TD 8 : A Lusin Type Theorem.

We fix an open set $\Omega \subset \mathbb{R}^{n}$ of finite measure and a Borel function $f: \Omega \rightarrow \mathbb{R}^{n}$.
Exercise 1.- The aim is to show that a Borel function from an open set of finite measure Ω to \mathbb{R}^{n} coincides with the gradient of a function C^{1} outside an open set of measure arbitrarily small.

Theorem 1. For every $\epsilon>0$, there exists an open set $W \subset \mathbb{R}^{n}$ and a function $u \in \mathrm{C}_{0}^{1}(\Omega)$ such that

$$
\left\{\begin{array}{l}
f(x)=\nabla u(x) \text { for all } x \in \Omega \backslash W \\
|W| \leq \epsilon|\Omega|, \\
\|\nabla u\|_{p} \leq C \epsilon^{\frac{1}{p}-1}\|f\|_{p}, \forall p \in[1, \infty]
\end{array}\right.
$$

where $C>0$ is a constant depending only on the dimension n.

1. Let $h: \Omega \rightarrow \mathbb{R}^{n}$ be continuous and let $\eta, \epsilon>0$. We consider cartesian meshes of \mathbb{R}^{n} constituted of cubes of side δ and centred on $(\delta \mathbb{Z})^{n}$. We denote by \mathcal{K}_{δ} the countable family of all those cubes for a given $\delta>0$.
(a) Prove that there exist $\delta>0$ and a finite family of cubes $\left\{T_{i}\right\}_{i \in I} \subset \mathcal{K}_{\delta}$ included in Ω and a function h_{δ} that is constant inside each T_{i} satisfying

$$
\left|\Omega \backslash \cup_{i} T_{i}\right| \leq \frac{\epsilon}{2}|\Omega| \quad \text { and } \quad \forall x \in \cup_{i} T_{i},\left|h(x)-h_{\delta}(x)\right| \leq \eta .
$$

(b) Prove that there exist a compact set $K \subset \Omega$ and $u \in \mathrm{C}_{c}^{1}(\Omega)$ such that supp $u \subset K$ and

$$
\left\{\begin{array}{l}
|f(x)-\nabla u(x)| \leq \eta \text { for all } x \in K, \\
|\Omega \backslash K| \leq \epsilon|\Omega|, \\
\|\nabla u\|_{p} \leq C^{\prime} \epsilon^{\frac{1}{p}-1}\|f\|_{p}, \forall p \in[1, \infty]
\end{array}\right.
$$

Hint: if $h \equiv a$ were constant on some subdomain then $u(x)=\langle a, x\rangle+c t e$ would suit on this part.
2. Case 1: Assume in addition that f is continuous and bounded. Let $\epsilon>0$ and for all $k \in \mathbb{N}^{*}$, $\epsilon_{k}=2^{-k} \epsilon>0$ and $\eta_{k}>0$ tending to 0 to be conveniently adjusted.
(a) Define $f_{0}=f$ and u_{1}, K_{1} given by question 1 applied with $h=f_{0}, \eta_{1}$ and ϵ_{1}), then define $f_{1}=f_{0}-\nabla u_{1}$ (on $K_{1} \ldots$) then iterate to obtain (u_{k}, K_{k}, f_{k}) satisfying for all $k \in \mathbb{N}^{*}$

$$
\left\{\begin{array}{l}
\left|\Omega \backslash K_{k}\right| \leq \epsilon_{k}|\Omega|, \\
\left|f_{k-1}(x)-\nabla u_{k}(x)\right| \leq\left\|f_{k}\right\|_{\infty} \leq \eta_{k}, \quad \forall x \in K_{k} \\
\left\|\nabla u_{k}\right\|_{p} \leq C^{\prime}\left(\epsilon_{k}\right)^{\frac{1}{p}-1}\left\|f_{k-1}\right\|_{p}, \quad \forall p \in[1,+\infty]
\end{array}\right.
$$

(b) For all $p \in[1,+\infty]$, show that

$$
\sum_{k=1}^{\infty}\left\|\nabla u_{k}\right\|_{p} \leq C^{\prime \prime} \epsilon^{\frac{1}{p}-1}\|f\|_{p}<+\infty
$$

(You obtain a bound on η_{k}.)
(c) Infer that $u=\sum_{k=1}^{\infty}$ is well-defined and of class C^{1}. (You might refine the bound on η_{k} to ensure that $\sum_{k=1}^{\infty}\left\|u_{k}\right\|_{\infty}<\infty$.)
(d) Prove that u and $W=\Omega \backslash \cap_{k} K_{k}$ satisfy the conclusion of Theorem 1 .
3. Case 2: Conclude in the case where f is Borel: apply Lusin theorem and truncate.

Exercise 2.- The aim of this exercise is to prove a similar result in the case where f is L^{1} and u is required to be BV.

Theorem 2. Let $f \in \mathrm{~L}^{1}\left(\Omega, \mathbb{R}^{n}\right)$. There exist $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$ and $g: \Omega \rightarrow \mathbb{R}^{n}$ Borel functions such that

$$
D u=f \mathcal{L}^{n}+g \mathcal{H}^{n-1} \quad \text { and } \quad \int|g| d \mathcal{H}^{n-1} \leq C\|f\|_{1}
$$

where $C>0$ is a constant depending on n only.

1. By a construction similar to the one of Exercise 1, prove that given $f \in \mathrm{~L}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $\eta>0$, there exists $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$ and $g^{a}, g^{s}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ two Borel functions such that

$$
D u=g^{a} \mathcal{L}^{n}+g^{s} \mathcal{H}^{n-1} \quad \text { and } \quad\left\{\begin{array}{l}
\|u\|_{1} \leq\|f\|_{1} \\
\left\|f-g^{a}\right\|_{1} \leq \eta \\
\int\left|g^{s}\right| d \mathcal{H}^{n-1} \leq C^{\prime}\|f\|_{1} .
\end{array}\right.
$$

2. Infer the theorem.

This is a result of G. Alberti (A Lusin Type Theorem, 1991).

