

then the morphism Xy m, — Xam of groupoids over Cy, is relatively representable and is a
closed immersion.

Proof. Since a triangulation M4, deforming M, on a deformation My of M is unique
if it exists by a proof analogous to [2, Prop.2.3.6] (using (i) of Lemma 3.4.3), we have an
equivalence of groupoids over Cy:

(3.24) Xmme = Xt Xxp [ Xptma -

A proof analogous to [2, Prop.2.3.9] but “inverting ¢ everywhere” shows that the morphism
| Xmomo| — | X ] is relatively representable. This implies that the morphism X v, —
X\ is relatively representable as well. The last statement follows easily from this together
with (3.24) and the fact that | X .| is a subfunctor of | X . O

Lemma 3.4.7. Let M be a trianguline (¢,T g )-module of rank n > 1 over Ry k1], M.

.....

.....

(3.15). Assume that the nilpotent endomorphism vyw,,amy) on Dpar(War(Ma)) is zero.
Then we have Ma; = ®5_ Rak(0a;)[7] fori e {1,...,n}, i.e. the (¢, Tk)-module M is
“split” (and hence also M ).

Proof. Since vy, (m,) = 0, we have in particular wt(64,;) = wt(d;) by Corollary 3.3.9 and
(3.4), i.e. 04, is locally algebraic for all i. The result then follows by dévissage from Lemma
3.1.4 and (iii) of Lemma 3.4.3 (via (3.12), (3.13) and (3.18)). O

3.5. Trianguline (¢, 'k )-modules over Rx. We define and study some groupoids of equal
characteristic deformations of a (¢, 'k )-module over Ry x with a triangulation over R, K[%]
and of an almost de Rham B;-representation of G with a filtration over Byg.

We keep the previous notation and fix a (¢,I'x)-module D over Ry x. We define the
groupoid Xp over Cp, of deformations of D exactly as we defined X, in §3.3 except that
we don’t invert ¢ anymore (so objects are (¢, 'k )-modules which are free of finite type over
R r and which deform D). We have an obvious morphism Xp — X D[] of groupoids over
Cr.
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We first assume that Wi (D) is an almost de Rham Bji-representation of Gr. By (i)
of Lemma 3.3.5 we also have a morphism Xp, — XW;R(D) of groupoids over C;, and the

diagram:

]

Xpp = Xwan (o))

is commutative. We thus have a morphism Xp — Xp1y Xx XWd_‘—R( py of groupoids

WqR (D[$])
over Cy.

Proposition 3.5.1. The morphism Xp — XD[%] XXWdR(D[%D XWJR(D) s an equivalence.

Proof. This is essentially a consequence of Berger’s equivalence between (¢, ['x)-modules
over Ri and B-pairs ([9, Th.2.2.7]), once one knows that for A in Cp, there is a natural
equivalence of categories (which preserves the rank) between ®I'4 ; and the category of
A ®q, Be-representations of Gx where B, := Bfrizsl, i.e. free A ®q, Be-modules of finite type
with a continuous semi-linear action of Gy .

First let M be a (¢, T'g)-module over Rg[7] and set W.(M) := W, (D) for any (¢, Tk )-
submodule D C M such that M = D[}] where W,(D) is the Bc-representation of Gx
constructed in [9, Prop.2.2.6(1)], which does not depend on the choice of D inside M. This
defines a functor from ®I'x to B.-representations of Gx which preserves the rank. To prove
that this functor is an equivalence of categories, we construct a quasi-inverse using [9]. If W,
is a B.-representation of Gx, take any Gx-stable Bjg-lattice Wi inside Wyr := Bgr ®p, W,
and let W be the B-pair (W,, W;). Let D(W) be the (p, 'x)-modules over R canonically
associated to the B-pair W constructed in [9, §2.2]. It follows from the construction in loc. cit.
that M(W,) := D(W)[1] does not depend on the choice of the lattice W inside Wyg and
that M — W,(M) and W, — M(W,) are quasi-inverse functors.

Now it has to be checked that M is free over R4 k(1] if and only if W, (M) is free over
A ®q, Be. But by an argument analogous to the one in the proof of Lemma 3.1.4 using the
exactness of the functors M —— W,.(M) and W, — M(W,) (which itself easily follows
from the exactness of the functors D and W of [9, §2.2], see [56, Th.1.36]) and the fact that
they commute to direct sums, one is reduced to the case A = L which is in [56, Th.1.36].

Finally it remains to be checked that if D is (¢,I'x)-module with a morphism A —
Endgp+ (D) and that W, (D[4]) is a finite free A ®g, Be-module and Wik (D) is a finite free

¢
A®q, Bjg-module (necessarily of same rank), then D is a finite free R4 x-module. As usual,
using the exactness of the functor D — (W,(D), Wi (D)) we show that D is a flat A-module
and D/m4D is a finite free R, g-module. Choose an isomorphism R} - = D/mD and lift
it to a morphism of R4 x-modules R’ o — D. The result follows from the two following
facts: Rar is a flat A-module (it is a free A-module since R4 x = A Rq, Rk) and a map
between two flat A-modules which is an isomorphism modulo my is an isomorphism (A is
artinian so there exists m > 0 such that m’} = 0, if f : M; — M, is such a morphism, its
kernel and cokernel are A-modules N such that N = myN = m’} N). O
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Remark 3.5.2. By the argument at the end of the previous proof, one also sees that a
(¢, Tk )-module D with an action of A is free over Rk if and only if D[1] is free over
Rax|i] and Wi, (D) is free over A ®qg, Blz. Now if M € ®I'4 i is such that Wyr(M) is
almost de Rham, it follows from Remark 3.1.3 that Wagr (M) contains an invariant lattice
Wik which is free over A ®q, Bfz. The image of the B-pair (W.(M), W) by the functor
D of [9, §2.2] is then a free R4 g-lattice of M. In particular we deduce that any such M
possesses a free R 4 g-lattice stable by ¢ and I'k.

We now assume that D is trianguline of rank n > 1 (but don’t assume anything on
Wik (D) for the moment), see [19, §2.2] and references therein for the definition (due to
Colmez) of trianguline (¢, 'k )-modules over Ry x. We let M := D[}], M¢ = (M,)ieq1,...n}
a triangulation of M and we define the fiber product of groupoids over Cy, (cf. §3.3):

Xpme = XD Xx 0 XM M-

We assume moreover from now on that M, possesses a locally algebraic parameter.
We let WF := Wi(D), W := War(M) = Bar ®pr W and Fo = (Fiieqrom) =
(War(M;))ieqa,..ny- Then W (resp. W) is an almost de Rham Bgag-representation (resp.
Bg-representation) of Gg, see the end of §3.3. Finally we fix an isomorphism « : (L ®q,
K)" = Dpar(W). Recall we defined the following groupoids over C; (and many mor-
phisms between them): Xw, X3, Xw 7., X%/yf_ = Xw.r Xxw Xip in §3.1, Xyp+, XEV+ =
X+ Xxp Xip in §3.2, X8 = X xxp Xiv, XEAM. = XM, Xxy Xip in §3.3 and we
have Xp = X X x,, Xw+ by Proposition 3.5.1 just above. We now use them to define the
following fiber products of groupoids over Cp:

o ._ O O . 0o _ 0
XD .—XD XXWXW XD,M. = XD,./\/[. XXDXD —XD,M. XXWXW
N O R o _ g
XWJrJ:. = Xw+ X Xy XWJ:. XW+’f. = Xw+7]:. X Xy XW = XWJr X X XVV,]-'.'

There are many natural (and more or less obvious) morphisms between all these groupoids
over Cy, that we don’t list. We recall that, in Xp r, and Xp y, (resp. Xy+ 7 and Xjj, £ ),

we do not deform a triangulation on D (resp. a filtration on W), but rather the triangulation
M, (resp. the filtration F,) on M = D[%] (resp. on W = W*[%])

We assume from now on that M, moreover admits a parameter in 7;"(L).

Lemma 3.5.3. (i) The morphism Xy, — Xw of groupoids over Cp is relatively re-
presentable.
(ii) The morphism Xy m, — Xw.r of groupoids over Cy, is relatively representable.

Proof. We prove (i). We will use the equivalence between ®I'4 x and the category of A®q, B.-
representations of G in the proof of Proposition 3.5.1. Let W, := W(M) be the L ®q, B.-
representation of Gi associated to M so that W ~ Bgr ®p, We. Fix n4 := (A, W4, 14) an
object of Xy, and denote by 7174 the groupoid over Cy, it represents. Then for each A-algebra
A" in Cp, the groupoid (74 X x,, Xm)(A') is equivalent to the category of (W, ar,jar, ¥Ya)
where W, 4/ is an A’ ®q, Be-representation of Gr, ja @ Wea Q@a L — W, and vy :
Bar ®B, We a/ — W4 ®4 A’ is a compatible isomorphism with the reduction maps 1 ® ja
and 14 ® 1 to Bgr ®p, W, (we leave the morphisms to the reader). It is equivalent to
the category of free A’ ®q, Be-submodules W, 4 C Wy ®4 A’ stable under G such that
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Bar ®p, Wear = Wa ®4 A’ and such that 14 ® 1 induces an isomorphism W, 4 @ 4 L —
We. On this description we see that all automorphisms in the category 74 Xx, X are
trivial, hence 74 X x,, Xy — 74 X xy Xa]- But one can easily check (on that description
again) that the functor |4 X x,, Xum| from Cp, to sets satisfies Schlessinger’s criterion for
representability ([59, Th.2.11], for the finite dimensionality of the tangent space in loc.cit.,
use the above equivalence with ®I" 4 i for A’ = L[¢] together with a dévissage and the finite
dimensionality of H_ (R x(d)[;]) for 6 € To(L), see Lemma 3.4.1 and its proof). Hence
T4 X xy X 18 representable. The proof of (ii) is analogous by replacing everywhere modules

by flags of modules. 0

Corollary 3.5.4. The morphisms of groupoids XEA’M. — XVDVI., Xpme — Xw+r and
XE,M. — XVDVJFJ. are relatively representable.

Proof. The first one follows by base change from (ii) of Lemma 3.5.3. We have Xp v, =
Xp Xx Xpmme = X+ Xx, Xmom, by Proposition 3.5.1, and the morphism induced by
base change from Xy, — Xwor,:

Xp Mo = X+ Xxyy Xpmme — Xt Xxyy Xz, = Xwt 7,

is relatively representable by (ii) of Lemma 3.5.3. The O-version follows by base change
(—) X X X%l/ O

We now moreover fix 6 = (6;)icq1,...n} € T5*(L) an arbitrary parameter of M,.

Lemma 3.5.5. The morphism of formal schemes wt — wt(9) : fj‘ — tin (8.16) is formally
smooth of relative dimension n.

Proof. The morphism of schemes wt : 7" — t is easily checked to be smooth of relative
dimension n, and thus so is the morphism wt — wt(¢d) : 7;* — t. Thus the induced morphism

of formal schemes '7';" — t is formally smooth of relative dimension n. O

Corollary 3.5.6. The morphisms Xy, — Xwr, Xym, — Xwr, Xome —
Xw+ r, and XE,M. — XEWI‘ of groupoids over Cr, are formally smooth.

Proof. The morphisms 7'5\” X7 Xw,r, — Xw,r, and ﬁ X7 X+ 7, — Xw+ 7, are formally
smooth by base change from Lemma 3.5.5. The first statement follows then from Theorem
3.4.4 by composition of formally smooth morphisms. We have Xp s, = X+ X xy XmMes
hence by base change from Theorem 3.4.4 the morphism:

Xpme — (Xw+ Xxyw Xwr) X3 T50 = X 7, X7 T3

is formally smooth. The third statement follows again by composition of formally smooth
morphisms. The proof of the [J-versions follows by base change. U

Proposition 3.5.7. The groupoid X.%]/I,M. over Cy, is pro-representable. The functor |XE4’M.|
is pro-representable by a formally smooth noetherian complete local ring of residue field L
and dimension [K : Q,](n® + w)

Proof. As XVDK 7. 1s pro-representable (Corollary 3.1.9), then so is X/%ly m., by Corollary 3.5.4,
and thus also | X7 v, |- As Xy, — Xy is formally smooth (Corollary 3.5.6), then
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50 is | X, | — [Xw.r |- As | Xy 5| is pro-representable by a formally smooth local ring
(Corollary 3.1.9), the same is thus true for [ X |-

Using formal smoothness, for the last statement it is enough to compute the dimension
of the L-vector space | X7y ., |(L[e]). This can be done using an other pro-representable
groupoid X7 ,, as follows. For 1 <i <nlet j3; : RLyK((Si)[%} = M;/M;_1 be a fixed iso-
morphism in ®I'y x and set 3 := (3;)1<i<n- Let X7 4, be the following groupoid over Cp, (of
“rigidified deformations” of (M, M., 3)). If A is an object of Cy, X3t m. (A) is the category
of (Ma, Mae, ta,Ba) where (My, My, ta) is an object of Xy, (A) and Sa = (Ba,i)i1<i<n
is a collection of isomorphisms [a; : RA,K(éA,i)[%] 5 Muyi/Maiq in T4 i lifting 5;
where (d41,...,04,) is the character ws(Ma, Mo, ta) € 7/’\”( ) (see §3.3, morphisms of
XX . (A) are left to the reader). There is a natural forgetful morphism X3\, — X,
of groupoids over C; which is easily checked to be formally smooth Moreover all automor-
phisms in the category X}, (A) are trivial and thus X37 ,, = [X}3{ .| Moreover, by
an argument similar to the one for (¢, I'x)-modules over R A7 K “in the proof of [25, Th.3.3],
| X X% a4 | 18 pro-representable by a formally smooth noetherian complete local ring of residue

field L and dimension n + [K : @Q,)"™. Finally consider the (cartesian) commutative
diagram of groupoids over Cy:

ver O O
XU Me X Xnimte XMme — XM

| |

XXM, XM M. -

Since X[\, is pro-representable, it is easy to check that X\ v, Xx . . XE/L M, is also
pro-representable (by adding formal variables corresponding to the framing) and that the
left vertical arrow is formally smooth of relative dimension n?[K : @,]. The top horizontal
arrow is formally smooth of relative dimension n by base change. Set:

d = dimp, [ X35 v X X XE/(,M.|<L[5])a

we thus have d = n?[K : Q,] +n + [K : Q"% = n 4 dim,, | X%, |(Le]) which implies
dimy, | X5y p,|(L[e]) = [K 2 Q) (n? + "), m

Now we let Dy = (D;)icq1,...n} := (Dpar(Fi))ieq1,..nt = (Dpar(War(M;)))ieq1,..ny- It is a

7777777777777

complete flag of Dyar (). We assume moreover from now on that W is regular (Definition
3.2.4). Recall then that we defined in (3.9) another complete flag:

of Dpar(W) deduced from the filtration determined by the BJ-lattice W of W in Propo-
sition 3.2.1. Recall also that we fixed an isomorphism « : (L ®q, K)" — Dpar(W). We

let = be the closed point of the L-scheme X = g x4 g of (2.3) corresponding to the triple
(o !(D,),a ! (Fily+.), Nw) (with the notation of §3.1).

Corollary 3.5.8. (i) The groupoid XVDW,?. over Cy, is pro-representable. The functor |X",]V+7]_-.|

is pro-represented by the formal scheme X,.
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(i) The groupoid Xp . over Cy is pro-representable. The functor | Xp .| is pro-represen-
ted by a formal scheme which is formally smooth of relative dimension [K : Qp]w over
X,.

Proof. We prove (i). The second statement in (i) implies the first since in fact there is an
isomorphism Xy, » — |Xjj | as all automorphisms of an object of Xy,  (A) are
trivial (see the discussion concerning Xj;, in §3.1). We have XW+7 7 = X5 X pre=] X+ and
the statement is proven as for Corollary 3.1.9 and Theorem 3.2.5. We prove (ii). As Xy, 7,
is pro-representable by (i), then so is Xp ,, by Corollary 3.5.4, and thus also | Xp 4, [. As
the morphism Xp ., — Xy 5, is formally smooth by Corollary 3.5.6, then so is the
morphism | X7 .| — \XVDWJ.\. The relative dimension of Xp ., — Xy« 7, is the same
as that of X , — Xjy, 5 (since it is obtained by base change from it, see the proof of

Corollary 3.5.4), which is [K @p]" (nt1) by Corollary 3.1.9 and Proposition 3.5.7. Whence
the result by the last statement in (i ) O

We denote by S ~ SK@| the Weyl group of G (the notation W of §2.1 could now
induce some confusion with the representations W and W of §3.1 and §3.2). For w € S
define X,, C X as in §2.2 and recall that X\w’x is the completion of X,, at the closed point
z = (a (D,),a  (Fily+.), Nw) € X(L) (so X, is empty if = ¢ X,,(L) € X(L)). Define
the following groupoid over Cy:

—

(3.25) Xt r = Xie 5 Xx0 | Xue.

W, Fe

Since we have an equivalence XEH o | X+ 7| (see the proof of (i) of Corollary 3.5.8), it

follows that we also have an equivalence XWfr” . — |XW+ F | of groupoids over Cr. Hence
we deduce the following corollary from (i) of Corollary 3.5.8.

Corollary 3.5.9. For w € S the groupoid XVDV’ff. over Cy, is pro-representable. The functor

|X‘/Dv’ff.| is pro-represented by the formal scheme X\ww.

We define the groupoid Xyj, z over Cp as the subgroupoid of Xy-+ 7, which is the im-
age of X%}f’ﬁ by the forgetful morphism Xy » — Xw+ 7. So the objects of X{j, -
are those (A, W}, Fa.,ta) such that there exists as : (A ®g, K)" — Dpar(W{[1]) mak-
ing (A, W}, Fae, ta,aq) an object of XW+; (A) and the morphisms (A, W1, Fae,ta) —
(AW, Fareytar) are (A — A, W4H @4 A” = W3) where the isomorphism is compatible
with everything. Using the G-equivariance of X,,, we can easily check that it doesn’t depend
on the framing « and there is an equivalence of groupoids over Cy:

(3.26) Xt r = Xio 7, Xx

W+, Fe XWJF Feo®

For w € §, we then define:

w
XDM. X Xxl:l XWJ"]: and XDM. XD M. XXW+,f. XWJ'_,]:.'
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Proposition 3.5.10. The morphisms of groupoids Xy« z, — Xw+ 7, X wf — Xip+ Fur

Xpm, — Xpm, and ng\”/l. — Xg}M. are relatively representable and are closed immer-
sions.

Proof. The [-versions follow by base change from the others, and the third morphism is
obtained by base change from the first. Hence it is enough to check the first. Let ny :=
(A, W1, Fa,ta) an object of Xw+,7, and 74 the groupoid over Cp, that n4 represents. We
have to prove that Xé“w’]_-. XXyt 7, 74 is representable and that X{;”V+’R X x Na —> Na
is a closed immersion.

W, Fe

Choose an object 4 = (A, Wi, Fw,ta,@a) in Xy,  mapping to 74 and let €4 be
the groupoid over Cp that it represents It is easy to check that forgetting the framing
actually yields an | equivalence 5 4 —> 74 of groupoids over Cr. By (3.26), we have that

XW+ Fo XxD 5,4 is isomorphic to XW+,I. X x £A ~ XW+,F. XXyt p 4. Hence

W, Fe wt.Fe

X+ 7o XXy 5, 114 — 7]a is isomorphic to XVDV’TF Xx0 EA — EA, and everything then
e e e W, Fe
follows from (3.25). O

Let S(z) = {w € S,2 € Xu(L)} = {w € §, Xpo #0} = {w € S, X% 5, #0} = {w €
S, X . # 0}

Corollary 3.5.11. If w € S(z), the functor XS%. is pro-representable by a noetherian
complete local normal domain of residue field L and dimension [K : Q,](n? + "("H ) which

is formally smooth (as a formal scheme) over )/(\wm

Proof. The pro-representability of X ‘. follows from Proposition 3.5.10 and (ii) of Corollary
3.5.8. It follows by base change from Corollary 3.5.6 and from (ii) of Corollary 3.5.8 that

XS”” — XY 7, is formally smooth of relative dimension [K : Qp]" () whence the

dimension since |XW+ Fl = wa has dimension [K : Q,]n®. Recall that the local rings of an
algebraic variety are excellent and that the completion of a normal excellent local domain
is also a normal local domain ([41, Sch.7.8.3(v)] and [41, Sch.7.8.3(vii)]). In particular, it
follows from Theorem 2.3.6 that the local ring O x,, . underlying the formal scheme X, zisa
complete local normal domain. So is any local ring Wthh is formally smooth over @ Xwo

Recall from Lemma 2.5.1 that the irreducible components of T' = t xy/s t are the T}, =
{(z Ad(wY)z), z € t} for w € S. The map (k1 k) induces a morphism X, —» T(o,o) (resp.
X, > T, (0,0)) Where T(O 0) (resp. fw,(oyo)) is the completion of T' (resp. T,,) at the point
(0, O) Denote by © the composition:

X, — Xive o — [Xivw 2l = X — Tiavmao) = To0)-
The same argument as in §3.1 and §3.2 for the morphisms sy r, and s+ shows that the

morphism © factors through a morphism still denoted © : Xp oq, — f(o,o) of groupoids
over Cy, which doesn’t depend on any framing.
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Corollary 3.5.12. Letw € S( ) andw' € S, then the morphisms X o M. = XD — T0.0)
and Xp v, <= Xp Mo — Too of groupoids over Cr induced by © factor through the
embedding T, (0,0) < Too if and only if w' = w.

Proof. Since © factors through Xp 4, , by the commutative diagram:

O,w O Sal
XD,M. - XD,M. - T(070)

-

g,M. XDrM' T(O’O)

we see that it is enough to prove the first statement. By Corollary 3.5.11 and the definition
of O, it is enough to prove the same statement for Xw » and T(O 0), i.e. the composition of

the morphisms Xw z X — Too factors through T ,0,0) if and only if w’ = w. This is
Lemma 2.5.2. O

3.6. The case of Galois representations. We reconsider some of the previous groupoids
over Cr, when the (¢, 'k )-module comes from a representation of Gx and define a few others.

Let 7 : Gk — GL, (L) be a continuous morphism (where L is a finite extension that splits
K) and let V' be the associated representation of G (there should be no confusion between
this V' and a generic object of Repg, . (Gx) which was denoted by V' in §3.1). Let X, be
the groupoid over Cj, of deformations of r and Xy the groupoid over C; of deformations
of V. So the objects of X, are the (A,74 : Gx — GL,(A)) such that composing with
GL,(A) - GL,(L) gives r and the objects of Xy are the (A, V4, ja) where Vy is a free
A-module of finite rank with a continuous A-linear action of Gx and j4 a Gg-invariant
isomorphism V4 ®4 L — V. There is a natural morphism:

Xr — XV
which is easily checked to be relatively representable, formally smooth of relative dimension
n?. We let D := D, (V) be the (étale) (¢, 'x)-module over Ry, x associated to V and we
set M := D[1]. By the argument of [2, Prop.2.3.13] the functor D.;, induces an equivalence
Xy — Xp.

Now we assume that V' is a trianguline representation and fix a triangulation M, of
M as in §3.5. We define the following groupoids over Cr: Xy m, = Xv Xx, Xp m, and
Xome = Xp Xx, Xvme = X Xxp Xpme = X Xx,, Xmom,- The natural morphism of
groupoids over Cyp:

(3.27) Xome — XvM,
is formally smooth of relative dimension n? by base change.

We assume moreover from now on that M, admits a locally algebraic parameter in 7" (L)
and we define W := Wi (D) and W := W*[1] (in particular W is almost de Rham). Note
that W* = Bj; ®q, V and W = Byr ®q, V. We also define F, and D, as in §3.5. We fix
a framing o : (L ®q, K)" — Dpar(W) as in §3.5. We define X/ := Xy xx, Xp — Xp,
X7 =X, xx, Xy, Xilu, = Xvom, Xx, Xy and X, := X, 0, Xx, X;7. By base change

X7 — X} is formally smooth of relative dimension n?. Since X5 — Xp is formally
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smooth of relative dimension [K : Q,]n? (by base change from X}, — Xy ), the same is
true (by base change again) for X} — Xy and X2 — X,.. Note that X5, and hence X7,
are pro-representable (use Xp ~ Xy Xy, Xip+ by Proposition 3.5.1, and then Theorem
3.2.5 with (i) of Lemma 3.5.3).

Remark 3.6.1. Recall that the framing [J in X3} is not directly on the Galois deformation
V4, as is usual to do (e.g. in [53] or [20]) but only on Dyqr(Bar ®q, Va). The groupoid over
Cp, of usual framed deformations of V' is precisely X, which is pro-representable by the same
argument as in [53, §8.1].

We assume moreover from now on that the almost de Rham L ®g, BJ-representation W
is regular (Definition 3.2.4) and define Fily+ o and 2 = (a~*(D.), _1(F11W+ o), Nw) € X(L)
as in §3.5. We ﬁnally also define the following groupoids over Cr: Xy’ 4, := Xv Xx, X} 4,
(forw € S), X\, := X; X x,, Xi/ 54, and their (J-versions. We have a cartesmn commutative
diagram of groupmds over Cr:

O
X’I”,M. r,Mae

(3.28) l l

Xy, — Xvm,

where the vertical maps are formally smooth of relative dimension n? (by base change) and
the horizontal maps are formally smooth of relative dimension [K : Q,)n? (base change
again). We also have the w-analogue of (3.28) with the same properties. Moreover, because
of the framing on r, all automorphisms in the categories X,.(A), X, a1, (A), X (A), X, (A),
. (A) and XE . (A) are trivial, hence all these groupoids over Cy, are equivalent to their
associated functor of isomorphism classes | |. We will tacitly use this in the sequel.

Theorem 3.6.2. (i) The functor | X, m.| is pro-representable by a reduced equidimensional
local complete noetherian ring R, p, of residue field L and dimension n® + [K Qp]” (ntl)
(ii) For each w € S(x), the functor | X%\, | is pro-representable by R\, = Ry, /Puw where
Pw s a minimal prime ideal of R, pm, and Ry, /Pw s a normal local ring. Moreover the
map w — Py, 15 a bijection between S(x) and the set of minimal pm’me ideals of Ry pm, -

(iii) The morphism |X vl — [ XVl = [ Xvma| =~ [ XD 2 Too of groupoids over
Cy, factors through T ,0,0) = To 0) if and only if w' = w.

Proof. By base change from Proposition 3.4.6 the morphism Xp s, — Xp is relatively
representable, hence also Xy, — Xy, and by base change also X, v, — X,. Since X,
is pro-representable (see Remark 3.6.1), then X, r4,, and thus | X, .|, are pro-representable.
By Proposition 3.5.10 the morphism X7 ,, — Xp v, is relatively representable and a
closed immersion, hence also Xy \,, — Xv.m, and by base change also X%y, — X, u,.
Since X, , is pro-representable, we deduce that X’y is pro-representable by a complete
local ring which is a quotient of the one representing X, xq,. Moreover it follows from their
definition that the local complete ring representing the functor |X, | is a formal power

series ring over the one representing the functor |X, |, and likewise with |X v.| and
| X%\, | by base change using (3.26). The remaining assertion in (i) follows from this, the
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formal smoothness of XEM. — XE M., (ii) of Corollary 3.5.8 and the properties of X, (see
e.g. the proof of Lemma 2.5.2). Likewise (ii) follows from this, the formal smoothness of
Xsﬂ. — XE,’XJ/(.? Corollary 3.5.11 and the properties of X\w,x (see the proof of Corollary
3.5.11). Finally we prove (iii). Since © : Xp am, — T(o0) factors through |Xp u4], it is
enough to prove the same statement without the | |. This follows from Corollary 3.5.12 and
the formal smoothness of X*\, — X/ .. U

For w € § recall that T, , = X\w,x(L[e]) is the tangent space of X, at the point z.
Corollary 3.6.3. For w € S(x) we have:

n(n+1)

dimy, X"\, (L[e]) = n* — [K : Q)n* + [K : QP]T + dimy Tx,, .-

Proof. The morphism X?)%. — Xg;f 5 Ywﬁz is formally smooth of relative dimen-

sion [K : @p}@ by base change from the morphism Xp ., — X%H’ 7, and Corollary

3.5.8. Hence dimy, Xaﬁ.(L[a]) = [K : Qp]@ + dimy, T, .. Since dimp X\, (L[e]) =
dimy X, 0, (L)) — [K : QpIn? = n? + dimy Xy, (L[e]) — [K : Q,)n? by the w-analogue of
(3.28), we obtain the result. O

We let w, € S measuring the relative position of the two flags of (L ®q, K)" = Dpqr(W)
given by a~*(D,) and by o !(Fily+,.). More precisely w, is the unique permutation in S
such that the pair of flags (™! (D,), o ! (Filyy+,)) on (L ®q, K)™ is in the G-orbit of (1, w,)
in G/B x; G/B. It doesn’t depend on the choice of a.

Proposition 3.6.4. If w € S(z), or equivalently X’y # 0, then w, < w.

Proof. By definition of w,, we have x € V,, (see the beginning of §2.2 for V,,_ ), hence
x € Xy NV, by definition of S(z). The result then follows from Lemma 2.2.4 (and from
the w-analogue of (3.28) for the equivalence w € S(z) < X%y, # 0). O

3.7. The trianguline variety is locally irreducible. We describe the completed local
rings of the trianguline variety Xy,;(T) at certain points of integral weights in terms of some
of the previous formal schemes and derive important consequences on the local geometry of
Xii(7) at these points.

We keep the previous notation. We denote by 7T, C 7Tr the Zariski-open complement of
the L-valued points 7%, e(2)2* with k = (k;), € Z%;, and T2, for the Zariski-open subset
of characters § = (dy,...,d,) such that §;/; € Tig for i # j. Note that 75" C T

We fix a continuous representation 7 : G — GL, (k) and let R be the usual framed local
deformation ring of 7, that is, the framing is on the Gx-deformation. This ring was denoted
R in [19, §3.2] and [20, §3.2], however we now drop the [J in order to avoid any confusion
with the other kind of framing used here and already denoted [J (see Remark 3.6.1). It is a
local complete noetherian Op-algebra of residue field k, and we denote by X5 := (Spf Ry)"®
the rigid analytic space over L associated to the formal scheme Spf Rr. Recall that Xy;(7)
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(denoted XZ.(F) in loc.cit.) is by definition the rigid analytic space over L which is the

Zariski-closure in X7 x T;* of:

(3.29)  Uyi(T) := {points (r,d) in Xz x T

rog Such that r is trianguline of parameter d}.

(we refer to [19, §2.2] for more details, note that being of parameter ¢ is here a different
(though related) notion than the one in Definition 3.3.8). The rigid space X4,i(7) is reduced
equidimensional of dimension n? + [K : Q)] "(";1) and its subset Uyi(T) C Xi(T) is Zariski-
open, see [19, Th.2.6]. Asin [19, §2.2] we denote by w’ the composition X;(F) — XzxT* —
T/* (the letter w being reserved for the weight map).

We fix & = (r,6) = (7, (6:)icq1,...n}) € Xui(T)(L) and let V', D, M as in §3.6.

.....

Proposition 3.7.1. Assume that § € T3, then the (¢, Tk )-module M over Ry k[] has a
unique triangulation of parameter .

Proof. 1t is sufficient to prove that the (¢, 'k )-module D, (V') has a unique triangulation

,,,,,

is exactly the contents of [49, Th.6.3.13]. The uniqueness follows from the discussion just
before [49, Def.6.3.2] and from the Galois cohomology computations of [49, Prop.6.2.8] (using
the hypothesis 0 € 7). These results can also be deduced from [55] or [2], see e.g. the proof
of Proposition 3.4.6. 0

From now we assume that 6 € 7" and we write M, for the triangulation given by
Proposition 3.7.1. Denote by r € X7 the closed point corresponding to the morphism
r: Gg — GLy(L). By [53, Lem.2.3.3 & Prop.2.3.5] there is a canonical isomorphism of
formal schemes between X, and %r - Namely if Aisin C;, a map SpA — %r -~ is a mor-
phism Spec A — Spec Ry [ ] sending the only point of Spec A to r, i.e. a continuous morphism

Gk — GL,(A) such that the composition with GL,(A) — GL,(L) is r, i.e. an element of
X, (A). We thus deduce a morphism of formal schemes:

X/m(\F):C — fm ~ X,.

Recall that X, »q, = X, is a closed immersion by base change from Proposition 3.4.6.

Proposition 3.7.2. The canonical morphism X:(7), — X, factors through a morphism
Xtrl(?)z — XT',M.'

Proof. Let U be an affinoid neighbourhood of x in X,;(7). Let Dy be the universal (¢, I'k)-
module over U (coming from the universal representation Gx — GL,(R7) via U — X7).
Using [49, Cor.6.3.10], there exists a proper birational morphism of spaces f : U — U, an
increasing filtration (F;)icqo,..n} of f*Dy by R -submodules stable under ¢ and I'x such

.....

-----

Fi/Fi—l — Rﬁ,K<5ﬁ,z) ®Og Ez

fori € {1,...,n} (where the o5, : K* — (U, Op)* come from U— U C X(T) N T
whose cokernels are killed by some power of ¢ and supported on a Zariski-closed subset
Z whose complement is Zariski-open and dense in U. Let us fix a point & over x and
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V an affinoid neighbourhood of # in U over which all the sheaves £; are trivial. Then
for i € {1,...,n} the Ry k[;]-modules (Fj[1]/F;_1[{])|v are free of rank 1. Let A be in
Cr and Sp A — V a morphism of rigid analytic spaces sending the only point of Sp A to
Z. By pullback along Sp A — U — X7, we obtain a deformation 74 in X,.(A) such that
Diig(ra) = A®rwv,0,) I(V, f*Dy). Moreover it follows from what preceeds that (A ®p(v,0y)
D(V, F)[$])ief1,...n} is a triangulation My, of Diig(ra)[3] of parameter 8, (see above (3.15)

for §4) corresponding to the map SpA — V — U C Xu(7) LN 7. When A = L,
the triangulation M, , coincides with M, by Proposition 3.7.1. The morphism sending an
element of V5(A) to (14, Ma,) clearly defines a morphism Vs — X, uq, of groupoids over
Cy fitting into the commutative diagram of pro-representable groupoids over Cy:

Vi —— X, .

~

Uy —X,.

In this diagram the left vertical arrow is dominant, i.e. (since U, = Spt S for a reduced ring
S) the induced map on the corresponding complete local rings is injective, and the right
vertical arrow is a closed immersion. This implies that the lower horizontal arrow must
factor through X, u, (as shown in the diagram). O

— —

Proposition 3.7.3. The morphisms X(T), — X, m, and Xi(7), — X, are closed
immersions of groupoids over Cr, (or of formal schemes since they are pro-representable).

Proof. Tt is enough to deal with the first morphism. It follows directly from the proof of
Proposition 3.7.2 that there is a commutative diagram:

—

Xi(T), — XM,

T

(3.30) \ lwé

75"

i ws
where ws stands for the composition X, v, — Xvome ~ Xpme — Xvm, — T4 (see

—

(3.15)). From the closed immersion of rigid spaces Xy,i(F) — X7 X 7" and using X7, ~ X,

we deduce a closed immersion of formal schemes X(7), — X, xp 7?. However (3.30)
together with Proposition 3.7.2 show that this closed immersion factors through:

X/m(\F)x — X, — X, ><L7/;H

where the right hand side is the morphism corresponding to the two morphisms X, r, — X,

L —

and w;. This implies that the map Xu,i(7), — X, um, is itself a closed immersion. 0

We keep our fixed point x = (r,0) € Xui(7)(L) and assume from now on that § is
locally algebraic. We define W+ and W as in §3.6 and assume moreover that W7 is regular
(Definition 3.2.4). We write F, for the filtration on W deduced from the triangulation M,
and D, for the flag on Dygr (W) deduced from the filtration F,. We also write h,; < --- <



60 CHRISTOPHE BREUIL, EUGEN HELLMANN AND BENJAMIN SCHRAEN

h,n where the (h,;)rex € ZIE@] C [IKG] >, ®q, K fori € {1,...,n} are the Sen weights
of r. It follows from [19, Prop.2.9] that {wt,(d;),7 € {1,...,n}} = {h.;,i € {1,...,n}} for
each 7 € ¥. This implies that, for each 7, there exists a permutation w, € &, such that
(Wtf((swf(l)), - ,Wt7<5w7(n))) = (hq-,l, e hr,n) € Z™. We define w := (wT)Teg e S.

—

We denote by ¢, the closed immersion X,(7), < X, m, and by O, : X4ui(F), — T(Qp)
the morphism of formal schemes which is the composition:

/\7 Ly ~ S T
Xui(7), = Xomte — Xvme & Xp oty — T0,0)-

Lemma 3.7.4. The morphism O, factors through fw,(o,o) — f(o,o)-

Proof. Denote by ©, w, r, the composition:

e ~ KW,Fe =
Xui(7), = Xoome — Xvme = Xpme — Xt ro — Xwp, —

and by ©, w+ the composition:

th( ) ‘—> Xr/\/l. — XVM. XD"/\/[. — Xw+7]:. — Xw+ ’W—+>/t\,

then by definition of T, one has to show O, y+ = Ad(w™!) 0 O, .7, (recall that the action

of Ad(w™") on t gives Ad(w ) (M )res, s Wnr)res) = (M, (1)) ress - - -, Vi, (n)r)res) if
w = (w)ses).

—

Let A be an object of Cr, x4 : SpfA — X/m(\*)m some A-point of Xy,;(7), and Vi
the associated representation of Gx via Xi(7), — X, — XV Let (W}, Fa.) be the
corresponding object of Xy+ r, (A) (via the above morphism Xm( 7), — Xw+r) and
set 0,4 = w'(za) and ya = (Wa, Fae) € Xw,r (A) where Wy := Wi[1] = Bar ®q,
Va. By Corollary 3.3.9, we have O, wr (24) = kwr (ya) = wt(dy) — wt(d). Moreover
@1-7W+<I‘A) = Rwy+ (WX) = ﬁW*(le_R ®Qp VA) is the element (VAJ,...,VA’n) of (A ®Qp
K)™ where the element va; = (Vair)r € A®q, K = @rexnA is the action of vy, on
FilW;i(Dde(WA))/Filevi_l(Dde(WA)) (see (3.9)). It follows from Lemma 3.7.5 below

that the polynomial:
H ( th + VA T)TEZ)) S A ®Qp K[Y]

is the Sen polynomial of Vy, i.e. the characteristic polynomial of the Sen endomorphism on
the finite free A ®g, Ks-module:

Agen(C ®q, Va) = Asen(WH /tW ) ~ Koo @k Dypur (W4 /W)

(see the proof of Lemma 3.2.2 for D,gr). Then it follows from Lemma 3.7.6 below that we
have the following equality in A ®q, K[Y] ~ @, A[Y]:

n

H (Y — ((WtT((SZ)TeZ + RW,Fe yA ) ﬁ ( ’TZ TEE + K+ (WA) ))

i=1 i=1
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By Lemma 3.7.7 we conclude that there exists a unique element w' := (w.),ex € S such
that

Ad(w'™) ((WtT((sl))TGE + hwr (Ya), - (Wt (0n))res + K7, (?/A)n)
= ((hrn)res + R+ (W1, (Brn)res + mws (WE)n).
Using uniqueness and reduction modulo m4, we see that w’ = w, which implies:

Ad(wil) (@x,W,]—'. (.1',4)) = @x,W“' (33,4)
U

If Aisin Cy, and Wy is an almost de Rham A ®q, Bjg-representation of Gy and Wy :=
Wi (3], recall from §3.2 (see especially the proof of Lemma 3.2.2) that there is a functorial
isomorphism in the category Rep 4 o x(G,):

(3.31) Dot (W4 tW1) ~ D griae  (Dpar(Wa)).

1€ Wa
where glr%ﬂ‘./v+ (Dpar(Wa)) = Filﬁyg (Dpar(Wa))/ Filﬁ%(Dde(WA)) and the action of G, on
Sliye +(Dde(WA)) comes from the A ®q, K-linear nilpotent operator gr'(vyw,) induced
w

A
by vw, (the equivariance for this G,-action is not explicitly mentioned in loc.cit. but is
straightforward to check). The following lemma follows from (3.31) and the material in [37,
§§2.2,2.3].

Lemma 3.7.5. Let W} be an almost de Rham A ®q, Big-representation of Gg. Then
the Sen polynomial of Wi /tW} in A ®q, K[Y]| is equal to the product for i € Z of the
characteristic polynomials of the endomorphisms —iId+gr'(vw,) of the free A®q, K -modules
gtpie , (Dpar(Wa))-

A

Lemma 3.7.6. With the notation in the proof of Lemma 3.7.4, the Sen polynomial of V4 is
equal to [T, (Y — wt(da,)) € A®q, K[Y].

Proof. Using compatibility of the Sen polynomial with base change (see [26, Ex.4.8]), it is
sufficient to prove that the Sen polynomial of the universal Galois representation on Xy (7)
(corresponding to Xy(T) — X5) is equal to [[ (Y — wt(8;)) € (T(Xuwi(F), Ox,.(7) Qq,
K)[Y] with § = (01,...,0,) the universal character on Xyy(7) corresponding to X:(7) —
T/. It is sufficient to check that the coefficients of both polynomial coincide on a dense subset

of points of Xy,;(7) and it is a consequence of [19, Prop.2.9] (see also [49, Lem.6.2.12]). O
Lemma 3.7.7. Let (ay,...,a,) and (by,...,b,) be in A™. Assume that all the a; modulo

my are pairwise distinct. If we have [T (Y —a;) = T2, (Y — b;) in A[Y], there exists a
permutation w € S,, such that:
(332) (bl, Ce ,bn) = (aw(l), Ce ,aw(n)).

Proof. Reducing modulo m4 and using the fact that L[Y] is a factorial ring, we can choose
w such that (3.32) holds modulo my, and replacing (ai, ..., a,) by (awa),-- -, Gwm)), We can
assume w = 1. Thus we have a; = b; modulo my4 for all : and we must prove a; = b; for all i.
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Let j #i. As Ais a local ring and a; — a; ¢ my, b; —a; ¢ my, we have [];;(a; — a;) € A*
and [];;(a; — b;) € A*. Replacing Y by a;, we obtain 0 = (a; — b;) [1;.;(a; — b;) and finally

—

Corollary 3.7.8. The closed immersion t, : Xi(T)

—

Xiwi(T), — PMa

. = Xem, induces an isomorphism

Proof. By (i) of Theorem 3.6.2 we have X, v, — | XM,
Proposition 3.7.3 a closed immersion of affine schemes:

~ Spf R, pm, and we deduce from

Spec @Xm(ﬂx — Spec R, um, -

Moreover we know from [19, §2.2] and (i) of Theorem 3.6.2 that O Xoi(7),2 18 Teduced equidi-
mensional of the same dimension as R, uq,, so that Spec(Ox,, 7)) is a union of irreducible

components Spec R}f’lM of Spec R, rq, for some w’ € S (we use the notation of (ii) of Theo-
rem 3.6.2). Pick up such a v’ € S, going back to formal schemes and using (ii) of Theorem

3.6.2 we deduce a closed immersion X],f’}vl. — Xi(7), which, composed with the morphism

0., gives ;"//\,,. — fw7(070) — f(o,o), where we have used Lemma 3.7.4. But (iii) of Theorem
3.6.2 then implies w’ = w, which finishes the proof. 0

Remark 3.7.9. We recall our assumptions on the point z = (r,d) = (r,(01,...,9,)) €
Xni(7)(L): ¢ is locally algebraic, 545]1 and 5(52-5;1 are not algebraic for ¢ # j and the 7-Sen
weights of the Gx-representation V' associated to r are distinct for each 7 € X. In particular
it follows from Remark 4.2.2 below that these assumptions are always satisfied when V'
is crystalline with distinct Hodge-Tate weights for each embedding 7 and the eigenvalues
(@15, 0n) € L™ of @E0®l on D i (V) (where ¢ is the crystalline Frobenius on Deis(V))
are such that ;" ¢ {1, 0@} for i #£ j.

Let x = (r,0) as in Remark 3.7.9. Keeping all the previous notation, the following big com-
mutative diagram of formal schemes over L, or alternatively of pro-representable groupoids
over Cr, contains most of what has been done in §3:

(3.33)

—

— ~ w O,w O,w ~ Ow O,w ~
Xtri(r)x r,Mae X’I”,M. XV,M. XD,M- XW*,]—'. vafﬁde
N N ') ')

—

O ~ O O ~
XT,A\/I. =~ Xr,f/}/(. > XV,K\A. > XD}<\/I. > XW+J. = Xa:de
X, X0 Xy —=—= X5,

where zpar = (o 1(D,), @} (Fily+ ), Nw) € X,(L) (depending on the choice of an isomor-
phism a : (L ®q, K)" — Dpar(Bar ®g, V') and where all the horizontal morphisms which
are not isomorphisms are formally smooth, all vertical morphisms are closed immersions and
all squares are cartesian. Moreover the three horizontal formally smooth morphisms on the
left just come from adding formal variables due to the framing [.
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From (ii) of Theorem 3.6.2, Proposition 2.3.3 and (3.33), we finally deduce the following
important corollary.

Corollary 3.7.10. Let x = (1,9) € X.i(F) satisfying the assumptions of Remark 3.7.9, then
the rigid analytic space Xyui(T) is normal, hence irreducible, and Cohen-Macaulay at x.

4. LOCAL APPLICATIONS

We derive several local consequences of the results of §2 and §3: further properties of
Xii(T) around a point x as in Remark 3.7.9, existence of all local companion points when r
is crystalline and a combinatorial description in that case of the completed local ring at x of
the fiber of Xy,;(T) over the weight map.

4.1. Further properties of the trianguline variety. We prove several new geometric
properties of Xy,;(7) around a point x satisfying the assumptions of Remark 3.7.9.

We keep the notation of §3.7. If x € Xj,;(7) satisfies the conditions of Remark 3.7.9, recall
we have associated to z two permutations in S ~ Sl the permutation w, defined just
before Proposition 3.6.4 and the permutation w defined just before Lemma 3.7.4.

Recall also that the map w’ : X,i(7) — 7" is smooth on the Zariski-open Ui (7) (]19,
Th.2.6(iii)]) but can be ramified in general (as follows from [5, Th.B]). The following propo-
sition is one more property of the map w’.

Proposition 4.1.1. Let v = (r,0) € Xi(T) satisfying the assumptions of Remark 3.7.9,
then the morphism W' is flat in a neighbourhood of x.

Proof. Increasing L if necessary, we can assume x € Xi(7)(L). We use the notation of
§3. By base change from Theorem 3.4.4 using Proposition 3.5.1, the morphism of formal

schemes X% DM, 7:; X waf 7. is formally smooth, hence by Corollary 3.5.9 and (3.28) so

is X, — T3 %3 Xwapan Where zpar = (@' (Da), a ™ (Fily+ o), Niw) € Xo(L) (depending
on some choice of a) Since the morphism of schemes x4, : X,, — t is flat by Proposition
2.3.3, it remains so after Completlon and we deduce that the morphisms of formal schemes
T” X7 Xw dpar T” and thus X — T” are flat. Since this last morphism factors

through X, m. (see the definition of wé just above (3.15)), we have a commutative diagram
of formal schemes (whose underlying topological spaces are just one point):

w
T,M XT’ M.

and where the horizontal morphism is formally smooth (see the w-analogue of (3.28)).
Looking at the map induced by this horizontal morphism on the underlying complete lo-
cal rings, it is formally smooth, hence flat, hence faithfully flat (since it is a flat local map
between local rings). Together with the flatness of XE M, — 7'5\”, it is then straightfor-

ward to check that the morphism of formal schemes X"\ — 7’; is also flat (use that
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C®pM =0 M =0if B— C is a faithfully flat morphism of commutative rings). We

thus obtain that Xi;(7), N 77 is flat by Corollary 3.7.8 and (3.30). Looking again at
the underlying complete local rings and using that completion of noetherian local rings at
their maximal ideal is a faithfully flat process, we deduce in the same way as above that
the morphism of local rings O7r 5 — Ox,, (7). 1s also flat, i.e. that the morphism of rigid
spaces w' : X,i(T) — T/ is flat at z, and hence in an affinoid neighbourhood of = (flatness
on rigid spaces being an open condition). U

Remark 4.1.2. We see from (3.33) and the argument at the beginning of the proof of
Proposition 4.1.1 that we have:

— —

— Ow Tn
Xtri (T>z r,Me ‘7:571 X/t\ szmde

Al e
XTvMI ’7; Xt medR

where the horizontal morphisms are formally smooth, the vertical ones are closed immersions

and the square is cartesian.

Recall that W is the rigid analytic space over Q, parametrizing continuous characters of

Op. Let Wy, be its base change from Q, to L and let w : X,;(T) N T — Wi where the
last morphism is restriction (of characters) to Oj. Note that, arguing as just after (3.17),
Proposition 4.1.1 implies that w is also flat in a neighbourhood of . For A in C; we say
that &y : O — A is algebraic if it is the restriction to Ok of an algebraic character of
K> (cf. §3.3). Recall the following definition from [20, Def.2.11].

Definition 4.1.3. Let x € X.i(F) such that w(x) is algebraic. We say that Xi(T) satisfies
the accumulation property at x if, for any positive real number C' > 0, the set of crystalline
strictly dominant points x’' = (1',¢") such that:

(i) the eigenvalues of 0l on De(r') are pairwise distinct;
(ii) «’ is noncritical;
(iii) w(z) = 5’|(le()n = 0w with k; =k, > C forie{l,...,n—1}, 7 € Hom(K, L);

accumulate at x in X;(T) in the sense of [2, §3.3.1].

Proposition 4.1.4. Let x € X,;(T) satisfying the assumptions of Remark 3.7.9 and such
that w(x) is algebraic, then X;(F) satisfies the accumulation property at x.

Proof. 1t follows from the above flatness of w at « and [14, Cor.5.11] that there is an affinoid
neighbourhood U of x in X,;(7) such that w(U) is open in W}'. Since Uy,;(T) NU is Zariski-
open and dense in U, it accumulates in U at any point of U, in particular at z. Arguing as
in the first half of the proof of [20, Prop.2.12] replacing V' by U;(7), and using that U is
locally irreducible at x by Corollary 3.7.10 and the fact that the normal locus of an excellent
ring is Zariski-open, we can then assume that x is moreover in Uy,;(T) and that U C Uy(T).
Then the result follows from [20, Lem.2.10] using that the algebraic points of w(U) satisfying
the conditions of [oc.cit. accumulate at w(x) since w(U) is open in W}. O
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If w e S, let dy € Zs be the rank of the Z-submodule of X*(7) (here T is the split
torus of ) generated by the w'(a)) — o where o runs among the roots of G. Then one easily
checks that d,, = dimy t(L) — dimz t*'(L') = n[K : Q,] — dimy, t*'(L’) for any extension L'
of L (see §2.5 for t). We have the following result which extends [20, Th.1.3].

Proposition 4.1.5. Let x = (r,d) € X1u(T) satisfying the assumptions of Remark 3.7.9 and
such that r is de Rham.
(i) We have dimy) Tx, 7). = dim Xoi(7) — [K @ Qpn® 4 dimy) Tx, zpan- 10 particular
the rigid analytic space Xm(*) is smooth at x = (r,d) if and only if the scheme X, is
smooth at xpar = (a1 (Ds),a  (Fily+ o), Nw) (which doesn’t depend on the choice of a by
G-equivariance of X,,).

(i) We have:
dimy() Tx im0 < M X (7) = duw, 1 + 18(wowo) + dimya) Tog o, ) — K 1 Qpln(n = 1).

In particular if m(xpar) is a smooth point on U, and if dyy,—1 = lg(w) —lg(w,) then Xy;(F)
is smooth at x.

Proof. Increasing L if necessary, we assume k(x) = L. (i) follows from Corollary 3.7.8 and
Corollary 3.6.3 together with dim Xis(7) = n® + [K : Q,)"%™) and dim X, = [K : Q,]n?
Since r is de Rham (which here is equivalent to r being crystabelline due to the assumptions in
Remark 3.7.9), the nilpotent endomorphism vy, of W is 0 and we can apply (i) of Proposition
2.5.3 which gives here:

(wawo).-

This inequality plugged into the equality of (i ) gives the inequality in (ii). The last assertlon
in (ii) follows using dimU,, = [K : Qp]" (w) and lg(w,wy) = [K : Qp]"
lg(wy). O

dimy, Tx,, pqn < dimy Torg 2+ 0[E 0 Qp = dip,—1 418

Remark 4.1.6. (i) The assumption on 7(zpqr) in (ii) of Proposition 4.1.5 is always satisfied
when w = wy (since in that case U,, = G/B x G/B is smooth), i.e. when z is a strictly
dominant point on X;(7) in the sense of [20, §2.1], and using d,, -1 = dw,u, We have in
that case:

(4.1) dimy ) Txpi(7),e < dim Xi(T) — duyw, + 1g(wewo).

The assumption dy,., -1 = lg(wy) — lg(w,) = lg(wew, ) is satisfied if and only if w,wy
is a product of distinct simple reflections (as follows from [20, Lem.2.7]). Note that the
permutation w,, call it here w}°¥, is in fact not the same as the permutation also denoted
w, defined in [20, §2.3], call it w29, Indeed, unravelling the two definitions one can check
that wV = w°dw,. In particular the upper bound in (4.1) is exactly that of [20, Th.1.3].
(ii) Both assumptions on m(zpar) and on dy,,, -1 in (ii) of Proposition 4.1.5 are satisfied
when lg(w) — lg(w,) < 2. The one on 7(zpqr) follows from [13, Th.6.1.19] (together with
[13, Cor.6.2.11]) and [45, 8.3(a)]. The one on d,, -1 follows from writing w = s,w, (case
lg(w) —lg(w,) = 1) or w = s,55w, (case lg(w)—lg(w,) = 2) where s,, sz are (not necessarily
simple) reflections (see e.g. [45, §0.4]).

(iii) Assuming Conjecture 2.3.7 for w = wy, the inequality in (i) of Proposition 2.5.3 is an
equality for w = wy (see Remark 2.5.4) which then implies that (4.1) is also an equality. In
particular Conjecture 2.3.7 implies [20, Conj.2.8].
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4.2. Local companion points. For r a fixed crystalline sufficiently generic deformation of
7, we determine all the points of X,;(T) with associated Galois representation r.

For h = (h,;) € (Z")*®l vecall that zP is the character z + [],ex 7(2)" of (K*).
There is a natural action of S ~ SIK:Ql on (ZM)K] . for w = (w,)rex € S and h €
(Zn)[K:Qp]7 U)(h) = (h‘r,w; 7 r vjredse
de Rham with distinct Hodge-Tate weights and denote by h = (h;1 < -+ < h;,)rexn the
Hodge-Tate weights of 7. As in §3.7, by [19, Prop.2.9] there is w € S such that wt(d) = w(h).
We assume w = wy, i.e. x strictly dominant in the sense of [20, §2.1].

-----

.....

By [19, Prop.2.9] again, if 2’ = (r,d’) is a companion point of x we see that there is w' € S
such that wt,(8') = w'(h).

We now assume moreover that r is crystalline and as in Remark 3.7.9 we denote by
@ = (p1,...,¢,) € k(z)" an ordering - also called refinement of r - of the eigenvalues of
go[Konp} on Deys(r). With such a refinement, we can construct a smooth unramified character
of (K*)™ by formula:

unr(p) = (unr(eq), ..., unr(e,))
Then it follows from [20, Lem.2.1] that there exists a refinement ¢ such that we have § =
~wo(h)

S.

Remark 4.2.2. Denote by ¢ : X,;(T) — X7 the canonical projection. It follows from [20,
(2.5)] and the line just after that for any refinement ¢ of r the point:

unr(y). Each companion point of x is of the form (r, z2*®unr(y)) for some w = (w,), €

T, = (T, sz(h)unr(f))

is in X¢,;(7) and from [49, Th.6.3.13] and the construction of X,;(7) that the set {x € X(T) |
g(z) = r} is exactly the union of the companion points of each z,, for all possible refinements
@ of r.

We now assume moreover p;; " ¢ {1,pl“e@I} for i # j as in Remark 3.7.9. Recall we
have defined w, € S just before Proposition 3.6.4 by the relation m(zypar) € U,,. The
following theorem is a local analogue (i.e. on the local eigenvariety X;(7)) of [16, Conj.6.6]
which concerned companion points on the global eigenvarieties built out of spaces of p-adic
automorphic forms.

Theorem 4.2.3. The set of companion points of v = (r,d) = (r, z*°™unr(y)) is given by:
{a:w = (1, 2*®unr(p)), w, < w}.
Proof. Applying Corollary 3.7.8 and Proposition 3.6.4 (with L = k(z)) at the point z,

(assumed to be in Xi,;(T)), we deduce the necessary condition w, =< w. It is thus enough to
prove that all the points z,, € X7 x T for w = w, are actually in X (7).

In [20, (2.9)] we have constructed a closed immersion of rigid spaces over L:

(4.2) o X X (7)
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(the left hand side is denoted %;D P i Joc. cit. but we drop the [, see Remark 3.6.1 and the

beginning of §3.7). Then (7, (¢1, ..., ¢n)) € X2~ and the construction of ¢, implies that this
point is mapped to z € X,;(T). Arguing as in the proof of [20, Lem.2.4], there exists a smooth
Zariski-open and dense rigid subset WP~ of X2~ consisting of pairs (ry, (P1ys s Pry))
such that the ;, satisfy 901'73/90;; ¢ {1,pF: @) for i # j. As in the proof of loc.cit. there
is also a coherent locally free Oﬁ,;._cr ®q, Ko-module D on Wh=er together with a linear

automorphism ® of D such that for all y € WP

<D7 ©> ®O‘/A‘}£1—cr k(y) = (DCI‘iS(ry>, SO[KOQP])

Moreover, locally on W~ we can fix a basis ey, ..., e, of D such that the Opn-o R, Ko-

submodule (ey, ..., ¢;) is ®-stable for all 7 and:
@(60 = ¢iei modulo <€1, . 7€i—1>

where the ¢; € @%;,,Cr ®1C ((’)VT,;,_Cr ®q, Ko)*, i€ {1,...,n} correspond to the morphism

Wh-er y xbe T8 with the notation of [20, §2.2]. By the argument in the proof of
[20, Lem.2.4], we have a smooth morphism of rigid spaces over L:

h:Wh= — (G/B)"

(recall G = Spec L Xgpecq, Resk)q,(GLy, k) mapping a crystalline representation of Gx to
the Hodge filtration on D, written as in (3.9).

For w € S, we write WP, C W2~ for the inverse image of the Bruhat cell (BwB/B)"& C

(G/B)"& under h. Then W;};“ is locally closed in W2~ and the VT/,—{‘;“ for w € S set-

theoretically cover WP~ From the definition of w, in §3.6 and the choice of the local basis
(e;); above we easily check that:

(43) (. (o1, n) € WIS 4= w = w,

If we denote by WF{‘;“ the Zariski-closure of W;?;CT in WP and by (BwB/B)"s that
of (BwB/B)" in (G/B)"8, then we have h~'((BwB/B)"s) = WP, Indeed, the in-
clusion WP, C h='((BwB/B)") is clear. Conversely, let y € h~'((BwB/B)") and
U an gmdmissible open neighbourhood of y in W;}i_cr, then A(U) is admissible open in
(G/B)"® since the map h is smooth hence open ([14, Cor.5.11]). Since h(y) € h(U) and
hy) € (BwB/B)"e, then h(U) contains a point in (BwB/B)" as the latter is Zariski-open
and dense in (BwB/B)"s. This implies UNh~'((BwB/B)") = U NW, # §, from which
it follows that y € W;j;“ since U is arbitrarily small, and hence we have h~'((BwB/B)"g) C
W;};“. Then one easily checks from the usual decomposition of (BwB/B)"s = (BwB/B)"8

into Bruhat cells that (4.3) together with h~*((Bw'B/B)"g) = WF}";,“ for w' € S imply:

(4.4) (r, (P15, n)) € WELT <= w > w,.
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Now, consider the following morphism of rigid spaces over L:
(4.5) bt WP — X x T
(ry, (Prys - Pny)) +—> (ry, Zw(h)unr(@l,ya e Prgy))-

Then LEL(XW (7)) is a Zariski-closed subset of W~ It is enough to prove that we have
an inclusion W;};“ C 1y (Xui(T)), or equivalently Lh,w(ﬁ/r—}f;“) C X4,i(7). Indeed, then we
also have W C 1y (Xui(T)), and since (r, (o1, ..., ¢n)) € W when w > w, by (4.4),
we deduce 2y = tho((7, (P15 -+, ¢n))) € Xei(T). But we have Lh7w(Wf}7‘;“) C Xi(T) since in
fact we have Lhyw(ng;“) C Uyi(F) (see (3.29) for Uy;(7)). This follows from the fact
that, when (7, (914, ¥ny)) € W;}Z“, then z*®unr(@1y, ..., ¢n,) € T is actually a

parameter of r, (use Berger’s dictionnary between Dqs(ry) and Diig(r,) as in the discussion
preceding [20, Lem.2.4]). O

Remark 4.2.4. A result analogous to Theorem 4.2.3 also holds assuming only that r sat-
isfies the assumptions in Remark 3.7.9 and is de Rham (which then implies it is in fact
crystabelline). We restrict ourselves above to the crystalline case for simplicity and because
this restriction is already in [20, §2] (that we use).

4.3. A locally analytic “Breuil-Mézard type” statement. We formulate a multiplicity
conjecture which is analogous to [35, Conj.4.2.1] except that X7 is replaced by X, and Serre
weights are replaced by irreducible constituents of locally Q,-analytic principal series. We
then prove the (sufficiently generic) crystalline case.

We keep the notation of §3.7 and fix a continuous 7 : Gx — GL,(kz). For § € T we
denote by X,i(7)s := Xwi(T) X1 the fiber at § of W' : Xui(T) — T and by Xi(T)wy(s) the
fiber at wt(d) € t"& of the composition X;(T) N T % g (here wt is defined similarly
to (3.16) but without the translation by —wt(d) and replacing the artinian L-algebra A by
an affinoid L-algebra A). We also denote by 77" s the fiber at wt(d) of 7} M e It

r € X7(L), we recall that the local complete noetherian L-algebra @;{?J of residue field L and
(equi)dimension n? + [K : Q,|n? represents the functor | X, | of framed deformations of  on
local artinian L-algebras of residue field L (see the beginning of §3.6 and §3.7). We denote
by Z(Spec Ox._,.) (resp. Z%(Spec Ox_.,) for d € Zs¢) the free abelian group generated by the
irreducible closed subschemes (resp. the irreducible closed subschemes of codimension d) in
Spec Ox_,. If A is a noetherian complete local ring which is a quotient of Ox_,, we set:
[Spec A] := > m(p, A)[Spec A/p] € Z(Spec Ox._,)
p minimal prime of A
where the sum is over the minimal prime ideals p of A, m(p, A) € Z> is the (finite) length

of A, as a module over itself and [Spec A/p] is the irreducible component Spec A/p seen in
Z(Spec Ox_).

Let us first start with some preliminaries which will also be used in §5.3. We let r € X7(L)
be a trianguline deformation with integral distinct 7-Sen weights for each 7 € X and define
V, D and M as in §3.6. We fix a triangulation M, of M which possesses a parameter in 7;".
We define zpar = (a1 (D), (Fily+,.), Nw) € X(L) € X(L) (depending on a choice of
framing «) as just before Corollary 3.5.8 and w, ,, € S = SIK:Ql a5 just before Proposition
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3.6.4. We fix w € S such that 2pqr € X (L) C X,,(L) and a parameter 6 = (6;)ieq1,..n} € Tg"
of M, (0 is automatically locally algebraic). Note that M, is the unique triangulation on
M of parameter § by Proposition 3.7.1. Going back to the commutative diagram (3.33), it
follows from Corollary 3.3.9 that we have a commutative diagram of affine formal schemes
over L:

pdR

K1

where t is the completion of t at 0 and where the two upper squares are cartesian. This
diagram induces another analogous commutative diagram with the Spec of the underlying
complete local rings instead of the formal schemes. Taking everywhere (except for X,) the
fibers over 0 € t(L) of this latter diagram and considering Remark 4.1.2, we obtain the
following commutative diagram:

Spec E:ﬁM. <~— Spec ES’XZ. — Spec O«

{\ Xw,TpdR

(4.6) Spec R, p,<—— Spec ﬁSM. — > Spec O

X,Tpdr

Spec @%ﬂ

where all the horizontal morphisms are formally smooth and where the two squares are
cartesian (as the vertical maps are closed immersions). Note that ES M, (resp. EEXZ) is a

. . ey =W A
formal power series ring over Ry v, (resp. R, ;) and over Ox, - (resp. Ox . ).

By the results of §§2.4, 2.5, the irreducible components of Spec @Y,:rde are the union
of the irreducible components of Spec @wa@p w for w' € S such that zpar € Z, (L) (this
last condition doesn’t depend on the choice of the framing «). Likewise the irreducible
components of Spec @yw%dR are the union of those of Spec @Zw,@p s for w' € S such that
w' 2 wand zpqr € Zy(L). By pull-back and smooth descent, we obtain from (4.6) a bijection

between the irreducible components of Spec @prdR (resp. Spec @yw @de) and the irreducible

components of Spec R, rq, (resp. Spec F: m.)- In particular Spec R, u4, is equidimensional
(n—1)

of dimension n* + [K : Q,)™%— (equivalently of codimension [K : Qp]w in Spec Ox._,)

and Specﬁz M, is a union of irreducible components of Spec R, rq,. For w’ € S, denote
n(n+1)

by 3. € ZEI =5 (Spec (’A)xﬂ) the cycle corresponding via the embedding Spec R, vq, <
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Spec Ox._, to the cycle [Spec @Zw,@de] in §2.5 under this bijection and set as in (2.16):
(47) Q:w/ = Z aw/’w//Bw// &

w"eS

(n+1) A
7 (Spec Ox_,).

Note that the cycles 3, and €, do not depend on the choice of the framing « and, using
(3.15), depend on ¢ only via the Ry x(6;)[7]. Since auguwr = 0 for w” # wy (see the last
condition in (iii) of Theorem 2.4.7), we have €,, = 3,, and since moreover Z,, is smooth
(as it is isomorphic to G/B x G/B) we see that 3,, = &€,, is either 0 or irreducible. In fact
we have r de Rham (equivalently here r crystabelline) if and only if Ny = 0 if and only if

Tpdr € Zu, (L) if and only if 3, = €4, # 0.

Remark 4.3.1. We have a more precise description of €, in the crystalline case at least
(which will be used in §5.3). Denote by %;Vt@_cr C X7 the closed analytic subspace associ-
ated to (framed) crystalline deformations of 7 of fixed Hodge-Tate weights given by wt(J)
and assume here that the fixed r is in %;Vt@_cr(L) C X7(L). Since the underlying nilpo-
tent operator is identically 0 on Z,,,, any deformation in X, v, (A) C X, (A) coming from
Zwo% w(A) (for Ain Cp) is de Rham, hence crystalline due to the assumption r crystalline

and 0 € 77" (by an easy exercise) This implies that Q:wo = 3., corresponds to an irreducible

closed subscheme of Spec(’) @) —er, of dimension n? + [K : @p]w. But it follows from

[52] that the scheme Spec @ i) -er, is already irreducible of dimension n? + [K : @p]w

Hence we deduce in that case an 1som0rphlsm

(4.8) Cwy — [Spec Oﬂt@_%] ezl . (Spec @x;,r)-

Corollary 4.3.2. With the notation as for (4.7) assume moreover that x = (r,d) is in
Xuwi(T)(L). Let M, be the unique triangulation of M = Di,(r)[3] of parameter § and that
w € S is such that wt(d) = w(h), then we have:

[Spec @Xtri(F)wt@,w] = Z Pwow,wow’( Q: S AL Qp] *

w'eS

(Spec Ox )

Proof. This follows from Corollary 2.5.6, Corollary 3.7.8 and what is above, recalling that
the composition Xy,(7), =~ v — Xom. 2, 7? is the morphism w’ by (3.30). O

One can be a bit more precise. We have xpqr € Zy (L) = Tpar € Xu (L) = Wy 4n < W'
(using Proposition 3.6.4 for the last implication). By (4.7) and the properties of the integers
Ay v (see (iii) of Theorem 2.4.7) we deduce €,y # 0 = 3,» # 0 for some v’ <X w' =
Wy gn S W = Wy i X W' Since moreover Puywwew (1) # 0 < w' < w, we have in fact:

(4.9) [Spec Oxmune) = 2o Puowew (1) € ZEIT

2w Sw

(Spec Ox..r).

Wapar
When 7 is moreover de Rham (i.e. Ny = 0), one can easily check using the usual description
of the Zariski-closure of Bruhat cells that we have equivalences (and not just implications)
Tpar € Zuw (L) € Tpar € Xw (L) & e oy 2w’ and 3 # 0 & € # 0 & w, p, 2 w'. In
that case, we see in particular that all terms in the sum (4.9) are actually nonzero.

After these preliminaries, we now move to our multiplicity conjecture.
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Lemma 4.3.3. Let x = (r,0) be any point of X,i(7)(L) such that 6 € Tg*, then we have
closed immersions:

Spec @Xm(F)g,x — Spec @Xm(;)@ — Spec @§?7r.
Proof. The first closed immersion is obvious and the second is Proposition 3.7.3. U

When r € X7(L) is trianguline, we say that r is generic if all the parameters 0 of r are in
7, When r is crystalline with distinct Hodge-Tate weights for each 7 € ¥ and the ; are
the eigenvalues of go[K‘“QP} on Des(r), this amounts to the conditions on the ¢; in Remark
3.7.9.

For 0 = (d1,...,0,) € T/*(L), we consider the locally Q,-analytic principal series:
(4.10) Is := (Indg&’;()mél RO ® - @ 5n5”‘1)an

where B(K) C GL,(K) is the subgroup of lower triangular matrices. Recall that I; is the
L-vector space of locally Q,-analytic functions f : GL, (K) — L such that:

f(adiag(ty, ... tn)g) = 61(t1) (02(t2)e(t2)) - - - (On(tn)e™  (tn)) f(9)

(where @ is lower unipotent in B(K)) with the left action of GL,(K) by right translations
on functions f. It follows from the theory of [58] (together with the appendix of [15])
that the representation I; is topologically of finite length and that the multiplicities of
its (absolutely) irreducible constituents are a mixture of multiplicities coming from Verma
modules (i.e. Kazhdan-Lusztig multiplicities) and from smooth principal series. We denote
by I3 its (topological) semi-simplification. If II is an absolutely irreducible locally Q,-
analytic representation of GL,(K) over L, we denote by msn € Z> its multiplicity in I3°.

The following conjecture was inspired by [18], [38] and especially [35, Conj.4.2.1].

Conjecture 4.3.4. For any generic trianguline r € X+(L) and any absolutely irreducible

constituent 11 of a locally Q,-analytic principal series of GL,(K) over L, there ezists a
n(n+3)

unique cycle Cpyp in ZE@1=5— (Spec (’A)xﬁ) such that, for all 6 € T/*(L), we have:

n(n+3)

[Spec Ox,u@g o] = D msnCrn in ZE 757 (Spec O,
11

Remark 4.3.5. Conjecture 4.3.4 in particular implies that Spec @Xm(;) 5.(r0) 18 equidimen-

sional of dimension n? + [K : @p]”("gg) (if nonzero) when r € X7(L) is generic trianguline.

Note that if the cycles C, 1 are known for a given r (and all II), then Conjecture 4.3.4 also
tells exactly which points of the form (r,0) are on Xy (7).

Let 6 € T;* be locally algebraic. We can write:
(81,008, ...,0," 1) = A5

where \ € (Z")5®! and 4, is a smooth character. Then the representation I; is isomorphic

to fg(LK")(K) (U(8)®p5)(—A), dsm) where b is the Lie algebra of the lower triangular matrices in

G (see §3.1 for () and where we use the notation of [58]. The hypothesis ¢ € 7" implies that
for every parabolic subgroup P(K) of GL, (K) containing B(K), the smooth representation
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In d;gi)(é m)™™ is irreducible (see [11, Th.4.2]). Together with [45, §5.1] (whose notation we

use) and the results of [58] as summarized (and slightly extended) in [15, §2], this implies

that the irreducible constituents of FE(LK"(K)(U (8) ®p) (—A): dsm) are (up to multiplicity)

the Fgg“K")K)(L(—p),Qsm) where p € (Z")E @l is such that A 1 i (the strong linkage relation
1 being here with respect to b).

Proposition 4.3.6. Assume r € Xz(L) is generic trianguline with integral T-Sen weights
for each T € X. If the cycles C,11 as in Conjecture 4.3.4 exist, then they are unique.

Proof. Writing 0 = (0;)ic(1,....n}, it follows from [49, Th.6.3.13] that (r,d) € Xi(T) implies &
locally algebraic and § € 7". In particular if II is a constituent of some I§* where at least
one of the §; is not locally algebraic or where § ¢ 7", then [Spec O Xui(P)s.(r8)] = 0 and hence
Cr1 = 0. Let II be an irreducible constituent of some I§* where § € 7" is locally algebraic
and write (01, 0¢,...,0,e"" 1) = 2*d, as above. By thé discussion before this proposition,
we have II = ]:g(Ll?)(K) (L(—p), g ) for some A 1 p. Replacing d by the unique (still denoted)
0 € T/*(L) such that (81,096, ..., 0,6" 1) = 290, we have that IT occurs with multiplicity 1
in (the new) I3* as L(—u) occurs Wlth multiplicity 1 in U(g) ® ) (—#) (we use [15, Cor.2.7]).
If I =11, i.e. Is = I§® is irreducible, i.e. p is maximal for 1, then we must have C, ;1 =
[Spec OXm o (r8)]- Otherwise, we must have [Spec @Xtri(F)&(ryé)] = Crn + Xwen mswCrr

where IT' = ]fg(LI’;)(K) (L(—v),d4y) for p 1 v, v # u. By induction, we can assume the cycles

C, v are known, and then we must have C, 11 = [Spec @Xm(;) é7(@)] — >men M Cr - 0

We now fix r € X7(L) a trianguline deformation with integral distinct 7-Sen weights for
each 7 € X and we let M, M,, Tpar, We g, W, 0 as in the beginning of this section.

Taking the fibers over § € Spec @Tant s(L) in the commutative diagram (4.6) yields a third

©=

diagram:
=w :D,
Spec R, \, = Spec R, »,, — Spec OXw o
— =0
(4.11) Spec R, pm, <— Spec R, p, — Spec Ox o

Spec @x;,r

:D
where all horizontal morphisms are formally smooth, the two squares are cartesian and R, ,,,
=0, — —
(resp. R, /\l:.) is a formal power series ring over R, x4, (resp. R: Mm.)- Using exactly the same
arguments as with (4.6), for v’ € S we denote by Z,, € ZIE Q)5 (Spec Ox._,) the cycle

corresponding, via the embedding Spec R, oy, — Spec (535?7“ to the cycle [Spec @Zwuxp .
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and we set as in (4.7):

(412) Cw’ = Z aw’,w"Zu}” c Z[K:Qp] "(n2+3) (SpeC @x%r)‘

w"eS

The cycles Z,,» and C,s again do not depend on « and depend on ¢ only via the Ry, K(@)[%]
(using (3.15)).

Denote by 0y = (00,)ic{1,...n} € Tg* the unique element such that (5025_1 is algebraic for
all i € {1,...,n} and wt,(dp;) > wt,(dp;41) forall i € {1,...;n — 1} and all 7 € 3. It
follows from [45, §8.4] and [58] (with [15, §2]) that the 1rreduc1ble constituents of I5 are
parametrized by S in such a way that ms 1, = Piwew (1) where Il is the constituent
associated to w' € S (recall that in I we mduce from the lower Borel). The cycle Cy a

priori depends on r, M, and w’. The followmg result shows that it depends on slightly less.

Proposition 4.3.7. With the above notation, the cycle C, only depends on r and on the
constituent 1L,

[e

Proof. We can choose the framing « such that the flag o '(D,) on (L ®q, K)" ~
Dyar (War(M)) is the standard one. For w’ € S such that xpqr € Z,/(L) denote by P,y C G
the maximal parabolic subgroup containing B such that w'wg - 0 is dominant with respect
to M,y N B where M, is the Levi subgroup of P,,. Denote by S, ,» C S, the subgroup of
permutations which, seen inside S = S,[LK Q! via the diagonal embedding, belong to the Weyl
group of M,,. Let us write 6, = 2*d,,, with d,, a smooth character. For an element @ € S,
we denote by w(Jy,) the smooth character defined by @(0gy)i = dgm ey By [15, Lem.6.2]
we find that:
WE Sy = 0# Mg, T where ¢ 5 = M08y )

One easily checks that there is a partition n = nq+- - -+n, of n by integers n; > 1 such that
Sp is the Weyl group of GL,,, /1, X GLy,,, X --- x GL,, /1, inside GL,,;r. For any reflection
s in S, the closed point zpars = (sa'(D.), a H(Fily+ o), Nw) is still in Z,(L) since
in particular s(Z,,) = Z, by Remark 2.4.9. Hence the nilpotent endomorphism induced
by Nw on the graded piece a (D y.in;)/@ H(Doysoin,_,) for i € {1,...,r} is actually
0 since it must respect permutations of the induced flag. Applying Lemma 3.4.7 to each
graded piece, we can define another triangulation sM, on M which induces sofl(D.) on
Dyar (War(M)). We can then define the cycles 2, 5,Cur s € Q] P (Spec Ox ) as we
defined Z,,,C, replacing M, by sM, and z,qr by Zpar,s in the lower part of (4 11) (the
part that is not concerned with w), and note that C, s is well defined thanks to Remark
2.4.9. It then easily follows from [15, Lem.6.2] that it is enough to prove C,y = Cy s in

71505 (Spec Ox._,.).
From (4.12) it is enough to prove Z,» = Z,» s for all w” < w’ such that a, .~ # 0

and all reflections s € S, (note that Z,» # 0 if and only if Z,/ s # 0 for such w” < v’
by Remark 2.4.9). Denote by Z_. (resp. Z,.,) the equidimensional closed subscheme of

=0 =0 .
codimension 0 in Spec R, 4, (resp. in Spec R, 4, ) defined as the pull-back of Spec Oz, 44
(resp. Spec @Zw,,,xdeys) Let A € Cp, and (DA),,DEZ),, Ny) € Zw//,deR(A)’ from s(Zyn) = Zyn

(Remark 2.4.9) we deduce as previously that the nilpotent endomorphism induced by N4
on Dg)nlJr,”er/DS}nlJr,,,Jrni_l for i € {1,...,r} is actually 0 (since on each graded piece it
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must respect permutations of the induced flag and since it is 0 on the diagonal as we are
in Z,» C Z). Applying again Lemma 3.4.7 to each graded piece, we can define a bijection
s: Zgn(A) = Z5 (A) which is functorial in A by permuting the triangulation M, of M4
according to s. Hence the two complete local rings underlying Z5, and ZC u ¢ are isomorphic.
Since this bijection doesn’t touch the Galois deformations, they are moreover isomorphic as
quotients of (9 where (9 is the affine ring of XZ. This implies in particular that the

n(n+3) (Spec Ox._,.). O

Theorem 4.3.8. Assume r € X7(L) is generic crystalline with distinct T-Sen weights for
each T € ¥. Then Conjecture 4.5.4 is true for r.

two cycles Z,» and Zy s are the same in ZFQ)

Proof. For any refinement R, that is any ordering (yj,,...,y;,) of the eigenvalues (y;); of
lEo W] on D (1), there is a unique triangulation M,z on M such that M; /M, 1z =
Rix(unr(p;,))[1]. We denote by g par the point of X (L) corresponding to M,z (fixing
the same framing « for all R).

Let 0 = (0;); € T/*(L). If (r,0) is not a point on X;(7) set C,.i1 := 0 for all constituents II
of I, If (r,0) € Xuwi(T ) then the assumptions imply 0 € 7" and ¢ locally algebraic and we
set Crn1,, 1= Cu for w’ € S where C, is defined using the triangulation M, of Proposition
3.7.1 (and the associated z,qr) and where we use Proposition 4.3.7. Note that M, = M.z
for a refinement R uniquely determined by (01, ...,d,). For all this to be consistent, we have
to check that if II,, occurs in some other I3 with (r,0’) ¢ X(T), then we have C,y = 0.
Consider such a ¢§' = (8});, there exists a permutation w, € S, for each 7 € 3 such that
Wt (04 1)) < Wtr(0y, (i41)) (in Z) for all i and we set w := (w;); € S. Then we have
w' < w using [45, §5.2] and [58]. Moreover there exists a unique refinement R’ which is
determined by (47,...,9,) and it follows from Proposition 4.3.7 (and its proof) that we can
also define C,y using M, zs instead of M, g = M,. Arguing exactly as before (4.9), we have
Co #0 < Wors an = w'. As (r,0") ¢ Xui(F), we must have Werr om £ w by Theorem 4.2.3.
But then (since w' < w) this implies w,, . £ w’ and thus C, = 0.

It remains to check the equality of cycles in Conjecture 4.3.4 for (r,d) € Xu(7)(L) (if
(r,0) ¢ Xui(7)(L) it amounts to 0 = 0 by definition of the C,1). But in that case, defining
w as before Lemma 3.7.4 (i.e. as we did above for §' but with ), we have by the same
argument as for Corollary 4.3.2:

[Spec (’)Xm M5 = 2 Pugwawow (1)Cur € Z e (Spec Ox..).
w'eS
Since the constituant I, appears in [§® with multiplicity msm,, = Puswwow (1) (use again
[45, §8.4] and [58]), this finishes the proof. O

Remark 4.3.9. For r as in Theorem 4.3.8, the constituents II such that ms # 0 for some
d € T/(L) are precisely (up to constant twist) the companion constituents associated to r
in [15, §6].

5. GLOBAL APPLICATIONS

Under the usual Taylor-Wiles hypothesis we derive several global consequences of the re-
sults of §2 and §3: classicality of crystalline strictly dominant points on global eigenvarieties,
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existence of all expected companion constituents in the completed cohomology, existence of
singularities on global eigenvarieties.

5.1. Classicality. We recall our global setting. Then we prove classicality of crystalline
strictly dominant points on global eigenvarieties under Taylor-Wiles assumptions.

We start by briefly reviewing the global setting of [20, §§3.1,3.2] and refer the reader to
loc.cit. for more details. We assume p > 2 and fix a totally real field F', we write ¢, for the
cardinality of the residue field of F'™ at a finite place v and we denote by S, the set of places
of F* dividing p . We fix a totally imaginary quadratic extension F' of F'* that splits at all
places of S, and let Gr := Gal(F/F). We fix a unitary group G in n > 2 variables over F'"
such that G x p+ F' = GL,,/p, G(F* ®gR) is compact and G is quasi-split at each finite place
of F'". We fix an isomorphism i : G xp+ F = GL,,r and, for each v € 5, a place v of F
dividing v. The isomorphisms F,) = F; and 7 induce an isomorphism i; : G(F,}) = GL,(F})
for v € S,. We let G, := G(F,") and G, := [lyes, G(F,F) =~ Tlues, GLn(F3). We denote by
K, (resp. B,, resp. B,, resp. T,) the inverse image of GL,(OF,) (resp. of the subgroup of
upper triangular matrices of GL,,(F}), resp. of the subgroup of lower triangular matrices of
GL, (F}), resp. of the subgroup of diagonal matrices of GL,(F3)) in G, under iz and we let
Ky, = Ilyes, Ko (vesp. By :=l,es, Bo, resp. By := [Lyes, Bo, resp. T := [lyes, Ty). We fix
a finite extension L of Q, large enough to split all F} for v € S, and denote by g, b, b and
t the base change to L of the respective Q,-Lie algebras of G, B,, B,, T, (so for instance
g~ Hvesp(g[n)[Fj:@] ~ (g, )F" Q). We denote by T, and T, (v € S,) the base change
from Q, to L of the rigid analytic spaces over QQ, of continuous characters of respectively T,
and T,. We identify the decomposition subgroup of Gr at © with Gr, = Gal(F;/F;).

We fix a tame level UP = [[, U, C G(A}Y) where U, is a compact open subgroup of
G(F;") and we denote by S (UP, L) the p-adic Banach space over L of continuous functions
G(FT)\G(A%,)/UP — L endowed with the linear continuous unitary action of G, by right
translation on functions. A unit ball is given by the @-submodule S (UP,Oy) of continu-
ous functions G(F)\G(A%,)/U? — Oy (alternatively S(U?, Op) ~ lim S(UP,Op/m,)
where S(UP, O /m, ) denotes locally constant functions G(FT)\G(A,)/UP — Op/m, )
and the corresponding residual representation is the kz-vector space S(U?, k) (a smooth ad-
missible representation of G,). We also denote by S(U?, L)* C S(U?, L) the very strongly
admissible ([33, Def.0.12]) locally Q,-analytic representation of G, defined as the L-subvector

space of S (UP, L) of locally Q,-analytic vectors for the action of G,,.

We fix S a finite set of finite places of F™ that split in F' containing S, and the set
of finite places v 1 p (that split in F') such that U, is not maximal. We can associate
to S a commutative spherical Hecke Op-algebra TS which acts on S(U?, L), S(U?, L)*,
S(U?,0y), S(UP,Op/myy, ). We fix m® a maximal ideal of T% of residue field ky (in-
creasing L if necessary) such that S(U?, L)y = (S(UP, L)ws )™ # 0 where S(UP, L)ys 1=
@s S(UP,Op/my, )ms. We denote by p = pys : Gr — GL,,(kz) the unique absolutely semi-
simple Galois representation associated to m® and assume 7 absolutely irreducible. We let
R5 s be the noetherian complete local Op-algebra of residue field k; pro-representing the
functor of deformations p of p that are unramified outside S and such that p¥oc = p@en~!



76 CHRISTOPHE BREUIL, EUGEN HELLMANN AND BENJAMIN SCHRAEN

where pY is the dual of p and ¢ € Gal(F/F™") is the complex conjugation. Then the spaces
S(UP, L)ys and S(UP, L)% are natural modules over R g.

The continuous dual (S(U?, L)%)Y of S(U?, L)% is a module over the global sections
['(X5.5, Ox, 5) where X5 5 := (Spf R; s)"8 and we denote by Y(U?,p) = Y (U?,p,S) (forget-
ting S in the notation) the schematic support of the coherent O%;,s ><fp’L—moduIe
(Js, (S(U», L)2%))Y on X5 % T, where J B, is Emerton’s locally Qp-analytic Jacquet functor
with respect to the Borel B, ([32]) and (—)¥ means the continuous dual. This is a reduced
rigid analytic variety over L of dimension n[F" : Q] which is a closed analytic subset of
X559 X fn £ whose points are:

{x = (p,0) € X5 x T, such that Homyg, (é, Jp, (S(UP, L)% [m,] @, k:(I))) # 0}

mS

where m, C R; s[1/p| denotes the maximal ideal corresponding to the point p € X5 ¢ (under
the identification of the sets underlying X5 s = (Spf R;¢)"® and SpmR; s[1/p]). If U C U?
and S contains S, and the set of finite places v { p that split in F' such that U is not
maximal, then a point of Y (U?,p) is also in Y/ (U'",p).

We let Xi:i(p,) be the product rigid analytic variety [I,cg, Xui(p;) (over L) where p; =
Plgr, and Xui(p;) is as in §3.7 (remember we drop [ everywhere, see loc.cit.). This is a

reduced closed analytic subvariety of (Spf Rj )" x T, where Ry, = Doe s, 5, (recall Ry is
defined at the beginning of §3.7). Identifying B, (resp. T,) with the upper triangular (resp.

diagonal) matrices of GL,(F;) via iz, we let 65, := |- [l ' @ |- [E°® - @ |- |p" be the
modulus character of B, and define as in [19, §2.3] an automorphism 1, : ﬁh L — T, v, by:
(51) Zv<517 R 75n) = 531} . (51, ce 761'&,@'717 ceey 5n€n71).

Then the morphism of rigid spaces:
%5,5 X f]LL — (Spf Rpp)rig X fp,L
(pa (év)vesp) = (p7 (61),17 s 75v,n)v65p> L ((Pﬁ)vespa (151(511,17 s 75U,n))UESp)

induces a morphism of reduced rigid spaces over L:

(5.2) Y(U?,p) — Xui(py) = 11 Xewi(Ps)-

vES)
We say that © = (p,0) = (p, (0y)ves,) = (0, (0v1,-- - 0un)ves,) € Y(UP,p) is de Rham
(resp. crystalline) strictly dominant if p; := plg, is de Rham (resp. crystalline) and if
the image of z in each Xii(p;) via (5.2) is strictly dominant in the sense of [20, §2.1].
Equivalently wt,(0,;) > Wt;(0y,41) for all ¢ € {1,...,n — 1}, 7 € Hom(F;,L) and v € S,
(recall wt,(d,;) € Z by [19, Prop.2.9]).

Let 0 = (d,)ves, € fp,L such that wt,(d,;) € Z for all i, 7, v. Then we can write
§ = 6,04, in T, where A = (Ao)ves, € Tloes, (Zm)HomIwL) 5, = [L,cq, 2™ (recall 27 is
z = [lrettom(r,r) T(2)*7) and dg, is a smooth character of T, with values in k(J) (the

residue field of the point § € fp,L). Following Orlik and Strauch, we define the strongly
admissible locally Q,-analytic representation of G, over k() (see [19, §3.5] for the notation,
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see also Remark 5.1.2 below):

Gy Gy _
(53) F5(8) = Fg ((U(9) @y (=1)", Samd5,)
where 0p, = [l,cs, 05, and —A is seen as a character of t and by inflation b — tasa

character of b. If \ is dominant, that is Avri 2 Apriv1 for all 4, 7, v, we let:

(5.4) LA(0) = L(\) @1 (Ind$"d,,,05!)

B,—Sm”Bp
where L(\) is the irreducible finite dimensional algebraic representation of G, over L of
highest weight A relative to B, and (Ind%” —)°° is the usual smooth principal series. It is a
locally @Q,-algebraic representation of G, oifer k(d) which coincides with the maximal locally
Qp-algebraic quotient of fg: (0) and also with the maximal locally Q,-algebraic subobject

of (Ind%"805")™".

Let 2 = (p,0) € X556 x Tp, 1, with wt,(d,;) € Z for all i, 7, v, the representation (5.3) allows
us to reformulate the condition z € Y (UP, p) as (see [16, Th.4.3]):

(5.5) Homg, (8, J5,(S(U”, L)as[m,] @y k(z)))

~ Homg, (fng (8), S(UP, L)ws[m,] ®(n) k(x)) # 0.
A point = = (p,d) € Y(UP,p) which is de Rham strictly dominant is called classical if
there exists a nonzero continuous G,-equivariant morphism in the right hand side of (5.5)
that factors through the locally Q,-algebraic quotient LA(J) of ]—"g” (0). Equivalently (p,0)

~

is classical if Homg, (LA(J), S(UP, L)ws[m,] Qg k(x)) # 0 ie. if p comes from a classical
automorphic representation of G(Ag+) (satisfying the properties of [20, Prop.3.4]). We then
have the classicality conjecture.

Conjecture 5.1.1. Let © = (p,d) € Y(UP,p) be a de Rham strictly dominant point. Then
x is classical.

Remark 5.1.2. The careful reader may have noticed that the (generalization of the) results
of Orlik-Strauch that we use in [19], [20] and here are actually only stated in [15, §2] and [16,
§§2,3.,4] for locally Q,-analytic representations of G(K) over L where G is a split reductive
algebraic group over K and L splits K. But looking at the form of the group G,, we see
that we rather need (in [19], [20] and here) locally Q,-analytic representations of groups of
the form G(K) x Ga(Ks) over L where Gy, i € {1,2}, is split reductive over K; and the
finite extensions Ky, K5 are not necessarily the same. However, assuming that L splits K
and K5, an examination of the proofs of the results of [15, §2] and [16, §§2,3,4] (and of all
the results of Orlik-Strauch and Emerton on which they rely, see loc.cit.) shows that they
all easily extend to the above case.

Itz =(p,d) € X5 xfp,L is crystalline, we denote by (¢s,1 .- -, ¥5,n) € k(2)" the eigenvalues
of plfo0:Qel on Deis(ps).

Theorem 5.1.3. Assume F/F* unramified, /1 ¢ F, U, hyperspecial if v is inert in F
and p(Gpy)) adequate ([66, Def.2.20]). Let x = (p,0) € Y(UP,p) be a crystalline strictly

dominant point such that ¢@7i¢g’} ¢ {1,q,} fori# j andv € S,. Then x is classical.
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Remark 5.1.4. Let = (p,0) € Y(UP,p) be a point satisfying the assumptions in the
theorem, but without assuming that the point is strictly dominant. It follows from [16,
Prop.8.1(ii)] (see also [20, Theorem 5.5]) that there exists a point 2’ = (p,d’) € Y (U?,p)
that is strictly dominant, and hence classical by the above theorem. We hence can still
deduce that the Galois representation p is automorphic (though the point x is not necessarily
classical itself).

Proof. By the argument following [20, (3.9)], we can assume U? small enough, i.e.:

(5.6) G(F) N (WUPK,h™") = {1} for all h € G(AF).

We now briefly recall the construction of the patched eigenvariety X,(p) of [19, §3.2] and |20,
§3.2] (to which we refer for more details, note that this construction uses the above extra
assumptions on F'; UP and p). Fix an arbitrary integer ¢ > 1 and let R., be the maximal
reduced and Z,-flat quotient of (®vesRﬁﬁ)[[I1 ..., x4]. Denote by X, := (Spf Rw)"® and
likewise by Xz» (resp. X5 ) the reduced rigid fiber of Qe s\s, Iz, (resp. e s,1t,). We thus
have Xo, = Xp x X5, x U? where U := (Spf Or[y])" is the open unit disc over L. Then
following [23] one defines in [19, §3.2], [20, §3.2] for a specific value of the integer g a certain
continuous R..-admissible unitary representation Il of G, over L and an ideal a of R, such
that Tlc[a] = S(UP, L)ys. We then define X,(p) as the schematic support of the coherent
O, .7 -module M, = (Jp, (IIF>"""))" on X X T,. This is a reduced rigid analytic

Xoo XTp,L
variety over L which is a closed analytic subset of X x T}, 1 whose points are:

(5.7 {x=(y,8) € Xoo x T, 1, such that Homs, (8, Jp, (IH="""[m,] @k k())) # 0}

where m, C R..[1/p| denotes the maximal ideal corresponding to the point y € X (under
the identification of the sets underlying X, and SpmR..[1/p]). Moreover Y (UP,p) is the
reduced Zariski-closed subspace of X,(p) underlying the vanishing locus of al'(¥X., Ox.).
Define «(Xi(p,)) = Ilves, to(Xui(P5)) where ¢,(Xui(p;)) is the image of Xii(p;) via the
automorphism id x¢, of X5  x ﬁ,,  in (5.1). For each irreducible component XP of X5», there
is a (possibly empty) union X **(p,) of irreducible components of Xy;(p,) such that we

tri

have an isomorphism of closed analytic subsets of X x T}, 1.:

(5.8) X,(p) = U (%7 < (X (p,)) x U).
XP

Note that the composition:

Y (UP,p) = X,p(5) = X X U(Xui(B,)) X U9 = o(Xi(7,)) — Xewi(B,)
is the map (5.2).

Now consider our point x = (p,d) € Y(U?,p) and let X” C Xz be an irreducible compo-
nent such that z € X7 x o( X3 ~*"(p,)) x U9 C X,,(p) via (5.8). For v € S, let z, € Xui(p3)
be the image of x via:

X7 X (X 7,)) X U = UXE(5,)) 5 Xa(B,) = Xupo):

tri tri

For each v € S,, by Corollary 3.7.10 applied to Xi,i(p;) and z, (which uses the assumptions
on ¢z, see Remark 3.7.9) there is a unique irreducible component Z, of Xi,i(p;) passing
through z,. If Z :=[],eg, Zu, from (5.8) we thus necessarily have z € XP x 1(Z) x U9 C XP x
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tri

of z, in Xui(p;) we have [[,eq, Vo € Z C X v “"(p,) and we see that the assumption in

tri

20, Th.3.9] is satisfied. Hence x is classical by [20, Th.3.9] (see also [20, Rem.3.13]). O

WX ™ (p,)) x V9. In particular, for V, € X.i(p;) a sufficiently small open neighbourhood

Remark 5.1.5. The assumptions on the ¢;; in Theorem 5.1.3 do not depend on the choice
of the place v above v. Moreover, here again as in Remark 4.2.4, assuming F'/F* unramified,
Y1 ¢ F, U, hyperspecial for v inert in F' and 5(G F( %)) adequate, a little extra effort should
produce classicality of de Rham strictly dominant points x = (p,0) = (p, (0,)ves,) € Y (U?, D)
such that ¢, '(d,) € T where ¢, is (5.1) and 7 is defined as in §3.4 but with the field
FF = F; instead of K.

5.2. Representation theoretic preliminaries. We give here some technical lemmas re-
lated to locally analytic representation theory that will be used in the next section.

We keep the notation of §5.1 and set T) := T, N K, = [L,es, (T, N K,). For a weight
1= (po)ves, € ues, (Z")HomFE) denote by L(u) (resp. L(u)) the irreducible object of
highest weight p in the BGG category O (resp. O) of U(g)-modules with respect to the
Borel subalgebra b (resp. b) ([45, §1.1]) and for w € [I,es, SF#! set w - p:= w(p+p) —p
where p is half the sum of the positive roots of the algebraic group [[,cg, Spec L Xspecq,
Resp, /g, (GLy/p,) with respect to the Borel subgroup of upper triangular matrices. Write
wo = (wow)ves, € [lyes, SFT@! for the longest element. If € € T, (L) is of derivative pu,
the theory of Orlik-Strauch [58] (extended as in Remark 5.1.2) gives us a locally Q,-analytic
representation of G, over L (with the notation in (5.3)):

ng (z(_ﬂ>7%magi) = ®UGSP~F§;} <z(_,uv)7§Sm(5§3)

where the completed tensor product on the right hand side is with respect to the inductive or

projective tensor product topology (both coincide on locally convex vector spaces of compact
type, see [34, Prop.1.1.31] and [34, Prop.1.1.32(i)]).

Let II*" be a very strongly admissible locally Q,-analytic representation of G, over L (]33,
Def.0.12]). Let u (resp. u) be the base change to L of the Q,-Lie algebra of the unipotent
radical U, of B, (resp. of the unipotent radical of B,) and Uy a compact open subgroup of
Up.

Let M be an object of the category O. It follows from [58, Lem.3.2] that the action
of b on M extends uniquely to an algebraic action of B,. We endow the L-vector space
Homy, (M, I1*") with the adjoint action. More precisely, for b € B, and f € Hom (M, II*")
we define bf € Homp (M, II*") by the formula (bf)(m) := bf(b='m) for m € M. The
subspace Homy () (M, I11*") is preserved by this action. Namely, for f € Homyq) (M, II*"),
be By, r€gand m € M, we have:

(bf)(xm) = bf(0~"xm) = bf (A~ )eb™'m) = DA™ )ef(b~'m) = x(bf)(m)

so that bf € Homy ) (M,II*"). In particular, we deduce from this fact that b acts trivially
and B, smoothly on Hom g (M, II*").

Denote by T;r C T, the multiplicative submonoid of elements ¢ such that tUst~! C Uj, then
it is straightforward to check that the actions of Uy and T}, on Homy () (M, II**) are compatible
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with the relations tugt™' € Uy for t € TF. Hence we can endow Homg g (M, [12)% with the
usual action of T; defined by:

(5.9) fr—t-fi=0p,0t) > utf

quUo/tUotil

Let € € fva(L) of derivative p and €, := €d_,. The characters ¢ : T,f — L* and ¢,
determine surjections of L-algebras L[T;] — L and we denote their respective kernel by m,
and m,_(maximals ideal of the L-algebra L[T"]). We also set m; := ker(L[T]] — L) (resp.
My sm = ker(L[T,}/T}] — L) where the surjection is determined by the trivial character of
T (vesp. T, /T;)) and we define for any integer s > 1 the characters:

[] s [] s
1[s]: T];r — L[T;] —» L[T;]/ml and 1[s]gn: T; —» T;/ng — L[T;/Tg] —» L[T;/Tg]/mLsm.

The characters 1[s| and 1[s]sm can obviously be extended to T}, and we use the same symbol
to represent these extensions. Note that L[T]/m§ (vesp. L[T,F/T)]/mj ) is in C, and that
1[5]sm is the maximal smooth quotient of 1[s] (which is necessarily unramified).

Lemma 5.2.1. Let M be an object of the category O and V' a smooth representation of T,
over L. There is an isomorphism of L-vector spaces (where Hom(M, L)*" C Hom(M, L) is
the object of the category O defined in [16, §3]):

Homg, (F5" (Hom(M, L), V/(55])), 11" ) ~ Homyy (V, Homyg) (M, T1")0)
which is functorial in M.
Proof. Tt follows from [16, Prop.4.2] and Remark 5.1.2 (we use here the very strongly admis-
sible hypothesis) that there exists a functorial isomorphism:

Homg, (]:g;’(Hom(M, L),V (65))), 1) ~ Homyy,5,) (M @1, C2°(Uy, V(65))), TI™).
The result comes from the canonical isomorphism:

Homg,p,) (M @1 C°(Uy, V(35,)), 1I™) = Homp, (C2° (U, V(95,)), Homy g (M, II*"))
and from the proof of [32, Th.3.5.6] which can be adapted to prove that there is an isomor-
phism:

Homgp, (C(Uy, V(65))), Homy gy (M, TI*")) =~ Hom+ (V, Homy ) (M, I12m) %),
OJ

Lemma 5.2.2. Let L(v) be an irreducible constituant of U(g) Qu . for any s € Zx>y we
have isomorphisms of L-vector spaces:

Homg, (75" (L(=), L[shu€ands,)), ™) 2 Homu g (L(v), 1) * [m_ .

—=sm

Proof. This is a direct consequence of Lemma 5.2.1 together with the fact that if N is a

L[T,/]-module, then Homy+ (1[s]smem, V) = N{m; ]. O
Lemma 5.2.3. For any s € Zx the L-vector space Homy ) (U(g) ®uy p, T*")0[m? ] is

sm

finite dimensional and we have an isomorphism of L-vector spaces:

HomGp (‘ng((U<g) ®U(E) _N)vvl[s]smﬁsmdéi)a Han) = HomU(g)(U(g) Qu(e) M Han)UO [mi ]

=sm
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Proof. We have:

Homyg)(U(9) @ue) s 1) [mg ] = Homp (1, 1) [mg | ] =~ Homp (p, (1)) [m¢_ ]

=sm

~ Homy (ﬂ, JBP(Han))[ gm]

where the last isomorphism follows as in the proof of [32, Prop.3.2.12]. This shows the first
part of the statement since the last term is finite dimensional by the proof of [32, Prop.4.2.33].
Now we have:

Homy (1, Jp, (I1*))[m ] = (Jp, (II") @e™")[mi][t = 0] = Homys ([s]sm, Jp, (II*") @)
~ HomT+( [Slsme, I, (IT*7)).

The statement follows then from Lemma 5.2.1. O

Note that the case s = 1 of Lemma 5.2.3 gives in particular:

Home, (Fg? (€), T1°) =~ Homy g (U(g) @ugey o, 1), |

where ]-'g: (€) is as in (5.3).

Lemma 5.2.4. For any s € Zsy the L-vector space Homy g (U(g) @u p, 1) [m? ] is
finite dimensional \

Proof. This is a direct consequence of Lemma 5.2.3, the left exactness of the functor
Homy g (—, IT2m) Y0 [m6 ] the fact that each simple obJect of the category O is a quotient of
a Verma module and that each object of O has finite length. O

Assume now that II*" is such that, the functor Homy ) (—, 11*") is exact on the category
O, which means that whenever we have a short exact sequence 0 — M; — My — M3 — 0
in O we also have a short exact sequence of L-vector spaces:

(5.10) 0— HomU(g)(Mg, Han) — HomU(g) (MQ, Han) — HomU(g)(Ml, Han) — 0.

The hypothesis (5.10) occurs in the following important case.

Lemma 5.2.5. Assume that the continous dual I is a finite projective Op[[K,]|[1/p]-module.
Then the functor M — Homy g (M, I1**) is exact on the category of finite type U(g)-modules.

Proof. Let M be a finite type U(g)-module. Arguing as in the proof of [20, Lem.5.1] and
using that M is of finite type, we have:

Homy(g) (M, TI*") = lim Homy (g y(MI1,) ~ hﬂHomUr(g)(U,«(g) Qu(g M,11,).
r—1 r—1
Moreover it follows from the proof of [60, Prop.4.8] that the functor M — U,(g) ®u () M is
exact for a sequence of rationals r € p@ converging towards 1. By exactitude of ligr it is

thus enough to prove that the functor M, — Homy, 4 (M,,1I,) is exact (for such r) on the
category of finite type U,(g)-modules. This is exactly the same argument as in the end of
the proof of [20, Lem.5.1]. O
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We now assume moreover that II*" is the locally Q,-analytic vectors of some continuous
admissible representation IT of G, over L and satisfies property (5.10). If V' is an L[Tf]-
module, let V[m | := UV m? .

Lemma 5.2.6. The functor Homy g (—, II*")%[m | is ezact on the category O.
Proof. Let 0 — M; — My — M3 — 0 be a short exact sequence in O. By (5.10) and

the smoothness of the action of the compact group Uy, we have a short exact sequence of
L[T,]-modules:

(5.11) 0 — Homy(g) (M3, IT*™)Y — Homy gy (Ma, T*™)Y° — Homy g (M, IT*")Y° — 0.

By the argument above [20, (5.10)], for M, = U(g) ®u) 1 @ Verma module, changing Uy
if necessary the L[T]-module Homy ) (Ma, II*™)Y° ~ Homyg(p, (IT*")%0) is an inductive
limit of L[T}f]-submodules on which some element z of 7.\ acts via a compact operator (we
use here, as in [oc.cit., the above extra assumption on I1*"). Using the fact that each object
of O is a quotient of a Verma module, that objects of O have finite length and the exactness
of the functor Homy g (—, II**)Y on O, the statement is still true for an arbitrary M,. Since
z commutes with TpJr , it follows easily from the theory of compact operators that (5.11)
remains exact on the generalized eigenspace associated to ¢, i.e. after applying [m?:’m]. ([l

Finally, we recall one more statement which is [10, Lem.10.3].

Lemma 5.2.7. Let w € [[es, Sl sych that 1g(w) < lg(wy) — 2. Then there ewist
distinct elements w; € [I,eg, Sl for i € {1,2,3} such that w < wy < w3, w =< wy = ws,
lg(wy) = lg(we) = lg(w) + 1 and lg(ws) = lg(w) + 2. Moreover wy and ws are the only
elements satisfying these properties.

5.3. Companion constituents. We recall the statement of the socle conjecture of [16,
§§5,6] in the crystabelline case and prove it in the crystalline case under (almost) the same
assumptions as those of Theorem 5.1.3.

We keep the notation of §5.1 and §5.2, in particular p > 2, G is quasi-split at finite
places and we fix U?, S and p as in loc.cit.. We fix a point p € X5 g such that there exists
a classical = € Y (UP,p) of the form x = (p,d) for some § € T, ;. Equivalently by [20,
Prop.3.4] the Galois representation p is associated to an automorphic form 7 = 7. ®c¢ 7¢
of G(Ap+) such that 77" (tensored by the correct locally Q,-algebraic representation of G/,)
occurs in the locally Q,-algebraic vectors of S (UP, L)ys. We denote by hyr1 < -+ < hgrn
the Hodge-Tate weights of p; for the embedding 7 € Hom(Fj, L) (they are all distinct) and
set hy; = (hsri)retiom(ry,r) for all v, i. We define A = (Ay)ves, = (Au1,-- - Avn)ves, €
HUESP (Zn)Hom(Ff,,L) with >\v,i = ()\U,T,i)TGHOm(Fﬁ,L) and )\U,T,i = h’ﬁ,T,’nﬁ*l*i +i—1 (SO A s
dominant). Moreover we assume that p; for all v|p is crystabelline generic in the sense of §4.3,
which is equivalent to the condition that the semi-simple representation W(p;) = & 175,
of the Weil group of F;; associated to pg in [36] satisfies (n;;n5,;) orecr, ¢ {1,| |} for i # j
(compare [16, §6] when all F; are Q,). This condition doesn’t depend on the choice of @
above v. Note that, when p; is crystalline, we have 7;,; = unr(p;;) for all i where the @5,
are the eigenvalues of ap[pﬁvo:@l’] on Deis(ps), so we recover the condition in Theorem 5.1.3.
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We define a refinement R as a rule which to each v € S, associates an ordering R, on the
set of characters {n;;,7 € {1,...,n}}. Let R be a refinement, w = (w,)ves, € [lves, SlF:Qy]
and define 0z ,, = (0r, w, Jves, € T, with (see §4.2 for zwv(o)):

ORyane = (ORuwnts - s ORpwnn) = (22707 (155, 0 TeCk,, - 115 5, 0 TeCR, )
where (ji,...,7,) is the ordering R, on {1,...,n}. Note that the derivative of i, is
precisely wwy - A and that g ,, o (defined as before (5.3)) doesn’t depend on w, we denote
it by 0g sm = (OR, sm)ves, € T,1. Define also g, = (0, 0r.w) € X5, X T,,1. Then it follows
from [22, Th.1.1] and (5.5) (and the intertwinings on (Ind%iésmégi)oo in (5.4)) that the
assignment R —— T, = (P, 0r.u,) induces a bijection between the set of refinements and

the set of classical points in Y (U?,p) of the form (p,d) for some § € T, ;. Note that the
residue field of all the points xz,, (a finite extension of L) doesn’t depend on R or w, and
increasing L if necessary we assume it is L.

The structure of Verma modules ([45, §5.2]) and the theory of Orlik-Strauch (extended as
in Remark 5.1.2) imply that the irreducible constituents of:

Gy Gy -
-ng (éR,w) = —7:§p ((U(9) Qv () (—wwy - )\)>v7é7€,sm6Bi)
are the locally Q,-analytic representations of G, over L:

(5.12) For(L(=uw'wo - N), 6 w5, = Gres, Fg (L(=wlwo, - o), O, amdp.)

for w' = (w})ves, € [lyes, SIF:l guch that w' < w. For a refinement R and v € S, denote
by TR, the image of 2% 4, in Xui(p;) via (5.2) and set:
(5.13) wr = (Wrw)ves, € [[ ST

vES)

where wg , 1= Wag o € STQF 2@l g the permutation associated t0 Tg w, € Xtri(py) defined
just before Proposition 3.6.4. The following is a special case of the socle conjecture of [16,
Conj.6.1] (apart from the fact all F; were Q, in loc.cit.). Recall that m, C R;s[1/p] is the
maximal ideal corresponding to p.

Conjecture 5.3.1. Let R be a refinement and w € Jl,eg, S then we have:

HomGp <~Fg: (f(—wwg : A)aéR,sm(;Ei)a ‘§<Up7 L)?n% [mp]> 7é 0
if and only if wr < w.

Remark 5.3.2. We point out that this conjecture is stronger than predicting the set of
companion points of x = (p, 2* 0g sm) € Y (U?,p), that is, Conjecture 5.3.1 implies:

(p, 2" 0rem) € Y(UP,p) <= 1 = wwp - A with wg < w.

In the following, we use the notation in the statement of Theorem 5.1.3.

Theorem 5.3.3. Assume F/F* unramified, /1 ¢ F, UP small enough (see (5.6)) with U,
hyperspecial if v is inert in F and ﬁ(gF({ﬁ)) adequate. Let p € X5 coming from a classical

point in Y (UP,p) such that p; is crystalline and o;,05; ¢ {1,q.} fori # j and v € S,,.
Then Conjecture 5.5.1 is true.
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Proof. We use notation from the proof of Theorem 5.1.3 and we shorten ITfee=an jn TT20,
. : Gp 1y - .

éR,wo indg, Tru, i TR, FEE(L(—WWO : )‘)7é7€,sm53;) in II,, and U(g) Qu vy 4 1 M (). The

proof being a bit long, we divide it into several steps.

Step 1: The only if part.

If Homg, (11,,, S(UP, L)% [m,]) # 0 then it follows from [15, Cor.3.4] (and Remark 5.1.2) that
the point 2r.. € X5.5 X T 1, sits in Y (UP, 5). Denote by zr .. its image in Xi(p;) via (5.2).
By Theorem 4.2.3 this implies wg , < w, for all v, hence wg < w.

We are thus left to prove that Homg, (11, S(UP, L)% [m,]) # 0 if we < w.

Step 2: Reduce the claim to proving (5.15).

The action of R;g on S (UP, L)ys factors through a certain quotient Rj;s, hence we can
see p as a point of (Spf R;s)"8. Moreover we have a surjection R./aR. — Rjs which
induces a closed immersion (Spf Rp,g)rig — X, and we can also see p as a point on X.
Still denoting by m, C R.[1/p] the maximal ideal (containing the ideal a) corresponding
to the point p € X, (under the identification of the sets underlying X, and SpmR..[1/p]),
from Tl [a] =~ S(U?, L)us we get 122[m,] ~ S(UP, L)*%[m,]. Tt is thus equivalent to prove
Homg, (I1,,, 132[m,]) # 0 if wg < w. From Lemma 5.2.2 (applied with p1 = A and v = wwy-\)
it is enough to prove Homy (g (L(wwp - A), IT22[m,] )% Mg, ] #0if wr 2 w. If Vis an A-
module and m a maximal ideal of A, define V[m®™] := Us>1V[m®]. As L(wwy - A) is of finite
type over U(g) we have:

(5.14)  Homy gy (L(wwy - A), Hgg[mzo])UO [mg;’sm] =

Us>1 Homy(g) (L(wwp - A), 1153 [mf)])UO [m;ozysm].
Since the right hand side of (5.14) is nonzero if and only if
Homuy g) (L(wwo - A), T [m,])*[mg,, ] # 0,
we see that it is enough to prove that

(5.15) Homy () (L(wwy - A), Hgg[m;"])Uo [mg;sm] # 0 if wg < w.

Step 3: Generalizing the claim.

We will prove (5.15) for more general points y € X,(p) than those coming from the global
eigenvariety. This will allow us to argue by descending induction (see Steps 6-10 below) on
the length of the Weyl group element wx. In order to formulate this more general claim we
introduce the following notation and assumptions:

For a point y € Xz X ¢(Xi(p,)) X U? denote by r,, (resp. m,, ) its image in X (resp. the
corresponding maximal ideal of Reo[1/p]), by (1,)ves, its image in X5 and by e its image
in fp, - We assume that the image of y in Xz lies in the smooth locus of the reduced rigid
variety Xz», that y is crystalline generic (i.e. each r, is crystalline generic as in the beginning
of §5.3), and that the image of y in X,i(p;) is strictly dominant in the sense of [20, §2.1].

We define p = (ph)ves, € Hvesp(Z”)Hom(F@’L) as we defined \ at the beginning of §5.3,

wy € Ilyes, S0l a5 we defined wg in (5.13), and for each w € [Toes, SIFe:Ql guch that
wy, = w we define y,, € XP x 1(Xyi(p,)) X U? as we defined wg,, (note that we use here
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Theorem 4.2.3 and that y,,, = y). We let ¢, be the image of y,, in fn 1 (the derivative of €,
is wwp - p). As before the smooth part ¢, ¢, does not depend on the Weyl group element w.
We also define 1" = (uif")ves, with 1" = (tto,ri — i + 1)reHom(r,2) (compare with ¢, in

(5.1)).

Theorem 5.3.3 then will follow from the following claim:
Claim: For any point y as above we have
Homy (g (L(wwg - 1), T2 m)) 0 [m> | £ 0 if wr < w.

Ty Ew,sm

Indeed this claim implies the theorem as the point x satisfies our assumptions on y, either
trivially or arguing as in the proof of [20, Cor.3.12].
Step 4: Identifying Homy g (M (wwo - 1), Hgg[mﬁj])UO [me .

=w,sm

Let w € [Tyes, SIFeel auch that w, < w and assume that y,, € X,(p). We have:

Homy (g) (M (wwg - ), T2 [m?®]) ™ [m ]~ Homy(wwo - p, (I122)70) [mye] [m ]
(5.16) ~ Homy ) (wwo - p, Jp, (H52))[m>][m ]

=w,sm

S Jp, (1) [m77] [me”]

Ew

where the second isomorphism follows from the proof of [32, Prop.3.2.12] as in [20, (5.5)].
Recall from the proof of Theorem 5.1.3 that we have introduced the coherent Oy -module
My = Jp,(I132)Y on X, (p). We easily check:

(5.17) T, ()M [mE]Y ~ Moo @0, ) Ox, ()00

Cw

from Lemma 5.2.3 that J B, (I152)[m; ][m{ ]is finite dimensional). Denote by X, (p)ww,, the

€

where Jp, (I152)[m][me]" ~ @stjgp(ﬂig)[mﬁy][mt ]V is the dual L-vector space (recall

fiber at wwy - u € #8(L) of the composition X,(p) — Ty — 8 where T, — 8 is
defined as in §4.3. We deduce in particular from (5.17):

(518) HomU(t) (wwo : /’1’7 JBP (Hgg)) [m’?‘j] [m;’sm]v = M(wwo : /’L) = MOO ®OXP(Z) @Xp(ﬁ)wwo'uvyw
which is thus a finite type @Xp(ﬁ)wwowyw—module.

Step 5 We prove two multiplicity formulas (5.23) and (5.24).
We keep the notation and assumptions of Step 3. Denote in this proof by Ox,, the

completed local ring at r, of the scalar extension from L to k(y,) = k(y) (which contains
k(r,)) of the rigid space X«.

For d > 0 denote by Z¢(Spec @xwry) the free abelian group generated by the irreducible

closed subschemes of codimension d in Spec @xw’,ﬂy. If € is a finite type @xoo ,-module such
that its support has codimension > d define as in (2.13):

€] :=>"m(Z,&)[Z] € Z%(Spec Ox.__ ,,)

where the sum runs over all irreducible subschemes Z of codimension d in Spec Ox__ ,, and

Yy
m(Z,€) = length@x%w)nz &, (nz being the generic point of Z).
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We have closed immersions:
(5.19) SPec OX, (5) wug.pu o

where the second one follows from (5.8), Proposition 3.7.3, Remark 3.6.1 and [53, Lem.2.3.3
& Prop.2.3.5]. It follows from the normality of Xz x «(Xii(p,)) x U9 at y,, (which follows

from Corollary 3.7.10) that we have isomorphisms of completed local rings @Xp(ﬁ),yw ~

— Spec @Xp(ﬁ),yw — Spec @xww

(’A)xﬁpm( Xri (5,)) X U9, from which we deduce taking fibers at wwyg - u:

(520) OXp(ﬁ)wwO'uayw = Oxﬁp XL(Xtri(ﬁp))wa,u, XU97yw

where ¢(Xi(9,))wwo-p 1 defined as Xp(p)wwyn (see Step 3). In particular Spec (’A)Xp(

ﬁ)wwo»u,yw
is equidimensional of codimension d := [F't : @]”(”TH) in Spec Oy, via (5.19) as so is
SPEC O(X i (5,))wug oy 11 SPEC O%;p,(rv)va see §4.3.

In particular we deduce from (5.16) and (5.18) that the support of the finite type @xmmy—
module Homy(g) (M (wwy - ), T2 [m2)°[m ] has codimension > d.

Cw,sm

Arguing as in the proof of [20, Th.5.5], it follows from Lemma 5.2.6 and from Lemma 5.2.5
that the functor Homyg)(—, I22)% [m2°][m2 | from O to the category of Re[1/p]-modules

Ty §w,sm

is exact. Thus for every short exact sequence 0 — M; — My — M3; — 0 in O we have a
short exact sequence of R..[1/p]-modules:

(5.21) 0 — Homyg) (M3, 22 [m°]) " [m> | — Homg(g) (M, 122 [m0]) " [m ]

— Homy (g)(My, I mX]) P [me ] — 0.

Ty =w,sm
€

=w,sm

As (53500 -, 18 noetherian, the dual of middle module is of finite type if and only if the duals
of the other two are. Hence the following equation holds in Z?(Spec @xwry):
[ Homyy(g) (Ma, T2 [m22)) P [m2® Y] = [ Homy(g) (M, T2 [me?)) o [mee Y]

Ew,sm E’l_u,s,m

Ew,sm

o+ [Hompg) (M, T2 [m33]) P mee 1Y].

In particular since the irreducible constituents of M (wwy - 1) are the L(w'wq - p) for v’ < w
(see [45, §5.2] or §2.4), we deduce in Z%(Spec Ox__,,) by dévissage (see §2.4 for P, ,(T)):
[M(wwo : N)] = Z Pwow,wow’(l)[‘c(MIMO : ,u)]
w!' <w
where:

(5.22) L(w'wo - 1) = Homy ) (L(w'wo - 1), Tz [m]) 0 [m2” | ]".

We point out that the @xoomy—module L(w'wg - 1) doesn’t depend on w such that w > w', as
€ € does not depend on w.

Lw,sm T Zw’ ;sm

Moreover, as in Step 1 and Step 2 we deduce that L(w'wq - 1) # 0 implies v,y € X,(p)
and hence w, < w’ by Theorem 4.2.3. We obtain the following multiplicity formula:

(5.23) M(wwg - p)] = Z Puowwow (1) [L(wwg - 1)] € Z%(Spec @xm,ry)~

wy 2w’ 2w



A LOCAL MODEL FOR THE TRIANGULINE VARIETY AND APPLICATIONS 87

Likewise, it follows from (5.20) and from (4.9) that we have:

(5.24) [@Xp(ﬁ)wwo_myw]: Y Pugwwow (1)€w € Z4(Spec Ox__ ).

wy Sw’' 2w

Here €, is the cycle in Z%(Spec @xwﬂny) obtained by pull-back along the formally smooth
projection Spec Ox, ,, = Spec Ox, (), from the product over v € S, of the cycles denoted
h p

¢, in §4.3. Note that we have €, # 0 for w, < w" < w. Moreover &, doesn’t depend on
w (such that w = w’).

Step 6 Setting up an induction.
Fix X? C Xz an irreducible component. We write U4 = XP N X3 for its (Zariski-open)
intersection with the smooth locus of Xz.

As the image of the point y of Step 3 in Xz» lies in its smooth locus we may assume:
Y€ X, (0" 1= X 1(Xe(7,)) X 1% 1 X, (B) = 50 X 1(Xig(7,) ) x U

for an appropriate choice of XP. Note that X,(p)* C X,(p) is Zariski-open. It follows
from the irreducibility of X,(p)"" at y (which itself follows from Corollary 3.7.10) and the
argument in the proof of [20, Cor.3.12] using [20, Lem.3.8] that the coherent sheaf M, on
X,(p) is free of finite rank in the Zariski-open dense irreducible smooth locus of an affinoid
neighbourhood of y in X,(p)*". We denote by m, > 1 this rank of M, (which doesn’t

depend on the chosen small enough neighbourhood of y).

We continue using the notation from Step 3. Recall that y is assumed to be dominant,
i.e. y = yyu,. For any Weyl group element w the same argument as in the end of Step 2 and
as in Step 1 (using Lemma 5.2.2, [15, Cor.3.4] and Remark 5.1.2) shows that £(wwg - p) # 0
implies v, € X,(p)*"".

We now consider the following induction hypothesis for integers ¢ < lg(wy):

He: for y € X,(p)*" as above with ¢ < lg(w,), then [L(wwy - )] # 0 for all w = w,, and
the rank of M, in the smooth locus of a small enough affinoid neighbourhood of y,,
in X,(p)*" is still m,,.

Obviously H, for all ¢ implies the claim formulated in Step 3.

Remark 5.3.4. The part of the induction hypothesis concerning the rank m,, is a technical
tool used in the induction. However, it seems to be an interesting statement in its own
right that this rank remains the same for all the y,,, as these points possibly lie on different
connected components of the (patched) eigenvariety.

Step 7: Induction basis.
It is easy to see that Hig(w,) holds.
We prove Hig(w,)—1, i.e. we consider the case lg(w,) = lg(wy) — 1. This amounts to proving:

- (£()] # 0 and [£(wywo - )] 0
- M is free of rank m,(=rank of M, in the smooth locus around y = y,,) in the
smooth locus around y,,, .
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Note first that the point y is smooth on X,,(p) as the image of y = v, in X4,:i(p;) is a smooth
point for every v € S, by (ii) of Proposition 4.1.5 and (ii) of Remark 4.1.6. Hence M, is
free of rank m, at y and we deduce

[M (/“L)] = [MOO ®Oxp(ﬁ) @Xp(ﬁ)my] = my[@Xp(ﬁ);uy]'
From (5.23) and (5.24) with w = wy we get:
(5.25) [M(p)] = [L()] + [L(wywo - )] = My €y + My €, € Z(Spec Oxr,)
using P11(1) = P1uwew, (1) = 1 (as wow, is a simple reflection).

Let us first prove [L£(u)] # 0 (which is a priori stronger than just L£(u) # 0). Assume
[L(p)] = 0, then (5.25) gives [L(wywo - )] = my€yuy + my€,, # 0 so that y,, € X,(p)".
But applying (5.23) and (5.24) with w = w, we get [L(w,wo - )] € Zo&,, which is a
contradiction as m,&,,, # 0, thus [L(x)] # 0.

Now, by Lemma 5.2.2 applied with v = p, II** = Hig[mf,y] for all s > 1, and using
that fg" (f(—,u),l[t]smgsmégi) is locally algebraic for all ¢ > 1 and that l[t]smggmégi is an
unramified representation of T,,, we deduce injections of R..[1/p]-modules:

Homy (q) (L (p), T2 [mp2]) P [mZ® | = Homy, (L(p), et [my¥]) — Homp, (L(p), TI22).

Csm

By the argument in the proof of [20, Th.3.9] we obtain that:

support(HomU(g)(L(u), Hiﬁ[mf‘;])Uo [mgjm]v) C Spec @ﬂpxxﬁHT*“xUQ - Cuo
Pp ’
as subsets of Spec Ox_ ,, where the isomorphism follows from (4.8) (OupxxgHT*“xUéi,ry being

the completed local ring of the scalar extension from L to k(y)). From (5.25) we necessarily

deduce [L(p)] € Z€y,. Since €, # 0, we then obtain [L(wywy - i1)] # 0 from (5.25).
Finally the sheaf M, is free of some rank m; > 1 in a neighbourhood of y,, by 19,

Th.2.6(iii)]. Applying again (5.23) and (5.24) with w = w, we get [L(wywo - p)] = m, &, ,

which plugged into (5.25) together with [L£(1)] € Z~o&.,, forces m; = m,. This finishes the

proof of Hig(uwy)—1-

Step 8

For w € [],es, SE7 %! endow Homy g (wwp - 1, 1132 [u])Y0 (vesp. Homyg (wwq - 2, Jp, (I122)))

with the topology induced by Homp(wwp - p, [1282[u]) ~ II22[u] (resp. with the topology

induced by Homp (wwq - p, Jp,(1I2)) =~ Jp,(I1Z)). The natural T, -equivariant morphism:

(5.26) Homy ) (wwo - g, Jp, (1122)) — Homp ) (wwp - g, 1122 [u] )70

is continuous and identifies the left hand side with the space (Homy ) (wwyg - 1, T2 [u])Y0)g
of [32, §3.2]. The injection:

(5.27)  Homy ) (L(wwg - 1), HZE)UO — Homy (g) (M (wwy - p), Hilol)Uo
~ Homy @ (wwg - p, 115 [u])UO

with the induced topology on the left hand side is a closed immersion. Indeed, by a dévissage
it is enough to prove that, whenever we have a morphism M (v) — M (wwq - ) of Verma
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modules, then the induced map Homy ) (wwy - p, II22[u])¥0 — Homy(yy (v, 122 [u])0 is con-
tinuous (and its kernel is thus closed), which easily follows from the continuity of the action
of g on II%5. Since moreover (5.27) commutes with the actions of T, and of R.[1/p], by [32,
Prop.3.2.6(iii)] we deduce a closed immersion compatible with 7}, and R [1/p]:

(5.28) (Homp (g (L(wwg - 1), T22)Y°) g — Homy g (wwg - g, Jp, (TI22)).
Taking continuous duals (5.28) yields a surjective morphism of coherent sheaves on X, (9 )wuw-1:

(529) Mwwo-,u = Moo ®(9Xp@> (OX],,(ﬁ)wwO.H - wao-,u-

The schematic support of Ly, defines a Zariski-closed rigid subspace Y,(7)wwo-u
in X,(P)wwyn and we denote by Z,(P)wwon S (Yp(P)wwo,) ™ the union of its irreducible
components of dimension dim X, (9)wuw,.. We see from the definition of £(wwy - i) in (5.22)
that we have just as in (5.18):

~ ~

E(wwo ’ :u) = EwwO'M ®Oxp(ﬁ)ww0.u OXp(ﬁ)wwowyw = Ewwoﬂ ®pr(;)ww04u pr(ﬁ)wwowyw'

In particular £(wwp - 1) # 0 < Yy € Yo(D)wwon < Yuw € (Yp(D)wwen) ! and, arguing e.g. as
for Lemma 2.5.5:

(5.30) [L(wwo - 11)] # 0 Y € Zp(P)wwon € Yu € Zp(P g
where Zp(ﬁ)ﬁuo,u = Zp(P)wwou N Xp(ﬁ)ﬂp C Xp(ﬁ)wg.
Step 9

Assuming Hy (for some £ < lg(wy)), we prove: for any crystalline generic strictly dominant
point y € X,(p)¥, we have:

(i) [L(wwy - p)] # 0 for those w = w, such that £ <lg(w);
(ii) My free of rank m,, in the smooth locus of a small enough affinoid neighbourhood of
Yo in Xp(0)".

Note that the claim differs from H,: we do not assume lgw, > ¢. The proof of this
claim uses a Zariski-closure argument as in the proof of Theorem 4.2.3. We remark that this
closure argument has to make use of the notation introduced in Step 8 above, as forming
the cycle [L(wwy - )] we only take into account the components of maximal dimension in
the support of L(wwy - p).

Ad(i): Consider the smooth Zariski-open and dense subset:
et e L ke —er — T —er ey T —cr
Wi, = 1 W T cx = 1 A
vESp vES)

and the closed immersion:

~ ,HT
— | | CpT T —Cr -
L#HT = L#IJT . :{ﬁp — Xm(ﬂp)
vES)

where ¢ ur is as in (4.2). Since there is only one irreducible component of Xm(ﬁp) passing
through each point of LMHT(WZZ HT_Cr) by Corollary 3.7.10 (and the definition of Wp’; HT_Cr), we
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have that Wﬁl; HoenArant - HT (X (p,) ™ ) ﬂW“ ~“" is a nonempty union of connected

components of I//Iv/ﬁ‘; "Ter Asin the proof of Theorem 4.2.3, we define the locally closed subset:

ptt —cr,XP—aut | wHT —cr, P —aut uv wHT —cr XP—aut
W, =W NI W, cw
vES)

for each w = (wy)ves, € Ilves, SFo®] and by the same argument as in loc.cit. using that

HT _cr ¥P—aut

the morphism from Wﬁ“ to the product of the flag varieties is still smooth we get
p

HT _cr xP—aut

the decomposition (where % is the Zariski-closure in WFZ or equivalently ng HT_Cr):

—~ HT _ — — p_
o cr,XP—aut __ pHT —cr %P —aut
ﬁp:w ’ - H ,-<wW

(5.31)

. —er, XP—aut .
with W' =" ™" Zariski-open and dense.
p’

Recall from (4.3) that, for y € 4 x (¢,nr (Wg)HT_Cr’xp_aUt)) x U9, we have:

(5.32) y € U x L(L#HT(W%},IZTU*“’%LaUt)) X U <= w = wy,

we thus deduce from (5.31) and (5.32) that we have:

(5.33) Y € WP 1ty (WL TV 7) X U9 = w0 =y,

—C

Now, for w = (wy)ves, € [yes, SE7%! consider the morphism (recall Wﬁ‘; " s reduced

by [20, Lem.2.2]):
HT_ ~
LyHT 4y 1= H LyHT g, < — %ﬁp X Tp7L
vES)
where ¢,ur ,, is defined in (4.5). Fix w € [],eg, SUFo®] such that ¢ < lg(w), it follows from
(5.32), H, and (5.30) that we have:
U T 9 C (i X (10 i) X i) TH(Zp(P) e, ) © U X TR S,

wwo-

But the second inclusion being a closed immersion by base change, we deduce:

S WNHT_Cr XP—aut x Y C <1d X(L ol HT,w) X id)_l(Zp<p)up )

Pp,W wWwo - b

Using (5.33), this exactly means that the companion point y, of any crystalline generic
strictly dominant point y € X, (p)" such that w, =< w and £ < lg(w) is always in Z,(p)mm,.,
where p is defined as in Step 3. In particular we have [L(wwq - )] # 0 by (5.30).

Ad(ii): Let U be an open affinoid in X,(p)" containing y,, for some w, < w and ¢ < lg(w).
It follows from Corollary 3.7.10 that X,(p)*" is irreducible at y,,, hence so is the Zariski-open
smooth locus of U if U is small enough. As M, is locally free of finite rank at each point
of this smooth locus (using [20, Lem.3.8] as at the beginning of Step 7), its rank is constant
on this whole locus as it is irreducible (hence connected). Hence it is enough to find one
smooth point in U such that M, is free of rank m,, at this point. Now, consider:

U N (8 5 0t (WA, "5 < U7) € X, (P,

wWwWo-p?
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. . . . . T —cr, XP—aut . . . .
it contains y,,, and since it is open in 4P x L(LMHT’w<W£) w M) x U9, its intersection with

the Zariski-open dense subset 4” x ¢(¢ “HT’w<W£; Iij_cr’xp_"mt)) x 1Y is nonzero. By construction,
any point in this last intersection is in particular a companion point z, of a point z in
UP X L(LHHT(WiI;Ii_Cnxp_aUt)) x U9 (note that ¢,ur,, is replaced here by ¢,ur). By (5.32)
(applied to z) and [19, Th.2.6(iii)], the point z, lies in the smooth locus of U. By (the
second part of) H, applied to z, taking U small enough we have that M, is free of rank m,
at z,, where m, is the rank of M, in the smooth locus of an affinoid neighbourhood of z
in X,(p)*. However, shrinking again U if necessary, we can assume that z also belongs to
an affinoid neighbourhood of y in X,(p)* such that M., is free of rank m, in the smooth
locus of this affinoid neighbourhood. This implies m, = m, and finishes the proof of Step 9.

Step 10: The induction step.
Let ¢ <lg(wg) — 1, assuming H, we prove H;y_ 1.

By the two cases treated in the induction basis (Step 7) we may assume lg(w,) =¢—1 <
lg(wy) — 2 and by Step 9 it remains to prove that:

- [L(wywo - p)] # 0
- M is free of rank m,, at y,,.

Choose w;, i € {1,2,3} as in Lemma 5.2.7 applied to w = w,. By H, and Step 9 we have
Yu, € Xp(p)¥ for i € {1,2,3}. Moreover it follows from (ii) of Proposition 4.1.5 and (ii) of
Remark 4.1.6 that the y,, are smooth points of X,(p)¥, hence M, is free at these points.
By H, and Step 9 again, its rank there is still m,, so as in Step 7 we have:

[M(wZMO ' II"L)} = [MOO ®0Xp(ﬁ) OXp(ﬁ)wiwg,u,yywi] = my[OXp(ﬁ)wiwo-uyywi] fOl" Z G {]‘7 27 3}

Note that if w, < w' < ws, we have w' € {w,, wy,we,ws}. Moreover if v’ < w; and
lg(w') > lg(w;) + 2, we also have Py, wow = 1 (see e.g. [45, 8.3(a)]), and thus in particular
Pow; wow (1) = 1. Then, by (5.23) applied with w = wy, w = ws, w = w3 and using [M (w;wy-
W] =my [@Xp(ﬁ)wiwﬂ#’ywi]’ we deduce the following equalities of cycles in Z%(Spec @xm,ry>1

My O, )] = [L(wywo - )] + [Llwiwo - )], i € {1,2}
My (O, Bugugws) = [L(wywo - )] + [L(wiwg - )] + [L(wawg - )] + [L(wgwy - )],
By (5.24), we also have the equalities in Z¢(Spec @xw,ry)i
O, @urwg ] = Cuwy +Cuyy i €{1,2}
[O%, D ugwgmis] = Cuy T €y + Cupy + Cyy.

We then obtain the equalities in Z¢(Spec @xm,ry)i
(5.34) Lo - )] + [L(wywo- )] = myCoy +myCay, i € {1,2}

(5.35)  [L(wswo - )] + [L(wiwg - p)] + [L(wawp - )] + [L(wywo - p1)] = my oy + my &y
+my €y, +my &y, .

Moreover we have [L(wywy - p)] = my &y, for some m;, € Z>q (if [L(wywo - )] = 0 this is
obvious and if [L(wywy - p1)] # 0 argue as at the end of Step 7). The equality (5.34) fori =1
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then implies:

(5.36) [L(wiwo - )] + (my, — my)Cy, = My &y,

Plugging (5.36) together with the expression for [L£(wqwy - 11)] given by (5.34) for i = 2 into
(5.35) yields:

(5.37) [L(wswg - )] + (myy —m)Cy, = My &y

Let 3, denote the cycles in Z?(Spec @xwry) obtained by pulling back along the morphism
Spec @xwry — Spec @%;p,(rv)v the product over v € S, of the cycles denoted 3, in §4.3.
Then an examination of (4.7) (applied to w’ € {w,, wy, ws,ws}) together with the implication
3w # 0 = w, = w” and the last two assertions in (iii) of Theorem 2.4.7 (which imply in
particular @, ,» = 0 unless w” < w’ and lg(w') — lg(w”) > 2) show we have the equalities in
7%(Spec @xwry):
€, = 3w, and €, =3, i€ {1,2,3}.

If m;, > m,, then we see from (5.36) that the cycle 3,,, must appear with a positive coefficient
in the cycle €,,, which is impossible as €,,, = 3,,, and w; # w,.

Likewise, if m; < m,, then from (5.37) the cycle 3,,, must appear with a positive coefficient
in €,, = 3w, which is again impossible as w3 # w,.
We thus deduce mj;, = m,, > 1 and [L(w,wy - )] = m, &, # 0. O

Remark 5.3.5. (i) With a little extra effort, it should be possible to prove two small
improvements of Theorem 5.3.3. The first, as in Remark 4.2.4 and Remark 5.1.5, is that it
should be possible to delete the assumption p; crystalline for v|p (so keeping p; crystabelline
generic as in Conjecture 5.3.1). The second is that, as in [16, Conj.6.2] in the case where all
F; are Q,, it should also be possible, under the same assumptions (or may-be even deleting
the assumption p; crystalline as above), to prove that any irreducible locally Q,-analytic
representation C' of G, which is a subquotient of a locally Q,-analytic principal series of
G, over L and such that Homg, (C, S(UP, L)%[p,]) # 0 is one of the constituents (5.12) for
some refinement R and some w such that wr < w.

(ii) Several special cases or variants of Theorem 5.3.3 were already known. The GLy(Q,)-case
in the case of the completed H' of usual modular curves goes back to [17]. In [28], Ding
finds some companion constituents for GL, in the completed H' of some unitary Shimura
curves by generalizing the method of [17]. Some very partial results for GL,(Q,) in the
present global setting with all F,f = Q, (v € S,) were obtained in [29] and [16]. In these
works, there is no appeal to any patched eigenvariety, and hence one can sometimes relax
some of Taylor-Wiles assumptions. Finally, Ding proved the GLs-case of Theorem 5.3.3 in
[30] without using the local model of §3 (but using the patched eigenvariety X, (p)).

5.4. Singularities on global Hecke eigenvarieties. We prove that the global Hecke
eigenvarieties Y (U?,p) can have many singular points.

We use the global setting of §5.1 (p > 2, G quasi-split at finite places, U?, S and p as in
loc.cit.) and denote by fz?, ;, the base change from @Q, to L of the rigid analytic spaces over
Q, of continuous characters of TS. If = (p,d) € Y(UP,p) is a crystalline strictly dominant
point such that ¢;,05+ ¢ {1,¢,} for i # j, v € S,, we define w, € [loes, S Q] a5 we
defined wg in (5.13).
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Recall ([19, §3.2]) that there exists an integer ¢ > 0 and an embedding S, := O [Z]] —
Ry such that the map Y(U?,p) — X,(p) factors through X,(p) X (sprs.)ie Sp L, where
Sp L — (Spf Su)"¢ is induced by the augmentation map Spf Oy — Spf S,.,. Moreover (see
[19, Th.4.2] and its proof), the map:

(538) Y(Up7p) — Xp(p) X(Spfsoo)rig SpL
induces a bijection of the reduced subspaces.

Proposition 5.4.1. Assume F/F* unramified, /1 ¢ F, U? small enough with U, hyper-
special if v is inert in F' and p(gF({m) adequate. Let x = (p,d) € Y(UP,p) be a crystalline
strictly dominant point such that g057i¢;} ¢ {1,q,} fori # j and v € S,. Then the map
(5.38) is an isomorphism of rigid analytic spaces in a neighborhood of x. In particular,
Xp(P) X (spt s.0)rie SP L is reduced at such a point.

Proof. Since @Xp@)’x ~ @x;pm(Xm(ﬁp))ng,x by Corollary 3.7.10, we now know that X, (p) is
Cohen-Macaulay at = (by loc.cit.). Then by the argument in the proof of [19, Th.4.8] (which
needs this Cohen-Macaulay property, this was overlooked in the proof of [20, Cor.5.18]) based
on [19, Prop.4.7(ii)], we obtain that the rigid fiber product X,(p) X (spr s.. )= Sp L (which still
contains z) is Cohen-Macaulay and reduced in a neighbourhood of z. 0

Note that Proposition 5.4.1 gives an immediate complement to [19, Th.4.8].

Theorem 5.4.2. Assume F/F* unramified, ¥/1 ¢ F, UP small enough with U, hyperspecial
if v is inert in F and ﬁ(gF(m)) adequate. Let x = (p,d) € Y(UP,p) be a crystalline strictly

dominant point such that gof,,igpgj ¢ {1,q,} fori # j and v € S,. Then the rigid variety
Y (U?,p) is Cohen-Macaulay at x and the weight map Y (UP,p) — fﬁL is flat at x. More-
over, if wywo € Ilyes, S s not a product of distinct simple reflections, then Y (UP,p)
is singular at x.

Proof. The Cohen-Macaulay statement follows from the proof of Proposition 5.4.1. Then
flatness of the weight map is a direct consequence of Lemma 2.3.2, applied to (the spectra
of) the local rings at x and w(x).

Let x as in the statement (without any assumptions on w, ) and note first that z is classical
by Theorem 5.1.3. Thus by the argument in the proof of [20, Cor.3.12]) its image in Xz lies
in the smooth locus of X;». Recall that it is enough to prove that « is singular when viewed
in X,(p) via Y(U?,p) — X,(p). This is the argument of the proof of [20, Cor.5.18], except
that there is a gap there since we need to know that X, (p) X (spfs..)is Sp L is isomorphic to
Y (UP,p) in a neighbourhood of z, which is Proposition 5.4.1 above. Then the proof of [20,
Cor.5.18] can go on, yielding that x is smooth on X,(p) if it is smooth on Y (U?,p) (or on
Xp(P) X (spf s.0)ris Sp L), equivalently that x is singular on Y'(U?,p) if it is singular on X,(p).

For w, =< w, we define the companion point x,, € Y (U?,p) as we defined xx ., in §5.3 (it
belongs to Y (UP, p) as a consequence of Theorem 5.3.3, see Step 1 in the proof of loc.cit.) and
we denote by 2’ the common image of the z,, in (the smooth locus of) X5 x U9. Recall that
the image of the “maximal” companion point z,,, in X:(p,) sits in Uwi(p,) := I1,e s, Utri (75)
(see (3.29)). By the argument in the proof of Theorem 5.1.3 (based on Corollary 3.7.10), we
can find a neighbourhood V' of 2" in the smooth locus of X x U9 and neighbourhoods U,
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and Uy, of respectively the image of x and of x,, in Xui(p,) with Uy, € Uui(p,) such
that V' x +(U,) (resp. V x ¢(Up,)) is a neighbourhood of = (resp. of x,,) in X,(p). Note
then that z is singular on X,,(p) if and only if the image x,, of x in U, C X(p,) is singular
on Xi(p,)

As in the proof of [20, Prop.5.9] consider the automorphism 7, i : Ty, — Ty Where we
use the notation k of loc.cit. to denote the Hodge-Tate weights of (p;)ves, in decreasing
order for each v € S, and 7 : F; — L. We still denote by 7., x the automorphism id x j,,, k

of X5 X T, 1. The argument in the proof of [20, Prop.5.9] based on [20, Th.5.5] shows that:
2 €V X t(Juw, x(Upu, Xi?L f;?,wz,k,L)) C X,(p)

where fz?,wz,k, L CT 1, s the closed rigid subspace defined as in [20, (5.11)] (and taking the
product over v € S,). In particular this implies as in [20, §5.3] that we have an injection of

k(x,)-vector spaces (tangent spaces):

o~ = T\ (5.) 2y
ij,k(UpawxX?ﬂ Tz?,wz,k,L)"Tp Xm(ﬂp),:vp
p,L

Then exactly the same proof as for [20, Cor.5.17] in [20, §5.3] shows that:
(539) dimk(xp) TXm(ﬁp),xp = lg(wxwo) — dw,;wo + dim Xtri(ﬁp)

where d, € Zxo for w € [lyes, SFo®! is defined as before Proposition 4.1.5 but for the
algebraic group [],es, Spec L Xspecq, Resk; /g, (GLy k). Since dy,w, < lg(w,wo) if (and only
if) w,wy is not a product of distinct simple reflections by [20, Lem.2.7], we obtain that
Xii(p,) is singular at x, in that case, which finishes the proof. O

Remark 5.4.3. (i) The same argument as in the first part of the proof shows that if X,(p) is
singular at a companion point z,, € Y (U?,p) — X,(p) of x, then Y (U?, p) is also singular at
x,,. Hence a natural question would be to ask which of the companion points z,, € X,(p) are
still singular when w # wy. This is presumably related to Conjecture 2.3.7 via @Xp@@w ~
@xﬁpm(xtri(ﬁp))xmgww and Proposition 4.1.5 (see e.g. (iii) of Remark 4.1.6).

(ii) The equality (5.39) shows that, if we denote by z, the image of z € Y (U?,p) — X,(p)
in Xui(p;), then dimys,) T'x,.(5,),2, i as expected by [20, Conj.2.8]. In particular we thus
have many points where [20, Conj.2.8] holds.

(iii) When w,wy is a product of distinct simple reflections, then by work of Bergdall ([6]) it is
expected that Y (UP, p) is indeed smooth at . Our method a priori doesn’t give information
on Y (U?,p) in that direction.
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