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1 Introduction

Continuous definitions (such as those of surface, regularity, dimension, curvatures ...) generally cannot be
readily given a discrete counterpart. Moreover, this discrete counterpart is generally not unique and highly
scale-dependent. There are multiple ways of developing a theory for discrete surfaces and the choice of
an appropriate framework is directly related to the kind of discrete data we aim to process, and for which
purpose i.e. the type of surfaces we try to model. Regarding the kind of discrete data, two different situations
occur: either they have been collected in an external context and come in some given form one has to deal
with, or one has the freedom to decide which discretization is best suited for this issue. Let us mention
some examples of discrete representations: triangulated surfaces, digital shapes, graph representations, level
sets and diffuse interfaces etc. In this memoir, we propose to focus on point cloud data (on the discrete
side). On the continuous side, the denomination ”surface” encompasses a wide variety of objects ranging
from usual 2–dimensional surfaces embedded in R3 to any dimension and co-dimension submanifold, abstract
Riemannian and sub-Riemannian manifolds, rectifiable sets, tree-like and graphs structures etc.

Geometric measure theory actually shows a major advantage: both discrete and continuous surfaces can
be associated with a natural measure and thus naturally lie in the same space. It is in particular possible
to say that a point cloud is close to a surface in the sense that it is close to a measure supported by the
surface, with different possible choices of distances between measures to quantify the closeness. In geometric
inference, such a closeness in terms of measures is a classical assumption in order to establish convergence
of geometric estimators (tangent, curvature, second fundamental form, Laplace-Beltrami operator, see for
instance [4] [5] [11]). However, such an assumption is not meaningless and essentially implies that the set
of point is uniformly distributed along the underlying continuous surface (which is rarely true) or that it is
possible to weight points to rectify the sampling.

In most cases we are only provided with sets of points in Rn and we need to infer weights and tangents
(not to mention dimension) in order to infer the order 1 (”varifold”) structure. In this memoir, we focused
on infering the weights with a statistical perspective. More precisely we assume that a continuous object S
is given through a probability measure µ supported in S and our data are obtained by sampling µ with N
points: (X1, . . . , XN ) ∼ µ is an i.i.d. sample and our data is an instance of the empirical measure

µN =
1

N

N∑
i=1

δXi

The specific and important case where S is d–dimensional submanifold of Rn and µ is the volume form in
S (possibly weighted by some density) has been investigated with varying degrees of formality and different
assumptions on the regularity of the manifold. On the other hand, we aim at studying he case where S is
less regular, focusing on rectifiable sets. Depending on the nature of the collected data, the measure µ is
not necessarily uniformly distributed in S which consequently is also reflected by µN . In such a case, it is
important to decouple the geometric information contained in S from the whole information encoded by µ.
More explicitly, assume that µ = θHd|S S for some positive density function θ that we want to recover. In
practice, a common approach consists in computing local averages of the following form

θi =
1

N

N∑
j=1

η

(
|xi − xj |

δ

)
.

We address here the following question that is the core of this memoir: Is it possible to recover the
density θ relying on the knowledge of the empirical measure µN?

Before giving our answer to this issue, we recall some bases of measure theory in Section 3:more precisely
we recall the definitions of Radon measure, weak-∗ convergence and bounded Lipschitz distance. In Section 4
We then focus on Ahlfors regular measures because they reflect the notion of being a d-dimensional measure
in a flexible way: the mass of a ball with a center in our surface is comparable to its d-volume (Lebesgue
measure).
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Figure 1: Examples of point clouds

Thereupon, in Section 5 we introduce some statistical tools with a particular emphasis on the empirical
measure µN ,N ∈ N∗ sampled from our Ahlfors regular measure µ. In order to recover the density θ of
µ = θHd|S from the empirical measure µN , a key point is to quantify the distance (more precisely the

bounded Lipschitz distance) between µ and µN . Following the original result of Dudley we were able to
adapt the proof so as to obtain a result (see Theorem 5.10) involving a ”local” bounded Lipschitz distance:
loosely speaking we compare µ and µN in an open bounded open subset T, such as a small ball and we
evidence that the rate of convergence is preserved up to dividing by the mas µ(T ). Note that the clever proof
of Dudley switch from a thin partition to a rougher one so as to take advantage of better compensation
arising then as stated in Lemma 5.9.

Theorem 6.10 at hand, we introduce in Section 6 the classical notion of rectifiable set in order to prove
that for a d-Ahlfors and d-rectifiable measure µ with a density θ it is possible to approximate θ by convolution
of the empirical measure µN as stated in Theorem 6.10. This part is an utmost step to recover the so called
varifold structure from a point cloud. We then present in Section 7 the bases of varifold theory because it
is a gateway to have estimates on the convergence rates for differential operators and geometrical features
such as mean curvature or Laplace Beltrami operator.
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2 Notations

• S: a bounded set of Rn representing our surface

• Bor(Rn): the Borel sets of Rn

• P(S): the set of Borel probability measures on S

• (Ω,F ,P): the probability space

• µ: a Borel probability measure representing our surface

• µN = 1
N

∑N
q=1 δXq

: the empirical measure of N points i.i.d X1, . . . , XN with the law µ

• B(x, r): is the open ball with centre x ∈ Rn and radius r > 0

• V(A,δ): the smallest number of balls of radius δ needed to cover A

• P (A, δ): the packing number of a bounded set A is the maximum of disjoint balls of diameter δ we
can have with center in A

• Bδ: for B ⊂ Rn, δ > 0 is the δ-thickening of B, Bδ = {x ∈ Rn s.t d(x,B) < δ}

• BL(S, d): the Banach space of all bounded Lipschitz real-valued functions f on S with the norm

||f ||BL = ||f ||∞ + ||f ||L where ||f ||L = sup
x 6=y

|f(x)−f(y)|
|x−y|

• ||µ||∗BL = sup{
∫
fdµ : ||f ||BL ≤ 1} the weak-∗ norm linked to BL

• β(µ, ν) = ||µ− ν||∗BL , a distance for the weak-∗ topology on P(S)

3 Basic notions of measure theory

In this section we introduce a locally compact and separable metric space (X,d) and for the next sections we
deal with X = Rn, equipped with the euclidean norm ||.||. Note that when working with varifolds, we will
also use the case X = Rn ×Gd,n equipped with a product distance. We follow [10] and [8] in this section.

3.1 Measure properties

We recall some basic definitions and fix associated notations. For x ∈ X and 0 < r <∞

B(x, r) = {y ∈ X : d(x, y) ≤ r}

is the open ball of center x and radius x. The diameter of a non-empty subset A ⊂ X is

diam(A) = sup{d(x, y) : x, y ∈ A}.

We agree that diam(∅) = 0. The distance of a point x ∈ X to a non empty set A ⊂ X is

d(x,A) = inf{d(x, y) : y ∈ A}.

If B is also a non empty subset of X then the distance between A and B is

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

For δ > 0, the open δ-neighbourhood(δ-thickening) of A is

Aδ = {x ∈ X : d(x,A) < δ} =
⋃
x∈A

B(x, δ). (1)

A measure is a non-negative, monotonic, subadditive set function vanishing for the empty set.
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Definition 3.1. A set function µ : {A : A ⊂ X} ←− [0,∞] is called a (outer) measure if

1. µ(∅) = 0

2. µ(A) ≤ µ(B) whenever A ⊂ B ⊂ X (monotony)

3. µ

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ(Ai) whenever A1, A2 · · · ⊂ X (subadditivity)

Remark 3.2. We note that the usual terminology for µ satisfying definition 3.1 is ”outer measure”, however,
we follow [8] in that respect and recover the additivity property when restricting µ to so called measurable
sets.

An example of measure is the very important for our project is the Dirac mass defined as follows.

Definition 3.3 (Dirac mass). The Dirac mass associated to a point x ∈ Rn is the measure defined as follows

δx(A) = 1A(x) ∀A ⊂ Rn.

Definition 3.4. A set A ⊂ X is µ measurable if:

µ(E) = µ(E ∩A) + µ(E \A) for all E ⊂ X

Definition 3.5 (σ-algebra). A is a σ-algebra on X if:

1. A 6= ∅

2. ∀B ∈ A, B ⊂ X and its complementary X \B is in A,

3. A is stable by countable union.

Usually in measure theory a measure is defined on some σ-algebra of subsets of X, which does not need
to be the whole power set {A : A ⊂ X}. However Definition 3.1 permits us to extend any µ defined on the
σ-algebra A to an outer measure µ∗ on X by:

µ∗(A) = inf{µ(B) : A ⊂ B,B ∈ A}

From the previous definitions arise those wonderful properties that permit us to focus on nice measurable
sets to deduce properties on irregular ones.

Property 3.6. Let µ be a measure on X and let M be the family of all µ measurable subsets of X.

1. M is a σ-algebra.

2. If µ(A) = 0, then A ∈M.

3. If A1, A2, · · · ∈ M are pairwise disjoint, then

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

4. If A1, A2, · · · ∈ M, then

• µ

( ∞⋃
i=1

Ai

)
= lim
i→∞

µ(Ai) provided A1 ⊂ A2 ⊂ . . . ,

• µ

( ∞⋂
i=1

Ai

)
= lim
i→∞

µ(Ai) provided A1 ⊃ A2 ⊃ . . . and µ(A1) <∞.
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The smallest σ-algebra containing the open subsets of X is called the σ−algebra of Borel sets. It is well
defined since the notion of σ−algebra is stable by intersection. For our study in Rn it coincide with the
σ-algebra generated by the open balls. We concentrate on them because some useful measures are very well
known on them. Also the previous properties permit to control the measure of sets only by knowing on the
balls if we are in the framework of the following definition.

Definition 3.7. Let µ be a measure on X.

1. µ is locally finite if for every x ∈ X there is r > 0 such that µ(B(x, r)) <∞.

2. µ is a Borel measure if all Borel sets are µ measurable

3. µ is Borel regular if it is a Borel measure and if for every A ⊂ X there is a Borel set B ⊂ X such that
A ⊂ B and µ(A) = µ(B)

4. µ is a Radon measure if it is a Borel measure and

• µ is locally finite,

• µ(V ) = sup{µ(K) : K ⊂ V, K compact } for open sets V ⊂ X,

• µ(A) = inf{µ(V ) : A ⊂ V, V open} for A ⊂ X.

Theorem 3.8 (Caratheodory’s Criterion). Let µ be a measure on X, then µ is a Borel measure if and only
if µ is a metric measure:

µ(A ∪B) = µ(A) + µ(B) whenever A,B ⊂ X with d(A,B) > 0. (2)

Proof. Let A,B ⊂ X such that d(A,B) > 0 and

• Suppose that µ is a Borel measure. From the subadditivity of µ, we have µ(A ∪ B) ≤ µ(A) + µ(B).
Let us prove the converse inequality. Let 0 < δ < d(A,B), Aδ ∩B = ∅, Aδ is open so measurable. We
use then the Definition 3.4:

µ(A ∪B) = µ((A ∪B) ∩Aδ)) + µ((A ∪B) \Aδ) ≥ µ(A) + µ(B \Aδ) ≥ µ(A) + µ(B)

Conclusion µ is a Borel measure =⇒ µ is a metric measure.

• Now, suppose that µ is a metric measure. We want to prove that it is a Borel measure. Given O ⊂ X
an open set and A ⊂ X, let us prove that O is measurable ( Definition 3.4). From the subadditivity
we have that µ(A) ≤ µ(A ∩O) + µ(A \O).

For the converse inequality, if µ(A) = +∞ then the inequality holds. We hence assume that µ(A) <

+∞. We define for k ∈ N∗ Rk =
{
x ∈ A : 1

k+1 ≤ d(x,O) < 1
k

}
, A ∩ (O1 \ O) =

⊔
k∈N∗

Rk is a decom-

position of A ∩ (O1 \ O) according to disjoint rings reminding that O
1
k is the 1

k -thickening of O(see
(1). The aim is to use the positive distance between non consecutive rings to smartly apply the metric
hypothesis.

First, we slightly enlarge O into its 1
k -neighbourhood so that d(A\O 1

k , A∩O) ≥ 1
k > 0 and by equation

(2):

µ(A \O 1
k ) + µ(A ∩O) = µ((A \O 1

k ) ∪ (A ∩O)) ≤ µ(A) (3)

It remain to prove that µ(A \O 1
k ) −−−−→

k→∞
µ(A \O).

Applying the subadditivity of µ with

A \O = (A \O 1
k ) ∪

( ∞⋃
i=k

Ri

)
,
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We infer then

µ(A \O 1
k ) ≤

O⊂O
1
k

µ(A \O) ≤ µ(A \O 1
k ) + µ

( ∞⋃
i=k

Ri

)
≤ µ(A \O 1

k ) +

∞∑
i=k

µ(Ri). (4)

For all i, j ∈ N∗ i ≥ j + 2, d(Ri, Rj) > 0, and applying the subadditivity and the metric hypothesis it
follows:

∞∑
i=1

µ(Ri) ≤
∞∑
i=1

µ(R2i) +

∞∑
i=0

µ(R2i+1) ≤ 2µ

( ∞⋃
i=1

Ri

)
≤ 2µ(A) < +∞

As
∑
i≥1

µ(Ri) converges, the remainder tends to 0. From (4) we have

µ(A \O)−
∞∑
i=k

µ(Ri)︸ ︷︷ ︸
−−−−→
k→∞

0

≤ µ(A \O 1
k ) ≤ µ(A \O)

Then µ(A \O 1
k ) −−−−→

k→∞
µ(A \O).

Passing to the limit in (3), we finally have:

µ(A) ≥ µ(A \O) + µ(A ∪O)

O is measurable then all open are measurable and we conclude that µ is a Borel measure.

Conclusion in a metric space: µ is a Borel measure ⇐⇒ µ is a metric measure.

Definition 3.9. We define the restriction of µ to a set S ⊂ X as follows, for all A ⊂ X,

µ|S(A) := µ(A ∩ S)

.

Theorem 3.10. Let µ be a Borel regular measure on Rn. Suppose S ⊂ X is µ-measurable and µ(S) < ∞.
Then µ|S is a Radon measure.

Proof. Let ν = µ|S . For each compact set K, ν(K) ≤ µ(S) < +∞. Every µ−measurable set A µ−measurable
is ν-measurable because A ∩ S is the intersection of two measurable sets hence ν is a Borel measure. with
the remark above.

Let us show that ν is Borel regular. Since µ is Borel regular, there exists a Borel set B such that S ⊂ B
and µ(S) = µ(B) < +∞. Then, since S is µ−measurable,

µ(B) = µ(B ∩ S) + µ(B ⊂ S) ie. µ(B \ S) = µ(B)− µ(S) = 0.

Let C ⊂ X, using aain that S is µ-measurable:

µ|B(C) =µ(C ∩B)

=µ(C ∩B ∩ S︸ ︷︷ ︸
C∩S

) + µ((C ∩B) \ S)︸ ︷︷ ︸
≤µ(B\S)=0

=µ|S(C)

Thus µ|B = µ|S . Let E be Borel set such that C ∩ S ⊂ E and µ(E) = µ(C ∩ S). Let D := E ∪ (X \ S).
Since S and E are Borel sets, so is D. Moreover, C ⊂ (C ∩ S) ∪ (X \ S) ⊂ D. Finally, since D ∩ S = E ∩A,

ν(D) = µ(D ∩ S) = µ(E ∩ S) ≤ µ(E) = µ(C ∩ S) = ν(C)

We conclude that D ⊂ X is a Borel set such that C ⊂ D and ν(C) = ν(D), therefore ν is Borel regular.
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3.2 Weak-star convergence notions

Theorem 3.11. Let µ, (µk)k∈N be Radon measures on X. The following statements are equivalent:

1. lim
k→∞

∫
X
fdµk =

∫
X
fdµ for all f ∈ Cc(X)

2. lim sup
k→∞

µk(K) ≤ µ(K) for each compact set K ∈ X and µ(U) ≤ lim inf
k→∞

µk(U) for each open set U ⊂ X.

3. lim
k→∞

µk(B) = µ(B) for each bounded Borel set B ⊂ X with µ(∂B) = 0.

Definition 3.12. If µ, (µk)k∈N verify those statements then we say that (µk)k∈N converge weakly-* to µ and
we denote it:

µk
∗
⇀ µ

Proof. 1. Assume (1) holds and fix ε > 0. Let U ⊂ X be open, we first check µ(U) ≤ lim inf
k→+∞

µk(U) we

choose any compact set K ⊂ U and take f ∈ Cc(X) such that 0 ≤ f ≤ 1, supp(f) ⊂ U , f ≡ 1 on K.

For instance f(x) := d(x,K)
d(x,K)+d(x,X\U) , then

µ(K) ≤
∫
X

fdµ = lim
k→+∞

∫
X

fdµk ≤ lim inf
k→+∞

µk(U).

Thus by regularity of µ,

µ(U) = sup{µ(K), K compact, K ⊂ U} ≤ lim inf
k→+∞

µk(U).

A similar argument gives the first part of (2) and it concludes (1) =⇒ (2).

2. Suppose now that (2) holds and let B ⊂ X is a bounded Borel set such that µ(∂B) = 0. Then

µ(B) = µ(
o

B) ≤ lim inf
k→+∞

µk(
o

B)

≤ lim sup
k→+∞

µk(B)

≤µ(B) = µ(B).

Then (2) =⇒ (3)

3. To conclude, assume that (3) holds. By linearity of the integral we just need to prove (1) for f ∈ C+
c (X)

and f not the zero function, because it is similar for f ∈ C−c (X). Let ε, r > 0 such that supp(f) ⊂ B(0, r)
there is R > r such that µ(∂B(0, R)) = 0. It is possible because the function

g : [r, 2r] −→ R
x 7→ µ(B(0, x))

is monotonous then, it has a countable number of discontinuities thanks to Darboux–Froda’s theorem
(see[6]). For r < x < 2r, g(x+)−g(x−) = µ(∂B(0, x)) thanks to monotony properties from Property 3.6
for graded countable Borel rings subfamilies of {B(0, x+ε)\B(0, x)}0<ε and {B(0, x)\B(0, x−ε)}0<ε<x.
Then there is R > r such that µ(∂B(0, R))) = 0.

We choose 0 = t0 < t1 < · · · < tN such that tN ≡ 2||f ||L∞ , 0 < ti − ti−1 ≤ ε, and µ(f−1({ti})) = 0 for
i = 1, . . . , N . It is possible because f is continuous with compact support so f−1([0, tN ]) is a Borel set
and carry out a similar argument with the functions hr defined for each r > 0 as

hr : [r, r + ε] −→ R
x 7→ µ(f−1([0, x[)).
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We just have to replace r by ti+1 each time we find ti. Set Bi = f−1((ti−1, ti]); then µ(∂Bi) = 0 for
i ≥ 2. Now we decompose the integral and minor (resp major) like stairs:∫

X

fdµk =

N∑
i=1

∫
Bi

fdµk +

∫
∂B1

f︸︷︷︸
=0

dµk

therefore
N∑
i=2

ti−1µk(Bi) ≤
∫
X

fdµk ≤
N∑
i=2

tiµk(Bi) + t1µk(B(0, R))

and similarly
N∑
i=2

ti−1µ(Bi) ≤
∫
X

fdµ ≤
N∑
i=2

tiµ(Bi) + t1µ(B(0, R)).

For each i ∈ [|1, N |] :

N∑
i=2

ti−1µk(Bi)− tiµ(Bi) =

N∑
i=2

ti−1 (µk(Bi)− µ(Bi))︸ ︷︷ ︸
→0

+ (ti−1 − ti)︸ ︷︷ ︸
≤ε

µ(Bi)

and

N∑
i=2

ti−1µ(Bi)− tiµk(Bi) =

N∑
i=2

ti−1 (µ(Bi)− µk(Bi))︸ ︷︷ ︸
→0

+ (ti−1 − ti)︸ ︷︷ ︸
≤ε

µk(Bi).

Therefore, Theorem 3.11(3), additivity of µ on Borel sets and t1 ≤ ε imply that

lim sup
k→+∞

∣∣∣∣∫
X

fdµk −
∫
X

fdµ

∣∣∣∣ ≤ 2εµ(B(0, R)).

The notion of weak-∗ convergence is important. Usually it is better suited to obtain compactness.In our
case, we will use it to characterise our convergence of discrete measures sampled to a measure representing
a d-dimensional surface.

Definition 3.13 (Bounded Lipschitz distance). For µ, ν two Radon measure in X, the bounded Lipschitz
distance is defined by:

β(µ, ν) = sup

{∣∣∣∣∫
X

fd(µ− ν)

∣∣∣∣ : f ∈ Cc(X,R), ||f ||∞ ≤ 1, ||f ||L ≤ 1,

}
The Lipschitz functions are crucial because the variations of the function is controlled by a linear variation

of the space. Then we can dominate the integral by the measure of sets with a certain diameter.

4 Ahlfors regular measure

We recall that our aim is to estimate the density θ of a given measure µ = θHd|S relying on the associated
empirical measure µN . To this end, it is necessary to assume some additional regularity and instead of
requiring strong smoothness of the set S we rather transfer regularity assumption on the measure µ.
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4.1 General properties

Definition 4.1 (Ahlfors regular measure). Let µ be a Radon measure in Rn, for d > 0, we say that µ is a
d-Ahlfors regular measure if ∃C0 > 0 such that ∀x ∈ supp(µ) = S, ∀r ∈]0, 1]:

1

C0
rd ≤ µ(B(x, r)) ≤ C0r

d.

A first example of d-Ahlfors regular measure is the Hausdorff measure of dimension d restricted to a not
too bad d-dimensional measurable set like the sphere or the Koch snowflake. Our main concern is to rebuild
those objects with point clouds.

Definition 4.2. We define the d dimensional Hausdorff measure as follows: For each set A ⊂ Rn

Hd(A) = inf
δ→0

{∑
i∈N

diam(Ei)
d : A ⊂

⋃
i∈N

Ei, Ei ⊂ Rn and diam(Ei) ≤ δ

}

Property 4.3. Let S ⊂ Rn be Hd measurable set with Hd(S) < +∞, then Hd|S is:

1. An outer measure.

2. Borel regular.

3. A Radon measure.

4.2 Packing number of an Ahlfors regular measure

In this subsection we express an essential control over the number of balls with small diameter δ needed to
cover a set A. Such estimates will be crucial in this proof of Theorem 5.10

Lemma 4.4. Let δ > 0 and A ⊂ Rn. The packing number k := P (A, δ), is the greatest number of disjoint
balls with center in A of radius δ and V (A, δ) is the smallest number of balls with radius δ needed to cover
A. We have:

V (A, 2δ) ≤ P (A, δ) ≤ V (A, δ/2)

Proof. • Let A ⊂ Rn, Let B(x1, δ), . . . , B(xk, δ) be disjoint balls with centers x1, . . . , xk ∈ A.

Suppose that V (A, 2δ) > k then
⋃k
i=1B(xi, 2δ) does not cover A thus there exists x ∈ A\

⋃k
i=1B(xi, 2δ).

Then B(x, δ), B(x1, δ), . . . , B(xk, δ) are k+1 disjoint balls of radius δ with center in A, that is impossible
by definition of k. We conclude that V (A, 2δ) ≤ P (A, δ).

• Let k = P (A, δ) and x1, . . . xk as previously.

Let v = V (A, δ/2) and y1, . . . , yv such that B(y1, δ/2), . . . , B(yv, δ/2) cover A. Suppose that v < k,
the points x1, . . . , xk are in A thus there are two points xi, xj in the same ball B(yz, δ/2) for some
z ∈ {1, . . . v}. Then

||xi − xj || ≤ ||xi − yz||+ ||xj − yz|| < δ

. And it is impossible because B(xi, δ) ∩B(xj , δ) = ∅ meaning that ||xi − xj || ≥ δ. We conclude that
P (A, δ) = k ≤ v = V (A, δ/2).

Lemma 4.5. We define m(A, δ) as the minimal number of sets of diameter smaller than δ needed to form
a partition of A then:

V (A, δ) ≤ m(A, δ) ≤ V (A, δ/2)

12



Proof. • We easily have V (A, δ) ≤ m(A, δ) because a partition of A is also covering A.

• Let k = V (A, δ/2) and B1, . . . , Bk balls of radius δ/2 such that A ⊂
k⋃
j=1

Bj . We take A1 = A ∩ B1,

A2 = A ∩ B2 \ A1, . . . , Ak = (A ∩ Bk) \
k−1⋃
j=1

Aj Then A1, . . . , Ak form a partition of A with sets of

diameter smaller than δ.

Theorem 4.6. Let µ be a Radon measure in Rn, S = supp(µ). Assume that there exists d > 0, C0 ≥ 1 such
that ∀x ∈ S, ∀0 < r ≤ 1,

µ(B(x, r)) ≥ C−1
0 rd (5)

Then, for all bounded set B ⊂ Rn

m(B ∩ S, δ) ≤ 4dC0δ
−dµ(Bδ/4).

Proof. Let k = P (B ∩ S, δ) and B1, . . . , Bk be disjoint balls of radius δ and center in B ∩ S. Then for
i = 1, . . . , k since Bi has center on S,(5) gives

µ(Bi) ≥ C−1
0 δd.

Therefore

kC−1
0 δd ≤

k∑
i=1

µ(Bi) = µ(

k⊔
i=1

Bi) ≤ µ(Bδ)

Figure 2: δ-Thickening view with the packing number

Then we deduce
P (B ∩ S, δ) = k ≤ C0µ(Bδ)δ−d

13



We conclude applying Lemma 4.5

m(B ∩ S, δ) ≤ V (B ∩ S, δ/2) ≤ P (B ∩ S, δ/4) ≤ 4dC0δ
−dµ(Bδ/4).

5 Mean rates convergence of empirical measure toward an Ahlfors
regular measure

In this section we want to estimate the density bias of a surface S represented by a Radon measure in the form
µ = θHd|S where θ > 0 is the density bias. The main proof is adapted from the article [7]. Our adaptation rely
on a clever use of packing number for an Ahlfors regular measure that is a beautiful technique of Geometric
Measure Theory.

5.1 Statistical framework

Let (Ω,A,P) be a probability triplet that is respectively a set called the universe, a σ−Algebra and a measure
P on A. We assume that our Radon measure µ = θHd|S is a probability measure:

∫
S
θdHd|S .

Definition 5.1 (Random Variable). For k ∈ N∗, a random variable X : Ω −→ Rk is a measurable function
relatively to the σ-algebra (Ω,A) and (Rk, Bor(Rk)) . We say that X follows the law µ if for all T ∈ Bor(Rk) :

P(X ∈ T ) = µ(T )

Remark 5.2. If k=1 then it is a real random variable.

Definition 5.3. Let X,Y two random variables in the same space. We say that X and Y are independent if
for all x, y ∈ Rk

P(X = x, Y = y) = P(X = x)P(Y = y)

Definition 5.4 (Expectation). A random variable X has an expectation E[X] if the following integral is
absolutely convergent:

E[X] :=

∫
ω∈Ω

X(ω)dP(ω).

Definition 5.5 (Variance). A real random variable X has a variance V ar(X) if X has an expectation and
the expression below is defined:

V ar(X) := E((X − E(X))2)

Property 5.6. 1. The expectation is linear

2. For X,Y two independent real random variables with variance and λ ∈ R we have

V ar(X + λY ) = V ar(X) + λ2V ar(Y )

Definition 5.7 (Empirical measure). Let N ∈ N∗, X1, . . . , XN be N random independent variables with the
same law µ, the associated empirical measure µN is defined as:

µN =
1

N

N∑
i=1

δXi

Remark 5.8. The empirical measure permits to sample a measure.
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5.2 The mean speed convergence of empirical measure in terms of the bounded
Lipschitz distance

Lemma 5.9. [7] Let T ⊂ Rn be a Borel set and let Sj, j = 1, . . . ,m be disjoint Borel sets with union T
then:

E

 m∑
j=1

|(µN − µ)(Sj)|

 ≤ (mµ(T )/N)
1
2

Proof. Let q, j ∈ [|1, N |] and ω ∈ Ω. Notice that

δXq(ω)(T ) =

{
1 if Xq(ω) ∈ T
0 otherwise

hence,

E
[
δXq

(T )
]

=

∫
ω∈Ω

1{Xj(ω)∈T}dP(ω) = P(Xj ∈ T ) = µ(T ) (6)

Similarly

E
[
δXq

(T )δXj
(T )
]

=

{
P(Xj ∈ T ) if q = j
P(Xq ∈ T and Xj ∈ T ) otherwise.

And because of the independence of the variables we have

E
[
δXq

(T )δXj
(T )
]

=

{
µ(T ) if q = j
µ(T )2 otherwise.

In particular,
V ar(δXq

(T )) = µ(T )− µ(T )2. (7)

Then we use the linearity of the expectation

E[µN (T )] =
1

N

N∑
q=1

E[δXq
(T )] = µ(T ),

Analogously with the independence of the variables X1, . . . , XN , we infer the independence of
δX1

(T ), . . . , δXN
(T ). Thus by the Poperty 5.6 and (7)

V ar(µN (T )) =
1

N2

N∑
q=1

V ar(δXq(ω)(T )) =
µ(T )− µ(T )2

N
.

Secondly we did it for every measurable set so that for the disjoints measurable sets (Sj), we have for every
j ∈ [|1,m|]

E
[
(µN − µ)(Sj)

2
]

= E
[
(µN )(Sj)

2
]
− 2µ(T )E [(µN )(Sj)] + µ(Sj)

2 = V ar(µ(Sj))

and thus

E

 m∑
j=1

(µN − µ)(Sj)
2

 =

m∑
j=1

V ar(µN (Sj))
2

=

m∑
j=1

(µ(Sj)− µ2(Sj))/N

=

µ(T )−
m∑
j=1

µ(Sj)
2

 /N ≤ µ(T )/N. (8)
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With Cauchy-Schwarz inequality for the finite sum:

E

 m∑
j=1

|(µN − µ)(Sj)|

 ≤ E


 m∑
j=1

(µN − µ)(Sj)
2

 1
2
 m∑
j=1

12

 1
2

︸ ︷︷ ︸
=
√
m

 (9)

And then we use again Cauchy-Schwartz inequality for the expectation together with (8) and (9)

E

 m∑
j=1

|(µN − µ)(Sj)|

 ≤(mµ(T )/N)
1
2 (10)

The following theorem is adapted from [7] and gives the speed of convergence and the ratio between
the number of points and the scale of observation to obtain the convergence of the empirical measure to
the measure related to S even with a certain type of noise. More precisely, in [7], the author prove that

E[β(µN , µ)] tends to 0 with a speed of convergence at least N−
1
d . In order to obtain pointwise convergence of

our density estimator as stated in Theorem 6.10, we need a similar result but with an additional localization.
For B ⊂ Rn bounded open set, we define the localized bounded Lipschitz distance in B

βB(µ, ν) = sup

{∣∣∣∣∫
X

fd(µ− ν)

∣∣∣∣ : f ∈ Cc(X,R), ||f ||∞ ≤ 1, ||f ||L ≤ 1, supp(f) ⊂ B
}
.

Adapting proof of Theorem 3 in [7], we were able to obtain Theorem 5.10.

Theorem 5.10. [7] Suppose that µ is d-Ahlfors regular(see Definition 4.1) for some real number d > 2 with
regularity constant C0 > 0. Then, there exists an M = M(d,C0) > 0 such that for all N ∈ N∗ and T ⊂ Rn
bounded open set,

E[βT (µN , µ)] ≤MN−1/dµ(T γN ) with γN = N−
d−2

d2 −−−−−→
N→+∞

0.

Proof. Let T ⊂ Rn be a bounded open set. For each positive integer r, we can write T as the disjoint union
of Borel sets, Srj , j = 1, . . . ,mr, of diameter at most εr := 3−r+1, we know thanks to Theorem 4.6 that we
can chose the partition so that

mr ≤ 4dC0ε
−d
r µ(Bεr/4)

.
Given a positive integer N let ε = N−

1
d and let 0 ≤ s ≤ t be integers such that:

3−t <ε ≤ 3−t+1 =: εt

3−s <ε(d−2)/d ≤ 3−s+1 =: εs. (11)

Step 1:. Construction of nested partitions of T. for each integer s ≤ r ≤ t, we start with a partition
{Srj }j=1,...,mr

of T. We define sets At−uj , j = 1, . . . ,mt−u, inductively on u = 0, . . . , t − s, as follows.

Let Atj = Stj . Let u ∈ [|0, t− s− 1|] and assume that {At−uj }j=1,...,mt−u
. Each At−uj intersects at least

one St−u−1
q for some q ≥ 1, and we choose such a q = q(t − u, j) ∈ [|1,mt−u−1|] to classify the sets.

Then, for z ∈ [|1,mt−u−1|] we define

At−u−1
z =

⋃
j:q(t−u,j)=z

At−uj (12)
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We can visualize At−u−1
z as the tills capturing the set of diameter less than 3−t+u intersecting possibly

up to some choice St−u−1,z Then for each z, we have for diameters

diam(At−u−1
z ) ≤ 2 max

j
diam(At−uj ) + 3u−t︸︷︷︸

≥diam(St−u,z)

Figure 3: Worst case

Thus by induction on u, the diameter of each Arj is at most 3εr = 3−r.

We check by induction that Each Ar−1
q is the disjoint union of those Arj . The sets (Stj)

mt
j=1 are disjoint

and using that
∀j ∈ [|1,mt|], Atj = Stj

then for all j1, j2 ∈ [|1,mt|], j1 6= j2 we get

Atj1 ∩A
t
j2 = ∅

Let u ∈ [|0, t− s− 1|] and j1, j2 ∈ [|1,mt−u−1|]. If At−u+1
j1

∩ At−u+1
j2

6= ∅ then using (12), ∃z1, z2 such

that q(t − u, z1) = j1, q(t − u, z2) = j2 and At−uz1 ∩ A
t−u
z2 6= ∅. It follows from the induction property

that z1 = z2 we conclude that q(t− u, z1) = j1 = j2

We infer that, for each r = s+ 1, . . . , t, we have

mr⊔
j=1

Arj =

mr−1⊔
q=1

⊔
j:q(t,j)=q

Arj =

mr−1⊔
q=1

Ar−1
q . (13)
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Figure 4: Illustration of a step

Step 2:. For s ≤ r ≤ t, we introduce Mr :=
∑mr

j=1 |(µN − µ)(Arj)|. The main idea of this proof is to link two
partitions of the set T: we start from the thinner partition to get a union-related rough one with less
pieces and slightly higher diameter. The reason is that the regularity of the distribution of mass gives
a nice control on Mr in the sense that the mass is linked to a power of the diameter.

Applying Lemma 5.9 and Theorem 4.6 we have the following estimate:

E[Mr] ≤ (N−1µ(T )mr)
1/2 ≤ 2dC

1/2
0

N1/2
ε−d/2r (µ(T )µ(T εr/4))1/2 ≤ 2dC

1/2
0

1√
N
ε−d/2r µ(T εr/4). (14)

Let f ∈ BL(S, d), ||f ||BL ≤ 1 For each r = s, . . . , t and j = 1, . . . ,mr we choose xrj ∈ Arj and let
f(xrj) = frj .

Step 3:. We introduce Ir :=

∣∣∣∣∣mr∑
j=1

frj (µN (Arj)− µ(Arj))

∣∣∣∣∣ . Using that (Atj)
mt
j=1 is a partition of T we got the

following estimate

∣∣∣∣∫
T

fd(µN − µ)

∣∣∣∣ ≤
∣∣∣∣∣∣∣
mt∑
j=1

∫
At

j

f(x)d(µN − µ)(x)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
mt∑
j=1

∫
At

j

f(x)− f tj + f tjd(µN − µ)(x)

∣∣∣∣∣∣∣
≤It +

∣∣∣∣∣∣∣∣
mt∑
j=1

∫
At

j

(f(x)− f tj )︸ ︷︷ ︸
|.|≤diam(At

j)≤3εt

d(µN − µ)(x)

∣∣∣∣∣∣∣∣
≤It + 3εt|µN − µ|(T )

≤It + 3εt(µN + µ)(T ).
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Step 4:. We pass from the point xtj to xt−1
j to switch to the previous generation and then we use the

correspondence between each partition (13) and the fact that for r = s+ 1, . . . , t,

|frj − fr−1
q(r,j)| ≤ ||f ||Ldiam(Ar−1

q ) ≤ 31−r (15)

This inequality puts emphasis on the control of the variation of f from the generation r to r-1.

It =

∣∣∣∣∣∣
mt−1∑
q=1

∑
j:q(t,j)=q

(f tj − f t−1
q + f t−1

q )(µN − µ)(Atj)

∣∣∣∣∣∣
≤ 31−t︸︷︷︸

(15)

Mt +

∣∣∣∣∣∣
mt−1∑
q=1

∑
j:q(t,j)=q

f t−1
q (µN − µ)(Atj)

∣∣∣∣∣∣
≤εtMt +

∣∣∣∣∣
mt−1∑
q=1

f t−1
q (µN − µ)(At−1

q )

∣∣∣∣∣︸ ︷︷ ︸
It−1

.

We conclude that
It ≤ It−1 + εtMt.

Using this method inductively thanks to the control (15) from r=t down to r=s+1 and that , we obtain

βT (µN , µ) ≤ 3εt(µN (T ) + µ(T )) + Is +

t∑
r=s+1

εrMr (16)

Thus by (14), (6) and that Is ≤Ms, we have

E[βT (µN , µ)] ≤6εtµ(T ) +
2dC

1/2
0

N1/2
ε−d/2s µ(T εs/4) + 2dC

1/2
0

t∑
r=s+1

1

N1/2
ε−d/2+1
r µ(T εr/4).

We use the Ahlfors regularity of µ and remind that for 0 ≤ s ≤ r, 0 < εr ≤ εs hence
µ(T εr/4) ≤ µ(T εs/4):

E[βT (µN , µ)] ≤ 2dC
1/2
0 µ(T εs/4)

N1/2

(
ε−d/2s +

t∑
r=s+1

ε−d/2+1
r

)
+ 6εtµ(T ). (17)

Note that:
ε−d/2+1
r = (3−r+1)−d/2+1 = 3−d/2+1 × (3d/2−1)r

For d > 2, 3d/2−1 > 1, we estimate the geometric sum as follows:

t∑
r=s+1

εd/2+1
r =3−d/2+1

t∑
r=s+1

(3d/2−1)r

=3−d/2+1 (3d/2−1)s+1 − (3d/2−1)t+1

1− 3d/2−1
≤ 3−d/2+1 (3d/2−1)t+1

3d/2−1 − 1

≤3d/2−1 (3d/2−1)t−1

3d/2−1 − 1
= 3d/2−1 ε

d/2−1
t

3d/2−1 − 1
t∑

r=s+1

εd/2+1
r ≤ 3d/2−1

3d/2−1 − 1
ε
d/2−1
t .
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Now we take (17) and we deduce for d > 2

E[βT (µN , µ)] ≤ 2dC
1/2
0 µ(T εs/4)

N1/2

(
ε−d/2s +

3d/2−1

3d/2−1 − 1
ε
d/2−1
t

)
+ 6εtµ(T ).

Thence there is a constant M > 0 depending only on d and C0 such that

E[βT (µN , µ)] ≤Mµ(T εs/4)

N1/2

(
ε−d/2s + ε

d/2−1
t

)
+ εtµ(T ).

Using (11)

E[βT (µN , µ)] ≤Mµ(T εs/4)

N1/2

(
ε−d/2×

d−2
d + ε−d/2+1

)
+ εµ(T )

≤Mµ(T εs/4)

N1/2
ε−d/2+1 + εµ(T ).

We remind that ε = N−1/d then we have

N−
1
2 ε−d/2+1 = N−1/d

and consequently, using that µ(T ) ≤ µ(T
εs
4 ),

E[βT (µN , µ)] ≤M ·N− 1
dµ(T

εs
4 )

≤M ·N− 1
dµ(T γN ) since

εs
4
≤ ε

d−2
2 = N−

d−2

d2 = γN

Conclusion for d > 2 there is M(C0, d) > 0 such that

E[βT (µN , µ)] ≤MN−1/dµ(T γN ) with γN = N−
d−2

d2 −−−−→
N→∞

0.

Proposition 5.11. Assume that µ is a 2-Ahlfors regular measure in Rn with regularity cnstant C0 > 0.
Then there exists M > 0 such that for T ⊂ Rn open bounded set with diameter diam(T ) < 1,

E[βT (µN , µ)] ≤MN−
1
d |ln(N−

1
2 )|µ(T )

Proof. We follow the proof of Theorem 5.10 introducing the following change in the definition of εs in (11).
Let 0 < α < 1 to be set later and let 0 ≤ s ≤ t such that

3−s ≤ εα ≤ 3−s+1 =: εs.

Note that for d > 2,α = d−2
d was a suitable choice and proof of Theorem 5.10 is unchanged up to estimate

(16) ie

βT (µN , µ) ≤ 3εt(µN (T ) + µ(T )) + Is +

t∑
r=s+1

εrMr.

First, we remark that Is ≤ ||f ||∞ ·Ms and f ∈ Cc(Rn is 1-Lipschitz with supp ⊂ T implies that ||f ||∞ ≤
diam(T ), therefore,

E[βT (µN , µ)] ≤ 6εtµ(T ) + diam(T ) · E[Ms] +

t∑
r=s+1

εrE[Mr].
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Moreover, thanks to 14,

εrE[Mr] ≤4C0
1

N
1
2

ε−1
r µ(T εr/4)εr

≤4C0
1

N
1
2

µ(T εs/4)

and then

t∑
r=s+1

εrE[Mr] ≤4C0|t− s|
1

N
1
2

µ(T εs/4)

.t ·N− 1
2µ(T εs/4) and

ε

3
≤ 3−t ⇐⇒ lnε− ln3 ≤ ln3⇐⇒ t ≤ − lnε

ln3
+ 1

.|ln(N−
1
2 )|N− 1

2µ(T εs/4).

Furthermore, reminding that ε = N−
1
2 and ε ≥ εα, we have

diam(T ) · E[Ms] ≤4C
1
2
0

1

N
1
2

ε−1
s µ(T εs/4) · diam(T )

≤4C
1
2
0 ε

1−αdiam(T )µ(T εs/4),

.ε1−αdiam(T ) · (diam(T ) + εα)2 by 2- Ahlfors regularity of µ

.ε1+αdiam(T )

(
diam(T )

εα
+ 1

)2

.

For N large enough, ε = N−
1
2 < diam(T ) < 1 and it is possible to choose 0 < α < 1 such that diam(T ) = εα.

Then diam(T ).E[Ms] . ε1+αdiam(T ) = εdiam(T )2 . εµ(T ) again by 2-Ahlfors regularity. We eventually
conclude that

E[βT (µN , µ)] . ε|lnε|µ(T ) =
1

2
N−

1
2 ln(N)µ(T ).

Remark 5.12. If we directly estimate E[βT (µN , µ)] with It ≤Mt at the end of step 3 we would rather obtain

E[βT (µN , µ)] ≤ E[Mt] + 6εtµ(T )

And then by (14)

E[Mt] .
1

N
1
2

ε
− d

2
t µ(T εt/4)

.
1

N
1
2

ε−
d
2 µ(T ε)

.µ(T ε).

On the other hand, s ≤ t has been chosen to ensure that

E[Ms] .
1

N
1
2

ε
− d

2
s µ(T εs/4)

.
1

N
1
2

(
ε−

d−2
d

)− d
2

µ(T εs/4)

.
1

N
1
2

ε−
d−2
2︸ ︷︷ ︸

=N−
1
d

µ(T εs/4).

Step 4 takes advantage of compensation effects at larger scale εs rather than εt in order to gain the factor
N−

1
d .
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6 Rectifiability

A first interesting result combining statistic and geometric measure theory gives a pointwise convergent
density estimator for regular enough measures. Such a result is stated in Theorem 6.10. As we rely on
Theorem 5.10, we naturally assume Ahlfors regularity of the measure µ. Moreover, we require now some
”order 1” additional regularity and ask the measure µ to be rectifiable as defined below.

6.1 Rectifiability and approximate tangent plane

We first recall some classical definitions and results on rectifiability.

Definition 6.1 (d-rectifiable set). A set S is d-rectifiable if there exists a countable family (fi)i∈N of Lipschitz
maps from Rd to Rn such that

Hd
(
S \

⋃
i∈N

fi(Rd)

)
= 0

Remark 6.2. It means that the set S is Hd-almost included in a d-dimensional Lipschitz graphs. As Lipschitz
functions are a.e. differentiable, it is natural to try to define tangent planes a.e on rectifiable sets.

The following definitions can be found in [3]

Definition 6.3 (Rectifiable measures). Let µ be a Radon measure in Rn.We say that µ is d-rectifiable if
there exist a d-rectifiable set S and a Borel function θ : S 7→ R+ such that µ = θHd|S .

Now we want to analyse the local behaviour of our Radon measure µ around x ∈ Rn, we use the rescaled
measures for r > 0:

µx,r(B) := µ(x+ rB) for B ∈ Bor(Rn)

We study then the behaviour of r−dµx,r when r → 0

Definition 6.4 (Approximate tangent plane). Let µ be a Radon measure and let x ∈ Rn. We say that µ
has approximate tangent space P ∈ Gd,n with multiplicity θ ∈ R+ at x, if r−dµx,r locally weakly-∗ converge
to θHd|P in Rn as r → 0+. That is:

lim
r→0+

r−d
∫
Rn

φ

(
y − x
r

)
dµ(y) = θ

∫
P

φ(y)dHd(y) ∀φ ∈ Cc(Rn).

The measure θHd|P related to the approximate tangent plan is a particular case of tangent measures as
well exposed in [9].

Definition 6.5 (Tangent measure). For α ≥ 0, x ∈ Rn, µ a Radon measure the α-tangent measure set of µ
is:

Tanα(µ, x) =

{
ν s.t

µx,ri
rαi

∗
⇀ ν, ri → 0+, (ri)i∈N ⊂ (R∗+)N

}
Definition 6.6 (d-dimensional density). Let µ be a Radon measure in a Rn. The lower and upper d-
dimensional densities of µ at x ∈ Rn are respectively

Θd
∗(µ, x) = lim inf

ri→0+

ri>0

µ(B(x, ri))

rdi

Θ∗d(µ, x) = lim sup
ri→0+

ri>0

µ(B(x, ri))

rdi

Remark 6.7. Those densities express locally the mass behaviour around x. If they are equal we denote them
Θd(µ, x). There is a beautiful theorem of Marstrand proving that if they are equal then d is an integer.
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Theorem 6.8 (Rectifiable criterion for measures). Let µ be a positive Radon measure in Rn.

1. If µ = θHd|S and S is d-rectifiable, then µ admits an approximate tangent space with multiplicity θ(x)

for Hd-almost every x ∈ S. In particular θ(x) = Θd(µ, x) for Hd-almost every x ∈ S.

2. If µ is concentrated on a Borel set S and admits an approximate tangent space with multiplicity θ(x) > 0
for µ-almost every x ∈ S, then S is d-rectifiable and µ = θH|S . In particular

∃Tand(µ, x) for µ− a.e.x ∈ Ω =⇒ µ is d-rectifiable.

Remark 6.9. The Cantor ”four corners” is 1-Ahlfors regular but not 1-rectifiable, even worse it is, purely
unrectifiable. Properly speaking we cannot build a linear approximation around any points.

6.2 Pointwise convergent density estimator

We have now all the ingredients needed to state a pointwise convergence result: we are able to recover the
density θ a.e. in S from the knowledge of the empirical measures µN , N ∈ N∗ assuming both d-rectifiability
and d-Ahlfors regularity of µ = θHd|S .

Figure 5: Examples of non uniformly sampled point clouds
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Figure 6: Density bias effect on tangent approximation

For instance, we mention that in order to rebuild the tangent planes it is useful to find the density bias.
As the figure above illustrates, if one gives to all the points the same weight then the tangent planes will not
be consistent with the surface.

Theorem 6.10. Let d ∈ N, d > 2 and let µ be a d-Ahlfors regular and d-rectifiable measure µ = θHd|S where

θ : S 7→ R∗+ is a Borel function such that
∫
S
θHd|S(x) = 1. Let µN be the empirical measure associated

with µ. Let η : R 7→ R+ be a Lipschitz even function such that supp(η) ⊂ [−1, 1] and ||η||BL ≤ 1. Denote

cη = dωd
∫ 1

r=0
η(r)rd−1dr where ωd = Ld(B(0, 1)) is the volume of the unite ball in Rd. Then for Hd− a.e.

y ∈ S, for all δN ≥ N−
(d−2)

d2

E
[∣∣∣∣ 1

cηδd

∫
Rn

η

(
|x− y|
δ

)
dµN (x)− θ(y)

∣∣∣∣] . N−1/d

δN
+

∣∣∣∣ 1

cηδdN

∫
Rn

η

(
|x− y|
δ

)
dµ(x)− θ(y)

∣∣∣∣︸ ︷︷ ︸
−−−−−→
N→+∞

0 as soon as δN−−−−−→
N→+∞

0

(18)

Proof.

Step 1: Let y ∈ S and 0 < δ < 1, then ∥∥∥∥η( | · −y|δ

)∥∥∥∥
L

≤ δ−1||η||L

We can therefore apply Theorem (5.10) to δη( .−yδ ) in T = B(y, δ) : ∃M > 0 such that

E

[∣∣∣∣∣
∫
B(y,δ)

δη

(
|x− y|
δ

)
d(µN − µ)(x)

∣∣∣∣∣
]
≤Mµ(B(y, δ + γN ))N−

1
d

Then we use the d-Ahlfors regularity of µ

≤MC0(δ + γN )dN−
1
d

We recall that γN = N−
d−2

d2 and we obtain

E

[
1

δd

∣∣∣∣∣
∫
B(y,δ)

η

(
|x− y|
δ

)
d(µN − µ)(x)

∣∣∣∣∣
]
≤MC0(δ +N−

d−2

d2 )d
1

δd+1
N−1/d

=MC0
N−

1
d

δ

(
1 +

N−
1
d

δ
·N

2
d2

)d
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If we want that the expectation tends to 0 when N → +∞, we have to choose a good δ = δN depending
on N that will converge to 0 to ensure that

εN = max

(
1,
N−

1
d

δN
·N

2
d2

)d
N−

1
d

δN
−−−−−→
N→+∞

0.

• If N−
1
d

δN
·N

2
d2 ≤ 1⇐⇒ δN ≥ N−

1
dN

2
d2 then εN ≤ N−

1
d

δN
≤ N−

2
d2 −−−−−→

N→+∞
0.

• Otherwise, δN ≤ N−
1
dN

2
d2 and εN = N−

1
d

δN
· N

−1N
2
d

δdN
= N−1+ 1

d

δd+1
N

. Therefore, εN −−−−−→
N→+∞

0 ⇐⇒

N−1+ 1
d

δd+1
N

−−−−−→
N→+∞

0. Note that δN ≤ N−
1
d · N

2
d2 implies that δd+1

N ≤ N−
d−2

d2
(d+1) =⇒ εN ≥

N−1+ 1
d ·N

(d−2)(d+1)

d2 = N−
2
d2 . Choosing δN ≤ N−

1
d ·N

2
d2 hence leads to a slower convergence of

εN .

Step 2: We now use the rectifiability of µ implying that Hd a.e. in S, µ has an approximate tangent plane.
Let y ∈ S be such a point, then (see Definition 6.4)

∀φ ∈ Cc(Rn),
1

δd

∫
Rn

φ

(
x− y
δ

)
dµ(x) −−−→

δ→0
θ(y)

∫
TyS

φ(x)dHd(x).

In particular, 1
δd

∫
Rn η

(
|x−y|
δ

)
dµ(x) −−−→

δ→0
θ(y)

∫
TyS

η(|x|)dHd(x). Moreover we integrate along the

spheres S(0, r), 0 < r < 1 :∫
TyS

η(|x|)dHd =

∫ 1

r=0

∫
x∈S(0,r)

η(|x|)dHd−1(x)dr

=

∫ 1

r=0

η(r)Hd−1(S(0, 1))rd−1dr

=dωd

∫ 1

0

η(r)rd−1dr = Cη, because Hd−1(S(0, 1)) = dLd(B(0, 1)).

We conclude the proof applying Step 1 and Step 2.

Remark 6.11. The convergence in 6.10 is the result of a competition between two terms, it would be
important to quantify convergence of the second term in the right hand side of (18) in order to optimize the
choice of δN → 0. Uniform rectifiability of µ might be a good assumption for this purpose.
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7 Introduction to varifold theory

In Theorem 6.10, we have exposed a result allowing to recover the density θ of a measure µ = θHd|S . Such a

result paves the way to the question of recovering the order 1 structure of S: {(x, TxS) : x ∈ S} that is exactly
the support of the so called ”varifold” V(S) naturally associated with S. Recovering the varifold V(S) is the
next step we intend to tackle. However we will restrict ourselves to introduce basic definitions on varifolds
in this last section.

Definition 7.1 (Grassmanian manifold). We denote Gd,n = {vector subspaces of dimension d in Rn} the
Grassmanian manifold of d-dimensional vector subspaces of Rn. For T, P ∈ Gd,n we denote ΠT ,ΠP the
associated orthogonal projectors and we consider the metric d(T, P ) = |||ΠT −ΠP ||| where ||| · ||| is operator
norm of linear endomorphisms of Rn.

Definition 7.2 (General d-varifold). A d-varifold is a Radon measure on RN ×Gd,n.

Definition 7.3 (Mass). The mass of a general varifold V is the Radon measure defined by ||V ||(B) =
V (π−1(B)) for every B ⊂ Ω Borel set, with π : Ω×Gd,n −→ Ω defined by π(x, S) = x.

A first example of varifold is a Dirac mass δx0,P0
in Rn × Gd,n for a given (x0, P0) ∈ Rn × Gd,n more

generally a weighted sum of such Dirac masses that we will refer to as point cloud varifold

Definition 7.4 (Point cloud varifold). Given a finite set of points {xi}Ni=1 ⊂ Rn, masses (weights) {mi}Ni=1 ⊂
R∗+ and directions {Pi}Ni=1 ⊂ Gd,n, we associate the d-varifold

V =

N∑
i=1

miδ(xi,Pi) and in this case ||V || =
N∑
i=1

miδxi
.

Remark 7.5. Pi can be any d-plane in Gd,n. If we sample a submanifold M, then {Pi}Ni=1 can be thought
as tangent planes TxiM.

We can observe the point cloud varifold through its action on functions φ ∈ Cc(Rn ×Gd,n) as follows:∫
Rn×Gd,n

φdV =

N∑
i=1

miφ(xi, Pi).

Definition 7.6 (Rectifiable d-varifold). Let S be a d-rectifiable set in Rn and θ be a Borel such that θ > 0
Hd|S-almost everywhere. A rectifiable d-varifold V = v(S, θ) in Rn is a the Radon measure V = θHd|S × δTxS

on Rn ×Gd,n of the form i.e.∫
Rn×Gd,n

φ(x, T )dV (x, T ) =

∫
S

φ(x, TxS)θ(x)dHd(x) ∀φ ∈ C0
c (Rn ×Gd,n)

where TxS is the approximate tangent space at x which exists Hd|S–almost everywhere in S. The function θ
is called the multiplicity of the rectifiable varifold.

Varifolds are provided with a notion of generalized mean curvature relying on the so called first variation
(see [1]) that extends the classical notion of mean curvature in a distributional way. For the purpose of
defining the first variation of a d-varifold we introduce the following differential operators: let P ∈ Gd,n, ΠP

be the orthogonal projection onto P and (τ1, . . . , τd) be an orthonormal basis of P, let X = (X1, . . . , Xn) ∈
C1(Rn,Rn) be a vector field of class C1, φ ∈ C1(Rn) and (e1, . . . , en) be the canonical basis of Rn, then

∇Pφ = ΠP (∇φ) and divPX =

n∑
i=1

ΠP (∇Xi) · ei =

d∑
i=1

DXτi · τi.

Now we can define the first variation.
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Definition 7.7 (First variation of a varifold). [1] The first variation of a d-varifold V in Rn is the distribution
of order 1

δV : C1
c (Rn,Rn)→ R

X 7→
∫
Rn×Gd,n

divPX(x)dV (x, P )

If S ⊂ Rn is a closed C2 d-submanifold and V = Hd|S ⊗ δTxS is the smooth varifold associated with S
then

δV (X) =

∫
Rn

divTxSX(x)dHd|S

Definition 7.8 (Generalized mean curvature). If δV is an order 0 distribution then we can see it as a Radon
measure thanks to the Riesz theorem. Moreover the Radon Nikodym decomposition of δV related to the mass
||V || permits to decompose δV as a vector field δV

||V || ∈ L
1
loc(||V ||) and a Radon measure (δV )s singular with

respect to ||V || as follows:

δV =
δV

||V ||
(x)||V ||+ (δV )s.

The vector field H := − δV
||V || is the generalized mean curvature vector. Note that for a varifold associated to

a C2 closed manifold it coincides with the classical mean curvature.

The first variation is a way of catching the ”tangent space” variations. For example we can detect some
corners, borders and intersections in the shape S.

Example 7.9. Let V be the 1-varifold V in R2 naturally associated to the corner [0, 1]×{0}∪{0}× [0, 1] with
the density θ((x, y)) = 1 + x. We have a simple parametrization with the natural orthonormal basis (e1, e2).
The point (0,0) is an intersection and the density is more important on the abscissa axis. Let X ∈ C1

c (R2,R)
we have

δV (X) =

∫ 1

0

d

dt
X(te1) · e1θ((t, 0))dt+

∫ 1

0

d

dt
X(te2) · e2θ((0, t))dt.

We integrate by parts and therefore

δV (X) = θ((1, 0))X((1, 0)).e1−θ(0)X(0).e1 +

∫ 1

0

X(t.e1).e1
d

dt
θ((t, 0))dt+θ((0, 1))X((0, 1)).e2−θ(0)X(0).e2

Then we do a second integration by part and replace the value of θ

δV = δ(1,0) · e1 + δ(0,1) · e2︸ ︷︷ ︸
border

− δ0 · (e2 + e1)︸ ︷︷ ︸
corner

+ e1H1
|[0,1]×{0}︸ ︷︷ ︸

density impact

At first sight δV seemed to be an order 1 distribution but here it is more regular:it is a 0 distribution.

We underline that the non constant density θ induces a tangential contribution along the horizontal axis
in the first variation when we would expect 0 since the mean curvature of a straight line vanishes.
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Figure 7: 6-intersections

Remark 7.10. If we have an intersection composed of k ∈ N∗ directions u1, . . . , uk such that u1+· · ·+uk = 0
then we cannot see through the first variation because they balance, as in the case of a triple point junction.
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8 Conclusion and perspectives

In this project, we proved the mean convergence of empirical measures µN towards an Ahlfors regular measure
µ in terms of a localized bounded Lipschitz distance (Theorem 5.10) adapting a proof from [7]. Building on
this result, we obtain a pointwisely convergent density estimator in Theorem 6.10. We underline that we
work in a non-smooth framework, our regularity assumptions being Ahlfors regularity and rectifiability of
the measure µ.

Let us conclude with some perspectives: can we estimate Hd|S thanks to the estimate on the pointwise
density? Moreover are there insightful choices of η regarding the numerical applications? Can we prove
estimates for other distances like Wasserstein distances (see [11]) and Prokhorov distance? What about
estimating the varifold structure V = Hd|S × δTxS from µN? Alongside, discrete equivalent of differential

operators like the Laplace Beltrami (see [11]) are full of potential applications and accessible from the varifold
structure. In fact, those operators can deliver global features of our surface, for instance in view of classifying
them. And last but not least, how robust is our model considering that point clouds can be noised through
the sampling process?
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