TD 8 : A Lusin Type Theorem.

We fix an open set $\Omega \subset \mathbb{R}^n$ of finite measure and a Borel function $f: \Omega \to \mathbb{R}^n$.

Exercise 1.— The aim is to show that a Borel function from an open set of finite measure Ω to \mathbb{R}^n coincides with the gradient of a function C^1 outside an open set of measure arbitrarily small.

Theorem 1. For every $\epsilon > 0$, there exists an open set $W \subset \mathbb{R}^n$ and a function $u \in C_0^1(\Omega)$ such that

$$\begin{cases} f(x) = \nabla u(x) \text{ for all } x \in \Omega \setminus W \\ |W| \le \epsilon |\Omega|, \\ \|\nabla u\|_p \le C \epsilon^{\frac{1}{p} - 1} \|f\|_p, \, \forall p \in [1, \infty] \end{cases}$$

where C > 0 is a constant depending only on the dimension n.

- 1. Let $h: \Omega \to \mathbb{R}^n$ be continuous and let $\eta, \epsilon > 0$. We consider cartesian meshes of \mathbb{R}^n constituted of cubes of side δ and centred on $(\delta \mathbb{Z})^n$. We denote by \mathcal{K}_{δ} the countable family of all those cubes for a given $\delta > 0$.
 - (a) Prove that there exist $\delta > 0$ and a finite family of cubes $\{T_i\}_{i \in I} \subset \mathcal{K}_{\delta}$ included in Ω and a function h_{δ} that is constant inside each T_i satisfying

$$|\Omega \setminus \bigcup_i T_i| \le \frac{\epsilon}{2} |\Omega|$$
 and $\forall x \in \bigcup_i T_i, |h(x) - h_{\delta}(x)| \le \eta_i$

(b) Prove that there exist a compact set $K \subset \Omega$ and $u \in C^1_c(\Omega)$ such that supp $u \subset K$ and

$$\begin{cases} |f(x) - \nabla u(x)| \le \eta \text{ for all } x \in K, \\ |\Omega \setminus K| \le \epsilon |\Omega|, \\ \|\nabla u\|_p \le C' \epsilon^{\frac{1}{p} - 1} \|f\|_p, \, \forall p \in [1, \infty] \end{cases}$$

Hint: if $h \equiv a$ were constant on some subdomain then $u(x) = \langle a, x \rangle + cte$ would suit on this part.

- 2. Case 1: Assume in addition that f is continuous and bounded. Let $\epsilon > 0$ and for all $k \in \mathbb{N}^*$, $\epsilon_k = 2^{-k}\epsilon > 0$ and $\eta_k > 0$ tending to 0 to be conveniently adjusted.
 - (a) Define $f_0 = f$ and u_1, K_1 given by question 1 applied with $h = f_0, \eta_1$ and ϵ_1), then define $f_1 = f_0 \nabla u_1$ (on K_1 ...) then iterate to obtain (u_k, K_k, f_k) satisfying for all $k \in \mathbb{N}^*$

$$\begin{cases} |\Omega \setminus K_k| \le \epsilon_k |\Omega|, \\ |f_{k-1}(x) - \nabla u_k(x)| \le ||f_k||_{\infty} \le \eta_k, \quad \forall x \in K_k, \\ ||\nabla u_k||_p \le C'(\epsilon_k)^{\frac{1}{p}-1} ||f_{k-1}||_p, \quad \forall p \in [1, +\infty]. \end{cases}$$

(b) For all $p \in [1, +\infty]$, show that

$$\sum_{k=1}^{\infty} \|\nabla u_k\|_p \le C'' \epsilon^{\frac{1}{p}-1} \|f\|_p < +\infty$$

(You obtain a bound on η_k .)

- (c) Infer that $u = \sum_{k=1}^{\infty}$ is well-defined and of class C¹. (You might refine the bound on η_k to ensure that $\sum_{k=1}^{\infty} \|u_k\|_{\infty} < \infty$.)
- (d) Prove that u and $W = \Omega \setminus \bigcap_k K_k$ satisfy the conclusion of Theorem 1.
- 3. Case 2: Conclude in the case where f is Borel: apply Lusin theorem and truncate.

Exercise 2.— The aim of this exercise is to prove a similar result in the case where f is L^1 and u is required to be BV.

Theorem 2. Let $f \in L^1(\Omega, \mathbb{R}^n)$. There exist $u \in BV(\mathbb{R}^n)$ and $g : \Omega \to \mathbb{R}^n$ Borel functions such that

$$Du = f\mathcal{L}^n + g\mathcal{H}^{n-1}$$
 and $\int |g| \, d\mathcal{H}^{n-1} \leq C ||f||_1$

where C > 0 is a constant depending on n only.

1. By a construction similar to the one of Exercise 1, prove that given $f \in L^1(\mathbb{R}^n, \mathbb{R}^n)$ and $\eta > 0$, there exists $u \in BV(\mathbb{R}^n)$ and $g^a, g^s : \mathbb{R}^n \to \mathbb{R}^n$ two Borel functions such that

$$Du = g^{a} \mathcal{L}^{n} + g^{s} \mathcal{H}^{n-1} \quad \text{and} \quad \begin{cases} \|u\|_{1} \le \|f\|_{1} \\ \|f - g^{a}\|_{1} \le \eta \\ \int |g^{s}| \, d\mathcal{H}^{n-1} \le C' \|f\|_{1}. \end{cases}$$

2. Infer the theorem.

This is a result of G. Alberti (A Lusin Type Theorem, 1991).