Exercise 1.— $\ln |x| \in BMO(\mathbb{R}^n)$.

We recall the following characterization of BMO-functions:

Proposition. Let $f \in L^1_{loc}(\mathbb{R}^n)$. $f \in BMO$ if and only if there exists M > 0, and, for every ball B, there exists $C_B \in \mathbb{R}$ (or \mathbb{C} if f is complex valued) such that

$$\frac{1}{|B|} \int_{B} |f(x) - C_B| dx \le M. \tag{1}$$

- 1. Let us show that $\ln |x| \in BMO(\mathbb{R}^n)$. Let $B = B(a, r) \subset \mathbb{R}^n$ be an open ball.
 - (a) Show that we can reduce the problem to the case where B has radius 1.
 - (b) Conclude (we can for instance distinguish $|a| \le 2$ and |a| > 2).
- 2. Let $f \in BMO(\mathbb{R}^n)$ and $0 < \alpha \leq 1$, show that $|f|^{\alpha} \in BMO(\mathbb{R}^n)$.
- 3. Let $f(x) = \begin{cases} \ln(x) & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ and $g(x) = \begin{cases} \ln(x) & \text{if } x > 1 \\ 0 & \text{otherwise} \end{cases}$. Check that $f, g \notin BMO(\mathbb{R})$.

Exercise 2.— BMO, *p*-norms are equivalent. Let $1 \le p < +\infty$, $f \in L^1_{loc}(\mathbb{R}^n)$ and define

$$||f||_{BMO,p} := \sup_{B} \left\{ \frac{1}{|B|} \int_{B} |f(x) - m_{B}f|^{p} dx \right\}^{\frac{1}{p}},$$

where the sup is taken over open balls and $m_B f = \frac{1}{|B|} \int_B f$.

Show that $\|\cdot\|_{BMO,p}$ are equivalent.