TD 2 : Interpolation, a theorem of M. Riesz

We consider measurable 2π-periodic functions with values in \mathbb{C}, which we identify with measurable functions on $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$.
Recall that for $1 \leq p<\infty$, such a function $f: \mathbb{R} \rightarrow \mathbb{C} \in \mathrm{L}^{p}\left(\right.$ i.e. $\left.\mathrm{L}^{p}(\mathbb{T})\right)$ if

$$
\|f\|_{p}:=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)|^{p} d t\right)^{\frac{1}{p}}<\infty .
$$

We denote by $\mathcal{T}_{n}=\operatorname{vect}\left(e_{k},|k| \leq n, k \in \mathbb{Z}\right)$ with $e_{k}: \mathbb{R} \rightarrow \mathbb{C}, t \mapsto e^{i k t}$ and $\mathcal{T}=\operatorname{vect}\left(e_{k}, k \in \mathbb{Z}\right)$. For $f \in \mathrm{~L}^{1}$, we define

$$
c_{k}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-i k t} d t \quad \text { and } \quad S_{n}(f)=\sum_{k=-n}^{n} c_{k}(f) e_{k}=f * \sum_{k=-n}^{n} e_{k}=f * D_{n} .
$$

The aim of the present exercises is to prove the following theorem:
Thorem (M. Riesz, 1927). Let $1<p<\infty$ and $f \in \mathrm{~L}^{p}(\mathbb{T})$, then $S_{n} f$ converges to f in L^{p}.
We recall that:

- we know that the theorem is true for $p=2$ (Plancherel),
- we know that $S_{n}: \mathrm{L}^{p} \rightarrow \mathrm{~L}^{p}$ is continuous since

$$
\left\|S_{n}(f)\right\|_{p}=\left\|f * D_{n}\right\|_{p} \leq\left\|D_{n}\right\|_{1}\|f\|_{p}
$$

- we know that \mathcal{T} is dense in $\mathrm{L}^{p}(1 \leq p<\infty)$, using the fact that Fejér's kernel is an approximate identity ${ }^{1}$

Exercise 1.- Approximation and interpolation

Given $1<p<+\infty$, we consider the following property :

$$
\begin{equation*}
\exists C_{p}>0, \forall f \in \mathcal{T}, \forall n \in \mathbb{N},\left\|S_{n}(f)\right\|_{p} \leq C_{p}\|f\|_{p} \tag{p}
\end{equation*}
$$

1. Show that $\left(\widehat{\mathcal{P}_{p}}\right)$ is equivalent to

$$
\forall f \in \mathrm{~L}^{p},\left\|S_{n}(f)-f\right\|_{p} \xrightarrow[n \rightarrow+\infty]{ } 0
$$

2. Show that if $\left(\overline{\mathcal{P}_{p}}\right)$ holds for a given $1<p<\infty$ then $\left(\mathcal{P}_{q}\right)$ also holds for q conjugated to $p,\left(\frac{1}{p}+\frac{1}{q}=1\right)$. Notice that $\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{f} S_{n} g=\frac{1}{2 \pi} \int_{0}^{2 \pi} g \overline{S_{n}(f)}$.
3. Assume that there exists an increasing sequence $\left(p_{m}\right)_{m \in \mathbb{N}}$ satisfying $p_{m} \xrightarrow[m \rightarrow \infty]{ } \infty, 1<p_{m}<\infty$ and such that property $\left(\mathcal{P}_{p_{m}}\right)$ holds for all $m \in \mathbb{N}$. The existence of such a sequence is then the topic of Exercise 2. Prove the theorem.
[^0]Exercise 2.- Hilbert Transform on \mathbb{T}.
For $f \in \mathcal{T}$ we define its Hilbert Transform :

$$
(H f)(x)=-i \sum_{k \in \mathbb{Z}} \operatorname{sgn}(k) c_{k}(f) e^{i k x} \quad \text { with } \quad \operatorname{sgn}(k)=\left\{\begin{array}{ccc}
1 & \text { si } & k>0 \\
-1 & \text { si } & k<0 \\
0 & \text { si } & k=0
\end{array}\right.
$$

and

$$
\left(H_{+} f\right)(x)=\sum_{k>0} c_{k}(f) e^{i k x} \quad \text { and } \quad\left(H_{-} f\right)(x)=\sum_{k<0} c_{k}(f) e^{i k x}
$$

1. Let $1<p<\infty$. Show that if there exists $K_{p}>0$ such that

$$
\forall f \in \mathcal{T},\|H f\|_{p} \leq K_{p}\|f\|_{p}
$$

then $\left(\mathcal{P}_{p}\right)$ holds.
We can start with connecting $S_{n}(f)$ to $H_{ \pm}\left(e_{ \pm n} f\right)$.
2. Show that it is possible to reduce the question to the case where $f \in \mathcal{T}$ is real-valued and has zero integral (on a period).
3. We now assume that $f \in \mathcal{T}$ is real-valued and has zero integral (on a period). Let $m \in \mathbb{N}^{*}$.
(a) Show that $\int_{0}^{2 \pi}(f+i H f)^{2 m}=0$ and $H f$ is real-valued.
(b) Let $0<\epsilon<1$, show that for $k \in \mathbb{N}$ such that $1 \leq k \leq m$ and for all $a, b \geq 0$,

$$
a^{k} b^{m-k} \leq \frac{a^{m}}{\epsilon^{m}}+\epsilon b^{m}
$$

in the sense $a^{m} \leq \epsilon^{-m} a^{m}$ if $b=0$ and $k=m$.
(c) Show that there exists $C_{m}>0$ such that $\forall f \in \mathcal{T},\|H f\|_{2 m} \leq C_{m}\|f\|_{2 m}$.
4. Conclude.

[^0]: ${ }^{1}$ Fejér's kernel is defined as $\sigma_{n}=\frac{1}{n} \sum_{k=0}^{n-1} D_{k}$ and for $f \in \mathrm{~L}^{p},\left\|f-\sigma_{n} f\right\|_{p} \xrightarrow[n \rightarrow+\infty]{ } 0$.

