TD 7 : Whitney curve and extension

The purpose of this exercise is to show the existence of a (not rectifiable) curve Γ in \mathbb{R}^{2} and a function $f \in C^{1}\left(\mathbb{R}^{2}\right)$ being not constant along Γ, but such that Γ lies in the set of critical points for f.

Construction of Whitney curve. Let Q be the unit square in \mathbb{R}^{2}. Denote then by Q_{0}, Q_{1}, Q_{2} and Q_{3} four squares of side $1 / 3$ lying inside Q in a cyclical order, at a distance $1 / 12$ from the boundary of Q as indicated on Figure 1 .

Figure 1: Construction of the Whitney curve

Let q and q^{\prime} be the mid-points of the sides of Q lying along Q_{0}, Q_{1} and Q_{0}, Q_{3} respectively. Let also, for $i \in\{0,1,2,3\}, q_{i}$ and q_{i}^{\prime} be the centers of two adjacent sides of Q_{i} numbered in such a way that q_{i-1}^{\prime} faces $q_{i}(i \in\{1,2,3\})$ and such that q_{0} and q_{3}^{\prime} are near q and q^{\prime} respectively. Denote then by A_{0} the line segment joining q and q_{0}, by $A_{i}(i \in\{1,2,3\})$ the line segment joining q_{i-1}^{\prime} and q_{i}, and by A_{4} the line segment joining q_{3}^{\prime} and q^{\prime}.
Assume now that squares $Q_{i_{1}, \ldots, i_{k}}$, points $q_{i_{1}, \ldots, i_{k}}, q_{i_{1}, \ldots, i_{k}}^{\prime}$ and lines $A_{j_{1}, \ldots, j_{k}}$ have been constructed for $k<n$ and $i_{1}, \ldots, i_{k} \in\{0,1,2,3\}, j_{1}, \ldots, j_{k-1} \in\{0,1,2,3\}$ and $j_{k} \in\{0,1,2,3,4\}$. Shrinking $Q_{i_{1}, \ldots, i_{n-2}}$ by a factor $1 / 3$, turning and flipping it if necessary, we may place it inside $Q_{i_{1}, \ldots, i_{n-1}}$ in such a way that $q_{i_{1}, \ldots, i_{n-2}}$ and $q_{i_{1}, \ldots, i_{n-2}}^{\prime}$ are sent to $q_{i_{1}, \ldots, i_{n-1}}$ and $q_{i_{1}, \ldots, i_{n-1}}^{\prime}$ respectively allowing us, by repeating the pattern inside $Q_{i_{1}, \ldots, i_{n-2}}$, to define squares $Q_{i_{1}, \ldots, i_{n}}$, points $q_{i_{1}, \ldots, i_{n}}$ and $q_{i_{1}, \ldots, i_{n}}^{\prime}$ and lines $A_{i_{1}, \ldots, i_{n-1}, j_{n}}$ for $i_{n} \in\{0,1,2,3\}$ and $j_{n} \in\{0,1,2,3,4\}$ (see Figure 1 for the first iterations of this construction). Denote finally, given a sequence $\iota=\left(i_{k}\right)_{k \in \mathbb{N}^{*}} \in\{0,1,2,3\}^{\mathbb{N}^{*}}$, by Q_{ι} the unique point satisfying:

$$
\left\{Q_{\iota}\right\}=\bigcap_{k \in \mathbb{N}^{*}} Q_{i_{1}, \ldots, i_{k}}
$$

One lets Γ denote the union of all line segments $A_{j_{1}, \ldots, j_{n}}\left(n \in \mathbb{N}^{*}, j_{k} \in\{0,1,2,3\}, 1 \leqslant k \leqslant n-1\right.$, $\left.j_{n} \in\{0,1,2,3,4\}\right)$ together with all points of the form $q_{\iota}, \iota \in\{0,1,2,3\}^{\mathbb{N}^{*}}$. One can parametrize Γ by a continuous homeomorphism $\gamma:[0,1] \rightarrow \Gamma$ by letting γ send the interval $I_{j_{1}, \ldots, j_{n}}$ onto $A_{j_{1}, \ldots, j_{n}}$ for all $j_{1}, \ldots, j_{n-1} \in\{0,1,2,3\}$ and $j_{n} \in\{0,1,2,3,4\}$, where one defines:

$$
I_{j_{1}, \ldots, j_{k}}:=\left[\left(\sum_{k=1}^{n-1} \frac{2 j_{k}+1}{9^{k}}\right)+\frac{2 j_{n}}{9^{n}}, \sum_{k=1}^{n} \frac{2 j_{k}+1}{9^{k}}\right]
$$

and by setting, for $\iota=\left(i_{k}\right)_{k \in \mathbb{N}^{*}} \in\{0,1,2,3\}^{\mathbb{N}^{*}}$:

$$
\gamma\left(\sum_{k=1}^{\infty} \frac{2 i_{k}+1}{9^{k}}\right):=Q_{\iota} .
$$

Exercise 1.-

We now define a function $f: \Gamma \rightarrow \mathbb{R}$ by letting:
$f(x, y):=\left\{\begin{array}{lll}\sum_{k=1}^{n} \frac{j_{k}}{4^{k}} & \text { if }(x, y) \in A_{j_{1}, \ldots, j_{n}} \text { for some } j_{1}, \ldots, j_{n-1} \in\{0,1,2,3\} \text { and } j_{n} \in\{0,1,2,3,4\}, \\ \sum_{k=1}^{\infty} \frac{i_{k}}{4^{k}} & \text { if }(x, y)=Q_{\iota} \text { for some } \iota=\left(i_{k}\right)_{k \in \mathbb{N}^{*}} \in\{0,1,2,3\}^{\mathbb{N}^{*}} .\end{array}\right.$

1. Show that if (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are two points in Γ located inside $Q_{i_{1}, \ldots, i_{n}}$ for some $i_{1}, \ldots, i_{n} \in$ $\{0,1,2,3\}$, then one has:

$$
\left|f(x, y)-f\left(x^{\prime}, y^{\prime}\right)\right| \leqslant \frac{1}{4^{n}}
$$

2. Show that if (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are two distinct points in Γ separated by some point Q_{ι} for a $\iota=\left(i_{k}\right)_{k \in \mathbb{N}^{*}} \in\{0,1,2,3\}^{\mathbb{N}^{*}}$, and if $Q_{i_{1}, \ldots, i_{n}}$ is the smallest square containing both of them, then one has:

$$
\left|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right|>\frac{1}{12} \cdot \frac{1}{3^{n+1}}
$$

3. Conclude that f is α-Hölder and explicit $\alpha>1$.
4. Conclude, using Whitney's extension theorem, that there exists a C^{1} function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying $g_{\mid \Gamma}=f$ and, for all $(x, y) \in \Gamma$:

$$
\nabla g(x, y)=0
$$

