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Abstract

‘We show that the theory of varifolds can be suitably enriched to open the way to
applications in the field of discrete and computational geometry. Using appropriate
regularizations of the mass and of the first variation of a varifold we introduce
the notion of approximate mean curvature and show various convergence results
that hold, in particular, for sequences of discrete varifolds associated with point
clouds or pixel/voxel-type discretizations of d-surfaces in the Euclidean n-space,
without restrictions on dimension and codimension. The variational nature of the
approach also allows us to consider surfaces with singularities, and in that case the
approximate mean curvature is consistent with the generalized mean curvature of
the limit surface. A series of numerical tests are provided in order to illustrate the
effectiveness and generality of the method.

1. Introduction

Shape visualization and processing are fundamental tasks in many different
fields, such as physics, engineering, biology, medicine, astronomy, art and archi-
tecture. This substantially motivates the extremely active research on image pro-
cessing and computer graphics that has been carried out in the last decades. Due to
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the large variety of applications and of capture systems, different discrete models
are used for representing shapes; among them we mention polygonal/polyhedral
meshes, level sets, pixel/voxel representations, point clouds, splines, CAD models.
Despite the obvious differences due to variable data sources and application ranges,
it makes sense to ask whether or not different representations might be interpreted
as particular instances of a common (and possibly more general) formalism.

In what follows we shall also distinguish between “structured” and “unstruc-
tured” discretizations: the former being those discrete representations which
directly encode dimensional and topological properties of the underlying shapes
(polygonal/polyhedral meshes, level sets), the latter being those encoding only
spatial distribution (point clouds, pixel/voxel-type). Concerning, in particular, the
unstructured discretizations, which arise from statistical sampling and are typically
produced by most image capture devices, some post-processing is often needed to
extract the geometric information that characterize the underlying, “real” surfaces.
In this sense, one of the major tasks is the reconstruction of curvatures.

In the case of point clouds, the reconstruction of curvatures is usually per-
formed by finding a local smooth surface via regression, and then by computing
the curvature of the reconstructed surface, like in the Moving Least Squares (MLS)
technique, introduced in the seminal article [22] (see also [1,3]). There exist also
techniques based on geometric integral invariants, that is on asymptotic behaviour
of area, volume, covariance matrix (or other integral quantities) inside infinites-
imal balls, where the leading term contains the wanted geometric information,
see [15,36] where such approaches are developed on point clouds, [11] on digital
shapes and [25] where robustness to noise is proved. A common drawback of these
methods is that they are not suitable for the reconstruction of curvature in presence
of singularities, and convergence results are generally obtained under quite strong
regularity assumptions.

A different approach is followed in [10, 16]. There, a notion of second funda-
mental measure, valid both for surfaces and for their discrete approximations, is
introduced by relying on the theory of normal cycles developed in seminal works
of WINTGEN [35], ZAHLE [37] and Fu [21] (see also [26]). Roughly speaking, the
idea of those papers is to reconstruct curvature measure information from the off-
sets of distance-like functions associated with the discrete data. On the one hand,
this approach is quite general as it relies on Geometric Measure Theory (in princi-
ple, the reconstructed curvature measures may contain singular parts allowing for
singularities in the limit shape). On the other hand, this method has been efficiently
developed on triangulated surfaces, while its adaptation to point cloud data is not
straightforward, see [10] for more details.

In the recent works [8,9] the framework of varifolds has been proposed as
a possible answer to the above question. Varifolds were originally introduced by
ALMGREN [5] for the study of critical points of the area functional, and as a model of
soap films, soap bubble clusters, and more general physical systems where surfaces
or interfaces come into play. Formally, a d—varifold V is a Radon measure on
the product space R" x G4 ,, where G4 , denotes the Grassmannian manifold of
(unoriented) d-planes in R", | < d < n (see Definition 3.1). Roughly speaking,
a varifold consists of a joint distribution of mass and of “tangent” d—planes. It
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is natural to associate a varifold to a smooth d—dimensional surface in R”, and
more generally to a d—rectifiable set with locally finite d—dimensional Hausdorff
measure, possibly endowed with a multiplicity function (see Definition 3.2). In
this sense, varifolds provide a natural generalization of (unoriented, weighted)
surfaces. Varifolds satisfy nice geometric and variational properties (compactness,
mass continuity, criteria of rectifiability) and possess a generalized notion of mean
curvature encoded in the so-called first variation operator [4,31].

Notwithstanding these nice properties, the theory of varifolds has been essen-
tially developed and used in the context of Geometric Measure Theory and Calculus
of Variations by a quite restricted number of specialists, and almost no substantial
applications of this theory to discrete and computational geometry, as well as to
numerical analysis and image processing, have been proposed up to now. The only
exception we are aware of is the work by CHARON AND TROUVE [17], where var-
ifolds are employed to perform comparisons between triangularized shapes, with
applications to computational anatomy. The reason for the consistent lack of practi-
cal application of the varifold theory is, probably, twofold. On the one hand, most of
the theory (and of Geometric Measure Theory in general) consists of very deep, but
also extremely technical results, which make the theory appear particularly exotic
and only meant to address purely theoretical questions. On the other hand, despite
its potentials, the theory of varifolds has been conceived and developed neither for
the discrete approximation of surfaces, nor for the analysis of discrete geometric
objects.

The main aim of this paper is to show that varifolds can indeed be successfully
used to represent and analyze not only continuous shapes, like curves, surfaces, and
rectifiable sets, but also discrete shapes, like point clouds, pixel/voxel-type surfaces,
polyhedral meshes, etc. Varifolds associated with discrete shapes will be generically
called discrete varifolds. In order to make discrete varifolds a truly useful tool,
a certain extension of the classical theory is required, especially with reference
to approximation results, compactness properties, and the choice of appropriate
notions of curvature.

First of all we introduce a regularized first variation of a varifold V as the
convolution of the standard first variation §V (which is a distribution of order 1)
with a regularizing kernel p.. Then we convolve the mass || V|| of the varifold by
another kernel & and define the approximate mean curvature vector field H" e S
the regularized first variation divided by the regularized mass (whenever the latter is
not zero). In this way we can define approximate mean curvatures for any varifold.
Of course these notions of mean curvature depend on the choice of the pair (pg, &)
of regularizing kernels. Assuming that p, and &, are defined by suitably scaling
two given kernels p; and &1, the parameter ¢ can be understood as a scale at which
the mean curvature is evaluated. We remark that the idea of using convolutions of
varifolds and of their first variations is not new, as it already appears as a technical
tool in BRAKKE’S paper [7] on the mean curvature motion of a varifold. What to
our knowledge is new is the simple, but at the end very effective, idea of taking
regularizations of the mass and of the first variation in order to give consistent
notions of mean curvature for all varifolds (and in particular for the discrete ones).
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The approximate mean curvatures satisfy some nice convergence properties,
that are stated in Theorems 5.3, 5.5 and 5.8. In these results the notion of Bounded
Lipschitz distance, a metric similar to Wasserstein distance (see Definition 3.6),
comes into play. By relying on such convergence theorems one can for instance
show Gamma-convergence for a class of Willmore-type functionals defined on
discrete varifolds, that will be presented in a forthcoming paper.

A thorough comparison between our approach and the different notions of dis-
crete (mean) curvature, which have been proposed and studied in the past literature,
is out of the scope of this paper (we refer the interested reader to the extended sur-
vey contained in [28]). However, as an illustrative example of the power and the
generality of the varifold setting we show in Section 8 the following, remarkable
fact: the classical Cotangent Formula, that is widely used for defining the mean
curvature of a polyhedral surface P at a vertex v, can be simply understood as the
first variation of the associated varifold Vp applied to any Lipschitz extension of
the piecewise affine basis function ¢, that takes the value 1 on v and is identically
zero outside the patch of triangles around v. In this sense, the Cotangent Formula
can be understood as the regularization of § Vp by means of the finite family of
piecewise affine kernels {¢,(x) : v is a vertex of P}.

Moreover, in the last section we provide some numerical simulations that show
the efficacy and generality, as well as the ease of implementation, of our notion of
approximate mean curvature. In particular, our simulations confirm the convergence
results proved in Section 5 with even better rates than those theoretically expected,
not only in the case of smooth limit surfaces but also for a much larger class of
generalized surfaces, possibly endowed with singularities.

For the reader’s convenience we provide a more detailed description of the
contents of the paper.

In Sections 2 and 3 we set some basic notation and briefly introduce the notion
of varifold together with some essential facts from the theory of varifolds, that
will be recalled in the subsequent sections. We also define the Bounded Lipschitz
Distance A!*!, which locally metrizes the weak-# convergence of varifolds and will
be systematically used throughout the paper. At the end of the section we define
the class of discrete varifolds, focusing in particular on those of “volumetric” and
“point-cloud” type. We then prove an equivalence result, Proposition 3.13, which
says that one can switch between the volumetric and point-cloud types up to paying
some explicit price in terms of the A'-! distance.

Section 4 is devoted to the definition of the regularized first variation §V * p,,
as well as to show some related properties. We point out that, here and in the rest
of the paper, we take radially symmetric kernels with some minimal regularity, as
specified in Section 2 (see also Hypothesis 1); we shall also denote by p the one-
dimensional profile of the kernel p;. A compactness and rectifiability result using
the regularized first variation is shown at the end of the section, see Theorem 4.6. We
stress that Theorem 4.6, a partial extension of a classical result due to ALLARD [4],
can be used for showing existence of solutions to variational problems on discrete
varifolds.

The notion of approximate mean curvature H Vé of a varifold V is introduced
and studied in Section 5. The consistency of the notion stems from two approxi-
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mation results that we show to hold for rectifiable varifolds with locally bounded
first variation. The first one, Theorem 5.3, states the pointwise convergence of
the approximate mean curvature H X £ 1O the generalized mean curvature H of
V at || V|-almost every point, without an explicit convergence rate. The second
one, Theorem 5.5, shows the following fact: given a rectifiable varifold V with
bounded first variation, a sequence V; of general varifolds, a sequence of points
z; converging to a point x in the support of V, and two infinitesimal sequences of
parameters d;, &;, such that the local A1 distance between V and V; is controlled
from above by d; up to a renormalization (see (5.24)), then one obtains that the
modulus of the difference H KK‘E‘ o (zi)— H X £.e; (x) can be asymptotically estimated

by % We remark that the infinitesimality of the parameter d; appearing

in the theorem is always guaranteed by the convergence of V; to V in the sense
of varifolds. Moreover, by combining the above estimate with Theorem 5.3 one

deduces that H" (z;) converges to H(x) as soon as 4i+1Z=x] §g infinitesimal as
0,6.&i g 2

i — oo. For the last convergence result of the section, Theorem 5.8, we introduce
an orthogonal approximate mean curvature H ;/ ’;‘8 (x) which essentially consists in

projecting H /Y £,¢(X) onto the “normal space” to V at x. Then we assume that the

varifold V is associated with a C? manifold M, and take a sequence of varifolds
V; that converge to V with explicit controls on the local A!:! distance between
the mass measures || V|| and || V;| as well as on suitably defined, L°°-type local
distances between the “tangential parts” of the varifolds (see assumptions (5.35)
and (5.36)). Under these assumptions the theorem shows better convergence rates
with respect to the ones guaranteed by Theorem 5.5 (basically, we obtain ‘81—: instead

of :—5 as in the asymptotic convergence estimate (5.26)).

Section 6 addresses the question whether some specific choice of the pair (p, &)
of kernel profiles might lead to improved convergence rates in Theorems 5.5 and
5.8. Even though we are not able to give a completely satisfactory answer to this
question, we provide some heuristic motivation for choosing (p, &) within a class
of kernel pairs that satisfy what we call the Natural Kernel Pair (NKP) property,
defined as follows: we say that a pair of kernel profiles (p, §) satisfies the (NKP)
property if p is monotonically decreasing on [0, +00) and of class W, while &
is given by the formula

(1) = _w'@
n

The (NKP) property relies on an observation that we made after performing a Taylor
expansion of the difference H /X £e (x) — H(x) when V is associated with a smooth

manifold M of class C3 and x is a point in the relative interior of M. While it is still
unclear whether (NKP) guarantees or not some better convergence rates than those
proved in Theorems 5.5 and 5.8, we have observed a substantial improvement of
convergence and stability in all numerical tests we have performed, some of which
are presented in Section 9.

In the remaining sections we consider some theoretical and applied aspects of
discrete varifolds.
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In Section 7 we show that point cloud varifolds as well as discrete volumetric
varifolds can be used to approximate more general rectifiable varifolds. Specifically
we show in Theorem 7.4 that any rectifiable varifold V with bounded first variation
can be approximated by a sequence V; of discrete varifolds of the previous types,
constructed on generic meshes of the space with mesh-size §;. If moreover V
belongs to the narrower, but quite natural class of piecewise C'-# varifolds (see
Definition 7.2) then we also show in the same theorem an explicit estimate on the
distance Al (V, V;), which is proved to be smaller than 8;3 , up to multiplicative
constants and for i sufficiently large.

Section 8 is devoted to the illustration of a simple, but remarkable fact con-
cerning the classical Cotangent Formula, which is one of the fundamental tools
in discrete geometry as it allows to define a vector mean curvature functional H
for a triangulated surface. Using the varifold formalism one can understand the
formula as the first variation of the associated polyhedral varifold V evaluated on
a Lipschitz extension of a generic nodal function ¢. This fact, which is proved
in Proposition 8.1, gives in our opinion a strong support to the suitability of the
varifold approach to discrete geometry.

Finally, we put in Section 9 some numerical tests for confirming the theoretical
convergence properties of the approximate mean curvature as well as the effective-
ness of the (NKP) property, according to the results of Sections 5 and 6. For the sake
of computing the exact mean curvature vector, most of the tests have been made
by taking some parametrized shapes (a circle, an ellipse, a “flower”, an “eight”,
a union of two circles, and some standard double bubbles in 2D and 3D) and by
discretizing them as point cloud varifolds. Then we choose various kernel pairs
(p, &) and compute the approximate mean curvatures (with or without projection
on the orthogonal space) for various choices of the scale parameter ¢, as well as the
relative error with respect to the theoretical ones. We also examine the behavior of
the approximate mean curvature near the singularities in the “eight”, in the union of
two circles, and in a couple of standard double bubbles in 2D and 3D. In particular
we obtain slightly nicer results by taking averages of H 8‘fp’ ¢ over balls of radius 2¢,
which actually does not affect the validity of our theoretical convergence results.
Our tests confirm the robustness of the notion of approximate mean curvature in
both 2D and 3D cases, even in presence of singularities. We finally conclude the
section with two figures showing the intensity of approximate mean curvatures
computed for point clouds representation of a dragon and a statue.

2. Preliminary Notations and Definitions

We adopt the following notations:

N and R denote, respectively, the set of natural and of real numbers.

Givenn € N,n = 1, x € R" and r > 0, we denote by |x| the Euclidean norm
of x andset B, (x) ={y e R" ||y — x| < r}.

A =, cq Bs(x) = {y e R"|d(y, A) < §)}.

L" is the n—dimensional Lebesgue measure and w, = L£"(B1(0)).

H? is the d—dimensional Hausdorff measure in R”.
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If B is an open set, writing A CC B means that A is a relatively compact
subset of B.

G4, denotes the Grassmannian manifold of d-dimensional vector subspaces
of R". A d-dimensional subspace 7' of R" is equivalently represented by the
orthogonal projection onto 7', denoted as I[1r. G4, is equipped with the metric
d(T, P) = |I17 — I1p||, where || - || denotes the operator norm on the space
L(R"™; R") of linear endomorphisms of R”. We will usually write ||T — P||
instead of |17 — I1p||.

Given a continuous R"”—valued function f defined in €2, its support spt f is the
closure in Q of {y € Q| f(y) # 0}.

Given a metric space (X, §) and a function f : X — R, we denote by lip(f)
the Lipschitz constant of f. Then, Lip; (X) denotes the space of real-valued
Lipschitz functions f defined on X, such that lip(f) < L.

C%() is the closure of C2(2) in C%(2) with respect to the norm [|ulloo =
Sup,cq lu(x)|.

Given k € N, C’C‘(Q) is the space of real-valued functions of class Ck with
compact support in 2.

C%1(R) and C!(R) denote, respectively, the space of Lipschitz functions and
the space of functions of class C' with derivative of class Lipschitz on R.
On such spaces we shall consider the norms [u||1,00 = [|#]loc + lip(u) and
letll2,00 = lutlloe + 111,00, respectively.

We denote by |u] the total variation of a measure u.

Mioe(X)™ is the space of R™-valued Radon measures and M (X)™ is the
space of R”—valued finite Radon measures on the metric space (X, 4).

From now on, we fix d, n € Nwith 1 £d < n. By Q C R"” we shall always

denote an open set.

We also fix the notations and some basic assumptions about the regularizing

kernels that will be used in the sequel. We shall consider radially symmetric, non-
negative kernels pj, £ defined on R”, such that p; (x) = p(]x]) and &;(x) = &(|x])
for suitable one-dimensional, even profile functions p, £ with compact support in
[—1, 1]. We also assume the normalization condition

/ m(x)dx=/ £ (0 dx = 1,
Rn R)‘l

which amounts to

1 1
na)/ p ()" dt:na)n/ e Ndr = 1.
0 0

For any given ¢ > 0 and x € R" we set

pe(x) =& "pi(x/e) and & (x) =& "&1(x/e).

We shall at least assume that p € C!(R) and that & € CO(R). At some point, we
shall require extra regularity on p and &, namely that p € W2 and & € WhH>®
(see Hypothesis 1).



646 BLANCHE BUET, GIAN PAOLO LEONARDI & SIMON MASNOU

3. Varifolds

3.1. Some Classical Definitions and Properties of Varifolds

We recall here a few facts about varifolds, see for instance [31] for more details.
Let us start with the general definition of varifold:

Definition 3.1. (General d—varifold)Let &2 C R” be an open set. A d—varifold in
Q2 is a non-negative Radon measure on Q2 x Gy ;.

An important class of varifolds is represented by the so-called rectifiable vari-
folds.

Definition 3.2. (Rectifiable d—varifold)Given an open set 2 C R”, let M be a
countably d—rectifiable set and 6 be a non negative function with 6 > 0 H?—almost
everywhere in M. A rectifiable d—varifold V = v(M, 0) in Q is a non-negative
Radon measure on Q2 x G4, of the form V = GHldM ® 67, m, that is

/ o(x, T)dV(x,T>=/ @, TeM) 0(x) dH (x) Yo eCl(Q x Gan, R),
QxGyn M

where T, M is the approximate tangent space at x which exists H¢—almost every-
where in M. The function 6 is called the multiplicity of the rectifiable varifold. If
additionally 0 (x) € N for H%-almost every x € M, we say that V is an integral
varifold.

Definition 3.3. (Mass) The mass of a general varifold V is the positive Radon
measure defined by |V|(B) = V(x~'(B)) for every B C 2 Borel, with 7 :
Q x Gg,n — Q2 defined by 7 (x, §) = x. In particular, the mass of a d—rectifiable
varifold V = v(M, 0) is the measure |V || = QHldM.

The following result is proved via a standard disintegration of the measure V
(see for instance [2]):

Proposition 3.4. (Young-measure representation) Given a d—varifold V on Q, there
exists a family of probability measures {v,}, on Gq, defined for ||V ||-almost all
x € Q, such that V. = |V| & {vy}x, that is,

V(<0)=/ / @(x, ) dve (S)d[[V]I(x)
xeQ JSeGy,

forall p € CURQ x Gg.p).

We recall that a sequence (u;); of Radon measures defined on a locally compact
metric space is said to weakly—k converge to a Radon measure p (in symbols,
ji = ) if, for every ¢ € CO(RQ), ui(9) — p(p) asi — oo.

Definition 3.5. (Convergence of varifolds) A sequence of d—varifolds (V;);
weakly— converges to a d—varifold V in Q if, for all ¢ € C(C)(Q x Gg.n),

<Vi,¢>=/ cv(x,P)dVi(x,P)_—><V,w>=/ o(x, P)dV(x, P).
QxGyn =00 Q

xXGyn
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We now recall the definition of Bounded Lipschitz distance between two Radon
measures. It is also called flat metric and can be seen as a modified 1-Wasserstein
distance which allows the comparison of measures with different masses (see [30,
33]). In contrast, the 1-Wasserstein distance between two measures with different
masses is infinite.

Definition 3.6. (Bounded Lipschitz distance) With i and v being two Radon mea-
sures on a locally compact metric space (X, d), we define

A"l(u,v)=sup”/wdu—/wdv
X X

It is well-known that A1 (i, v) defines a distance on the space of Radon measures
on X, called the Bounded Lipschitz distance.

¢ € Lipi(X), llgllec = 1}.

Hereafter we introduce some special notation for the Al-! distance between
varifolds.

Definition 3.7. Let 2 C R” be an open set and let V, W be two d—varifolds on 2.
For any open set U C 2 we define

i <
AEI(V7 W) = sup / pdV — / pdW| : ¢ € Lipj (2 x Ggn)s l¢lloo =1
Jaxay, JaxGa, and sptg C U x Gy

and

1y _ _ . @ €Lip (), lIgllo <1
Ay (||V||,||W||)-sup”/9wdnvn /denwn‘ ¥ i aptp C U :

A

We shall often drop the subscript when U = €2, that is we set
AVY VW) = Agl (V. W) and AMAIVILIWID = Ag AVIL WD,

thus making the dependence upon the domain implicit whenever this does not create
any confusion.

The following fact is well-known (see [6,33]).

Proposition 3.8. Ler 1, (1;)i, i € N, be Radon measures on a locally compact
metric space (X, 8). Assume that (1(X) + sup; w; (X) < 400 and that there exists
a compact set K C X such that the supports of @ and of | are contained in K for

alli € N. Then u; N w if and only if AV (i, u) — Oasi — oc.

We define the tangential divergence of a vector field, as follows. For all P €
Ggnand X = (X1, ..., X,) € CL(Q, R") we set

n n
divpX (1) = ) (VIX;().¢j) = ) (Mp(VX;(0). ¢))
j=1 j=1
with (eq, ..., e;) being the canonical basis of R”. Then we introduce the following
definition:



648 BLANCHE BUET, GIAN PAOLO LEONARDI & SIMON MASNOU

Definition 3.9. (First variation of a varifold, [4]) The first variation of a d—varifold
in Q C R" is the vector—valued distribution (of order 1) defined for any vector field
X e CH(Q,R") as

5V (X) =/ divp X (x)dV (x, P).
QxGqn

Remark 3.10. It is convenient to define the action of §V on a function ¢ € C Cl ()
as the vector

SV(p) = (8V(<pel), .., 0V (p en)).

We also notice that §V (X) is well-defined whenever X is a Lipschitz vector field
such that the measure ||V || of the set of non-differentiability points for X is zero.

The definition of first variation can be motivated as follows. Let (p,X be the one-
parameter group of diffeomorphisms generated by the flow of the vector field X.
Let X be the mapping defined on R” x G4, as

dX(x, ) = (¢ (x), dg* (5)).

Set V; as the push—forward of the varifold measure V by the mapping ®X. Then,
assuming spt(X) CC A for some relatively compact open set A C €2, one has the
identity

d
SV(X) = EHVIH(A)\I=O~

The linear functional 8V is by definition continuous with respect to the C! -topology
on Cl (2, R™), however in general it is not continuous with respect to the C?.
topology. In the special case when this is satisfied, that is, for any fixed compact set
K C Qthereexistsaconstantcg > 0, such that for any vector field X € Cg (2, R")
with spt X C K, one has

I8V(X)| = ck sup X,
K

we say that V has a locally bounded first variation. In this case, by Riesz Theorem,
there exists a vector—valued Radon measure on 2 (still denoted as §V') such that

8V(X)=/X-8V for every X € CY(Q2, R™).
Q

Thanks to Radon-Nikodym Theorem, we can decompose §V as
8V =—H|V|+48Vy, (3.1

where H € (L}OC(Q, A% ||))" and § V; is singular with respect to ||V ||. The function
H is called the generalized mean curvature vector. By the divergence theorem, H
coincides with the classical mean curvature vector if V = v(M, 1), where M is a

d-dimensional submanifold of class CZ.
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3.2. Discrete Varifolds

We introduce a type of varifolds that we call discrete as they are defined by a
finite set of parameters. Although a varifold structure can of course be associated
with any polyhedral complex, we shall essentially focus on “unstructured” discrete
varifolds (discrete volumetric or point cloud, see below). It is however worth notic-
ing that all definitions and results in Sections 4 and 5 are valid in particular for all
sequences of discrete varifolds, including those of polyhedral type. Concerning the
results of Section 7, the construction of approximations V; of a rectifiable varifold
V, such that Al’l(Vi, V) is infinitesimal, as shown in Theorem 7.4, seems to be
quite delicate in the polyhedral setting, since the tangent directions are prescribed
by the directions of the cells of the polyhedral surface, which are not necessarily
converging when the polyhedral surfaces converge to a smooth one in Hausdorff
distance; think of Schwarz Lantern for instance. However, a related polyhedral
approximation has been obtained in [21], see also [20]. The construction of such
approximations is much simpler in the case of volumetric and point cloud varifolds.

Let @ C R” be an open set. By a mesh of 2 we mean a countable partition /C
of Q, that is, a collection of pairwise disjoint subdomains (“cells”) of €2 such that
{K € K : KN B # ¢} is finite for any bounded set B C 2 and

o= || k.
KeK

Here, no other assumptions on the geometry of the cells K € K are needed. We
shall often refer to the size of the mesh /C, denoted by

6 = sup diam K.
Kek

We come to the definition of discrete volumetric varifold (see [9]).

Definition 3.11. (Discrete volumetric varifold) Let K be a mesh of © and let
{(mk, Px)}lkek C Ry x Gy, We define the discrete volumetric varifold

m
vl = Z ﬁ Ik ®8pg, where |K| = L"(K).
Kek

We remark that discrete volumetric d—varifolds are typically not d-rectifiable
(indeed their support is n—rectifiable, while d < n).
We can similarly define point cloud varifolds.

Definition 3.12. (Point cloud varifolds) Let {x;};=;..y C R” be a point cloud,
weighted by the masses {m;};=1..y and provided with directions {P;};=1. .y C
G 4.n- We associate the collection of triplets {(x;, m;, P;) : i =1, ..., N} with the
point cloud d—varifold

N
VPE="m; 8y, ®8p .
i=1
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so that for ¢ € C?(Q x Gan),

N
/ﬁﬂdet =Y mig(xi, P).

i=1

Of course, a point cloud varifold is not d-rectifiable as its support is zero-
dimensional.

The idea behind these “unstructured” types of discrete varifolds is that they can
be used to discretize more general varifolds. For instance, given a d—varifold V,
and defining

mg = ||V|(K) and Pk € argminPeden / [P — S| dV(x,S),
KxGgn
one obtains a volumetric approximation of V. Similarly one can construct a point
cloud approximation of V. The possibility of switching between discrete volumetric
varifolds and point cloud varifolds, up to a controlled error depending on the size
of a given mesh, is shown in the following proposition:

Proposition 3.13. Let @ C R” be an open set. Consider a mesh K of 2 of size

8 = sup diam K and a family {xx, mk, Px}xexc C R" x Ry x Gg., such that
Kek

xkx € K, for all K € K. Define the volumetric varifold Vlé"l and the point cloud
. pt
varifold V- as

i meg t
V= Z K| Tk ®dpg andV,é = kaaxKez)aPK_
Kek KeK

Then, for any open set U C 2 one obtains
AG VR VEY £ smin (VRN IVEIWD)

Proof. Let ¢ € Lip;(R" x G4,,) such that sptg C U, then

mg
/ svdV;%”[—/ edV'| =13 == [ e PRL" () = ) mig(xk. Px)
UxGqp UxGan

K| Jx

KerK KeK
< 3 e f ot P = gl POl 42" )
KeK K
UNK #0
< li x —xgldL"(x) <6 m
<) 7l,< p(p) Ix —xg AL (x) 8 Y mg
KelC <1 Kelc
UNK £ < UNK #6

=sivi U k|=s1vei| U «
UNK #§ UNK#H

< o min (V2 1WH, IVE WD) |

as wanted. O
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Remark 3.14. We note that the first variation of a point cloud varifold is not a
measure but only a distribution: indeed it is obtained by directional differentiation
of a weighted sum of Dirac deltas. On the other hand, the first variation of a discrete
volumetric varifold is bounded as soon as the cells in X have a boundary with 74"~
finite measure (or even as soon as the cells in /C have finite perimeter), but its total
variation typically blows up as the size of the mesh goes to zero (see for instance
Example 6in [9]). Nevertheless, this bad behavior of the first variation, when applied
to discrete varifolds, can somehow be controlled via regularization, as described in
Section 4.

Though the paper does not focus on polyhedral surfaces, we give a notion
of polyhedral varifold which will be studied in Section 8§, where we evidence the
connection between the so—called Cotangent Formula and the first variation of such
a varifold.

Definition 3.15. (Polyhedral varifold) Let M be a d—dimensional polyhedral sur-
face whose set of d—faces is denoted F. Then, we associate M with the d—varifold

V= Z Hldp & 8PF5
FeF

where Pr € Gy, is the vector space parallel to the face F. Notice that V is an
integral d—varifold.

4. Regularized First Variation

Given a sequence of varifolds (V;); weakly—« converging to a varifold V, a
sufficient condition for V to have locally bounded first variation, i.e. for §V to be
a Radon measure, is

sup |[§V;]| < 4-o0. 4.1)
1

However, the typical sequences of discrete varifolds that have been introduced
in Section 3.2 may not have uniformly bounded first variations, or it may even
happen that the first variations themselves are not measures, as in the case of point
cloud varifolds (see Remark 3.14). Nevertheless, 6 V; are distributions of order 1
converging to 6V (in the sense of distributions). The idea is to compose the first
variation operator § with convolutions defined by a sequence of regularizing kernels
(pg;)ien as in Definition 4.1 below, and then to require a uniform control on the
L'-norm of §V; % Ps; -

We also point out that the parameter &; may be viewed as a “scale parameter”.

Aside from some technical results, that will be used in the next sections, we
prove in Theorem 4.6 a compactness and rectifiability result, which relies on the
assumption that §V; * pg, is uniformly bounded in L I

As we are going to regularize the first variation of a varifold V in & by convo-
lution, we conveniently extend 6V to a linear and continuous form on Cl, (R™, R™).
Let 2 C R” be an open set and V be a d—varifold in Q with mass ||V ||(2) < +o0.
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First of all, we notice that (x, S) — divgX (x) is continuous and bounded, and that
V is a finite Radon measure, thus we set

SV (X) =/ divgX(x)dV(x,S), VX € Ci(]R”,]R”). 4.2)
QxGyn

For more simplicity, in (4.2) the extended first variation is denoted as the standard
first variation. We immediately obtain

SV(X) S IXler IVIR), VX € CLR", R,

which means that the linear extension is continuous with respect to the C!-norm.
Notice that the extended first variation coincides with the standard first variation
whenever X € Cl(Q, R™) but contains additional boundary information if the
support of || V|| is not relatively compact in €2.

For the reader’s convenience we recall from Section 2 that p denotes a non-
negative kernel profile, such that p;(x) = p(|x|) is of class C I has compact
support in By (0), and satisfies f p1(x)dx = 1. Then, given ¢ > 0 we set p.(x) =
e "pr(x/e).

Definition 4.1. (regularized first variation) Given a vector field X € Cg (R™*, R™),
for any ¢ > 0 we define

SV x pe(X) 1= V(X x pe) = / divs(X * pe)(y)dV (y, S). (4.3)
QxGyn

We generically say that 8V * p; is a regularized first variation of V.

Of course (4.3) defines §V x p, in the sense of distributions. The following
elementary proposition shows that §V s p, is actually represented by a smooth
vector field with bounded L'-norm:

Proposition 4.2. Let Q C R" be an open set and V be a d—varifold in Q2 with finite
mass ||V (S2). Then 8V * pg is represented by the continuous vector field

SV % pe(x) =/ VS0 (y —x)dV(y, S)
QxGyn

1 —-X
= o /Q LV <y7> v(y,s, @4
XGUdn

and moreover one has 8V x p, € LY (R"; R").

Proof. Taking into account (4.3), for every y € R” we find divg(X * p.)(y) =
X % VSp(y) := Yo Xk 81.5,05 (), thus by Fubini-Tonelli’s theorem we get

SV*pE(X)=/ (X % VS 0) (0 AV (. S)
QxGyn

=/ / X (x) - V3 pe(y — x)dL"(x) dV (y, S)
QxGyp J xeRn
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=/ X<x>~</ vsps(y—me(y,S)) dc"(x),
xeRn QxGyg.p

which proves (4.4). The fact that §V  p, € L!(R";R") is an immediate conse-
quence of the fact that V p, is bounded on R”. 0O

Remark 4.3. We stress that §V x p, is in L' (R") even when 8V is not locally
bounded.

Remark 4.4. If the support of ||V] is compactly contained in €2 then using the
extended or the standard first variation in the convolution §V % p, is equivalent up
to choosing ¢ small enough. In general, the same equivalence holds up to restricting
the distribution §V * p, to Cé(Qg, R™), where Q. = {x € Q : dist(x, 02) > ¢},
which amounts to restricting the function 6V * p to ;.

In the next proposition we show that the classical first variation of a varifold V
is the weak—x limit of regularized first variations of V, under the assumption that
8V is a bounded measure. This will immediately follow from the basic estimate
(4.5), which is true for all varifolds.

Proposition 4.5. Let Q@ C R" be an open set and let V be a varifold in Q with
IVI(2) < +o0o. Then for any X € Cé(R”, R™) we have

8V 5 e (X) =8V £ VIR0 (sptX + Bo(©)) lloe * X = Xller — 0.

(4.5)
Moreover, if V has bounded extended first variation then

SV % pp —— 8V. (4.6)

e—0

Proof. Let X € Cg(R”, R™). Since §V * p.(X) = §V (p. * X) we obtain

18V % pe(X) = 8V(X)| = |8V (pe ¥ X = X)I = [IVII(R) lpe * X — Xllc1 -
On observing that [|pe * X — X||c1 3 0 we get (4.5). If in addition V has
bounded extended first variation, then for all X € Cg (R", R"™) we obtain

18V 5 pe(X) = V(XD = 8V [ lpe * X — Xlloo 0

which proves (4.6). O

The next theorem is a partial generalization of Allard’s compactness theorem
for rectifiable varifolds. It shows that, given an infinitesimal sequence (g;); of
positive numbers and a sequence of d-varifolds (V;); with uniformly bounded total
masses, such that § V; * p;, satisfies a uniform boundedness assumption, there exists
a subsequence of V; that weakly-* converges to a limit varifold V with bounded
first variation. If in addition || V;|| (B, (x)) = Gord for || V||-almost every x and for
Bi < r < ro, with (8;);en an infinitesimal sequence, then the limit varifold V is
rectifiable. We stress that V; is required neither to have bounded first variation, nor
to be rectifiable. Notice also the appearance of the scale parameters §; providing
infinitesimal lower bounds on the radii to be used for approximate density estimates.
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Theorem 4.6. (compactness and rectifiability) Ler Q C R" be an open set and
(Vi)i be a sequence of d-varifolds. Assume that there exists a positive, decreasing
and infinitesimal sequence (&;);, such that

M = sup {[[Vi|(2) + [18V; * pe; L1} < +o0. 4.7)

ieN

Then there exists a subsequence (Vy(;y); weakly—x converging in 2 to a d-varifold
V with bounded first variation, such that ||V ||(2) + |8V |(R) £ M. Moreover, if
we further assume the existence of an infinitesimal sequence B; | 0 and 6y, ro > 0
such that, for any B; < r < ro and for ||V;||-almost every x € <,

IV I(By (x)) = 6or? (4.8)
then V is rectifiable.

Proof. Since M is finite, there exists a subsequence (Vy(;)); weakly— converging
in 2 to a varifold V. By Proposition 4.5, for any X € Cé (€2, R") we obtain

8Vi(i) * Pryiy(X) = BV (0| £ 8V, % ) (X) = 8Vipiiy (0| + 8V () = 8V (X)]

< IVil®) | X 5 peyy — X|
——

ot |8Vip(i) (X) — 8V (X))
<C<+o0

— 0.

11— 00

Consequently, forany X € Ci(Q, R™)onehas |§V (X)| < sup ||8V,- * g HLI X oo-
i

‘We conclude that § V extends to a continuous linear form in C?. (2, R™) whose norm
is bounded by sup; |8V; x pg, || 1. thus [ V][(Q) + [V (Q) < M.

Assuming the additional hypothesis (4.8), it is not difficult to pass to the limit
and prove the same inequality for ||V ||-a.e. x and for all 0 < r < rg. We refer to
Proposition 3.3 in [9] for more details on this point. By Theorem 5.5(1) in [4] we
obtain the last part of the claim. O

5. Approximate Mean Curvature

5.1. Definition and Convergence

We now introduce the notion of approximate mean curvature associated with
V, in a consistent way with the notion of regularized first variation. We refer to
Section 2 for the notations and the basic assumptions on the kernel profiles p, &.
We also set

1 1
szda)d/ o(ryré=tdr, Cg:da)d/ g(ryrilar. (5.1
0 0
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Definition 5.1. (approximate mean curvature) Let 2 C R” be an open set and let
V be a d—varifold in Q. For every ¢ > 0 and x € €, such that |V % & (x) > 0,

we define
G 8V Ep(x)

Co IVI*E®’

where C,, and C¢ are as in (5.1). We generically say that the vector H /X £, L(x)isan
approximate mean curvature of V at x.

Vo (X)) = (5.2)

Example 5.2. (approximate mean curvature of a point cloud varifold) Let us con-
sider a point cloud varifold V = Ziv 110y ;® 1) P;- We remark that §V is not a
measure. An approximate mean curvature of V is given by the formula

|x;i — x| Xi—Xx
Z m,-,o'( J Mp 4
(x) ¢ :

J —
G Vrpe) | Ce xeBions ey =l

P S g('x)

C, IVI*&Gx) Cpe Z mj‘§<|xjg xl)
Xj€Be(x)
(5.3)
The formula is well-defined for instance when x = x; for somei = 1,..., N.

The choice of ¢ here is crucial: it must be large enough to guarantee that the ball
B¢ (x) contains points of the cloud different from x, but not too large to avoid
over-smoothing.

If §V is locally bounded then we recall the Radon-Nikodym-Lebesgue decom-
position (3.1), which says that §V = —H|| V| + 8§V, where H = H (x) is the gen-
eralized mean curvature of V. Note that the approximate mean curvature introduced
in Definition 5.1 can be equivalently defined as the Radon—Nikodym derivative of
the regularized first variation with respect to the regularized mass of V. When V is
rectifiable, it turns out that formula (5.2) gives a pointwise || V ||-almost everywhere
approximation of H (x), as proved by the following result.

Theorem 5.3. (Approximation I) Let Q C R" be an open set and let V = v(M, 0)
be a rectifiable d—varifold with locally bounded first variation in Q2. Then for ||V |-
almost all x € Q we have

p E £ (X) —> H(x). 5.4

Proof. For ||V |-almost all x € Q we have

Ce (=HI VI +8Vs) * pe(x)

Hoga) ~ HE)| = ' C, IVIsE® H(x)‘
|G VD o) G VI )
C, VI &) C, VI &)
Ce VIl *pe(X)H(x) CHM
C, VI &)

Ce |8Vs  ps ()]
Cp IV *&(x)
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<& L[ mm - HO) - » VIR
- CP ”V” *se(X) yeR? Y1 Pe y y
+ |H (x)| %HVH*—ps(x)_l‘ %M
Cp VIl &e(x) Cp VIl * Ee(x)
(5.5)

Being V rectifiable, we can assume without loss of generality that the approximate
tangent plane is defined at x, whence

e~V II(Be(x)) g ©@af ), (5.6)

n—d 1 y—x
€ ||V||*Ps(x)=_d/ pl— ) dIVII) — 6(x)
& Q & e—0

| pmiani;) = com =0 57)
.M
Thus by (5.6) and (5.7) we obtain
Ce VI *pe(x) N 58)
Co IVl #&e(x) e—0

Again by (5.6) and (5.7), and for ||V ||-almost any x € 2 (precisely, at any Lebesgue
point x of H € L'(||V]))), we get

m | H® = HOl oo =) dIVIO)
_ lplsollVI(BeG) 1
T M|V x&e(x) IVI(B:(x)) Jyen, )
e[ VII(B: ()

|H(x) — H()| dIVII(y)

= - |H(x) — H(y)| d|VII(y) — 0.
100 a1 2 £ (6) Jocpce DAV —
[ S———)
@d —0
s CS e—0
5.9
Similarly, for ||V ||-almost every x we get
8V, V(B 8Vs|(B
18 V5| * pe(x) < 15l 8n_d|| [[(Be(x)) [8Vs|(Be(x)) 0. (5.10)
IV I * & (x) VI e (x) IVII(Be(x)) &0
N @d — 0
0 Cé e—0

Then (5.8), (5.9), (5.10) and (5.5) yield (5.4). O

Given a rectifiable d-varifold V with locally bounded first variation and a
sequence of generic d-varifolds (V;); weakly—« converging to V, our goal is now
to determine an infinitesimal sequence of regularization scales (g;);, in depen-
dence of an infinitesimal sequence (d;); measuring how well the V;’s are locally
approximating V, in order to derive an asymptotic, quantitative control of the error
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between the approximate mean curvatures of V; and V. In this spirit we obtain two
convergence results, Theorem 5.5 and Theorem 5.8 that we describe hereafter.

In Theorem 5.5 we extend the basic convergence property proved in Theo-
rem 5.3. More specifically we show the pointwise convergence of H'X’éq e 0 H as
i — 00, up to an infinitesimal offset and for a suitable choice of ¢; > 0 tending to
zero as i — 00. The presence of an offset in the evaluation of H Xi& ¢, and H (that

is, we compare H ;/,[g, e (zi) with H(x), where z; is a sequence of points converging
to x) is motivated by the fact that we do not have spt || V;|| C spt || V|| in general.
Moreover, in typical applications one first constructs the varifold V; (which for
instance could be a varifold solving some “discrete approximation” of a geomet-
ric variational problem or PDE) and then, by possibly applying Theorem 4.6, one
infers the existence of a limit varifold V of the sequence (V;);, up to extraction of a
subsequence. In this sense, V; is typically explicit while V' is not. We also provide
in (5.26) an asymptotic, quantitative estimate of the gap between H H) E ¢ (zi) and

HY ke (x) (notice that for this estimate we take the ¢;-regularized mean curvatures
for both varifolds V; and V) in terms of the parameters ¢;, d; and of the offset
|x — z;|. We stress that the regularity of V that is assumed in Theorem 5.5 is in
some sense minimal (for instance the singular part § V; of the first variation may
not be zero). The price to pay for such a generality is a non-optimal convergence
rate, which can be improved under stronger regularity assumptions on V and by
using a modified notion of approximate mean curvature (see Definition 5.6 and
Theorem 5.8).

From now on we require a few extra regularity on the pair of kernel profiles
(p, &), according to the following hypothesis:

Hypothesis 1. We say that the pair of kernel profiles (p, &) satisfies Hypothesis 1
if p, € are as specified in Section 2 and, moreover, p is of class W>*° while £ is of
class W

We begin with a technical lemma providing the key estimates that are needed
in the proofs of Theorems 5.5 and 5.8.

Lemma 5.4. Let @ C R” be an open set and let V = v(M, 0) be a rectifiable d—
varifold in 2 with locally bounded first variation. Let (p, &) satisfy Hypothesis 1.
Let (V}); be a sequence of d—varifolds. Then, for every 0 < ¢ < 1, for ||V ||-almost
every x, and for every sequence z; — x, one has

1
@) = VI *Es(x)‘ = 1 lwee

(A5 IV VD + I = 2V (Bt ))) (511

£+|x

and

1
o pea) = 8V 4 pe ()| £ S lpllwace

(850 Ve V) 1 = 2V (Berig—n () (5.12)

BS‘HA‘
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Moreover, if there exist two decreasing and infinitesimal sequences (d;)i, (i),
such that for any ball B C 2 centered at x one has

A AVIL Vil £ di min (1VIGB™). Vi I(B™)), (5.13)

then for any infinitesimal sequence (&;);, such that n; + d; + |x — z;| = o(g&;) as
i — 00, one has

Eln”Vt”*Es,(Zl) o d
=% VIB, ) /Bg‘g('z')dH ©: G149

Proof. We start with the proof of (5.11). By definition of Az’ 1, for all ¢ € Lip(£2)
such that spty C B,

'/‘P()’)d“Vi”()’) - /w(y)dIIVII(y)’ < (l9llos + lip(e) Ag AVl IV D
(5.15)
Since the function y E(%—“') is %lip(é)—Lipschitz and supported in
Bgy|z;—x|(x), we have

Vil £ zi) — IV % £ (z)
_ /s(u) dnv,-n(y)—/s(u) duvu(y)’
Q & Q &
1 . 1,1
< (nsnoo + ;hp@)) AL VL IVID
1
< “lElwis A5, Vil VI sincee < 1. (5.16)
Then we have
& |IVI (@) — VI & (3)|
< /s('y_z”> d||V||(y)—/e<'y_x') d||V||<y)‘
Q & Q &
1
< lip(§)~ (Jly =21 =1y ==1]) aivi
€ Bs+\x—z,-\(x)
1
< ;nsnwn,w\x — Zi[IVIl (Begx—z (X)) (5.17)

By combining (5.16) and (5.17) we get (5.11).
We similarly prove (5.12). The mapping (y, S) € QxGq4,, — v, (_y _ Zi)
>

N 1 .
has a Lipschitz constant < —|| o ||ly2.cc and supportin Be|x—z;(x) X G4 5, therefore
)

1 —Z
/ V3o (y—> dvi(y, S)
QxGyn &

"8V % pe(zi) — 8V *Pe(zi)‘ =7
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- / VSp, (y;z> dv(y, )
QxGgp &

1 1,1
< 8—2||,0||w2~ooABH‘H”(X)(VI', V).  (5.18)

Moreover one has

Sn

8V pe(zi) — 8V # pe(x)|

1

- / M <Vp1 (y _Z") —Vp (u)) dv(y, S)
QxGgn 2 2

&
[l =yl = lzi = y| AV oy, )

.
< —lip(Vpr)
&

Bsti —x|(X)XGgpn

|x — zi
2 “lolwzoc IV (Betzi—x () - (5.19)

By combining (5.18) and (5.19) we get (5.12).
We finally prove (5.14). We take x in the support of || V||, such that the approx-

imate tangent plane 7, M is defined and x is a Lebesgue point for the multiplicity
function 0 (of course we can also assume 6 (x) > 0). We thus have

=

e{'nvn*ssi(x)=/s<|y—x|/e,->d||vn ~e§’0<x>/TMs<|z|>de<z>,

where a; ~ b; means that a; = b; + o(b;) as i — o0o. Then we notice that
IVII(B, (x)) ~ wqel0(x).

By combining the two relations above we obtain
eIV # s, () ~ @y / SEQEDAHI@IVIBs (). (5:20)
Bl

which corresponds to (5.14) in the special case z; = x and V; = V for all i. On the
other hand the general case is easily proved as soon as we check that

A = IVl * &g (zi) = Vil * &e; (zi)

and B; = (IIVII * &g (2i) = IV * &, (x)
satisfy
Ai + B; = 0(e!™") wheni — oo. (5.21)

Indeed we first notice that, since lip(&;) = ei_"_llip(é) and owing to (5.13), we
have up to multiplicative constants

A S " AR UV ILIVED

S;nildi ||V||(Bgi+77i (zi))

7" IV 11 (Bey 42— (X))

gd—n—1 d;. (5.22)

1

A HA A
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Then, we notice that

= ’/(é(ly —x|/ei) —&(ly — zil/en) || V]|

VI(Be, 13—z
< tip(erpr — 2 1V o ()

i

~ Csf_"_l |x — z;] (5.23)

where C = wy lip(§)6(x). Finally, by combining (5.22) and (5.23) we conclude
that for 7 large enough

A+ Bi £ Cel " di + 1x — zi) = o] ™™,
i.e., that (5.21) holds true. This proves (5.14) at once. O

Theorem 5.5. (Convergence II) Ler @ C R" be an open set and let V. = v(M, 0)
be a rectifiable d—varifold in Q with bounded first variation. Let (p, &) satisfy
Hypothesis 1. Let (V;); be a sequence of d—varifolds, for which there exist two
positive, decreasing and infinitesimal sequences (n;)i, (d;)i, such that for any ball
B C Q2 centered in spt | V|, one has

AV, Vi) < dy min (| V[[(B"), | Vil (B™)). (5.24)

For ||V ||—almost any x € Q and for any sequence (z;); tending to x, let (¢;); be a
positive, decreasing and infinitesimal sequence such that

d: . .
it |x2 zil 0 and 1 —— 0. (5.25)
81’ i—00 & i—>00
Then we have
oY N <c di + |x —zi o "
e (@) = Hp e o ()] = ||,0||w2.oo—&2 fori large enough,
1
(5.26)
H) , @) — H(). (5.27)
ot i—00

Proof. We focus on the proof of (5.26). We have

(SV *pg,(Z[) _ BV*PSI-(X)
Vil % &g, (zi) IV * &, (x)
Ce [8Vi % pey (20) = 8V 5 pe, ()|
c, N Vill * &, (zi)
+

|6V*ps,< )|

V.
1 - Y 0] £
08,8 pés, C,

=

1 1
IVill # &6, zi) IV %6, () |

(5.28)
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We study the convergence of the first term in (5.28). Notice that assumption
(5.24) implies (5.13) since

ARLAVIL VD € A (Vi V). (5.29)

We conveniently set u; = ¢; + |x — z;| + 1;. Then owing to Lemma 5.4 (5.14) and
(5.24), for i large enough we obtain

% |6Vz * Pg; (7)) — 8V * ps;(x)|
Cp Vil *fe[(zi)
Cg 1

Cp Vil * & (zi) &}

di + |x — zi| 1Vl (By; ()
—llollwzee 2

II/\

Mol (VI (B () + 1 = 1V (B () )

A

Cyp & IV (B, (x))
8 di +|x — z|

< —llpllwre —5——, (5.30)
C, e

where in the last inequality we have used that

IV (B (x)) Ml
T e +o(l) — 1 531
VI (B ) — ef oW TS (-3

l

for ||V ||-almost every x. It remains to study the second term in (5.28). Applying
Lemma 5.4 (5.11) and (5.14) together with (5.24), (5.29), Theorem 5.3, and (5.31),
we obtain for i large enough

1
SV % pg —
| p’(x)"uv,n*ég,(zl) VI * &, (x)
B CS ’8V>kp6i(x)’ 1 v .
=, VI %E o) Vil w8 Gy | 1Y I G0 = Vil B (i)
< Ce |8V % pe ()| 1

C, IV % & () Vil % B Gy o7 1IN

X (VB () + x = il IV (B, ()

IVII(Be; (x)) V(B (x)) di + |x — zil
< ! log——————
- ‘ "“'( )‘ e I1Vill * &, (zi) IV II(Bg, (x)) £ &i
8I1€ w1 d; + |x — zil
< D2 W
=7 (IHx)| + 1) . ; 0. (5.32)

Thanks to (5.30) and (5.32), for ||V||—almost any x and for i large enough
(possibly depending on x) one has

. di + |x — z;|
HYy @)= HY (0] < —||p||wzoo8—2’
i
8 ,00 d +|x -z
+ “E“W] (IH(x)|+1) i | il

Cg &
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8 di + |x — z;| di + |1x — z|
= ol =—5——+0(———).
p 8[ &

which implies (5.26).
Finally, thanks to Theorem 5.3, for ||V ||-almost any x we find

HYy @) = HEO| < | @) = HY 0]+ [HY g 00—

—>0

which combined with (5.26) gives (5.27) at once. O

Below we prove a third, pointwise convergence result where a better conver-
gence rate shows up when the limit varifold is (locally) a manifold M of class
C? endowed with multiplicity = 1. First we notice that H Vg (x) is an integral
of tangentially projected vectors, while the (classical) mean curvature of M is a
normal vector. This means that even small errors affecting the mass distribution of
the approximating varifolds V; might lead to non-negligible errors in the tangential
components of the approximate mean curvature. A workaround for this is, then,
to project H X E, . (x) onto the normal space at x. In order to properly define the
orthogonal component of the mean curvature of a general varifold V, we recall the
Young measures-type representation of V (see Proposition 3.4):

Vip) = / / o(x, P)dvy(P)d|V[|(x), Yo e CAUQ x Gan).
xeQ JPeGy,

At this point we can introduce the following definition.

Definition 5.6. (orthogonal approximate mean curvature) Let & C R” be an open
set and let V be a d—varifold in Q2. For ||V ||-almost every x an orthogonal approx-
imate mean curvature of V at x is defined as

VoL v
HP»&,S(X) - /};EGd,n I_IPL (pr,g(x)) dvx(P) (533)

We first check a basic approximation property of the orthogonal approximate
mean curvature (Proposition 5.7 below, an immediate consequence of Theorem 5.3
and of a classical result due to Brakke). Then, in Theorem 5.8 we prove a better con-
vergence rate under stronger regularity assumptions on V and sufficient accuracy
in the approximation of V by V;.

Proposition 5.7. Let @ C R" be an open set and let V.= v(M, 0) be an integral
d—varifold with bounded first variation 8V = —H ||V || 48 Vs. Then, for H—almost
any x € M N Q we have

H, g () e H(x). (5.34)
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Proof. As V is integral, we know from a result of BRAKKE [7] that H (x) L TxM
for H?—almost every x € M N Q. Thanks to Theorem 5.3, for H%-a.e.x € M NQ
we conclude that

YL = H)| = Mgy (B 00) = Ty He)

< ‘H/Y’E’g(x) — H(x)’ — 0

The orthogonal approximate mean curvature introduced in Definition 5.6 is
very sensitive to the pointwise estimate of the tangent space T M at x. Therefore,
it is not possible to use it for generalizing Theorem 5.5, unless we know that vfc
is close enough to vy = ér, p. Indeed, under this stronger assumption (see (5.35)
and (5.36) below) we recover the following pointwise convergence result with a
substantially improved convergence rate.

Theorem 5.8. (Convergence III) Let @ C R" be an open set, M C 2 be a d—
dimensional submanifold of class C* without boundary, and let V.= v(M, 1) be
the rectifiable d—varifold in Q2 associated with M, with multiplicity 1. Let us extend
TyM toa C! map i";l\/l defined in a tubular neighbourhood of M. Let (V;); be a
sequence of d—varifolds in Q. Let (p, §) satisfies Hypothesis 1. Let x € M and let
(zi)i C Qbeasequence tending to x and such that z; € spt || V;||. Assume that there
exist positive, decreasing and infinitesimal sequences (n;);, (d1,i)i, (d2,i)i, (&)i,
such that for any ball B C 2 centered in spt || V|| and contained in a neighbourhood
of x, one has

A AVILIViID £ dyg min (|VIIB™), [Vill(B™)) (5.35)
and, recalling the decomposition V; = ||V;|| ® v)’;,
sup / ITyM — S| dvi(S) S doi. (5.36)
(YEBe;-41x—zy | (ONSPL Vi [} / S€G

Then, there exists C > 0 such that

Vi, L V.1 dii+dai+ Ix =zl
Yk @ — HYL (o] < 2 - iy (5.37)
Moreover, if we also assume that dy; +dr; + n;i + |x — zi| = o(g;) asi — oo,

then
Vi, L
Hy e @) ——> H).

Proof. Let us set

1 Y —Z
= — M1 oMoVp (25 [dV —d|V; ]
%= /yesz ot TP ( o ) IVIG) = dlvVill(y)
! Y —Z
bi = — / [— 1 o [~V <—> d|Vill(»
L veBg @) M LM &i l
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’

_/ / Mp. o sV (y_Zi) dvi, (P)dVi(y. )
(. 8)€Be; (20)xGan  PEG 4 &i

1 y—x
ci = — HNJ_ o H 737 VI
M &

&i JyeQ

y_Zi>'d||V||(y>.

—HNL o My Vi (

i
By definition of orthogonal approximate mean curvature, we have

Ce ait+bitc
e 8?I|V'|| * &g, (2i)
( pie®
8 vl * & (27)

V,L
Hﬂf,fi () — P E &

‘IIVII * e, (X) = Vil * &e; (zi) |-
(5.38)

Let ¢; : R" — R” be the map defined as

y—z
wi(y) = HNLOHNV/H( . l)-

1

Then, ¢; is Lipschitz and for y, w € R", if y,w € R" \ B, (z;) then ¢;(y) =
@i (w) = 0. Thus, assuming that w € By, (z;), one has

y—Zi
|<pz-<y)—<pl-(w)|g‘nmw(nm—nr M)Vm( . )'

y—2zi w— 7
# s o (s =) 90 () = ()]

0 ly —wl

S NTyM — Tu M1V o1 lloo D

< o T -zl

= lip(T.M) 10" llooly — wl + 1ip(T. M) ———lip(0")|y — w|

l
< lip(TM) [l pllwzeely — wl.
where the first inequality follows from the identity HNL o I[l7~; =0, and the
i

last one since |w — z;| < &;. Moreover ¢; is umformly bounded by ||0'||c and
supported in By, x| (x), hence by (5.35) we obtain

ai

1
o /¢i(y)d||vi||(}’)—/fpi()’)d“V”()’)‘

1

A

1 L~
— (1 UPTM 5, 41 ) Iolhwee A VLIV
L i <i

[IA

1 e
— (1P M5, 1, ) Iollweedi g IV Betieg i (). (5:39)

1
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Then, for P, S € G4, we have

G TR —~ 1
e o= o < 7 7 |+ |7 — - s
< v 5| |7 - o]

hence we obtain

1 — —
bi < —IIpIle,oo/ / (|om =)+ | 7w - p|)
€ yele‘ (zi) (PaS)GGd,nXGd,n
dvl, (P)dvy (S) dIIV;1I(y)
da i
< ||p||w1,oo7’||v,-||<Be,.+.xfz,\(x>), (5.40)

also owing to (5.36).
By similar computations as those leading to (5.39), the map ¢; : R" — R”
defined by

y—z2
Yi(2) ZUmioanpl( o >

1

satisfies lip(1;) < lip(m) [l o llw?2.0c . Therefore,

I, —
¢i = gllp(T»MlBgiﬂx,m(x))||p||wz.oo Ix = zi IV (Berx—z; (X)) (5.41)
1

In conclusion, by plugging (5.39), (5.40) and (5.41) into (5.38), and owing to
Lemma 5.4 (5.11)-(5.14) and Proposition 5.7, one has for i large enough that

L
H/K%ti () = Hpv,éyez (zi)
< Ce 2| VII(Bej jx—zi 140 (X)) dii +dai + |x — zi

—C,  MVill x&, (zi) &
(H@I+ 1) diillVI(Betix—zi 140 (X)) + 1x = zi I VII(Be;4jx—z1 (X))
e\ Vill * &, (zi) &
_o (dl,i +doi+|x _Zi|) ’
&i

which concludes the proof. 0O

6. Natural Kernel Pairs

In previous sections we have considered generic pairs (p, &) of kernel profiles,
as introduced in Section 2 and further specified in Hypothesis 1. One might ask
whether or not some special choice of kernel pairs could lead to better convergence
rates than those proved in Theorems 5.5 and 5.8. Although the pair (p, p) seems
quite natural, as it allows for instance some algebraic simplifications in the formula
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for the e-mean curvature for a point cloud varifold (see also [7], where p = & =
heat kernel profile), from the point of view of numerical convergence rates there is a
better choice. We thus propose a different criterion for selecting the pair (p, &), that
is related to what we define as the natural kernel pair property, or shortly (NKP),
see Definition 6.1. A heuristic justification of the (NKP) property is provided by
the analytic computations presented below.

Definition 6.1. (Natural Kernel Pair) We say that (p, &) is a natural kernel pair, or
equivalently that it satisfies the (NKP) property, if it satisfies Hypothesis 1 and

§(s) = —

/
P n(s) forall s € (0, 1). ©.1)
Even though it is not clear whether the (NKP) property may produce improved
convergence rates in the previously mentioned theorems, we shall see in Section 9
its experimental validation. In particular, all the tests that we have performed showed
a significantly augmented convergence and robustness, even in presence of noise.

We now sketch the argument leading to Definition 6.1. Given 1 < d < n and
0, & as in Hypothesis 1 we set

fol p(t)t41ds e

S Jhe@e-tar Ce

We fix a d—dimensional submanifold M C R” of class C3 and define the associated
Varifold V = v(M, 1). Then we perform a Taylor expansion of the difference

(x) H(x) atapointx € M (here H (x) denotes the classical mean curvature
of M at x). By focusing on the expression of the constant term of this expansion,
which must be 0 because of Theorem 5.3, we notice that such an expression (see
(6.11)) is proportional to

1
/0 (sp'(s) +d Cp e (s)) s 1 ds.

On one hand, this integral is O for any kernel pair (p, §), as shown through an
integration by parts coupled with the definition of the constant C,, ¢. On the other
hand we might want to strengthen the nullity of the integral by additionally requiring
the nullity of the integrand. This precisely amounts to require (6.1) and thus leads
to the definition of the (NKP) property.

We now give more details on the argument sketched above.

Let M be as above and assume that 0 € M and that ToM =~ {x = (y,0) € R" :
y=(1,...,yq4)}. Of course this is always the case up to an isometry. Then M is
locally the graph of a smooth function u : A — R"~¢, where A is a neighbourhood
of 0 € RY. Clearly our assumptions imply that #(0) = 0 and Vu(0) = 0, hence

1
u(y) = <v2u(0>y y) Folly®), Vu(y) = V2u(0)y + o(|y). (6.2)

Forr > 0 small enough we consider the sphere S, = d B, and set M, = M NS,. For
any x € M, welet y = y(x) € R? be the vector of the first d coordinates of x. We
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then have x = (y, u(y)) and |y|2 + |u(y)|2 |x|2 Note that by (6.2) we also have

ly| = |x|4+o0(]x|?).Let {v1, ..., v,_q} be the standard basis of the orthogonal space
(ToM)* C R", sothatwe have u(y) = Z?;f uj(y)v;. Wheneverx = (y, u(y)) €
M is close enough to the origin, there exists an orthogonal basis {0y, ..., Uy—gq} of

TXJ-M , such that
0j = —Vu;j(y) +vj+ 0y,

Consequently, by noting that |x| = O(]y|), the projection of x onto the tangent
space Ty M satisfies the following relation:

" Vi (y) + v,
M B J J 3
=x—) (x,=Vuj(y)+vj) —=—F—5 + 0yl
Z_: ! T+ [ Vu ()]
«— —Vu;(y) +vj 3
= v+ w0+ (Va0 = w0 T O,
j=1 v
It is then easy to check that
n—d
M=y 4+ (Du;(0)y. y)v; + 0(yP). (6.3)
j=1

We introduce some extra notation. Given r > 0 sufficiently small, we denote
by W, the projection of M, onto ToM, that is,

={y: P+l =r?. (6.4)

We will now prove that W, is a small deformation of a d-sphere of radius r, with
explicit estimates as r — 0. We thus set ¥, = {z € R? : |z| = r} and define
fr X = W, as f(2) = (1 + ¢-(2))z, such that the implicit relation

n—d ,,2 1+ -
A+e@)—1+Y. M =0 (6.5)

j=1

is satisfied. Thanks to the implicit function theorem, (6.5) defines ¢, (z) and thus
fr(2) when r > 0 is small enough. Moreover, by noticing that |u(y)| = 0(r2)
thanks to (6.4), one infers from (6.5) that

0 (2) = 0(r?). (6.6)

Now we estimate the difference H pv’s, .(0) — H(0). We first recall that H(0) =
Y~ Auj(0) v;. Letting V = v(M, 1) we have
1 8V % p(0)
0-HO) = ———— -+t HO)
Hyse Cpe IV %&:(0)
_ 8V xpe(0) + Cpel VI %£:(0)H(0)

CoellVl &0
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Juu (577710 (12050 + Cp e 2811 /) H(O)) dH (o)
- Co eV #£:(0)

_ A
e"CollVI % &:(0)

Let us apply the coarea formula and rewrite the term A above as follows:

& /
A= / / <@x’” + c,,,gH(O)rs(r/g)> M=t (x) dr.
o Jw,
We then apply the area formula using the map

x =g @) = (@, uf,@)), fr()=z2+00?

and obtain

é "(r/e
a= [ (%W +cp,gH(0>re<r/e>) M7 g (@) dHO @)
0 r
(6.7)
where Jg, denotes the tangential Jacobian of g, (here we are assuming d = 2,
otherwise if d = 1 then Jg, = 1 and the subsequent computations are even
simpler). It is now convenient to identify z with the point of R” whose first d

coordinates are, respectively, zi, ..., zq. Now we write ¢, instead of ¢,(z) for
more brevity, so that

gr(@)=+e)z+ Y uj((1+¢)2)v;.
J

Now we fix z € £, € R? and choose a unit tangent vector v € T, %,. By differen-
tiating g, at z along the direction v, and taking into account (6.6), we get

0v8r(2) = der(D)z + (1 + @ )v + Z[avfpr az”j((l +¢r)z2)
J

+ (1 + @) oyu; ((1 + @r)2)]v;

=1+ 00V + Y 0. (6.8)
j

Let us fix an orthonormal basis {vy, ..., vg—1} for T, X,, then by (6.8) we find

Jgr(2) = 100, 8r@ A .. Adyy 18- = V14 00D =14 00,  (6.9)
Moreover by (6.3) combined with (6.6) we obtain

n—d
M= +e)z+ (1 +9)> )Y (D*uj0)z,2) vj + O
j=1
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n—d
=2+ Y (D’u;j(0)z.2)v; + 0(?),
j=1

hence by exploiting the fact that v; L z we have [x¥| = \/r2 + 0(*) = r(1 +
0(r?)). Plugging this last estimate and (6.9) into (6.7) we find

n—d
& /( )
A= /o /Zr e :8/8 (Z + ]X_;(Dzuj(O)z, Z)vj + 0(r3)) +C,eH(0)E(r/¢)

(1 + O(r2)> dH4=1 () dr. (6.10)

Now let us focus on the term in the expansion of the right-hand side of (6.10),
whose expression contains neither O (%) nor O (r3):

/ / ( (r/g) Z uj )z, z VJ) +C/JSH(0)§(V/8)) de_l(z) dr
= /‘E/ (p(rrg/s) Z(D2uj(0)z,z)vj +Cp,§H(0)E(r/s)) de—l(Z) dr
0o Jx, =

/ (p(r/g)Z/ 1;(0)z. 2) dHO1(2) vj + Cp e H(O) £(r/e)deogr™ )dr.

Now, owing to the symmetry of X,, we can assume up to a rotation that the
canonical basis of TyM ~ R coincides with the spectral basis for D?u ;j(0), so that
(D%u;(0)z,z) = ZZ:l A z2, where A] denotes the h-th eigenvalue of D%u (0).
We thus find

£ n—d d
A/:/ ,O(V/S)ZZ)J/ z, de_l(Z)Vj+Cp,§H(0)§(r/e)da)drd_1) ar
0

j=1h=1

j=1h=1

=/8 p(’/s) ZZAhwdr u,-+cp,;H(0)s(r/s)dwdrd‘) dr
0

£ / n—d
- / ’ (rre/S) Z Auj(0)wqr™! vj + Cp e H(0) £ (r/e)dwgr™" | dr
0 j=1

e (rp’(r/a)
&

= wgH(0) / +dCps S(r/s)) ri=ldr
0

1
:wdgdH(O)/ (sp'(s) +d Cpg £(5)) 597" ds. (6.11)
0

We can now observe the following two facts about (6.11). First, A" = 0 for any
pair of kernels p, & (this can be seen through an integration by parts coupled with
the definition of the constant C,, ¢). Second, if we require the additional nullity of
the integrand, we come to the differential relation

sp/(s) = —dC, ££(s). (6.12)
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At this point we must check whether (6.12) is compatible with the definition of Cp .
jol p(s)s?1ds _
]01 E(s)sd—1ds -
C,.¢. Indeed by integrating by parts, by using the properties of the kernels, and
owing to (6.12), we obtain

To this aim we only have to show that if (p, &) satisfy (6.12), then

fol p(s)s? 1 ds _ —fol 0/ (s)s4 ds _dCp fol £(s)s?9 1 ds
Ves)ysd-lds  d [Pe(s)si—1ds  d [} E(s)sd—1ds
fO fO fO

as wanted. On the other hand, if we recall that the profiles p and & must also satisfy

1 1
/ ,o(s)s"_lds=/ E(s)s"Tds =1,
0 0

we obtain the extra condition that, together with (6.12), uniquely determines the
value of C), ¢. Indeed, assuming (6.12) and integrating by parts we find

p.é>

1 1 1
dCp,e :de’g/O E(s)s" ds = _/0 o' (s)s" ds:n/0 o(s)s" 'ds =n,

whence C, ¢ = % and thus (6.12) is equivalent to (6.1).

7. Discrete Approximations of a Varifold

In this section, we prove that the family of discrete volumetric varifolds and the
family of point cloud varifolds approximate well the space of rectifiable varifolds
in the sense of weak— convergence, or Al metric. Moreover, we give a way of
quantifying this approximation in terms of the mesh size and the mean oscillation
of tangent planes. We start with a technical lemma involving a general d—varifold.

Lemma 7.1. Let Q@ C R" be an open set and V be a d—varifold in Q2. Let (IC;)ieN
be a sequence of meshes of 2, and set

8; = sup diam(K) Vi e N.
Kek;

Then, there exists a sequence of discrete (point cloud or volumetric) varifolds (V;);
such that for any open set U C €2,

EGd.rz

sy sivie + Y i | 1P = SIdV(s, S).
ke | (U%NK)x Gy p
(7.1
Proof. We define V; as either the volumetric varifold

M o
Kek;
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or the point cloud varifold
‘/i = Z ml[((sle ®5p;'<,
KeK;
with
mh =|VI(K), x% €K and P;;eargminpeGd_n/K . |P — S|l dV(x, S).
XGUd.n

Let us now explain the proof for the case of volumetric varifolds, as it is completely
analogous in the case of point cloud varifolds. For any open set U C €2 and
¢ € Lipy(R" x G4,,) withsptyo C U x Gg,,, We set

Ai(¢)=/ §0dVi_/ pdVv
QXG{L" QXGd,n

and obtain

- |IVII(K
OIS /Imwa,P;()" B 40— [ e mraven

K
Kek; 1K Kok, ) KOU)XGa

=Y ][ / e, Po) = 03, 1| aV (3, TY AL (1)
Kok, Jrek S0 1)ekxGan

knu#9 S(k=yi+| P =T1)

<o Y o+ Y [ r-rfavoon
KeK; KeK; KxGan
KNU A KNU A

Ssviwh+ Y min [ IP =TI v, 1),

Kek: PeGan J(UiNK)X Gy

which concludes the proof up to taking the supremum of A;(p) over ¢. O

In Theorem 7.4 below we show that rectifiable varifolds can be approximated by
discrete varifolds. Moreover we get explicit convergence rates under the following
regularity assumption.

Definition 7.2. Let S be a d-rectifiable set, 6 be a positive Borel function on S, and
B < (0, 1]. We say that the rectifiable d—varifold V = v(S, 6) is piecewise C1-P if
there exist R > 0, C = 1 and aclosed set ¥ C S such that the following properties
hold:

e (Ahlfors-regularity of §) forallx € Sand0 <r < R
c ' < HUS N B(x, 1) S Cr (1.2)
e (Ahlfors-regularity of ¥) forallz € ¥ and0 <r < R

c ' <HIYE N B, ) S il (7.3)
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e (CUP regularity of S\ X) the function
©(r) = sup{||TyS — T; S| : y,z€ SN B(x,r), x € § with dist(x, £) > Cr}

satisfies
tr)<crf Yo<r <R; (7.4)

e forallO0 <r <e < Randallze X

C Y HIYENB(z, &) £ HUSN[Z],NB(z,¢) < CrHIY(ENB(z, ¢)).
(7.5)
o for H%-almost all x € S we have

c'<owx) Zc. (7.6)

Remark 7.3. We note that varifolds of class piecewise C!*# form a natural col-
lection of varifolds, which for instance the so-called (M, &, §)-minimal sets of
dimension 1 and 2 in R? in the sense of Almgren belong to. In other words the
rectifiable varifold V = v(S, 1) is of class piecewise C!# as a consequence of
Taylor’s regularity theory [32] (see also [12,18,23]). Of course, the family of recti-
fiable varifolds in R? that are piecewise C!*# is much larger than (M, ¢, §)-minimal
sets.

In the following theorem we prove an approximation result for rectifiable d—
varifolds, that becomes quantitative as soon as the varifolds are assumed to be
piecewise C 1.8 in the sense of Definition 7.2. In order to avoid a heavier, localized
form of Definition 7.2 we set 2 = R”.

Theorem 7.4. Let (IC;);eN be a sequence of meshes of R", set §; = supg exc, diam(K)

foralli € N and assume that §; — 0asi — oo. Let V. = v(M, 0) be a rectifiable

d—varifold in R" with ||V ||(R") < 4o00. Then there exists a sequence of discrete

(volumetric or point cloud) varifolds (V;); with the following properties:

Q) ANV, V) > 0asi — oo;

(i) If V is piecewise CV-P in the sense of Definition 7.2 then there exist constants
C, R > 0 such that for all balls B with radius rp € (0, R) centered on the
support of ||V || one has

S; )
Aglvi,vy<c (8? + m) IVII(BC) (7.7)

and
L1 g, S n
AV(VL, V) =C LS +7 [VIIRT). (7.8)
Proof. The proof is split into some steps.

Step 1. We show that for all i there exists A’ : R” — L(R"; R") constant in each
cell K € C;, such that

[ ao-n]aven= |
R"xGy,, yeR®

A = Ty | dIVIG) —— 0.
(7.9)
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Indeed, letus fix ¢ > 0. Since x +— I,y € L'(R", L(R™; R"), | V), there exists
a Lipschitz map A : R” — L(R”"; R") such that

/ [AG) - Ty | dIVIGY) <.
yeR"
Foralli and K € K;, define for x € K,
Al(x) = Al = %/ AW AV,
K7 vk Jx
Then

/yeRn [470) = M | @iV

<)

yeR"

<o+ Y |
yek

Kek;

1
= e, Aw) — AW AV d|V
+ 3 i [ L 1A = A1 dvimarvie)

< e+ 8lip(A)||VII(R™) < 2¢ for i large enough,

A0 = am)| avie) + [ A0 =t anvio)
yeR?

1
IVIICK)

/K AQw) d[[ V() — A(y) ” diVIi(y)

which proves (7.9).
Step 2. Here we make the result of Step 1 more precise, i.e., for all i, we prove that
there exists 7' : R" — Gy, constant in each cell K € C; such that
T () = TyM| dIVIe) —— o.
1——+00

[ Jre-r|even= [
R"xGy.p yeR"
(7.10)

Indeed, let ¢ > 0 and, thanks to Step 1, take i large enough and Al R
L(R"™; R™) as in (7.9), such that

> [ [ - ] avio) <e.
KeK; K
As a consequence we find

/)(Ai(y>—ng,M\) dIVI) =ef with Y el <e.
K Kek;

In particular, for all K € K;, there exists yxg € K such that

. gi
A (k) = Ty, | € K
| M= Vi
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Define 7% : R" — Gg,, by T'(y) = Ty M for K € K; and y € K, hence T’ is
constant in each cell K and

/R"dev,, HTi(y) - TH dv(y,T) = Z /K HHT},KM — HT-"MH dIVI(y)

<> / 1Tz, 1 — A(y) IV

ek A om0

+[ oo -nf ave.n
R*xGy

< ek AV +e <2 7.11
_K%:c,./K”V”(K) IVI) + & < 26, (7.11)

which implies (7.10).
Step 3: proof of (i). We preliminarily show that

min / |P—=T| dV(y,T) — O. (7.12)
Kek; PeGyn KxGyn i—00

Indeed, thanks to Step 2, let Ti:R" — G 4., be such that (7.10) holds. We have

min IP—T| dV(y,T) < / ’Ti _ TH dv(y, T)
PEGdn/Kden Z KxGgp K

=/ ”Tl'(y) _ TH dv(y, T)
R*xGyn

—0,
i—+00

which proves (7.12). Then (i) follows by combining (7.12) with Lemma 7.1.

Step 4. Assume that V is piecewise C1# and let R, C > 0 be as in Definition 7.2.
We shall now prove that for any ball B C R”" centered on the support of ||V ||
with radius rg < R/2 and for any infinitesimal sequence n; = C§;, assuming
also i large enough so that §; < (R — 2rp)/(C + 1), there exists a decomposition
Ki = leeg u ICfmg such that

ITeS — TSI S Clx —yl, YK eK® Vx,yeKNS (7.13)

and
VI (UK nB) < € iVIB™, (7.14)

Define ICSmg as the set of K € K; for which E(C’S‘) N K is non-empty, and set
K¢ = K \lC”"g It is immediate to check that (7.13) holds, thanks to (7.4). Let
now B be a fixed ball of radius 0 < rp < R/2 centered at some point x € S. Take
K € ICfi"g and assume without loss of generality that K N B is not empty, hence
there exists p € K N B and z € X such that |p — z| < (C + 1)§;. Consequently,
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B C B(z,2rg + (C + 1)§;). Then K N B C X(TV% N B(z,2rg + (C + 1)§;)
and thus, assuming in addition that n; < R — rp for i large enough, we obtain

vif U k0B | ivi(s©% nBe 2+ +16)
Kek)™

< CHd(S N €% A B(z, 2rp + (C + 1)5,-))

< C3(C + 1)8; MO (2 N B(z, 2rg + (C + 1)5,-)),
(7.15)

thanks to (7.5) and (7.6). On the other hand, since C8; < n; < R — rp one has by
(7.2), (7.3) and (7.6) that
IVIBT) = C ' HAS N BT 2 C2(rg +n)? 2 C2(rp + 1) (rg + €87 !

> 1 (rgp +n;)

T d-lcic+1) 0§

> 1 (rg +m;)

T2d-1c3(c+ 1) G

1 (rg +1n;)
1% KNB
2©-1C5(C+1) & vy U

Ke’CYIng

(C+ 1)8; 2rp + (C + 15?1

C(C+ D§HIN(Z N Bz 2rp + (C + 1§))

which by (7.15) gives (7.14) with €’ = 2471C5(C + 1.
Step 5. Define Ty, = Ty, M for each cell K € K; and for some yx € K. Set

A= min / IP =TI dV(y, T).
Kek: PeGan J(BNK)XGy

Then for every ball B of radius » > 0, and choosing n; = C4;, we have

A= Z/ |7y M — T,M | dIV ()
KeK;
= > / | Ty M — TyM || dI V()
KeK[*
+ ) ||TyKM—TyM|| dIvVIo)
Ke K::mg
<y / Clyx —yIPalvio) +21vi (K™ n )
teg J KNB
Kek;
<csl i +21vi (Jk™ne) < c (af o n.) IVIB)
l

i .
<c (553 + m) V(B (7.16)
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(the constant C appearing in the various inequalities of (7.16) may change from line
to line). Then, the local estimate (7.7) is a consequence of Lemma 7.1 combined
with (7.16).

Step 6. For the proof of the global estimate (7.8) we set r = R/2 and apply Besi-
covitch Covering Theorem to the family of balls { B, (x)}enm, so that we globally
obtain a subcovering { By }4<; With overlapping bounded by a dimensional constant
¢n. We notice that 7 is necessarily a finite set of indices, by the Ahlfors regularity of
M. Wenow set U = R"\ M and associate to the family { By }oc; U{U} a partition of
unity {4 }aer U {¥y} of class C, so that by finiteness of [ there exists a constant
L = 1 with the property thatlip(vy) < L andlip(¥) < L foralla € I. Moreover,
the fact that the support of vy is disjoint from the closure of M implies that there
exists ig depending only on M, such that the support of || V;|| is disjoint from that of
Yy for every i = ip. Then we fix a generic test function ¢ € CB(R” x Gg.n)
and define ¢y (x, S) = @, S)Yy(x) and py(x, S) = e(x, S)Yy(x), so that
0(x,8) =@ux,S)+Y 4 valx, S). By the fact that lip(¢q) < lip(¢) + lip(¥)
and lip(gy) < lip(e) + lip(¥y), by the Ahlfors regularity of M, by (7.7), and for
i 2 ip, we deduce that

Vi) = V@) £ Vilga) = Vga) S A+ L)Y AR (Vi V)

ael ael
3; .
<Sca+L0)y (af + —’) IVIBE™)
ael r
8‘
<CU+1L) (8? - 7’) > IVIB)
ael

< CU+1L)g, (af + 7’) VIR £ ¢ (85 + ;j) VIR
where, as before, the constant C appearing in the above inequalities can change
from one step to the other. This concludes the proof of (7.8) and thus of the
theorem. 0O

8. A Varifold Interpretation of the Cotangent Formula

One of the classical tools of discrete differential geometry is the so-called
Cotangent Formula (8.1) which provides a notion of mean curvature for a triangu-
lated polyhedral surface. The Cotangent Formula has been introduced in [29] as the
gradient of a discrete Dirichlet energy defined on triangulations. Loosely speaking
it consists in the definition of a vector mean curvature functional H by its action
on nodal functions (see [34]). In Proposition 8.1 we show that the formula can be
interpreted as the action of the first variation of the associated polyhedral varifold
V on any Lipschitz extension of a given nodal function ¢.

Let 7 = (F,&,V) be a triangulation in R3, where ¥V C R3 is the set of
vertices, £ C V x Vs the set of edges and F is the set of triangle faces (we refer to
triangulations in the sense of polyhedral surfaces homeomorphic to a 2d—manifold,
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as defined for instance in [34]). We denote by M7 = | rer F the triangulated
surface. For v € V, the nodal function ¢, associated with 7 is defined on M
by

wy(v) =1,
oy(w) =0 forw €V, w # v,
@y is affine on each face F' € F.

Letx € Vbeavertex, we denote by V(x) the set of vertices conected to x by an edge
and F(x) the set of faces containing x. For each v € V(x), & = axy and B = Byy
denote the angles opposite to the edge (xv). See Fig. 1. With these notations, His
defined by the Cotangent Formula

o~

1
<H,pe>== Y (cotayy +cot fry) (v — x). (8.1)
veV(x)

We recall that we can associate with 7 the 2—varifold

Vr = Ml ®8p,.
FeF

where Pp is the plane containing the face F (see Definition 3.15). We also
recall that given a Lipschitz function g defined on R”, whose set of points
of non-differentiability has zero ||V| measure, we can compute §V(g) :=
(8V(ger)....,8V(gey)) as stated in Remark 3.10.

Proposition 8.1. Let x € V be a vertex and let ¢y : R3 — R, be a Lipschitz
extension of ¢x. Then,

N ~ 1
VTG == <H g>=—5 ) (cotaw+cotfu)w—x).  (82)
veV(x)

|v—z||w—x| cos &

Fig. 1. Derivation of the Cotangent Formula using the varifold formalism
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Proof. For each face F € F, ¢y p is affine, so that VPF @y is constant in F.
Therefore,

SVr(gn) = / Vg dV(y, $) =) / VI G () dH2 ()
FeF

Z/ “lorox H2<y) ZHZ(F)——| (8.3)

FeFe) he lyr —x|

Letus consider a face F' € F(x) whose vertices (# x) are denoted w, v as in Fig. 1.
Then

—1 yr— 1 1 yr—x |W— vl
HA(F )—————h lw —v]-— = (F — x).
helvr—x| 2" helyr —xl  2hp "
(8.4)
As
w — x| cosa v — x| cos
yF—X=;(v—x)+M(w—x),
lw —v| lw —v|
we infer from (8.3) and (8.4) that
-1 YF — 1
(F)—— — (Jw — x|cosa(v —x) 4+ |[v — x| cosy) (w — x)

hp lyr —x|  2hp

1 /|w—x|cosa v — x| cosy
(20 -+ —— Y w—x
lw — x| sina v — x| sin y

= % (cota(v —x) +coty(w —x)).

and

R 1
OVT(@0) = =5 ) (cotatry +cot fry) (v — ). (8.5)
veV(x)

Remark 8.2. It is not difficult to check that

~ 1
I1Vril(ex) = ¢d||V7||=§ Z VT I(F)
FeF(x)

which allows us to define the discrete mean curvature at each vertex x of the
triangulation as

SVI(@) 3 Luevio (@0t ary + cot fry) (v — x)
Vrl@ 2 > e Area(F)

HVT(X) = -
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9. Numerical Simulations for 2D and 3D Point Clouds

In this section we provide numerical computations of the approximate mean
curvature of various 2D and 3D point clouds. In particular, we illustrate numeri-
cally its dependence on the regularization kernel, the regularization parameter &,
and the sampling resolution. Our purpose is not a thorough comparison with the
many numerical approaches for computing the mean curvature of point clouds,
triangulated meshes, or digital objects, this will be done in a subsequent paper for
obvious length reasons.

Given a point cloud varifold Vy = Zﬁvz 1 M jéy; ®Sp;, its orthogonal approx-
imate mean curvature is given by

Vn.L
HN,

1%
ke (Xjo) /PeGd HPLHP’Z’S(ij)dv%(P)

N o 1xi—xl Ip; (xj—xjy)
Ce Zj:lﬂ{lxj*xjoka}m]p( ¢ )HPjt< ETR=TN

N |xi—xj|
Cp Zj:l ]l{lxj_xjol<g}mj8€ ( J . o )

9.1)

We focus on the orthogonal approximate mean curvature, for it is at a given reso-
lution more robust with respect to inhomogeneous local distribution of points than
the approximate mean curvature, as it will be illustrated in Section 9.1.4, and as it
can even be seen directly on simple examples. Take indeed a sampling {x ; }iv of the
planar line segment [—1, 1] x {0} with more points having a negative first coordi-
nate, and let P; = P = {y = 0}. Assume that there exists jo such thatx, = (0, 0).

Then the sum of all vectors w
is zero, which is consistent with theo(mean) curvature of the continuous segment at
the origin.

The formula above involves densities m ;, the computation of which for a given
point cloud being a question we have not focused on up to now, despite it is an
important issue. Nevertheless, if we assume that m; = m(1 + o(1)) whenever x;
belongs to the ball B, and for some constant m possibly depending on B, then we
can cancel m ; from formula (9.1) up to a small error. This justifies the following

formula approximating the value of H X ’gj‘ (xjy):

N s 1xj=x]| Ip; (xj—xjy)

N [xj—x 51
2 j=1 Wiyl <e) €6 ( = )

is nonzero, whereas its projection onto P+

H S

9.2)

The advantages of Formula (9.2) are numerous: it is very easy to compute, it
does not require a prior approximation of local length or area, it does not depend
on any orientation of the point cloud (because the formula is grounded on varifolds
which have no orientation) and as we shall see right now, it behaves well from a
numerical perspective.
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Fig. 2. 2D parametric test shapes
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In the next subsection, we study how this formula behaves on 2D point cloud
varifolds built from parametric curves, for different choices of radial kernels and
various sampling resolutions. The last subsection is devoted to 3D point clouds.

9.1. Orthogonal Approximate Mean Curvature of Sampled Parametric 2D Curves

Let us start with some comments concerning the implementation. While the
algorithmic complexity is linear in the number of points, a point cloud in 3D
typically contains a huge number of points, so we choose to handle the imple-
mentation in C++ for both 2D and 3D cases. We also use nanoflann [27] to build
a KD-tree structure which can easily manage neighbor search for defining local
neighborhoods, and perform local regression by means of eigen [19]. Point cloud
visualization can be easily done with Matlab, CloudCompare [14] or Meshlab [24].

9.1.1. Test Shapes, Sample Point Cloud Varifolds, and Kernel Profiles We
test the numerical behavior of formula (9.2) for different choices of 2D parametric
shapes, kernel profiles p, &, number N of points in the cloud, and values of the
parameter ¢ used to define the kernels p. and &;. We denote as Npejgh the average
number of points in a ball of radius e centered at a point of the cloud. The 2D
parametric test shapes are (see Fig. 2):

(a) A circle of radius 0.5 parametrized as (x(¢), y(¢)) = 0.5(cos(¢), sin(¢)), t €
[0, 27];

(b) An ellipse parametrized by x(t) = a cos(t), y(t) = b sin(t), t € (0, 2w) with
a=1and b =0.5;

(c) A “flower” parametrized by r(6) = 0.5(1 + 0.5sin(66 + %));

(d) An “eight” parametrized by x () = 0.5 sin(z) (cost + 1), y(¢) = 0.5 sin(z)
(cost —1),t € (0,2m).

We test formula (9.2) with some profiles p, & defined on [0, 1]:

the “tent” kernel pair (0sens, Prent), With pren: (r) = (1 —r);
e the “natural tent” pair (Osens» Erent)> With Erens (r) = —%r,o;em(r) =r;

o the “exp” kernel pair (Oexp, Pexp), With pexp (r) = exp (_1__lrz>§
e the “natural exp” pair (Pexp ";:exp)a with é:exp(r) = —%rp;xp(r).

Notice that peyp, é.xp satisfy Hypothesis 1; on the contrary, ;e is only in w0
and &, is not even continuous.



A Varifold Approach to Surface Approximation 681

399998 138.903 o7 138.903

04
.
o
N

05 0000241203 0.4 0.000241203
08 -06 04 02 0 02 04 06 08 06 04 02 0 02 04 06 05 04 03 02

(a) (b) (0)

Fig. 3. Orthogonal approximate curvature vectors along the discretized ellipse and flower.
Arrows indicate the curvature vectors and colors indicate their norms (color figure online)

To define point clouds from samples of these parametric test shapes, we use
two approaches:

e either we compute the exact tangent line T(t) € Gj at the N points

{0,h,2h, ..., (N — 1)h} for h = 57, and we set
N
VN = ij5<x<jh),y(jh>> ® 87 (jn) » 9.3)
j=1

e or we compute by linear regression a tangent line 797 € G 3 at each sample
point and we set

Vv = D m i,y ® STam - (9.4)
j=1

For all shapes under study, the exact vector curvature H (¢) can be computed explic-
itly and evaluated at ji, j = 0... N—1.To quantify the accuracy of approximation
(9.2), we use the following relative average error

[H)Y (xj) — H(jh)|

1
Erl = — , 9.5)
N ; 1 H || oo

where x; = (x(jh), y(jh)).

9.1.2. Numerical Illustration of Orthogonal Approximate Mean Curvature
We first test formula (9.2) on the ellipse and on the flower with exact normals.
We represent in Fig. 3 the curvature vectors computed for N = 10° points and
& = 0.001 with the natural kernel pair (0cxp, &exp). Arrows indicate the vectors
and colors indicate their norms. Remark that the sample points are obtained from a
uniform sampling in parameter space (polar angle), therefore sample points are not
regularly spaced on the ellipse or the flower. Still, these spatial variations are neg-
ligible and (9.2) provides a good approximation of the continuous mean curvature,
as we already know from Theorem 5.8, and as it will be illustrated numerically in
the next section.
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9.1.3. Convergence Rate In this section, we compute and represent the evo-
lution with respect to the number of points N of the relative average error

Erel = v Z =1 WV(X)—”HM for the orthogonal approximate mean curvature
vector (9.2) of point cloud varifolds sampled from the parametric flower. We com-
pare the convergence rate of this error for the above choices of kernels pairs; more
specifically we compute the convergence error for the varifold defined in (9.3) both
in the case where 7T (j 1) is the exact tangent and in the case where 7%PP is computed
by regression in an R—neighbourhood, with R = ¢/2 (this situation is labelled as
“regression” in all figures).

Theorem 5.8 guarantees the convergence under suitable assumptions of the
orthogonal approximate mean curvature H" s E , and even provides a convergence
rate. First, it is not very difficult to check that in the case where the point clouds are
uniform samphngs of a smooth curve, then the parameters d; 1 and n; of (5.35) are
of order . As we already pointed out, our sampling is not globally uniform, but
locally almost uniform and we expect the same order for d, 1 and n;. As ford; > in
(5.36), if the tangents are exact, then d; > is also of order L v otherwise, it depends
essentially on the radius of the ball used to perform the regression. Here we set
R = ¢/2, which is not a priori optimal. If we want to estimate the mean curvature
at some point x of the curve, then we will apply formula (9.2) to the closest point
in the point cloud, which is at distance of order to x (this corresponds to what is
denoted |z; — x| in Theorem 5.8). To summarize, accordmg to these considerations
together with Theorem 5.8, we expect to observe convergence under the assumption

1
— — 0,
Ne

. 1 .
with a convergence rate of order Ve + ¢, at least in the case where the tangents are
e

exact. We start with studying two different cases: first with 5~ 1 = N~/4, where we

expect convergence with rate at least N~!/4, and then w1th = 0.01, for which
Theorem 5.8 is not sufficient to guarantee that convergence holds In both cases,
we focus on % which is the leading term.

We use a log-log scale to represent the resulting relative average error (9.5) as

a function of the number of sample points N for ¢ = 100 (Fig. 4a)and ¢ = (%)3/ !
(Fig. 4b). We remark that the number N,,,, of points in a neighborhood B (x) is
proportional to & N, which takes the values 100 and 10°/#N1/4, respectively, for the
above choices of ¢. Interestingly, the experiments show a good convergence rate
when choosing a natural kernel pair, even in the cases when % is constant (thus
when it does not converge to 0!). Furthermore, the convergence using natural kernel
pairs and approximate tangents computed by regression is even faster than when
using exact tangents and the tent kernel. We recall that the tent kernel does not satisfy
Hypothesis 1 since it is only Lipschitz, nevertheless the corresponding natural pair
(Ptent» Erent) shows the same convergence properties as the smooth natural pair
(Pexps Eexp). This suggests that the (NKP) property is even more effective than
the smoothness of the kernel profiles. Finally, when the tangents are not exact the
convergence is slower. This is consistent with the fact that parameter d; ; in (5.36)
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Fig. 4. Average error (log-log scale) for the orthogonal approximate mean curvature of the
subsampled parametric flower, for increasing values of N, and with either ¢ = % (left)

3/4
ore = (iv—o) (right). The number of points in the neighborhood used for estimating the

curvature is constant for the left experiment, and scales as 10N 1/4 for the right experiment

depends on the radius R of the ball used to compute the regression tangent line
(we recall that R = ¢/2) which represents an additional parameter to be possibly
optimized.

9.1.4. Varying Density and Normal Projection In all previous numerical tests,
we assumed that m; > m is true, at least locally, which yields the simplified for-
mula (9.2). This assumption makes sense for a point cloud with almost uniform
distribution of masses, but is less realistic in the other cases. However, when con-
sidering a smooth surface M endowed with a smoothly varying density function
0, the tangential component of the generalized mean curvature of the associated
varifold is non-zero in general (and related to the tangential gradient of ) while the
normal component still coincides with the classical mean curvature of M. There-
fore formula (9.2) allows to cancel the tangential perturbations artifacts due to the
non-uniformity of the sampling.

In order to illustrate this property of the orthogonal approximate mean curvature
H X ;s , we consider a non-uniform discretization of the flower. To this aim, starting
from the uniform discretization jh of the parametrization interval [0, 2], with
Jj=0,...,N—1,wedefine t; = (j +n;)h where n; are i.i.d. Gaussian random
variables with zero mean and variance 1. Then we define Vi exactly as in (9.3) or
in (9.4) replacing jh with ¢;. The relative error E"¢! is computed also by replacing
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Fig. 5. Average error (log-log scale) for the approximate mean curvature of the subsampled
parametric ﬂower for increasing values of N and ¢ = (10/N )3/ 4, Comparison of the
behavior of H " ke @ and BVt

ke On AN (almost) uniform and a non uniform sampling of the
flower

Jh with ¢; in (9.5). We perform the tests using the natural kernel pair (0exp, exp)-
The aim is to compare the behavior of H' S (default choice in Fig. 5) and H) v
(labeled as “no normal projection” in Fig 5) on the flower, in both umformly
and non-uniformly discretized cases (respectively labeled as “uniform” and “non
uniform” in Fig. 5). We also consider the sub-case of approximate tangents in the
non-uniformly discretized case, but only for H V;’f since we observed that the error

associated with H X £ does not converge to zero, even when the tangents are exact.
Fig. 5 shows the plots of the relative errors computed with respect to the number

of points N in a log-log scale, with ¢ = (10/N)3/*. On the one hand we observe

that in both uniformly and non-uniformly discretized cases the error associated with

HY P does not converge to zero, or even diverges, which is not incompatible with

Theorem 5.5 since we have that ¢ 8—2 ~ &/ N, which of course is not infinitesimal. On
the other hand, for the reason given above, the convergence of H X ’EJ‘E is comparable
in both uniformly and non-uniformly discretized cases, even when tangent planes

are computed approximately by regression.
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9.1.5. Convergence Rate in the 2 D-Smooth Case Up to now, it has been evi-
denced that in the smooth case it is reasonable to use H X Q;Ls with a smooth natural

kernel pair. The experiments in Fig. 6 are therefore obtained for H Vsls computed
with the natural kernel pair (p.xp, &cxp). As already mentioned, Theorem 5.8 gives
a convergence speed of order at least % in the case where the tangents are exact.
When the tangents are computed by regression, then the convergence is of order (at
least) df where d; is the maximal pointwise error on the tangents resulting from the
regression. We thus plot in Fig. 6 the decay of the relative error E" with respect to
this ratio % for different choices of ¢, N, with either exact or approximate tangents
(computed by regression in a ball of radius R), and with or without an additional
Gaussian white noise of variance o = % More precisely, we fix i.i.d. Gaussian
random variables (n}) s (n?) ;j with zero mean and variance o, and we define from

Vi in (9.3) a noisy point cloud varifold Vg as

N

either V§ = Zmj8<(x(jh))y(jh)+(n1/4,,13)) ® 7(jny or
Jj=1 o
N

o _ .
VR = D28y sl atyy ® B
j=1
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Fig. 7. Curvature vector and intensity computed with the natural kernel pair (oexp, Eexp)
on the eight sampled with N = 10,000 points and with ¢ = 100/N = 0.01, with exact
tangents. For visualization purposes we only show 5% of the points in the cloud

Here, Tjap ? is computed by linear regression from the noisy positions {(x (kh), y(kh)+
(n ,1, n,%)}k in a ball of radius R. The relative error is defined as

Erel — _Z | pée ((X(Jh) y(]h)+(n],n2)) — H(jh)|
N 1 H |

j=1

We observe in Fig. 6 that the convergence is at least of order 1 with respect to
ﬁ as foreseen by Theorem 5.8, and even quite better in the case where there is
no additional noise. In this latter case, when the tangents are exact, convergence is
still of good quality. But when the tangents are computed by regression in a ball of
radius R, the relative error E” is very sensitive to the regression error and thus to
R. It seems that, in some cases where additional white noise is introduced, taking

R larger than & (R = £%/1° for instance) produces a lower error.

9.2. The Approximate Mean Curvature Near Singularities

In this section, We illustrate the specific features of the approximate mean cur-

vatures H" e 0. and H"" e p, E near singularities. Consistently with the properties of the
classical generalized mean curvature of varifolds, H & and H both preserve

the zero mean curvature of straight Crossmgs as conﬁrmed by the experiment on
the “eight” (see Fig. 7). In this case using H S does not affect the reconstruction
of the zero curvature at the crossing point, whlle it has the advantage of being
more consistent at regular points (see the discussion in Section 9.1.4). In Fig. 7 we
plot the curvature vectors and intensities computed using the natural kernel pair
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Fig. 8. Curvature vector and intensity computed with the natural kernel pair (pexp, &exp)
on two intersecting circles sampled with N = 10,000 points and with ¢ = 100/N = 0.01,
without projection onto the normal in (a) and (b) and with projection on (c). Tangents are
exact

(Pexps Eexp) on the eight curve sampled with N = 10000 points and exact tangents,
for e = 100/N = 0.01.

More generally, our model is able to deal correctly with singular configurations
whose canonically associated varifold has a first variation §V which is absolutely
continuous with respect to ||V ||. To illustrate this, we show the results of some tests
performed on a union of two circles with equal radius and on a standard double
bubble in the plane.

First, we compare the behavior of H, v and H, VL in a neighborhood of an
intersection point of the two circles (see F1g 8) We deﬁne apoint cloud as auniform
sampling of the union of both circles, with a total number of points N = 10000
and with exact tangents. We also choose (0¢xp, &exp) as natural kernel pair, and ¢ =
100/N = 0.01 as in the previous test with the “eight”. Fig. 8a, b show the curvature
vectors and intensities of H S 0.E" while Fig. 8c shows them for H s‘,/ pl’ £ From the point
of view of pointwise almost everywhere convergence, both approximate curvatures
behave equivalently well, since the error in the reconstruction of the curvature is
localized in an e-neighborhood of the crossing point. On one hand, due to the
linearity of the first variation 8V, the expected curvature H of the union C; U C;
of the two circles at the crossing point p is the average of the curvatures H; and
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Fig. 9. Curvature vectors and intensities computed with the natural kernel pair (0exp, Eexp)
on a standard double bubble (radii 1 and 0.6) sampled with N = 800 points and with
& = 0.15, without projection onto the normal in (b) and with additional averaging of the
curvature at scale 2¢ in (c¢). Tangents are computed by regression

H; of, respectively, C; and C; at p. Indeed §V = H; d'Hllc1 + H> d’H‘lcz, whence
one deduces that H(p) = w and if p is an intersection point of the two

circles, |[H(p)| = ~/3 ~ 1.73 which is consistent with the numerical value obtained
at p (see Fig. 8b). On the other hand, the crossing point is negligible with respect
to || V|| and therefore the pointwise value of H (p) is not relevant in the continuous
setting. Nevertheless, in the discrete setting there is a significant difference between
the two proposed definitions of approximate mean curvature. More precisely, the
one provided by H a‘,/ . enforces a continuous mean curvature even at the crossing

Hl(p);Hz(p)

point, where one obtains the expected average value H(p) = see

Fig. 8b, whereas continuity cannot hold for H 8‘;;?, as one can see in Fig. 8c.
Second, we consider a standard double bubble in 2 dimensions (see Fig. 9a
and [13] for details on double bubbles), whose radii of the external boundary arcs
are, respectively, 1 and 0.6. The corresponding point cloud varifold V is obtained
by a uniform sampling of 800 points taken on the three arcs of the bubble, each
endowed with a unit mass and tangent computed by regression. Again, we choose
(Pexps Eexp) as natural kernel pair, and ¢ = 0.15. Fig. 9b shows the curvature
vectors and intensities of H s‘,/p, £ (up to a fixed renormalization that is applied for a
better visualization). In order to get rid of the oscillation of the curvature near the
singularities (as it occurred in the previous test, see again Fig. 8) we have also applied
a simple averaging of the reconstructed curvature at the scale 2¢, which gives the
nicer result shown in Fig. 9c. We remark that the curvature vector defined on points
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(b) ()

Fig. 10. Curvature vectors and their intensities computed with the natural kernel pair
(Pexp» Eexp) on sampled three dimensional-double bubbles (show in full and partial views).
In a the bubble has external caps with radii 0.7 and 1, is sampled with N = 34, 378 points,
and the computations are made with ¢ ~ 0.111. The curvature vectors (with minus sign for
the sake of readability) are shown only for the points which are closest to the singular circle.
In b and ¢, the double bubble has externals caps with same radius 1, is sampled with 33,275
points, and ¢ & 0.131. All curvature vectors (with minus sign) are shown in ¢. To improve
the visualization, points are shown with larger size in b and ¢

that are very close to the theoretical singularity is consistent with the one obtained
by direct computation on the (continuous) standard double bubble. More precisely,
we obtain a numerical value of (0.107, —0.809) for the mean curvature near the
singularity shown in Fig. 9, to be compared with the expected value (0, —0.839),
hence with a relative error of 13%. If we redo the same experiment but with twice
the number of points, that is N = 1600 and ¢ = 0.075, we get a relative error of
7%. Further tests involving standard double bubbles will be described in the next
section.

9.3. Approximate Mean Curvatures of 3D Point Clouds

In this last section we present some tests on 3D point clouds obtained either
from parametrized shapes (specifically, a standard double bubble) or from given
point cloud samples (a dragon and a statue).

In the first test (Fig. 10a) we use colors (from blue for smaller values to red
for larger values) to represent the intensities of the approximate mean curvature
vectors computed for a point cloud discretization of the three spherical caps form-
ing the boundary of a standard double bubble in 3D. The radii of the external caps
are, respectively, 1 and 0.7. The cloud contains N = 34378 points and is endowed
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(b)

Fig. 11. Intensities of the approximate mean curvature of a dragon point cloud (435,545
points, diameter = 1) with ¢ = 0.007. b Zoom in on dragon’s tail. ¢ Zoom in on dragon’s
head

with tangents reconstructed via regression at the scale ¢ ~ 0.111. We compute the
covariance matrix of centered coordinates (in a ball of radius ¢) and we define the
normal as the eigenvector associated with the smallest eigenvalue. The computation
of the approximate mean curvature is performed in a ball of radius ¢ as well, and
we further average the approximate curvature at the scale 2¢, as done in the test on
the 2 D—double bubble. Moreover the cloud is an “almost uniform” discretization
of the double bubble in the sense that some small “holes” are created along three
meridian curves, as a consequence of rounding-type discretization errors. All cur-
vature vectors intensities are shown, but only (minus) the curvature vectors near
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Fig. 12. Intensities of the approximate mean curvature of a point cloud with 543,524 points
(horizontal side length = 0.41, height = 1.)

the singular arc are represented for the sake of readability. As can be observed,
these approximate vectors lie essentially in the same expected plane. Even though
a more uniform discretization can be constructed, we have preferred to keep the
almost-uniform one in order to show the behavior of the (averaged) approximate
mean curvature. The results of the test show a pattern similar to the one obtained
in the 2D case in proximity of the singular circle (see Fig. 10a). Moreover, when
numerically computing the average of the intensity of the mean curvature along the
singular circle, we obtain 1.51, to be compared with 1.46 which is an approximate
value of the norm of the average of mean curvature vectors of the three intersecting
spheres. Some small deviations from the true mean curvature are localized near the
small “holes”. Of course such deviations can be reduced by refining the discretiza-
tion and by taking curvature averages over neighborhoods containing more points.



692 BLANCHE BUET, GIAN PAOLO LEONARDI & SIMON MASNOU

The overall outcome shows that the reconstruction of the mean curvature near sin-
gularities is consistently enforced by our method. We provide in Fig. 10 two more
examples with a sampled double bubble. In b) and c) the bubble has external caps
with same radius » = 1. The central cap is therefore a disk. Again, the consistency
of the curvature vectors computed near the singular arc can be observed. Only these
vectors are shown in b), but all (minus) curvature vectors are shown in c).

Our next 3D test point clouds are a “dragon” with N = 435 545 points (Fig. 11),
and a statue with 543 524 points (Fig. 12). We show with colors the norm of
the approximate mean curvature vectors (computed with the natural kernel pair
(Pexps Eexp)) With post-projection onto the normals. In both cases, as the tangent
plane is not a-priori known, we compute the normal direction at each point using
regression. As the shapes are assumed to be regular, we use Formula (9.2), that is,
with projection onto the normal at the point and without additional averaging.
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