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TD 3 : Sobolev spaces

B(x, r) is the open ball of radius r and center x.
We recall the following Localization principle.

Proposition. Let U ⊂ Rn be an open set and let v, w ∈ L1
loc(U). Then,

u = v as distributions ⇔ u = v a.e. in U .

Exercice 1.— Pointwise discontinuity.
Let Ω ⊂ Rn be an open set containing 0. Let u : Ω→ R. We assume that u ∈ C1 (Ω \ {0}) and we denote by
∇pu the pointwise gradient of u (defined in Ω \ {0} and thus almost everywhere in Ω), whereas we denote by
∇u the distributional gradient of u (defined if u ∈ L1

loc).

1. Show that if u ∈ L1
loc(Ω) and ∇u ∈ L1

loc(Ω) then ∇pu ∈ L1
loc(Ω).

2. In the case n = 1, give an example of function u defined in R \ {0} (for instance) such that u ∈
C1 (R \ {0}) and whose pointwise derivative is in L1

loc(R) while its distributional derivative u′ /∈ L1
loc.

We now assume that n ≥ 2 and ∇pu ∈ L1
loc(Ω). The purpose of the exercise is to show that u ∈ L1

loc,
∇u ∈ L1

loc(Ω) and that ∇pu and ∇u coincide almost everywhere.

3. Let ε > 0 such that B(0, ε) ⊂ Ω. Show that lim
ε→0

∫
∂B(0,ε)

|u| dHn−1 = 0 .

Indication : We recall that for f positive measurable or L1,
∫
Rn

f(x) dx =

∫ ∞
r=0

∫
∂B(0,r)

f dHn−1 dr ,

and if f ∈ L1
(
∂B(0, r),Hn−1

)
then

∫
∂B(0,r)

u(x) dHn−1(x) = rn−1

∫
∂B(0,1)

u(ry) dHn−1(y) .

4. Infer that u ∈ L1
loc(Ω).

5. Show that the distributional gradient of u is L1
loc and coincide almost everywhere with the pointwise

gradient ∇pu.

6. Let 1 ≤ p < +∞ and α ∈ R. Let Ω = B(0, 1), for which values of α, uα : x 7→ |x|−α ∈W1,p ?
Indication : We recall that uα ∈ L1

loc(Rn) if and only if α < n.

Further extensions. k ∈ N, k ≤ n− 2

• Let P be a k–dimensional subspace of Rn and Ω ⊂ Rn be an open set. Let u ∈ C1(Ω \ P ) be such that
∇pu ∈ L1

loc(Ω). Then u ∈ L1
loc(Ω), ∇u ∈ L1

loc(Ω) and ∇u = ∇pu a.e. in Ω.

• Let Σ be a k–dimensional subspace of Rn and Ω ⊂ Rn be an open set. Let u ∈ C1(Ω \Σ) be such that
∇pu ∈ L1

loc(Ω). Then u ∈ L1
loc(Ω), ∇u ∈ L1

loc(Ω) and ∇u = ∇pu a.e. in Ω.

Exercice 2.— Product differentiation.
Let Ω ⊂ Rn be open and 1 ≤ p ≤ +∞.

1. Let f ∈W1,p(Ω) and a ∈ C1(Ω) be bounded and with bounded order 1 partial derivatives. Check that
af ∈W1,p and ∇(af) = a∇f + f∇a.

2. Let f, g ∈W1,p(Ω) ∩ L∞(Ω). Show that fg ∈W1,p(Ω) and ∇(fg) = f∇g + g∇f .
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Exercice 3.— A characterization of W1,∞(Ω) functions.
Let Ω ⊂ Rn be an open set. We want to prove the following characterizations:

f ∈W1,∞
loc (Ω) ⇔ f is locally Lipschitz

and

f ∈W1,∞(Ω) ⇔ f ∈ L∞(Ω) and ∃C > 0, ∀x, y ∈ Ω such that [x, y] ⊂ Ω, |f(x)− f(y)| ≤ C|x− y|

Notice that in this case, we will check that we can take C = ‖∇f‖L∞(Ω). Pay attention to the fact that those
characterizations are to be understood as f is a.e. equal to a function satisfying ...

We recall that if (ρε)ε>0 is a mollifier and f ∈ L1
loc(Ω) then

(i) the convolution fε := f ∗ ρε is well-defined and of class C∞ in Ωε = {x ∈ Ω : dist(x,Rn −Ω) > ε} and
converges almost everywhere to f when ε→ 0.

(ii) if f ∈W1,p
loc(Ω), 1 ≤ p ≤ ∞, then ∇fε = ∇f ∗ ρε in Ωε.

If ω ⊂ Rn is an open set, ω ⊂⊂ Ω stands for ω is compact and ω ⊂ Ω.

1. Lesgue’s number lemma: let K ⊂ Rn and {U}U∈U be a covering of K with open sets. Then, there
exists δ > 0 such that for every set X ⊂ K, if diamX ≤ δ then X is contained in one open set of the
covering.

True for (K, d) compact metric space.

2. We first assume that f ∈ W1,∞
loc (Ω), that is, f ∈ W1,∞(ω) for all open set ω ⊂⊂ Ω. Let fε be defined

as above.

(a) Show that (fε)ε is equi-Lipschitz on every compact set.
(b) Show that (fε)ε converges uniformly on compact sets to a continuous function g ∈ C(Ω), and that

f and g coincide a.e., we identify f and g hereafter.
(c) Conclude that f is locally Lipschitz in the sense that for all compact set K ⊂ Ω, f|K is Lipschitz.
(d) Adapt the previous arguments to prove that if W1,∞(Ω) then

|f(x)− f(y)| ≤ ‖∇f‖L∞(Ω)|x− y|, ∀x, y ∈ Ω such that [x, y] ⊂ Ω .

3. We conversely assume that f is locally Lipschitz. Let ω ⊂⊂ Ω be an open set and δ = dist(ω,Rn−Ω) > 0
and define K = {x ∈ Ω : dist(x, ω) ≤ δ/2} ⊂ Ω. Let φ ∈ C∞c (ω).

(a) Let t ∈ R, |t| ≤ δ/2 and let (e1, . . . , en) bet the canonical basis of Rn. Prove that for i ∈ {1, . . . , n},∣∣∣∣∫
Ω
f(x)

φ(x− tei)− φ(x)

|t|

∣∣∣∣ ≤ Lip(f|K)‖φ‖L1(ω) .

(b) Infer that ∇f ∈ L∞(ω) and conclude.
(c) Notice that [x, x+ δ/2ei] ⊂ B(x, δ/2) and conclude the proof of the second characterization.

4. Let Ω = {x ∈ R2 \ R− × {0} : 1 < |x| < 2} and let f be defined in Ω by f(reiθ) = θ (1 < r < 2 and
θ ∈]− π, π[). Check that f ∈W1,∞(Ω) but is not Lipschitz in Ω.

Actually, in such a case or more generally in a connected open set, f is Lipschitz but with respect to the
geodesic ditance that is

|f(x)− f(y)| ≤ ‖∇f‖L∞(Ω)dΩ(x, y) with dΩ(x, y) = inf
{

length(Γ) : Γ polygonal line connecting
x and y, Γ⊂Ω

}
and note that in a Lipschitz bounded connected open set, euclidean and geodesic distance are equivalent.
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