TD 3 : Sobolev spaces

$B(x, r)$ is the open ball of radius r and center x.
We recall the following Localization principle.
Proposition. Let $U \subset \mathbb{R}^{n}$ be an open set and let $v, w \in \mathrm{~L}_{l o c}^{1}(U)$. Then,

$$
u=v \text { as distributions } \Leftrightarrow \quad u=v \text { a.e. in } U .
$$

Exercice 1.- Pointwise discontinuity.
Let $\Omega \subset \mathbb{R}^{n}$ be an open set containing 0 . Let $u: \Omega \rightarrow \mathbb{R}$. We assume that $u \in \mathrm{C}^{1}(\Omega \backslash\{0\})$ and we denote by $\nabla_{p} u$ the pointwise gradient of u (defined in $\Omega \backslash\{0\}$ and thus almost everywhere in Ω), whereas we denote by ∇u the distributional gradient of u (defined if $u \in \mathrm{~L}_{l o c}^{1}$).

1. Show that if $u \in \mathrm{~L}_{l o c}^{1}(\Omega)$ and $\nabla u \in \mathrm{~L}_{l o c}^{1}(\Omega)$ then $\nabla_{p} u \in \mathrm{~L}_{l o c}^{1}(\Omega)$.
2. In the case $n=1$, give an example of function u defined in $\mathbb{R} \backslash\{0\}$ (for instance) such that $u \in$ $\mathrm{C}^{1}(\mathbb{R} \backslash\{0\})$ and whose pointwise derivative is in $\mathrm{L}_{l o c}^{1}(\mathbb{R})$ while its distributional derivative $u^{\prime} \notin \mathrm{L}_{l o c}^{1}$.

We now assume that $n \geq 2$ and $\nabla_{p} u \in \mathrm{~L}_{l o c}^{1}(\Omega)$. The purpose of the exercise is to show that $u \in \mathrm{~L}_{l o c}^{1}$, $\nabla u \in \mathrm{~L}_{l o c}^{1}(\Omega)$ and that $\nabla_{p} u$ and ∇u coincide almost everywhere.
3. Let $\epsilon>0$ such that $B(0, \epsilon) \subset \Omega$. Show that $\lim _{\epsilon \rightarrow 0} \int_{\partial B(0, \epsilon)}|u| d \mathcal{H}^{n-1}=0$.

Indication: We recall that for f positive measurable or $\mathrm{L}^{1}, \int_{\mathbb{R}^{n}} f(x) d x=\int_{r=0}^{\infty} \int_{\partial B(0, r)} f d \mathcal{H}^{n-1} d r$, and if $f \in \mathrm{~L}^{1}\left(\partial B(0, r), \mathcal{H}^{n-1}\right)$ then $\int_{\partial B(0, r)} u(x) d \mathcal{H}^{n-1}(x)=r^{n-1} \int_{\partial B(0,1)} u(r y) d \mathcal{H}^{n-1}(y)$.
4. Infer that $u \in \mathrm{~L}_{l o c}^{1}(\Omega)$.
5. Show that the distributional gradient of u is $\mathrm{L}_{l o c}^{1}$ and coincide almost everywhere with the pointwise gradient $\nabla_{p} u$.
6. Let $1 \leq p<+\infty$ and $\alpha \in \mathbb{R}$. Let $\Omega=B(0,1)$, for which values of $\alpha, u_{\alpha}: x \mapsto|x|^{-\alpha} \in \mathrm{W}^{1, p}$? Indication : We recall that $u_{\alpha} \in \mathrm{L}_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ if and only if $\alpha<n$.

Further extensions. $k \in \mathbb{N}, k \leq n-2$

- Let P be a k-dimensional subspace of \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ be an open set. Let $u \in \mathrm{C}^{1}(\Omega \backslash P)$ be such that $\nabla_{p} u \in \mathrm{~L}_{l o c}^{1}(\Omega)$. Then $u \in \mathrm{~L}_{l o c}^{1}(\Omega), \nabla u \in \mathrm{~L}_{l o c}^{1}(\Omega)$ and $\nabla u=\nabla_{p} u$ a.e. in Ω.
- Let Σ be a k-dimensional subspace of \mathbb{R}^{n} and $\Omega \subset \mathbb{R}^{n}$ be an open set. Let $u \in \mathrm{C}^{1}(\Omega \backslash \Sigma)$ be such that $\nabla_{p} u \in \mathrm{~L}_{l o c}^{1}(\Omega)$. Then $u \in \mathrm{~L}_{l o c}^{1}(\Omega), \nabla u \in \mathrm{~L}_{l o c}^{1}(\Omega)$ and $\nabla u=\nabla_{p} u$ a.e. in Ω.

Exercice 2.- Product differentiation.

Let $\Omega \subset \mathbb{R}^{n}$ be open and $1 \leq p \leq+\infty$.

1. Let $f \in \mathrm{~W}^{1, p}(\Omega)$ and $a \in \mathrm{C}^{1}(\Omega)$ be bounded and with bounded order 1 partial derivatives. Check that $a f \in \mathrm{~W}^{1, p}$ and $\nabla(a f)=a \nabla f+f \nabla a$.
2. Let $f, g \in \mathrm{~W}^{1, p}(\Omega) \cap \mathrm{L}^{\infty}(\Omega)$. Show that $f g \in \mathrm{~W}^{1, p}(\Omega)$ and $\nabla(f g)=f \nabla g+g \nabla f$.

Exercice 3.- A characterization of $\mathrm{W}^{1, \infty}(\Omega)$ functions.
Let $\Omega \subset \mathbb{R}^{n}$ be an open set. We want to prove the following characterizations:

$$
f \in \mathrm{~W}_{\text {loc }}^{1, \infty}(\Omega) \quad \Leftrightarrow \quad f \text { is locally Lipschitz }
$$

and

$$
f \in \mathrm{~W}^{1, \infty}(\Omega) \quad \Leftrightarrow \quad f \in \mathrm{~L}^{\infty}(\Omega) \text { and } \exists C>0, \forall x, y \in \Omega \text { such that }[x, y] \subset \Omega,|f(x)-f(y)| \leq C|x-y|
$$

Notice that in this case, we will check that we can take $C=\|\nabla f\|_{L^{\infty}(\Omega)}$. Pay attention to the fact that those characterizations are to be understood as f is a.e. equal to a function satisfying ...
We recall that if $\left(\rho_{\epsilon}\right)_{\epsilon>0}$ is a mollifier and $f \in \mathrm{~L}_{l o c}^{1}(\Omega)$ then
(i) the convolution $f_{\epsilon}:=f * \rho_{\epsilon}$ is well-defined and of class C^{∞} in $\Omega_{\epsilon}=\left\{x \in \Omega: \operatorname{dist}\left(x, \mathbb{R}^{n}-\Omega\right)>\epsilon\right\}$ and converges almost everywhere to f when $\epsilon \rightarrow 0$.
(ii) if $f \in \mathrm{~W}_{\text {loc }}^{1, p}(\Omega), 1 \leq p \leq \infty$, then $\nabla f_{\epsilon}=\nabla f * \rho_{\epsilon}$ in Ω_{ϵ}.

If $\omega \subset \mathbb{R}^{n}$ is an open set, $\omega \subset \subset \Omega$ stands for $\bar{\omega}$ is compact and $\bar{\omega} \subset \Omega$.

1. Lesgue's number lemma: let $K \subset \mathbb{R}^{n}$ and $\{U\}_{U \in \mathcal{U}}$ be a covering of K with open sets. Then, there exists $\delta>0$ such that for every set $X \subset K$, if diam $X \leq \delta$ then X is contained in one open set of the covering.
True for (K, d) compact metric space.
2. We first assume that $f \in \mathrm{~W}_{\text {loc }}^{1, \infty}(\Omega)$, that is, $f \in \mathrm{~W}^{1, \infty}(\omega)$ for all open set $\omega \subset \subset \Omega$. Let f_{ϵ} be defined as above.
(a) Show that $\left(f_{\epsilon}\right)_{\epsilon}$ is equi-Lipschitz on every compact set.
(b) Show that $\left(f_{\epsilon}\right)_{\epsilon}$ converges uniformly on compact sets to a continuous function $g \in \mathrm{C}(\Omega)$, and that f and g coincide a.e., we identify f and g hereafter.
(c) Conclude that f is locally Lipschitz in the sense that for all compact set $K \subset \Omega, f_{\mid K}$ is Lipschitz.
(d) Adapt the previous arguments to prove that if $\mathrm{W}^{1, \infty}(\Omega)$ then

$$
|f(x)-f(y)| \leq\|\nabla f\|_{L^{\infty}(\Omega)}|x-y|, \forall x, y \in \Omega \text { such that }[x, y] \subset \Omega .
$$

3. We conversely assume that f is locally Lipschitz. Let $\omega \subset \subset \Omega$ be an open set and $\delta=\operatorname{dist}\left(\bar{\omega}, \mathbb{R}^{n}-\Omega\right)>0$ and define $K=\{x \in \Omega: \operatorname{dist}(x, \bar{\omega}) \leq \delta / 2\} \subset \Omega$. Let $\phi \in \mathrm{C}_{c}^{\infty}(\omega)$.
(a) Let $t \in \mathbb{R},|t| \leq \delta / 2$ and let $\left(e_{1}, \ldots, e_{n}\right)$ bet the canonical basis of \mathbb{R}^{n}. Prove that for $i \in\{1, \ldots, n\}$,

$$
\left|\int_{\Omega} f(x) \frac{\phi\left(x-t e_{i}\right)-\phi(x)}{|t|}\right| \leq \operatorname{Lip}\left(f_{\mid K}\right)\|\phi\|_{\mathrm{L}^{1}(\omega)} .
$$

(b) Infer that $\nabla f \in \mathrm{~L}^{\infty}(\omega)$ and conclude.
(c) Notice that $\left[x, x+\delta / 2 e_{i}\right] \subset B(x, \delta / 2)$ and conclude the proof of the second characterization.
4. Let $\Omega=\left\{x \in \mathbb{R}^{2} \backslash \mathbb{R}_{-} \times\{0\}: 1<|x|<2\right\}$ and let f be defined in Ω by $f\left(r e^{i \theta}\right)=\theta(1<r<2$ and $\theta \in]-\pi, \pi[)$. Check that $f \in \mathrm{~W}^{1, \infty}(\Omega)$ but is not Lipschitz in Ω.
Actually, in such a case or more generally in a connected open set, f is Lipschitz but with respect to the geodesic ditance that is

$$
|f(x)-f(y)| \leq\|\nabla f\|_{L^{\infty}(\Omega)} d_{\Omega}(x, y) \quad \text { with } \quad d_{\Omega}(x, y)=\inf \left\{\operatorname{length}(\Gamma): \begin{array}{r}
\Gamma \text { polygonal line connecting } \\
x \text { and } y, \Gamma \subset \Omega
\end{array}\right\}
$$

and note that in a Lipschitz bounded connected open set, euclidean and geodesic distance are equivalent.

