TD 2 : Interpolation, a theorem of M. Riesz

We consider measurable 2π -periodic functions with values in \mathbb{C} , which we identify with measurable functions on $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$.

Recall that for $1 \leq p < \infty$, such a function $f : \mathbb{R} \to \mathbb{C} \in L^p$ (*i.e.* $L^p(\mathbb{T})$) if

$$||f||_p := \left(\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^p \, dt\right)^{\frac{1}{p}} < \infty.$$

We denote by $\mathcal{T}_n = \operatorname{vect}(e_k, |k| \leq n, k \in \mathbb{Z})$ with $e_k : \mathbb{R} \to \mathbb{C}, t \mapsto e^{ikt}$ and $\mathcal{T} = \operatorname{vect}(e_k, k \in \mathbb{Z})$. For $f \in L^1$, we define

$$c_k(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-ikt} dt$$
 and $S_n(f) = \sum_{k=-n}^n c_k(f) e_k = f * \sum_{k=-n}^n e_k = f * D_n$

The aim of the present exercises is to prove the following theorem:

Thorem (M. Riesz, 1927). Let $1 and <math>f \in L^p(\mathbb{T})$, then $S_n f$ converges to f in L^p .

We recall that:

- we know that the theorem is true for p = 2 (Plancherel),
- we know that $S_n: \mathbf{L}^p \to \mathbf{L}^p$ is continuous since

$$||S_n(f)||_p = ||f * D_n||_p \le ||D_n||_1 ||f||_p.$$

• we know that \mathcal{T} is dense in L^p $(1 \leq p < \infty)$, using the fact that Fejér's kernel is an approximate identity.¹

Exercise 1.— Approximation and interpolation

Given 1 , we consider the following property :

$$\exists C_p > 0, \,\forall f \in \mathcal{T}, \,\forall n \in \mathbb{N}, \, \|S_n(f)\|_p \le C_p \|f\|_p. \tag{\mathcal{P}_p}$$

1. Show that (\mathcal{P}_p) is equivalent to

$$\forall f \in \mathcal{L}^p, \|S_n(f) - f\|_p \xrightarrow[n \to +\infty]{} 0.$$

- 2. Show that if (\mathcal{P}_p) holds for a given $1 then <math>(\mathcal{P}_q)$ also holds for q conjugated to p, $\left(\frac{1}{p} + \frac{1}{q} = 1\right)$. Notice that $\frac{1}{2\pi} \int_0^{2\pi} \overline{f} S_n g = \frac{1}{2\pi} \int_0^{2\pi} g \overline{S_n(f)}$.
- 3. Assume that there exists an increasing sequence $(p_m)_{m \in \mathbb{N}}$ satisfying $p_m \xrightarrow[m \to \infty]{} \infty$, $1 < p_m < \infty$ and such that property (\mathcal{P}_{p_m}) holds for all $m \in \mathbb{N}$. The existence of such a sequence is then the topic of Exercise 2. Prove the theorem.

¹Fejér's kernel is defined as $\sigma_n = \frac{1}{n} \sum_{k=0}^{n-1} D_k$ and for $f \in L^p$, $||f - \sigma_n f||_p \xrightarrow[n \to +\infty]{} 0$.

Exercise 2.— *Hilbert Transform on* \mathbb{T} . For $f \in \mathcal{T}$ we define its Hilbert Transform :

$$(Hf)(x) = -i\sum_{k\in\mathbb{Z}}\operatorname{sgn}(k)c_k(f)e^{ikx} \quad \text{with} \quad \operatorname{sgn}(k) = \begin{cases} 1 & \operatorname{si} & k > 0\\ -1 & \operatorname{si} & k < 0\\ 0 & \operatorname{si} & k = 0 \end{cases}$$

and

$$(H_+f)(x) = \sum_{k>0} c_k(f)e^{ikx}$$
 and $(H_-f)(x) = \sum_{k<0} c_k(f)e^{ikx}$.

1. Let $1 . Show that if there exists <math>K_p > 0$ such that

$$\forall f \in \mathcal{T}, \ \|Hf\|_p \le K_p \|f\|_p,$$

then (\mathcal{P}_p) holds. We can start with connecting $S_n(f)$ to $H_{\pm}(e_{\pm n}f)$.

- 2. Show that it is possible to reduce the question to the case where $f \in \mathcal{T}$ is real-valued and has zero integral (on a period).
- 3. We now assume that $f \in \mathcal{T}$ is real-valued and has zero integral (on a period). Let $m \in \mathbb{N}^*$.

(a) Show that
$$\int_0^{2\pi} (f + iHf)^{2m} = 0$$
 and Hf is real-valued.

(b) Let $0 < \epsilon < 1$, show that for $k \in \mathbb{N}$ such that $1 \le k \le m$ and for all $a, b \ge 0$,

$$a^k b^{m-k} \le \frac{a^m}{\epsilon^m} + \epsilon b^m,$$

in the sense $a^m \leq \epsilon^{-m} a^m$ if b = 0 and k = m.

- (c) Show that there exists $C_m > 0$ such that $\forall f \in \mathcal{T}, \|Hf\|_{2m} \leq C_m \|f\|_{2m}$.
- 4. Conclude.