On the Wulff crystal in the Ising model
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Abstract

We study the phase separation phenomenon in the Ising model in dimensions d > 3. To this
end we work in a large box with plus boundary conditions and we condition the system to
have an excess amount of negative spins so that the empirical magnetization is smaller than the
spontaneous magnetization m*. We confirm the prediction of the phenomenological theory by
proving that with high probability a single droplet of the minus phase emerges surrounded by
the plus phase. Moreover, the rescaled droplet is asymptotically close to a definite deterministic
shape — the Wulff crystal — which minimizes the surface free energy. In the course of the proof we
establish a surface order large deviation principle for the magnetization. Our results are valid
for temperatures T below a limit of slab-thresholds fc conjectured to agree with the critical
point T.. Moreover, T should be such that there exist only two extremal translation invariant
Gibbs states at that temperature; a property which can fail for at most countably many values
and which is conjectured to be true for every T'. The proofs are based on the Fortuin-Kasteleyn
representation of the Ising model along with coarse-graining techniques. To handle the emerging
macroscopic objects we employ tools from geometric measure theory which provide an adequate
framework for the large deviation analysis. Finally, we propose a heuristic picture that for
subcritical temperatures close enough to T, the dominant minus spin cluster of the Wulff droplet
permeates the entire box and and has a strictly positive local density everywhere.
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1 Introduction and statement of results.

In order to develop heuristics we begin with an informal discussion of phase separation and
phase coexistence phenomena - the main subject of this paper - with a simplistic description of
a physical system familiar from everyday experience. The system we propose to consider is the
mixture of two substances: oil and water. For our purpose it will be enough to recall the facts
that water and oil tend to repel each other, and yet a certain (even if only a very small) amount

of oil can be dissolved in water, and vice versa. 3

As we know, solubility is not unlimited. Depending on the temperature T', there exist threshold

densities ch/W(T) and dCW/O(T) (both increasing in T') corresponding to saturated solutions of
oil in water and water in oil, respectively. These two types of saturated solutions are called the
pure phases "o/w” and "w/o0” and they correspond to a perfect balance between energy and
entropy.

In order to see phase separation in this system all we have to do is to take an almost saturated
solution of oil in water with density d at temperature T, and let the system cool down to a

temperature 7" such that d > ch/W(T’). The excess amount of oil precipitates and macroscopic
droplets emerge. The inside of the droplets does not contain pure oil, rather the droplets are
regions where we see the phase w/o. They swim around in the phase o/w (assuming there is no
gravitation, otherwise the phase w/o gathers at the top.) What is the law which governs the
behavior of the coexisting phases?

The classical phenomenological theory asserts that there is a positive "surface free energy” 7
associated with the macroscopic phase boundaries and the system will settle down in a state
minimizing this energy. Assuming isotropy, Z is proportional to the surface area. Hence, in
perfect equilibrium, there should be one single droplet of the phase w/o with a spherical shape
floating in the phase o/w, since, by the isoperimetric inequality, this is the energetically most
favorable configuration.

A mathematical challenge is to confirm this theory starting from a microscopic description of the
system; to explain the existence and breakdown of solubility, the occurrence of phase separation
on a macroscopic scale, and to verify the prediction about the existence of a single droplet with
a specific shape.

Let us try to set up a simple model for our system. A convenient choice is a lattice model: each
site of the lattice is occupied either by a water particle or an oil particle which we indicate by
+1 or —1. The interaction between particles is repulsive and occurs when the substances are
in immediate contact. Hence a repulsive nearest neighbor interaction is a sensible choice. If
we want to focus only on the dominant repulsive interaction between different molecules, we
could simplify the model by making the two substances "symmetric” by assuming that their
self-interactions are of equal magnitude, or equivalently, equal to zero. Thus the total energy of
a configuration should be simply the sum of all nearest neighbor pairs with different sign. Recall
that in our experiment the density of oil is fixed, therefore we have a constraint on the possible

®The mixture of phenol and water would be a more realistic choice since they are more miscible, however, the
potential reader is hardly familiar with that mixture. The mixture of salt and water is also a good example but
the phenomenon we want to describe is more complex in that case.



configurations: the proportion of +1-s and —1-s has to be fixed. The reader familiar with the
Ising model has already observed that our simple model is equivalent to the Ising model with
plus boundary conditions (guaranteeing the water dominance) conditioned on the event that the
magnetization is fixed and is smaller than the spontaneous magnetization (corresponding to the

saturation density dco/w) at the given temperature. Note that this event is extremely unlikely
when the system is large. In fact, the study of this restricted system leads to questions about
large deviations in the (unrestricted) Ising model.

There is an additional difficulty due to the use of the lattice: the system is anisotropic, thus we
have to deal with a surface energy depending on the direction which leads to a non-spherical
droplet. It is called the Wulff droplet or Wulff crystal after Wulff [69] who first studied and

solved the corresponding isoperimetric problem.

The goal of the present paper is to continue the study of the questions stated above in the context
of the Ising model (which is, as we have just seen, a fairly natural choice) with the specific aim
to develop methods which work independently from the dimension and temperature. Before we
start with the presentation of our results we give a brief summary of the previous work on this
subject.

The first efforts were devoted to the study of large deviations of the empirical magnetization,
i.e., the average value of the spins in a large box. A volume order large deviation principle (LDP)
has been established for the Ising model by various authors: Comets, Ellis, Follmer, Orey, Olla
[18, 30, 34, 56]. The corresponding rate function has been found to vanish in [—m*, m*] where m*
denotes the spontaneous magnetization. In fact, it was suspected that the correct order of decay
is exponential to surface order. Indeed, Schonmann [62] found a proof of this conjecture, valid
for any dimensions and low enough temperatures and Chayes, Chayes and Schonmann extended
the result for the supercritical 3 > 3. regime in the two dimensional case. Féllmer and Ort [35]
investigated this phenomenon on the level of empirical measures. Finally, inspired by the work
of Kesten and Zhang [47] on related questions in percolation, Pisztora [59] established surface
order upper bounds for the remaining dimensions d > 3 above the slab-threshold 3., introduced
in the same work, which is conjectured to agree with the critical point §.. In that work a
coarse-graining scheme has been developed for supercritical Fortuin-Kasteleyn percolation (or
random cluster model) in conjunction with a stochastic domination argument (generalized and
improved in [50]) which allows to control the renormalized process, and so, the original one.

The monograph of Dobrushin, Kotecky and Shlosman [27] opened the way to the rigorous study
of the phase separation phenomenon creating thereby an immense interest and activity which
lasts up to the present time. Their analysis, which provided the first mathematical proof of
phase separation, had been performed in the context of the Ising model. The main tool of their
work is the cluster expansion, which, on the one hand allowed the derivation of results much finer
than necessary to verify the Wulff construction, on the other hand it restricted the validity of the
results to two dimensions and low temperatures. It was a challenge to improve on those results.
Pfister [57] simplified the proof through duality arguments. Alexander, Chayes and Chayes [5]
have proved the Wulff construction in the entire supercritical phase of two dimensional Bernoulli
percolation. Alexander [4] subsequently refined the probabilistic estimates. By using Pfister’s
approach and certain coarse-graining techniques from [59], loffe [44, 45] extended the basic
large deviation principle for the magnetization up to the critical temperature. Finally, loffe and



Schonmann [46] extended the results of [27] up to T.. The results around the Wulff construction
for the two dimensional Ising model are now fairly precise. They go far beyond large deviations
statements. Dobrushin and Hryniv [26, 43] managed to describe the Gaussian fluctuations
around the interface. This whole area of research is now very active (see [16, 58, 63, 64, 65]).
Nevertheless these works are confined to dimension two. The main reason is that the probabilistic
estimates for the presence of an interface separating the two phases rely on the skeleton coarse—
graining technique. Through the skeleton, one can approximate a polygonal line drawn on the
lattice by a coarser one and then use a combinatorial bound for the number of polygonal lines.
Unfortunately, it seems hard to find a higher dimensional analogue of this elegant and efficient
technique.

A next challenge was to analyze phase separation for short range models in higher dimensions.
A first step towards this goal was accomplished by Cerf [14]: large deviations statements are
proven for the cluster shapes in three dimensional Bernoulli percolation, from which a picture
of the Wulff crystal of this model emerges. From the very beginning, the problem is embedded
in a continuous setting, and adequate tools from geometric measure theory (a la Caccioppoli et
De Giorgi) are used with the crucial benefit that the two dimensional combinatorial argument
associated with skeletons can be circumvented by a compactness argument. The key ingredi-
ents to get the required probabilistic estimates are the coarse—graining results of Pisztora [59],
specialized to the case of Bernoulli percolation.

The current paper is a natural successor to [14] and [59]. We proceed by using the FK represen-
tation of the Ising model. Equipped with the renormalization technology of [59], we follow the
same strategy as in [14] to derive a full large deviation principle for the shape of the minus phase
with respect to the unconstrained Ising measure with plus boundary conditions. A novel issue
is thereby that we need a very accurate control of the dependence between events occurring in
distant regions; the corresponding decoupling results, Proposition 3.1 and Lemma 3.2, might be
of independent interest. The aforementioned LDP allows then to derive the desired results on

the large deviations of the (empirical) magnetization (Theorem 1.1) and on the existence of the
Wulff crystal (Theorem 1.2).*

In an independent line of development, fundamental ideas were already present in a series of
works in the context of the Ising model with Kac potentials. Alberti, Bellettini, Cassandro,
Presutti [3, 7] developed the general philosophy of embedding the problem in a continuum
setting in order to use the BV framework (the equivalent functional formulation of the sets of
finite perimeter). For that aim, they introduced the local averaging of the magnetization to
study surface order large deviations. The subsequent work of Benois, Bodineau, Butta, Presutti
[8, 9] contains useful techniques to handle the renormalized picture. In particular, the idea
of transforming adequately the configuration in order to get estimates on certain probabilities,
which is an important element of the interface lemma, appears there as well. However, these
works lose the microscopic structure of the model: they perform a mean—field limit where the
range of interaction tends to infinity and everything becomes isotropic. While preparing the
manuscript of this article, we received the preprint [11]. Building upon [8, 9, 14, 59], Bodineau
has proved results similar to ours for sufficiently low temperatures. A discussion of similarities
and differences between [11] and the present paper is postponed after the description of the
strategy of our proofs.

4These results have been announced at the statistical mechanics conference in Paris on January the 27th, 1999.



We next state our results and outline the strategy of the proofs.

Range of validity of the results. We consider Fortuin-Kasteleyn (FK) percolation (also
known as the random cluster model) in dimensions d > 3 in the regime ¢ > 1, p > p., 6/ (p) =
0¥ (p). Here p. is the slab percolation threshold introduced in [59] and 6/(p), 8% (p) are the
densities of the infinite open cluster for the infinite volume FK measures (I>£o, ® corresponding
to free and wired boundary conditions. The equality 6/ (p) = 8 (p) implies that there exists a
unique infinite volume FK measure ®., on the cubic lattice L? corresponding to the parameters
(p,q), by results of Lebowitz and Martin-Lof [49, 48] and Grimmett [41]. It is also known
that the condition 8/(p) = " (p) holds for values of p close to 1 and might only be violated
at countably many values. It is conjectured that 8/(p) = 6 (p) for every p # p. and that
P coincides with the critical point p.. (This is the case at least for Bernoulli percolation
(¢ = 1) by the result of Grimmett and Marstrand [42].) For the Ising model, we choose ¢ = 2
and the inverse temperature § = 1/T is related to p via the relation p = 1 — exp(—/3). The
spontaneous magnetization is denoted by m* () and it is well known that m*(3) = 8(p). We set
Be=1/T: = —log(1 — p.) and U(d) = { —log (1 — p) : p such that 6/ (p) = 6 (p) }. The set U(d)
is the domain of inverse temperatures where there exist only two extremal translation invariant
Gibbs states. Our results for the Ising model hold in the region: d > 3, 5 > 5., f € U(d).

Results. We first extract from the FK percolation model a direction dependent surface tension
7. For a unit vector v, let A be a unit hypersquare orthogonal to v, let cyl A be the cylinder
A+ Ry, then 7(v) is equal to the limit

) inside n cyl A there exists a finite set of closed edges F cutting ncyl A in
lim -—— log @, | at least 2 unbounded components and the edges of E at distance less than
noee n 2d from the boundary of ncyl A are at distance less than 2d from nA

This function 7 satisfies the weak simplex inequality, is continuous, positive and invariant under
the isometries which leave Z? invariant. The Wulff crystal W, of 7 is

W, = {96 € Rd‘ z-v < 7(v) for all unit vectors }

The crystal W, is convex, closed, bounded and contains the origin in its interior. We define the
surface energy Z(W,) of the Wulff crystal by

I(W;) = sup { / div f(z) dz : f € CLRY, WT)}

r

where C} (Rd7 W,) is the set of the compactly supported C'! vector fields taking values in the
Wulff crystal W, and div is the usual divergence operator, cf. (6) for an explanation of this
formula.

Our first theorem gives the logarithmic asymptotics of the probability of having a defect of
magnetization in the cubic box A(n) of diameter n with plus boundary conditions. For m €
[-m*, m*], we define the rescaled Wulff crystal

m* —m 1/d
Wim) = (Qm* vol WT) Wr



Let m be such that W(m) fits completely into the unit box. It is easy to see that this is the
case if
1 —2(diam W,) "™ vol W, < m/m* < 1

and we call such m admaissible.

Theorem 1.1 (logarithmic asymptotics of the magnetization)

Letd >3, 8>3, B € U(d) and m be admissible. Then

) 1 1 * (d-1)/d
nh—>r{>lo nd—1 log ’uf-\l—(n) {W ezA(: )U(x) < m} - _(27:;* Voln)jVT)

Here we choose to work with finite boxes rather than with the infinite volume measure since
usually a finite volume result is more useful in applications. As a benefit, on the technical side,
we gain compactness after rescaling. The drawback is that we have to pay attention to the
boundary; it is necessary to handle separately the case of an interface sitting on the boundary,
for the probabilistic estimates as well as for the geometric approximations.

Our second theorem gives further information on the mechanism creating a defect of magneti-
zation in A(n). Alternatively, it describes the equilibrium of the system when forced to have an
excess amount of negative spins. As indicated earlier, a single Wulff droplet of the minus phase
emerges (with a local magnetization close to —m*) which is surrounded by the plus phase and
contains all the excess amount of negative spins. A convenient way to localize this droplet is to
look at local averages of the magnetization over a (small) intermediate scale.

For € R? and r > 0 we define the box A(z,r) by
Afz,r) = {yz (1, ya) ERY —r/2 <yi—a; <r/2,1<i< d}
The L' distance between two Borel sets I/, I is the volume of their symmetric difference, i.e.,
dist;1 (E, F) = vol EAF

The mass center mc(F) of a (bounded) Borel set F is

1
E)= d
me (£) VOIE/EQC :

We make the convention that me () = 0. Let f(n) be a fixed function from N to N such that
both n/f(n)?" and f(n)/logn tend to co as n — oo. The locally averaged magnetization o, is
the map from the closed unit cube I' = [-1/2, —1/2]? to [—1, 1] defined by

Ve el on(z) = Z a(y)

d
FM e r oAty

We partition I into the random sets I';;, T2 and I’} according to whether the value of the local
magnetization is smaller, equal or larger than zero.



Theorem 1.2 (typical configuration of the locally averaged magnetization)

Letd23,ﬁ>ﬂ1,ﬂ67/{(d). For 6 >0,

n—r00 nd_l

— 1
lim —— log ,u[;"(n) {/F_ o, (2) + m*| dz 4+ vol ¥ +/+ |on(z) — m™|dz > 6| = —o0

n Fn

Let m be admissible. There exist constants b= b(d, 3, m,d), ¢ = c(d, 3, m,d) > 0 such that

,u[;"(n) {diStLl (ng mc (F;) ‘|‘ W(m)) < (S‘ % GXA(: )o'(x) S m} Z 1— b exp(_cnd—l)

We finish the presentation of our results with some comments and speculations.

Remarks on the microscopic structure of the Wulff droplet. It is well known [27, 46]
that in two dimensions the Wulff droplet can be identified with a (random) region surrounded by
a minus spin cluster (a set surrounds itself). Its external boundary is therefore a large contour
separating plus and minus spins and its shape (when rescaled) follows closely the Wulff shape in
the sense of the Hausdorff metric. It has already been realized in [27] that in higher dimensions
this picture might be false: long but very thin “hairs” (or spikes) might be attached to the
droplet without significantly increasing its surface energy. A single hair is depicted in [27], fig.
1.3.

Without addressing the question of hairs here, we argue that for d > 3 the situation is even more
cumbersome. We expect that the crossing of the threshold /3, indicating the onset of percolation
of minority spins °, implies a drastic change in the physical appearance of the Wulff droplet as
seen in the spin model on the microscopic level. In the low-temperature regime 3 > 3,, we
expect that the situation is as predicted by [27]: there is a big minus spin cluster surrounding
the Wulff droplet with attached tiny (logarithmic) hairs. In particular, there is a well defined
sharp interface between the two phases.

In the regime (3., 3,) however, we expect that the dominant minus spin cluster S~ of the Wulff
droplet will percolate all the way to the boundary of the box, in fact, it permeates the entire
box with a certain positive density in the complement of the Wulff region. More precisely, there
exist two big spin clusters in the box, ST and S~, which are both omnipresent in the entire box.
Moreover there exist densities 0 < p; < p < 1 such that the (local) density of S~ within the
Wulff region and the density of ST in the complement are both concentrated around py while
the density of S~ outside and ST inside the Wulff region is close to p;. This means that in
this regime the phase boundaries can not be described directly with contours. In fact, it seems
that there is no unique phase boundary on the microscopic level; a phenomenon which we call
interface fuzziness. It has to be contrasted with the picture observed at low temperatures
where a sharp interface is present.

At the same time the corresponding object at the FK percolation level does not show this
strange phenomenon: in the entire regime 5 > 3. the Wulff region can be identified with a region

®We recall that in dimensions d > 3, Bp(d) is conjectured to be strictly larger than 8. meaning that minus
spins (as well as plus spins) percolate in the plus phase for 8. < T' < f3,, but not when 3 > 3,. It is known
[1] that this is the case for dimensions large enough. In the case of d = 2 this phenomenon does not occur, i.e.,

Bp = Be, cf. [17].



associated with a single big FK cluster €'~ with the right shape. The phenomenon described
above occurring at the spin level is simply a consequence of the percolation of negatively colored
small FK clusters starting at small FK clusters sitting next to the Wulff cluster C'~.

In our view, this phenomenon is one of the numerous examples where the FK picture captures
certain features of the physics of the Ising model in a more efficient and transparent way than
the original spin picture does. Finally we remark that in this paper we make no attempt to
prove the phenomenon described above; that remains a challenging open problem.

The strategy of the proofs. One of our main tools is the FK representation to relate the
events occurring at the Ising level to events occurring at the FK level.

It is natural to ask about the significance of this representation in our (or, in fact, in any)
approach. To prove a large deviation upper bound it is, in general, necessary to show that there
is enough independence in the system. This will be achieved in this type of models by some kind
of decoupling results. It is here that the FK representation provides a decisive advantage: in FK
percolation we do have asymptotic independence from (imposed) boundary conditions which
is definitely not the case in the spin model. (This corresponds to the uniqueness of infinite
volume FK measures versus the multiple Gibbs states in the spin model.) The aforementioned
decoupling property has been utilized in [59] in the form of the stochastic domination inequality
(Proposition 4.1 [59]) on the level of the renormalized process which is of course used in this
work as well. Another even more explicit instance of the decoupling property is formulated in
Proposition 3.1 and Lemma 3.2 of the present paper: they assert a high level of independence
of boundary conditions. They are crucial ingredients for recovering the exact surface energy.
Finally we remark that at least for low enough temperatures there might be ways to prove
decoupling properties within the spin framework but at moderate temperatures we don’t know
how to achieve that.

In the present paper we try to provide simple and efficient proofs of Theorems 1.1 and 1.2, hence
we do not care to describe accurately the picture at the FK level. A defect of magnetization
in a cubic box with positive boundary conditions is caused with overwhelming probability by
the presence of one or several large open FK clusters which have been colored negatively (large
means here of diameter exceeding f(n)). Thus we keep track of the region M~ consisting of the
points of nl' whose f(n) neighborhood intersects only large clusters colored negatively. We first
show that

% S™ o(e) = m*(1 = 2vol (M /n)) + 8(n) (1)

z€A(n)

where the (random) correction term §(n) goes to 0 in probability faster than exponential to
surface order. Therefore everything boils down to getting probabilistic estimates on the law of
the random set M~ /n as n — oo. Obviously the law of M~ /n converges to the Dirac mass at
the empty set: the typical state of the system is the pure phase u™. We are interested in the
large deviations event { vol (M~ /n) > (m* — m)/(2m*) }. We first obtain a lower bound: for
A, 2 such that 0 < Adiam W, <1 and = + AW, C ', for any § > 0,

1

lim —— log Pf  disty (M™/n,z + AW;) < 8| > “AE=DzoW,) (2)

n—oco 1

where IPA"(n) is the measure on edge—spin configurations realizing the coupling between the FK



measure @K(n) and the Ising Gibbs measure ,u[i"(n). The difficult part is to get the upper bound.

In order to control the combinatorial explosion of all possible discrete shapes for M~ /n, we
embed M~ /n in a continuous space and we use a compactness argument. This is the place
where Geometric Measure Theory enters the game. Notice that the use of this theory was
already suggested in [27] (see remark 1.11.2 ¢) p14). The general philosophy of embedding the
problem in a continuous space appeared for the first time in the context of the Ising model with
Kac potentials [3, 7]. The appropriate geometric setting, namely, the BV—framework, was then
successfully combined with large deviations techniques [8, 9]; the Van der Waals surface tension,
however, could only be recovered in the Lebowitz—Penrose mean—field limit where the range of
interactions tends to infinity and the model becomes isotropic.

We consider the random rescaled region M~ /n as an element of the space B(I') of the Borel
subsets of I' endowed with the metric disty:. We define the surface energy Z(F) of a Borel set
E by (see (6) for another form)

I(F) = sup { /Ediv f(z)dz : f € CH(RY, WT)} (3)

Notice that the surface energy might be infinite. First, we prove that the law of M~ /n concen-
trates fast near sets having a finite surface energy: there exists a positive constant ¢ = ¢(d, p, q)
such that

WAGS 0 Tm

n—0oo nd_l

log P}, , [distLl (M— /n, I‘l([O,A])) > 5} < —ch (4)
Second, we estimate the probability that M~ /n is close to a fixed set having finite surface
energy: for E in B(T') such that Z(F) < oo and for € > 0, there exists 6 = §(F, €) > 0 such that,

— 1
hm -1
n—oo YT

log P}, {distLl (M~ /n, E) < 5} < —(1-2)I(E) (5)
The essential tools for the bound (5) are the coarse-graining results of [59] to get the probabilistic
estimates and the Vitali covering Theorem for Hausdorff measures to get appropriate geometric
approximations.

The surface energy Z(F) is infinite unless F is a set of finite perimeter in the sense of Caccioppoli
and De Giorgi. The Gauss—Green Theorem shows that, in case the boundary 0F of F is smooth,
then

I(F) = /8 sup (y - v () M1 (dr) = /8 () 1 da) (6)

E yEWr

where vg(z) is the exterior normal vector to F at x and H%~! is the (d — 1) dimensional
Hausdorff measure in R%. The theory of the sets of finite perimeter was historically invented
by Caccioppoli [12, 13] and subsequently developed by De Giorgi [19, 20, 21, 22]. The goal of
Caccioppoli was to build a general theory of integration for differential forms and to extend the
classical Gauss—Green Theorem to sets whose boundary is not C!. Independently, De Giorgi
was seeking to generalize some isoperimetric problems, starting with the Gauss—Green Theorem.
This framework is extremely convenient to deal with variational problems. Indeed the surface
energy 7 is lower semicontinuous (l.s.c.) with respect to the L' convergence. In fact, the surface



energy defined in formula (3) is the largest l.s.c. extension of the expression (6) to the class of
all Borel sets. Moreover the level sets { I/ € B(I') : Z(F) < A}, A > 0, are compact. This crucial
compactness property, in conjunction with the local estimate (5) and the exponential tightness
given by (4), yield the upper bound

Vo> 0 T o PF [vel (M7 /n) > o] < — inf T(E) (7
It turned out that the class of the sets of locally finite perimeter (also called Caccioppoli sets)
is isomorphic to the currents of codimension one of the general Geometric Measure Theory
developed by Federer [33]. Taylor [66, 67, 68] proved the Wulff isoperimetric Theorem with the
theory of currents. This Theorem (originally due to Wulff [69], followed by Dinghas [25]) states
that the Wulff crystal W, is the only solution to the variational problem

minimize Z(F) under the constraint vol ¥ > vol W, .

The Wulff isoperimetric Theorem has been reworked and slightly generalized in the framework
of the Caccioppoli sets by Fonseca [36] and Fonseca and Miiller [37]. Theorem 1.1 is an easy
consequence of (1), (2), (7) and the Wulff isoperimetric Theorem. For Theorem 1.2, one needs
in addition some slightly refined coarse—graining estimates from [59].

Finally we address the question about the relation between [11] and the present paper. There is
a lot in common in these works; namely, the large deviations framework, the geometric setting
(functions of bounded variation and sets of finite perimeter are equivalent), and the coarse-
graining results of [59]. The basic difference between the two approaches is the following. In
[11] almost everything is described in the spin language. In order to recover the exact surface
tension factor (along the lines of [14]) the author resorts to the FK representation and verifies
that the spin and the percolation definitions of the surface tension agree. It is here that the
results have to be confined to low enough temperatures. (Of course this a crucial step in the
proof since this is the very place where the surface tension will be linked to the rate function
of the desired LDP). In our approach, the relevant quantities of the spin model are translated
into (FK) percolation terms from the very beginning and we work then only at the FK level.
The decoupling property for FK measures allows us to push all the results until the limit of the
slab—percolation thresholds. There is no analogous result in [11].

2 Preliminaries

In this section we introduce first the notation and we give some basic definitions. In the second
part, we recall some useful properties of FK (or random cluster) measures and we give a short
description of the Ising model and its FK representation.

Notation.

The cardinality of a set A is denoted by | A|. The symmetric difference between two sets Ay, Ay
is denoted by A1 AA;. If A is a family of sets then we write cup A for UgeaA. For r € R, [r]
denotes the integer part of r and [r] stands for the smallest integer larger or equal to r.

Metric: We denote by d,, the metric associated with the p-norm, i.e., d,(z,y) = |z —y|, for any
z,y in R% We will only use the 1,2 and oo norms. The d, distance between two subsets I; and



F, of R% is dy(Eq, By) = inf{|2q — 22|y : 21 € Iy, 29 € Fy}. The r—neighborhood of £ C R
with respect to the d, metric is the set V,(E,r) = {z € R?:d,(z, £) < r}. The d, diameter of
asubset F of R%is diam, F = sup{ |z —y|, : #,y € E}. We will usually work with the Euclidean
distance dy on the continuous space R? and with the distance dq or d., on the discrete lattice
Z°. By default, when we speak of the diameter of a set without any specification, we mean the
d~, diameter.

Geometric objects: We denote by I' the closed unit cube T' = [~1/2,1/2]%. Let z =
(1,---,24) be a point of R? and let r be positive. The closed ball of center 2 and Euclidean
radius r is denoted by B(z,r). The sphere of center 2 and radius r is dB(z,r). When 2 = 0 we
usually drop 2 from the notation; for instance B(r) = B(0,r). This convention applies to all of
the objects described below. The unit sphere of R? is denoted by S%~'. The projective sphere
PS?1is obtained by identifying opposite points on S?'. Let w be a unit vector. We set

hyp (z,w) = {y € R?| (y — 2)- w = 0}

The specific hyperplane containing the origin and perpendicular to the d-th axis is denoted by
D?. For ry,ry in RU {—o00, 400}, we define

slab (2, w, rq1,73) ={yeR?r < (y— ) -w<ry}

The half spaces slab (2, w,0,00) and slab (2, w, —oc0, 0) are denoted by H4 (2, w) and H_ (2, w)
respectively. We set

B_(z,r,w)=B(z,r)NH_(z,w), Bi(z,r,w)=B(z,r)NHy(z,w).

The “upper” half space {z € Z?|xz; > 0} is denoted by H?. By disc (z,r, w) we denote the
closed disc centered at z of radius r and normal vector w. A boz is a set of the form

A(%"):{y:(yh”wyd) € R? —T‘i/2<yi—9€iSm/?,izl,---,d}

where z,r € R% Clearly, z is the center and r determines the side lengths of the box. If r; = ¢
for each ¢ = 1, ..., d, where t € R, then we write simply A(z,?). Notice that A(z, ) has diameter
t and is neither open nor closed. If d(z,y) >t then A(z,¢) and A(y,t) are disjoint. Let A be
a subset of R? of linear dimension d — 1, that is A spans a hyperplane of R?, which we denote
by hyp A. We call such a set an hyperset. By nor A we denote one of the two unit vectors
orthogonal to hyp A, or equivalently the element of PS?! orthogonal to hyp A. The cylinder
of basis A is the set
cylA = {x—l—tnorA‘tER,x € A}

We set also cyl(A,r) = {z+tnorA :|t| <r,a € A} = cylAN slab (z, nor A, —r,r). An
hyperrectangle is an hyperset which, up to an orthonormal change of coordinates, is a d — 1
dimensional box.

Topology and Measure: Let I/ be a subset of R%. We denote its interior by int F, its closure
by clo E, its boundary by 0F. Whenever A is an hyperset of R?, that is A spans a hyperplane
of R?, we use the induced (d— 1) dimensional topology of hyp A to define dA, int A, clo A. The
collection of all the Borel subsets of a set £ of R? is denoted by B(F). The volume vol £ of a
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Borel set F is simply its Lebesgue measure. A Borel set is said to be negligible if its volume is
zero. We define a (pseudo) metric dist;: on B(R?) by

VE,F e B(RY)  dist;1(E,F) = vol (EAF)

When dealing with topological questions on the space B(Rd), we consider the equivalence classes
of the Borel sets modulo negligible sets. Notice that B(T') is a closed subset of B(R%). We denote
by H* the standard k-dimensional Hausdorff measure, for k = 1,2, ...,d (see appendix A.1 for
the definition).

The lattice L% We turn Z? into a graph with vertex set Z? and edge set
= {{Ly}‘x ez yeZ? & (z,y) = 1}

This graph is called the d-dimensional cubic lattice and is denoted by L. We often think of this
graph as embedded in R? the edges {z,y} being straight line segments [z, y] between nearest
neighbors. If  and y are nearest neighbors, we denote this relation by z ~ y.

Let D be a subset of R% An edge {z,y} of E? is said to be included in D if both sites z,y
belong to D. We denote by E?(D) the set of the edges of E? included in D. For D a subset of
7%, the graph (D, E! (D)) will be often identified with its vertex set D. For E a subset of E?, a
formula like & C E¢(D) will be abbreviated into ' C D.

To simplify notation, we will sometimes identify subsets of R? with their traces on the lattice,
i.e., we identify A C R? with AN Z% For example, A(n) denotes a box both in the continuum
and in the lattice. On the other hand if A C Z% we define an associated thickened region,
regarded as a continuum object in R%, by

cube A = U Az, 1)
€A

Discrete topology: Let A be a subset of Z%. We define its

— edge boundary: 0°¥°A = {{z,y} € E¥ |z € A,y € A%}
— inner vertex boundary: 9""A = {z € A|Jy € A° such that y ~ z}
— outer vertex boundary: 9°A = {z € A°|Jy € A such that y ~ 2}

These definitions are extended to the subsets of R? by setting, for any £ C R%, 9*FE = 0* (ZdﬁE)7
where * stands for edge, in or out.

A path v in (Z4,E) (or in any graph) is an alternating sequence g, €g, Z1, €1, €p_1,Tp, - - -
of distinct vertices x; and edges e;, where e; is the edge between 2; and x;41. The path is said
to connect every pair of its vertices. If the path terminates at some vertex z,, it is said to have
length n, otherwise it is infinite. Two paths are disjoint if they have no edges in common. The
set A is said to be connected if the graph (A,E?(A)) is connected. Let A, B, D be subsets
of R% A set of edges £ C E? is said to separate A and B in D if there is no path in the
graph (Z? N D,EY(D) \ F) connecting A and B. The set F separates oo in D if the graph
(ZN D,EY(D) \ E) has at least two infinite components.
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The lattice L»*: We introduce another graph structure on Z%. First we define the edge set
E4° = {{z,y}| do (2,5) = 1}. The lattice L»* is defined to be the graph (Z%, E+*). The
relevance of this lattice stems from the fact that the exterior boundary of any connected finite
set A in Z% is itself connected when regarded as a subgraph of L4> (but not of L%). To be
more precise, let us define the residual components of A as the connected components of the
graph (A°, T (A°)). A subset A of Z? is L%*-connected if the graph (A, E»*(A)) is connected,
where B3 (A) is the set of the edges of E“*° whose both endpoints belong to A. Note that
connectedness in the usual (L) sense implies L%*-connectedness. Let A be a L%*-connected
subset of Z?. If R is a residual component of A, then its inner and outer vertex boundaries are
also L%>-connected (cf. [23]). Suppose in addition that A is finite. Then exactly one of these
residual components, say Ry, is infinite. The boundary between R; and A is called the exterior
(edge, inner vertex, outer vertex) boundary of A. For future reference, we prove next a little
geometrical Lemma.

Lemma 2.1 For any finite L% —connected subset A of Z%, for r > 4,
vol Voo (A, 1) < 41 =11 AV r)

Proof: If diam A < r, then vol V. (A,r) < (3r)%. Suppose now that r < diam A < co. Let
{@y, -+, 21} be a collection of vertices of A of maximal cardinality such that

Vijje{l--1}, i#73, Aaz,r)NnAzj,r)=0.

The maximality of the collection implies that A C A(zq,2r) U --- U A(2,2r). Because [ is
necessarily larger or equal than 2 and A is L%»*connected, for each ¢ in {1---{},

| AN Az, 1) | > doo(as, 0" A(zi, 7)) > 1/2 -1
so that | A| > [(r/2 —1). Since Voo (A, r) is included in [ boxes of diameter 4r, we obtain
vol Vo (A, ) < 1(4r) < (4r)¥(r/2 — 1)1 A| < 491471 4] O
Ising Gibbs measure: Let A C Z% be a box. A spin configuration in A is an element o of

{—,+}*. We denote by o(z) the spin at site z in the configuration o. We define the Hamiltonian
or energy Hy (o) of a spin configuration ¢ in A by

{z,y}eE(A)

Let # > 0. The Ising Gibbs measure ,u;'{ﬁ in A with + boundary conditions at inverse temper-
ature 3 is the probability measure on {—,+}* defined by: ,u;'{ﬁ((f) = 0 if o(z) = — for some
x € A and

H;l\—,ﬁ(g) = (ZX,g)_l exp (— BHa(0))

otherwise, where Z[‘{'ﬁ is a normalizing factor called the partition function. The following is

known. The limit lim,_, ,u;'{(n) 5(c(0)) exists for any 5 > 0. We denote it by m*. For d > 2,
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there exists a critical value 8. = f§.(d) in (0,00) such that m* > 0 for § > 5. and m* = 0 for

B < B
FK percolation.

Edge configurations: The basic probability space for edge processes is given by Q = {0, 1}Ed;
its elements are called edge configurations in Z°. The natural projections are given by pr, : w €
Q w(e) €{0,1}, where e € E?. An edge e is called open in the configuration w if pr,(w) = 1,
and closed otherwise.

For E C B? with E # (), we write Q(F) for the set {0, 1} its elements are called configurations
in F/. Note that there is a one-to-one correspondence between cylinder sets and configurations,
which is given by n € Q(F) — {n} := {w € Q|w(e) = n(e) for every e € E}. We will use
the following convention: the set Q is regarded to be a cylinder (set) corresponding to the
‘empty configuration’ (with the choice F = ().) We will sometimes identify cylinders with the
corresponding configuration. For A C Z%, let Q4 stand for the set of the configurations in A:
{0,1}E(4) | and QA for the set of the configurations outside A: {0,1}E\E‘(4) In general, for
A C B CZ4 we set Q4 = {0, 1}Ed(B)\Ed(A). Given w € Q and F2 C E?, we denote by w(F) the
restriction of w to Q(E). Analogously, wg stands for the restriction of w to the set E¢(B)\F¢ (A).

Given 1 € Q, we denote by O(n) the set of the edges of E? which are open in the configu-
ration 77. The connected components of the graph (Z% O(n)) are called 5-clusters. The path
v = (z1, €1, T3, ...) is said to be n-open if all the edges e; belong to O(n). We write {A « B} for
the event that there exists an open path joining some site in A with some site in B. Similarly,
we denote by {A <> oo} the event that there exists € A lying in an infinite component.

If V. C Z? and F consists of all the edges between vertices in V, the graph G = (V, F) C L% is
called the maximal subgraph of L? on the vertices V. Let w be an edge configuration in Z¢ (or
in a subgraph of ]Ld). We can look at the open clusters in 'V or alternatively the open V-clusters.
These clusters are simply the connected components of the random graph (V, O(w(FE))), where
w(F) is the restriction of w to F.

Given E C E?, we write F(F) for the o-field generated by the finite-dimensional cylinders
associated with configurations in Q(FE). Similarly, for A C B C Z%, we use the notation ]—'ﬁ
for the o-field generated by finite-dimensional cylinders associated with configurations in Qé. If
A= or B=17% then we omit them from the notation.

Stochastic domination: There is a partial order < in Q given by w < ' iff w(e) < W'(e) for
every e € E?. A function f : Q — R is called increasing if f(w) < f(w') whenever w < .
An event is called increasing if its characteristic function is increasing. Let F be a o-field of
subsets of Q. For a pair of probability measures p and v on (2, F), we say that p (stochastically)
dominates v if for any F-measurable increasing function f the expectations satisfy p(f) > v(f).
If, in addition, for each F-measurable cylinder Z with u(Z)Av(Z) > 0, we have u(f|7) > v(f|Z),
then we say that p strongly dominates v, and we denote this relation by p = v.

FK measures: Let V C Z? be finite and F = E?(V). We first introduce (partially wired)
boundary conditions as follows. Consider a partition 7 of the set "V, say # = {By, ..., B,}.
(The sets B; are disjoint non-empty subsets of 9"V with Ui=1,.nBi = 8i”V). We say that
z,y € 0"V are m-wired, if z,y € B; for an i € {1,...,n}. Fix a configuration 1 € Qy,. We want
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to count the n-clusters in V in such a way that m-wired sites are considered to be connected.
This can be done in the following formal way. We introduce an equivalence relation on V: z and
y are said to be 7. n-wired if they are both joined by 7-open paths to (or identical with) sites
2’y € 9"V which are themselves m-wired. The new equivalence classes are called 7- n-clusters,
or 7-clusters in V' with respect to the boundary condition 7. The number of clusters with respect
to the boundary condition 7 (i.e., the number of 7- 5-clusters) is denoted by ¢/™ (7). (Note that
cl™ is simply a random variable.)

For fixed p € [0,1] and ¢ > 1, the FK measure with parameters (p, q) and boundary conditions
7 is a probability measure on the o-field Fy,, defined by the formula

ey epml = g ([1r 00 =)' 7)) (5)
ecel

where Z7"% is the appropriate normalization factor. Since Fy, is an atomic o-field with atoms
{n}, n € Qy, (8) determines a unique measure on Fy,. Note that every cylinder has non-
zero probability. There are two extremal b.c.s: the free boundary condition corresponds to the
partition f defined to have exactly |0"V| classes, and the wired b.c. corresponds to the partition
w with only one class. The set of all such measures called FK (or random cluster) measures
corresponding to different b.c.s will be denoted by FK(p,q,V), and we write ¢FK(p,q,V) for
its convex hull. The stochastic process (pre)eeEd(V) : Q2 — Qy, given on the probability space
(Q, F, @) is called FK percolation with boundary conditions .

We will list some useful properties of FK measures. A property of crucial importance is that for
q>1,every & € FK(p,q,V) is strong FKG. This means that for every F|-measurable cylinder
7, and for all Fj,-measurable increasing functions f, g, we have

SlfglzZlz@[f[Z]®[g ] Z] . (9)

In some cases it is possible to compare FK measures with different b.c.s. There is a partial order
on the set of partitions of V. We say that 7 dominates 7', © > ', if 2, y 7'-wired implies
that they are m-wired. We then have (I>‘7/r/’p’q < ®”? This implies immediately that for each
®c FK(p,q,V), @‘J;’p’q < ® < &""7 Next we discuss properties of conditional FK measures.
For given U C V and w € Q, we define a partition W‘[/J(w) of d""U by declaring =,y € 0"U to
be W‘[/] (w)-wired if they are joined by an wg—open path. Fix a partition 7 of V. We define a
new partition of 9"U, denoted by 7- W (w), by considering z,y € 3""U to be 7- W{ (w)-wired
if they are both joined by w!-open paths to (or identical with) sites 2/, y’, which are themselves
n-wired. Then, for every F;;—measurable function f,

U
Wy

7P f | ]:‘l/]] (w) =P, (W)’p’q[f]7 o as. (10)

Note that (10) can be interpreted as a kind of Markov property. A direct consequence of this
formula is that the restriction of every FK measure ® in FK(p,q,V) to Fi; is contained in the
convex hull ¢FK(p,q,U).

FK Ising coupling: We describe the fundamental coupling between the FK measures and the
Ising Gibbs measure (see [29, 38, 55] for more details). Let A C Z% be a box. An edge—spin
configuration in A is an element (w, o) of {0, 1}Ed(A) x {—,+}*. Let p belong to (0,1). Let P
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be the probability measure on the space of edge—spin configurations in A obtained through the
following procedure.

The edges in A are opened with probability p and closed with probability 1 — p. The spin value
of the sites in A is set to +. The spin value of the sites in A\ @A is drawn randomly
with the uniform distribution on {—,+}. The previous operations are performed independently.
Finally the measure is conditioned on the event that there is no open edge in A between two
sites with different spin values.

The support of IP{ consists of the edge-spin configurations (w, o) in A such that: o(z) = + for
any z € 0"A, and all the sites belonging to one w—cluster C' have the same spin value, which we
denote by o(C). The first marginal of IP; on {0, 1}Ed(A) is the FK measure @f’p’z, its second
marginal on {—,+}% is the Ising Gibbs measure ,u;'{ﬁ where § = —log (1 — p). Therefore to

draw a spin configuration in A according to ,u;'{ﬁ we can proceed as follows. First we draw an

edge configuration in A according to @f’p’z. Second we color each open cluster independently,

with + for clusters intersecting d A and with the uniform distribution on {—,+} for the other
clusters.

Coarse graining of FK processes.

The blocks and the rescaled lattice: Let K be a fixed positive integer. We divide Z? into
small boxes called blocks of size K in the following way. For 2 € Z¢, we define the block indexed
by z as B(z) = A(Kz, K). Note that the blocks partition R? (or Z%). Let A be a region in R?
(or Zd). Depending on the context, we define the rescaled region A as either A = {2 | B(z) C A}
or A= {z|B(z)N A #0}. In general, we use underline in the notation to emphasize that we
are dealing with rescaled objects. For instance, we denote by A(n) = {z|B(z) C A(n)} the
box A(n) rescaled by a factor K. Clearly, the rescaled lattice inherits the structure of 7%, Tn
particular we can equip it with the graph structures corresponding to L% or L%,

With a block we often associate events which can be observed in the block or in a certain
neighborhood of the block. Let o be a positive integer, called the event-block size. For z € 77,
we introduce a larger block B’(z) around Kz, called the event-block, by setting

Ba= |J BE (11)

z; deo (2,2) < @

When rescaling a finite object, like a large box A, some care is needed in the definition of the
blocks sitting close to the boundary if a partition of A is desired. For 2 € 0'" A, we modify the
definition of the block associated with z as follows. First we set

M(z) = {z} u{z € Zd‘ di (z,2) = 1, MKz K)NA#£0, A(Kz K) N A°#£0}

The block B(z) is then defined as the smallest box containing the set AN ( U A(Kz, K))7
zEM(z)

see figure 1. Note that B(z) is a box with (in general unequal) side-lengths between K and

2K, and the blocks B(z), z € A, partition A. For 2 € A, the event-blocks are still defined with

formula (11) but using the enlarged blocks.

Block events: Let A be a box with side-lengths between n and 2n. An open cluster within A is
called crossing for A if it intersects each of the 2d faces of 3" A. Let ¢ be an increasing function
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figure 1: a rescaled box

from N to RT such that g(n) < n for all n and let § > 0. We consider the following events:

U(A) = { there exists a unique open crossing cluster C* in A }

(
R(A,g) =U(A) N {3! open cluster with diameter > g(n) }
O(A,g9) = R(A,g) N {C~ intersects every sub-box of A of diameter > ¢(n) }
V(A 0)=U(A) 0 {(6 = 0) [A] <[C7] < (0+0) [A]}
T(A,g,0)=O(A, g) N {for any box A’ C A of diameter > g(n),

@=8)|AN|<|C*NA| < (84|} (12)

Theorem 3.1 in [59] implies that for d > 3, ¢ > 1, § > 0 and p > p. such that 8/ (p) = 6 (p),
there exist positive constants b = b(p, ¢, d,d), c = ¢(p,q,d,d) and k = k(p, q,d, §), such that for
each n > 1, each box with side-lengths between n and 2n, and each measure ® € ¢FK(p, q,A)

O UAN)] < ®[V(A,0)]] < bexp(—en) (13)
Moreover, if klogn < g(n) < n for all n in N,
[R(A,9)] < @[O(A, 9)] < ®[T(A,g,9)T] < bexp(—cg(n)) (14)

Notice that we have introduced a new type of event named T'(A,g¢,5). The corresponding
estimate follows from Theorems 3.1 and 1.2 in [59].

Block variables: In the course of the proofs we will often use coarse graining in A(n) by looking
at a block process (X (2))zea(n), indicating the non-occurrence of one of the typical events listed
n (12) in the corresponding event-block. By controlling the coarse grained process X we can
extract useful information about the underlying FK process; in fact this is our main tool to
analyze the microscopic behavior of the model. The definition of the events and the estimates
(13) and (14) guarantee that the block process satisfies the following properties:

— the variable X (z) depends only on the edges in B'(z)

- P X(z)=1]<L¢ 15
<I>ecf/£?zi;(,f3’(£)) [X(2) < 15)

These two properties imply furthermore

@ecfg?,);zx(n)) i) {X(g) =1 ‘ U(X(g)7 deo (2,2) > 200 — 1)} <eg (16)
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The properties (15), (16) alone imply some simple estimates for the block process. For future
reference we formulate them in the subsequent lemmas.

Lemma 2.2 Consider a 0-1 valued random field (XZ)ZEA(m) with the property that there exist
a positive integer D and ¢ € [0, 1] such that for each z € A(m),

Plx.=1 ‘ o(Xy5 duo (5,9) > D)] <2 (17)

Then, for every ¢ € (s,1],

Pl 5w <rtem(-n |3

where AZ(8) = Slog 2 + (1 — &) log 3=2 is the Legendre transform of the logarithmic moment
generating function of a Bernoulli variable with parameter . (We remark that if e < § < 1/2,
then AZ(6) > dlog(é/c) —log2).

Proof: We introduce an equivalence relation on A(m): z = y iff D divides each component
of z — y. The corresponding equivalence classes Vi, ..., Vpa partition A(m). Condition (17)
guarantees that each of the fields (X,).ev,, i = 1, ..., D% is stochastically dominated by i.i.d.
Bernoulli variables with parameter . By applying optimized exponential Chebyshev estimates
(cf. the section on Cramer’s Theorem in [24]), and using |Vj| > [m/D]? for i = 1,..., D%, we
arrive at the claim. O

Applying the previous lemma to a block process satisfying (16), we obtain that for every ® €
FK(p,q,A(n)) and § > ¢,

1
|A(n)]

@ > X(@) > 9] < 2a)lesp (- L) (2;>d =1 (18)

z€A(n)

Note that this estimate is valid for each fixed n,e, o, K (with oK < n). In particular ¢, a, K
may depend on n.

The block process can be viewed as a (dependent) site percolation process where a site z is
occupied iff X (z) = 1. The occupied oco-cluster of the site z, i.e., the co-connected component
of the occupied sites containing z, is then denoted by C(z).

Lemma 2.3 Assume (15) holds. There exists a dimension dependent constant b(d) > 0 such
that, for any ® € FK(p,q,A(n)), any s,t > 0,

) H {1 € A(n) ‘ [C(z)] > t} ‘ > s} < ZQ exp j (leog(n/K)/t + log b + (za)—dlogg) (19)

For the proof, which is based on a standard counting (Peierls) argument, we refer to the proof
of Lemma 7.9 in [14].
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3 Decay of boundary effects and decoupling

The main results of this section are Proposition 3.1 which gives sufficient control of boundary
effects and leads directly to Lemma 3.2, which allows to decouple rare events in distant regions.
This lemma is one of the key results which allow to extend the large deviations results for
percolation of [14] to FK percolation. We begin with the statement of the main result and a
useful consequence of it. The proof will be given at the end of the section after a series of
preparatory lemmas.

Let ©® C R? be a box building, i.e., the union of finitely many d-dimensional boxes with non
empty interior. Fix a monotone increasing function ¢ : N — N satisfying lim, ., ¢(n) = oo and
lim, o ¢(n)/n = 0. We will consider the ¢(n)-interior of the building n® which is defined as

int (n©, (n)) = {z € 1O | do, (z,0"10) > ¢(n)}

Proposition 3.1 Assume d > 3, ¢ > 1, p > p. with 8/(p) = 0¥ (p). Let S, be a sequence of
events such that S, depends only on the edges in int (n©, ¢(n)) and for each n € N, let w(n) be
a partially wired b.c. on n©®. Then

min T 1
log &7V = Tim log ® 0[S, ] (20)

lim
n—r00 nd_ 1

n—oo M

d—1

The same equality is valid when lim is replaced by lim.

Remark: 1) Note that free b.c.s on the right hand side could be replaced by wired b.c.s as well.
A direct consequence of equation (20) is

1 — 1
M f7 ) —_ M
nh—>r%o nd—1 log ®;5"[9] = nh—>r%0 nd=1 tog de c;cll(]liqm@) bl
= lim | inf S, 21
n1—>r%0 nd—1 8 (1S cf)lcn(p,q,n@) [ ] ( )

2) We will work in the box A(n) with wired boundary conditions, hence we will need the following
slight generalization of Proposition 3.1, whose proof is similar. Assume d > 3, ¢ > 1, p > p.
with 6/ (p) = 6*(p). Let © be a box building included in A(1). We define the ¢(n)-interior of
the building n® relative to A(n) by

int 5(n) (PO, ¢(n)) = {z € nO| do (=, "m0\ A (n)) > H(n)}

For n € N, let S, be an event depending only on the edges in int 5(,)(n0, ¢(n)) and let 7(n)
be a partially wired b.c.s on n© such that the sites in 9""n© N d"A(n) are wired together. We
have

mn),p, . 1 w,p,
log @né) )z 9, = Tim —— log (I)A(S)q[sn] (22)

lim
d—1 n—oco N

n—oo %

Lemma 3.2 (Decoupling lemma) Let d > 3, ¢ > 1, p > p. with 67 (p) = 0¥ (p). Let D;,
i € 1, be a finite collection of disjoint compact subsets of the unit cube I' = [—1/2,1/2]%. Assume
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that these sets have non-empty connected interiors. Fori € I let S be a sequence of events such
that S}, depends only on the edges in nD; N A(n). Then

i —— log o N5 < Y Hm L

n—00 1) ) L 4 oo nd—1
€] el

log |51

Remark: The same result is valid for lim with the opposite inequality. Again, w could be
replaced by f. The statements are valid also for the infinite volume measure.

Proof: It is sufficient to prove the statement for two sets Dy and Dy only. We suppose that Dy
and Dy are closed subsets of the interior of I'. Let ©1 be a box building such that Dy C int O,
Dynclo®; = 0. Let ¢ : N — N be an increasing function such that lim,_., ¢(n) = oo
and lim,_., ¢(n)/n = 0. For n large enough, the event S! depends only on the edges in

int (nO1, ¢(n)), while S? is in the o—field ]—'X(G;l). Therefore

w 1 2 _ w w 1 n®, 1 w 2

sin sl = eligen(si AN < (, max  ols])ellsl] (2
Hence taking the limsups and using (21) we obtain the claim of Lemma 3.2. For sets intersecting
the boundary of I', the argument is analogous and it relies on (22). O

We next present the lemmas involved in the proof of Proposition 3.1. The first lemma is a simple
observation which, nonetheless, plays a crucial role in the derivation of the results mentioned
above.

Lemma 3.3 (Monotone perturbation of boundary conditions in FK percolation)

Let ¢ > 1 and ©" < 7 be two (partially wired) b.c.s on the region V. C Z%. We denote by ||
the number of equivalence classes in m (note |x| < |7'|.) Assume |7'| — |7| < C for a certain
constant C'. Then for any event S depending only on the edges in V

—

<Ll < g”
P 15]

Proof: Note that |7'| — |7| < C together with = = 7’ imply that for each w,
0<el™ (w)—el"(w) < C
For any event A we define the partition sum Z7[A] by

ZTA] = Z ( H pw(e)(l _ p)l—w(e)) qcl”(w)

wEA e€FE

We have the inequalities: Z7[A] < Z7'[A] < ¢© Z™[A]. The first inequality is obvious and the
second follows from

7" [A] = Z ( H pw(e)(l _ p)l—w(e)) qcl”(w) qclTr (w)—cl™(w) < (]C 77[A]

wEA e€FE
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The inequalities of the Lemma can be proved as follows:

Z7[S] _ Z™'[S]

O7[S] = = < ey ¢ 7S]
o AR IS i
o5 [S] = ZL ] < Z”[ ] = ¢ ®7[5] =

The other ingredient of the proof of Proposition 3.1 is the control of (random) boundary condi-
tions on int (n®, ¢(n)) induced by the measures @Zé)n). Denote by A(n) the “boundary region”
n© \ int (nO, ¢(n)). We will show that the average number of A(n)-clusters per site is concen-
trated around &, which is the half-space analogue of the expected number of clusters per site
k. We begin the lengthy but rather simple proof with the introduction of half-clusters. Given
an edge configuration in Z< the half-clusters are simply the H%-clusters, i.e., the open clusters
of the configuration restricted to HY. For A C D = {z € Z?| 24 = 0} we denote by K’; the
number of half-clusters intersecting A. Finally, we set s/ (p, q) = @fgq[K’D(n)/nd_l], where D(n)

is the hypersquare D? N A(n).

Lemma 3.4 Assumed >3,q>1,0<p <1, 6/ (p)=0"(p). The limitlim,_, x = x*t exists
and is equal to inf, k..

Remark: If 0 < p < 1, the limit x% is easily seen to be confined to (0,1).

Proof: The proof is based on the following subadditive property: If A,B C D? and w is a
configuration then
Kyupw) < Kj(w) + Kp(w)

and the same is true for the expectations. The claim of the lemma follows from a well-known d-
dimensional generalization of the subadditive inequality. For the readers convenience we sketch
the argument. It is enough to show that for each fixed m, im0 kI <kl . Let n > m and
divide the hypersquare D(n) C D? into disjoint hypersquares congruent to D(m). There are
|n/m """ boxes which fit into D(n) and it remains an uncovered region of size not exceeding

2(d — 1)mn?~2. By subadditivity and translation invariance of ®2,

®_[K!/n™" < [n/m]"™" (m/n) 10 [K! /mP'] + nd1_12(d — ymnd=2

Taking lim,_,., we arrive at the claim. O

We next introduce the number K,, of A(n)NH¢-clusters intersecting the hypersquare D(n — v/n)
and set x, = ®LIK, /n?1].

Lemma 3.5 Assumed >3, ¢> 1, p> p., 0/ (p) = 0Y(p). Thenlim, o k, = x¥.

Proof: We define the event
R, = {EI! A(n) N Hi-cluster C* with diameter > /n and C* N D(n — v/n) # ) } (24)

On R,, if two sites in D(n — /n) are connected in H? then they are already connected in
A(n) N HE. Hence, on R,

K, — K| < | D)\ D(n— V)| < 2(d = )"~/
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By Theorem 3.1 in [59] we know that lim, ., ®L[RS] = 0. Thus

lim |k, — K| < lim @27 {nl_d | K, — K| ; Rn} + lim ®29R5] =0 O
n—00 n—>00

n—0oo

Lemma 3.6 Assume d > 3, ¢ > 1, p > p. with 8/(p) = 0“(p). The quantity K, /n?™!
concentrates around kt as n goes to 0, i.e., for each £ > 0,

lim max ¢ HKn/nd_1 —I{+‘ >€} =0
n—co @€ cFK(p,q,A(n))

Proof: Let € > 0. Since K, is decreasing, we need only to show

lim O [Kn/nT < kT =5 = 0 (25)
Jim @ f (K /n'™ > 4 5] = 0 (26)

By Theorem 3.1 in [59] and Lemma 3.5, there exists N = N(g) such that

D RY] <e/2 27
de c}'}C(;r,lqa,Ll)X((N)ﬂHd) Byl =/ 20)
kt—e/2<ky = _[Kn/NTY <kt 4¢/2 (28)

(the event Ry was defined in (24)). We require in addition that
2(d—-1)/VN < ¢ (29)

Note that K, is also a local variable. Since according to our assumptions ®J = QU (=),

as m — oo, and there exists

then the measures @X(m), * = f or w, converge weakly towards ®_

My = My(e, N) such that for every m > My,
f
q)A

(m)[KN/Nd_l] — /2 <O [Kn/NT <O [Kn/NT ) +2/2 (30)

Therefore, by (28) and (30), for M > My(e, N),
kP —e < ONn[KN/NTTTT < @{(M)[I(N/Nd—l] <kt 4e (31)

Let M > My(s,N) be such that M/N is an odd integer > 3. Thus for these values N, M the
conditions (27) and (31) hold true. Let n > M? and [ = [(n — /n)/N|. We use the blocks
B(i) = A(iN,N), ¢ € D(l), to rescale D(n — 4/n). For given i, we introduce the corresponding
“middle square” D(i) = iN 4+ D(N —+/N) and we denote by K (i) the number of clusters in
B(i) N H? intersecting D(i). We call the block B(i) regular if the event described in (24) occurs
in B(i) N H? (instead of A(n)); in this case we set X (i) = 0 and X (i) = 1 otherwise. Condition
(27) guarantees that the block process (X (i));ep(y) is stochastically dominated by i.i.d. Bernoulli
variables with parameter £/2.

Let T,, denote the event that the proportion of irregular blocks B(z), ¢ € D(l), exceeds £. By
Cramer’s theorem there exists ¢ = ¢(¢) > 0 such that

3 [T0] < exp(—c|D(1)]) = exp(—¢ |(n — V) /N]"7H) (32)
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We next observe that K, > 37, K(1)(1 — X(2)) — [D(I)], since the number of clusters in
H? N A(n) intersecting D(i), when i is regul:&u’7 can be determined by looking at the configuration
in HYNB(i). Moreover, in each such block there exists at most one half-cluster which can intersect
another block. Hence the maximal overcount is bounded by the number of regular blocks (which
is bounded by |D(l)].) On T we can use the following estimate

K, > Z K(i )| —elD(l)| N> Z K (i) — 2en?™ (33)
1€D(l 1€D(l

The term ¢|D(l)| N?~! is a bound on the number of sites in D(n — y/n) not covered by regular
blocks, which itself is a crude upper bound on the (extra) overcount. The second inequality
follows from (29).

It will be useful to subdivide all blocks in the collection B(z), ¢ € D(l), into further classes
containing blocks which are sufficiently separated in space. First we set B'(i) = A(iN, M).
Recall that M/N is an odd integer > 3. Thus the blocks B(k), k € D(M/N), partition B’(0).
For k € D(M/N), we look at the collection of (indices of) blocks

J(k) = {j e D) ‘i:@—u’(M/N) for some i € D' }

Note that J(k), k € D(M/N) is a partition of D(l) and the d-dimensional blocks B'(j), j € J(k)
are all disjoint and contained in A(n) (since /n > M.) Returning to the proof of (25),
T 2w - d— v
nh_}rréo P\ {Kn/n <K 58}
1
(s + . e
< T oM+ o o [ 3 K() < ¥ =3s: 1]
EED(M/N) jeJ (k)
| D(M/N) S <t
< Tm @3, [3k e D(M/N) Y Ky <kt - 3|
jeJ(k)
< T (DO max g [ ST R() N <kt 2] (34)
nvoo LED(M/N) T Sh

(Note that | D(M/N) |/n®=t ~ 1/(| J(k) | N1 ~ (M/nN)?~! as n — o). In order to estimate
the probabilities above we use the decoupling event

F(k) = m {each edge connecting two sites in 9" B’(j) is open}
jeJ(k)

Under the conditional measure @ {t [ | F(k)], the variables K (j)/N9=1, j € J(k), become i.i.d.,

and by (31) we know that their expected values are at least k™ —e. Hence, for any k € D(M/N),
by the FKG inequality and Cramer’s theorem we have

L {ﬁ Y KGN <kt - 25} (35)
Pl jeatw
<P {ﬁ]y(m KN < it =22 | P()] < exp(=¢' |T(B)))
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for some ¢ = ¢/(g) > 0. Note finally that |J(k)| > (n/M)?1/2 for n large enough which
together with (34) and (35) implies (25).

The proof of (26) is very similar, in fact it is easier since subadditivity can be used instead
of the regularity argument. The block construction is the same as before except that we set
[l = [(n—+/n)/N]| to have a complete cover of D(n —/n) and we choose N = N(g) and
M = M (e, N) such that (27) and (31) are satisfied and M/N is an odd integer > 3. In this case

K, < |D(n)\ D(n - vn)] +\ U (BGnD)\ DG) \ + > K()
ieD(l) ieD(l)
I]_3Iy (29), both [ D(n)\ D(n—+/n)| and |U;ep)(B(E) N D?)\ D(i) | are bounded by en?~!.

T N
lim (I>A

Tm @ K, /0= > 5t 4 5]

< T [0 Y K@) > At 4 3]
n—00 D)
- D(M/N
< Tm of [3k e DOM/N) % K (j) > i + 3]
JEJ(K)
T f 1 (s d—1 +
< IDONY] Tim | max q)A(n)hJ k)l ,ej(k)K (/N> 5 +2€}
JEJ(k

To estimate the probabilities above, we use the decoupling event

F(k) = m {each edge in 0°%9°B’(j) is closed}
JEJ(E)

Note that under the conditional measure @K(n)[-| F(k)], the variables K (j)/N%", j € J(k),

are i.i.d. with expected value smaller than ¥ 4. The proof can be finished as in the previous
case by employing the FKG inequality and Cramer’s theorem. O

Now we turn to the proof of Proposition 3.1. To preserve transparency, in particular to
simplify notation, we will give the proof for the choice ©® = A(1); the generalization to arbitrary
buildings is straightforward. Note that for @ = A(1), n® = A(n). We begin with the description
of the idea behind the proof. Let us first recall Lemma 3.3 which says that whenever two b.c.s
7,7 given on a region are not too different, more precisely when 7’ < 7 and the difference
of the number of equivalence classes is bounded by some number C then the corresponding
probabilities of any event .S given in that region are comparable in the following sense:

g~ <7 [S]/@7[S] < ¢°
We will use a certain monotone coupling of the two measures @K(n)
partially wired boundary condition on A(n). Our first goal is to show that for any ¢ > 0, with

exceedingly high probability (i.e. up to LD-s of higher than surface order) we are able to find a
random (centered) box B in A(n) (only a little smaller than A(n) itself) such that the b.c.s W]J;

and @A(n) where 7 is a
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and WZ on B, induced by the configuration in A(n) \ B, satisfy 0 < |W]§| — [WE| < en®l. It
is then easy to show, by using Lemma 3.3, that

d—

—end—l ™ end—l
q < @A(n)[S]/(P[{(n)[S] <gq
for any event S which is measurable in a region not too close to the boundary of A(n). Since ¢
is arbitrarily small, the result follows easily.

We begin the proof with the description of the before mentioned monotone coupling P4, of
the measures @K(n) and @K(n) governing two layers of configurations w = (w/, w™) with wf < W™,
We first choose an arbitrary inward spiral ordering of all the bonds, by, b, ... in the box A(n)
beginning with some edge on the boundary (such an edge links two sites in d"A(n)) and we
assign i.i.d. variables X; to the bonds b; in A(n) which are uniformly distributed on [0,1].
By an inward spiral ordering we simply mean that for m = 1, ..., n, each bond between sites in
9" A(m) has a smaller index than every bond linking 9" A(m) to §""A(m — 1) which themselves
have smaller indices than bonds in @ A(m — 1), etc. The coupling will be constructed in an
algorithmic way as follows: One takes the first bond b; and declares the corresponding bond
on the x-layer to be open (Y;* = 1) if X; < L) [b1 is open |, otherwise by is closed (Y;* = 0).
Note that the monotonicity of the coupling is guaranteed simply by the FKG property. The
second bond on the x-layer will be open or closed according to whether Xy < @X(n) [b2 is open |

the status of by is given by Y{*]. Again, the strong FKG inequality (and the relation Y} > Ylf)
guarantees the monotonicity of the coupling. In general, the k-th bond on the x-layer is open
iff X < @X(n) [by, is open | the status of by, ..., bx—y is given by Y*,...¥;* ;]. One proceeds in
this way until all the bonds have been assigned their status. One important property of this
coupling is that by construction, for each k and each configuration n = (34, 7") € {0, 13bnbrd o
{0, 1}{bbed the conditional measure P A () [+ | 7] restricted to the *-layer agrees with @X(n)[- |
n*]. In particular, if 7 is a (double) configuration defined on A(n)\ A(m) with m=1,..,n— 1,
the same statement is true due to the particular choice of the ordering of the edges.

Recall that ¢ : N — Nt is a fixed monotone increasing function such that lim, . ¢(n) = oo
and im0 ¢(n)/n = 0. Set L = L(n) = |¢(n)"/@FV] if this number is odd and let [ =
Lqﬁ(n)l/(d"'l)J — 1 otherwise. We assume that n is large enough such that L > 3. We divide
Z? into blocks of side length L in the usual way: for i € Z% we set B(i) = A(Li, L). Set
A(n, ¢) = int (A(n), ¢(n)) and let A(n, ¢) be the set of indices i such that A(n,¢) N B(i) # 0.
Note that A(n, ¢) is itself a box of the form A(j() for some j) € N. We set jo = j/ if this is an odd
number and jo = jj+1 otherwise. For k > 1, the set S(k) = A(jo+2k)\A(jo+2(k—1)) is called
the k-th rescaled shell around A(n, ¢) and S(k) = U;es(r)B(2) is the k—th shell around A(n, ¢).
Note that S(k) C A(n) \ A(n,¢) for k =1,2,...,s, where s = s(n) = |¢(n)/(2L(n))] — 1. We
divide the k-th rescaled shell into corner and non-cornersites (blocks) according to whether their
dy distance to A(jo+2(k—1)) is equal to or strictly larger than one. In the subsequent arguments
the middle hypersquares of these blocks will play an important role. They are contained in the
inner vertex boundary of the box

D(k) = A((jo+ 2k) L)

Note that "T'(k) intersects every non-corner block of the k-th shell in its middle hypersquare.
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figure 2: the blocks and the shells

We define for k =1,...;s,7 € S(k), £ non-corner,

BYi) = BN (97T(k) UMM\ T(H)

|

D) = {reB@HNITH) | dw (2,07 B(0) > VI}

K(i) = number of B*(i)-clusters intersecting D(z)

Finally, for £ > 0, we define the block event

Ri(e) = {EI! BT (i)-cluster C* with diameter > /I intersecting D(i), | K(i)/L' — kT | < 5}

A non-corner block ¢ is called regularif R;(¢) occurs in both layers. We denote the corresponding
block process by X;. Hence X; = 0if 7 is regular and X; = 1 otherwise. For k =1, ..., 5, we set

Gile) = {the proportion of regular non-corner blocks in the k-th shell is larger than 1 — 25}

The uniform estimates (14), Lemma 3.6 and the specific coupling guarantee that for every
n > ng(e, d, p, q), the process X;, indexed by non-corner blocks in the k-th shell, is stochastically
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figure 3: the blocks B(¢), B’(i) and the middleplane D(%)

dominated by i.i.d. Bernoulli variables with parameter . Hence, there exists ¢ = ¢(¢) > 0 such
that for every n > ny,

P () { m Gﬂ < Papy Kthe proportion of regular blocks in U Q(k)) <1- 25}

k=1,...,s k=1,...,s

U S0)|) <exp(—ni L)) (36)
k=1,...,s

IN

exp ( -

where we used Cramer’s theorem. In words: we know that up to negligible events, we can find a
shell in the ¢(n)-boundary of A(n) where most of the blocks are regular. As we will show, this
implies that the induced boundary conditions in each layer are close to each other. For x = f or
7, we denote by Wr (w*) the induced b.c.s - W};((:)) (w*) (see section 2 p.14 for the notation).
Note that these are random b.c.s on I'(k) which arise as a combination of the b.c.s on A(n) and
of the configurations occurring in the annulus

A(k) = A(n) \T (k)

We claim that there exists ng = no(s, d, ¢) such that for every n > ng and k =1, ..., s, we have
on the event Gy,

0< |Wg(k)| — Wyl < 92 2d 0! (37)

Note that the first inequality is a simple consequence of the monotonicity of the coupling. To
prove the other bound we first observe that if B(7) is a regular non-corner block in the k-th
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shell then for x = f and * = 7, K(i)(w*) is equal to the number of A(k)-clusters on the *-layer
which intersect D(i). The next step is to derive an appropriate upper bound on the number
|W1f(k) (w)| of A(k)-clusters intersecting d™*T'(k) in the f layer, when w € . We estimate it
(using subadditivity) by the sum of the numbers of A(k)-clusters intersecting 9"I'(k)

in corner blocks, = Ny
in irregular non-corner blocks, = Nj
in regular non-corner blocks B(i) “outside” D(i), i.e., in (9""I'(k) N B(i)) \ D(i), = N3

in D(7) when B(2) is a regular non-corner block, = N4

The corresponding estimates are as follows:

Ny < en® ' form large enough depending on ¢, d, ¢

Ny < 2d2e(n/L(n) " L(n)"! = 4den®™; on Gy

Ny < 2d(n/L(n))" ' x L(n)"2\/L(n) < en?™';  for n large enough depending on &, d, ¢
Ny < Z K@) <L) Y&t 4¢)2d(n/L(n)"' = 2d(kT + )nd™?

i€S(k), B(1) is
regular, non-corner

This implies
Wl € N1+ Na+ Na + Ny < 2d(k+ + de)n*™! (38)

To get a lower bound on |W11r(k) (w)| when w € G we first observe that in a regular non-corner

block B(i), i € S(k) there are K (i) — 1 > (st —)L9™! — 1 A(k)-clusters with diameter strictly
smaller than v/L intersecting D(i). Note that these clusters can not intersect any other block
B(j), j € S(k)\{i}. Thus the total number of A(k)-clusters intersecting @ "I'(k) is certainly not
smaller than the sum of the numbers of A(k)-clusters with diameter strictly smaller than /L

intersecting D(i) for some ¢ € S(k), B(Z) non-corner and regular. The number of such blocks is
bounded from below by

(n —2¢(n)

d—1
L(n) ) 2d (1 —2¢) > (1 —3¢)2d (n/L(n))d_l

where n is large enough (depending on ¢,d, ¢ only). Hence for w € G, and n large
Wiy (@)] > (1= 32)2d(n/ L) ((sF = ) LT = 1) > 2d(k* = 5e)n™!
This, together with (38) gives (37).

The remainder of the proof of Proposition 3.1 is based on Lemma 3.3. For an integer m < n we
set

T = (€)= {w‘ Wy = Wiyl < €nd_1}
By (36) and (37) we know that

nh_>_r%0 nl_d log IPA(n) {( Jm)c} = = (39)

n—¢(n)<m<n
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Let S, be an event which depends only on the edges in A(n,¢). In the coupled model denote
by S¥, * = f or m, the event that 5, occurs on the x-layer. Let n = (nf, n”™) be a configuration

n?

in A(n) \ A(m) and assume 7 € J,,(¢). Then

P87 1) = @50 [Sa [0 = @, 2071,

Recall that the first equality is a consequence of the specific choice of the coupling and the
second one follows from (10). By Lemma 3.3 we have

g~ T P A [ST 0] < P Ay ST 1] < ¢ Py ) [ST | 1) (40)
Hence
P[5 N Jn] = > P 5 () [S7 | 0] P p ) [1]
n: config. on A(n)\A(m)
{n}QJm
d—
< D P A ST 7] TP () [17]
{n}CJm
= T PA ST N T < ¢ P [S]] (41)
Therefore, by using (39) and (41)
T 1-d f T 1-d ¥
nh_}rréo n % log @A(n)[Sn] = nh_}n(r)lo n = log IPp(y) {Sn N ( U Jm)}

n—¢(n)<m<n

< nh_>—n(r>10 n'~% log (¢(n) n_¢{2$<xm<n Py {57{ M JmD
< Tm n'"%log ¢ IPA(n) {Sg(n)}
n—0oo

T  1-d w(n)
< clogg+ nh_>rréo n " log @, [S,]
Since € > 0 can be chosen arbitrarily, we have

—_— 1—d f T  1-d w(n)
nh_}rréo n "% log @A(n) [9n] < nh_}n(r)lo n "% log @A(n) [Sn] (42)
By interchanging the roles of f and 7(n) and using the first inequality in (40) we derive similarly
the opposite inequality which gives the claim (20). The derivation of the inequality involving
lim is analogous. O

4 Surface tension

We will have to work with enlargements of continuous subsets of R?so that they have a significant
trace on the discrete lattice Z%. We fix a real number ¢ > 2d and we enlarge a subset A of R? by
considering its (-neighborhood V,(A4, (). A minimal requirement to choose ¢ is that, whenever A
is an arc-wise connected subset of R?, the graph (Z9NVy(A, ), B (V2(A,())) is also connected.
Some of the constants appearing in the statements and the proofs depend on (. However
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the direction dependent surface tension and the probabilistic estimates are independent of the
particular choice of { > 2d.

We next identify the surface tension of the model, whose existence is guaranteed by subadditivity
and the FKG inequality. We work here in the following regime: d > 3, ¢ > 1, p > p., 67 (p) =
6" (p). We study the surface tension of the infinite volume FK measure ®.

Let A be a closed hyperrectangle and let s be positive or infinite. Recall that cyld A = {z +
tnorA|z € dA,t € R}. We denote by W(0A, s, () the event that there exists a finite set of
closed edges E2 C V,( hyp A, s) such that

- F separates oo in cyl A

- the edges in ENVy(cyld A, () are close to hyp A so that they are contained in V,( hyp A, ().

Loosely speaking, the second condition means that the “boundary” of F is “pinned down” at
d A within a distance (. Note that the event W(JA, s, () is decreasing and it depends only on
edges inside cyl AN Vy(hyp A, s).

Proposition 4.1 Let A be a hyperrectangle. Let ¢(n) be a function from N to RT U {oo} such
that lim,, o ¢(n) = co. The limit
) 1
lim — mlog P, [W(0nA, ¢(n),()
exists € [0,00] and depends only on nor A. We denote it by T(nor A) and call it the surface
tension in the direction nor A.

Remark: It turns out that our definition in the case of integer ¢ agrees with the classical one
for spin systems. We are planning to give a proof in a subsequent paper [15].

Proof: See appendix A.2.

Properties. We derive next some basic properties of the surface tension. In the context
of lattice spin systems, where the definition of surface tension is significantly different, the
corresponding properties have been derived in [53]. Although the techniques are not original
(apart perhaps from Proposition 4.2), for the sake of completeness, we include the proofs in
appendix A.2.

The surface tension 7 inherits automatically some symmetry properties from the model. For
instance, if f is a linear isometry of R? such that f(0) = 0 and f(Z%) = Z< then 70 f = 7.
Besides, the surface tension 7 satisfies another important inequality called the weak triangle
inequality. For details and results concerning this kind of inequalities, see [28, 53, 54].

Proposition 4.2 (weak triangle inequality) Let (ABC) be a non-degenerate triangle in R?
and let vy, vB, vo be the exterior normal unit vectors to the sides [BCY, [AC], [AB] in the plane
spanned by A, B,C. Then

H([BOY7(va) < H([AC)T(vB) + H ([AB])7(vc)
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Proof: We consider first the case where BA - BC' > 0 and CA-CB > 0. Let ¢, h be positive
with € < 1 < h. Let (e1,---,e4) be an orthonormal basis of R? such that €1, €3 belong to the
two dimensional space spanned by A, B, C'. Let K be the compact convex set defined by

K = {x—l— Z uie; ‘ x € (ABC), (us,---,uq) € [O,h]d_z}
3<i<d

The boundary of K consists of the three hyperrectangles R4, Rp, R defined by

Ry = {x—l— Z wie; | @ € [BCY, (us, -+, uq) € [O,h]d_z}

Rp = {x—l— Z wie; | x € [ACY, (us, -, uq) € [O,h]d_z}

Ro = {x—l— Z wie; |z € [AB], (us,---,uq) € [O,h]d_Q}

and the set
T = U {w + Z wie; | @ € (ABC), uj € {0,h}, (ug, ..oy tj_1, Ujq1, ..., uq) € [O,h]d_?’}
s5<j<d - 3<i<d

Notice that the set T is connected in dimension d > 4 and consists of two disjoint triangles in
dimension d = 3. The intersection of the hyperrectangles R4 and Rp is a d — 2 dimensional
rectangle and it is denoted by R4 . Similar notation is used for the other intersections. Let Fy
be the set of the edges included in

(Cyl (hyp nRANVy(0nR4, 4en)) N Va(hypnRa4, C))
U VQ(TLRBL', QC) U VQ(?”LRAp, QC) U VQ(?”LRAB, QC) U VQ(TLT, QC)
There exists a constant ¢ = ¢(d, {) such that
|Bof < e(=n®™1hI=2 4 (k)2 4 2(d - 2)n" 000 (43)

Let R be a hyperrectangle in hyp R4 such that R4 C R C V3(Ra4,4¢€) and d2(0R", R4) > 2e.
For n large enough, so that en > (, if the events

W(dnRc,en, (), W(OnRp,en,(), {all the edges of Fy are closed }

occur simultaneously, then the event W(0nR*, 0o, () occurs as well; by the assumptions BA -
BC >0and CA-CB >0, the set Vy(nRc UnRp,en) is included in Vo(cyl nR4,en) and does
not intersect Vo (cyl dnR®, (), so that the separating sets will be correctly localized. By the FKG
inequality, this inclusion implies

(1 - p)|EO|q)oo W(anRC7 en, C)} q)oo {W(anRBv en, C)} < q)oo {W(anRE7 o0, C) (44)
The inequalities (43), (44) and Proposition 4.1 yield

HTYR)T(va) < HUTY(Ro)T(v0) + HT Y (RB)T(vB) — ¢(eh®™2 + 2(d — 2)h3~3)log (1 — p) (45)
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We observe

HTY(Rp) = M 2HY([AC)), HIH(Re) = B2 HY([AB]), R42HY([BC)) < M1 (RY)
By substituting this into the inequality (45) and dividing by h92,

HH([BC)T(va) < HY([AC)T(vB) + H ([AB])7(ve) — ¢ (e + 2(d — 2)/h) log (1 — p)

By letting h go to oo and € go to 0, we obtain the weak triangle inequality for the triangle
(ABC'). Let now A, B,C be three points such that BA-BC < 0, CA-CB > 0. Let D be the
orthogonal projection of B on [AC]. Then BC'-BD >0, DB-DA =0, BA-BD > 0. We apply
the weak triangle inequality to the triangles (BC'D) and (BDA):

HU([BC)7(va) < H((BD)7(vBD) + H' ((DCY)7(vB),
H ([BD))r(vep) < H' ([AB)7(vc) + H' ([AD])7(vs)

where vgp is a unit vector orthogonal to [BD]. Combining the two inequalities, we get the weak
triangle inequality for the triangle (ABC'). The case BA-BC >0, CA-CB < 0 is similar. O

The weak triangle inequality implies a lot of nice properties for the surface tension.
Corollary 4.3 The homogeneous extension 7o of T to R? defined by 70(0) = 0 and

VYw e RI\{0}  7o(w) = |w]ar(w/|w]s)

is a convex function.

The convexity of 79 is in fact equivalent to the weak triangle inequality. The next Corollary is a
consequence of [28], Theorem 3.1: the weak triangle inequality automatically implies the weak
simplex inequality.

Corollary 4.4 (weak simplex inequality) Let Ag,---, Ag be d+ 1 points in general position
in R Foriin{0---d} let A(i) be the hypersimplex defined by the points { Ag, -+, Ag }\{ A; }.
Up to the sign, there exists a unique family of unit vectors vy, - - -, vq such that for i in {0---d },
the vector v; is orthogonal to the vector space spanned by the hypersimplex A(i). Then

HIHAO)7(r0) < HTHAMD) T (1) + -+ HTHA(D) 7 (va)

Proposition 4.5 The surface tension T : S ' — R* is bounded, continuous and does not
vanish.

Proof: See appendix A.2

The previous properties of 7 can equivalently be described through its Wulff crystal

W, = {96 € Rd‘x-w < 7(w) for all win Sd_l}
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Corollary 4.6 The Wulff crystal W, associated with T is bounded, closed, convex and contains
0 in its interior. If f is a linear isometry of RY such that f(0) = 0 and f(Z%) = Z? then
fOWV;) = W.. The surface tension T is the support function of its Wulff crystal, i.e.,

Vv e §17! T(v) = sup {z-v|z e W,}

These properties are equivalent to the symmetry properties of 7 and Corollary 4.3, Proposi-
tion 4.5. The function 7 is the support function of W, because 1y is convex and coincides with
its bipolar, see for instance [60], Corollary 13.2.1, [36], Proposition 3.5, or [28], Theorem 2.1,
Corollary 3.6.

Separating sets. With the help of the surface tension, we next estimate the probability of the
occurrence of a separating set of closed edges near an hyperplane. Let A be a hyperset in R?
and let r be positive or infinite. We denote by S(A,r) the event that there exists a finite set of
closed edges in cyl AN Vy(hyp A, r) which separates co in cyl A, that is,

S(A,r)= {EIE C eyl AnNVy(hyp A, r), |E| < oo, Ve € E w(e) =0, E separates co in CylA}

JFrom now on, we work with a fixed value of { larger than 2d and we drop ¢ in the notation
W(d A, s, (), thus writing simply W (d A, s). The proofs of Lemmas 4.7, 4.8, 4.9 and Corollary
4.10 are to be found in appendix A.2.

Lemma 4.7 Let O be an open hyperset in RY and let ¢(n) be a function from N to Rt U {oc}
such that lim,_,., ¢(n) = co. We have

1
d—1

lim log ®__|S(nO, ¢(n))| > —H*1(O) 7(norO)

n—oo N
Lemma 4.8 There exists a positive constant ¢ = ¢(p,d, () such that, for any hyperrectangle A
of R%, for any positive r,

— 1
lim —
n—oo MY

log @, [S(nA,nr)| < —r(w)H1(A4) + crH2(04)

Lemma 4.9 There exists a positive constant ¢ = ¢(p, d, () such that: for any open hyperset O
inRY, for any finite family (A;,1 € I) of disjoint hyperrectangles included in O, for any positive r,

log ®_, {S(nO7 nr)} < —7(nor0) ;Hd_l (Aj)+cr ;%d_Q(aAi)

lim
n—0oo nd_ 1

Corollary 4.10 There exists a positive constant ¢ = c(p, d, () such that, for any x in R?, any
positive p,n with n < p, any w in S,

log @, | .S (ndisc (2, p, w),nn)| < —aq1p’'7(w) + cpp™?

lim
n—r00 nd_ 1
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5 The surface energy

We work here within the region: d > 3, ¢ > 1, p > p., 8/(p) = 6¥(p). With the help of the
surface tension 7 defined in Proposition 4.1, or equivalently its Wulff crystal W,, we build a
surface energy functional defined on the collection of the Borel sets of R%. The surface energy

Z(A) of a Borel set A is defined as

Z(A) =sup {/Adiv f(z) dz

f € CHER. W) |

where C} (Rd7 W,) is the set of the compactly supported C'! vector fields taking values in the
Wulff erystal W, and div is the usual divergence operator. The definition readily implies that
the map 7 : (B(RY), distz1) — [0, oc] is lower semicontinuous. We denote by P(A) the isotropic
perimeter of a set A, introduced by Caccioppoli [12, 13]. Some references and basic results
on the theory of sets of finite perimeter are recalled in appendix A.1. In case A is a set of
finite perimeter, we denote by 0*A its reduced boundary. Let mnin and Tpmax be the infimum and
supremum of 7 over S?~!. Then B(Tmin) € W: C B(Tmax) so that for every A € B(Rd),

TminP (A) < Z(A) < Tmax P(A) (46)

By Proposition 4.5, we have 0 < Tiin < Tmax < 00. Thus a set A has finite surface energy if and
only if it has finite perimeter. In this case

I(A) = /Q*AT(VA(x)) H (da)

(see Proposition 6.3 in [14] for a detailed proof). Of crucial importance is the following com-
pactness result.

Compactness of the level sets of Z in T'. The sets {E € B(I')|Z(F) < A}, A > 0, are
compact.

Since 7 is lower semicontinuous, its level sets are closed. By inequality (46), the level set of Z
in I' associated to A is included in { £ € B(I') : P(£) < A/Tmin } which is compact for the
metric disty: (see appendix A.1).

We state next the geometric approximation results needed to prove the lower bound (2) and the
local upper bound (5).

The lower bound (2) relies on the possibility to approximate the Wulff crystal by a polyhedral
set. A Borel subset of R%is polyhedral if its boundary is included in the union of a finite number
of hyperplanes.

Lemma 5.1 For any € > 0, there exists a polyhedral convexr set E such that W, C FE C
Vo(Wr,e) and Z(E) < I(W;) +¢.

Remark: This result is stronger than the general polyhedral approximation result for Cacciop-

poli sets (see [14], Proposition 6.7). Indeed, we are able to approximate the Wulff crystal from
the outside and with respect to the Hausdorff metric, thanks to its convexity.
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Proof: We first recall some results from the theory of convex sets (for details, see [61]). Let A
be a convex compact set with non—empty interior. A point x of dA is called smooth if the
supporting hyperplane of A at z is unique. By a classical result due to Reidemeister (see
[61], Theorem 2.2.4), the boundary of a convex compact set admits M4 -almost everywhere a
unique supporting hyperplane. In particular, H4=1 (9 A\0*A) = 0. The area measure Sq_1 (A, -)
associated to A is the Borel measure on the sphere S?! defined by

VE € B(S™Y  Su_i(A E) = Hi ({w €DA|va(z) € E})

We can express the surface energy Z(A) of A with the help of S4_1(A,-):

I(A) = /Sd_l T(v) Sq—1(A,dv).

Moreover, if (A,)nex is a sequence of convex compact sets converging for the Hausdorff metric
to a convex compact set A having non—empty interior, then the sequence of the area measures
Sda—1(An, )nen converges weakly to S;_1(A,-) (see for instance the proof of Theorem 4.2.5 in

[61]).

Let (vn)nen be a dense subset of S9=1 and let for n in N

A, = m {xERd‘w-l/igr(Vi)}

1<i<n

Since 7 is bounded (by Proposition 4.5), then for n large enough, the set A, is convex poly-
hedral and compact. The sequence (A, ),en is decreasing and converges to W.. Therefore
Sda—1(An, )nen converges weakly to Sq_1(W;,-). Since the surface tension 7 is continuous
(Proposition 4.5), the surface energy Z(A,) converges towards Z(W,). O

The proof of the local upper bound (5) relies on the following covering lemma.

Lemma 5.2 Let F be a Borel subset of I' having finite perimeter. For e, & > 0 there exists a
finite collection of disjoint balls B(x;,r;), t € I, such that for any i € I,

- either x; € 9*FE N int " and B(z;,r;) C int [

-orx; €0*ENOL, B_(x;,r,ve(x)) CT

In both cases distr: (E N B(zi,r), B_(xg,r, VE(QCZ))) < 57‘?

Moreover

‘I(E) =3 g (v () ‘ <e
el

Proof: Let £, 6 be positive with ¢ < 1/2. By definition of the measure theoretic normal, for any
x € 0™ F there exists a positive ry(z, §) such that for any r < ry(z,d)

distya (E N B(z,r), B_(z,r, VE(QC))) < 6rd
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Since F C I', then 0*FE C int['Ud*I'. If 2 belongs to 0*F N d*I' then vg(z) = vr(z). The
map ¥ € 0*E — vg(z) is ||Vxg|| measurable and the map 7 : S9! — R* is continuous and
bounded, thus the map = € 0*F — 7(vg(z)) is ||Vxg|| measurable and bounded. By the
Besicovitch differentiation Theorem (see appendix A.1), for M1 almost every z in 0*F,

tim (auir®™) W@ BN Ba,r) = 1 (47)
tig (oart ™) [ e ) = (o) (49

Let 0**E be the set of the points of 0*E where (47) and (48) hold simultaneously. Clearly
HI=V(O*E\ 0**F) = 0. For any € 0**E, there exists a positive ry(x, ) such that for any
r<rox,e),

‘ %d_l(a*E N B(z,r)) — ag_qr®! ‘ < eagqrtt
[ )R ) - e @) | < s
9*EnB(z,r)

The family of the balls B(z,r), « € 9**E and 0 < r < min (rl(x, ), ro(z,e),dw (2, 8F\8*F))
is a Vitali class for 9**E (where 01"\ 0" is the union of the boundaries of the faces of I').
By the Vitali covering Theorem for #?~!, we can select a countable collection of disjoint balls
B(zi,r), i € I, belonging to this family such that either H4~1(0**E \ U;erB(x;,7;)) = 0 or
dicr” ri=1 = 0o, By our assumption, P(E) = H4~1(9*E) is finite. For each i € I, r; is smaller
than ro(z;, ), thus
(1=2)> agarf ' <HTHO™E) < o0
el
Therefore, the first case must occur and we may select a finite subset J C I such that

W (0 B\ Blai,ri)) < M0 E)
1€J

We claim that the collection of balls indexed by J enjoys the desired properties. Indeed, there
is only the last condition to be checked:

70~ et rsep)| < [ s

=2
£ Pl ) () 0aar ()
8**EOB 1’,,7’1
< eHTYOE) (Tmax +2) < € Z(E) (Tmax + 2)/Tmin

where we have used the inequality (46) in the last step. O

6 The interface lemma

This section is devoted to the proof of a lemma which is crucial for linking the surface tension
to the desired large deviation upper bounds. The interface lemma gives a probabilistic estimate
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for the local presence of a collection of open clusters creating a small flat interface near a middle
hyperplane of a ball. Near is understood with respect to the L' topology. The estimate is
uniform with respect to the location, the size and the direction of the interface. Moreover this
lemma suggests an alternative way for defining the surface tension, which is physically more
natural.

Notation. Let B(z,r) be a ball in I' = [-1/2,1/2]¢, let w belong to S%~!, n to N and let r,§
be positive. Recall that for a collection C of sets we denote by cupC the union of all the sets
belonging to the collection C. If A C Z? we denote its “thickened” version, regarded as a
continuum object of RY, by cube A = U,e4A (2, 1). Recall that the open B(nz,nr)—clusters are
the open clusters in the configuration restricted to the ball B(naz,nr). Let Sep(n,z,r, w,d) be
the event: there exists a collection C of open B(na, nr)-clusters such that

distrs (Cube cupC, B_(nz,nr, w)) < &rind (49)

We will work in the unit cube I', hence we have to examine the possibility of having an interface
intersecting dI'. Let B(z,r) be a ball such that 2 belongs to 0*I' and B_(z, r, vr(z)) is included
inT. Let » € Nand § > 0. Let Sep®d(n, 2, r, §) be the event: there exists a collection C of open
B_ (nz, nr,vp(z))—clusters such that none of them intersects 9" A(n) and the inequality (49) is
satisfied with w replaced by vr(z).

Lemma 6.1 (interface lemma) Let d > 3, ¢ > 1, p > p., 0/(p) = 6“(p). There exists a
constant ¢ = ¢(p, q,d, () such that for every r in (0,1), every ball B(z,r) C I', every unit vector
w in S9!, and every § in (0,0/2),

nh_>_rréo ] log oc c}-}rcn(%,);,A(n)) & [Sep(n, z,r,w,8)] < —ay_1r i r(w) (1—c§'/?)

Remarks: 1) Note that the event Sep(n, z,r, w, §) depends only on the status of the edges inside
B(na,nr) and it can be seen as an event guaranteeing the existence of a certain set of closed
edges inside B(na,nr), hence it is decreasing.

2) For n sufficiently small (depending on ¢), we have S(ndisc (z,r,w),nn) C Sep(n,z,r, w,?d).
Proposition 3.1 and Lemma 4.7 together imply the corresponding lower bound

log min q)[sep(nvxvrvwv(s)] > _Oéd—lrd_lT(w)

lim T
de cFK(p,q,A(n))

n—oo N

3) The event Sepbd(n,av,r7 ) is also decreasing. By the monotonicity of FK measures with
respect to boundary conditions,

(I)X}(n) Sepbd(n7 Ty T, 5)} S (I)oo {Sepbd(nv Ty T, 5)} S (I)oo {Sep(nv Ty T, VF(x)v 5)

so that the interface lemma yields also an upper bound for @f(n) [SepPd(n, x,r,8)]. This upper

bound turns out to be of the correct order. Indeed, the L! constraint is weak and the interface
might be created at a positive distance from the boundary: for 5 small enough (depending on

5),
S(n disc (z — nvp (), r,vp(2)), nn) C Sep”d(n, z,r,d)
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and we get the lower bound with the help of Proposition 3.1 and Lemma 4.7 as in remark 2)
above. However, the situation could be radically different with another kind of boundary con-
dition.

4) In the different context of the Ising model with Kac potentials, a procedure has been developed
to get a probabilistic estimate for the local presence of an interface, whose spirit is similar to the
technique of our proof (see the paragraph ”minimal section” in [8]). In this context, a coarse-
graining procedure specific to the Kac model is employed. The coarse—grained configuration is
described by attributing a label —1, 0, 41 to each mesoscopic box. The labels —1, 41 correspond
to boxes which have relaxed to the minus and plus phases, the label 0 to a box in an indeterminate
status. The authors of [8] localize the interface between the minus and the plus phase and cover
it with a collection of parallelepipeds (as we do with balls). Inside a parallelepiped, they map the
configuration of labels on a configuration where there is no sequence of cubes of the same phase
which crosses the parallelepiped, by modifying the labels in two strips, where the number of bad
cubes is minimal (the bad cubes are the cubes having label 0 or cubes of the wrong phase). An
essential difference is, in our view, that the afore-mentioned work stays at the mesoscopic level
of the boxes and does not go in depth to handle the microscopic structure of the model, so that
the estimates are not precise when the range of interactions is finite.

Lemma 6.1 and remark 2) suggest the following alternative definition of surface tension.

Corollary 6.2 (alternative definition of surface tension)
Letd >3,q>1,p> p., 0/(p) = 0%(p). Let 6(n) : N = (0,1) be such that lim,_,., 6(n) = 0,
lim ;00 né(n) = co. For x € R and w € S471, the limit

lim —(ag_1n? 1) Mog @ [Sep(n, z,1,w,8(n))]

n—0oo

exists and depends only on w. It is equal to the surface tension T(w).

Remark: The above limit does not depend on z because our model is translation invariant.
Yet in a more general model, the surface tension might depend simultaneously on the direction
and a space variable, hence it might be more natural to defined it as the above limit.

Proof: Since the event Sep(n,z, 1, w,d) is non-decreasing with respect to §, then, for any § > 0
and n large enough so that d(n) < &, we have Sep(n, z, 1, w,d(n)) C Sep(n, z,1,w,d) whence by
lemma 6.1,

lim (ad_lnd_l)_l log®_[Sep(n,z,1,w,d(n))] < —7(w)

n—r00
Next, we have

S(n disc (z, 1, w), n5(n)/(2ad_1)) C Sep(n,z,1,w,6(n))
Since lim,,_yo, né(n) = co, Lemma 4.7 yields

lim (ag_1n’™) " log .. [Sep(n, @, 1, w,6(n))] > —7(w) ©

n—0oo

An essential ingredient of the proof is Lemma 6.3 which might be of independent interest. This
lemma relates the probabilities of events which can be transformed into each other by closing (or
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opening) certain configuration-dependent edges “by force” — a procedure which we refer to as
perturbation or surgery. It can be used for estimating the probability of an event S about which
we know that by “changing it a little bit” we get (a subset of) another event whose probability
is known or can be controlled. Of course, the change (surgery) will cost some penalty; the
corresponding factors can be seen in (50).

Let F be afinite set of edges in a graph and let .S be an event defined on these edges. Let ¢ : S —
Qp be a map changing certain open edges into closed ones. Assume that the number of changed
edges is uniformly bounded by N (). Note that the change in the number of clusters is non
negative since we destroy connections, and it is bounded by N(%). Let d(¢) = maxys ‘Qb 1‘
be the “degree of degeneracy” (non-injectivness) of the map 1.

Lemma 6.3 (monotone perturbation of an event in FK percolation)

Let ¢ >0, pe (0,1) and ® € FK(p,q, F). Then

)" e sy (50)

1 P
D[S] < d(v) (1v )N (1v ——
S1< d(w) (v VO (1v o
Let S;, j € J, be a finite partition of S and for j € J, let 1; = s, be the restriction of 1 to
S;. Assume that the number of changed edges in the mapping 1; is bounded by N(1;). Then
P max N (1;)
)

B[] < ] (max dv) (1 ) (v 7220) & o pu(s)) 51)

Remark: Analogous estimates can be derived for opening edges (instead of closing) as well as
for non-monotonic perturbations.

Proof: For w € Qp and ® € FK(p, q, F), we denote by ¢l(w) the number of clusters in w counted
with respect to the partially wired boundary conditions associated with ®. Then

o[s] = 7271 ) qcl<w>( []»“0- p)l—w(e))

wEeS ecel
(«) p (1 — pyt=() (l)cw)—cz(w) (L))
wezw:()wewz: " (gﬂ ) q (gﬂ I—p )
< 7-1 Z Z qc w') ( H pw'(e)(l _ p)l—w'(e)) (1 V l)cl(w')—cl(w) H (1 V L)w(e)—w'(e)
w'eP(S) weyp (W) e€R q c€E L=p

< XY eplavoNavi®

weY(S) wey = (w')
1 P \N ! —1¢, 1
= (vo)Nav—)" Y o]|v ()]
1—
1 P W' €YP(S)

1 P
(m(ax‘lb ‘) q (1VH)N¢W(S)]

Inequality (51) is a direct consequence of (50). O

IN

Proof of the interface lemma: The basic idea of the proof is as follows. We will show that
whenever the event “Sep” occurs, it is always possible to perform a surgery in the spirit of
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Lemma 6.3 by closing not too many edges so that in the modified configuration a separating set
of closed edges appears near the middle hyperplane hyp (nz,w) of the ball B(nz,nr). Recall
that the occurrence of such a separating set of closed edges is directly related to our definition
of surface tension. By controlling the penalty factors in (51) we will be able to give an estimate
for ®[Sep] in terms of the surface tension 7(w).

Throughout the proof, we fix x,r, w,d as in the statement of the interface lemma and we note
Sep(n) = Sep(n,z,r,w,d). By Proposition 3.1, the proof can be carried out for the measure
Py Let f(n) be a function from N to N such that n/f(n)?"! goes to oo as n goes to co
and f(n) > klogn for all n, where s is a sufficiently large constant, so that the estimate (14)
holds. We work in the box A(n) rescaled by a factor f(n) with event-block size 1. For z in
A(n), let X (z) be the indicator function of R(B'(z), f(n) — 1)° U V(B(z),6/2)°. Suppose that
the event Sep(n,z,r,w,d) occurs and let C be a collection of open B(naz, nr)-clusters realizing
it. Let p,n be such that 0 < 7 < p <r, 0 < 2n < +/r?2 —p? (p will be chosen later to be close
tor). Set Z = cyl (ndisc (z, p, w)). We suppose that n is large enough so that every asymptotic
inequality coming up in the proof is fulfilled (like 4pn > ¢ > f(n)?~'/n, where ¢ > 2d is an
arbitrary but fixed constant which we used to define the surface tension). It will be useful to
define the following subsets of B(na, nr):

D=D(n,z,w,n(p) = ZnNslab(nz,w,—nn—,ny+()

Dt = Zn slab(nz, w,l,nn—l—C)

D™ = Znslab (nz,w,—nn—¢,0)
0TD = Znslab (nx—l—nnw w, —(,C)
d~D = Znslab(nz — nnw,w, —(, ()

oDt = Znslab (na,w, 1,1+ ()
0TD™ = Znslab(nz,w,—(,0)

Let C' be an open D—cluster joining the sets @ ¥ D and & ~D. There are two possibilities: Either
C'is contained in some cluster of C or it is contained in its complement D\ C. In the first case
there exists an open D¥-cluster C’ connecting d ~ D' and 8 * D such that ¢’ C €' and therefore

C" C (cube cupC) \ B_(nz,nr, w)

In the second case there exists an open D~ -cluster C’ connecting & =D and @ T D~ such that

C" C C and therefore
C’ € B_(nz,nr,w)\ cube cupC

Let F' be the union of all such clusters C’. Then, on Sep(n),
|F'| < distya (Cube cupC, B_(nz, nr, w)) < Srdnd (52)

We define
= {g € A(n) ‘B(g) NE#0, B'(z) C slab (na, w,1,npn+ ¢) U slab (na, w, —nn — C,O)}

Let 2 be a regular block in F,i.e., X (2) = 0, and such that B’(z) C Z. This implies in particular
that B'(z) C D~ UDt. Since F intersects B(_) and the diameter of any open cluster contained

39



nr

figure 4

in F is larger than f(n), the box B’(z) contains an open path of diameter larger than f(n) — 1
included in F. The occurrence of the event R(B’(z), f(n) — 1) implies that this open path
is contained in the crossing cluster C*(B’(z)), which in turn implies that the latter cluster is
contained in F. Similarly, the crossing cluster C*(B(z)) associated with the event U(B(z)) has
diameter f(n) — 1 and it is thus contained in C*(B’(z)). Since the event V(B(z),6/2) occurs
as well, then

|F0B(z)| > |C*(B(a)| > 0f(n)"/2.
Summing over z yields
IF| > 3 FB@)| > (6/2)f(n)|{z e F| X(@) =0, B'2) c 7} |
z€F, X (2)=0, B'()C7

In addition, there exists a positive constant ¥ = v(d) depending only upon the dimension such
that

‘ {g € E‘ B'(z)ndZ + @} ‘ < ynpnd=1rd=2/ f(n)

Combining the two previous inequalities with (52), on Sep(n), we can bound the number of the

regular blocks in I
26 ( rn \* g_onit
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On the other hand, by the estimate (1 ) the block process X (z) satisfies (15) with ¢ =
bexp(—cf(n)). Applying (18) with § = an?='(|A(n)|f(n))~", where a > 0, we obtain

d—l and—l
[;X ) < {A _%: 2> a7
an’=! no|? -1
< 2exp (- 27N (Ggrr7) L@(n)J ) < bexp(-can’™)

where b, ¢ are two positive constants. By setting

y g_ond™t 25 rn 4
Sep™(n) = Sep(n) N {|£] < (a+ )T+ = }
and using the previous estimates, we see that

B [Sep(n)] < bexp(—can®™) + @, [Sep” (n)] (53)

For 7 in Z, we define the slab-like sets

H(i) = {ye Am) [B(y)n D #0,if(n) <w- (f(n)y —nz) < (i+1)f(n)}

The sets H(i), ¢ € Z, are pairwise disjoint. Hence for any subset I of Z, the sum ) . ; |F'NH ()]
is less than |F| and there exists ¢ in [ such that |[F'n H(#)| < |F|/|I|. Applying the preceding
remark to the sets (—nn/f(n) +3, —3) N Z and (3, nn/f(n) — 3) N Z, whose cardinalities are
larger than nn/f(n) — 7 > nn/(Qf( )), we find that there exist two random indices /_ and I
in Z such that —nyn/f(n)+3 < I_- < =3,3 < I} <nn/f(n)—3and both FNH(I_), FNH(I})
have a cardinality less than 2f(n)(nn)~1|F|. We choose the indices I_ and I with the smallest
possible absolute value. We decompose the event Sep*(n) according to the values of I_, I and
thesets FNH(I_), FNH(I}). For

—nn/f(n)+3<i- <=3, 3<iy<nn/f(n)—3, Ty C H(iy) with |[T4]| < |F|

2f(n)
nn
we define the event

G(nyig, Ty) = Sep™(n) N{Ix =iy, FNH(I1) =T}

Notice that the events G(n, iy, Ty) corresponding to different values of i_, i, T_, Ty are dis-
joint. Hence these events partition Sep*(n). Using Lemma 6.3, we now derive an estimate for

@f(n) [Sep™(n)]. Let ¢ : Sep™(n) — Q,(,) be the map defined on G(n, iy, Ty) by

{ 0 s if e € Uper,ur. 9°%°B(2)

w(e) ; otherwise

b(w)le] =

Assume w € G(n,ig,Ty). By the definition of F', each open path in D connecting d *D and
07D intersects either |J,er, B(z) or Uyer_ B(z) depending on whether it belongs to C or

not. Therefore, when we close all the edges in UxET+UT_ 86d96B(£), we destroy every open
connection in D between @ T D and @ ~D. Hence the map 1 has values in the set of configurations
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S(ndisc (x, p,w), nn), see section 4 before Lemma 4.7 for its definition. To apply (51), we have to
estimate the penalty factors. We first observe that there exists a dimension dependent constant
¢ = /(d) such that for all ¢ € Z

nr )d—l
f(n)
The first penalty factor in (51), |.J|, is easily seen to be bounded by

()| <

nmn 2 . . nmn 2 , nr d—1
A < (2= _
f(n)) exp ((max |H(i)] + max | H(i_)])log 2) < ( f(n)) exp (2¢/( f(n)) ) 64
To get a bound on the maximal possible number N of edges to close in the surgery, we observe
that

1< (

edge — Qf(n) _ nd_l 28 7/ rn \d

(ze%%_m B B@)|) x [T UT_| < 24 f(n)’ 2 ((a -+ e +7(f(n)) )
2 d—1 d

= sy By )

The degree of degeneracy d(1;) in our case is simply bounded by 2%V (since on G(n,ix,Ty) the
location of all the changes is known). Note that all these estimates are uniform in i4,7_, T4, T_.
Therefore, by (51),

®3glSep™ ()] < 171 (T25) " @[ Sen” (1)) < 1] (72) " @3 [t dise o . ), )

Coming back to (53), we get
P \(y[Sep(n, z,r,w, 8)] < bexp(—can®™t) 4 |J| (2—p)N(I);§U(n) {S(n disc (967p7w)7n77)}
L—p
Letting n go to co and using (54), (55) and Corollary 4.10, we get

— 1
lim ——log ®,,\[Sep(n, z,r, w,d)] <

n—oo N (n)

16d%r? 2
— min { ca, ag_1pir(w) —enp?Tt 4 r dlog I P }

on

where ¢ = ¢(p,d,(). We choose now 1 = vor/3, p = r/1—36 and we let a go to oo in
the preceding inequality. Because 7 is bounded away from 0 (Proposition 4.5), there exists a
constant ¢/ = ¢’ (p, q,d, () such that

=— 1 w -
lim Fllog P \(y[Sep(n, z,mw,6)] < —ag_y Tl (w) (1 = 517

n—0oo

This inequality holds for every ball B(z,r) C T, § in (0,6/2) and w in S%~'. O
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7 Proofs of the main theorems.

7.1 Asymptotics of the magnetization

We consider an edge-spin configuration (w,o) in A(n) drawn under the FK-Ising coupling
measure IPz—\l—(n)' We analyze the behavior of the magnetization of the Ising model in the box

A(n) via the FK representation. The magnetization n~? > zen(n) (x) of the spin configuration o
is related to the open clusters of the FK configuration w through the formula

LY e =5 S e(O) (¢

zEA(n) cec

where C is the collection of the open clusters in A(n) and o(C') is the color associated to the
cluster C'. We first show that the relevant information is carried by the large (macroscopic)
clusters of C. Throughout the proof, we use a fixed function f : N — N such that both
n/f(n)? and f(n)/logn tend to oo as n — oo. A cluster in A(n) is called small if its diameter
is strictly smaller than f(n) and large otherwise. The next lemma controls the coloring of the
small clusters.

Lemma 7.1 For any 6 > 0,

— 1 1

: + _

T e P | X elocl] 28] = e
C' small

Proof: For later use, we will prove the statement with respect to a measure IPA(n) describing
a coupling between an arbitrary FK measure & € ¢FK(A(n)) and a coloring measure with the
property that the colors of the clusters not touching the boundary are i.i.d. £1 with probability
1/2 each. (Clearly, IPA"(n) is such a measure). An analogous statement has already been proved

in the proof of Theorem 1.1 [59], hence we will merely sketch the argument. Set
C'={CeC|Cissmalland CNA(n—2f(n))#0}
Let n be so big that 2dn?='2f(n) < én?. Then

{‘ 3 U(C)|C|‘ > 25nd} c {‘ 3 U(C)|C|‘ > w}

cec’
C small

There exists a = a(p,d) > 0 and ¢; = ¢;(p,d) > 0,7 = 1,2, such that
IPA(n)[|C’| < an] < ¢ exp(—cyn?)

Note that already the number of the point clusters C' € C’, |C| = 1, is proportional to n¢, up
to volume order large deviations: to prove this, one can use for instance the fact that the FK
measure is stochastically dominated by the Bernoulli percolation. We next condition on the
edge configuration w observed on the FK level and assume that w € {|C’| > an?}. The coloring
variables of the clusters of C’ are i.i.d. +1 valued variables with zero mean (since the clusters
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of C' can not touch the boundary of A(n)). Let X denote a 1 valued variable with zero mean.
By Lemma 5.3 in [59],

Py H 3 U(C)|C|‘ > gt ‘ ]

cec’!

IN

Pl g o025t

cec’!

C'| A% 5 (6/a)) < csn?
2exp(— |C] f(n)X( /a)) < 2exp(— Oef(n)Q)
where we have used the fact that the Legendre-transform A% (z) of the log-moment generating
function of X satisfies A% (z) > csa? for an appropriate ¢35 > 0. Since the previous estimate
is uniform on the set {|C’] > an?}, the claim follows. Let us finally remark that the estimate
is not optimal; the correct order of decay is ~ exp(—cn?) and it could be proved with slightly
more effort. O

IN

We next treat the large clusters. For *+ = — or +, let C* be the collection of the large clusters
colored with x and M* = cupC*. We divide the continuum box nl" into three disjoint random
sets

M- = {x c nF‘ doo (2, M7) < f(n), doo (2, MT) > f(n)}
Mt = {x € nF‘ deo (2, M7) > f(n), do (2, M) < f(n)}

and M° = nl'\ (M~ U M). Note that the region M~ consists of the points of nI' whose f(n)
neighborhood intersects only large clusters with negative color, and at least one such cluster.

Lemma 7.2 For any 6 > 0,

lim log IP"' H|./\/l | — @vol M~ | + vol M° + |M+|—0V01M+‘ >5nd} = —00

n—00 nd 1

Proof: We work with the box A(n) rescaled by a factor f(n) with event-block size 2. For
2z € A(n), the block variable X (z) is the indicator function of the event T'(B'(z), f(n) —1,6/2)".
Suppose that X (z) = 0 for some z € A(n), i.e., the block is regular. Then there exists a unique
large cluster C' intersecting the block B(z) and the block B(z) is included in M?(©) while
M7 A B(z) =C N B(z) and M=) 1 B(z) = 0. Moreover, for n large enough,
M7 0 B)] - 0B@)l| = | 100 B@)| - 01B@)|| < (6/2) f(n)"
Therefore,
‘ |IM™| — 6 vol M~ ‘ + vol M° + ‘ |MF| — @vol M ‘ < on?/24 f(n)? Z X(z)

z€A(n)
By the estimate (14), the block process X (z) satisfies (15) with ¢ = bexp(—cf(n)). Apply-
ing (18), we obtain

lim ——— log IP+( ){ f(n)d Z X(z) > 5nd/2} = —

z€A(n)

and the proof is completed. O

Lemmas 7.1, 7.2 yield the following result.
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Corollary 7.3 For § > 0,

lim ! 10gIP+()H% Z U(x)—O(l—Qvol(M_/n))‘>5}:—oo

oo pd—1
z€A(n)

Thus the magnetization n~¢ > zean) 0() and (1 —=2vol (M~ /n)) are exponentially contiguous
which implies (1). To derive the large deviation statement for the magnetization we need only
to consider the random variable vol (M~ /n). We prove successively the lower bound (2) and
the upper bound (5).

Proof of the lower bound. We first prove (2).

Proposition 7.4 Let A > 0 be such that AXdiam W, < 1 and let x be such that ¥ + AW, is
included in intT'. For any ¢ > 0,

lim log P | disty (M~ /n,2+ AW,) < 8| > =AU T0w,)

n—}oond 1 A(n)

Proof: By Lemma 5.1, for any 6,¢’ > 0, there exists a polyhedral set F such that
distpi (B, x4+ AW,) < 8/3, @+ MW, C EC V(e +IW,,8), Z(E) < ANzw,) + 46

In particular, since 2+ AW, is included in int I', then for § sufficiently small, I is also included in
the interior of I'. Let F;, i € I, be the relative interiors (w.r.t. the d — 1-dimensional topology)
of the faces of F. These are polyhedral open hypersets of R%. Let U be an open connected
subset of F such that dist; (U, E) < ¢/3 and JUNJE = (. Let V be an open connected
subset of I'\ E such that distp1(V,I'\ F) < §/3 and 0V NI (I'\ E) = 0. Pick ¢ > 0 such that
de < doo (U, 0 E)ANdoo (V,0(I'\ E)). We cover the compact set clo (UUV') by a finite collection
of boxes A(z;,¢), j € J, included in intI" and centered in U U V. Let n be large enough so that
f(n) < en. Let ¢ > 2d be fixed and consider the following events:

Wi(n) = mS(nE, f(n))N {all the edges in Vao(cylnd F;, () N Vo (hypnF;, f(n)) are Closed}
el
R(n,e) = () O(nA(x;,22), f(n))
jed
In words, we have surfaces of closed edges near the faces of F/, and typical configurations inside

the regions U and V. Whenever W (n) and R(n,¢) occur, there exist two distinct large clusters
(7 and C'y such that

nU C Voo (Ch, f(n)) C Vo (nE, f(n))
nV C Voo (Co, f(n)) € Voo (n(T'\ E), f(n))

and no other large cluster intersects the region nV., (U, ) UnV4 (V,e). If C is colored with —
and Cy with 4 then the region M~ will satisfy nU C M~ C n(I'\ V). Therefore,

(/P

(n) W(n)N R(n,e)| = IPA"(n) [W(n) N R(n,e)N{o(C) = —, a(Cq) = +}

< IPA"(n) |:diStL1 (M~ /n,a 4+ AW;) <4
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The event R(n,c) depends only on the edges inside nV. (U U V,2¢), while the event W (n)
depends on the edges in nV. (0 F,c). By the estimate (14), for j in .J, the probability of
each event O(nA(z;,2¢), f(n)) goes to 1, uniformly over the b.c.s on nA(z;,2¢). Therefore,
limy, o0 IPX(n) [R(n,c) |W(n)] = 1. Moreover, by the FKG inequality and Lemma 4.7,

lim ! log P {W(n)} > Z?—ld YE)r(nor Fy) = —Z(E) > =A=YDz0m,) — &

nd—1 A(n)
n—yco 1 el
Thus, for any §,4" > 0 sufficiently small,

lim log TP {distLl (M~ /n,z+ IW,) < 8] > -AE=D 10w, - &

n—+00 nd 1 Aln)
The result of the Proposition follows by letting ¢’ go to 0. O

We complete now the proof of the lower bound for Theorem 1.1. Let m as in Theorem 1.1
and let § > 0 such that 1 — 2(diam W,)"%vol W, < (m — 28)/m*. By applying successively
Corollary 7.3 and Proposition 7.4, we get

1
+ -
nh_}m nd - log IP}] A ){ = Z U(x)gm}
xEA(n)

. n _ m*+46—m
> lim ey tox P [vol (M /) > T

. 1 n ) _ m* 4+ 26 — m\ /4 )
> tim e tow P [ (30 () ) < ]

d—1
m*+26 —m\ d

> (=

- ( 2m* vol W, ) W)

Letting § go to 0, we obtain the correct lower bound for Theorem 1.1. This lower bound
is certainly not correct for m such that 1 — 2(diam W,)"¢vol W, > m/m* (see [63] for the
corresponding question in d = 2).

Proof of the upper bound. We build two auxiliary sets fifa M~ and aglu M~. Both fifa M~
and aglu M~ are exponentially contiguous to M~. Fifa M~ helps to prove the exponential
tightness (4), while aglu M~ is used to prove the local estimate (5).

The set fifa M~. This set is a coarser version of M~ obtained through the succession of a
filling and a fattening operation, hence the name fifa. We work with the box A(n) rescaled by a
factor k with event-block size 1 (k is a fixed integer strictly larger than 2d and large enough for
some of the subsequent estimates to hold). The block variable X (z) is the indicator function of
the event O(B'(z), k — 1)°. We introduce a coarse grained image of the set M~ as follows:

M= {zeAm)|Bl)n M #0}

This set, in general, contains lots of large and small holes. To get rid of the small ones we
first fill out these holes by the operation fill which we now describe. We look at the residual
components of M™, more precisely the L%*-connected components of Z4\ M~. We define

filM™ =M~ U {E‘E is a finite residual component of M ™, |8edgeﬁ| < f(n)/k}
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Notice that any L%*-connected component of 9"ill M~ has cardinality strictly larger than
f(n)/(2dk). This is clearly true, by construction, for the parts of 9"fill M~ associated with
finite residual components (holes). Let A be an L-connected component of M ™. Since we deal
with large clusters, diam A > f(n)/k—1 and |oemted9e A| > diam A+ 2 > f(n)/k. This in turn
implies that [0°5*" A| > f(n)/(2dk). Note finally that every L%*-connected piece of d“*fill M~
consists of such boundary pieces, which implies the claim.

We next claim that if 2 belongs to IRl M~ C 9" M~ then X(z) = 1. To see this we first
observe that z € 9" A(n) N 0" M~ implies that the event O(B’(z), k — 1) does not happen,
otherwise the crossing cluster of B'(z) would be colored + and the block of  would not intersect
M. If, on the other hand, z € " M~ \ 9" A(n) then it has a nearest neighbor y in A(n) such
that B(y) N M~ = {, hence the event O(B'(z), k — 1) does not happen either.

Finally, we define the fattened region

fifaM™ = U B(z)
zefill M—

Lemma 7.5 For k large enough, depending on p and d, there exist b,c > 0 such that

Vs >0 IPX(n) {P(ﬁfaM_) > s} < b exp(—cs)

Proof: We have the following bound on the perimeter of fifa M ~:
PlfifaM™) < 2dk*0 il M| < Qdkd_l‘ {zeam) ‘ IC(2)] > f(n)/(Qdk)H

By the estimate (14), the block process X (z) satisfies (15) with ¢ = bexp(—ck). The claim of
the Lemma follows from Lemma 2.3 applied with ¢t = f(n)/(2dk). O

Lemma 7.6 For n large enough,

disty: (M ™, fifa M™) < vol M° + 5% f(n)?~ 1P (fifa M)

Proof: We estimate the distance between M~ and fifa M. In the filling operation performed to
build fifa M ~, all the holes which are filled on the rescaled lattice have a diameter not exceeding
f(n)/((2d — 2)k). Therefore, for n large enough, so that 10k < f(n),
fifa M= C {o e nF‘ doc (2, M7) < f(n)} (56)
whence fifa M=\ M~ C M°. Moreover (notice that M~ C fifa M ™)
M=\ ffa M~ C {a e nF‘ dec (2, Dfifa M™) < f(n)} (57)

Notice that either M~ = @ or diamfifaM~ > f(n). If M~ = 0, then M~ = fifaM~ = 0.
Suppose that diam fifa M~ > f(n). Let Ay, .-, A; be the L% components of d " fifa M~. Each
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of these components has cardinality larger than f(n)k?"2/(2d) > f(n) (recall that k > 2d). By
Lemma 2.1,

Vol{x € nF‘ deo (2, 0fifaM ™) < f(n)} < Z vol Vo (As, f(n) + 1)
1<i<!

< ST A () + DA < 5 S (n) P (B M)
1<i<l

where the last inequality holds for n large enough. O

We now prove the exponential tightness (4).
Lemma 7.7 There exists a positive constant ¢ = ¢(p,d) such that for any X\, > 0,

fim o log P [distys (M7 /n, 270, 0)) 2 6] < —er

n—oo N A(n)
Proof: Let A, § > 0 be given. Using Lemma 7.6 and the inequality (46),

P [distLl (M—/n, 7710, /\])) > 5}

IN

o [distLl (n~fifa M~, n~'M") > 5/2} + P [distLl (n~ifa M, T71([0, A])) > 5/2}

A
Fy | V0L MO 457 f () P(fifa M) > nt5/2) + 1P [T (fifa M) > At |

P
P Xy A(n)

IN

" |+ 1w, [Pitan) > A"d_l}

IN

P 1M0>5"d P+ [pifari) > — 00
AMVO —TF A<n>{ (fifa )—45df(n)d‘1

TmaX
By setting ¢ = 1/Tmax, Lemmas 7.2 and 7.5 imply the desired conclusion. O

The set aglu M~. We begin with the definition of a certain enlargement A of C~. The set A
consists of the sites belonging either to M™ or to small clusters not touching the boundary of

A(n) and whose distance to M~ is bounded by 3f(n), i.e.,
}

The set aglu M~ (the word aglu stands for agglutination) is defined as the union of all the unit
continuum boxes A(z,1) C R? centered at a vertex z in A, that is, aglu M~ = cube A. We first
show that M~ and aglu M~ are exponentially contiguous.

A=M" U cup {C’ is a small cluster | do (C, M7) < 3f(n), CNI"A(n)

Lemma 7.8 For any 6 > 0,

— 1
hm =1
n—oo YT

log IPA"(n) distp (M~ agluM™) > onl| = —o0

Proof: We work with the box A(n) rescaled by a factor f(n) and with event-block size 4.
The block variable X (z) is the indicator function of the event R(B'(z), f(n) — 1)°. We in-
troduce an intermediate block B”(z) “around” z corresponding to the event-block size 2:

hence, if do, (z, ?"A(n)) > 3, then B"(z) = A(f(n)z, 5f(n)). Let 2 € A(n) be such that
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deo (z, 3 A(n)) > 3 and suppose that B(z) N M~ # § and X (z) = 0. Then there is a unique
crossing cluster in B’(z), and all the other clusters intersecting the intermediate block B”(z)
have a diameter less than f(n) — 1. Therefore B”(z) C aglu M~. Since

M-c{re nF‘ doo (m M) < )b | B'@
z: B(z)nM=#£

we have
M~ \aglu M~ C
{reram|de@onny <srmpv( U @\ U Bw)

z: B(z)NM—#0 z: B(z)nM—#0D
X(z)=0

C {w € A(n) ‘ deo (z,0nI") < 6f(n)} U U B"(z)
zeA(n), X (z)=1
so that
vol (M~ \ aglu M) < 12df (n)n™" + 57f(n)* >~ X(z)
z€A(n)

On the other hand, using (56) and (57),

aglu M~ \ M~ (aglu M~ \fifaM™) U (fifaM™ \ M™)

C
c {rerm ‘ doc (2, 0fifa M~) < 4f(n) } U MO

Using Lemma 2.1 and proceeding as in Lemma 7.6, we obtain

distz1 (M ™, aglu M~) < 12df (n)n?=" + 5% f (n)? Z X (z) + vol M° 4 5% (4 f(n))?= P (fifa M)
z€A(n)

By the estimate (14), the block process X (z) satisfies (15) with e = bexp(—cf(n)). Applying (18)
and Lemma 7.5, we get the exponential contiguity between M~ and aglu M~. O

We now prove the upper bound (5) for a set having finite surface energy.

Lemma 7.9 Let E be a Borel set of I' such that Z(F) < co. For every ¢ > 0, there exists
8 =46(F,e) > 0 such that
1

lim
n—00 nd_ 1

log IPA+(n) disty (M~ /n, E) <& < —(1—¢)Z(FE)

Proof: By the triangle inequality for dist;: and Lemma 7.8, we need only to prove the above
statement for the set aglu M~. Let F be a Borel set of I such that 0 < Z(F) < co. For e > 0,
set &/ = ¢(1 4+ 1/Z(E))™ . Pick §y € (0,6/2) such that /3y < &’ where ¢ = ¢(p,q = 2,d,() is
the constant appearing in the interface Lemma 6.1. Let B(x;,r;), ¢ € I, be a finite collection of
disjoint balls associated with E, <" and &0/3, as given in the covering Lemma 5.2. Let § > 0 be
smaller than min {§or?/3|¢ € I}. Suppose that distz:(aglu M~ /n, F) < é.

49



For 7 in I let C(i) be the collection of the open clusters of the configuration restricted to
aglu M~ N B(nax;, nr;). Note that these clusters are open clusters of the configuration restricted
to B(na;, nr;). We have

dist (Cube cupC(¢), B(nz;, nr)) < disty (Cube cupC(¢), aglu M~ N B(na;, nrz)) +

+ dist1 (aglu M™n B(nz;,nr;), nFE N B(na,, nrz))

+distp (nE N B(na;, nry), B_(nwi,nri,l/E(xi)))

< c’(d)nd_1 + ént + 50(nf‘i)d/3 < 50(nri)d (58)

where ¢/(d) is an appropriate constant depending only on the dimension. If #; belongs to int T’
then the collection C(¢) realizes the event Sep(n, z;, i, vE(2z;), 0). If z; belongs to 0*I' then the
collection C(i) realizes the event SepPd (n, z;, 75, 80). Indeed, none of the clusters inside aglu M~
intersects @ A(n): the large clusters in aglu M~ are colored with minus, and the small clusters
attached to C~ to build aglu M~ do not intersect 9" A(n). We conclude that

{distLl (M~ /n, E) < 5} C m Sep(n, x4, 4, vE(2;), 8) N m Sep® (n, z;, 5, &)
z; éeuit I z; Zéeal* I

Note that the sets I' N B(z;, r;) are compact and disjoint. The decoupling Lemma 3.2 and the
interface Lemma 6.1 together imply

nh_}rréo nd - log IPf An) distri(aglu M~ /n, F) < 5} < —z;oed_lrfl_lr(VE(xi)) (1 —c 50)
[4S
< “I(E)(1-&)Y+e' =-Z(F)(1-¢) O

We complete now the proof of the upper bound for Theorem 1.1.

Let v € [0,1] be fixed and A > 0. We define the sets S(v) = {F € B(I')| vol E > v} and
S(v,A\)={F € S(v) |Z(F) < A}. The sets S(v,A), A < 0o, are compact. Let ¢ > 0. For each I
in S(v—e,A) we choose §(I,£) > 0 according to Lemma 7.9. The family

{ {A € B(I)| dist;: (A, E) < 8(E,e)}, E€ S(v—-e, /\)}

is an open covering of S(v — e, A) from which we can extract a finite subcover associated with
a finite collection of sets E;, i € I. Since S(v — ¢, A) is compact, we can choose § € (0,¢) such
that the é-neighborhood of S(v — ¢, A) is still contained in the subcover, i.e.,

{A e B(T) ‘ dist (A, S(v— e, /\)) < 5} < {A e B(T) ‘ dist .1 (A, ) < 5(Ei,5)}
el

Since disty1(S(v), S(v—¢)¢) > e >4,

IP-I—

A {VO]M_/TL > v} < IPA"(n) |:diStL1 (1\4_/717 S(v—e, /\)) < 5}

+ P [M— /n € S(v), disty: (M— /n, S(v, /\)) > 5}
< Y rf, [dlstLl M~ /n, Ej) < 5(Ei,5)} +1PA+(n)[distL1 (M—/n, I‘l([O,A])) > 5}
el
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Passing to the lim, the choice of the §(F;,¢)-s and Lemma 7.7 yield

Tm —— - log IP"'( ) vol (M~ /n) > v] < - (c/\/\ (1—¢) minI(Ei))

n—00 n el
< _ B .
< (c/\ A(l—e) S(f—lg,A)I)

Since the sets S(v — e, A) are compact and 7 is l.s.c.,

lim inf Z= inf Z> infZ
e=0 S(v—e,N) S(v,A) S(v)

By letting ¢ — 0, A — oo and applying the Wulff isoperimetric theorem [36], we obtain (7)

lim % log P {VOI (M~ /n) > v} <—infZ=- (U/VOIWT)%I(WT)

n—oo N4 (n) S(v)
Let m belong to [-m*,4+m*). Let § > 0 such that m + é < m*. By Corollary 7.3,

lim —— 10gIP+(){% Z U(x)gm}

n—00 M
z€A(n)

< lim log IP - {VO](M_/TL)Z

n—>oond 1 A(n)

d—1
m*—o6—m m*—o6—m\ ¢
AL P Bk A
2m* } - (Qm* vol WT) W)

Letting & go to 0, we obtain the correct upper bound for Theorem 1.1. Notice that this upper
bound is valid for any m in [—m*, +m*]. However we have the corresponding lower bound only
for 1 — 2(diam W,)~%vol W, < m/m* < 1. For the remaining values of m in (—m*, m*), the
correct value should be

nﬁ{zuw\Eezﬂryxmuzz(m*—nwﬂ2mﬂ}

See [63] for the corresponding question in dimension two.

7.2 The locally averaged magnetization

We express o, with the help of the FK representation:

Veel  o,(z d}: )€ A(nz, f(n))]
cecC

We separate the contribution of the small and the large clusters by setting, for z € T,

osml(z) = N (@) |en Aua, f(n))]

d
¢ small

and 0,°"°(z) as in the previous case except that the sum is running over the large clusters.
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Lemma 7.10 For any ¢ > 0,

lim log IP"' / losmall ()| da: > §

n—00 nd 1

Proof: Let § € (0,1/2) and n so big that 2dn?~'2f(n) < én?. Set A(n)' = A(n — 2f(n)) N Z%
We denote by B(z) the open unit cube centered at z € Z%. Note that o5™3!(z) is constant in
B(z) with common value a5™2!l(2). Thus

P [ /F losmall(z)| dz > 36| < Z / osmall(y /n)| da > 26n }

z€A(n

_ P;(n)[ Z |a;ma“(z/n)|>25nﬂ

z€A(n)!

Let z € A(n)". If C' is a small cluster intersecting A(z, f(n)) then C' N & A(n) = (), hence o(C)
is &1 with probability 1/2 each and is independent from everything. Arguing as in the proof of
Lemma 7.1 (no need for C’ here) we have

IP+ “O.small( )| > 5} < 2exp ( B 0352f(")d_2)

(2%

We call z regular if |o5m(2)| < 6. We set X, = 0 if z is regular and X, = 1 otherwise. There
exists ¢4 = ¢4(p, d) > 0, such that

Py [ = 1] o(Xys dec (519) > 20 ()| < 2exp(—cad? ()" (59)

Then, for n large enough

IPX(n){ Z |O_Small( )|>25n} = IPZ‘(n){ Z small )|+ Z sma]] |>25n

z€A(n)! zeA(n)! zeA(n
X,=0 XZ_l

< P;(n)[ 3 XZ>5nd}

z€A(n)’

In order to apply Lemma 2.2, by using (59) we first estimate AZ(§):

Nl (6) > 8log(8/=(n) —log 2 > Slog ((6/2) exp(csd® f(n)"~2) ) ~log 2 > e48” f(n) =2 /2—2l0g 2

Thus, for n large,

cn
< d -
{ Z X. > } < (2f(n)) exp( 2f(n)2)
ZEA
for a certain constant ¢ > 0 and the claim follows. O
Lemma 7.11 For § > 0,
lim —— log IP {/ | 0,275z )—I—m*|dw—|—/ |olaree(z) — m*| da > §| = —
n—oo nd Aln) M~ /n M+t /n
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Proof: We work with the box A(n) rescaled by a factor f(n) and block size 2. The block variable
X (2) is the indicator function of the event T'(B’(z), f(n) — 1,8/2)°. Suppose that X (z) = 0 and
let = be such that y = n € B(z). Then there exists exactly one large open cluster C' such that
deo (y,C) < f(n). This cluster C' satisfies in addition

€O Ay, f(n) = 0F(n)"] < (6/2)f(n)?

Therefore, y belongs to M~UM™* and |072"8°(2) =00 (C')] < §/2. We split the region of integration
into the blocks B(z)/n, € A(n) and we use the previous inequality:

/ |O_large( )—I—m*|dw—|—/ |O_large($) . m*|dw < Qd(f(n)/n)d Z X(g) ‘|‘(S/2
M=/n M /n z€A(n)

By the estimate (14), the block process X (z) satisfies (15) with € = bexp(—cf(n)). The result
follows from (18). O

We next compare the two random partitions (M~ /n, M®/n, M*/n) and (I, T9 T'F).
Corollary 7.12 For any ¢ > 0,

— 1
lim —— log IPA"(n) distyi (M~ /n,T7) 4 vol T® 4 dist ;0 (Mt /n, ) > 6| = —oc

n—oo M

Proof: With the help of some set algebra, we have

disty1 (M~ /n,T) 4 distp (M®/n, T2) + distj (MT/n,TF) <
< 2vol (M~ /nn (TS UTH)) +2vol (M®/n) + 2vol (M™T/n (T2 UT))

< 2* (/ |0 () + m*| dz + vol (M°/n) —I—/ lon(z) — m*|dw)
m M~ /n M+t /n

The claim of the corollary is a consequence of lemmas 7.2, 7.10, 7.11. O

We now complete the proof of Theorem 1.2. Lemmas 7.10, 7.11 and Corollary 7.12 imply the
first claim of Theorem 1.2. Let m be such that 1 — 2(diam W,)"%vol W, < m/m* < 1. Let
4 > 0. By Theorem 1.1,

— 1 1
J;rréow log ,uA( )|:dIStL1(Fn7 me (I'))) + W(m)) > 5‘ v XA(:)O'(w) < m} <
zeA(n
— 1 : _ 1
T log P [distin (15, me (T5) + W) > 6, & o) < m] + ZOV(m)
zeA(n

Next, by Corollaries 7.3, 7.12 and Lemma 7.7, for any A > 0, ¢ > 0,

1 .

nh_}r{)lond110gIP(){dlstL1(Fn,mC( n)FW(m)) >4, pe XA: }
€

distp (I, me () + W(m)) > 6, distp (I, M~ /n) < e,

— 1
CeAA T ¥
AN lim “ooy log IP {distLl (M~ /0, T-1([0, \])) < =, vol (M= /n) > vol (W(m)) — =

A(n)

53



Let 5 such that 0 < 2 < vol WV (m)) and let us denote by £(8, A, ) the subset of B(I') defined
by

£(6,0,m) = {F eB(r) ‘ dist 1 (B, me (E)+W(m)) > 6=n, vol E > vol (W(m)) 5, T(E) < A}

The map E € B(I') — mc (&) € I' is continuous at each set having positive volume. Therefore
for £ small enough, the inequalities involved in the above event imply the further inequality
distzi (M~ /n, £(8, A, 1)) < €. Moreover the set £(4, A, 1) is compact. Proceeding as in the proof
of the upper bound of Theorem 1.1, with the help of lemmas 7.7, 7.9, we get the bound

. — 1
lim lim —
e—0 n—oo N -1

log IPA"

(n) {diStLl (M_/Th E(S, A, 77)) < 8} < - (C/\ A inf I(E))

Ec&(5,Mm)

Combining the previous inequalities, sending A to co and 5 to 0, we arrive at

— 1 : _ _ 1
nh_}n(r)lo T log ,u[;"(n) |:dlStL1 (I, me (') +W(m)) > 5‘ e XA(:)O'(w) < m}
zeA(n

e
< =it T TOV(m)

Since 7 restricted to I' has compact level sets it attains its minimum over the set £(4, 00, 0).
However this set contains only sets of volume larger than or equal to vol W(m) but no translate
of W(m). The uniqueness statement in the Wulff isoperimetric Theorem [37] implies that

EeEI(I}S,foo,O)I(E) >Z(W(m))

concluding thereby the proof of the second claim of Theorem 1.2. O

A Appendix

A.1 Results from geometric measure theory

We recall first that for any subset A of R%, denoting by aj, the volume of the unit ball of R,
the k-dimensional Hausdorff measure H* is defined by

Hk(A) = sup inf {oek Q_kZ(diam gEi)k ‘ AC UE“ sup diam o F; < 5}
§>0 Py g iel

Let E be a Borel subset of R A collection of sets U is called a Vitali class for F if for each
z € F and
o > 0, there exists a set U € U containing 2 such that 0 < diam ;U < 4.

The Vitali covering Theorem for H*™' ([32], Theorem 1.10). Let E be an H%~'-measurable
subset of R? and let & be a Vitali class of closed sets for £. Then we may select a (count-
able) disjoint sequence (U;)ier from U such that either Y. ;(diam U;)?=! = oo or H41(E\
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Ui Ui) = 0. If HY"1(F) < oo then, given ¢ > 0, we may also require that H?'(FE) <
Qg2 > ier(diam QUi)d_l + €.

For a general version concerning Radon measures, see [51], Theorem 2.8.

We recall next some facts concerning the class of the sets of finite perimeter, introduced initially
by Caccioppoli [12, 13] and subsequently developed by De Giorgi [19, 20, 21, 22] (see also
[31, 33, 39, 52, 70]). The perimeter of a Borel set F of R? is defined as

P(F) = sup { /Edivf(x) de: [ € Cgo(Rd7B(1))}

where Cg°(RY, B(1)) is the set of the compactly supported C*° vector functions from R to the
unit ball B(1) and div is the usual divergence operator. The set F' is of finite perimeter if P(F)
is finite. A set F is a Caccioppoli set if it is locally of finite perimeter. In this paper, we deal
with bounded sets, hence we need only to consider sets of finite perimeter. A set F has finite
perimeter if and only if its characteristic function yg is a function of bounded variation. The
distributional derivative Vg of xg is then a vector Radon measure and P(F) = ||[Vyg||(RY),
where ||Vxg]|| is the total variation measure of Vyg. The perimeter P is l.s.c. on the space

(B(RY), distz1).

Compactness property of sets of finite perimeter in I'. For every bounded domain U
and every A > 0, the set { E'€ B(U) : P(E) < A} is compact for the metric disty:.

This result is stated in this precise form in [22], Teorema 2.4, or [20], Teorema I. It is also an
immediate consequence of the compactness theorem stated in [52], chapter 2, p.70. Modern
presentations are formulated through functions of bounded variations: if O is an open bounded
domain with sufficiently regular boundary (say C'), then a set of functions in L*(O) uniformly
bounded in BV-norm is relatively compact in L'(O) (see any of the following references: [31],
Section 5.2.3, [39], Theorem 1.19, [70], Corollary 5.3.4). To deduce the compactness result on sets
of finite perimeter, we choose an open bounded domain O with regular boundary containing U in
its interior. We embed B(U) in L1(O) by associating to a Borel set F its characteristic function
xr and we simply remark that the set {xg | E € B(U)} is a closed subset of L'(O).

Let F be a set of finite perimeter. Its reduced boundary 0* F consists of the points z such that
o ||Vxg||(B(z,r)) > 0 for any r > 0,

o if v, (z) = =Vxgr(B(z,r)/||VxE||(B(z,r)) then, as r goes to 0, v,.(z) converges towards a
limit vg(2) such that |vg ()], = 1.

The reduced boundary 0*F is countably (d — 1)-rectifiable, that is 0*F C N UJ;cyy M; where
HI=1(N) = 0 and each M, is a d — 1-dimensional embedded C'! submanifold of R%. For a point z
belonging to 0*F, the vector vg(z) is called the generalized exterior normal to £ at z. A unit
vector v is called the measure theoretic exterior normal to F at z if

. —d _ . —d _
ll_r}r%)r vol (B_(z,r,v)\ E) = 0, ll_r}r%)r vol (By(z,r,v)NE) = 0.

At each point 2 of the reduced boundary 0*F of E, the generalized exterior normal vg(z) is
also the measure theoretic exterior normal to F at . The map z € *F + vg(z) € S 1 is
||V x£|| measurable. For any Borel set A of R¢,

ITEll(4) = AN B, Vxp(4) = [ v H ).
ANo*E
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Let f: 0*F — R be a |[|[Vxg|| measurable bounded function. By the Besicovitch derivation
Theorem [6, 10] applied to the measure ||Vyxg||, for #4~! almost all z in I*F,

lim  (ag_rd™h)7! /B( ) fy) HT dy) = f(z).

r—0 MO*E

For any vector function f in C} (Rd, Rd), any Caccioppoli set F, by the generalized Gauss—Green
Theorem,

/ div f(z)da = f(@)-vg(z) P (de) .
E E

8*

A.2 Proofs of the results on surface tension

For the sake of completeness, we include here the proofs on basic results on surface tension.
They follow from minor adaptations of arguments in [14] and [53].

Proof of Proposition 4.1. This result is proved with the help of the same subadditivity
argument used in [2], Proposition 2.4. The only additional problem is that we work with curves
whose position with respect to the discrete lattice Z% is arbitrary. Let w be a unit vector of R?
and let A, A" be two hyperrectangles such that nor A = nor A’ = w. Let ¢(n),¢'(n) be two
functions from N to RTU{oo} such that lim,_ . ¢(n) = 0o, lim, . ¢'(n) = co. Let (, (' be two
real numbers larger than 2d. Let n,m in N be such that ndiamy A > mdiamy A" > max((,{’).
Because we deal with hyperrectangles, certainly there exists a collection of sets (T'(i),7 € I) such
that: each set T'(i) is a translate of mA’ intersecting the set

D(m,n) = {z € nA : dy(x,ndA) > 2m diamy A" } ;

the sets (1'(i),7 € I) have pairwise disjoint interiors; their union (J;c;T(¢) contains the set
D(m,n). Since A is a hyperrectangle, then

H (nA) — 2m(diamy AVHT2(0dA) < HIZH(D(m,n)) < |[I|HTH(mA) < HT(nA)(60)

For each i in I, let £(i) be a vector in R? such that |t(i)|o < 1 and ¢(i) +7T(i) is the image of mA’
by an integer translation (a translation that leaves Z? globally invariant). Let 77 (i) = (i) 4+ 7T (3).
Suppose that all the events W (9T'(i), ¢(n), ('), ¢ € I occur, and let E(7), 7 € I, be finite sets of
closed edges realizing these events. Let ¢(d,(’) be a positive constant and let Ey be the set of
edges included in

(vl (A D(m, ) 1 Va(hypna,Q)) U ([ (Va(ex19T'(), e(d, ) 1 Va(hyp A, e(d, )
€]

Let ' = EoUJ;c; E(i). Clearly E is finite. The constant ¢(d, (') can be chosen large enough
(depending only on d,(’) to guarantee that the edges of F separate oo inside cylnA. Then
the set of edges F realizes the event W(9nA, ¢(n),(). An attempt of proof is done in [14],
Proposition 5.2. Therefore

{ ‘Ve e By w(e)=0}n ((YWOT'(),6(n),C)) € W(@nA,é(n),C)

1€l
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Since all these events are decreasing, by the FKG inequality,

Do [W (0 A, 6(), )| = (1= ) [ 0. [W(OT"(0), 6(n), ) (61)

el

Since the model is invariant under the integer translations, for any ¢ in [,

Do |[WOT'(0), 6(n), )] = @[ W (@A, 6(n), O] (62)

Because ¢(n) goes to co as n goes to oo,

lim @, [W(0mA, 6(n),¢)| = @ [W(0mA',00,¢)

n—0oo

whence, for n sufficiently large,
o [W(mA' 6(n), )| > (1/2)@, [W(0mA' o0, ¢)] (63)
For such integers n, combining (61), (62), (63) and passing to the logarithm,
log @, | W(9mA, 6(n),C)| > |Tllog .. |W(OmA',¢'(m), ()| + |Follog (1 = p) — |Illog2 (64)
There exists a further constant ¢(d, (,¢’, A, A’) such that
| Eo| < e(d, ¢, ¢y A, A) (n?Pm 4 0! fm 4 1) (65)
Using the inequalities (60), (64) and (65), we obtain
HI (n4) " og @, W (0n A, 6(n), C)| > M (mA) " og @ [W (9mA', ¢/ (m), ()| +
o(d, ¢, ¢ A AR A) T (m/n 4+ 1/m + 1/2 Ylog (1 — p) — HH(mA") " Hog 2
Sending successively n to oo and then m to oo yields

lim H (n4)Mlog @, [W (004, 6(n), Q)] > T HI=! (mA)Mlog &, [W (0m A", &/ (), )]

n—00 m—oo
which implies the result of the Proposition. O

Proof of Proposition 4.5: Let w € S9! and let A be a hyperrectangle orthogonal to w such
that H9~1(A) = 1. Let E(n) be the set of the edges included in cylnANVy( hypnA,2d). Then
|E(n)] < e(d)n?=! and

W(0nA, oo, Qd)} > ¢ {the edges of E(n) are closed| > (1 — p)lF(®

Passing to the limit, we get 7(w) < —¢(d)log (1 — p). Since 7y is homogeneous, convex (by
Corollary 4.3) and bounded on S9! it is finite everywhere. By a standard result of convex
analysis [60], Corollary 10.1.1, it follows that 7y is continuous, as well as 7.

Recall that we work here in the region: d > 3, ¢ > 1, p > p., 8/(p) = 6”(p). We first show
that 7(1,0,---,0) is positive. Let § be positive and let Fy,---, Fyq be the 2d faces of the cubic
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box A(1 — 28). Let Ey be the set of edges included in Vy(ndFy U---UndFyg,2C). There exists
a constant ¢(d,() such that |Eg| < e(d,{)n?=2. If the events W (ndF;, én,(), 1 < i < 2d,
{ all the edges of Fy are closed }, occur simultaneously, then there exists a set of closed edges
inside the box A(n) which separates the box nA(1 — 44) from §""A(n). By the FKG inequality,

(1-pl I e. [W(nam,m,c)] <o {{ nA(1 — 46) & 0 A(n) }°
1<i<2d
The bound on |Ey|, Proposition 4.1 and the symmetry of 7 imply that

lim —log ((1—p)|EO| I1 @. [W(nam,m,g)]) = —2d(1 - 25)""'7(1,0,-+,0)

n—oo Mn*T
1<i<2d

Next, the event { nA(1 —43) <+ 9" A(n) } depends only on the status of the edges inside A(n).
By conditioning on the configuration outside A(n), we get

o, [{ nA(1 — 48) ¢ 9" A(n) }c}
= o {@oo [{ nA(1 — 48) < 0™ A(n) }CIfA(”)]}

< sup @ {{ nA(1 — 46) & 0™ A(n) }C]
BecFK(A(n))

Yet the event { nA(1 — 43) ¢+ 0" A(n) }° implies that any cluster in A(n) intersecting 9" A(n)
is included in A(n)\ nA(1 — 46) and has therefore cardinality less than n?(1 — (1 — 448)9). We

choose § small enough so that 1 — (1 —46)¢ < /2. By the result of Pisztora [59], Theorem 1.2,
we have then

lim lo su S| L A(n(1 = 48)) < d™A(n) ¥°| < 0
T o s B[{Am(1-45) & 074}

so that 7(1,0,---,0) is positive.

Suppose that 7(v) = 0 for some v in S 1. Let fi,---, fs_1 be linear isometries of R? such
that fi(0) = -+ = fa1(0) = 0, {i(ZY = - = fu1(Z% = 2 and (i(¥),- -+, far (v), V)
is an orthonormal basis of R%. Then 7(fi(v)) = -++ = 7(fi—1(v)) = 0. Applying the weak
simplex inequality to a pyramid having for basis a hypersimplex orthogonal to (1,0,---,0) and
whose d other faces are orthogonal to fi(v),---, fi—1(v), v, we obtain that 7(1,0,---,0) =0, a
contradiction. Thus the surface tension 7 does not vanish on S?'. Since 7 is continuous on
S4=1 it is bounded away from 0 on S?~!. O

Proof of Lemma 4.7: Let (A4;,¢ € I) be a finite family of hyperrectangles in hyp O having
disjoint relative interiors and covering O. Let ¢ = ¢(d, () be a large constant. Let Fy be the set
of edges included in the union

U Va(cylonA;, ¢) N Vy( hyp nO, c)
el

There exists a further constant ¢/ = ¢(d,(,c) such that |Eg| < ¢/|[I|n?=2. 1If all the events
W(0nA;, ¢(n)), 1 € I, occur and all the edges of Iy are closed, then S(nO, ¢(n)) occurs as well,
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provided the constant ¢ is large enough. By the FKG inequality,

0. [S(n0. 6(m)] = (1= p) I T] @ [ W (DA 6(m))]

el

whence, by Proposition 4.1 and the bound on |Ep|,

lim
n—oo 1

—log @, {S(nO,qﬁ(n))} > —7(nor0) Z?—ld_l(Ai)

el
By taking the supremum of the right hand side over all possible coverings of O, we obtain the
claim of the Lemma. O

Proof of Lemma 4.8: Let € > 0. Let A® be a hyperrectangle such that
Voo (A,2¢) N hyp A C A° C Voo (A,3¢) N hyp A

Let Fy be the set of the edges included in
(Vz(cyl ndA, () N Va(hypnA, nr)) U (Cyl (nA°\ nA) N Va2 (hypnA, C))

Suppose that the event S(nA, nr) occurs, and let Fg be a set of closed edges realizing it. Suppose
also that all the edges of Fjy are closed. Then the set of closed edges FoU Eg realizes the event
W (9nA®, nr). Therefore

{w ‘Ve €FEy wle)= 0} NS(nA,nr) C W(0nA", nr)
Since all these events are decreasing, by the FKG inequality,
¢ {S(nA7 nr)} (1—p)lFel < @ {W(@nAE, nr)
There exists a constant ¢ = ¢(d, ¢) such that
|Eo| < en®™ M (rH T2 (0 A) + HITH(A\ A))
whence, passing to the logarithm,
log @ [S(nA,m«)} <log®,, {W(@nAE,nr)} — en®™ (P HTT2 (D A) + HEL (A A))log (1 — p)

Letting n go to oo, applying Proposition 4.1, and sending € to 0, we get the desired inequality. O
Proof of Lemma 4.9: The very definition of the event S(nO, nr) implies that
S(nO,nr) C m S(nA;, nr)
el

For iin I, the event S(nA;, nr) depends only on the status of the edges inside ncyl (4;,r). Since
the hyperrectangles (A;,7 € I) are pairwise disjoint and compact, so are the sets (cyl (A4;,7),7 €
I). Thus the decoupling Lemma 3.2 is in force and

nh_}n(r)lo nd log @ { (nO nr} Zhoond log @ {S(nAi,nr)}
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The conclusion follows from Lemma 4.8. O

Proof of Corollary 4.10: We apply Lemma 4.9 with O = disc (z, p, w), r = 1. There exists a
constant ¢’ = ¢/(d) such that, for any € positive, there exists a finite family (A;,7 € I) of disjoint
hyperrectangles included in O such that

Z,Hd_l(Ai) > Oéd—1,0d_1 — ¢, Z/Hd—Z(aAZ) < C/pd—2
el €]

The result follows by taking the infimum over all possible families in the inequality stated in
Lemma 4.9. O

Acknowledgement: We thank D. loffe for pointing out to us that the specification of the
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figure 1: a rescaled box
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figure 2: the blocks and the shells



figure 3: the blocks B(¢), B’(i) and the middleplane D(%)
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