Université Paris Sud

Master 2 2020–2021

TD 4: Hausdorff Measure and Cantor Sets

We recall the definition of the d-dimensional Hausdorff measure \mathcal{H}^d in \mathbb{R}^n : let $E \subset \mathbb{R}^n$, then for any $\delta > 0$ we define

$$\mathcal{H}^d_{\delta}(E) = \inf \left\{ \sum_{i \in I} (\operatorname{diam}(E_i))^d : \operatorname{diam}(E_i) \leq \delta, \ \{E_i\}_{i \in I} \text{ is a countable (or finite) cover of } E \right\}$$

and then $\mathcal{H}^d(E) = \lim_{\delta \downarrow 0} \mathcal{H}^d_{\delta}(E) = \sup_{\delta > 0} \mathcal{H}^d_{\delta}(E)$ since $\delta \mapsto \mathcal{H}^d_{\delta}(E)$ is non increasing.

Exercise 1.— Let μ be a positive Radon measure in \mathbb{R}^n , $0 < t < +\infty$ and $A \subset \mathbb{R}^n$ be a Borel set. Then, prove the following facts:

$$\theta_d^*(\mu, x) \ge t, \ \forall x \in A \quad \Rightarrow \quad \mu(A) \ge t\mathcal{H}^d(A)$$

 $\theta_d^*(\mu, x) \le t, \ \forall x \in A \quad \Rightarrow \quad \mu(A) \le 2^d t\mathcal{H}^d(A),$

with
$$\theta_d^*(\mu, x) = \limsup_{r \to 0_+} \frac{\mu(B(x, r))}{(2r)^d}$$
.

Exercise 2.— Some Cantor sets.

We fix $0 < \lambda < \lambda' < \frac{1}{2}$ and $d \in]0,1[$ such that $2\lambda^d = 1$.

The aim of the first part of this exercise (up to question 4) is to define a Cantor set $K \subset [0,1]$ such that

$$0 < \mathcal{H}^d(K) < +\infty$$
 and $\forall x \in K, \ \theta^d_*(K, x) = \liminf_{r \to 0_+} \frac{\mathcal{H}^d(K \cap B(x, r))}{(2r)^d} = 0$.

Let us provide the construction of the Cantor set K associated with the sequence $(r_n)_n$ defined in question 1. The process is based on the following fundamental operation: given a segment $[a,b] \subset [0,1]$ and a length ℓ satisfying $0 < 2\ell < b-a$, we devide it into two segments of equal length ℓ by removing a segment of length $b-a-2\ell$ in the middle

$$\mathcal{C}([a,b],\ell):=\{[a,a+\ell],[b-\ell,b]\}$$

We construct iteratively a family of sub-segments in [0,1] starting with the family $C_0 = \{[0,1]\}$ ([0,1] of length $r_0 = 1$) and for $n \in \mathbb{N}$,

$$C_{n+1} = \bigcup_{I \in C_n} C(I, r_{n+1})$$
 (requires $r_n - 2r_{n+1} > 0$).

In words: each segment from generation n produces 2 segments of equal lengths $\ell = r_{n+1}$. We can now define the compact set K_n as the union of the 2^n segments in \mathcal{C}_n . The resulting sequence $(K_n)_n$ is non increasing and its intersection is the compact set K:

$$\forall n \in \mathbb{N}, K_n = \bigcup_{I \in \mathcal{C}_n} I \text{ et } K = \bigcap_{n \in \mathbb{N}} K_n.$$

Notation: it will be convenient to enumerate the segments in each C_n at some point, hence we introduce the following notation, for $n \in \mathbb{N}$ and $k \in \{0, 1, \dots, 2^n - 1\}$,

 $I_{n,k} \in \mathcal{C}_n$ is the k^{th} segment, when ordered from 0 to 1 so that $I_{n+1,2k}$, $I_{n+1,2k+1} \subset I_n$.

Remark: taking $r_n = 3^{-n}$ produces the "usual" ternary Cantor set.

Université Paris Sud

Master 2 2020–2021

1. Define a sequence $(r_n)_n$ satisfying the following properties:

$$r_0 = 1$$
, and $\forall n \in \mathbb{N}$,
$$\begin{cases} r_{n+1} & \leq \lambda' r_n \\ r_n & \geq \lambda^n \end{cases}$$
 (1)

and moreover, there exists a subsequence $(n_i)_i$ such that

$$\lim_{j \to \infty} \frac{r_{n_j}}{\lambda^{n_j}} = 1,\tag{2}$$

$$\lim_{j \to \infty} \frac{r_{n_j}}{r_{n_j - 1}} = 0. \tag{3}$$

We can rather work with $a_n = \ln(\lambda^{-n} r_n)$.

- 2. Construct a probability measure μ defined on [0,1] such that for all $n \in \mathbb{N}$ and $k = 0 \dots 2^n 1$, $\mu(I_{n,k}) = 2^{-n}$.
- 3. We now show that the measures μ and $\mathcal{H}^d_{|K}$ are equivalent and in particular, $0 < \mathcal{H}^d(K) < \infty$.
 - (a) Let I be a segment such that $\overset{\circ}{I} \cap K \neq \emptyset$, check that there exist $n \in \mathbb{N}$, $k \in \{0, \dots, 2^n 1\}$ and 4 "consecutive" intervals such that

$$I_{n,k} \subset I$$
 et $I \cap K \subset I_{n,k_1} \cup I_{n,k_2} \cup I_{n,k_3} \cup I_{n,k_4}$.

Let $x \in K$, r > 0 and I = [x - r, x + r] then check that we have in addition $r_n \le 2r$.

- (b) Show that for all $n, k, \mathcal{H}^d(K \cap I_{n,k}) \leq \mu(I_{n,k})$ (and thus $\mathcal{H}^d(K) < +\infty$).
- (c) Show that $\mu \leq C\mathcal{H}_{|K|}^d$ applying exercise 1 (and in particular $\mathcal{H}^d(K) > 0$).
- (d) Conclude.
- 4. We have proved that K has Hausdorff dimension d. Let us show that its lower d-dimensional density $\theta^d_*(K,x) = 0$ at any point x of K. Let

$$v(r) = \frac{1}{r^d} \sup \{ \mu(I) : |I| = r, I \text{ closed interval } \},$$

using (3) show that $\liminf_{r\to 0_+} v(r) = 0$ and conclude.

5. As previously, we define two Cantor sets K and K' associated with two sequences $(r_n)_n$ and $(s_n)_n$ such that $0 < \mathcal{H}^d(K) < +\infty$ and $0 < \mathcal{H}^d(K') < +\infty$. We want to choose them so that

$$\mathcal{H}^{2d}(K \times K') = +\infty.$$

(a) Exhibit two sequences $(r_n)_n$ and $(s_n)_n$ as in first point and such that in addition, if $a_n = \ln(\lambda^{-n}r_n)$ and $b_n = \ln(\lambda^{-n}s_n)$, then

$$c_n := \max(a_n, b_n) \xrightarrow[n \to \infty]{} +\infty.$$

(b) Let μ' denote the natural probability measure associated with K'. For C closed square of side length r such that $\overset{\circ}{C} \cap K \times K' \neq \emptyset$, show that

$$\lim_{r \to 0_+} \frac{1}{r^{2d}} (\mu \times \mu')(C) = 0.$$

- (c) Infer that $\mathcal{H}^{2d}(K \times K') = +\infty$.
- 6. What is the Hausdorff dimension of $K \times K \subset \mathbb{R}^2$?