TD 3 : Sobolev spaces

B(x,r) is the **open** ball of radius r and center x. We recall the following *Localization principle*.

Proposition. Let $U \subset \mathbb{R}^n$ be an open set and let $v, w \in L^1_{loc}(U)$. Then,

 $u = v \text{ as distributions} \quad \Leftrightarrow \quad u = v \text{ a.e. in } U$.

Exercice 1.— *Pointwise discontinuity.*

Let $\Omega \subset \mathbb{R}^n$ be an open set containing 0. Let $u : \Omega \to \mathbb{R}$. We assume that $u \in C^1(\Omega \setminus \{0\})$ and we denote by $\nabla_p u$ the pointwise gradient of u (defined in $\Omega \setminus \{0\}$ and thus almost everywhere in Ω), whereas we denote by ∇u the distributional gradient of u (defined if $u \in L^1_{loc}$).

- 1. Show that if $u \in L^1_{loc}(\Omega)$ and $\nabla u \in L^1_{loc}(\Omega)$ then $\nabla_p u \in L^1_{loc}(\Omega)$.
- 2. In the case n = 1, give an example of function u defined in $\mathbb{R} \setminus \{0\}$ (for instance) such that $u \in C^1(\mathbb{R} \setminus \{0\})$ and whose pointwise derivative is in $L^1_{loc}(\mathbb{R})$ while its distributional derivative $u' \notin L^1_{loc}$.

We now assume that $n \ge 2$ and $\nabla_p u \in \mathrm{L}^1_{loc}(\Omega)$. The purpose of the exercise is to show that $u \in \mathrm{L}^1_{loc}$, $\nabla u \in \mathrm{L}^1_{loc}(\Omega)$ and that $\nabla_p u$ and ∇u coincide almost everywhere.

- 3. Let $\epsilon > 0$ such that $B(0, \epsilon) \subset \Omega$. Show that $\lim_{\epsilon \to 0} \int_{\partial B(0,\epsilon)} |u| \, d\mathcal{H}^{n-1} = 0$. Indication : We recall that for f positive measurable or L^1 , $\int_{\mathbb{R}^n} f(x) \, dx = \int_{r=0}^{\infty} \int_{\partial B(0,r)} f \, d\mathcal{H}^{n-1} \, dr$, and if $f \in L^1\left(\partial B(0,r), \mathcal{H}^{n-1}\right)$ then $\int_{\partial B(0,r)} u(x) \, d\mathcal{H}^{n-1}(x) = r^{n-1} \int_{\partial B(0,1)} u(ry) \, d\mathcal{H}^{n-1}(y)$.
- 4. Infer that $u \in L^1_{loc}(\Omega)$.
- 5. Show that the distributional gradient of u is L^1_{loc} and coincide almost everywhere with the pointwise gradient $\nabla_p u$.
- 6. Let $1 \le p < +\infty$ and $\alpha \in \mathbb{R}$. Let $\Omega = B(0, 1)$, for which values of α , $u_{\alpha} : x \mapsto |x|^{-\alpha} \in W^{1,p}$? Indication : We recall that $u_{\alpha} \in L^{1}_{loc}(\mathbb{R}^{n})$ if and only if $\alpha < n$.

Further extensions. $k \in \mathbb{N}, k \leq n-2$

- Let P be a k-dimensional subspace of \mathbb{R}^n and $\Omega \subset \mathbb{R}^n$ be an open set. Let $u \in C^1(\Omega \setminus P)$ be such that $\nabla_p u \in L^1_{loc}(\Omega)$. Then $u \in L^1_{loc}(\Omega)$, $\nabla u \in L^1_{loc}(\Omega)$ and $\nabla u = \nabla_p u$ a.e. in Ω .
- Let Σ be a k-dimensional subspace of \mathbb{R}^n and $\Omega \subset \mathbb{R}^n$ be an open set. Let $u \in C^1(\Omega \setminus \Sigma)$ be such that $\nabla_p u \in L^1_{loc}(\Omega)$. Then $u \in L^1_{loc}(\Omega)$, $\nabla u \in L^1_{loc}(\Omega)$ and $\nabla u = \nabla_p u$ a.e. in Ω .

Exercice 2.— Product differentiation. Let $\Omega \subset \mathbb{R}^n$ be open and $1 \le p \le +\infty$.

- 1. Let $f \in W^{1,p}(\Omega)$ and $a \in C^1(\Omega)$ be bounded and with bounded order 1 partial derivatives. Check that $af \in W^{1,p}$ and $\nabla(af) = a\nabla f + f\nabla a$.
- 2. Let $f, g \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. Show that $fg \in W^{1,p}(\Omega)$ and $\nabla(fg) = f\nabla g + g\nabla f$.

Exercice 3.— A characterization of $W^{1,\infty}(\Omega)$ functions. Let $\Omega \subset \mathbb{R}^n$ be an open set. We want to prove the following characterizations:

$$f \in \mathbf{W}_{loc}^{1,\infty}(\Omega) \quad \Leftrightarrow \quad f \text{ is locally Lipschitz}$$

and

$$f \in \mathrm{W}^{1,\infty}(\Omega) \quad \Leftrightarrow \quad f \in \mathrm{L}^{\infty}(\Omega) \text{ and } \exists C > 0, \, \forall x, y \in \Omega \text{ such that } [x,y] \subset \Omega, \, |f(x) - f(y)| \le C|x - y|$$

Notice that in this case, we will check that we can take $C = \|\nabla f\|_{L^{\infty}(\Omega)}$. Pay attention to the fact that those characterizations are to be understood as f is a.e. equal to a function satisfying ...

We recall that if $(\rho_{\epsilon})_{\epsilon>0}$ is a mollifier and $f \in L^1_{loc}(\Omega)$ then

- (i) the convolution $f_{\epsilon} := f * \rho_{\epsilon}$ is well-defined and of class C^{∞} in $\Omega_{\epsilon} = \{x \in \Omega : \operatorname{dist}(x, \mathbb{R}^n \Omega) > \epsilon\}$ and converges almost everywhere to f when $\epsilon \to 0$.
- (*ii*) if $f \in W^{1,p}_{loc}(\Omega)$, $1 \le p \le \infty$, then $\nabla f_{\epsilon} = \nabla f * \rho_{\epsilon}$ in Ω_{ϵ} .

If $\omega \subset \mathbb{R}^n$ is an open set, $\omega \subset \subset \Omega$ stands for $\overline{\omega}$ is compact and $\overline{\omega} \subset \Omega$.

1. Lesgue's number lemma: let $K \subset \mathbb{R}^n$ and $\{U\}_{U \in \mathcal{U}}$ be a covering of K with open sets. Then, there exists $\delta > 0$ such that for every set $X \subset K$, if diam $X \leq \delta$ then X is contained in one open set of the covering.

True for (K, d) compact metric space.

- 2. We first assume that $f \in W^{1,\infty}_{loc}(\Omega)$, that is, $f \in W^{1,\infty}(\omega)$ for all open set $\omega \subset \subset \Omega$. Let f_{ϵ} be defined as above.
 - (a) Show that $(f_{\epsilon})_{\epsilon}$ is equi-Lipschitz on every compact set.
 - (b) Show that $(f_{\epsilon})_{\epsilon}$ converges uniformly on compact sets to a continuous function $g \in C(\Omega)$, and that f and g coincide a.e., we identify f and g hereafter.
 - (c) Conclude that f is locally Lipschitz in the sense that for all compact set $K \subset \Omega$, $f_{|K}$ is Lipschitz.
 - (d) Adapt the previous arguments to prove that if $W^{1,\infty}(\Omega)$ then

 $|f(x) - f(y)| \le ||\nabla f||_{\mathcal{L}^{\infty}(\Omega)} |x - y|, \forall x, y \in \Omega \text{ such that } [x, y] \subset \Omega.$

- 3. We conversely assume that f is locally Lipschitz. Let $\omega \subset \Omega$ be an open set and $\delta = \operatorname{dist}(\overline{\omega}, \mathbb{R}^n \Omega) > 0$ and define $K = \{x \in \Omega : \operatorname{dist}(x, \overline{\omega}) \leq \delta/2\} \subset \Omega$. Let $\phi \in C_c^{\infty}(\omega)$.
 - (a) Let $t \in \mathbb{R}$, $|t| \leq \delta/2$ and let (e_1, \ldots, e_n) bet the canonical basis of \mathbb{R}^n . Prove that for $i \in \{1, \ldots, n\}$,

$$\left| \int_{\Omega} f(x) \frac{\phi(x - te_i) - \phi(x)}{|t|} \right| \le \operatorname{Lip}(f_{|K}) \|\phi\|_{\mathrm{L}^1(\omega)}$$

- (b) Infer that $\nabla f \in \mathcal{L}^{\infty}(\omega)$ and conclude.
- (c) Notice that $[x, x + \delta/2e_i] \subset B(x, \delta/2)$ and conclude the proof of the second characterization.
- 4. Let $\Omega = \{x \in \mathbb{R}^2 \setminus \mathbb{R}_- \times \{0\} : 1 < |x| < 2\}$ and let f be defined in Ω by $f(re^{i\theta}) = \theta$ (1 < r < 2 and $\theta \in]-\pi, \pi[$). Check that $f \in W^{1,\infty}(\Omega)$ but is not Lipschitz in Ω .

Actually, in such a case or more generally in a connected open set, f is Lipschitz but with respect to the geodesic ditance that is

$$|f(x) - f(y)| \le \|\nabla f\|_{\mathcal{L}^{\infty}(\Omega)} d_{\Omega}(x, y) \quad \text{with} \quad d_{\Omega}(x, y) = \inf \left\{ \operatorname{length}(\Gamma) : \begin{array}{c} \Gamma \text{ polygonal line connecting} \\ x \text{ and } y, \Gamma \subset \Omega \end{array} \right\}$$

and note that in a Lipschitz bounded connected open set, euclidean and geodesic distance are equivalent.