Université Paris Sud

Master 2 2020–2021

TD 7: Whitney curve and extension

The purpose of this exercise is to show the existence of a (not rectifiable) curve Γ in \mathbb{R}^2 and a function $f \in C^1(\mathbb{R}^2)$ being not constant along Γ , but such that Γ lies in the set of critical points for f.

Construction of Whitney curve. Let Q be the unit square in \mathbb{R}^2 . Denote then by Q_0 , Q_1 , Q_2 and Q_3 four squares of side 1/3 lying inside Q in a cyclical order, at a distance 1/12 from the boundary of Q as indicated on Figure 1.

Figure 1: Construction of the Whitney curve

Let q and q' be the mid-points of the sides of Q lying along Q_0 , Q_1 and Q_0 , Q_3 respectively. Let also, for $i \in \{0, 1, 2, 3\}$, q_i and q'_i be the centers of two adjacent sides of Q_i numbered in such a way that q'_{i-1} faces q_i ($i \in \{1, 2, 3\}$) and such that q_0 and q'_3 are near q and q' respectively. Denote then by A_0 the line segment joining q and q_0 , by A_i ($i \in \{1, 2, 3\}$) the line segment joining q'_{i-1} and q_i , and by A_4 the line segment joining q'_3 and q'.

Assume now that squares Q_{i_1,\dots,i_k} , points q_{i_1,\dots,i_k} , q'_{i_1,\dots,i_k} and lines A_{j_1,\dots,j_k} have been constructed for k < n and $i_1,\dots,i_k \in \{0,1,2,3\}$, $j_1,\dots,j_{k-1} \in \{0,1,2,3\}$ and $j_k \in \{0,1,2,3,4\}$. Shrinking $Q_{i_1,\dots,i_{n-2}}$ by a factor 1/3, turning and flipping it if necessary, we may place it inside $Q_{i_1,\dots,i_{n-1}}$ in such a way that $q_{i_1,\dots,i_{n-2}}$ and $q'_{i_1,\dots,i_{n-2}}$ are sent to $q_{i_1,\dots,i_{n-1}}$ and $q'_{i_1,\dots,i_{n-1}}$ respectively allowing us, by repeating the pattern inside $Q_{i_1,\dots,i_{n-2}}$, to define squares Q_{i_1,\dots,i_n} , points q_{i_1,\dots,i_n} and q'_{i_1,\dots,i_n} and lines $A_{i_1,\dots,i_{n-1},j_n}$ for $i_n \in \{0,1,2,3\}$ and $j_n \in \{0,1,2,3,4\}$ (see Figure 1 for the first iterations of this construction). Denote finally, given a sequence $\iota = (i_k)_{k \in \mathbb{N}^*} \in \{0,1,2,3\}^{\mathbb{N}^*}$, by Q_{ι} the unique point satisfying:

$$\{Q_{\iota}\} = \bigcap_{k \in \mathbb{N}^*} Q_{i_1, \dots, i_k}.$$

One lets Γ denote the union of all line segments A_{j_1,\ldots,j_n} $(n \in \mathbb{N}^*, j_k \in \{0,1,2,3\}, 1 \leqslant k \leqslant n-1, j_n \in \{0,1,2,3,4\})$ together with all points of the form $q_{\iota}, \iota \in \{0,1,2,3\}^{\mathbb{N}^*}$. One can parametrize Γ by a continuous homeomorphism $\gamma : [0,1] \to \Gamma$ by letting γ send the interval I_{j_1,\ldots,j_n} onto A_{j_1,\ldots,j_n} for all $j_1,\ldots,j_{n-1} \in \{0,1,2,3\}$ and $j_n \in \{0,1,2,3,4\}$, where one defines:

$$I_{j_1,\dots,j_k} := \left[\left(\sum_{k=1}^{n-1} \frac{2j_k + 1}{9^k} \right) + \frac{2j_n}{9^n}, \sum_{k=1}^n \frac{2j_k + 1}{9^k} \right],$$

and by setting, for $\iota = (i_k)_{k \in \mathbb{N}^*} \in \{0, 1, 2, 3\}^{\mathbb{N}^*}$:

$$\gamma\left(\sum_{k=1}^{\infty} \frac{2i_k+1}{9^k}\right) := Q_i.$$

Exercise 1.—

We now define a function $f: \Gamma \to \mathbb{R}$ by letting:

$$f(x,y) := \begin{cases} \sum_{k=1}^{n} \frac{j_k}{4^k} & \text{if } (x,y) \in A_{j_1,\dots,j_n} \text{ for some } j_1,\dots,j_{n-1} \in \{0,1,2,3\} \text{ and } j_n \in \{0,1,2,3,4\}, \\ \sum_{k=1}^{\infty} \frac{i_k}{4^k} & \text{if } (x,y) = Q_{\iota} \text{ for some } \iota = (i_k)_{k \in \mathbb{N}^*} \in \{0,1,2,3\}^{\mathbb{N}^*}. \end{cases}$$

1. Show that if (x, y) and (x', y') are two points in Γ located inside $Q_{i_1,...,i_n}$ for some $i_1, ..., i_n \in \{0, 1, 2, 3\}$, then one has:

$$|f(x,y) - f(x',y')| \le \frac{1}{4^n}.$$

2. Show that if (x, y) and (x', y') are two distinct points in Γ separated by some point Q_{ι} for a $\iota = (i_k)_{k \in \mathbb{N}^*} \in \{0, 1, 2, 3\}^{\mathbb{N}^*}$, and if Q_{i_1, \dots, i_n} is the smallest square containing both of them, then one has:

$$|(x,y) - (x',y')| > \frac{1}{12} \cdot \frac{1}{3^{n+1}}.$$

- 3. Conclude that f is α -Hölder and explicit $\alpha > 1$.
- 4. Conclude, using Whitney's extension theorem, that there exists a C^1 function $g: \mathbb{R}^2 \to \mathbb{R}$ satisfying $g_{|\Gamma} = f$ and, for all $(x, y) \in \Gamma$:

$$\nabla g(x,y) = 0.$$