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Abstract

We study phase coexistence (separation) phenomena in Ising, Potts and random cluster models in
dimensions d > 3 below the critical temperature. The simultaneous occurrence of several phases is
typical for systems with appropriately arranged (mixed) boundary conditions or for systems satis-
fying certain physically natural constraints (canonical ensembles). The various phases emerging in
these models define a partition, called the empirical phase partition, of the space. Our main results
are large deviations principles for (the shape of) the empirical phase partition. More specifically,
we establish a general large deviation principle for the partition induced by large (macroscopic)
clusters in the Fortuin—Kasteleyn model and transfer it to the Ising—Potts model where we obtain a
large deviation principle for the empirical phase partition induced by the various phases. The rate
function turns out to be the total surface free energy (associated with the surface tension of the
model and with boundary conditions) which can be naturally assigned to each reasonable partition.
These LDP-s imply a weak law of large numbers: asymptotically, the law of the phase partition is
determined by an appropriate variational problem. More precisely, the empirical phase partition
will be close to some partition which is compatible with the constraints imposed on the system and
which minimizes the total surface free energy. A general compactness argument guarantees the
existence of at least one such minimizing partition. Our results are valid for temperatures T below
a limit of slab-thresholds fc conjectured to agree with the critical point T.. Moreover, T should
be such that there exists only one translation invariant infinite volume state in the corresponding
Fortuin—Kasteleyn model; a property which can fail for at most countably many values and which
is conjectured to be true for every T # T..
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Coexistence des phases dans les modeles
d’Ising, de Potts et de percolation

Résumé

Nous étudions le phénomene de coexistence (et de séparation) des phases dans les modeles d’Ising,
de Potts et de clusters aléatoires en dimension d > 3 en—dessous de la température critique. La
présence simultanée de plusieurs phases est typique des systemes avec des conditions au bord mixtes
choisies de maniere adéquate ou bien des systemes soumis & des contraintes physiques naturelles
(ensembles canoniques). Les diverses phases qui émergent dans ces modeéles définissent une par-
tition de l'espace, appelée la partition des phases empirique. Nos résultats principaux sont des
principes de grande déviation pour la partition des phases empirique. Plus spécifiquement, nous
établissons un principe de grande déviation général pour la partition induite par les grands clusters
(macroscopiques) du modeéle de Fortuin-Kasteleyn et nous le transférons aux modeles d’Ising et de
Potts, dans lesquels nous obtenons un principe de grande déviation pour la partition des phases
empirique induite par les différentes phases. La fonction de taux est I’énergie libre de surface to-
tale (associée a la tension de surface du modele et aux conditions au bord) qui est naturellement
assignée a chaque partition raisonnable. Ces PGDs entrainent une loi faible des grands nombres:
asymptotiquement, la loi de la partition des phases est déterminée par un probleme variationnel
adéquat. Plus précisément, la partition des phases sera proche d’une partition compatible avec les
contraintes imposées au systéme et qui minimise I’énergie libre de surface totale. Nos résultats sont
valides pour des températures T en—dessous de la limite des points critiques dans les tranches fc
qui est conjecturée coincider avec le point critique T.. De plus, T doit étre telle qu’il existe seule-
ment une mesure en volume infini invariante par translation dans le modele de Fortuin—Kasteleyn
associé; une propriété qui peut étre violée sur un nombre au plus dénombrable de valeurs et qui est
conjecturée étre vraie pour toute température T # T..
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their careful reading of the section dealing with geometric measure theory and their numerous
comments.



1 Introduction and main results.

1.1 Introduction.

In this article we continue the analysis of phase separation and phase coexistence phenomena in the
context of Ising-Potts and percolation models in dimensions d > 3, by extending the techniques used
in our previous work [15]. The main goal of the present work is to justify, starting from a microscopic
point of view, the validity of the basic assumptions underlying the classical phenomenological the-
ory of coexisting phases, namely, that the shapes of coexisting phases are governed by a variational
(minimal action) principle. Whereas our previous work [15] focused exclusively on the Wulff prob-
lem — a prominent but specific example of phase coexistence — here we will study this phenomenon
from a more general point of view. Results and ideas which are relevant or closely related to those
contained in the present paper appeared in [3, 4,9, 10, 12, 13, 14, 15, 22, 33, 34, 35, 36, 39, 46, 49, 51].
Let us notice that several questions handled in the present work have been adressed in the context
of two dimensional models [1, 47, 48, 52]. For a summary of the development of this field, in
particular for general references and historical remarks we refer the reader to the introduction of

[15].

The g-states Potts model (a brief description of which is given in section 2.2) is a natural choice for
our purpose since it is probably the simplest example of a Gibbs-measure exhibiting several “pure”
phases!, which can be forced to coexist by imposing appropriate constraints on the system, such
as mixed boundary conditions or constraints on the number of spins in a certain state. Recall that
this latter constraint occurs naturally in the lattice gas interpretation of Ising-Potts models: In this
case it is simply a constraint on the number of particles of a given type. It seems to be the case that
when systems corresponding to discrete spins are submitted to certain conflicting constraints, they
exhibit only pure phases, several of which might coexist so as to satisfy the imposed constraints. In
particular, the pure phases are separated by sharp (when viewed from the macroscopic perspective)
phase boundaries rather than by some wide transition regime where a smooth change between the
phases could take place. We will refer to this phenomenon as sharp phase separation into pure
phases.

Two fundamental problems arise in this context. The first one is to understand the reason behind
the absence of “transitional” states, in particular, the sharpness of phase boundaries. The second
problem is to understand the geometry of the emerging phases and to recover the law governing
the shapes of the interfaces.

As an example, let us consider the Ising model below the critical temperature in a lattice box which
is slightly tilted (in a small angle v) with respect to the lattice axis. We impose boundary conditions
as follows: plus on the top face, minus on the bottom and free on the remaining lateral sides. How
does a typical configuration look like? Possible answers are depicted in figure 1. According to the
leftmost picture there is a continuous transition from plus spins on the top face to minus spins on
the bottom. In the middle picture we observe a flat interface parallel to the top and bottom faces
separating two regions filled with the pure plus and minus phases, respectively. The rightmost
picture is similar to the second one but the interface is not parallel to the top and bottom faces.
The angle between the axis direction and the interface is o, with 0 < a < 7.

"We use the word “pure” for the phases obtained in the thermodynamic limit by imposing constant boundary
conditions.



figure 1

We will prove (Corollary 1.5) that in the Ising model with mixed boundary conditions there is
indeed sharp phase separation into pure phases, which rules out the first scenario.? Phases will
thereby be identified by looking at the value of the local magnetization averaged on an intermediate
scale. Once we know that only pure phases, separated by sharp phase boundaries, occur, it is
reasonable to focus our attention on the (free) energy penalty created by these interfaces. Indeed,
in the phenomenological description one assumes the existence of a direction-dependent macroscopic
quantity, called the surface tension 7(v), such that any piece of an interface between two pure phases
carries an energy whose value is equal to the surface integral of 7(v) over that part of the interface,
where v is the unit vector normal to the interface. The fundamental assumption underlying the
phenomenological theory of coexisting phases is that in equilibrium, the various phases coexist
in such a way that the total energy associated with the interfaces is minimal among all possible
phase configurations (partitions) which are compatible with the constraints (for instance boundary
conditions or volume constraints) imposed on the system. The goal of the current work is a rigorous
derivation of the phenomenological picture described above.

In order to derive a law of large numbers, i.e., to describe the typical behavior of the system,
we perform a general large deviation analysis. We point out that the large deviation approach is
currently the only known way to achieve this kind of results in dimensions d > 3. Namely, one
essential ingredient of the proof is a compactness argument which, similarly as in [10, 12, 14, 15],
replaces a combinatorial bound on the entropy. Large deviations, on the other hand, link the
microscopic model with the calculus of variations. We have then to provide an adequate framework
for the precise formulation of the emerging variational problems. The relevant objects are phase
partitions for the spin models and Caccioppoli partitions of finite perimeter for the FK model. We
can naturally define a surface energy functional on these objects (which turns out to be a good
rate function in the large deviations context). In our analysis we strongly rely on the Fortuin—
Kasteleyn random cluster representation of the spin models. The basic results are derived in the
FK-percolation setting and in a second step they are transferred to the spin models.

Our main tool, Theorem 1.8, is a general large deviation principle (LDP) for the macroscopic
configuration observed in FK percolation. In order to identify the phases on the spin level, we
consider the partition of the underlying region associated with large, in fact macroscopic, clusters
of the percolation process. In the next step, we obtain on the spin level a LDP for the empirical
phase partition corresponding to the different phases visible on the macroscopic scale. We remark

2Somewhat surprisingly, no short and convincing heuristic argument seems to be known.



that the relevance of continuous partitions to study interfaces has already been outlined in the
phenomenological theory of phases coexistence, in particular results related to lower—semicontinuity
of functionals on partitions and their I'-convergence can be found in [5, 6]. The LDP-s ensure a
weak law of large numbers: the law of the empirical phase partition is determined asymptotically by
an appropriate variational problem. With very large probability, the phase partition will be close to
a partition whose total surface free energy is minimal under certain requirements corresponding, for
example, to boundary conditions or volume constraints. A general compactness argument implies
the existence of at least one such minimizer. However, in most examples one cannot say much
about the minimizers themselves. (One notable exception is the Wulff problem.) The difficulty
stems from the fact that the surface tension 7 is anisotropic and almost no quantitative information
about its magnitude is available. Moreover, the corresponding variational problems are extremely
hard even in the isotropic case and the (few) resolved questions represent the state of the art in the
calculus of variations. For instance, a famous conjecture related to the symmetric double-bubble in
the three dimensional case with isotropic surface energy (perimeter) has only been resolved recently
[32] and the asymmetric case remains unresolved (even in the isotropic case). In general, results
on the regularity of 7 would yield results on the local regularity of minimizing configurations (see
[7]). For general results on minimal partitions in the isotropic case, see [2, 40].

Returning to our first example, in order to predict the “typical” empirical phase partition we have
to find the ones which minimize the surface free energy. Note that along the lateral walls (where
free boundary conditions are imposed) there is no energy penalty, hence no contribution to the
surface energy. Let us assume that the sharp triangle inequality holds (see [23]), which implies that
the interface ® separating the two pure phases is flat. Its tilt will be determined so as to minimize
the energy, which is given as the product of the surface area of ® and 7(7), where 7@ is the surface
normal. Whether the second or the third picture is “correct” depends on the unknown anisotropy
of the surface tension. There is an additional issue worth discussing, namely, the position of the
interface ®. From our analysis it follows that the empirical phase partition will be close to some
minimizer. Here, there is a continuum of minima corresponding to any flat interface with the correct
tilt but in an arbitrary height. We believe that in the limit N — oo, where N denotes the box size,
the distribution of the height of the interface is indeed uniform. This has to be contrasted with
the finite N case, where presumably more subtle stochastic effects, such as interface fluctuations,
should be taken into account to understand the law of the height of the interface. It is natural to
conjecture that in this case the height-density is nearly flat but decays rapidly near the top and
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figure 2

More interesting and complex questions appear naturally in the context of the Potts model with
several states. Consider for instance the Potts model with ¢ = 6 colors (states) in a three dimen-



sional box with boundary condition ¢ on the ¢-th face of the box. Naively, one might expect that all
phases will try to occupy the region closest to the corresponding piece of the boundary, which would
lead to a phase partition consisting of symmetric and pyramid-like regions, as can be seen in figure
2, left. However, at least in the case when the surface tension is isotropic (which is presumably the
case in the limit 7' 1 T.), there exists a better configuration with lower total surface free energy.
Recall that in this case our desired interface is simply a minimal surface spanned by the edges of
the box. A picture of the well known solution to this problem can be seen in figure 2, right. In
order to be able to discuss this example at temperatures 0 < T < T., we have to make certain
assumptions about the surface tension 7. We assume that the sharp simplex inequality holds, that
the value of 7 is minimal in axis directions and that 7 increases as the normal vector moves from
say (0,0,1) to (1,1,1). (Although these assumptions are very plausible, none of them has been
proved in dimensions d > 3). Under these hypotheses, we conjecture that the phase partition at
moderate subcritical temperatures looks like in figure 3, left. In the limit 7" | 0, only two phases
survive, as shown in figure 3, right. At T = 0, there is no reason for the middle plane to stay
centered, in fact, any horizontal plane is equally likely.

figure 3

In the next example we consider the three dimensional Ising model with free boundary conditions
below T,, conditioned on the event that the average magnetization is positive and does not exceed
m* — e, where ¢ is a sufficiently small positive number and m* denotes the spontaneous magnetiza-
tion. It is natural to conjecture that the minimizers of the corresponding variational problem look
like the picture in figure 4.

figure 4

A single bubble sitting in one of the corners is filled with the minus phase and in the rest of the



figure 5

box we see the plus phase. The size of the bubble is determined by ¢ and its internal boundary
coincides with the corresponding piece of the surface of the Wulff crystal.

Another Wulff-type problem arises by conditioning the g-states Potts model (with say ¢ > 4) to
have a moderate excess of colors 2 and 3 while imposing 1-boundary conditions on the entire box.
In this case it is conceivable that a so-called “double bubble” is created, consisting of two adjacent
macroscopic droplets filled with the (pure) phases 2 and 3, respectively. The double bubble is
swimming in the phase 1 which fills the rest of the box. Figure 5 shows the double bubble when the
surface tension is close to isotropic. Of course, we might have an excess of color 4 as well; in this
case a further bubble will presumably appear which will be attached to the previous two bubbles.
A picture of such a situation is shown in figure 6, where we assumed a relatively strong anisotropy.
(We warn the readers that these pictures are guesses and have not been obtained by simulations.)

For related variational questions concerning soap films and immiscible fluids, see [38].

In fact, by studying questions concerning phase boundaries we are very quickly confronted with
the theory of minimal surfaces, such as the Plateau problem, corresponding to anisotropic surface
measures. Let Q be a bounded open set in R® with smooth boundary and let v be a Jordan
curve drawn on dQ which separates 92 into two disjoint relatively open sets I't and I'~. Typical
configurations in the Ising model on a fine grid in Q with plus b.c.s on I't and minus b.c.s on I'~
will exhibit two phases separated with an interface close to a minimal surface which is a global
solution of the following Plateau type problem:

minimize / T(vs(z)) dH* () : S is asurface in Q spanned by v
S

where vg(z) is the normal vector to S at z. We remark that it is conjectured that, as the tem-
perature approaches T, from below, the surface tension 7 becomes more and more isotropic and it
is conceivable that the solution of the above minimization problem approaches the solution of the
classical (isotropic) Plateau problem.



figure 6

1.2 The main results.

We will study Ising-Potts models and FK percolation on certain finite regions of the lattice. We
refer to section 2.2 for the definitions, notation and a brief summary of these models. We consider
first FK percolation in dimensions d > 3 in the regime ¢ > 1, p > p. such that 6/ (p) = 8% (p).
Here p. is the slab percolation threshold introduced in [49] which is conjectured to coincide with
the critical point p.. (This is the case at least for Bernoulli percolation (¢ = 1) by the result
of Grimmett and Marstrand [31].) The quantities 6/ (p), 6*(p) are the densities of the infinite
open cluster for the infinite volume FK measures ®2%7, ®2%" with free and wired boundary
conditions, respectively. The equality 8/(p) = 6% (p) implies that there exists a unique infinite
volume FK measure ®£% on the cubic lattice L? (and the converse implication is true as well). It
is conjectured that 67 (p) = 6% (p) for every p # p. and it is known that this is true for values of p
close enough to 1 and might be violated for at most countably many values of p, cf. [30].

Our approach is based on the Fortuin-Kasteleyn (FK) representation of the Ising-Potts model which
recovers the Potts measure on the spin level through an independent coloring (with spins) of the
clusters of the FK percolation process (see section 2.2 for a detailed description). The inverse
temperature 5 = 1/7 in the spin model is related to p via the relation p = 1 — exp(—/f). The
parameter ¢ of the FK process is equal to the number of states in the Potts model (¢ = 2 in the
Ising case). We set 3. = — log(1—p.) and U(q,d) = { —log (1—p) : p such that 8/ (p,q) = 0" (p, q) }.

Range of validity of the results. Our results for the Ising-Potts models hold in the region:
d>3, g€ N\{0,1}, 8> B.(q,d), B € U(q,d). For the FK process, our results hold in the region:
d>3, g>1, p> p.(q,d) such that 8/ (p,q) = 0% (p, q).

At this point it is natural to discuss the case of two dimensions. Although most of our results should
hold for d = 2, there are several points in the proofs which would require a significant change,



making the proofs even longer. The main reason, however, for not to treat the two dimensional
case is that the natural topology for the LDP-s in d = 2 is not the one we use (which is based
on the distance dist;1) but a topology based on the Hausdorff distance. For reasons of space, we
refrain from carrying out that analysis here, in fact, that would require a separate publication.

Surface tension. From FK percolation we can extract a direction dependent surface tension
T(v) = 7(p,q,d,v), cf [15]. For a unit vector v, let A be a unit hypersquare orthogonal to v, let
cyl A be the cylinder A + Ry, then 7(v) is equal to the limit

inside n cyl A there exists a finite set of closed edges F cutting ncyl A in
log ®P:7 | at least 2 unbounded components and the edges of E at distance less than
2d from the boundary of ncyl A are at distance less than 2d from nA

. 1
lim — )
n—r00 n“—

The function 7 satisfies the weak simplex inequality, is continuous, positive and invariant under
the isometries which leave Z? invariant (see section 4 in [15] for details).

Consider a bounded open region Q in R? with boundary I' satisfying the following hypothesis:

Hypothesis on Q: We suppose that Q is a Lipschitz domain, i.e., its boundary I' can be locally
represented as the graph of a Lipschitz function defined on some open ball of R4,

Note that this hypothesis is automatically satisfied when € is a bounded open set with a C!
boundary or when €2 is a polyhedral domain.

We will study Potts models and FK percolation on the region €. To obtain a discretized version
of the region €2, we define for n € N,

Z¢ =17%n (the rescaled lattice)
Q, ={r €z’ d (z,9) < 1/n} (the discrete counterpart of )
r, =ad"Q, (the inner vertex boundary of ,,)

The Ising-Potts model on Q. Let ¢ € N\ {0,1}. Consider a sequence v = I'l,... T of ¢

disjoint and relatively open subsets of I such that the relative boundary of '\ U1<i<q I'in I' has

zero H?~! measure. We set forn € Nand i =1,...,¢,
" = {zel,;de (2,1 <1/n and Vj < i, do (2,19) > 1/n} i=1,...,q

We use the sequence of g—tuples of sets v(n) = (I'L,...,T%) to specify boundary conditions as
defined in section 2.2; namely we impose i-b.c.s on 'Y, for ¢ = 1,...,q and free b.c.s on 'Y =

[\ Ui=17~~~7q I . We denote the Ising-Potts measure in ©,, with these b.c.s by p, = ,unﬁ’(m(n).

The typical picture which emerges from the Potts model at the macroscopic level is a partition of
Q in maximal ¢ phases corresponding to the dominant color in that phase. The individual phases
need not to be connected. A convenient way to identify the phases is to look at the local density
of the individual colors on an intermediate scale.

For € R? and r > 0 we define the box A(z,r) by

A(W‘)Z{yGRd; —r/2 <y — ;i < 1/2, izl,...,d}



We next introduce an intermediate length scale represented by a fixed function f : N — N satisfying

lim n/f(n)'™" = Tim_f(n)/logn = oo (1)

n—0oo

For ¢ = 1,..., ¢, the local density of the color ¢ around z € Q is defined by

an(x,i):f(n)_d‘{yeﬁnﬂ/\( fm)/n); only )—i}\

where 0, (y) is the color of the vertex y € €, in the microscopic spin configuration o, in €,,. We
partition € into the random sets A!,+=0,1,..., ¢, according to the value of the locally dominant
color. More precisely, we set for i =1,...,¢,

A= {w e Vjied{l,....a}\ {i}, onlz,]j) < Un(wvi)}

and A2 is the set of those points where ties occur. The collection (A2 AL ... A%) is called the
empirical phase partition. Our first result shows that up to super-surface order large deviations,
the region A2 has negligible density and the other regions are colored (magnetized) as in a pure
phase corresponding to their dominant color, providing thereby evidence for sharp phase separation
in Ising-Potts models. It is important to point out that the use of the spin-densities to identify the
(pure) phases is not the only possibility. The proof shows that we could use any bulk quantity and
verify that within the phases the correct values are taken, characteristic for the pure phases.

Theorem 1.1 Letd >3, g € N\ {0,1}, § > B., 3 € U(q,d). Foré >0,

1-6
nh—>r%ond log,un{ﬁd AO )+ Z / o, (2, 1) (0—|——)‘

q
+ Z ‘Unx])——Ddac>5} —00
J=1,...,q
J#l

Theorem 1.1 allows to relate the average densities of the ¢ different colors with the volumes of the
sets (A2,..., A%). For i in {1,...,q}, let

5= o <00t =)

Corollary 1.2 Fori in {1,...,q}, the sequences of random variables

(Su(i)nen and — (BL7(AL)/LYQ) + (1~ 0)/q)nex

are exponentially contiguous, i.e.,

V5 >0 lim

n—oo MY

r 1o i | |S4(0) = 0£1(A,)/£1(@) = (1 = 0)/4] > 6] = —o0



Proof: Let us fix ¢ in {1,...,q}. We write

Su(i) — 0L (AL)/L4(Q) — (1 - 6) /q‘ <

nLd(Q LYAYY 1-6
n n d n 7.d -0 -
S,(7) |Q|/O' z,1) dx ‘ |Q| ‘—I_‘ﬁd /Qa(wz)x Q) .

We study successively each term of the right—hand side. Since €2, is a discretized version of €2, the
second term goes to 0 as 1 goes to co. Fach point z such that A(x, f(rn)/n) C Q belongs to f(n)?
boxes of the form A(y, f(n)/n), y € Q. Therefore

Sp(t) — |Q|/Unxzdac

Our hypothesis on ©Q implies in particular that the boundary I' of © is d — 1 rectifiable (in the
terminology of Federer’s book [26]) and closed, therefore its Minkowski content is equal to H*~ ('),
from which we deduce that the above term goes (deterministically) to 0 as n goes to co. To deal

[T
|25

({2 €Q:dy(z,1) <2df(n)/n}) +2

IQI

with the third term, we write

‘/Un(x,i) dr — OLY(AL) — ﬂﬁd(g)‘ <
Q q

/ o (2,i) — 0 — 2= 0w 4 Z/ o (2 ])——|d +L4(A)
n 1 J#i
and Theorem 1.1 provides the desired probabilistic control over this last term. O

Our second result is a LDP for the empirical phase partition (A%, AL ... A%). We first define a
(pseudo) metric dist;: on the set B(€2) of the Borel subsets of Q by setting

VA1, Ay € B(Q)  distyi (A1, Ag) = LYA1AAy) (2)

We consider then the space of phase partitions P(€2, ¢) consisting of ¢ + 1-tuples (A%, Al ... A%)
of Borel subsets of Q forming a partition of Q. We endow P(£2, ¢) with the following metric:

distp((AO,...,Aq),(BO,...,Bq)): S disty (A7, BY)

1=0,...,9

The surface energy Z of a phase partition (A%, AL ... A%) € P(€,q) is defined as follows:

- for any (A% Al ... AY) such that either A # () or one set among A! ... A? has not finite
perimeter, we set Z(AY ... A7) =

- for any (A% Al ... A7) with A° = () and A',... A7 having finite perimeter we set

T(A°,. -y /awm va,(2)) dH (2) + Z/ (@) dH (@)

i=1,....q i =1, 8*Alr1FJ
i)

Note that Z depends on 7 and the boundary conditions v = (T'!,....,T). The first term in the
above formula corresponds to the interfaces present in €2, while the second term corresponds to the



interfaces between the elements of the phase partition and the boundary I'. For a set A of finite
perimeter, *A denotes its reduced boundary (see the appendix).

Results related to the lower semicontinuity of functionals more general than 7 and the theory of
their I'-convergence can be found in [5, 6]. In particular, Z is a good rate function on the space
(P(2,q), distp), i.e., it is lower semicontinuous and it has compact level sets.

Let minp(q 4 Z be the minimum value of 7 over P(€,q). Clearly this minimum is always finite.

Theorem 1.3 The sequence (gn)neN = ((AY, AL .. AL)) en of the empirical phase partitions
of Q satisfies a LDP in (P(,q), distp) with respect to u, with speed n®~' and rate function
7 — minp(q q) Z, i.e., for any Borel subset E of P(Q2, q),

1 . _
—igfI—l— min 7 < lim —— log,un{AnEE} < lim

P(49) n—roo N~ n—oo pd—1

log {An € ]E} < —1%f T+ Pr?éf};)z

Remark: The constant minpq 4)Z will be related to another quantity defined at the FK level in
Lemma 1.7.

Recall that imposing mixed boundary conditions is not the only way to force the system to exhibit
coexisting phases. In the Wulff problem in the Ising model context, for instance, a restricted
ensemble is studied which is characterized by an artificial excess of say minus spins in the plus
phase. Technically this can be achieved by conditioning the system to have a magnetization larger
than the spontaneous magnetization while imposing plus b.c.s.

The next result describes the large deviation behavior of the phase partition in a large class of
restricted ensembles. Although it is a rather straightforward generalization of Theorem 1.3, we
state it separately because of its physical relevance.

Let (G)n>1 be a sequence of events, i.e., sets of spin configurations, satisfying the following two
conditions: first there exists a Borel subset G of P(£2, ¢) such that the sequence of events (G,)nen
and ({A, € G}),en are exponentially equivalent, i.e.,

1

lim
n—00 nd_ 1

log fin |Gy A{A, € G}| = —0 (3)

where /A denotes the symmetric difference. Second, the following limit exists and is finite:

1
d—1

T = lim log p,[Gp] > —o0 (4)

n—oo N

The sequence of events (G,),>1 determines a restricted (conditional) ensemble. Note that if

inf Z=1inf 7 > —c0 (5)
G G

then Theorem 1.3 implies that (4) is satisfied, with Zg = i%f 7.

Theorem 1.4 Assume that the sequence (G,),>1 satisfies (3) and ({) and define for each n > 1
the conditional measures

,ug = :un( : |Gn)

10
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Then the sequence (Ay), ., of the empirical phase partitions of Q satisfies a LDP in (P(£, ¢), distp)
with respect to & with speed n® and rate function T —TIg, i.e., for any Borel subset B of P(Q,q),

1 - — 1 .
—inf T4 T < lim —— log uf{AneE} < Tim —— log MS{AneE} < —inf T+7c
(o] n_ TR~

FAG n—00 n—co nd=! ENG

Theorem 1.4 gives a rigorous verification of the basic assumption underlying the phenomenological
theory, namely, that in a given ensemble, the typical configurations are those minimizing the surface
free energy.

We show next how Theorem 1.4 can be applied to the Wulff and multiple bubble problem. We take
pure boundary conditions with color 1, that is, ' =T, I? =...=T% = (. Let sy,---,s, be ¢ — 1
real numbers larger than or equal to (1 — 6)/q. We set

Vie{2,....,q} v = LY (s, — (1 -8)/q)
We define next the events
Vn e N G, ={Vie{2,....,q} S.(i) > s;}
and the collection of phase partitions
G(vg,...,0.) = {A= (Ao, A1,..., Ay) € P(Q,q) : LYA) > vy, ..., LYA) > v, }
Corollary 1.2 implies that the sequences of events
(G)nen and (A, € G(va, ..., vg))nen

are exponentially contiguous, i.e., they satisfy the condition (3). In order to ensure condition (5),
we suppose that the minimum of the surface energy Z over G(vg,...,v,) is reached with a phase
partition having no interfaces on the boundary I'. More precisely, we suppose that the following
assumption is fulfilled.

Assumption. The region  and the real numbers v,,...,v, are such that there exists A* =

(A5, AT, ..., A}) in G(vg,...,v,) such that

T(A*) = min {Z(A); A € G(vg,...,v,)}
Vie{2,....q}  dy(A;,T)>0

We expect that this assumption is fulfilled provided the real numbers vy, ..., v, are sufficiently small
(or equivalently, sg,...,s, are sufficiently close to (1 — 6)/q), depending on the region Q. This is
for instance the case when ¢ = 1. Indeed, let W, be the Wulff crystal associated to 7. We know
that W, is, up to dilatations and translations, the unique solution to the anisotropic isoperimetric
problem associated to 7. For vy sufficiently small, a dilated Wulff crystal zg + agWV, of volume
vy fits into  without touching I', and the phase partition A* = (B, 2\ (20 + aoW;), 20 + pWV;)
answers the problem. In the case ¢ > 2, we expect that a minimizing phase partition corresponds
to a multiple bubble having ¢ — 1 components.

11



Under the above assumption, we claim that the collection of phase partitions G(vg,...,v,) satis-
fies (5). For A > 1, we define

E*(A):(@,Q\ U AA;,AA;,...,AA;)
2<i<q

Since by hypothesis the sets A3, ..., A7 are at positive distance from I, for A larger than 1 and
sufficiently close to 1, the phase partition A*(\) satisfies

A*(\) € 6\ vy, ..., M) C G(vg, ..., v,)

and moreover Z(A*(\)) = A41Z(A*). Sending A to 1, and remarking that G(vy,...,v,) is closed,
we see that G(vs, ..., v,) satisfies (5). Thus we can apply Theorem 1.4 with the sequence of events
(G)nen, thereby obtaining a LDP and a weak law of large numbers for the conditional measures
ps = fn(-|Gr). In the particular case ¢ = 2, we obtain again the main result of our previous paper
[15]. In the more challenging situations ¢ > 2, the unresolved questions concerning the macroscopic
behavior of such systems belong to the realm of the calculus of variations.

Ising model. For the reader’s convenience, we rephrase our basic results in the Ising setting. In
this case ¢ = 2 and the phases 1 and 2 are usually called 4+ and — phases. We use the same notation
as in the Potts case except that 1 will be replaced by + and 2 by —. For instance we write I} instead
of I'L and Q instead of A%2. The index 0 remains. In this case the spontaneous magnetization can
be given as m*(3) = 8% (p,2) with p = 1 — e~”. The locally averaged magnetization o, is the map
from Q to [—1, 1] defined by

Ve eQ on(z) = . Z o(y)

d
f(n) yEA(z, f(n)/n)NQy

We partition € into the random sets 7, Q% and Q} according to whether the value of the local
magnetization is smaller, equal or larger than zero.

Corollary 1.5 Let d > 3, § > Bc, B eU2,d). Ford >0,

— 1
lim )
n—oo %

log ,un{/g_ o (2) + m*| dz + £(Q0) +/Q+ lop(2) — m™|dz > §| = —o0

n n

The surface energy Z on P(£,2) is given as follows. If A # () or if P(A~) + P(AT) = oo, we set
T(A° A=, AT) = co. For any (A%, A=, A") with A° = () and A=, AT having finite perimeter we set

T A AN =5 [ @) @t [ @) a )
L T(va, (2 d=1(, (a (z d=1(,
+2/8*A+OQ (vay (z)) dH ()+/8*A+r11“— (va, (z)) dH ()

Corollary 1.6 The sequence (Qn)nEN = ((Q2,9., Q")) nen of the empirical phase partitions of
Q satisfies a LDP in (P(,2), distp) with respect to u, with speed n?~' and rate function T —
minp(q,2)Z, i.e., for any Borel subset E of P(€2,2),

—iIc}fI—l— min 7 < lim

B} o - . .
An Jim o log p,[Q, € E] < nh_}rréo s log p,[Q, € E] < — 1%f Z4+ min 7

P(2,2)

12



FK model. Consider a sequence v = (I'™),,en of (possibly empty) disjoint and relatively open
subsets of I'. The relative boundary of I'\ |J,, I'™ in I should have zero H?~! measure. We set for
n €N

I = {zel,; do (2,1 < 1/n, V< m, do (z,7% >1/n}, meN
We use the sequence (I'""),,en to specify boundary conditions for FK percolation in the following
way: for each m € N, the points belonging to I'" are wired together, while the points in I',\J,, I'""
are let free. FK clusters are regarded to be connected (hence identical) when they contain sites
which are wired together, i.e., if they intersect the same boundary piece I'" for some m.

Let v(n) be the partition of I';, consisting of the sequence (I'7),,en together with the singletons
{z}, 2 e ', \U,, I'7". The FK measure inside ©Q with partially wired boundary conditions induced
by the sequence (I'™),,cn with lattice spacing 1/n is the measure ®,, given by
o = (I)gfw(n)

Our principal result, Theorem 1.8, describes a LDP for the collection of the large FK clusters in the
FK model which correspond to several coexisting pure phases in the spin language. To deal with
the entire collection of FK clusters simultaneously we use Borel partitions (to be defined below)
in a similar way as they were employed in [14]. In the spin setting the framework of partitions
allows us to describe systems with more than two phases on the macroscopic level. Regarding the
applications to Ising-Potts models with mixed boundary conditions we have to refine the structure
of partitions in order to keep track of the microscopic connections (whose absence indicates an
interface) between large clusters and the wired boundary pieces. We achieve this by introducing a
touching function T (A, m) indicating the presence or absence of a “connection” between I'™ and
a given set A C Q. Given a partition and its “touching status” there is a natural way to assign a
surface energy to it with respect to the surface tension 7. In the next paragraphs we give a brief
description of these constructions so that we are able to formulate Theorem 1.8.

A Borel partition A of Q is a finite or countable collection of non-negligible Borel subsets of
which, up to negligible sets, form a partition of Q. The perimeter P(A) of a partition A is defined
as

PA) = ) P(4)

AeA

where P(A) is the classical perimeter of A (see the appendix).

A touching function associated with a partition A of Q is a map 7 : A x N +— {0, 1} describing
contacts between the sets of A and the boundary pieces (I'),,en; for m € N, a set A of A is said
to touch a boundary piece I'™ if and only if 7 (A, m) = 1. Thus there is no microscopic connection

between A and ' if T(A, m) = 0.

To define FK clusters we identify the physical clusters intersecting the same piece I'7" of the dis-
cretized boundary. As a consequence, a touching function must satisfy the following compatibility
condition: a boundary piece I'™ can touch at most one set of the partition.

A t-partition is a pair (A, T) where A is a partition of Q and 7 is a touching function associated
with \A. We denote by TP() the set of all t—partitions of Q with finite perimeter.
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Our next goal is to define an appropriate metric on the space TP(2). We first define a metric distr
to deal with touching functions. Let F be the set of the functions from N to {0, 1} endowed with
the product topology. This topology is metrizable, for instance it is compatible with the metric

distr defined by

VI, Ty € Foo diste(Th, Ty) = > 27 Ti(m) — Ty(m)]
meN

An arrangement of an element (A, T) of TP(Q) is a sequence (A(i),T(i,-),7 € N) of sets in AU{0}
and functions in F such that:

- each set of A appears exactly once in the sequence (A(i), i € N) and the empty set () appears
countably many times in the sequence (A(i),7 € N).

- for any i € N, if A(i) # 0, then T'(i,-) = T(A(4), -).

In particular, if A is finite, then A(i) = ( for 7 sufficiently large. Whenever A(i) = (}, the corre-
sponding function T'(¢, ) might be any element of F. However we impose the global constraint that
a boundary piece can touch at most one set, that is,

YmeN ) T(i,m)<1
€N

Finally we define a metric Dist on TP(Q) as follows: for (A, T7), (A2, T2) € TP(Q)

Dist((A1, T1), (A3, ) = inf { 3 ((distys (41 (3), A2()) + distr (T3 (i, ), (i, ) }
1€EN

where the infimum is taken over all possible arrangements (A;(¢),7;(¢,-),7 € N) of A;, j = 1,2,
and dist;: was defined in (2).

Remark: If we forget about the touching function, the metric Dist is the one used by Congedo and
Tamanini [16, 17, 18] (which is stronger than the one employed in [14]). For a careful exposition
and study of this metric on the space of Caccioppoli partitions, see [40].

The surface energy (depending on 7 and on the boundary conditions ) of a t—partition in TP ()
is defined as

AT =Y (%/8 r(va(2)) dH ) + 2(1_T(A,m))/8

() M (2) )
AeA "ANQ meN

*AND™

The first term in the above formula corresponds to the interfaces present within €, while the second
term corresponds to the interfaces between the elements of the partition and the boundary I'. It is
instructive to express now the constant appearing in the LDP of Theorem 1.3 with the help of the
above surface energy.
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Lemma 1.7 For the sequence (I'™),,en, we choose here the finite sequence Tt ... T used in
the section on the Potts model. Let F denote the set of t—-partitions such that no set touches
stmultaneously two distinct boundary parts, i.e.,

F={ATeTrQ;¥AcA > T(4)T(4,]) =0}
lﬁiigfq

Then min { Z(A, T); (A, T) € F} = min { Z(A); A € P(Q,q) }.

Proof: The argument is a straightforward consequence of the definitions of the two rate functions
on the spaces TP(Q) and P(f, q) respectively. Indeed, let (A, 7T) belong to F. For i =1,...,q,
there exists at most one element A; of A such that 7 (A;,7) = 1. If there is no such element in A,
we set A; = (. Let Ag=A\{A4y,...,A;}. Let A be the phase partition defined by

A= (0,41, 41,40 | 4
A€eA,

Then I(%T) < Z(A,T). Therefore ming 7 > minp(q ) Z. Conversely, let A= (0,Aq,...,Ay) €
P(Q,q). Let (A, T) be the element of TP(S2) defined by A ={A4,...,A4,} and

o ) 1 ; ifizj
Vi,j=1,...,q T(Aivj):{() ;  otherwise

Then (A, T) belongs to F and Z(A, T) = Z(A) whence minz T < minpg ) L. O

Now we are ready to turn to our basic LDP for FK percolation. Let f: N — N be our fixed function
representing an intermediate length scale satisfying (1). For given n, a (physical) cluster C' on €,
is called large if diam C' > f(n) and small otherwise. Let C,, denote the random collection of the
large clusters. With C, we associate the Voronoi partition of Q with parts

VorC:{xEQ;VC'ECn\{C}, dy (z,C") > dg(x,C)}, Cec,

Recall that an FK cluster can be regarded as the union of clusters intersecting sites on the boundary
which are wired. We define a large FK cluster as an FK cluster which contains at least one large
cluster. The collection of all large FK clusters is denoted by CFK. A generic element of CI¥ will
be denoted by C*K. The Voronoi partition of Q induced by CF¥ consists of the sets

vor CTK = U vor(', CFR e cfk
CECp, CCOTK

Finally, we associate with CF'X the empirical t-partition (A,,T,) € TP(Q) as follows: A, is the
Voronoi partition of Q induced by CF'K and 7, is the touching function determined by the existence
or absence of connections between the large FK clusters and the boundary pieces. More precisely,

A, = {vorGFK . OFK ¢ CEK}

and for any m € N, any C*X ¢ ¢F'K,
1 5 ifCPEnrm £9

0 ; otherwise

Tn(vor CT ) = {
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Theorem 1.8 Let d > 3, ¢ > 1, p > p. such that 8 (p) = 0V (p). The law of the empirical t-
partition (A, T,) under the FK measure ®, satisfies a large deviation principle in the metric space
(TP(Q), Dist) with speed n?~' and rate function the surface energy I, i.e., for any Borel subset £
of (TP(Q), Dist),

1

—inf 7 < lim y
(o] n -1
5 n—r00

— 1
n £

Remark: The LDP of Theorem 1.8 holds with a slightly weaker hypothesis on f(n), namely: there
exists a constant kK = x(d, p, ¢) such that for any function f(n) satisfying

Vn e N f(n) > rlogn, lim n/f(n)?! = oo
n—0oo

the LDP stated in Theorem 1.8 holds. However, to transfer the LDP from the FK level to the spin
level we work with the stronger hypothesis on f(n).

The LDP stated in Theorem 1.8 is our most general LDP. In fact, we deduce the other LDPs from
it. In the most general situation, this LDP ensures the concentration of the law of the system
(under arbitrary conditions) near the minima of the associated variational problem. Since the
rate function is good, the set of minima is never empty. However, in general, we have very little
information on the minima themselves. A noticeable exception is for instance the Wulff problem,
which we handled in [15] for the Ising model.

We finish with a straightforward consequence of the LDP of Theorem 1.8.

Corollary 1.9 Letd > 3, q € N\{0,1},5 > 8., B € U(q,d). Then our definition of surface tension
in the FK model coincides with the classical definition of surface tension in the spin setting.

Proof: Let v be a unit vector in R? and let i < j be two different colors. We apply the LDP of
Theorem 1.8 to the following situation: € = A(0, 1) is a unit box centered at the origin, I' = dA(0, 1)
and for the b.c.s we consider the twosets [T ={2 el :2-v>0}," ={ael:2-vr<0}. Let
relassic he the classical definition of surface tension in the spin setting for the Potts model (which
is the limit of the excess free energy when putting for b.c.s. the color ¢ on I'” and the color j on
['F). It is known that 7¢/9°5%° (1) can be rewritten as (see for instance [12])

Tclassic(y)

1
_ . . _ _I_
= nh_}n’;o WA (S) log @, |there is no open path between ', and '}

where S ={z € A(0,1);2-v=0}. By Lemmas 1.7 and 4.14, the above limit is equal to
WL (8) 7 () = min { Z(A); A € P(2,0))

Let B_={2eR%:2-v<0}and By ={zeR%:2-v>0}. Let A= (Ag, Ay,..., A,) be the
phase partition defined by A; = A(0,1)NE_, A; = A(0,1)NE} and Ay = 0 for k # 4, j. Obviously,

/Hd—l(S) Tclassic(y) < I(A’) _ /Hd—l(S) T(I/)

whence 7¢155%¢() < 7(v). Conversely, let fo = (Ao, A1,..., A;) be a phase partition having finite
surface energy. Then Ay = (), and setting A; = A; U (E_\ A), we have

Z(A) > lim (v, () dH* ™ (@)

=0 JA(0,142)n0* 4;
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By the convexity of the homogeneous extension of 7, for any £ > 0,
[ @) @) > (el
A(0,1+e)N5* A,

where

u= / v (x)dH (2)
A0, 142)n0*A;

Since A;AE_ is included in a compact subset of the interior of A(0,1+¢€), then

" = / vi(2) dH (@) = HO (A0, 142) N OE_) v
A(0,142)NI*E_

(see for instance [7], Proposition 3.10 for a more precise result) and therefore
|ulo7(u/|ul2) = HTH(A(0, 14 2) NIE_)r(v)

Thus
T(A) > HTHA0,1)NIE_)r(v) = HITHS)T(v)

and taking the infimum over all phase partitions A we conclude that relassic(yy > r(y). O

2 Preliminaries

In this section we introduce first the notation and we give some basic definitions. In the second
part, we recall some useful properties of FK (or random cluster) measures and we give a short
description of the Potts and Ising models and their FK representation.

2.1 Notation.

The cardinality of a set A is denoted by | A|. The symmetric difference between two sets Ay, Ag is
denoted by A1AAy. For r € R, |r| denotes the integer part of r and [r]| stands for the smallest
integer larger than or equal to r.

Metric: We denote by d, the metric associated with the p-norm, i.e., d,(z,y) = |z — y|, for any
z,y in R% We will only use the 1,2 and oo norms. The d, distance between two subsets F; and
Fy of RY is dy(Eh, By) = inf{|zy — 23|, : 21 € Ey, 29 € Ey}. The r—neighborhood of I/ C R?
with respect to the d, metric is the set V,(F,r) = {z € R?:d,(z,F) < r}. The d, diameter of
a subset F of R is diam, E = sup{ |z — y|, : =,y € E'}. We will usually work with the Euclidean
distance dy on the continuous space R% and with the distance d; or ds on the discrete lattice Z.
By default, when we speak of the diameter of a set without any specification, we mean the d
diameter.

Geometric objects: Let z = (24, --,24) be a point of R? and let r be positive. The closed ball
of center z and Euclidean radius r is denoted by B(z,r). The sphere of center z and radius r is
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OB(x,r). The unit sphere of R? is denoted by S?'. The projective sphere PS?~! is obtained by
identifying opposite points on S%'. Let w be a unit vector. We set

hyp (z,w) = {y € R?; (y — 2)-w = 0}
For rq,ry in RU {—o00,+o0}, we define
slab (z,w,r1,7r2) = {y € R?: ry < (y— ) -w<ry}
We set next
B_(z,r,w) = B(z,r) N slab (z,w, —00,0), Bi(z,r,w)= B(z,r)N slab (z,w,0,0c0).

By disc (2, r, w) we denote the closed disc centered at x of radius r and normal vector w. A box is
a set of the form

Az, r) = {y: (Y1, ya) ERd; _ri/2<yi—$i§7‘i/2,i:1,---7d}

where 2 = (zy,---,24) and r = (ry,---,7r4) belong to R% Clearly, = is the center and r determines
the side lengths of the box. If r; = t for each ¢ = 1,...,d, where t € R*, then we write simply
A(z,t). Notice that A(z,t) has diameter ¢ and is neither open nor closed. If d..(x,y) > t then
A(z,t) and A(y,t) are disjoint. Let A be a subset of R of linear dimension d — 1, that is A spans a
hyperplane of R%, which we denote by hyp A. We call such a set an hyperset. By nor A we denote
one of the two unit vectors orthogonal to hyp A, or equivalently the element of PS%~! orthogonal
to hyp A. The cylinder of basis A is the set

cylA = {z+tnorA;teR, 2 € A}

We set also cyl (A,r) = {a+tnorA:|t|<r,z € A} = cylAn slab (z, nor A, —r,r).

Topology and Measure: Let F be a subset of R%. We denote its interior by ﬁ, its closure by I,
its boundary by 0F. Whenever A is an hyperset of R?, that is A spans a hyperplane of RY, we use
the induced (d — 1) dimensional topology of hyp A to define dA, A, A. The collection of the Borel
subsets of a set I/ of R? is denoted by B(F). The volume of a Borel set F is simply its Lebesgue
measure which we denote by £7. A Borel set is said to be negligible if its volume is zero. We define
a (pseudo) metric dist;: on B(RY) by

VE,F e B(RY  distyi(E, F) = LYEAF)

When dealing with topological questions on the space B(Rd), we consider the equivalence classes
of the Borel sets modulo negligible sets. We denote by #* the standard k-dimensional Hausdorff
measure, for k=1,2,...,d.

The lattice L% We turn Z% into a graph with vertex set Z¢ and edge set
E' = {{z,y};2 € 2% y € 29 d; (2,y) = 1}.

This graph is called the d-dimensional cubic lattice and is denoted by L¢. We often think of this
graph as embedded in RY the edges {z,y} being straight line segments [z, y] between nearest
neighbors. If  and y are nearest neighbors, we denote this relation by z ~ y.
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Let D be a subset of R% An edge {z,y} of E? is said to be included in D if both sites z,y belong
to D. We denote by E?(D) the set of the edges of E included in D. For D a subset of Z%, the
graph (D, E (D)) will be often identified with its vertex set D. For F a subset of E?, a formula
like ' C B¢ (D) will be abbreviated into F C D.

To simplify notation, we will sometimes identify subsets of R% with their traces on the lattice, i.e.,
we identify A C R? with AN Z? For example, A(n) denotes a box both in the continuum and in
the lattice.

The lattice L4>°: We introduce another graph structure on Z?. First we define the edge set
B = {{z.y}io €2 y € 27, do (2,y) =1}
The lattice L% is defined to be the graph (Z?, E>).

Discrete topology: Let A be a subset of Z%. We define its edge boundary,
0% A = {{z,y} e B2 € Ay € A°)
its inner vertex boundaries,
O"A ={xecA;Tyec A° y~a}, A ={z e A;Tye A {z,y} € B4}
its outer vertex boundaries,
OUA ={zeATye A y~al}, OSMA = {2z e A% Tye A {x,y} e ED>®Y

These definitions are extended to the subsets of R? by setting, for £ C RY, 04 F = 0% (ZN F),
where * stands for edge, in or out and x stands for nothing or co.

A path v in (Z4 F) (respectively (Z%, E*>)) is an alternating sequence g, €9, T1, €1, *, €n_1, Tp, -
of distinct vertices z; and edges e; belonging to (Z% E?) (respectively (Z% E*>°)), where e; is the
edge between z; and x;19. The path is said to connect every pair of its vertices. If the path
terminates at some vertex z, it is said to have length n, otherwise it is infinite. Two paths are
disjoint if they have no edges in common. The set A is said to be connected or L-connected
(respectively L%*-connected) if the graph (A,E?(A)) (respectively (A,E">(A))) is connected.
Note that connectedness in the usual L? sense implies L%*-connectedness.

Let A, B, D be subsets of R% A set of edges E C E? is said to separate A and B in D if there is
no path in the graph (Z?N D, E4(D) \ E) connecting A and B. The set E separates oo in D if the
graph (Z?N D,EY (D) \ E) has at least two infinite components.

The relevance of the lattice L% stems from the fact that the exzternal boundary of any L%-
connected finite set A in Z? is itself L% °-connected (whereas the external boundary of any Le-
connected finite set in Z? is not necessarily L%connected). To be more specific, let us define the
residual x-components of A as the %-connected components of A° where * stands for L? or L%,
Let A be a L%*-connected subset of Z% If R is a residual *-component of A (in either sense),
then its inner and outer vertex boundaries "R and 9°%R are L»*-connected (cf. [21], Lemma
2.1) and therefore also 0" R and 02" R are L%>-connected. We will need the notion of external
boundaries. Let A be a finite L%*-connected set and let R be its unique infinite residual L%
component. The external outer vertex boundary of A, denoted by 9% A, is defined as 8" R and
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it is L%>°-connected. The external outer vertex L%*-boundary is defined by
9ot A = 9"R = {x € R; Iy € A with {z,y} € E**>}

and this set is also L%*-connected.

For future reference, we prove a geometric lemma.

Lemma 2.1 For any finite L% —connected subset A of Z%, for r > 4,

,Cd(VOO(A,r)) S a rd_1(|A|\/r)

Proof: If diam A < r, then £Y(V..(A,r)) < (3r)%. Suppose now that r < diam A < oco. Let
{@y, -+, 21} be a collection of vertices of A of maximal cardinality such that

Vijje{l---1}, i#3, Alz,r)NnAzj,r)=0.

The maximality of the collection implies that A C A(zq,2r)U---UA(2y,2r). Because [ is necessarily
larger or equal than 2 and A is L%*—connected, for each 7 in {1---},

AN A2, 7) | > doo(i, 07 A(2s,7) > 1/2 -1
so that | A| > [(r/2 —1). Since Voo (A, r) is included in [ boxes of diameter 4r, we obtain

,Cd(VOO(A,r)) < l(4r)d < (4r)d(r/2 -7 A< 4aHtpd=1) 4| O

2.2 FK percolation and Ising-Potts models.

Edge configurations: For £ C E with F # 0, we write Q(F) for the set {0,1}; its elements
are called edge configurations in E. The natural projections are given by pr, 1w € Q(F) — w(e) €
{0,1}, where e € F. An edge e is called open in the configuration w if pr.(w) = 1, and closed
otherwise.

For A C Z% let Q4 stand for the set of the configurations within A, i.e., Q4 = {0, 1}]Ed(A)7 and Q4
for the set of the configurations outside A, i.e., Q4 = {0, 1}F\E“(4) . (Recall that E*(A) denotes
the set of edges between sites in A.) In general, for A C B C Z% we set Q4 = {0, 1}Ed(B)\Ed(A).
Given w € Q and F C E?, we denote by w(F) the restriction of w to Q(F). Analogously, wa stands
for the restriction of w to the set B (B) \ E*(A).

Given 7 € Q, we denote by O(n) the set of the edges of E? which are open in the configuration 7. The
connected components of the graph (Z% O(n)) are called n-clusters. The path v = (21, ey, z3,...)
is said to be n-open if all the edges e; belong to O(n). We write {A «+» B} for the event that there
exists an open path joining some site in A with some site in B. Similarly, we denote by {A < oo}
the event that there exists z € A lying in an infinite component.

Let w be an edge configuration in Z¢ (or in a subgraph of LY). We can look at the open clusters
in 'V or alternatively the open V-clusters. These clusters are simply the connected components of
the random graph (V, O(w(F))), where w(F) is the restriction of w to L.
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Given £ C F?, we write F(F) for the o-field generated by the finite-dimensional cylinders associated
with configurations in Q(F). Similarly, for A C B C Z°, we use the notation ]—'ﬁ for the o-field
generated by finite-dimensional cylinders associated with configurations in Qé. IfA=0orB=17%
then we omit them from the notation.

Stochastic domination: There is a partial order < in Q given by w < W' iff w(e) < w'(e) for
every e € B%. A function f:Q — Ris called increasing if f(w) < f(w') whenever w < &', An event
is called increasing if its characteristic function is increasing. Let F be a o-field of subsets of Q.
For a pair of probability measures p and v on (2, F), we say that u (stochastically) dominates v if
for any F-measurable increasing function f the expectations satisfy u(f) > v(f). If, in addition,
for each F-measurable cylinder Z with pu(Z) Av(Z) > 0, we have u(f|Z) > v(f|Z), then we say
that p strongly dominates v, and we denote this relation by p > v.

FK measures: Let V C Z% be finite and £ = E*(V'). We first introduce (partially wired) boundary
conditions as follows. Consider a partition 7 of the set 9"V, say 7 = {By,..., B,}. (The sets
B; are disjoint non-empty subsets of "V with B; U---U B, = 9"V). We say that z,y € 8"V
are m-connected, if x,y € B; for an i € {1,...,n}. Fix a configuration n € Q,,. We introduce an
equivalence relation on V: 2 and y are said to be 7 n-connected if they are both joined by n-open
paths to (or identical with) sites 2/, 3y’ € 3"V which are themselves 7-wired. The new equivalence
classes are called 7- n-clusters, or FK clustersin V with respect to the boundary condition 7. The
number of FK clusters (w.r.t. 7) is denoted by ¢l™(n). In general, we will use C' to denote clusters

and CFK for FK clusters.

For fixed p € [0,1] and ¢ > 1, the FK measure with parameters (p,q) and boundary conditions 7 is
a probability measure on the o-field Fy,, defined by the formula

e Qy M= g (L1700 =) g (6)
ecel

where Z;""? is the appropriate normalization factor. Since Fy, is an atomic o-field with atoms {n},
n € Qy, (6) determines a unique measure on Fy,. Note that every cylinder has non-zero probability.
There are two extremal b.c.s: the free boundary condition corresponds to the partition f defined to
have exactly |07V classes, and the wired b.c. corresponds to the partition w with only one class.
The set of all such measures called FK (or random cluster) measures corresponding to different
b.c.s will be denoted by FK(p,q,V), and we write ¢FK(p, ¢, V) for its convex hull. The stochastic
process (pre)eeEd(V) : Q — Q, given on the probability space (€, F, @) is called FK percolation
with boundary conditions «.

We will list some useful properties of FK measures. A property of crucial importance is that for
q>1,every & € FK(p,q,V) is strong FKG. This means that for every Fy,-measurable cylinder Z,
and for all Fy-measurable increasing functions f, g, we have

SlfglZlz@[f| Z]®[g| 7] . (7)

In some cases it is possible to compare FK measures with different b.c.s. There is a partial order
on the set of partitions of 9*V. We say that © dominates 7', # > =', if 2, y 7’-wired implies
that they are m-wired. We then have (I>‘7/r/’p’q < @;"%  This implies immediately that for each
¢ € FK(p,q,V), @‘J;’p’q < ® < &9 Next we discuss properties of conditional FK measures.
For given U C V and w € €2, we define a partition W‘[/J (w) of U by declaring z,y € 9"U to be
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W‘[/] (w)-wired if they are joined by an wg—open path. Fix a partition 7 of 9*V. We define a new
partition of U, denoted by 7 W (w), by considering z,y € 3""U to be 7 WY (w)-wired if they
are both joined by wi-open paths to (or identical with) sites 2/, y’, which are themselves m-wired.
Then, for every JF;;—measurable function f,
.WU u 1
opPf | F)w) = of VI @, (8)
Note that (8) can be interpreted as a kind of Markov property. A direct consequence of this formula

is that the restriction of every FK measure ® in FK(p,q, V) to Fy is contained in the convex hull
cFK(p,q,U).

Ising-Potts measure: Let V C Z% be finite and let ¢ > 2 be an integer. A spin (color) configura-
tionin Visamap o:V — {1,2,...,q}. We denote by o(z) the spin at site z in the configuration
o. To define (mixed) boundary conditions (b.c.s) on V' we consider an ordered partition p of 9"V
into ¢ + 1 disjoint sets (R, R',..., RY). A configuration ¢ is said to be p-compatible if O[Ri =1
for i = 1,...,q. Note that there is no constraint on the spins in R°. The constant b.c.s with
R' = 9"V for some i are called i-b.c.s for i = 1,...,q and free-b.c.s for i = 0.

Let p be fixed. The energy or Hamiltonian of a configuration is given by

> lo@#oy ; if 0is p-compatible
H{(0) =% A{zw} e~y
00 ;  otherwise
For g > 0, the corresponding Gibbs measure ,ug’q’p with boundary conditions p at inverse temper-
ature (3 is the probability measure on {1,...,q}" defined by:

Iug’q’p[(f] = QXP(_ﬁHX/; (U))/Z(ﬁv q, P, V)

where Z(f3, ¢, p, V) is the normalizing factor, called the partition function, given by

Z(B.q,0, V)= Y exp(=pH{ (o))

ce{l g}V

FK representation of Ising-Potts measures: We describe a coupling, constructed by Fortuin
and Kasteleyn [27], between FK percolation and the Ising-Potts model (see e.g. [45] and the
references therein for more details). Let V' C Z% be finite. An edge-spin configuration in V is an
element (w, o) of {0, 1}Ed(v) x{1,...,q}V. Let p = (R° R',..., R% be a b.c. for the spin model
and let p’ be the boundary condition for the percolation model defined as follows: the equivalence
classes of the partition p’ are R!,..., R? plus all the singletons {z}, » € R®. In words: wired b.c.s
on the Ri-s for i = 1,...,q (but these sets are not wired together) and free b.c.s on R’. We denote
by Qg’q’p/’% the probability measure on the edge configurations in V' obtained by conditioning

the regular FK measure @{}’q’pl on not having any open connections between the sets R*, R’ for
1 <7< j < g. Note that in the case of constant b.c.s there is no restriction on the existence of
open connections.

For a given 3 > 0, we set p = 1 — e=#. We can sample a spin configuration from the distribution

54,0 Pyq,0 4
q)V

py 0" as follows. First we draw an edge configuration in V' according to . In a second
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step we color each open cluster independently, with color (spin) i for clusters intersecting R’ and
with the uniform distribution on {1,..., ¢} for the other clusters. In this way we obtain a random
edge-spin configuration whose distribution will be denoted by IPg’q’p. We refer to a process of
edge-spin configurations with this law as the FK coupling of the Ising-Potts and FK percolation

processes.

Basic asymptotic properties of FK and Ising-Potts measures. It is known that for x = f
or w, the weak limits ®27" = lim,, 00 @f{’(i’)* exist and are translation invariant. Moreover they are
extremal w.r.t. stochastic ordering among measures obtained as weak limits of FK measures with
mixed boundary conditions. The order parameter of FK percolation is given by the percolation
probability 8% = 6“(p,q,d) = ®L""[0 <+ o0]. It is known that for d > 2 the system exhibits a
phase transition, more precisely, there exists p. = p.(¢,d) € (0,1) such that §“(p) = 0 for p < p.
and 8*(p) > 0 for p > p.. It has been conjectured that &% = oL (which is known to be
equivalent to 8% (p) = 67(p)) when p # p. but it is only known that the complement of the set of
regular points

U(q,d)={p€[0,1]; P2 = q;g(;q,f}
can have at most countably many elements. More about this topic can be found in [30].

Assume p € U(q,d). Typical configurations (w.r.t. any measure in ¢FK(p,q,A)) in a large finite
box A have the following properties: there exists a unique largest cluster which is “omnipresent”,
in particular, it crosses the box from wall to wall in each direction. Its density is close to 6
and its mass is homogeneously distributed in the entire box. Most of the remaining clusters are
bounded in diameter by a constant L = L(p, q,d). More precisely, these latter clusters and the
largest cluster fill up the box up to a negligible fractional volume . Large deviations estimates
for (the complements) of such events can be found in [49]. By using the FK representation of the
corresponding spin models it is easy to derive the following information about the “pure phases”
of Ising-Potts models: in a large box with constant 1-boundary conditions (or if we restrict the
infinite volume measure ,uo%q’(l) to the box), we typically see a large spin cluster of color 1 which is

omnipresent in the box. All the different colors (spins) are homogeneously distributed in the box
and they have densities 8 + (1 — 0)/q for spin i = 1, and (1 —8)/q for i =2,...,4.

The region Q. We consider a bounded, open and connected region  in R¢ with boundary I' = 9 Q
satisfying the following assumption:

Hypothesis on Q: We suppose that Q is a Lipschitz domain, i.e., its boundary I' can be locally
represented as the graph of a Lipschitz function defined on some open ball of R4,

The precise condition can be expressed as follows: each point 2 of I' = 9Q2 has a neighborhood U
such that U N is represented by the inequality z,, < f(z1,---,2,-1) in some cartesian coordinate
system where f is a function satisfying a Lipschitz condition. Such domains are usually called
Lipschitz domains in the literature and they possess all the geometric properties we will need in
the course of our proofs. In particular the boundary I of  is d — 1 rectifiable (in the terminology
of Federer’s book [26]), so that its Minkowski content is equal to #*~'(I'). In addition, a Lipschitz
domain  is admissible (in the terminology of Ziemer’s book [54]) and in particular H?~*(I'\0*Q) =
0. Moreover, each point of I' is accessible from € through a rectifiable arc.

Note that this hypothesis is automatically satisfied when € is a bounded open set with a C*
boundary or when €2 is a polyhedral domain.
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We will study Ising-Potts models and FK percolation on discretized versions of 2. More precisely,
we define for n € N,

Z¢ =17%n (the rescaled lattice)
Q,={z ez d(2,Q) < 1/n} (the discrete counterpart of )
r, =97, (the inner vertex boundary of ,,)

Coarse graining of FK processes on 2.

The blocks and the block events. Let n and K be positive integers whose value will be fixed
for the sequel. For z € Z%, we define the block indexed by z as B(z) = A(zK/n, K/n). Note that
the blocks partition the entire space, in particular Z%. We will sometimes identify the block B(z)
with its index z. In particular, we will speak about nearest neighbor blocks, L% or L»*-connected
components of blocks, and about the various boundaries of such sets. If A is a subset of Z%, we

define B(A) to be the union of the blocks indexed by A, i.e.,

B(4) = | B(a)

€A

To obtain a coarse graining of FK percolation in ,, we will consider events which can be observed
within the individual blocks or in their neighborhood. Let o be a positive integer, called the event-
block size. For z € Z?, we introduce a larger block B’(z) around B(z), called the event-block, by
setting

Bw= U B )

z; doo (z,2) < @

Note that a is equal to the total number of layers of boxes in B'(z).

Lemma 2.2 Under our hypothesis on €1, there exists an increasing sequence of open and connected
sets Q, with |, oy €Y, = Q such that

sup HITHOQ) < o (10)
n€eN

. n ’ .

J;rrgo—f(n) d (042, ) = oo (11)

where f is our fized function satisfying (1).

Remark: A stronger statement is proved in [42], namely, an approximating sequence of strict
subsets of € is built whose perimeter converges to the perimeter of €.

Proof: For ¢t > 0, let us define
Q) = {zeQ:dy(a, 1) >t}

Let f:Q — R* be the map defined by f(z) = dy(z,T'). This map is Lipschitzian with Lipschitz
constant 1. We apply the coarea formula to f and Q\ Q(1/m) (see [26], Theorem 3.2.11, or [24],
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paragraph 3.4.2). We have for m € N

ceneq/m) = [ @)
2\Q(1/m)

d—1 -1 M e
> [wteneamyngtaya = [ oowm)
hence there exists ¢(m) in (0,1/m) such that
mL(Q\ Q(t(m))) > HTH(0Q(t(m)))

Our hypothesis on ©Q implies in particular that the boundary I' of © is d — 1 rectifiable (in the
terminology of Federer’s book [26]) and closed, therefore its Minkowski content is equal to #4~1(T")
(see the appendix for details), hence

lim SL({r € R dofe,T) < 1/m)) = HN(T) > L i w 09(t(m)))

m—sco 2 m—oo

Notice that the set Q(¢(m)) is not necessarily connected. Let us fix a point z¢ in Q. Let
Q(t(m), z¢) be the connected component of Q(t(m)) containing xo. Obviously H1(dQ(t(m))) >
HA=L(9Q(t(m), 20)) and therefore

lim HIH0Q(t(m), z0)) < 2HTUT)

m—00
so that (10) is satisfied. Since lim,,_yo t(m) = 0, we can extract from (t(m)),en a decreasing
subsequence (u(m))men. The sequence of sets (2(u(m), zo))men is then increasing, and since € is

connected, we have

U Q(u(m),20) =0

meN
Finally, the sequence (da(Q2(u(m), o), ['))men is positive and decreases to 0. By re-indexing ap-
propriately our sequence of sets, we can ensure the condition (11). O

It turns out, somewhat surprisingly, that it will be sufficient to have a coarse grained picture of the
FK process in a certain neighborhood of the set Q! . For given n, a, K (whose value may depend
on n) and function f: N — N satisfying (1) we consider the following collection of blocks:

T

Q, = {2 ez’ d @K/n, Q) < d (09, 1)/2 and aK /n < dy (2K /n,T) |

Note that the event-blocks cover the f(n)-neighborhood of Q! and are entirely contained in €,,.

Block events. Let A be a box in Z? with side-length equal to k. An open cluster within A is
called crossing for A if it intersects each of the 2d faces of 9" A. Let g be an increasing function
from N to RT such that g(k) < k for all k¥ and let § > 0. We consider the following events:

U(A) = { there exists a unique open crossing cluster C*in A }
R(A,g)=U(A) N {3! open cluster with diameter > g(k) }

O(A,g) = R(A, g) N {C* intersects every sub-box of A of diameter > g(k) }
V(A 0) = U(A) N {(0=0) [A] <|C7[ < (6 +0) |A[}

T(A,g,0)=0(A,g) N {for any box A’ C A of diameter > g(k),

(@ =N <|CTNAN|<(0+0) A} (12)
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Theorem 3.1 in [49] implies that for d > 3, ¢ > 1, p > p., 67 (p) = 0“(p), there exist positive
constants b = b(p,q,d), ¢ = ¢(p, q,d) and kK = k(p, q,d), such that for each k& > 1, each box with
side-length k&, and each measure ® € ¢FK(p, ¢, A)

BU(AY] < bexp(—ch) (13)
Moreover, if klog k < ¢g(k) < k for all k in N,
P[R(A, 9)] < ®[O(A,9)7] < bexp(—cg(k)) (14)

Also, for § > 0, there exist positive constants b = b(p, ¢,d, ), c = ¢(p,q,d,d) and k = k(p, ¢,d, d),
such that for each k > 1, each box with side-length &, and each measure ® € ¢FK(p,q, A)

V(A )] < bexp(—ch) (15)
and, if klogk < g(k) < k for all kin N,
®[T(A,g,0)] < bexp(—cg(k)) (16)

Notice that we have introduced a new type of event named T'(A, g, ). The corresponding estimate
follows from Theorems 3.1 and 1.2 in [49].

We will have to work on the lattices Z% for n > 1. In order to keep the notation relatively simple we
adopt the following convention. When working on the lattice ZZ with n # 1 the events described
in (12) have to be understood in scales adapted to the actual lattice spacing. In particular, the
effective diameter of A with “side length &” will be k/n, a sub-box of “diameter > ¢(k)” will have
diameter > g(k)/n etc. In general, length and volume have to be measured on the actual lattice
scale. This is of course not valid for the cardinality of sets.

Block variables: In the course of the proofs we will often use coarse graining in ,, by looking at
a block process (X (z))zeq, , indicating the non-occurrence of one of the typical events listed in (12)
in the corresponding event-block. (According to our convention, the block size has to be measured
in the lattice units!) By controlling the coarse grained process X we can extract useful information
about the underlying FK process; in fact this is our main tool to control the microscopic behavior
of the model. The definition of the events and the estimates (13), (14), (15), (16) guarantee that
the block process satisfies the following properties:

— the variable X (z) depends only on the edges in B'(z)
- max ® X(z)=1|<¢ 17
ecFK(p,0,B'(z)) [X(2) < ()

These two properties imply furthermore

@ecfr%(?,(q,ﬁn)q) {X(g) =1 ‘ U(X(g)7 deo (2,2) > 200 — 1)} <eg (18)

For later reference we re-state Lemma 2.2 from [15].

Lemma 2.3 Consider a 0-1 valued random field (XZ)ZEA(m) with the property that there exist a
positive integer D and ¢ € [0, 1] such that for each z € A(m),

P {XZ —1 ‘ o(Xy: doo (2,y) > D)| < & (19)
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Then, for every ¢ € (s,1],

where

1-46
1—¢

AZ(6) = 5logg—|— (1—24)log

is the Legendre transform of the logarithmic moment generating function of a Bernoulli variable
with parameter €. (We remark that if e < 6 < 1/2, then AZ(8) > §log(d/c) —log2).

3 The surface energy of partitions

In this section, we introduce the metric on the space of partitions with finite perimeter and we
prove the basic geometrical results necessary to obtain the large deviations principles. Some extra
technical work is needed compared to the existing results because we wish to take into account
boundary effects. Apart from this additional feature, the metric on the space of partitions Dist
is the one used by Congedo and Tamanini [16, 17, 18]; for a careful exposition and study of this
metric on the space of Caccioppoli partitions, see [40].

Throughout the section, we consider an open bounded domain Q in R together with a sequence
(') men of (possibly empty) disjoint subsets of its boundary I' = 9€2.

Hypothesis: We suppose that the boundary I' of € can be locally represented as the graph of a
Lipschitz function defined on some open ball of R?~!. For each m in N, the set I'" is open for the
relative topology of I'. The relative boundary of I'\ |, I in I' has null H=1 measure.

The precise condition on € can be expressed as follows: each point z of I' = J€Q has a neighborhood
U such that UNSQ is represented by the inequality z4 < f(21,---,24-1) in some cartesian coordinate
system where f is a function satisfying a Lipschitz condition. Such domains are usually called
Lipschitz domains in the literature and they possess all the geometric properties we will need in the
course of our proofs. First the boundary I' of Q is d — 1 rectifiable (in the terminology of Federer’s
book [26]), so that its Minkowski content is equal to H?~'(I'). Second, a Lipschitz domain Q is
admissible (in the terminology of Ziemer’s book [54]) and therefore H4~1(I'\ 9*Q) = 0. Third, each
point of I' is accessible from € through a rectifiable arc.

We recall that the relative topology of I is the topology induced on I' by the topology of R%. Hence
each set T is the intersection of I' with an open set of R%. Finally the last sentence in the hypothesis
is equivalent to saying H4~!(dr U,, I'™) = 0, where 0r is the boundary for the topology induced
by R% on T'. Since the sets I'™ are relatively open and disjoint, we have U,ort™ corly,, .

The sequence (I'),,en induces the b.c. on  in the following way: for any m € N, the points
belonging to I'™ are wired together, while the points in I' \ |J,, '™ are let free. The aim of this
section is to describe the geometric macroscopic object which emerges from the FK measure defined
inside  with b.c. induced by the sequence (I'™),,en.

A partition A of Q is a finite or countable collection of non—negligible Borel subsets of  which, up
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to negligible sets, form a partition of €. The perimeter P(A) of a partition A is defined as

PA) = ) P(4)

AeA

A set of a partition is the macroscopic object corresponding to a large FK cluster of the percolation
configuration. Because we wish to take into account the effect of b.c., we need to keep track of the
connections between the clusters and the boundary. Unfortunately, the macroscopic picture of the
sets alone does not describe what might happen on the microscopic level near I'. Hence we record
separately the relevant information with a touching function.

A touching function associated with a partition A of Q is a map 7 : A X N — {0,1} describing
the contacts between the sets of A and the boundary pieces (I'"),,en. A touching function must
satisfy the following compatibility condition: a boundary piece I'™ can touch at most one set of
the partition, or equivalently,

YmeN ) T(Am) < 1.
AcA

Indeed, a set of A is the macroscopic object corresponding to a large FK cluster of the percolation
configuration, and to define the FK clusters we take into account the boundary conditions.

We say that a partition A of Q has touching status 7 (or that A is a partition of  with touching
status 7) if 7 is a touching function associated with A. Formally, a partition with touching status
is a pair (A, 7T) where A is a partition of Q and 7 is a touching function associated with A. Let
(A, T) be a partition of Q with touching status. For m € N, a set A of A is said to touch the
boundary piece I'™ if and only if 7 (A, m) = 1. Thus an interface between A and I'” is taken into
account only if 7 (A, m) = 0.

We denote by TP(€) the set of all partitions of Q with touching status whose perimeter is finite.
We next build a metric on TP(€Q). We first define a (pseudo) metric dist;: on B(€2) by

VA1, Ay € B(Q)  distpi(Ar, Ag) = LY(A41AAy)

Let F be the set of the functions from N to {0,1} endowed with the product topology. This
topology is metrizable, for instance it is compatible with the metric distr defined by

VI, Ty € Foo diste(Th, Ty) = > 27 Ti(m) — Ty(m)]
meN

An arrangement of an element (A, 7) of TP(Q) is a sequence (A(i),T(i,-),i € N) of sets in AU{0}
and functions in F such that:

- each set of A appears exactly once in the sequence (A(i), i € N) and the empty set () appears
countably many times in the sequence (A(i),7 € N).

- for any i € N, if A(i) # 0, then T'(i,-) = T(A(4), -).

In particular, if A is finite, then A(:) = @ for i sufficiently large. Whenever A(i) = 0, the cor-
responding function 7'(¢,-) might be an arbitrary element of F. However we impose the global
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constraint on the functions (7'(¢,-),7 € N) that a boundary piece can touch at most one set, that
is,
YmeN ) T(i,m)<1
€N
We define a metric Dist on TP(Q) by: for (Ay, T1), (A, T3) € TP()

Dist((Ay, T1), (A2, T2)) =
inf { 2 (distL1 (A1(0), A2(2)) + distz(T1 (i, ), Ta(i, '>>) }

€N
where the infimum is taken over all possible arrangements (A;(¢),T;(¢,-),i€ N) of A;, j=1,2.

Our next aim is to define the surface energy corresponding to the surface tension 7 (extracted from
the microscopic model) for a partition with touching status. The results of this section are valid
for any function 7 from S%1 to Rt satisfying the following hypothesis.

Hypothesis on 7. The function 7 does not vanish on S9! and it is invariant under sign change:
Vo € S%1 0 < r(z) = 7(—=). The homogeneous extension 7y of T to R? defined by 79(0) = 0 and
7o(z) = |z]am(2/|2]2) for z € R?\ {0} is a convex function.

We define the surface energy of an element (A, 7) of TP(2) by

1AT) = 3 (5 rloa@)an =)+ S a-Tm) [ s an' )

AEA *ANQ meN *AND™

The first term in the above formula corresponds to the interfaces present in €2, while the second term
corresponds to the interfaces on I'. Let (A, T) € TP(Q2). We define the reduced boundary 9* (A, T)
of (A, T) to be the set

ran=( U oansa)u( U o AngonT”)
A1, Az €A A1 #£ Ay (Am)EAXN:T(A,m)=0

For a point « of 9* (A, T)NE, the pair (A, Az) of elements of A satisfying Ay # Ay, 2 € 0*A1NI* Ay,
is unique up to the order (both sets A; and Ay have density 1/2 at z); moreover, the generalized
normal vectors of Ay and A at @ satisfy vy, (2) + v4,(2) = 0. With each point 2 of 9*(A,T) N,
we associate the element 7(x) of the projective sphere PS?~! corresponding to the vectors va, (),
v4, (). We denote by v(z) one among these two unit vectors, selected in such a way that the map
z € 0"(A,T)NQ  v(z) € S4! is measurable with respect to H*™'|5+(47) (a way to perform
this construction is to choose an arrangement (A(¢),¢ € N) of A and then to select at each point
the normal unit vector corresponding to the set having the smallest index in the arrangement;
more precisely, if @ belongs to 0" A(7) N 9 A(j), where 7 < j, we set v(z) = v4(;)(2)). In any case
the map = € 0*(A, T)NQ +— v(z) € PS4 is Hd_1|3*(A7T) measurable. Similarly, for a point x
of 0*(A, T)NT, there exist a unique set A in A and a unique integer m such that 7 (A, m) =0 and
x € 0*ANT™. Moreover, the generalized normal vectors of A and Q at z satisfy v4(2) —vq(z) = 0.
We define v(z) = v4(x), and p(z) is the projection of v(z) on PS?!. Now the surface energy
I(A,T) can be rewritten as

I(AT) = T(@(x)) dH () + / T(v(z)) dH* (2)

5*(A,T)NQ o*(A,T)AT
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or even in the more concise form

I(AT) = / T(7(x)) dH " (z) .

o*(AT)

The symmetry of the surface tension 7 allows to define it on the projective sphere PS?~!, so that
7(7(x)) makes sense. The agreement of the two expressions of the surface energy Z(A,7T) is a
consequence of the following fact: for any A in A,

W07 A) = HTH O AN Q)+ DY HTHOTANGE) (20)
EcA\{A}

See [17], Lemma 1.4 and formula (1.5).

Lemma 3.1 Let (A, T) belong to TP(Q). Let f : 9°(A,T) — R be a H¥™|gu(a,7) measurable
bounded function. For H™' almost all x in 0*(A,T),

lim (ad_lrd_l)_l/ fy) d%d_l(y) = f(z).
r—0 B(z,r)no*(A,T)

Proof: Since A is a partition of  having finite perimeter, then H4~!(9*(A, T)) is finite, whence
for H=! almost all « in §*(A, T) (by [25], Corollary 2.5),

im (g r™ )] (B2, 1) N 0¥ (A, T)) < 1.

r—0

We do the proof for the points in 9*(A, 7)NQ, the argument is similar for the points in 9*(A, T)NT".
Let A be an element of A. It follows from (20) that for H?~! almost all  in 9*A N §*(A,T)NQ,

lim (agor®™ )71 (B2, r) NOT(A,T)) > lim (agor®™ )T 1Y Bz, r)nd7A) = 1,

r—0 r—0

lim (ag_1r® )T HIY (B2, r) 0 (AL (A, T))) = 0.

r—0

Since A is countable, then for 74! almost all z in 9*(A,T) N Q,

lim (ad_lrd_l)_l?ld_l (B(z,r)nd*(A,T)) =1,

lim  (ageyr®™ )R (Blx, r) 0 (07 (A, T)AD* A4 (2))) = 0,

r—0

(where Aq(z) is one of the 2 sets of A having density 1/2 at z). Next, using the Besicovitch
differentiation theorem (see the appendix), for #4~! almost all z in 9*(A,T) N Q,

lim (ad_lrd_l)_l/ Fy) dH () = f(z).
r—=0 B(z,r)Nd*A; (z)
By decomposing B(z,r)Nd*(A,T) as

(B(ac, ) N G*Al(ac)) U (B(ac, PO (AT G*Al(x))) \ (B(ac, )0 (0% Ay (2) \ 9% (A, 7‘)))
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and integrating f separately over each of these sets, with the help of the previous density results,
we obtain the claim of the Lemma for #%~! almost all z in 9*(A, 7)NQ. O

We check that
V(A,T) € TP(Q) %Tmin(P(.A) -P)) <I(AT) < %TmaX(P(.A) + P(Q))

where Tin and Tnayx are the infimum and the supremum of 7 on S9=1. The hypothesis on 7 implies
that 0 < Timin < Tmax < 00. Therefore Z(A, T) is finite whenever A is a partition of 2 having finite
perimeter.

Lemma 3.2 The surface energy I is lower semicontinuous with respect to the metric Dist.

Remark: It seems that the general results of [5, 6] cannot be applied directly in this situation,
because we are dealing with partitions having a countable number of sets. Therefore we provide a
direct proof of the lower semicontinuity.

Proof: Let M € N. For m € {0,---, M}, since I'™ is relatively open in I', there exists a set V,,,
relatively open in I', such that

V™ HIZHT™A\V,) < 1/M?

As a consequence, there exists § > 0 such that V(V,,,d)NT" C '™ for each m € {0---M}, and the
sets V(V,,,0), m € {0---M}, are pairwise disjoint. Let m € {0---M}. Since H?1(V,,) is finite,
by the definition of the Hausdorff measure H?~!, there exists a collection of balls B(z;,r;), 7 € I,
such that

Viel B(wi,f‘i)ﬂvm#@, 0<T‘i<(§/4

VmCUB($i7ri)7 Zf‘?_l < 00

el el

Let Gy = Uy B2, 1) \ Q. The sets G, m € {0--- M}, are pairwise disjoint, moreover, (0G, U
V(Vin, 8))NT C IT'™ for each m € {0---M}. Let us define the map Zps : TP(Q) — R by

AT = 3 ¢ /8 AN BT @)+ S (=T ) /8 Tl a1 )

We have then for all M € N

VA T) €TP®Q) 0 < T(AT) = Tar(AT) < Tmaxc ™ (U T7) + Tmax(M + 1)/
m>M

so that

VA, T) e TP(Q) I(AT) = Azu%IM(AT)

and we need only to prove that for a fixed M € N the map Zp; is lower semicontinuous. We denote
by C3(R%, W,) the set of the compactly supported vector fields defined on R? taking values in the
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Wulff crystal W;. Let (A, T) € TP(R). We claim that, up to an additive constant, 2Zx;(A, T) is

equal to the supremum of the quantity

Z / (XA (z) + Z T (A, m)xG,, ($)) div fa(z)da +

A€A 0<m<M
Z (1 — Z T (A, m)) /Xgm(ac) div f(z) da

0<m<M AcA

over all families of vector fields f, f4, A € A, belonging to C} (R% W,). Indeed, the surface energy
I(F) of a set E of finite perimeter is (see [15])

I(F) = sup { /divf(ac) de: f e Cé(Rd7 WT)} = / T(I/E(ac))d%d_l(gg)
E 5
Thus the supremum of the previous quantity is equal to
Sr(au U @) +z( U G

AcA meq{0---M} me{0---M}
T(Am)=1 EAGA T(A,m)=0

which is further equal to 2Zx(A, T) + ¢, where ¢ is the constant

_ (v T d_lx T(volx d_1$
c= 3 [ rsaeante s [ )it

0<m<M "GmAl o<m< M

We finally prove the lower semicontinuity of Zn; with the help of the previous representation. Let
(A, T) € TP(Q) and let (A(2),T(i,-));en be an arrangement of (A, T) such that T'(7,-) is the null
function whenever A(i) = (). Let ¢ > 0. There exists a finite subset I of N and a finite family of
vector fields f, (fi)iesr in C4 (R, W;) such that

Yme{0,....,M} > T(i,m)=>Y T(i,m)

el 1€N
AT -2 < Y [ (@ + 3 Tlmina, () div fi) de
el 0<m<M
+ Z (1 — ZT(@,m)) /Xgm(ac) div f(z) dx
0<m<M 1€EN

Let

a4 = max (sup sup |div f;(z)|, sup |div f(ac)|)
1€l zeRd r€eR4

Let § be such that 0 < § < min(2=™ £/a) and let (A’, T’) be an element of TP(2) such that
Dist((A, T), (A, T")) < 6

Then there exists an arrangement (A’(4), 7'(i, ) )ien of (A, T") such that

™ (distys (A@0), A'(0)) + distr(T(0, ), T'(0,)) < 6

1€EN
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Then we must have

Vie N ¥Yme{0,...,M} T(i,m):T’(Lm)
and thus

2 (A,T)+ec—e < Z/ Xar(i Z zmxg())divfi(w)dx

el 0<m<M

+ Y / 1—ZT (i) )X (@) div [ () da + a3 LA () AA())

0<m<M el
< 2Zpm(AS T +c+ad <20y (A T) +e+e

which proves the lower semicontinuity of Zps at (A, 7). O

Proposition 3.3 The map (A, T) € (TP(Q), Dist) = Z(A,T) € RT is a good rate function, i.e.,
its level sets { (A, T) € TP(Q)) : Z(A,T) < A}, X € RY, are compact with respect to the metric Dist.

Proof: The proof is a variant of the proof of the compactness result for Caccioppoli partitions of
Congedo and Tamanini [17], Theorem 1.6. The only additional problem is the touching function.
Let A belong to RT and let (A, 75)nen be a sequence in TP(R2) such that Z(A,,7,) < A for all n
in N. For any n € N, since

> i) < Q)

AcA
Z P(A) < (2/Tmin) Z(A, T) + P(2) < 2X/Timin + P(2)
AcA
YD 27T (Am) <2
A€A meN

then, for ¢ positive, there is a finite number of sets A in A,, such that

LYA) +P(A) + D 27" T(A,m) >t
meN

Therefore there exists an arrangement (A, (i), T,(i,-),i € N) of A, such that A4,(2¢ 4+ 1) = 0,
T,(2i4+1,-) =0r for i € N (0 is the null function of F) and if we set

Vie N un(i) = L7(An(20) + P(An(20) + Y 27T (20, m)
meN

then the sequence (u,());ex is decreasing. Yet the space { F € B(Q) : P(F) < A} is compact
with respect to the metric disty: (see the appendix). The space (F, distr) is also compact. By a
standard diagonal argument, we can extract from the sequence of arrangements (A, (¢), T,,(¢, ), €

N)nen a subsequence (not relabeled) such that: for each ¢ in N, there exist a Borel set A(27) in
B(Q2) and a map T; in F such that

lim disty (A, (22), A(20)) + distr(Tn(2¢,-),T3) = 0.

n—0oo
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For i odd we set A(i) = (). For any iy # i3 and n in N,
LO(AG) 0 A(52)) < distya (AGin), An(in)) + distes (An(iz), A(i2))

Letting n go to co we obtain that A(i;) N A(éz) is negligible for any 4; # i3. Let A be the collection
of the non negligible sets of the sequence (A(i), ¢ € N), that is, A = { A(¢) : ¢ € N}\ {0}. Then
(A(4),7 € N) is an arrangement of A. Next, we have

Vo, i € N LYQ) 4+ P(Q) + 2N Tmin + 2 > iu, (i)

We set @ = LH(Q) +P(Q) + 2A/ Tmin + 2. By the isoperimetric inequality in R?, for all n,iin N, we
have

LYAL(20) < cisoP(An(20)Y 1D < eio(afi) V@1

By summing the isoperimetric inequality, we get

WneN  LYQ) = Y LUA) < D LUANR) + (d = Do a®/ DD
A€An 0<k<2i

By letting successively n and 7 go to infinity, we get £L4(Q) < Do AcA L3(A). By the lower semicon-
tinuity of the perimeter and Fatou’s Lemma,

P(A) = Y P(AERI) < Y lim P(A,(2i))

< lim ) P(A,(20) = lim P(A,) < 2X/Tmin+ P(Q) < o0

Thus A is a partition of € having finite perimeter. Let A belong to A. There exists a unique
index ¢ such that A = A(27). We set T(A,:) =T;. Let us check that 7 satisfies the compatibility
condition. For any m € N, by Fatou Lemma,

Z T(A,m) = ZTZ(m) = Znh_g)lo Tn(An(i), m)

AeA €N €N
< lim Y Ta(An(i),m) = lim Y Ta(4,m) <1

Thus 7 is a touching function for A. It remains to check that the subsequence (A,,, 7,)nen converges
towards (A, T) with respect to Dist. Setting

VieN A@2i+1)=0, T@2i+1,)=0r, T(2,)=1T;

we see that (A(7),T'(¢,-),7 € N) is an arrangement of (A, 7). For all n,i € N,

> 27T (2i,m) < afi

meN

Let ¢ be strictly larger than a and let ¢(7) be the unique integer such that 2700) > q/i > 27401,
Then, for any n € N and any m < ¢(i), we have T,,(2¢, m) = 0 so that

SN 22k, m) =) Y 27T (2k, m)

k>2i meN k>2i m> (i)
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m>¢(%) E>2i m>¢(%)

Therefore, for any n,7 in N

Dist((An, 7o), (A T)) < S (distLl(An(k),A(k))—|- distf(Tn(k,-),T(k,-)))

0<k<2i

+2(d — 1) ¢jgoa (4=1)=1/(d=1) 4 91=6(0)

Letting first n and then ¢ go to oo in this inequality, we see that the subsequence (A, 7,)nen
converges towards (A, 7) in (TP(Q?), Dist). O

Lemma 3.4 Let (A, T) belong to TP(). For any positive €,0, there exists a finite collection of
disjoint balls B(z;,r;), 1 € Ig U Iy, such that:

- for any i € Iy, B(z;,7r;) CQ, 0 < r; <1, and there exist A*, Afl_ € A, v; € 841 such that

disty,1 (AZ_ N B(zi,r), Bo(zi,ri,v5)) < 57‘?
disty1 (A% N B(zq,15), By(ai, ri, ) < 0rf

- foranyi€ I, z; €T, 0 < r; <1, and there exist A; € A, v; € ST, m; € N such that

T(A;,m;)) =0, B(z,ry)nl cI™
dlStL1 (A ﬂB(xzv 2)7 ($Z',T‘Z'7I/Z')) < 5er
distps (B($“ )\Qv +($i7rivyi)) < 5rzd

Finally we have

Z Oéd_lf‘f»l_lT(l/i) < e

relguly

Proof: Let £,§ be positive with ¢ < 1/2, § < 1. Because a generalized normal vector is also a
measure theoretic normal (see the appendix for the definition), for any x in 9*(A, T) N Q, there
exist a positive ro(z,d) and two sets A7, AY in A such that, for any r < rg(z,9),

dist (A” N B(z,r), B_(z,r,v(2)))

§rd
diStLl (Aﬁ_ﬂB($7T‘)7B+($7r7V($))) 5rd

ANVAN

We handle 9*(A, 7) N T in a similar fashion. For any z in §*(A, T) N T, there exist one set A” in
A, an integer m in N such that 7 (A%, m) = 0 and a positive r{(z,d) such that for any r < ry(z,9),

B(z,r)yn CI™
disty1 (A" N B(z,r), B_(z,r,v(z)))
distp (B(z,r) \ Q, By(2,r,v(2)))

IAIA
SO
S

ISV
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The map x € 0*(A, T) = 7(z) € PS?! is measurable with respect to H%~! |9+(4,7)- By Lemma 3.1,
for #4=! almost all z in 9*(A, T),

lim  (ag4- e ) Lad= 1( (x,7)NO"(A,T)) =

r—0

lim (g et / r(7(y) A (y) = 7(7()
r—0 B(z,r)no*(A,T)

Let 0**(A,T) be the set of the points of 0*(A,T) where the two preceding identities hold si-
multaneously. Clearly H4=1(0*(A, T) \ 0"*(A,T)) = 0. For any x in 0**(A, T), there exists a
positive rq(z,¢) such that, for any r < ro(z, ),

(1N (B2, r) N " (A, T)) — ag_1r®™' < cagqr®™!

a7 [ ) A ) - )] <

The family of balls
B($,T‘), $€8**(A,ﬂﬂ97 r < min (T‘O($,5),7‘2($,€),17d2($,r))
B(z,r), 2€d™(AT)NT, r<min(r(z,0),rz,2),1)

is a Vitali relation for 0**(A, T). By the standard Vitali covering Theorem (see Theorem A.2), w
may select a finite or countable collection of disjoint balls B(z;,r;), ¢ € I, such that: for any ¢ in I

- either z; belongs to 0**(A,7) N Q and r; < min (ro(z;,9), ro(z;, ), 1, do(z;, 1)),

- or x; belongs to (A, T)N T and r; < min (r1(2;,0), ra(xs, ), 1),

and moreover
either ! (8**(A, )\ U B(z;, rl)) =0 or Z ri=l = oo
€] el
Because for each ¢ in [, r; is smaller than ry(z;,¢),
(1=2)> agoari™h < HTHO™(AT)) < P(A) < 0
el
and therefore the first case occurs, so that we may select two disjoint finite subsets Iy, I; of I such
that

s €I ATINQIfie Ty,  2€d(AT)NTificl
i~ l(a** AT\ | Blair ) < e HITHI(ALT))

relguly

We claim that the collection of balls B(z;,r;), ¢ € IoU Iy, enjoys the desired properties. In fact, we
need only to check the final inequality stated in the lemma. We compute

‘/ AT )) dHIY( Z ag_qrd 17—(7(962'))‘ < /8**%7) 7(7(x)) dH ()

ZEI()Ull \Uie]oujl B(l’iyri)

b e e ) st ()

ZGIOUIl *x .ATOB l’l,T’l
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The first integral of the right—hand member is less than ¢ H~1(8**(A, T)) Tmax. For any i in IoU 1,
‘/ (7 (2)) dH (2) — ad_lrf_lr(i(aci))‘ < 2e HY(B(ai, 1) N O (A, T))
** (A, T)NB(zi,r;)
whence by summing over ¢ in Iy U Iy,
> ) A1)~ acard e < 20 GTAT)
ZGIOUIl *x .ATOB l’“
and putting these inequalities together, we get

| /*M JAH T @) = 7 agard r@()| < MO AT (e +2)

relguly

Since H4™L(O**(A, T)) < Z(A, T)/Tmin, We get
‘I(A, - Y ad_lrf—lr(v(m)‘ < £ (24 Tomax) Z(A, T)/Tonin
relguly
Since Tmax, Tmin and Z(A, T) are fixed and finite, we have the required estimate. O

An element (A, 7T) of TP(Q) is said to be polyhedral if A contains a finite number of sets and
0*(A, T) N Q is included in the union of a finite number of hyperplanes. An hypersurface is a C'*
submanifold of R? of codimension 1.

Theorem 3.5 Let (A, T) belong to TP(Y). For any € > 0, there exists a polyhedral element
(A", T") in TP(Q) such that

Dist((A,7), (A, T)) <2, |[Z(AT) —Z(A T <=  HY@(A,THAT) <&

Proof: We first reduce the problem to a partition having a finite number of elements. Let (A, T)
belong to TP(€) and let ¢ > 0. There exists a finite number of sets Ay,---, A, in A such that

> LYA) <«
AeA\{A1,Ar}
Let (A, T") be the element of TP() defined by:
A={a a0\ | A

1<e<r
Vie{l---r} VYmeN  T'(A;,m)="T(A;,m)
VmeN  T(Q\ U Ai;m) =T (Ag, m)
1<e<r
where Ay is a fixed element of A\ {Ay,..., A.}. We have then Z(A",T") < Z(A,7T) and
Dist((A, 7), (A, T") < ,Cd(Q\ U Ai) + > iy <o

0<i<r AEA\{ A, Ar )
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Hence we need only to consider the case where A has a finite number of elements.

The main difficulties of the proof are to handle properly the approximation close to I', that is, to
push back inside © almost all the interfaces up to a set of H%~! measure ¢, and to keep simul-
taneously a partition. The essential tools of the proof are the Besicovitch differentiation theorem
(Theorem A.1), the Vitali covering theorem (Theorem A.2) and the strong approximation result of
Quentin de Gromard (Theorem A.3). Let us summarize the global strategy.

Sketch of the proof: We fix v > 0. Since HI¥~'(I'\ 9*Q) = 0, applying an idea of De Giorgi
we can find a compact subset D of §*Q such that H4~'(T'\ D) < v and D is included in an
hypersurface. By the definition of the measure theoretic boundary, close to a point of %€, the set
Q looks like a half-space. We cover D by a finite collection of disjoint balls B(z;,r;), ¢ € IoU I,
centered on D, whose radii are sufficiently small to ensure that the surface and volume estimates
within the balls are controlled by the factor . The remaining part of I' is covered by a finite
collection of balls B(ys,s;), j € Ji. The indices of Iy correspond to I' N 9*(A, T) and the indices
of Iy correspond to I'\ 9*(A, T).

We choose £ > 0 sufficiently small, depending on the partition A, on v and on the previous families
of balls and we apply the strong approximation result of Quentin de Gromard to each set of the
partition A. We build then two further family of balls:

- B(z;,r;), 1 € Iy, cover the interfaces inside Q, up to a set of H?~! measure .

- B(ys,s;), j € Ja, cover the remaining boundary pieces in .

Inside each ball B(z;,r;), ¢ € Io U I; U I3, up to a small fraction, the interfaces are located on
hypersurfaces and the radii of the balls are so small that these hypersurfaces are almost flat.
Hence we can enclose the interfaces into small flat polyhedral cylinders D;, @ € IoU I; U Iy, and
by aggregating adequately the cylinders to the sets of the partitions we move these interfaces on
the boundaries of these cylinders. The remaining interfaces are enclosed in the balls B(ys,s;),
j € JyUJy and we apply a similar technique, by approximating these balls from the outside by
polyhedra.

We have to define delicately the whole process, in order not to lose too much surface energy, and to
control the possible interaction between interfaces close to I' and interfaces in €2. The presence of
boundary conditions creates a substantial additional difficulty compared to the polyhedral approx-
imation performed in [14]. Indeed, the most difficult interfaces to handle are those corresponding
to D;, i € I;. We first choose the balls B(z;,r;), ¢ € Iy U Iy, corresponding to . We cover the
remaining portion of I' with the balls B(y;,s;), j € J1. At this point we can already define the
cylinders D;, ¢ € Iy. Then we choose € small enough, depending on 7 and the balls B(z;,r;), 1 € Iy,
to ensure that the perturbation of volume ¢ caused when applying Quentin de Gromard’s result
will not alter significantly the situation inside the balls B(z;,r;), ¢ € I1. Then we move inside €2
and we build D;, ¢ € I;. Then we come back to the boundary and we build D;, ¢ € Iy. We cover
the remaining interfaces in Q by the balls B(ys, s;), j € J,. Finally we aggregate successively each
flat polyhedral cylinder to some adequate set of the partition, in two steps, getting first a collection
A" and then a second collection A”. An ultimate problem is that the collection A” might have
overlaps, which is solved by a simple algorithm.

Start of the proof: Let us consider now an element (A, 7) of TP(Q) such that A has a finite
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number of elements Ay,---, A;. Let v belong to ]0,1/16]. We start by handling the bound-
ary I', for which we make locally flat approximations controlled by the factor v. By hypothesis,
H=(Or |U,, T™) = 0. Our hypothesis on Q implies that H¥~1(I'\ 9*Q) = 0. We apply first an idea
going back to De Giorgi (which is also used at the beginning of the proof of Quentin de Gromard’s
result). There exists a compact subset D of I' such that H~Y(I'\ D) < v and moreover D is a
compact subset of an hypersurface. Using the exterior regularity of #?~'|r, we can find an open
set Og containing (I'\ D) U dr |J,, I'™ and such that H¥"1(OgNT') < v. We apply Lemma A.4 to
the set I' \ Og and the hypersurface containing D:

dMy Vég >0 3770 >0 Vr,ye€ F\Oo |$ - y|2 <n = dg(y,tan(F,x)) < M050|$ — y|2 .

Let &g in ]0,1/2[ be such that Mydy < v and let 79 be associated to &y as in the above property.
By Lemma 3.1, for 74~ almost all z in |J,, I N9 (A, T) \ O,

lim (ad_lrd_l)_l?ld_l (B(z,r)nd*(A,T)) =1,

r—0

i (g1t / r(#(y) dH T (y) = T(@(2)) .
r—0 B(z,r)no*(A,T)

Let 0**Ap be the set of the points where the two preceding identities hold simultaneously. For
any x in 0**Ag, there exists a positive r(x,v) such that, for any r < r(z,v),

|7-ld_1(B(ac7 ryNa* (A, T)) — oed_lrd_1| < 'yad_lrd_l ,

(a1t / r(@7(y)) dH (y) - r(@(@)| < 7 .
B(z,r)no*(A,T)

Next, for 9! almost all z in ['\ 9*(A, T) \ Og, there exists a set A, in A such that x € 9*A4, and

lim  (agr)) T LY Bz, )N A,) = 1/2

r—0

and moreover

lim () LLYB(z,r)\ Q) = 1/2

r—0
lin% (g1 Y)Y (B2, 1) N0 (A, T)) = 0
r—
lin% (g r™H 1Bz, r)NT) = 1
r—

Let 0** Ay be the set of the points where the four preceding identities hold simultaneously. For
any x in 0** Ay, there exists a positive r(x,v) such that, for any r < r(z,v),

1LY (B(z,7) N A) — agr?/2] < yagr?
|L4(B(2,r)\ Q) — agr?/2] < 7yagr?
HTY (B2, r) N0 (A, T)) < yag_yrt™!
|HE Y (B(z,r) N T) — g1 < yagogrd™?

The family of balls B(z,r), 2 € 0" Ao U d** Ay, r < min(r(z,7),7, ), is a Vitali relation for

(I'\ Og) N (0" Ag U 0™ Ay)
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By the standard Vitali covering Theorem (see Theorem A.2), we may select a finite or countable
collection of disjoint balls B(xz;,r;), ¢ € I, such that: for any ¢ in I, z; belongs to the above set,

ri < min(r(xiv 7)7 Vs 770) and
either Hi-! (F \ Op \ U B(z;, rl)) =90 or Z rf‘l = 0.
el el
Because for each ¢ in I, r; is smaller than r(z;,v),
g 1 1 _ Z d 1 < /}_[d 1 )
el

and therefore the first case occurs, so that we may select two finite subsets Iy, I; of I such that
Viely x;€ 8**./40, Viel, z;€0A
/Hd—l( \ Oo \ U (zi,75) ) < v

relguly

Let ¢ belong to I. We have

HEYT N B(wg, m) \ B, (1 - 27))) = %d_l(FﬂB(x“ D)) — HETUT A Bz, ri(1 - 27)))
< (14 7v)au- 17‘d L (1= y)agor®t 1 - 27)4 !
= agorr{ T (T4 y = (1 =) (1 -2y7)"
§ad_1r§l 1Qd\/'7

Hence
D HTHT A Ba ) \ Bl i1 = 20/7))) < 247 Y Jaqorr{ ™ < 4dyyHTHT)
1€l 1€l
and
%d—l(F\Oo\ U Bi,ra)\ | Blai,ri(1 = 2\/_))) < g+ 4dyAHITHT)
€1y 1€l
so that

HI-! (F\ U Bz, U (@, mi(1 ﬁ))) < 2y 4 4d\yHTT)

1€1p 1€l

We have a finite number of disjoint closed balls B(z;,r;), ¢ € Iy, B(x;,ri(1 —2\/7)), i € I;. By
increasing slightly all the radii r;, we can keep the balls disjoint, each r; strictly smaller than
min(r(z;,7),7,m0) for 7 in Io U I, and get the stronger inequality

" (F\ U B?(x“ )\ U (@, mi(1 = 2\/_))) < 27+4d\/’77{d_1(F),
icly iel,

The above set is a compact subset of I'. Using the exterior regularity of H%~'|r, we can find an
open set Oy such that

P\ Blesr)\ | Blai,ri(1 —2y7)) € O,

1€y 1€l
HITL(O, N T) < 3y + 4dFHTHT)
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Let

— (1/6) dlst( \ U Blair \ U Blei, (1 = 207), r\ol)

1€1p 1€l

By the definition of the Hausdorff measure %=1, there exists a collection of balls B(y;,s;), j € J1,
such that:

Viedi 0<s;<pi, B(y;,s;) N (\U (x4 \U %7‘21—2\/_)))7&@

1€ly el
D agrstTh < 3y +AdyFHTHT)
JEN
F\ UB($“ \ U $27r2 1_2\/_)) U (ijsj)
1€y 1€l JEJ1

By compactness, the set J; can be chosen to be finite. For each ¢ in Iy, let P; be a convex open
polygon inside the hyperplane hyp (z;, vr(z;)) such that

disc (@, ri,vr(a;)) C P C disc (zg, 15(1 + o), v ( D)
|7—ld_2(8P¢) —Oéd_zf‘f»l_2| dooeg_ Qrd 2 |7—ld 1( AR 17‘ | < Spog_ 1rd L

Let D; be the cylinder cyl (P;, Modo(1 + dg)r;) of basis P; and height 2Mydo(1 + do)r;. Then
r'n B(xi, T‘Z') C D

For ¢ in IoU Iy, there exists a unique [(7) in {1---h} such that x; € 9" A;;). For i in Iy there exists
a unique integer m(i) such that z; € T,

We next deal with the interfaces inside 2 and we make approximations controlled by the factor <.
We choose ¢ sufficiently small compared to v so that, when we perturb the sets by a volume ¢, the

resulting effect close to the boundary is still of order v. We have to delay the approximation of I'
by flat interfaces inside the balls B(z;,r;), ¢ € I1, until we have modified the situation inside €.

Let € > 0 be such that £ < v and

ch(1 4 6HTH (A, T))) < vaq rreuln rd

We apply next the approximation result of Quentin de Gromard (see Theorem A.3 in the appendix)
to each set Ay,---, A, and ¢ (here we consider these sets as subsets of R% i.e., we apply the
approximation result in the whole space). For each ¢ in {1---h}, there exists a set L; of finite
perimeter, a C'' function f; : R? — R, a compact set C;, an open set V; and an open bounded
set B; such that, setting F; = {2 € R?: fi(z) > 0}, the set V; N OF; is the hypersurface {z € V; :
fi(z) =0} and
C;CBy, BicVic{zeRi:dfi(x)#0}, C;CdA;NILE;,
LinBi=FNB;, ViNd'F,=V,Nndk;,
Vo € Ci v, (x) = vr (x) = —|dfi ()| dfi(2),
L4V <e, LYAAL) <e
HETYOF N (Vi\C)) <e, HTYWIANC) <e, HITYUIAANIL) < e
Li CVa(Aie), RN\ Li C Va(R\ Aje).
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Since {Ay,---, Ay} is a partition of Q having finite perimeter, then the sets 0*4; N d*A4;, 1 < i<
J < h, are pairwise disjoint, and so are the sets C;NC;, 1 <4 < j < h. It is possible to impose that
the open sets V;, 1 < ¢ < h, are chosen such that the sets V; N'V;, 1 <4 < 5 < h, are also disjoint.
More precisely, at the beginning of the proof of Theorem A.3, the compact sets C;, 1 < ¢ < h, are
chosen by applying Egoroff Theorem; using the exterior regularity of the measures H4~! |o%4,, they
are then approximated from outside by the sets V;, 1 <7 < h. We perform simultaneously this
step for all the sets and we impose that each set V; is close enough to C;. If we set

r=(1/3)min{do(C; N C;,CLNC) 11 < i, j k1< hyi<j k<1, (i,5)# (k1)1

then r is positive (the sets C; N C;, 1 < i < j < h, are disjoint and compact) and it is enough to
require that V; is included in Vo(Cy, 1) for each ¢in {1,---,h }.
For any ¢ in {1---h},

HTYQNOLN\ C) < HITHQNIL\ 97 A) + HITH QN A\ C)) < 2e.

Setting H = J; i<y, (0L:\ B;)NQ, we get HI"H(H) < 2he. Let next C' = Ui<icjcn CiNC;. Notice
that C'is a subset of Q. We have -

HTHQNOL N C) < HITHQNIL N\ C) + HUTH@ne\ | ¢
1<5<h,j#i
<2+HTHQACG | A +HT | QnotA NG < (bt )e
1<5<h,j#i 1<5<h,j#i

Setting G = U, cic, QN IL; we get HEH(G\ C) < h(h 4+ 1)e. For each i in {1---h}, we apply
Lemma A.4 to the set dF; N B; and the hypersurface 9F; N'V; (since B; is bounded, then dF; N B;
is compact):

IM; >0 VY6>0 3Ju; >0 Va,y€ dF.NB;
le —yla < = da(y,tan(0F; NV;, 2)) < Mdla — ylo.

For a point z belonging to C;, the tangent hyperplane of dF; N'V; at z is precisely hyp (z,7(z)).
Let M be the maximum max{ 1, My, My, ---, M}, } and let § in ]0, 1/2[ be such that 20 M < e. For
iin {1,---,h}, let n; be a positive real number associated to ¢ as in the above formula and let
n=min{ny,---,n, }. Let also

pa = (1/6)min(min{dg(Ci,Rd\Bi):1 <i<h},min{dy(C;NC; R Q) : 1§i<j§h}).

Since each set C; is a compact subset of the open set B; and each set C; N C; is a compact subset
of €2, then ps is positive.

The map 2 € 9*(A,7)NQ — 7(x) € PS™! is measurable with respect to H™!|gu 4 7ynq- By
Lemma 3.1, for #%~! almost all z in 9*(A,T)NQ,

lim (ad_lrd_l)_l?ld_l (B(z,r)nd*(A,T)) =1,

r—0

i (g1t / r(#(y) dH T (y) = T(@(2)) .
r—0 B(z,r)no*(A,T)
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Let 0**A be the set of the points of 0*(A, T) N Q where the two preceding identities hold simulta-
neously. Clearly H3~1(0*(A, T) N Q\ &*A) = 0. For any z in 9**A, there exists a positive r(z,¢)
such that, for any r < r(z,¢),

|7—ld_1(B(ac7 ryNa*(A,T)) — oed_lrd_1| < cag_qrit,

(cayri=1)! / r(@(y)) dH () - r((2)| < €
B(z,r)no*(A,T)

The family of balls B(z,r), € 0**A, r < min(r(z,¢),,n, p2), is a Vitali relation for C. By the
standard Vitali covering Theorem (see Theorem A.2), we may select a finite or countable collection
of disjoint balls B(z;,r;), 7 € I, such that: for any ¢in I’, z; belongs to C, r; < min(r(z;,¢),e, 1, p2)

and
either H! (C\ U B(wi,ri)) =0 or er‘l = 0.

el’ el’

Because for each 7 in I', r; is smaller than r(x;, ),
aq1(1=2) Y ri™ < HTHOTA, T NQ) < oo

el’

and therefore the first case occurs, so that we may select a finite subset I, of I’ such that
- 1(0\ | Bleir ) <.
ZEIQ

We have a finite number of disjoint closed balls B(z;,7;), i € Iz. By increasing slightly all the radii
ri, we can keep the balls disjoint, each r; strictly smaller than min(r(z;,¢),e, 1, p2) for ¢ in I3, and

get the stronger inequality
H- 1(C\U x“r)<€.
ZEIQ

For each ¢ in I3, let P; be a convex open polygon inside the hyperplane hyp (z;,7(z;)) such that

dise (24,1, 7(2;)) C Py C disc (@, (14 0),7(a)) ,
|7—ld_2(8P¢) —oed_grfl 2| < 504d_2r§l 2 |7—ld 1( AR 1rd 1| < Sovg_ 1rd L

We set ¢ = M (14 6) (hence ¢ < e < 1). For i in Iy, let D; be the cylinder cyl (P, M§(1+ 6)r;)
of basis P; and height 2¢r;. The sets

D;, 1< k<Il<h
1€ly, 2;€CENC

are pairwise disjoint. Indeed, let ¢ be an index in I such that z; is in C} N Cy; because r; < po,
D; C B(x;,3p3) C BxnNB C VNV,

and the sets Vy NV}, 1 <k <[ < h, are disjoint. Next, for any & < [in {1---h}, any 7 in I such
that 2; belongs to Cy N Cy, r; is smaller than py and 7, so that B(x;,r;) C Br N By,

0L N B(aci, T‘Z') =0, N B(aci, T‘Z') , oL, N B(aci, T‘Z') =0 N B(aci, T‘Z') ,
Vo € (0F, UOE) N B(xi,r;) do(z, hyp (2;,7(z;))) < M|z — x4z,
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whence

(OLy UDLY) N Blxi, i) C eyl (dise (x4, i, 7(21)), Mér)) € D;.
Next, for m distinct from k, 1, since B(x;, ;) C Br N B; and Bx N B; N B, = (), then

OL,, N B(zi,r) CQNIL, \ By, CH.

Thus
GﬂB(xi,T‘i) C (8LkU8L1UH)ﬂB($Z',T‘¢) Cc D;UH.

We are now ready to perform a first modification of the sets of the partition. The modification
consists in pushing all the interfaces in the cylinders D;, ¢ € I3, on one side of the cylinder and
forcing the remaining interfaces in € to lie on the boundaries of the sets Ly,...,L,. We set for [

in {177h}

A; QﬂLl U U DZ\ U U D,

1<k<l i€l I<k<h i€l
z, €CLNC, z, €CLNC,

and T7'(Aj,m) = T(A;,m) for m € N. We set also A}, = Q\ ;< 47 and

Ym e N T' (A, m) =1- Z T(Ai,m

1<I<h

Let us show that this new collection approximates correctly the initial partition. For each [ in
AiAAr c (AaLyu | D
ZEIQ

and
i C U Aaa
1<I<h
Thus for ['in {1---h}
LUAIAA < e+ 204107 {1+ 8)¢r;
€1y

Yet rj < e foriin Iy and 3,0, ag_1r{™" < 2HH(9*(A, T) NQ), so that for [ in {1---h}
LUAIAA) < (14 6HTHO* (A, T)NQ)

Moreover
LY A1) < he(1+6HTH (A, T)NQ))

Two problems remain at this point. First we have now to push the interfaces of 9*(A, T) NI into
Q. Second the sets A}, ..., AL might overlap.

We next handle the regions close to I' where the sets of the partition are touching boundary pieces,
that is, the family of balls B(x;,r;), ¢ € I;. We will modify adequately the sets A},..., A} to ensure
that no significant interface is created within these balls. In order to avoid mterferences with other
interfaces, our modifications will take place inside the balls B(z;,r;), 7 € I;. Our technique consists
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in building a small flat cylinder centered on I' which we add to the set of the partition touching the
boundary piece containing x; and which we remove from the other sets of the partition. We have
to design carefully this operation in order not to create any significant additional interface. This is
the place where we tie together the covering of the boundary and the inner approximation.

Let ¢ belong to I;. Because of the condition imposed on ¢, we have:
|L(B(zg, i) N A;(»)) —agrd )2 < vagrf4e < 2yagr?,
Vie{1---h+13\{I(i)} LYB(zi,r)NA) < 2vagri+e < 3yagrd

Since in addition

d

1L4(B(2i, 1) \ Q) — aar /2] < v aar

IN

it follows that
,Cd(B(av27 )N (Q\A’ )) < 370@7‘?.

Let P; be a convex open polygon inside the hyperplane hyp (z;, vr(z;)) such that

disc (2, ri(1 — 2y/7), vr(2;)) C Py C disc (24, (1 — /), vr(2;)) ,
[HIT2(OP) = aqmarf 2 (1= A7) 7] < Soqoar! 2 (1= )",
[HH(P) = camar{THL = )T < GaamrfTH L= )

The choice of §g guarantees that Modo(1 + do)r; < 27yr;. For any ¢ such that
Mo(S()(l + (So)T‘Z' <t< ﬁf‘i
we have

—tvr (962) + P, C B(aci, T‘Z')
I'n (—tl/r(wi) + R) =0

Moreover I' N B(z;, r:(1 — 2,/7)) C ¢yl (P, 2yr;) and in addition

/ (P (o) + P)N A+ 3 A (v () £ P 01 AD) ) di
27 KT\ /ATy

1<i<h+1
TAI(1)
< LYB(s,r) N (Q\ A+ D> LYBlai,r) N A < 3y(h+ Daar!
1<I<h+1
1#1(4)

The condition on 7 yields in particular /5 — 2y > /7/2. Hence there exists ¢; €]2yr;, \/7r[ such
that

HIT (—tor(z) + PYN A+ Y HOT (=tor (@) + P 0 AD < 637 (h+ Dagri ™
1<l<(h;|—1
1#1(s

Let D; be the cylinder D; = cyl (P, t;).
We deduce from the preceding inequalities that

ey U DA Blsn) < # (e D) < # (@ Bl )+ 10 (1)

relguliuly J€J1 1€l €1y
< HITHGENC) +e+2he < h(h+1De+e+2he < (h+1)(h+2)e
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[9) [9)
Since the sets Dy, i € IoU Iy, B(y;,s;), j € Jy, cover I', then the set appearing on the left-hand
side of the above inequality is compact and it is at positive distance from I'. Let

ps = (/6)dist(r. 6\ () D\ U Blsy)

ieIOU11U12 ]eJI

By the definition of the Hausdorff measure %=1, there exists a collection of balls B(y;,s;), J € Ja,
such that:

VjeJ, 0< s; < ps, B(yj,Sj)ﬂ(G\ U D\U y],s]);é@

ieIOU11U12 ]eJI
G\ U D \ U (5, 55) U B(y;, s;)
elguhuly €J1 €J2
Y aqastTh < (h+1)(h+2)e t e

JEJ>

By compactness, we might assume in addition that .J; is finite.
For each j in J;UJy, let Q; be an open convex polyhedral set such that B(y;,s;) C Q; C B(y;,2s;)
and Hd_l(an) < oed_12d_1s;l_1.

We now perform the second modification. The resulting sets will be polyhedral and all the interfaces
up to a small portion are pushed back into Q. We set for [ in {1,---,h}

;/:A;U(UDmQ)U( U Upma)\( U UDmQ)

’iEIl meN ZEIO meN ZGIO
I(i)=l T(A;,m)=1 z,el'™ T(A;,m)=0 z;€T™

(Y7 lwe)

1(§) 2
and T"(A},m) =T (A, m) for m € N. We set also A, = Q\ U, <) A] and

YmeN  TAY,,m)=1- > T(A,m
1<I<h
We first check that the collection AY,.. '7Alhl+1 approximates the initial partition with respect to

the metric Dist. For each [ in {1---h},

AfAA Cc (Aiaayu | piu @
ieIOU11U12 j€J1UJ2

whence

LUATAAY < e(1+6HTH O (A TINQ) + Y 20-1r ™ (14 8) yrit
i€ly

ZQad 17‘ 1—|—5 \/_rZ—I—ZQQd 17‘ 1—|—5)¢r2—|— Z oy 28])

1€l 1€1p JEJ1UJ>
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Yet each r; is smaller than 7,

Z oed_lrf»l_l < QHd_l(F)

relguly
Z ag_rdt <NITHOM (A, T) N Q)
’iEIQ
Y agastT <3y +AdAHTN D) + (B D (h+ 2+ e

JEJ1UJ2
so that for [ in {1---h}

LYAYAA) < e(146HTHO* (A, T)NQ) + v (OHIHT) + 61 (0" (A, T) N Q)
+24(3y + 4dFHTH (D) + (B 4+ 1) (h + 2)e +¢)

_|_1CUA1\L1 UDU UQ]

lglsh relguly ]EJ1UJ2

Moreover

whence

LHAY L) < he +9yHTHT) + 293y + 4dyAHTHT) + (b + 1) (h 4 2)e + 2)
It follows that

Dist(A, A”) < h(6e + 67) 1" (A, T)NQ)
+(h 4 1)(97 + 29 2d ) HIH D) + 293(h + 1)y + he + 24 (A + 1) (R + 1) (h + 3)e + &)

and the collection A" approximates the collection A with respect to the metric Dist.
We show next that A” is polyhedral. The sets Q;, j € J1 U Js, Dy, i € IgU I U1, cover G. The
definition of the sets A” /1 < m < h+ 1, implies that

U GA;’HCFU(G\( U D; U U éj))u U oD; U U 9Q;

lsmsh-l—l 1€lgU Ul 71€J1UJ> relguhuls 71€J1UJ>
relguhuls j€J1UJ2

and the collection .A” is polyhedral. We next refine the above inclusion in order to estimate the
surface energy of A”. Let us again consider £ < [ in {1---h} and 7 in Iy such that z; belongs to

CrnC. Let 8= +/1— 92 We set
G; = disc (x; — rvp, (2;), Bri, v(2;)) = dise (z; + Yrwvr, (z;), pri, v(z;)) .

We claim that G; is included in the interior of Ly and in the interior of R? \ L;. Indeed, G;
is included in B(z;,r;) N 0D; and therefore G; does not intersect 9Ly U 0L;. Since vy, (2;) =
va,(x;) = —vr, (2;) = —va,(z;) is the exterior normal vector to Ly at x; and the interior normal
vector to L; at x; then G is included in Lk \Ll The sets

U D;, 1<k <l'<h
1€l 2,€CLNCY
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being closed and disjoint, looking at the definition of A} and Aj, we see that for a sufficiently small
neighborhood W, of G|

WiﬂA/:WZ'ﬂLk, WmA}:WmL;:(Z)
whence 0A), NG; = dA]NG; = (. The definition of the sets A, 1 <m < h+ 1, implies that

oArnG; ¢ |J 0Q;, 9AINGi=0.

JEJ1UJ>

It follows that
8*(./4”7 T//) ﬂ Q C

U@p:neyu ((@Dmmm (R 4 v | A;)) Uw@payu | 09,

1€l el 1#1(4) iely JEJ1UJ2

Notice also that ﬁi, i € lp U1y and B(y;,s;), j € Jy cover I, therefore

AT AT ¢ | @pinnyu | J@;nT) ¢ |J @DinT)u(O:nT)

relguly J€Jy relguly

Notice that for i in IoU Iy, the intersection d; NI is contained in the ”lateral” part of the cylinder
D;. Therefore

HTH@(ATINT) <0 ) HITHODND) + HTHOiNT)

relguly
<22704d o871 (1 + do) ‘|‘ZQ\/_04d o871 4 8o) + 3y + 4dAHTH(D)
i€lo el

< 6y/Faams/aamt KN () 4 37 + 4dy7HI (D)

Finally
I(.A”, T”) < Z/ ( ( ded 1 _I_ Z/ ded 1( )
el aD; N el
+ Z/ fHd 1( ) + Toax Z %d—l(an) + Tmax%d_l (8*(./4”, TH) N F)
el oD; \G JEJ1UJ>

where the set of integration for the second integral is A = (dD; N2\ A;(i)) U (0D MUy Ar)- We
use now the various estimates obtained in the course of the approximation. We get

I(A”7 T// Z g 1T‘d 1(1 + (S ‘I’ Z TmaxQd— 27‘ 2]\4050(1 + 50)
1€lo 1€lo
3 e (6yA (4 Daar ="+ 20701+ S)agari™!)
el
+ Z Oéd_lf‘;l_l(l + 5)T(v($z)) + Z Tmaxad—lr?_l(4¢ +1+ 6 — ﬁd_l) + Z Tmaxad_12d_18;l_1
el icly je€J1UJ
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1+46
S | r(7(y)) A1 (y)
B(ziri)n0*(A,T)

1—x oL
+ 27max KO () (57%_2 oot + 63/ (h + 1)og/og—t + 3y/Toa—s /ad_l)
27 HO (O (A,T) 1 2) (40 + (14 8) — (1 - %))
+ a2 (37 + 4dyFHILD) + (h+ 1) (A +2)e +¢)
< ((148)/01 = 9) + 2/ Twin) (A + 3)= + 8) ) T(A, T)
F16mmay K (r)ﬁ(ad_2 Jag_r + (h+ 1)ag /ad_l)
+ Tmax2? 7 (37 +4dAHTHD) + (4 1) (h +2)e + 5)

where we have used the inequality ¢ < € in the last step. The only remaining problem is that the
sets of the collection A" are not necessarily disjoint. This issue is solved through the next Lemma.
We recall that a subset A of Q is said to be polyhedral if 0*A N Q is included in the union of a
finite number of hyperplanes.

Lemma 3.6 Let A be a finite collection of bounded polyhedral subsets of Q and let T be a touching
function associated to A. There exists a finite collection B of bounded polyhedral subsets of Q and
an associated touching function § such that

UB=U A4 I(BS<IAT) ,cd( U BlﬂBg):O,
BeB AcA B1,B2€B,B1#B>

Dist((B,8), (A7) < (A= DALY |J Aina).
Ay, As €A A1 #As

Remark: The collection B is not necessarily a partition. To define its surface energy Z(B,S), we
simply use the first formula provided for 7 at the beginning of section 3. We do the same to define
the distance Dist between (B,S) and (A, T): the definition given for partitions is readily extended
to more general collections of sets.

Proof of Theorem 3.5 continued: We apply Lemma 3.6 to (A", 7") to get a finite collection
(A" T") of polyhedral subsets of Q with touching function 7"’. Because of the choice of AY

hils
we have | J ¢ 4 = Q2. Moreover
c( U aina) < 30 2/apnay) < 30 £9(A7aax) + L1(A7AA)
Ay Ase Al A # A, 1<k<i<h 1<k<i<h

Therefore the resulting collection A" is a polyhedral element of TP(Q2) satisfying

Dist((A", T"), (A, T)) < 3h(6e+ 67)Z(A, T)/Tmin
+3(h 4+ 1)(9y + 2 2d ) HTHT) +279(h 4 1)y + 3he + 273(h + 1) ((h + 1) (h + 3)e + )

and furthermore

I(.A/”, T/”) < I(A”, TH) < ((1 +38)/(1 =) + 2(Tmax/ Tmin) ((d + 3)e + 5))1(./47 T)+

167ma M (D)7 (/oo (1) /@t )+ T2’ (3y+4dyTH (D)4 (h41) (h2)e-+2)
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Since Z(A,T) is finite and h, H¥1(T'), Tnax, Tmin are fixed, we have the required approximation by
choosing v, 8, ¢ sufficiently small. O

Proof of Lemma 3.6: We use an algorithm to build (B, S) starting from (A, 7). We define for
A a subset of Q having finite perimeter and T a function of F

ra) =g [ st w £ 0T [ ) an

meN

so that the surface energy of a collection with touching status (A, 7) can be expressed as

= ) I(A,T(A

AeA

We initialize the algorithm with the collection B® = A and the touching function S = 7. We
describe next the k—step of the algorithm. Suppose that we have built the collection B* and the
function S* for some k in N. If

ﬁd( U 31032)20

B1,B2€B% B1#B,

the algorithm stops. Otherwise, let By, By be two sets of B* such that ,Cd(Bl N Bz) > 0. Let
Bi = B;\ By and B} = By \ B;. We have

max (L(B{ABY), £1(ByABy) ) < £9(By 0 By) < £4( U BnB)
B1,B2€BF B1#B>

Moreover
v, (z) if 2 € 0*By \g
VBl\B2 ($> — —VB, ($> lf S 8*B2 N B1
v, (z) if £ € 9*By N 0*B; and v, (2) + vp,(z) =0
1

0

This result is quite direct here because we deal only with polyhedral sets. See [53] for a more
general result. Using the symmetry and the positivity of 7,

elsewhere

T SM B ) < 5 [ s (0) ) [y s () @ @)

ﬁa*Bl\BQ B1no*By

1

s [ st )+ S-S ) [l @) an @),
d*B1No*By meN Fﬂa*Bl\BQ

1 1

1B B ) < 5 [ @A w5 [ rm ) )

QOQ*BQ\Bl Bono*By

1

4y [ rm ) @+ Y-St Bam) [ s, () a0,
9*BoNo* By meN Fﬂa*BQ\Bl

Summing the two inequalities yields

I(Biv Sk(Blv )) + I(Bév Sk(B27 )) < I(Bh Sk(Blv )) —I'I(B?v Sk(B27 )) .
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Two cases can occur.
o IfZ(B),S8¥Bi,)) <I(Bi,8%Bi,")), then we set

Bk+1 _ {Bi}UBk\{B1}7 Sk+1(Bi7‘):Sk(B17')
VB e B \{B} S*YB,.) =8B,

o IfZ(BY,S¥(By,-)) < I(By,S8%(By,-)), then we set
B = {ByyUB*\{ B2}, S"U(By)=8"(By,)
VB eB"\{By} S'(B,-)=S"B,")

The collection with touching status (851, S*¥+1) satisfies

(B sy <t sh, ) B= | B

BeBkt! Benk
U BinBC U Bing
B ,B,eBkt1 B1#B, B1,B,€B* B1#B>

Dist((B1, S¥1), (A, 7)) < Dist((B*!, S¥1Y), (8%, 8%)) + Dist((B*,8%), (A4, 7))
< ,cd( U B mBQ) + Dist((B%, 8%, (A4, 7).

B1,B,€B* B1#B>

Necessarily the algorithm stops at some step k less than (|.A| — 1) |.A|. The final collection with
touching status (B,S) obtained at the end of the algorithm satisfies the conditions stated in the
lemma. O

4 Proofs of the main results.

We prove first the large deviations principle of Theorem 1.8 for FK percolation. The upper bound is
split in two parts: exponential tightness (subsection 4.1) and a local upper bound (subsection 4.2).
We then prove the lower bound (subsection 4.3). Next comes the proof of Theorem 1.1 in subsec-
tion 4.4. Finally, the proof of the large deviations principle of Theorem 1.3 for the Potts model
is split into three parts: the study of the asymptotics of the conditioning event in subsection 4.5,
then the lower bound (subsection 4.6) and the upper bound (subsection 4.7).

4.1 The exponential tightness estimate for FK percolation.

Let k be a fixed integer. We work with the (K = k,a = 2) renormalization process with block
variables X (z) given by the indicator functions of the event O(B'(z),k — 1)¢ for z € Q,. Let A
be a L% —connected subset of Q.. We recall that a residual ]Ld’oofcomponent Rof Ain @, is an

L%*—connected component of ,, \ A. We define

filA=AU {E; R is a residual L% —component of A, diam R < f(n)/k, RNQ, + (Z)}
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where @/, = {z € Q,; B(z) N Q, # 0} (see section 2 for the notation). Remark that a L%
connected set R such that diam R < f(n)/k, RN, # () does not intersect d"Q . For a cluster C'
of the configuration, we set C' = {z € Q,; B(z) N C # 0}. Notice that if C' is a large cluster, i.e.,
C €C,, then diamC > f(n)/k. Let A be a L4*—connected component of good blocks, i.e., of the
set {z € Q,; X(z) = 0}. Note that there is at most one large cluster intersecting A (if there were
two then they would be connected via A). Let R be a residual L4 —component of A such that
diam R < f(n)/k and let C' be a large cluster such that C'N R # (. Since C' cannot fit into R (for
reasons of diameter), we have C'N 92" R # (J; however 92" R C A (recall that 92“'R is a connected
set of good blocks) so that C'N A # (. Therefore, if C' is a large cluster then either CN A # ( or
CnNfilA =0. For C € (,, we define

Q:UﬁHA

where the union runs over all the L% —connected components A of good blocks such that CNA # 0.
The previous discussion shows that the sets C C € C,, are pairwise disjoint. By definition, the
L% outer boundary of C consists of bad blocks whenever C # 0. Tn case C = (0, we define OO“tC
as C' which again consists only of bad blocks.

Let now C' belong to C, and let F be an L%*-connected component of bad blocks intersecting
simultaneously OO“tC and Q. We claim that |F| > f(n)/k. To show this we consider only
the case where C' # () (the case C=10is straightforward) and we assume [F'| < f(n)/k. The
definition of ©,, implies that for n large enough dy (978, ) > f(n)/k therefore FN9"Q, = 0.
Let D = 82" F. Then D is a L»> connected set of good blocks surrounding F, so that F is
included in a L% residual component R of D satisfying diam R < f(n)/k, RN Q. # 0. Let A
be the L**—connected component of good blocks containing D. The above properties imply that
R C fill A. Moreover 9t FnC # ; since dlamC > f(n)/k, necessarily (02" F)YnC # ), hence
AnC # 0. Either ANC # 0, whence R C C a contradiction. Or there exists a L%*—connected
component A’ of good blocks intersecting C such that ANfill A’ # @, which implies that A C fill A’
(any L%*—connected component of good blocks intersecting a residual component of A’ is fully
included in this residual component, otherwise it would intersect A’) and again R C fill A’ C Q,
which is absurd. Thus | F'| > f(n)/k, as claimed.

Let E be the union of all the L%*-connected components of bad blocks intersecting simultaneously

2, and Ueee, 80(?7"@-

Lemma 4.1 There exists ko = ko(d, 2, p,q) such that, for k > ko, there exist positive constants
b=>b(k,d,Q,p,q), c=c(k,d,Q,p,q) such that for all s >0 and n € N,

®,[|F| > s] < bexp(—cs)

Proof: We proceed as in Lemma 2.3 in [15] or Lemma 7.9 in [14]. The set F consists of bad blocks
and each of its components has size larger than f(n)/k. We first prove the following estimate: for
any subset 4 C Q.

B,V 2 € A; X (2) = 1] < exp (4—d|A| loge) (21)

where ¢ = bexp(—ck) is given by (14). We use the equivalence relation on Q,: z ~ y iff 3 divides

each component of z — y. Since there are at most 44 distinct classes in ,, certainly there exists

=n?
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z* € Q. such that the intersection of A and the equivalence class of 2™ has cardinality at least
4= Al. By (18), the field X (z), z € Q,,, x ~ 2* is stochastically dominated by a Bernoulli product
field with parameter . Finally,

O Vzed X@)=1]<d,[Vee{yeAiy~a} X(2)=1]<exp (474 loge)

as claimed. Now we turn to the statement of the Lemma. By decomposing the event in question,
we can estimate ®_[| F'| > s] by

> X > > Qn[VQEAluAQU...UAZ» X(g):l}

j2s 1<i<jk/ f(n) mriz;12m2+ml-|?7]:z(ln:)]/k A Ay, LA

The ultimate summation extends over the pairwise disjoint sets A,,..., A, intersecting Q! such
that A; is L»*-connected and |A4;| = m; for 1 <[ < 4. By (21), the probability appearing in the
summation is less than exp(4_dj loge). For fixed j and 4, there are at most 27 ways to choose the
values my, ..., m;. Recall that there exists a constant b = b(d) > 0 such that the number of L%-
connected sets of size m containing the origin is bounded by (b/2)™. The number of possibilities
for choosing the set A, is bounded by £4()(n/k)4™ for 1 < [ < i. Thus the number of terms
involved in the last three summations is less than 2exp ((2jk/f(n))log(L4(Q)(n/k)?) + jlogb).
Putting these estimates together, we get the claim of the Lemma. O

Our next goal is to define a (random) t—partition associated with the objects Q, C € C,. Recall
that for a set of (indices of) blocks A, B(A) denotes the union of the blocks indexed by A. First

we set R R R
B=9,\ (EUOLGJC”Q)

QFK — U

CeC,,CCCFK

Let (ﬁn, ’ﬁ) be the element of TP(Q) defined by

and for C*X ¢ cI'K

(@)

A, = {2nB@%); ™ ety Ul nBE). @\ Q) UB(E))
and for m € N, CFK ¢ cFK,

T AFK . FK m
7 (BCF),m) = {(1) CFKAT™ £ ()

otherwise

We next derive a probabilistic estimate on the surface energy of this t—partition.

Lemma 4.2 There exists ko = ko(d, 2, p,q) such that, for k > ko, there exist positive constants
c=clk,d,Q,p,q) and \g = Xo(d,Q, p, q) such that for all X > A,

1 PN
lim —— log®, |Z(A,, Tn) > A| < —cA (22)

n—r00 nd_l
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Proof: By construction, the interfaces of A, (that is, the set 9*(A,,7,)) are located either on
I UT or on the faces of the blocks of F. Thus

T(Any Ta) < Tinae (71 0) + 171092 + (/m) "' 24| E])
The desired claim follows from Lemma 4.1. O

The next step is to show that the sequences of phase partitions (A,, 7,)nen and (ﬁn, ﬁl)nEN are
exponentially contiguous.

Lemma 4.3 There exists ko = ko(d,Q, p, q) such that, for k > kg, for each § > 0,

lim
n—oo n

—log®, [Dist((,atmm,(ﬁmﬁ)) > 5} - (23)

Proof: We compute first the volume of the f(n)/n-neighborhood of B(F). Let F,, i € I, be the
L%>°_connected components of F Applying Lemma 2.1,

(Ve (BE), f)/m) < 3w (Ve (nB(E), F(n))
el
< STl ) B | = 4 (k) f () E
el

By construction, for any C' € C,, we have C C CUF. By setting
E= {x €Q:VC EC, do (2,C) > f(n)/n}
we have
Q. N B(R)\ Vo (B(E), f(n)/n) C QN E

(Indeed, any ]Ld’oofcomponeﬂt of good blocks in €, is surrounded by a L%*-connected set of bad
blocks which is included in F.)

In order to estimate the volume of £ we work with the (K = f(n), @ = 2) renormalization process.
Note that §2, is different from the previous one since the block size is now different. The block
variable Y (z) is the indicator function of the event O(B’(z), f(n))". If Y(2) = 0 then there exists
a unique large cluster C' intersecting B(z) and B(z) N E = (). Therefore,

LUAEND,) < (fn)/m) Y Y(2)

z€ef,

We derive an upper bound on the distance between (A,,, 7,) and (ﬁn, ’ﬁ) by considering an arrange-
ment between the two t—partitions in which B(CF®) corresponds to vor C*X, for every C*K ¢ CFK:

Dist( (A, 7o), (A, 7o)
<2LMQ\ Q) + LYY N BE) + LY NBER) + Y dist (2, 0 B(CFF), @, nvor CFK)

CFKecFK
<2LMQN\ QL) + LU N B(E)) + LY N B(R) + Y distya (2, 1 B(C), 2, Nvor C)
CeCy,
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Yet, Q) N B(Q) C Q nvorC. Since A, is a partition and the sets vor(C, C' € C,, are pairwise
disjoint, we have

Z distLl(Q;ﬂB(Q),Q;ﬂvorC) = Z ﬁd(Q;ﬂvorC\B(é))
celn celn

< ,cd(Q’ v B ) < LU, N B(E)) + L4, 0 B(R))
Celn

Finally,
Dist ((An, T2), (An, 7o) ) < 22900\ ) + 222, 0 B(E)) +2£(€, 0 B(R))
<204\ Q) 4 2L4Q, 0 B(F)) 4 2L4(%, ﬂE)—|—2£d(V (B (E),f(n)/n))
<2LUQN Q) + 42 (R/n) F ()T E [+ 2(f(n) /)" Y V(@)

z€Q,

The estimate obtained in Lemma 4.1 yields
= 1 i d d—1
Vo >0, nll_}r{)loﬁloan{|E|Z5n /f(n) } = -0
By the estimate (14) and Lemma 2.3, we have also
- 1 d
8> 0, [im ——log®, 20Fm)/m)* D V(@) > 8] = o0
z€ef,
and the exponential contiguity (23) follows directly from these estimates. O

An immediate consequence of Lemmas 4.2 and 4.3 is the exponential tightness of the sequence of
t—partitions (A, Tn)nen: there exists ¢ = ¢(d,Q,p,q) > 0 and Ag > 0 such that for every A > A,
every § > 0,

T log®, [ Dist((A4,, 7). 77 ([0.\))) > 8] < —er (24)

n—oo M

4.2 Local upper bound estimate for Theorem 1.8 (FK percolation).

We start by recalling some essential results from [15]. Let ® C R? be a box building, i.e., the
union of finitely many d-dimensional boxes with non empty interior. Fix a monotone increasing
function ¢ : N — N satisfying lim, ., ¢(n) = oo and lim, ., ¢(n)/n = 0. We will consider the
¢(n) /n-interior of the building © which is defined as

int (0, 6(n)/n) = {z € O d.. (2,070) > ¢(n)/n}

Proposition 4.4 Assume d > 3, ¢ > 1, p > p. with 87 (p) = 6% (p). Let S, be a sequence of events
such that S,, depends only on the edges in int (0, ¢(n)/n) and for each n € N, let w(n) be a partially
wired b.c. on ©. Then

lim log ég(”)’p’q[sn] = lim

n—r00 nd n—oo MY

- log ®7[S,]

The same equality is valid when lim is replaced by lim.
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Lemma 4.5 (Decoupling lemma) Letd >3, ¢ > 1, p > p. with 8/ (p) = 0¥ (p). Let D;, i € I,
be a finite collection of disjoint compact subsets of QU T'. Assume that these sets have non-empty
connected interiors. Fori € I let Si be a sequence of events such that S! depends only on the edges
in D;NQ,. Then

7 T 1 7
T e oe 0 [(151] < 50y og 5]
el 1€l

Notation. Let B(z,r) be a ball in Q, let w belong to S?=1 5 to N and let r,§ be positive.
Recall that the open B(z,r)-clusters are the open clusters in the configuration restricted to the
ball B(z,r). Let Sep(n,z,r,w,d) be the event: there exists a collection C of open B(z,r)-clusters
such that

dlStLl( U U z,1/n), B_(z,r, w)) < ot (25)

ceC xeC

Let next B(z,r) be a ball such that 2 belongs to *Q. Let n € N and § > 0. Let Sep”d(n, z,r,§)
be the event: there exists a collection C of open B_(z,r, vr(z))—clusters such that none of them
intersects 0"Q,, and the inequality (25) is satisfied with w replaced by vr(z).

Lemma 4.6 (interface lemma) Letd > 3, ¢ > 1, p > p., 687 (p) = 0¥ (p). There exists a constant
¢ = c(p, q,d) such that for every r in (0,1), every ball B(x,r) C Q, every unit vector w in S4!,
and every § in (0,0/2),

lim
n—o0o n

- log @, [Sep(n,z,r,w,d)] < —ag T (w) (1= ¢ 67
and for m € N, for every ball B(z,r) such that x € '™ N 9*Q and B(z,r)Nn T C '™,

lim .
n—oo M

T log @, [SepPd(n, z,7,8)] < —ag_1r ' (vp(x)) (1 - c8'/?)

The first estimate was proved in [15]. We explain briefly how to derive the second estimate. Let
z € ' No*Q for some m € N and let r be such that B(z,r)NI' C I'"™. We remark first that the
event Sep®d(n, z,r,§) is decreasing. Let © be a box building containing B(z,r) in its interior and
such that © NI C I'™ (such a box building exists because I'™ is a relatively open subset of I'). Let
¢! be the FK measure in ©NQ induced by the following b.c.:

o
- the points of ON T are wired together.

- the points of 9(O@ N Q) \ I'™ are let free.
Let @/ be the FK measure in Oinduced by the following b.c.:

- the points of 9O \ Q are wired together.

- the points of 9(O@ N Q) \ I'™ are let free.
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By the monotonicity of FK measures with respect to boundary conditions,
@, [Sep"(n, x,r,8)| < @), [Sep™(n, 2, ,8)| < @ |Sep(n, w, v, vr(x), 9)

The second estimate stated in Lemma 4.6 is then obtained by applying successively Proposition
4.4 and the first estimate stated in Lemma 4.6.

Our next goal is to construct a t—partition which is exponentially contiguous to the empirical t—
partition (A,,7,) and whose boundary corresponds to closed edges. First we define a partition
of €2, by attaching each small cluster of the configuration not intersecting I';, to the closest large
cluster. To break ties we use an arbitrary deterministic rule. For C' € C,, we denote by C' the
corresponding continuous region: C'is the union of all cubes A(z,1/n) centered at sites in either
C or some of the small clusters attached to C'. We define for C*K ¢ CF'K

-y @

CeC,, CCCFK

é?FBT

We then define a random t—partition of Q by setting
A, = {Q NCOFE, K ¢ CEK} UG

where G, = QN J, A(z,1/n) and the union runs over all the vertices of the small clusters inter-
secting I',,. The touching functions are given by

Ly CFRATm £

0 ; otherwise

VCFR e MK yme N T, (CTK m) = {
YmeN  T(Gp,m)=0

We first show that (jn, ﬁ)nEN and (ﬁn, ﬁ)neN are exponentially contiguous.
Lemma 4.7 For each § > 0,

lim 1 log @, {Dist((jn,ﬁ% (ﬁn,ﬁ)) > 5} = -

n%ﬁandl

Proof: By considering the natural arrangements of (An,T,) and (A,,T,) in which B(CFK) cor-
responds to CFE for each CTK ¢ CFK we obtain immediately
Dist (A, 7). (A, 7o)

< Y0 distya (0 BCFR), @, 0 CFFY 4 £4(Q, 0 B(E)) + £4(9, 0 B(R)) +2£7(2\ )
CFK(CFK
< Y dist (2, N B(C), N C) + L4, 0 B(E)) + £4(Q, n B(R)) +2£4(Q\ )
CeCy,

From our constructions it follows that for each large cluster €', we have €], N B(C) € ¥,nC. Since
A, and A, are partitions and the sets C', C € C,, are pairwise disjoint, we have

>° distrs (@, 0 BC), 2,0 C) < £\ | B@)) < £ 1 BE)) + £, 1 B(R)
CeCy, CeCy,
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whence
Dist (A, 7o), (A, 7o) ) < 2£4Q0\ Q) + 2242, 1 B(E)) +2£(Q), 0 B(R))

and the conclusion follows from the final estimates obtained in the proof of Lemma 4.3. O

Finally, we estimate the probability that (A, 7,) is close to a fixed element of TP ().

Lemma 4.8 For (A,T) € TP(Q) and € > 0, there exists 6 = §((A,T), €) > 0 such that,

— log ®,[Dist((An, Tn), (A, T)) < 8] < —(1—2) T(A, T)

lim
n—o0o n

Proof: By the triangle inequality for Dist and Lemmas 4.3 and 4.7, we need only to prove the
above statement for the t-partition (A,,7,). Let (A, T) be an element of TP(Q). For £ > 0, set
e =e(1+1/Z(A,T))~L. Pick & € (0,60/2) such that e¢y/3g < &’ where ¢ = ¢(p, ¢, d) is the constant
appearing in the interface Lemma 4.6. Let B(x;,7;), i € Ip U I1, be a finite collection of disjoint
balls associated with (A, 7T), £/ and dy/3, as given in the covering Lemma 3.4. Let § > 0 be such
that

VielhUl, &< é&ri/3 and Viel, §<27™

Suppose that Dist((A,, 7,), (A, T)) < 8. Then for i € Iy, there exist A° € A, Al € A,, v; € §41
such that

disty (AZ_ N B(zi,r), Bo(zi,ri,v5)) < o rd/3
distpi (AL, ALY < &
and for i € Iy, there exist AL € A, Al € jm v; € S% 1 such that

7~(Ai_77ni):()7 B(ac“ )QFCFTM
disty 1 (A° O Blag, ), B_(zi,r5,15)) < d0rd/3
2—miT(A;7mi) + disty (Ai_w‘l;) <0

and finally
Z ad_lrf_lr(l/i) < ¢
relguly
The penultimate inequality implies in particular that ’T(A;,mi) = 0, hence none of the open

clusters included in A! intersects ['"+. For 7 in Iy U Iy let C(i) be the collection of the open clusters
of the configuration restricted to A% N B(z;,r;). Note that for any i € Io U I, the clusters of C (i)
are open clusters of the configuration restricted to B(z;,r;). We have

diStLl( U U z,1/n), ($Z'7T‘Z'7I/Z')) < distLl( U U z,1/n), A;ﬂB(xi,ri))

CeC(z) xeC CeC(z) zelC
+ disty (A N B(zi,r), AL N Bz, r )) + distrs (A N B(xg, 1), B_(x, 1y, 1/2))
(d)/n+ 8+ dord )3 < dord
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where ¢/(d) is an appropriate constant depending only on the dimension. If ¢ belongs to Iy then
the collection C(7) realizes the event Sep(n, z;, ri, v;, do). If ¢ belongs to Iy then the collection C/(¢)
realizes the event SepP? (n, z;,7;,8p). We conclude that

{ DISt((-/Zlvnv ,7;1)7 (-’47 ﬂ) < 5} - m Sep(n7 Ly T'gy Viy 50) N m Sepbd (n7 Ty Ty 50)
1€lo €l

Note that the sets B(xz;,r;), 1 € IgU Iy, are compact and disjoint. The decoupling Lemma 4.5 and
the interface Lemma 4.6 together imply

T log @, [ Dist((A,, 7o), (A T)) < 8] < - E;I i () (1= ev/5o)
< _I(-AvT) (1_5/)+€/:_I(-’47T)(1_5) =

The exponential tightness (24) and the local estimate given by Lemma 4.8 yield in a standard way
the large deviations upper bound of Theorem 1.8.

4.3 Proof of the lower bound in Theorem 1.8 (FK percolation).

We start with two preliminary lemmas. Let U C O be open connected subsets of €2 such that
de (U, 92\ O) > 0. We suppose also that there exist a finite number of indices my, ..., m, such that

Vie {l,-..,r}  QUNT™ £
Vm € N\ {my,...,m,} a0NT™ =1

We denote by full (O, U, n) the event that

- for the configuration restricted to O there exists an open cluster C' such that Q/ N U is included
in V.o (C, f(n) /)

-fori=1,...,r, we have C' NI}, #0)

- no other large cluster intersects V.. (2, N U, f(n)/n).

Lemma 4.9 Let (E,)nen be an arbitrary sequence of events depending on the configuration re-

stricted to Q\ O. Then
1
lim —— log @, |full (0,U,n) | E.| =0

n—oo 1

Proof: Let § > 0. We work with the (K = én, a = 2) renormalization process with block variables
X (z) given by the indicator functions of the event O(B'(z), f(n))¢ for z € Q. For § small and n
large enough, there exists a connected set A such that Vo, (2, NU,2f(n)/n) C B(A) C O (we recall
that B(A) is the union of the blocks indexed by A) and moreover | A| < ¢ for a ¢ = ¢(6,Q,U, O)
independent of n. Our hypothesis on  implies that each point of 9 is accessible from € through
a rectifiable path. As a consequence, for n € Nand for ¢ =1,...,r, there exists a path 77 of edges
in Q, \ B(A) joining a vertex of I'7* to a vertex belonging to one face I of a block belonging to
A and such that |y7| < ¢/n where ¢/ = ¢/(6,2) is a constant depending on 6 and 2 only. Let 77 be
the event

T" = { all the edges in v U I'"* are open }

K3
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We have
({X@=0}n () 77 C full (O,U,n)

z€EA 1<i<r
Therefore

@, [full (O,U,n) | E] > @,] ﬂ {X(z) =0} | E, N ﬂ " @, [ ﬂ T" | E,]
z€A 1<i<r 1<i<r

Since the events 7%, ¢ = 1,...,r, do not depend on the edges belonging to the interior of the blocks
B(A), and since the cardinality of A is bounded, the uniform estimate (14) implies

lim &, [ {X(@=0}|E.n (] 7] =1
z€EA 1<i<r
By the FKG inequality, we have

o, () T 1B > exp (D0 (0 + [F7]) o

1<e<r 1<e<r

> exp ((C’nr + (6n)1r) log (

p+ q(ﬁ—p)))

P
p+aq(l- p)))
We obtain finally that

1

lim
=0 d-1

n—0oo

log @, [full (0, U,n) | E,| > 6*rlog (m)

We conclude by sending 6 to 0. O

Let A be an hyperset in R? and let r be positive or infinite. We denote by S(A,r) the event that
there exists a finite set of closed edges in cyl AN Vy(hyp A, r) which separates co in cyl A, that is,

S(A,r)= {EIE C eyl ANVa(hyp A, r), |F| < oo, Ve € ' w(e) =0, F separates oo in CylA}

Lemma 4.10 Let F be a d — 1 dimensional set in Q such that H"=2(0 F) < co. We define
wall (F,n) = S(F, f(n)/n) 0 { all the edges in Vao(cyl 0 F,2d/n) N Vy(hyp F, f(n)/n) are closed }.

Then

lim ——
n—oo 1

log @, {Wall (F, n)} > —HL(F)r(nor F)

Proof: The number of edges in the set Vy(cyld F,2d/n) N Vy(hyp F, f(n)/n) is less than
c(dYHI2(O F) f(n)n?=2 for some positive constant ¢(d) depending only on the dimension d. By
the FKG inequality,

o, {Wall (F, n)} > o, {S(F7 f(n)/n)} exp (c(d)%d‘2(8 F)f(n)n"?log (1 — p))

and by using Lemma 4.7 of [15] we are done. O
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In view of the approximation result stated in Theorem 3.5, to prove the LDP lower bound we
need only to show that for any ¢ > 0, for any polyhedral element (A,7) in TP(Q) satisfying
HI=V(G*(A, T)NT) < &, we have for all § > 0,

1
d—1

lim
n—oo 1

log @, {Dist((fln, 7o), (A, ﬂ) < 5} > —IZ(A,T)—cld,p,q)e

where ¢(d, p,q) is a constant depending on d,p,q only. Let ¢ > 0, let (A,7) be a polyhedral
element of TP(Q) such that H4~1(0*(A, T)NT) < & and let § > 0. Up to a slight modification
of the approximation procedure, we might assume that the sets A;,..., A, are connected and that
they touch only a bounded number of boundary pieces. More precisely, we suppose that there
exists M € N such that

Vm>M Vie{l,---,r} T(A;,m)=0

We suppose also that for any i € {1,---,7} and any m € {1,---, M — 1}, if T(A;;m) = 1 then
0 A; NT'™ is a relatively open subset of I'. In particular, we have

%d_l( U Fm) <€
m>M
By definition of a polyhedral element, 9*(A,7) N Q is the union of a finite number of d — 1
dimensional sets Fi,..., Fs. Thus
I(AT) < ) HITHF)T(n0r Fj) + £Tmax
1<j<s

Moreover, for each ¢ in {1,..., s}, the relative boundary d F; has finite d — 2 dimensional Hausdorff
measure (we can achieve this by a slight perturbation of the polyhedral sets if necessary, using the
hypothesis on I'). Let § > 0 and let Uy,...,U, and Oy,...,0, be open connected sets such that
for any 7 € {1,...,7}

Ui CO; CA;, da(U, Q\O;) >0, d2(0;,Q2\ A;) >0, distii (U, Ai) < 5/(37‘2)
and finally for every m € {1,..., M},
T(Ai,m)zlianﬂFm#@, T(Ai,m):0:>80mFm:(Z).

By hypothesis, the relative boundary of [ J,, I'™ in I" has zero 7%~ measure. By the outer regularity
of H~1 restricted to I', there exists an open set O such that

U rmu@-AT)nT)yco, HTHONT) <2
m>M

Let us define

7 = min (d2 ( U ru @A, 7n F),r\o) ,g}grdz(o“@\m)) ,
m>M - -

U:vz( U rmu@ 47N r),n/Q)

m>M
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Then U is an open set such that

U rmu@AT)nT)ycu, Tco, HTOUNT) <2
m>M

Let F, be the event that every edge having an endpoint in V(U NT,2/n) is closed. The number
N, of all such edges can be estimated as follows. Since U N T is closed and (d — 1)-rectifiable, we
have (see the appendix)

lim (1/2h) LYV (UNT, h) =HTHTNT) < 2¢
_>
Since

N, <2d|ZE0Vo(UNT,2/n) | < 2dn’L8Vo(UNT,4/n))

we see that o
im n~(4=1 N, < 32de.

n—0oo

If F,, occurs then clearly there is no open edge exiting from

( U rg) UVa(@(A, T)NT,n/4)

m>M

Suppose that all the events
E,, full (O;,Ui,n), 1<i<r, wall (F;,n), 1<j<s

occur simultaneously. Let us denote by C; the open cluster of the configuration containing the
cluster realizing the event full (O;, U;,n) and let CF'K be the FK cluster containing it. We have
then that Q) NU; C vor CF'K. Moreover, the occurrence of the events F,, and wall (F},n), 1 < j < s,
precludes that an open path connects two distinct sets O; or two boundary pieces I'™ (apart from
those which are already connected inside the sets O;), thus the clusters C’Z»FK are distinct and satisfy
fore=1,...,r,
Q,NU; CQ nvorCF o\ O
ki

Therefore,

i disty1 (vor CFK A;) < 204(Q\ ) + izd(gg \(w:ulJow)
i=1 i=1 ki

<2L4Q\ Q) + Z zr:,cd(Ak \Uy) < 2L4Q\ Q) +6/3
=1 k=1

Moreover, the condition imposed on the sets O;, together with the definition of full (O;, U;,n),
ensures that 7 (vor CF® m) = T(A;,m) for each i = 1,...,7 and m = 1,..., M. Necessarily, for
any CTK ¢ cERA\ {COFK . CFRY Qf nvor CFX C O\ U, <., Ui, and therefore

Z L (vor CFRY < §/3 4+ £4(Q\ Q)
CFKeCEK\{CTK . CFK}
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whence also Dist((An,ﬂ), (A,T)) < & for n large enough so that £¥(Q\ Q)) < §/9. This

discussion shows that

@n[Dist((Amm,(A,ﬂ) <5} zq>n[ M tull (O, Usm)n B0 (] wall (F,n)

1<e<r 1<5<s

The event F,, depends on the edges inside Vo(U N T, 3/n), the event wall (I}, n) depends on the
edges inside Vo (F;, f(n)/n), whereas full (O;, U;, n) depends on the edges inside O;. Because of the
condition imposed on 7, we have

d2(V2(UﬂF73/n)701U“‘UOT) > 0

The distance between the sets F} U ---U Fy and Oy U ---U O, is also strictly positive. Since
f(n)/n — 0 as n — oo, Lemma 4.9 implies that

1
d—1

lim
n—oco 1

log @, | () full (O, Uy n) ‘ E,n () wall (Fj,n)| =0
1<e<r 1<5<s

By the FKG inequality, Lemma 4.10, and the previous estimates, we obtain

1
li log ® |, N I (F;,
fin s [ () w50
> lim dl - log (#)N’l — N HN(E)r(nor Fy)
n—roo T p+q(l—p) 1<j<s
p
> 32d€10 _ -7 -/47 — €Tmax
- Srrai—p) AT

which yields the desired lower bound. O

4.4 Proof of Theorem 1.1 (Potts model).

Throughout the proof, we work with the coupling measure IP,, between the FK measure ®,, and
the Potts measure p,, (see section 2.2). For a given n, we express the local average of the i~th color
o, (2, 1) with the help of the FK representation: for each 2 € Q and each color i =1,...,¢,

o) =Im)™ Y |CnAG S/

¢ cluster, ¢(C)=s

where the sum runs over all the open clusters of the configuration. We separate the contribution
of the small and large clusters by setting

O'Zmall($,i) :f(n)_d Z ‘CDA($7f(n)/n)‘
¢, diam C< f(n), o(C)=i
where the sum runs now over all the small open clusters of the configuration; and we define ;"

analogously except that the sum is running over the large clusters (that is the elements of C,)
colored with 3.
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Lemma 4.11 For any ¢ > 0,

lim logIP Z /‘ osmall(p 4y — 1—0/q‘dw>5}

n—00 nd 1

Proof: The proof is based on the observation that the i.i.d. coloring of the small FK clusters
(whose number is of volume order) will create fluctuations whose large deviations behavior is close

to volume order. We omit a full blown proof since it is a straightforward adaptation of the proof
of Lemma 7.10 in [15]. O

Forv=1,...,q, we set
D, = U vorC'
CECn,o(C)=i

Notice that all the clusters belonging to the same FK cluster have necessarily the same color. Thus,
by the very definition of the sets vor CFX CFK ¢ CFK we have

D; = U vor CTR
COFK echL‘K7 COFK gDil

Lemma 4.12 For § > 0,

T g los P 5 [ (1o 014 3 obwa) i > o] = -

1=1,...,q

J#l

Proof: We work with the (K = f(n),« = 2) renormalization process with block variables X (z)
given by the indicator function of the event T(B’(z), f(n),d)°. Suppose that X (z) = 0, i.e., the
block is good. Let 2 € B(z). Then there exists exactly one large cluster C' such that d., (z,C) <

f(n) so that 2 € vorC' and also to D9 This cluster satisfies in addition
[1C0 A, f(n)/0)] = 8F ()" | < 8F(n)"

therefore | o arge(ac, o(C)) = 8] < & and for each j £ o(C), oi"%(x, j) = 0. We split the regions of
integration D into the blocks B(z), z € Q,,, and we use the previous inequality to get

Z / large $ i _0|_|_ Z large )d$ < 2 /n Z X —|—(S£d )‘|‘£d(Q\Q%)
J#l

i=1,...,9 zEQ,

By the estimate (16) the block process satisfies (18) with ¢ = bexp(—cf(n)). The result follows
from Lemma 2.3. O

We next compare the random partitions (D}, ..., D}) and (A%, AL ... A%).
Lemma 4.13 For any ¢ > 0,

lim
n—o0o n

_log IP, {,Cd(AO + Y distya (AL, D) > 6] = —oc

1=1,...,q
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Proof: For ¢ > 0, we denote by Di () the set of points € D}, for which

S (|t ) - (0= 0)/a| + o)) + | o e, ) - (1 0)/g |+ | ol (i) - | < 2
3=1,...,q
J#e

If 2 belongs to D¢ (¢) then
ou(e,i) = 0+ (1=8)/a)| <=, Vizi |oule)—(1-8)/g| <=

Therefore, for £ small enough we have D;(e) C Al. Since D!, ..., Di is a partition of Q, we see
that

L3 + 3T disty (4], DY)

1=1,...,q

<Y pivpie)+2 Y cf(Di\ D) <3 Y £f(Di\Die)

1=1,...,q 1=1,...,q 1=1,...,q

Lemmas 4.11 and 4.12 yield that for any § > 0

T % log P, L:;qﬁd(D; \ D;(e)) > 5} =

which, together with the previous inequality, concludes the proof. O

Lemmas 4.11, 4.12, 4.13 together yield the claim of Theorem 1.1.

4.5 Asymptotics of the conditioning event.

In order to transfer the LDP from the FK model to the Potts model, we will need to estimate the
probability of the conditioning event. This is the purpose of the next lemma.

Lemma 4.14 Let F denote the set of the t-partitions such that no set touches simultaneously two
distinct boundary parts, i.e.,

F={AT)eTrQ);¥acA Y T(4)T(4,))=0}

1<t,5<q
(e
We have
1 : ; C .
nh_}n(r)lo vy log @n{ there is no connection between I', and Ty, fori # j, 1 <14,5 < q}
=-—-minZ=— min 7
F P(f,q)

Remark: Notice that the event estimated above is the absence of any open path between boundary
pieces, even of open paths of diameter less than f(n). This event cannot be expressed directly with
the random t—partition (A,, 7,).
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Proof: The final equality minz 7 = minp(qq)Z is proved in Lemma 1.7. We turn now to the
computation of the limit presented in the statement of the lemma. We first prove that the set F
is closed in (TP(Q), Dist). Indeed, if (A, T) € F, then there exists a sequence (A, T,)nen in F
which converges to (A, T). Let A belong to A. There exists a sequence (A, ),en such that for each
n € N, A, belongs to A, and

i distpa (A, Ag) + Y 27 Ta(Any ) = T(A, )| =0
i=1,...,q

Since (A, T,) € F, then T, (A, ) T.(A,j) = 0fori,j € {1,---,q}, ¢ # j. Sending n to co, we
obtain that T (A, )T (A, j) = 0 for different colors 7, j, thus (A, T) belongs to F as claimed.

(¢}
Our next observation is that F (the interior of F) can be written as

G={Aaner: Y Y T(Aizq-1}

AcAi=1,...q

We prove first that F C 3. Let (A, T) € F be such that

YD T4 i) <g-1

AcAi=1,...q

Then there exist two distinct colors &,/ such that »_ ., T(A, k) +T(A,l) = 0. For every n large
enough let B, be a ball of radius 1/n included in Q. Let us define

A, = {A\B,; Ac A}U{B,}
. . L5 j=korj=I
Vie{l,--ay Ta(Bnj) = {0 : ithervfigé]

Clearly (A,,T,) ¢ F, however, Dist((A,T), (An,Tn)) < 2L%(B,). Therefore (A, Tp)nen is a
sequence in TP(Q) \ F converging towards (A, 7). Hence (A, T) is not in F and therefore 7 C G.

To show the other inclusion G C ]—9 we start by considering an element (A, 7) of G. There exists
at most one color ¢g such that ZAeA T (A, i) = 0. For each color i # iy there exists a unique set
A; € A such that 7 (A;,7) = 1. Pick £ > 0 such that

e < min (279, (1/2) min £%(4;))

1#£%0

and let (A',77) € TP(Q) be such that Dist((A, T), (A, T')) < e. Necessarily, for each color i # ig
there exists a set A} € A’ satisfying

dists (A, A+ Y0 279 T(AL ) = T(ALj) | < e
7=1,...,q

The condition imposed on ¢ guarantees that the sets A%, i # i, are distinct and also that, if ¢ # i,
we have T (A;, j) = T (AL, j) for each color j. Since at most one set of A’ can touch any boundary

piece, we conclude that (A, 7') € F and therefore G C F.
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We show finally that
inf {Z(A,T)5 (A, T) € F} = inf {T(A,T)5 (A, T) € F}

Let (A, T) € F\ F. Then

YD) T <q-1

AcA i=1,..4q
Let l=q—3 4e4 2oi=1.., T (A1) and let iy,..., 4 be the [ distinct colors such that
S U(T(Aji) + ...+ T(Air) =0
AcA

Let Bi(n),...,Bi(n) be [ disjoint balls of radius 1/n included in Q (we assume that n is large
enough) and let (A,,7,) be defined by

A, ={A\ (Bi(n)U...UBi(n)); Ac Ay U{Bi(n),...,Bi(n)}
VAe A T,(A\ (Bi(n)U...UBj(n)),-)=T(A4,-)
and foreacht=1,...,gand j=1,...,1
T(Bi(m).iy=1{ o © ‘=
AR W ;  otherwise
Then (A,,7,) belongs to i Moreover,

I(A,,T,) <I(AT)+ leaxoed_l/nd_l , Dist((A, T), (An, Tn)) < lad/nd

Sending n to oo and taking the infimum over (A, 7) in ]—'\]—97 we obtain the desired inequality
inf ol Z inf o 7.
F\F F

Next, we claim that
o . .
F C {there is no connection between I'’, and I'j, fori £ j, 1 <¢,7<q} C F

The second inclusion is straightforward. The first one stems from the fact that, on the event ]—9,
there exist ¢ — 1 distinct FK clusters which are touching exactly one boundary piece, therefore no
cluster can touch simultaneously two boundary pieces. The claim of the Lemma is obtained by
applying the LDP principle for FK percolation stated in Theorem 1.8

(o)

—infZ < lim log ®,[F] < lim

2 e pd-1 = e pd—1

< _:
log ®,[F] < 12fI

in conjunction with the fact that inf}_o IT=infFgZ. O
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4.6 Proof of the lower bound in Theorem 1.3 (Potts model).
Let A = (A9,..., A%) be an element of P(€,q) such that Z(A) < oco. Let § € (0,1) and let
Bi, ..., B, be ¢ disjoint balls of volume §/(8¢?) included in Q (we assume that ¢ is sufficiently
small). Fori=1,...,¢, we set
E'= A"\ |J BjuB
7=1,...,q
By Lemma 4.13, we have

lim ndl_l tog [ distp ({42, ... A7), 4) < ]

n—0oo

> lim ndl_l log IPn{ S distys (A7, D) <5/2}

n—reo i=1,...,q
: 1 - i i
> nh—>H;o 1 log IPn{ E disty (B, Dy,) < §/4

i=1,...,q
Furthermore, recalling the definition of D!, we observe that

IPn{ N dista (B, DY) < /4] >

i=1,...,q

IPn{EICfK,...7CSKECEK Vi=1,...,q o(C'®)=iand diStLl(VOI’CZFK7Ei)<5/(8q):|

P, {Dist((fln, Ta)s (A, T)) < 8/(8¢2%) and no connection between 'L, .. .,F%}

®, | no connection between 'L, ... T}

where (A, 7) is the t-partition given by A = {F!, ..., E?} and

i) g=a
Suppose that the event { Dist((A,, 7,), (A, T)) < §/(8¢2%) } occurs. Then there exist ¢ disjoint
FK clusters CIFK, .. .,CEK such that

Z disty1 (vor CFX B 4+ Z Z 27| T, (vor CFR 5) — T(E, §)| < 6/(8¢29)

1<i<q 1<i<q1<5<q

which implies that 7,(vorCFR j) = T(FEi j) for all 4,5 = 1,...,¢; in this situation, there is
one FK cluster touching each boundary piece (we added the balls By, ..., B, to ensure this) and
each of these clusters touches exactly one boundary piece, so that there is no connection between

rl ... T%. Thus

. @, [ Dist((An To), (A, T)) < 6/(8¢27)]
P, Y dist (B, DY) < 0/4] >
i=1,....q @n{ no connection between I'L, .. .,F%}

—

Since Z(A,T) = Z(A), the LD lower bound of Theorem 1.8 and Lemma 4.14 yield that for any
§ >0,

—

1 : e :
— log ,un{dlstp((Ag,...,A%),A) < 5} > —I( )—I—PIFK%I;)I a

lim
n—oo 1
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4.7 Proof of the upper bound in Theorem 1.3 (Potts model).

Let E be a closed subset of (P(€2,¢), distp). By Lemma 4.13, we need only to show that

-

Clog P, [(0, DL, DY) € B| < —inf {Z(A); A e Ef + min 7
sq

lim T
n—oo n

Let & be the set of the elements (A, T) of TP() such that A can be partitioned in ¢ collections of
sets Al, ..., A7 satisfying

YY) T(Aj)=0 and ((Z),UA,...,UA)G]E

1=1,..., ACAt J= 1;5 AcAl A€ Ad
JFe

The definition of D!, ..., D implies that

@, [(A T € €]

P[00 00) € B <0 [(A,, T e €] <

o, { no connection between I'L .. .| F%}

Lemma 4.15 The set £ is a closed subset of (TP(), Dist).

Proof: Let (A, ﬂ)neN be a sequence in £ converging towards an element (A’,7') € TP(2). Let
((A(@0), T'(3,-)), 0 € N), (AR (2), TR(i, ), € N),epy be arrangements of (A, 77) and (A%, T)nen
such that

Z(dlStLl(Al )+ Z 279\ T (4, ) — T (4, §) |)
1€N J=1,.q

converges to 0 as n — oco. By the definition of &, for each n € N, there exist ¢ disjoint sets of
I}, such that

M2 2 > hGR=0

1= 17 -4 ]EI' k=1,.

o )
indices I ...,

kti
(i) | Ha=1{ieN;A()#0}
i=1,...,q
(i77) U Al (5 U Al (5 )
JeL el

Let ¢, : N— {0,1,...,q} be defined by

o gel i=1,q
(bn(‘])_{ 0 ; otherwise

By passing to a subsequence if necessary, we can assume that the limit

nh_g)lo (bn(]) = (b(]) € {07 . -,(]}
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exists for j € N. Obviously, ¢(j) # 0 whenever A’'(j) # 0. We set for ¢ = 1,.
H={j e N; A'(G) #0, 6(j) =i}
Let M € N be fixed. We have for each color i, lim,, oo (I} \ I},) N {1,..., M} = 0. Since

meN YY) ZT/L )=0

1=1,...,q JEI

]<M k;él

sending successively n and M to oo, we get

2.2 ) TR =0

=1 ! k=1,
77q]€I k;ﬁl

Let M € N be fixed. For n large enough, so that U, ;. (I/\ I/ ,,) N {1,..., M} = 0, we have

distp(( U AL0)-- U ALl ) ((2), U A6, UA’(j))) <

jel , ]elgln JEI JEL]
S distpa(A'G), ALGN+ Y LUAL G+ 28U A G+ distra (A (), AL())
J<M,A' ()70 J<MLA(5)=0 J>M i>M

Sending successively n and M to oo and using the fact that E is closed, we see that
(0. J A6 U A0))
JEI JEL
is in E. Considering the partition of A’ in the ¢ collections A" = { A'(j),j € I'}, 1 < i < ¢, we
conclude that (A", 77) is still in £&. O
We finally finish the proof of the upper bound in Theorem 1.3. We have

fim logIP [(0.D%,.... D7) €| <
n—oo N
nh_}rréo nd - log @ {(A T.) € 5} — nh—>H;o nd - log ® {no connection between 'l ... T?

Since & is closed by Lemma 4.15, the large deviations upper bound of Theorem 1.8 and Lemma 4.14
yield

fim —r log 1P, [(0, DL, ... D) € B < —inf {Z(A,T)5 (A, T) € £} + jnin T

n—oo N P(Q,q

For any (A, T) in &, denoting by A, ..., A? the associated partition of A and by A the correspond-
ing phase partition, that is, A = (0, Uca1 4, -, Uscas A), we have T(A,T) > Z(A). Therefore,

—inf {Z(A, T); (A, T) € £} < —inf {Z(A); A € E}

and we are done. O
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A Appendix

We recall here some facts concerning the class of the sets of finite perimeter, introduced initially
by Caccioppoli and subsequently developed by De Giorgi (see [19, 20, 24, 26, 28, 41, 54]). The
perimeter of a Borel set E of R? is defined as

P(F) = sup { /Edivf(x) de: f € Cgo(Rd7B(1))}

where C5°(R?, B(1)) is the set of the compactly supported C* vector functions from R? to the
unit ball B(1) and div is the usual divergence operator. The set F' is of finite perimeter if P(F) is
finite. A set F is a Caccioppoli set if it is locally of finite perimeter. In this paper, we deal with
bounded sets, hence we need only to consider sets of finite perimeter. A set F has finite perimeter
if and only if its characteristic function xg is a function of bounded variation. The distributional
derivative Vg of yg is then a vector Radon measure and P(E) = ||[Vyg||(R?), where ||Vxg]| is
the total variation measure of Vyg. The perimeter P is l.s.c. on the space (B(R?), disty1).

Compactness property of sets of finite perimeter. For every bounded domain U and every
A >0, theset { E € B(U) : P(E) < A} is compact for the metric disty,:.

This result is stated in this precise form in [20], Teorema 2.4, or [19], Teorema I. It is also an
immediate consequence of the compactness theorem stated in [41], chapter 2, p.70. Modern presen-
tations are formulated through functions of bounded variations: if O is an open bounded domain
with sufficiently regular boundary (say C'), then a set of functions in L*(O) uniformly bounded
in BV-norm is relatively compact in L'(O) (see any of the following references: [24], Section 5.2.3,
[28], Theorem 1.19, [54], Corollary 5.3.4). To deduce the compactness result on sets of finite perime-
ter, we choose an open bounded domain O with regular boundary containing U in its interior. We
embed B(U) in L'(O) by associating to a Borel set F its characteristic function yz and we simply
remark that the set {xz; £ € B(U)} is a closed subset of L'(O).

Let F be a set of finite perimeter. Its reduced boundary d*F consists of the points z such that
o ||Vxg||(B(z,r)) > 0 for any r > 0,
oif v.(z) = —Vxg(B(z,r)/||VxEel||(B(z,r)) then, as r goes to 0, v.(z) converges towards a limit
vg(z) such that |vg(z)|2 = 1.
The reduced boundary 0*F is countably (d — 1)-rectifiable, that is 0"E C N U |J;cy M; where
H4=1(N) = 0 and each M; is a (d — 1)-dimensional embedded C'! submanifold of R%. For a point x
belonging to 0*F, the vector vg(z) is called the generalized exterior normal to F at z. A unit
vector v is called the measure theoretic exterior normal to I at z if

}i_r}ré r= LY B_(z,r,v)\ E) = 0, 71,1_% r= LY By (z,r, V)N E) = 0.
At each point z of the reduced boundary 0*F of E, the generalized exterior normal vg(z) is also
the measure theoretic exterior normal to F at . The map z € 9*F — vg(z) € S¥'is ||Vxzl|
measurable. For any Borel set A of RY,

ITxEll(4) = AT E), Vs = [ —op(e) W),
ANo*E

We next apply the Besicovitch derivation Theorem [11] (for a quick proof, see for example [8]) to
the measure ||Vxgl|.
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Theorem A.1 Let f: 0*F — R be a ||Vxg|| measurable bounded function. For H~' almost all z
in O*F,
lim (ad_lrd_l)_l /B( : fy) d%d‘l(y) = f(z).

r—0 MO*E

For any vector function f in C} (Rd, Rd), any Caccioppoli set I/, by the generalized Gauss—Green
Theorem,

/ div f(z) dz = () - vg(z) HP™ (de) .
E

o*E

The isoperimetric inequality. There exists a positive constant ¢is, depending on the dimension
only such that, for any Borel set F in R? having finite Lebesgue measure,

LYUE) < 0P (E) 41

The Vitali covering Theorem for #¢~! (see for instance [25], Theorem 1.10). Let E be a Borel
subset of R% A collection of sets I is called a Vitali class for F if for each z in E and § positive
there exists a set U in U containing z such that 0 < diam U < 4.

Theorem A.2 Let F be an H' ' ~measurable subset of R? and let U be a Vitali class of closed
sets for E. Then we may select a (countable) disjoint sequence (U;);cr from U such that either
Sier(diam U;)71 = oo or HHEN\ U  Un) = 0. If HI7Y(E) < oo then, given e > 0, we may
also require that H¥™1 () < ag_y 279! > icr(diam LU e,

The Minkowski content (see [26], 3.2.36). The d — 1 dimensional Minkowski content of a subset
E of R%is equal to the limit, if it exists,

lim —£%({a € RY: do(a, E) < 1'}).

r—=0 2r

Whenever F is d— 1 rectifiable (i.e. there exists a Lipschitz function mapping some bounded subset
of R4~! onto E) and closed, the Minkowski content of E is equal to H4~!(E) (see [26], Theorem
3.2.39).

Theorem A.3 (Strong approximation of sets of finite perimeter [50]) Let O be an open set in R?
(d>2). Let E C O be a set of finite perimeter in O and let ¢ be positive. There exists a set . C O
of finite perimeter in O such that:

(a) ONAJL is included in a finite union of C* hypersurfaces
(b) L CVy(E,e), O\LCVW,(O\FE,e),
(c) LYLON(EAL)) <&, HITY(ON(I*FAIL)) < ¢.

More precisely, there exists a compact set C'in O, a C function f : R? — R and open sets V, B
and G in O such that, setting F ={2x € O: f(z) >0}:

CCONIE, HITHONIFE\C)<e,
VeeC f(z)=0, vg(z)=vr(z)=—df(z),
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CcVc{zeO:df(z)#0},
VNO'F=VNIF={xecV:f(z)=0}, which is a C' hypersurface,
L4Vy<e, HITLOFPN(V\C)) <e,

C C BCV, B isa finite union of open cubes,

O NG is a C hypersurface,

the set L = (FN B)U (GNO\ B) satisfies (a), (b), (c).

Lemma A.4 Let I' be an hypersurface (that is a C' submanifold of R? of codimension 1) and
let K be a compact subset of I'. There exists a positive M = M(I', K') such that:

Ve>0 dr>0 Ve,ye K e —yla<r = da(y,tan(l'y2)) < Me|z —yla.

(tan(l', z) is the tangent hyperplane of I' at z ).

Proof: By a standard compactness argument, it is enough to prove the following local property:

Veel IM(z)>0 Ve>0 Fr(z,e)>0 Vy,zel'nB(z,r(z,e))
da(y, tan(l', 2)) < M(z) e[y — 2.

Indeed, if this property holds, we cover K by the open balls int B(z,r(z,e)/2), x € K, we extract
a finite subcovering B(z;, r(z;,¢)/2), 1 <t <k, and we set

M=max{M(z;) :1<i<k}, r=min{r(z;e)/2:1<i<k}.

Let now y, z belong to K with |y — z|z < r. Let 7 be such that y belongs to B(z;, r(z;,€)/2). Since
r < r(z;,¢)/2, then both y, z belong to the ball B(z;,r(z;,¢)) and it follows that dy(y, tan(T’, 2)) <
M(zi)ely—zl2 < Mely— z|a.

We turn now to the proof of the above local property. Since I' is an hypersurface, for any z
in T' there exists a neighborhood V of 2 in R%, a diffeomorphism f : V — R? of class C! and a
(d — 1) dimensional vector space Z of R? such that Z N f(V) = f(I N V) (see for instance [26],
3.1.19). Let A be a compact neighborhood of z included in V. Since f is a diffeomorphism, the
maps y € A = df(y) € End(RY), u € f(A) = df~'(u) € End(R?) are continuous. Therefore they
are bounded:

IM>0 YyeA [[dWI <M, Yue f(A) [|df ()] <M

(here ||df(2)|| = sup{|df()(y)|2 : |yl2 < 1} is the standard operator norm in End(R?)). Since

f(A) is compact, the differential map df =1 is uniformly continuous on f(A):
Ve>0 30>0 Vu,ve f(A) lu—vp<é = |ldf Hu)—df ()| <e.

Let € be positive and let § be associated to £ as above. Let p be positive and small enough so
that p < §/2 and B(f(z),p) C f(A) (since f is a C'! diffeomorphism, f(A) is a neighborhood of
f(z)). Let r be such that 0 < r < p/M and B(z,r) C A. We claim that M associated to « and r
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associated to e,z answer the problem. Let y, z belong to I' N B(z,r). Since [y,z] C B(z,r) C A,
and ||df(C)|| < M on A, then

1f(y) = f@)le < My —=|s < Mr<p, |f(z)-flz)l2<p,
1f(y) = f(2)la< &, |fly) = f(z)]a < My — 2|,

We apply next a classical lemma of differential calculus (see [37], I, 4, Corollary 2) to the map f~!
and the interval [f(z), f(y)] (which is included in B(f(z),p) C f(A)) and the point f(z):

ly—z—df 7 (F) () = f(2))]2 <
[f () = F)asup {[df7H(C) = df T (F (NI = ¢ € [f (=), F ()]} -

The right-hand member is less than M|y — z|sc. Since z + df 71 (f(2))(f(y) — f(2)) belongs to

tan(I, z), we are done. O
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