TD 6 : Rectifiability

Exercise 1.- Cantor "4-coins".

1. Let $E \subset \mathbb{R}^{2}$ be a Borel set and assume that there exists $\left.\left.\theta_{1} \neq \theta_{2} \in\right]-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\mathcal{H}^{1}\left(\pi_{\theta_{1}}(E)\right)=$ $\mathcal{H}^{1}\left(\pi_{\theta_{2}}(E)\right)=0$, where $\pi_{\theta_{i}}$ is the orthogonal projection onto the vector line whose angle with the horizontal axis is θ_{i}. Show that E is purely 1 -unrectifiable.
2. Let $C_{4}=K \times K$ where K is the self-similar Cantor set with $r_{n}=\lambda^{n}$ for $\lambda=\frac{1}{4}$. Show (again?) that C_{4} is purely 1-unrectifiable and that $0<\mathcal{H}^{1}\left(C_{4}\right)<\infty$.
3. Let E be a compact purely 1 -unrectifiable set. We define $L(E) \subset \mathbb{R}^{2}$ as the union of lines $y=a x+b$ with $(a, b) \in E$, i.e.

$$
L(E)=\left\{(x, y) \in \mathbb{R}^{2}: \exists(a, b) \in E, y=a x+b\right\} .
$$

Show that $\mathcal{L}^{2}(L(E))=0$.
Hints:
(i) Check that $L(E)$ is a Borel set.
(ii) Let $c \in \mathbb{R} \backslash\{0\}, \theta=\arctan \left(\frac{1}{c}\right)$ and $F_{c}=L(E) \cap\{(x, y): x=c\}$. Show that

$$
\mathcal{H}^{1}\left(F_{c}\right)=0 \quad \Leftrightarrow \quad \mathcal{H}^{1}\left(\pi_{\theta}(E)\right)=0 .
$$

4. Construct a Besicovitch set, i.e. a Borel set B such that $\mathcal{L}^{2}(B)=0$ and containing a unit segment (and even a line here) in every direction.

Exercise 2.- tangent plane to a d-regular set.
Let $E \subset \mathbb{R}^{n}$ be a d-regular set, that is, E is closed and there exists a constant $C_{0} \geq 1$ (regularity constant of $E)$ such that for all $x \in E, 0<r<\operatorname{diam}(E)$,

$$
\frac{1}{C_{0}} r^{d} \leq \mathcal{H}^{d}(E \cap B(x, r)) \leq C_{0} r^{d} .
$$

Show that if P is an approximate tangent d-plane at a point $x \in E$, then P is a tangent d-plane to E at x.

