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@® A diploid Mendelian population model



0. A diploid Mendelian population model

Model

1 gene, 2 alleles: A and a.
Diploid individuals: genotypes AA, Aa and aa.

Population at time ¢:

(Zy,t > 0) = (2}, 22, Z}),t > 0).

(Zi,t > 0) is a birth-and-death process with Mendelian
reproduction and competition.
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0. A diploid Mendelian population model

For any (k,m,n)
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— 1) + 023n)

Demographic parameters: b; >0, d; > 0, ¢;; > 0, for 4, j € {1,2,3}.
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@ Stochastic modeling of the mutational meltdown



1. Stochastic modeling of the mutational meltdown 1.1. Motivations and references

Motivations

Mutational meltdown:
e Lynch, Conery and Burger (1995).
e Observed in small populations.
e Combination of two phenomena that reinforce each other.

Small population size Frequent deleterious mutation fixations

Demography Genetics
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1. Stochastic modeling of the mutational meltdown 1.1. Motivations and references

Motivations

Mutational meltdown:
e Lynch, Conery and Burger (1995).
e Observed in small populations.
e Combination of two phenomena that reinforce each other.

Small population size <——= Frequent deleterious mutation fixations

Demography Genetics
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1. Stochastic modeling of the mutational meltdown 1.2. Fixation probability of a slightly non neutral allele

Hypotheses for this work

e bj=>0b>0and ¢;; =c>0forallije{1,23}
e di=d>0,dy=d~+ 9 and d3:d+5,.
e No death when there are only 2 individuals left.

— Zi € (Z4)% = (24)*\{(0,0,0),(1,0,0), (0,1,0), (0,0, 1)}
(Zi,t > 0) is a Markov process with 2 absorbing sets:

o I'y = {(k,0,0) : k > 2}: fixation of allele A,
e 'y, ={(0,0,n) : n > 2}: fixation of allele a.
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1. Stochastic modeling of the mutational meltdown 1.2. Fixation probability of a slightly non neutral allele

Fixation probability of allele a

e Aim: Study the fixation probability of allele a if the population
starts from the state (k,m,n) € (Z)3,:

6,8
uk,m,n

e Champagnat & Lambert (2007): haploid case.

2 3
e Neutral case (6 = ¢ =0): (Xt = %,t > 0) is a
t t t
martingale.
0,0 o m 4+ 2n

— = =
Uhesmn 2(k+m+n)

Camille Coron Stochastic modeling and eco-evolution of a diploid population



1. Stochastic modeling of the mutational meltdown 1.2. Fixation probability of a slightly non neutral allele

/

‘ - 5,0
Taylor expansion of u;’

m,n

e Decomposition of u:

58 55 68
W = D 2 Mivio= iy
n' (41,8 €C  mn)—(0,0,n7)

e For all (k,m,n) € (Z4)3,, ui’i;m is a differentiable function of

(6,0") in (0,0):

5,8 m 4+ 2n
ukfym,n = 2(k + m + n) - 5'Uk,m,n - 5,wk7myn + O(‘é‘ + ‘5/‘)'

o |[Vkmnl < Ck+m+n) and (W mn| < C(k+m+n) for all

(k7 m, n) € (Z"F)i*
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1. Stochastic modeling of the mutational meltdown 1.2. Fixation probability of a slightly non neutral allele

Kolmogorov-forward equation

(L9 u(.,6,8"))(k,m,n) =0 Y(k,m,n)|[N =k+m+n>2
u((0,0,n),0,0') =1 Vn>2
u((k,0,0),6,8') =0 Vk>2

5,8 2n+m

Up mn = Q(k T+ n) - 57)k,m,'n - 5/wk,m,n + 0(|5| + |5,|)~

,n) = 2%((’}\,_1?) V(k,m,n)lk +m+n>3
;1)

=0 V(k,m,n)lk+m+n=2 (S1)
(2,0,0) = (0,0,2) = 0
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. Stochastic modeling of the mutational meltdown 1.2. Fixation probability of a slightly non neutral allele

The formula of vy, p

Proposition (1.3.6)
For all (k,m,n) such that N =k+m+n > 2,

m 2 _ (k—p)2
v(k,m,n) = (k —n) |:NIEN aF N](V—k;)yN] (1)

TN . .
where the sequence of vectors (zn) ysg = ( > 15 the unique
YN N>3

bounded solution of the following system of equations:

{ BNZN+1~: Cyzn + Dyzy—1 + fn for all N > 4 (S2)

B3z = C323 + f3,

where the matrices By, Cy, C~’3, Dy and the vectors fn are known.
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1. Stochastic modeling of the mutational meltdown 1.2. Fixation probability of a slightly non neutral allele

Sketch of the proof

Proof.

e If (1) is true then (S2) implies (S1).
¢ (S52) has a bounded solution (zy)n>3 if b is small: for N > 3,

N
Byzn1 = (Cn + Kn)an + Y (DN "Bk, N)fi, if (S2)

k=3
K3 = 6'3 — (s
Kn =Dn(Cn-1+ Kn_1)"'By_1 VN >4
Bk, k) = I Vk >3

E(k,N)=DnN(Cy_1+Kn_1)'E(k,N —1) Vke[3,N —1].
o For all (k,m,n) € (Z4)3,, Vkmn is an analytic function of b.

O
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1. Stochastic modeling of the mutational meltdown 1.3. Existence of a mutational meltdown

Mutations and mutational time scale

Each individual mutates at rate pux = 2?“, K — 4o00.

Each individual is characterized by its genotype g = (z,2’) € G.
M (x1,x9) is the probability that a DNA strand x; mutates to xs.

Population at time ¢:

Nf
ZE=N"6 .«
9t
i=1
Theorem ((1.5.1), Convergence towards the TSS)
For all 0 <t < ... <ty,

(ZI[({tl,...,ngtn) — (Ntldgtl,...,]\?tndgm) in law, when K — 0o.
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1. Stochastic modeling of the mutational meltdown 1.3. Existence of a mutational meltdown

Trait Substitution Sequence

e Conditionally to (G, ...,Gt,) = (g1, -, gn), the random variables
Ny, ..., Ny, are independent and Ny; has law

I(.,b(g:), d(g:), c(9i, 9i)), with

C,N
I(N,b,d, c) = U

e (Gt)¢>0 jumps from genotype g1 = (x1,x1) to go = (z2,22) at rate

2uM (z1,22) > NI(N,b(g1),d(g1), c(g1, 1)) F(N = 1,1,0), 21, 22).
o

o If d(z1,22) = d(g1) + ¢ and d(g2) = d(g1) + &',

f((N - ]-7 170)7$1,$2) = U(JS\}&—LLO'
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. Stochastic modeling of the mutational meltdown 1.3. Existence of a mutational meltdown

Existence of a mutational meltdown

Jump rate of the process G: 7(b,d, c,d,d).

e Small population size <= Frequent deleterious mutation fixations.

e More and more frequent fixations of deleterious mutations.

Theorem (1.5.2)

If 6 >0 and &' > 6, and if b is small enough, the mean time
T(b,d,c,8,0") =1/7(b,d,c,8,0") is a decreasing function of d.
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1. Stochastic modeling of the mutational meltdown

Distribution of the population size
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1.4. Numerical results and biological interpretations

Figure: Distribution of the population size under different intrinsic death

rates d. In this figure, b = 10 and ¢ = 0.1.
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1. Stochastic modeling of the mutational meltdown 1.4. Numerical results and biological interpretations

Existence of a mutational meltdown

meT
= = =
H )] -] N

Mean fixation ti

=
[N]
|

Intrinsic death rate d

Figure: Relationship between the mean time to fixation of a deleterious
mutation 7" and parameters b and d. Each curve corresponds to a fixed value
of b. Other parameters are § = 0.05, ' = 0.1, ¢ =0.1 and m = 1.
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1. Stochastic modeling of the mutational meltdown 1.4. Numerical results and biological interpretations

Mean population size mean dynamics

0 50 100 150 200

Time t
1=Additive mutations; 2=Recessive mutations
a=Null model; b=Our model

Figure: Mean temporal decrease in the mean population size in additive and
recessive cases. b=10,c=0.1, m =1, Dg =1 and ' = 0.2.
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1. Stochastic modeling of the mutational meltdown 1.4. Numerical results and biological interpretations
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® Slow-fast dynamics, quasi-stationarity and measure-valued processes



2. Slow-fast dynamics and measure-valued processes 2.1. Slow-fast dynamics

Large population size and allometry

e Fach individual has size 1/K, K — 4o0.
o 7K is a jump process with jump size equal to 1/K.
e Demographic parameters depend on K. If

2= (21,22,23) € (Z4)3/K and n = 21 + 20 + 23,

KbK 222
=55 (23
].(Z) n Zl+2 ?

z9 zZ9
2(503) (54 3)
21—1—2 23—|—2

KbE 29\ 2
:—3<Z3+E2) .

5 (2)

K(2) = Kz (dff + K(cl 21 + & 20 + K 23)),
pX(2) = Kzo(d + K(cB 2z + ez + ¢l 23)),

K(2) = Kag(di + K (K21 + ez + c523)).
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2. Slow-fast dynamics and measure-valued processes 2.1. Slow-fast dynamics

Demographic parameters scaling

Hypotheses:

b = 7K + f; € [0,00],

A =yK +§; € [0,00],

K _ i

T x 7Y

zZ& — Zy  in law,
K—oo

C

there exists C' > 0 such that for all K € N*|E ((NOK)?’) <C,

where v > 0 and Zj is a (R, )3-valued random variable.
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2. Slow-fast dynamics and measure-valued processes 2.1. Slow-fast dynamics

Hardy-Weinberg deviation, new variables

LK 3K 2K
:4Zt Z;" = (Z7)?

YK
¢ ANK
AAK AK
= NtK(pt - (pt )2)
AK aK Aa,K
= NS @p "t pt =)
7K 7K
= NE @™ — (pP™)?)
1K 2. K
XK= 27 + 7

2NE

K K K
(Ztl 7Zt2 7Z1€3 )(—> (Nf?XtKvYVtK)
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2. Slow-fast dynamics and measure-valued processes 2.1. Slow-fast dynamics

Fast dynamics

Proposition (3.3.2)

For all 5,t >0, sup E((Y,X)?) — 0 when K goes to infinity.
t<u<t+s

Proof.
By Kolmogorov-forward equation,
dE ((Y5)?)

pr < —29KE ((Y/)?) + Ci.

e YK is a fast variable and the population converges to
Hardy-Weinberg equilibrium.
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2. Slow-fast dynamics and measure-valued processes 2.1. Slow-fast dynamics

Slow dynamics

Theorem (Theorem 3.3.3 and Corollary 3.3.4)

For all e > 0, TX = inf{t € [0,T] : NX < e}. {(N¥,X%) \px i1
converges in law in D([0,T], ¢, 00[x [0, 1]) toward a stopped

continuous-time diffusion process (N, X) ar,. In the neutral case where
,Bi:,B, (SZ:(S andaij:a,

dN; = (8 — 6 — aN;) Nydt + /2y N;dB}

X (1 - Xy)

dX; =
¢ N,

dB?
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2. Slow-fast dynamics and measure-valued processes 2.1. Slow-fast dynamics

Diploid vs haploid (1)

Haploid diffusion: Cattiaux & Méléard (2010).

AN, = (8 — 6 — aN,)Nydt + /27N, dB}

X (1 - Xy)

dX; =
t N,

dB?

dN]' = (8 — 6 — aN})N]'dt + \/2yN]dB}

dXth _ \/27Xth(1 _Xth)déf
Nb
t
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2. Slow-fast dynamics and measure-valued processes 2.1. Slow-fast dynamics

Diploid vs haploid (2)

anit =it |[5-5-

A
“ NA+NaN th A Na

ANE = Hﬂ—a—auﬂ dt

NANE
1/ NaNath ,/ NA Nath

AN/ = (8 — 6 — a(N/Y + NOP)YNARAE 4 /2y N aw )

ANS" = (B = § — (N + NEY)NSPat 4+ /2y NP awv?
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2. Slow-fast dynamics and measure-valued processes 2.1. Slow-fast dynamics

Long-time population behavior

e Extinction: PY(Ty < +o00) = 1 (Cattiaux et al. (2009)).
e Quasi-stationary behavior of the population?

» Cattiaux, P., Collet, P., Lambert, A., Martinez, S., Méléard, S. and San
Martin, J. (2009): Quasi-stationary distributions and diffusion models in
population dynamics. Ann. of Proba. 37(5):1926-1969.

> Villemonais, D. (2011): Distributions quasi-stationnaires et méthodes
particulaires pour ’approximation de processus conditionnées. Thése, Ecole
Polytechnique.

» Meéléard, S. and Villemonais, D. (2012): Quasi-stationary distributions and
population processes. Probab. Surv. 9:340-410.

» Cattiaux, P., and Méléard, S. (2010): Competitive or weak competitive
stochastic Lotka-Volterra systems conditioned on non-extinction. J. Math.
Biol. 60:797-829.

» C.C.: From diploid populations to Wright-Fisher diffusions and
quasi-stationary distributions. Arxiv 1309.3405, Submitted.
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2. Slow-fast dynamics and measure-valued processes 2.2. Quasi-stationary behavior of a diploid population

Change of variables

2N, 2X; —1
gl _ t os <arccos( + )>
ot V2
2N, 2X; —1
2 _ tin <arccos( p )) '
ot V2

dS} = dW}! — q1(S;)dt
dS? = dW? — qa(Sy)dt,

If Q5 = Qjj for all 4,5 € {1, 2, 3},
dS; = dW, — VQ(S,)dt

Camille Coron Stochastic modeling and eco-evolution of a diploid population



2. Slow-fast dynamics and measure-valued processes 2.2. Quasi-stationary behavior of a diploid population

Absorption of the diffusion process S

S2
N
0
\\Q (s1,52) = ¥(n, x)
s
%0
arccos(2z—1)
= V3
2

0:{5115210} A:{SQZO}
Absorbing sets: 0, AUO,aU0, AUaUO.

Theorem (3.4.7)

o Foralls€D\O, P (Ta ATa < Tp) = 1.
o Forall s € D\ 0D, PS(Ta < Tp) >0, and PJ(T, < To) > 0.
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2. Slow-fast dynamics and measure-valued processes 2.2. Quasi-stationary behavior of a diploid population

Quasi-stationary behavior of (NN, X)

Theorem (Theorem 3.4.10 and Corollary 3.4.11)

o There exists a (unique) probability measure v on R* x]0, 1[ such
that for all F C R% x]0,1[ and all (n,z) € R% x]0, 1],

lim PN (N, X;) € FITY AT ATE > ) = vV X(F).

t—o0 ('I’L,:l?)

o There exists a (unique) probability measure Vév’X on RY x [0,1]
such that for all F C R x [0,1] and (n,z) € R% x]0,1],
lim P~ (Ng, X;) € FITY > t) = v X (F).

oo (@)

Camille Coron Stochastic modeling and eco-evolution of a diploid population



2. Slow-fast dynamics and measure-valued processes 2.3. Numerical results

Neutral case

22
20
18
16
14
12

10

Empirical distribution

0 005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 09 095 1
Proportion of allele A

Figure: Distribution of the proportion X; of allele A in the neutral case,
knowing that Ny #0. 8; =1 = §;, and «a;; = 0.1 for all 4, j, and ¢t = 40.
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2. Slow-fast dynamics and measure-valued processes 2.3. Numerical results

Overdominance

Empirical distribution

0 | |
0 U.hﬁ 0‘.1 0.‘15 0‘.2 0.‘25 0!3 0.%55 0‘.4 045 0{5 0.55 0.‘6 U.éﬁ 0‘.7 0.‘75 UjB 0.‘85 0‘.9 0.55 "I

Proportion of allele A

Figure: Distribution of the proportion X; of allele A in an overdominance
case, knowing that Ny # 0. 8; = 1 for all ¢ #£ 2, 85 = 5, §; = 0 for all i,
a;; = 0.1 for all (¢,7), and T = 100.
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2. Slow-fast dynamics and measure-valued processes 2.3. Numerical results

Different niches

Empirical distribution

0 005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 0.8 085 09 095 1
Proportion of allele A

Figure: Distribution of the proportion X; of allele A in a separate niches case,
knowing that Ny #0. 8; =1, 6; =0, ay; = 0.1 for all 4, a; = 0 for all ¢ # j,
and T' = 2500.
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2. Slow-fast dynamics and measure-valued processes 2.4. Multi-allelic model and measure-valued processes

Finite number of alleles

1 gene, L alleles € [1, L].

Population at time t:

XK (t) = (xf; (t)1<ij<r € SL(Z4/2K).

X (t) € Z, /K is the rescaled number of individuals with genotype
77 at time ¢.

azfg(t) + azﬁ(t) = ng(t) € Z1 /K is the rescaled number of
individuals with genotype ij at time t.
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2. Slow-fast dynamics and measure-valued processes 2.4. Multi-allelic model and measure-valued processes

Finite number of alleles

e Birth rates: if the population x has rescaled size ¢1(x) € Z /K,

NE (x) = b5 Ko (x) 20, = KB (= M) <Zl &)

A (x) = b K1 (x) (i) = KDE

e Death rates:

K K K
pij (x) = Kagjy | dij + K Z Cij kTRl | 5
1<kI<L
e Scaling:
Qg kl
o

bf]{- =K + By, dfj(- =K +0;; and CZI]{kl
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2. Slow-fast dynamics and measure-valued processes 2.4. Multi-allelic model and measure-valued processes

Slow-fast dynamics and measure-valued process

e Fast dynamics: convergence toward Hardy-Weinberg equilibrium.

e Slow dynamics:
(NE(E AT, pI (A TE), S (EATE), o pl (6 AT Dorr bicsn
converges in law in D([0, T, [¢, oo[x[0, 1]X1) toward a stopped
diffusion process (N(t AT¢),p2(t ATe), ...,pr(t AN Te))o<t<T-

e Measure-valued process:

L
= _wr(t)is € Mp(0,1]) with 27(t) = N(t)pi(t)
i=1
L L
¢k = <<nt2’ 1>, (77? 1>) e R% x P([0,1]) U{0} x pa.
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2. Slow-fast dynamics and measure-valued processes 2.4. Multi-allelic model and measure-valued processes

Allele continuum and convergence

Theorem (4.4.1)

The sequence (CtLATLvt > 0) converges in law in

D([0, 17, [e, —|—oo[><75([0, 1])) towards the unique continuous-time stopped
process (Ct/\Te?t € [O?T]) = ((nt/\Te7pt/\Te)7t € [O?T]) such that

sup E(n?) < +oo,
t€[0,T¢]

and solution of the martingale problem: for all functions
f € C2(RY. x R,R) and G measurable on [0,1], if H(n,p) = f(n,(p,G)),
then the process (mil,t € [0,T]) such that t € [0,T],

tATe
mf! = Hinepo) ~ Hnopo) — [ LH(ne,p.)ds
0

1S a continuous martingale.
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2. Slow-fast dynamics and measure-valued processes 2.4. Multi-allelic model and measure-valued processes

Generator

H(n,p) = f(n, (p,G)),

e n.p)=n /ﬁw . ( / /awndp u)dp(v >>dp< )p(5)on f (n{p, C))

+’)’n811f G))

v [ o6 //(@z o) s =55

- /0 <am,w—ayz,uv>ndp<u>dp<v>)dp<y>dp<z>]dp<x>azf(n,<p, )
+ L (0.6 = 1.6)) Bof(n, (0.G)).
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